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ABSTRACT

The damped nonlinear vibrations of thin-walled cylindrical shells with
initial geometric imperfections are studied using Donnel -type nonlinear
shallow-shell equations in which the appropriate damping and inertial terms
are introduced. Analytical procedures similar to those of Ref. [1] are used
here.

The results indicate that both the initial geometric imperfections and
the magnitude of damping have significant influences on the nonlinear
vibration behaviour of the shells. The results obtained so far provide
qualitively satisfactory explanations of the available experimental results.
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Frequency parameter of the companion mode,
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w A Vibration frequency

Q Nondimensional frequency, wR %ﬂ

A Difference of the phase angles, ¢ = V¥

A Average value (over one period) of A

(),x Differentiation with respect to the variables

following the comma



INTRODUCTION

In engineering the study of damped vibrations:is of great importaﬁce
since any realistic structure have some inherent material damping. The
results available so far show that the damping has a pronounced influence on
the nonlinear vibration of shells [2,3,4].

One of the earliest contributions to the theory of damped nonlinear
ring/shell vibration was made by Evensen in 1964, who introduced for the
first time the effect of damping in the nonlinear vibration analysis of
rings [2]. The phenomenon called 'gap' by Evensen was found in his analysis.

A more meticulous analysis was performed by Ginsberg in 1973 [3]. This
work is an extension of his earlier analysis of the undamped nonlinear
vibration of infinite long shells to the case of finite long shell with
damping. In his analysis a modal expansion approach was used. Also, many of
the discrepancies in Evensen's analysis were corrected. Ginsberg's results
showed that (a) the damping has a large influence on the coupled mode
response, and (b) the presence of even small damping could completely alter
the frequency-amplitude relationship. The 'gap' shown in Evensen's results
for rings were not found in Ginsberg's analysis.

Chen analyzed the damped nonlinear vibrations of cylindrical shells by
applying a systematic perturbation procedure to the Donnell shallow-shell
equations in 1972 [4]. His results for the companion mode are quite similar
to those of Ginsberg but for the driven mode response the agreement is not
satisfactory. This was attributed to large values of damping used in Chen's
analysis [4], but Chen did not agree with it.

As mentioned in [1], one of the conclusions that can be drawn from the
results of previous studies is that although some basic characteristics of
the damped vibration behaviour of shells have been derived analytically and
also verified experimentally, there are certain situations where
considerable disagreement still exists between results obtained by different
analytical procedures and also between theoretical predictions and
experimental evidence.

The objective of the present analysis is to investigate the effect of the
initial geometric imperfections on the damped nonlinear vibration of shells.
This objective is the natural extension of [1]. The emphasis of the current
work is placed on the influence of initial geometric imperfections on the
coupled mode response for which no solution is as yet available. In
addition, the authors also intend to study discrepancies between the results
of earlier studies and to get a reasonable explanation, if it is possible.

The same analytical procedure and assumptions as those used in Ref [1]
are used in the present analysis. For the sake of brevity they are used
without any explanation except for new ones. Similarly, the details of the
solution of the fundamental state will not be repeated here, as well as
stability analysis of solutions. Only the analysis for the damped dynamic
state is presented in the present paper. Interested reader in the analyses
of the fundamental state and stability can refer to Ref. [6] and [7].,
respectively.



ANALYSIS

The mathematical model of the vibrating imperfect stiffened cylindrical
shell with damping was arrived at by introducing the appropriate terms for
the imperfections, the inertia and the damping into the nonlinear Donnell-
type orthotropic imperfect shell equations.

The model consists of the following two coupled partial differential
equations in the unknown functions W and F,

1 1 - )
Ly(F) = Lo(W) = g W, = 5 Ly (W0« 2W) (1-1)

Ly(F) + Ly(i) = TE, o+ Ly (FW W) - phi, -
where all of the symbols have the same meaning as in equations (8-1) and
(8-2) in Ref. [1], except ¢, which is the material damping coefficient.

Using the assumption that the displacement W and the stress function F of
the shell during vibration under an axial compressive load and due to the
lateral excitation can be expressed as a linear superposition of two
independent states of displacement and stress, one can obtain the following
two sets of equations. One of them is the set of governing equations of the
fundamental static state (geometrically nonlinear)

Ly(F) = Lo(W) = - ¢ Wy " 3 Ly, (W, W+ 200) (2-1)

~ ~ 1 ~ ~ ~ -
LQ(F) + LD(W) R F’xx+ LNL (F, W+ w) (2-2)
while another is the set of governing equations of the nonlinear dynamic
state due to small but not, infinitesimal vibrations about the fundamental

state:

chw,t +q=0 (1-2)

~ ~ ~ ~ ~ ~

- ~ 12 1 I, 1 ~ 1 ~ o
Ly(F) LQ(W) = - W T3l (e 20) = 5 Ly (W, W) - 5Ly (W, W)
(3-1)
~ ~ 1 ~ ~ ~ ~ ~ -
LQ(F) + Lp(W) =g F, Ly (Fo W)+ Ly (F, W+ w)
+L.(F, W) -chW, -phW + q (3-2)

NL 't 'tt
As mentioned above, only the dynamic state is analyzed in the present
work,
The assumptions of the present analysis are the same as those used in
Ref. [1] for the imperfection mode, the fundamental (static) mode and the
dynamic response mode. They are

W = 61h coslix + 52h 51n1kx coszny (4)
W= Goh + 61h coslix + 62 51n1kx coslny (5)
and
& = Ah sin & x cos®,y + Bh sing x sinf y + 12 Rh
k L K '3 [



2 2 o . 2
[A® + B™ + 2A5n,2(62 + 62)] sin lmx (6)

where the ;, W and W are the amplitudes of the initial imperfection, the
fundamental (static) behaviour and the dynamic response, respectively.

Through appropriate operation and the use of Galerkin's procedure one
" obtains two coupled nonlinear differential equations for A(t) and B(t)

2 2, .
d4A *a At oay, a& fa+6 (6.,+6.,) ]+a dc

dA ]
a +q. 22 —= [A+ 8 (6,46,)] +
L 2 dt 3 a2 n,. "2 "2 5 dt n,g 2 2

v agh’ + G (A%+B%) + Gg(a-B%) agh® + &, (A%B%)A +
+ &”(Azﬂaz)A2 + &12(A2+82)2 + ;13(A?+82)2A - Fp (7-1)
N I S i D R R TR RECNL
dt dt dt dt
s 69(A2+52)AB " E1O(A2+B2)28 - F, (7-2)
where the 31, ;2, ey ;13 and §1, §2, ooy 510 are coefficients which are

defined in Appendix A and FD and FC are generalized dynamic forces.

The details of derivations of equations (7) are given in Appendix C.

As in Ref. [1], we chose q to be fixed in space and harmonic in time:
q(x,y,t) = Q(x,y) coswt (8)

and then choose Q(x,y) to be symmetric with respect to y and have a zero

average value., This results in

FC =0
and
22Rh ) ,
I Q(x,y){cost y sinf x +_§——[A+6n,2(62+62)331n 2 x}cosut "
D 0°0 TRL y

(9

It is obvious that the coupled nonlinear differential equations (7)
cannot be solved exactly. An approximate solution can be obtained by the
procedure known as the method of averaging. The unknown functions A(t) and
B(t) are taken to be of the form : .

ACt) = Ay(t) cos(uwt + ¢) ‘ (10-1)

B(t) = Bo(t) sin(wt + ) (10-2)

where ¢ and y are the phase angles between the driven mode and the companion
mode respectively and the excitation. These angles are functions of time.

Substituting equations (10) into equations (7) and then applying the
method of averaging yield the approximate solutions for A(t) and B(t)




ACL) A(t) cos(uwt + 5) (driven mode) (11-1)

B(t)

B(t) sin(wt + @) (companion mode) (11-2)

where A, B, 5 and $ are the average value of the A(t), B(t), ¢(t) and ¥(t)
over one period, respectively. They can be obtained by solving the following
simultaneous nonlinear algebraic equations for a given average excitation

FD’ damping Y and forcing frequency Q:

2= -2 _z2 " ~ 2 = =2 %
QA {1 + g, [A B cos 28 + 2 8 (6, +8,) 1} + B,A - YaAB“g, sin 28 +
+ 8333 + Zeuﬂﬁz (1 - % cos 2b) + 853 ESKu + M32§2 (% - cos 23) +
+ 25“ (% - cos 28)] = ED cos 5 (12-1)

{552[8192 - By - 2 BSK(Kz + 52)]} sin 2A - QY {25 + 81[53 - 552 cos 2 +

- ~ 2 - . -
+ RS o (8, + 6p) 1} = Fp sin ¢ (12-2)
- 2%B[1 + 36(52 - 3% cos 28)} + BB + nY32636 sin 23 + 3953 +

+ 238325(1 - % cos 28) + 8105{56" + (4282 + 2ih (% - cos 28)} =0

(12-3)
[3%B [3692 - Bg - 2310(32 + B°)1)sin 28 + Qv{2B + 56[6 - %8 cos 28]} = 0
(12-4)
where Q = wRv %ﬂ , is the generalized nondimensional frequency;
Y = cR Vv l:— , is the generalized nondimensional damping;
2pE '
A = 5 - ﬁ , is the "average difference of phase angles";
22Rh -
sr & r2™Ro(x,y) {sing x cost,y + (A+8_ ,(8,+46,)] sin®%_x}dxdy
Fo= 0 0 ! K L 2 n,, "2 "2 m
D tLEh
i , 1s the generalized average excitation;
and 81, 82, ceey 810 are coefficients which are given in the Appendix C of
Ref. [1].

The details of derivations of equations 12 are given in Appendix C.
The analysis is carried out for two separate cases.

CASE 1 Single mode response (A # 0, B =0)
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ASs can be seen B = 0 is a possible solution of equations (12). In this case
equations (12) become
-%% {1 + 8. A% + 286 , (5, + §.0%) + B R + 8 A
1 1°n,8 ‘2 2 2 3 D
-qy {oa + 81A3 + uB1A6n’1 (8, + 52)2} = F, sin ¢ , ' (13-2)
A single equation governing the amplitude-frequency relationship of the
single mode response is obtained by first squaring both equations, then

adding them and finally using the identity

C+ 58555 = F_ cos 5 (13-1)

. 2~ 2=
sin¢ + cos ¢ =1
This yields
0.0+ a0’ +a, =0 (14)
1 2 3
where
-2 =2 "
ay = A {1 + B, [A" + 26, o (s,
-2 -2 - 2 -2 -4
a, = = 28° {1+ 8 [A" + 26 o (8, + ) 1} {8, + 8,8 + 58,4 }
2=2

+ Y282 {2+ 31K2 + ugS, (6, ¢ 62)2}2

=2 =2 4,2 =2
ay = A {82 + B A7 + 5B, b - Fy
It is obvious that one can obtain not only the damped response for various
damping and excitation levels but also the free vibration (or undamped
response) if one lets the damping and excitation terms vanish in equation

(14).

+ 62)2]}2

CASE 2 Coupled-mode response (A £ 0, B#DO)

Another possible case in the solution of equations (12) is A # 0 and B # O,
namely the damped coupled-mode response.

For the damped couple-mode response a direct simultaneous solution of
equations (12) is too cumbersome. A further simplification can be carried

out as follows. Initially one solves equations (12-3) and (12-4) for sin2a
and cos2h in terms of A and §, respectively. Then one uses the identity

sinzzz + cosZZZ = 1, which results in a single equation with the unknowns A
and B. '

Next one back-subtitutes for sin2A and cos2a in equations (12-1) and (12-

'

2) and then uses the identity sin25 + 0055 = 1, which yields a second

equation with the unknowns A and B.

The amplitude-frequency relationship of damped, coupled response then can
obtained by solving these two nonlinear algebraic equations simultaneously
for given values of damping, imperfection and excitation. The equations can
be expressed in the following form:

A JhA bbbl L o
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~

2- -2 =2 - 2 - =<2 L=
< -°a {1+ B,[A® - B cosaa + 28, , (6, + 8,) 1} + B,A - YRABB, sin 24 +
¢ g%+ 28, 18% (1 - § cos2h) ¢+ 8K (5K« MAD (3 - cosab) +
+ 2§u(% - cos 28)1>%+ <{R62[e192 -8y - 28 (a2 + B°)]} sin 24 +
- =2

_ - -3 ==2 - = 2,12 _ =2 _ )
ov {2 + g, [A® - AB® cos 28 + MAS_ , (6, + 8,) 1 -Fp=0 (15-1)

and
~ =12 “=10 ~ =8 -6 = ~ =2 ~

a1B + a2B + a3§ + aué + aSB + asB + a7 =0 (15=2)
or-
~ =12 ~-10 - -8 ~=6 ey N =2 "
B AT+ B A+ BAT + BAT ¢ BAT * BEh By = O (15-3)
where
T 2 =2 =2 2 =2
sin2a = YQ{2[B6Q Bg 810(4B + 2A7)] + 86[87 Q + B (89 '88) +
-2 =Y -2=2 =Y
+ 2BgA” + B (B + 4A°B + 38 )1}/ S4 (16-1)
- 2.2 =2 2 =2 =2 -2
cos2h = {Q°Y Bg(2 + BEBT) + [2°(1+8.B") - B, - B¢B 28gA° +
_ =) _=2-2 -4 2 _ _ -2 =2 -
B,o(5B +6A"B" + 3A )1[8¢R Bg 28, (A + B )1}/ S4 (16-2)
P 2 =2 2 _ _ -2 =2 2 _ _ -2 =2
S4 = (A36YQ) + A [369 Bg 281O(A + B )3[869 Bg 2B1O(A + 2B°)]
(16-3)
Here: Ays Qo .s a7 and 81, 32, e ey 87 are functions of A and B

respectively and are given in Appendix B.

One can get solutions for the driven mode A by numerically solving
equations (15-1) and (15-2) simultaneously for given amplitudes of the

companion mode B or get solutions for the companion mode B from equations

(15-1) and (15-3) for the given amplitudes of the driven mode A.

DISCUSSION OF THEiRESULTS

‘Equations (15-1) and (15-2) and equations (15-1) and (15-3) are two sets
of nonlinear algebraic equations for the two unknowns A and B. A direct

Solution for A and B as functions of ED’ Q and Y is quite difficult.

Therefore the normal procedure is to calculate B from equation (15-2) for
given values of K, Q and Y (or to calculate A from equation (15-3) for given

§, Q, and Y), then calculate the generalized excitation ED from equation
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(15-1) upon substituting B (or A) for given values of A (or é), Q and Y. By
cross-plotting the results, it is possible to obtain curves for A vs. 2 and

B vs. Q for constant FD’ For guaranteeing the necessary accuracy of
solutions, the Newton-Raphson procedure is used in the present analysis,
which takes the results obtained from cross-plotting as the starting values.

The isotropic shell used by Evensen, called ES herein is used. Its

characteristic parameters are

2
n h,2
e = ( —ﬁ_) = 0,01
mR/n
£ = E7E— = 0.1
ve0.3

The wave numbers of vibration are chosen such that
a. They satisfy the accuracy requirements of Donnell's equations, namely
the circumferential wave number should be greater than 4;
b. They would constitute lower order modes which can be excited easily
into the nonlinear region to make experimental verification possible

In the present analysis the mode k=1, =5 was selected. Various values of
i and n were selected depending on the different coupling conditions.

A series of computations was performed for damped single and coupled mode
response. In order to facilitate understanding, the discussions of these
numerical results are divided into five categories.

a. Influence of Damping and Excitation '
Figures* 1 to U show the amplitude-frequency relationships of a perfect
shell for different values of damping and excitation. One can draw the
conclusion that the damping has-a dramatic influence on the behaviour of
the coupled mode response after comparing the present results with those
of the reference [1]. The presence of even very small damping changes the
shape of the undamped coupled mode response completely. As can be seen
from Figures 1 and 2, increasing the damping can quickly round-off the
coupled-mode response peak. Similar results have been found by Ginsberg
(13].
An interesting fact can be deduced from the results shown in figures 1, 3
and 4, namely, that increasing the amplitude of excitation or decreasing
the value of damping can disrupt the stability of the coupled-mode
response peak. This fact has been found by Chen [4] in his careful
experiments fifteen years ago, but has not been predicted by theoretical
analysis before.

¥Notice that the frequencies in the present figures were normalized by
dividing by the frequency of free vibration (linear theory) of the
perfect unloaded shell. ’
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b. Influence of Asymmetric Imperfections

The response-frequency relationships of a shell with asymmetric initial
imperfections are shown in Figures 5 to 9, where the damping and
excitation are held constant. It can be observed that asymmetric
imperfections have a significant influence on the coupled-mode response
if the coupling condition n= is satisfied. Increasing the amplitude of
the asymmetric imperfection can quickly decrease the region where
the coupled-mode response occurs. The asymmetric imperfection also
changes the stability characteristics of the coupled-mode response. But
as it can be seen from Fig. 9 the influence of the asymmetric
imperfections on the coupled-mode response is minimal if the coupling
condition n={ is not satisfied. It should be noted that the influence of
the asymmetric imperfections on the shape of the single mode response-
frequency curve is also minimal.

c. Influence of Axisymmetric Imperfections

Figures 10 to 13 display the amplitude-frequency relationships of a shell
with axisymmetric imperfections. As can be seen (from figures 10 to 12),
if the coupling condition i=2k is satisfied then also the axisymmetric
imperfection has a strong influence on the nonliner vibration behaviour,
otherwise the influence is quite slight, as shown in Fig. 13. Notice that
in the case of i=2k, the left bifurcation point is now on the lower
branch of the associated single mode response curve rather than on the
upper branch as in the case of an asymmetric imperfection. In addition
the axisymmetric imperfection changes the stability characteristics of
the coupled-mode response curves in the case of i=2k.

d. Influence of Combined Imperfections
Figures 14-17 show the amplitude-frequency relationship of shell ES with

the combined imperfections (61 # 0, 62 « 0). It is seen from Figures 14

and 15 that .the axisymmetric imperfection has a stronger influence on the
nonlinear vibration than the asymmetric imperfection when they both have
the same order of magnitude of the amplitude. In these cases, the
characteristics of response is basically those of a shell with
axisymmetric imperfection alone (see figure 11). Another fact that should
be noted in Figures 14 and 15 is that the influence of the combined
imperfections on the nonlinear vibration is not simply the superposition
of the influence of the asymmetric and axisymmetric imperfection on the
vibration, because the nonlinearity involved. For instance, the region of
the coupled mode response in the case of combined imperfections is larger
than the region in the case of asymmetric imperfection alone (see figures
6 and 15) but less than that in the case of axisymmetric imperfection
alone (see figures 11 and 15).

The effects of the coupling condition i=2k and n={ are shown in figures
16 and 17. It is obvious that the influence of the combined imperfections
on the nonlinear vibrations is reduced to that of the single mode
imperfection when only one of the coupling conditions is satisfied.

e. Influence of Axial Compressive Load
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Investigation of the effect of an axial compressive load on the nonlinear
vibrations of a shell is of importance in engineering since many shells
used in practice carry an axial compressive load. Figures 18 to 20
indicate the dynamic shell behaviour for the cases of » = 0.1, A = 0.3
and A = 0.5 for perfect shells respectively. By studying these figures
one can draw the conclusion that the axial compressive load has the
follow1ng influence on the nonlinear vibration:

. It 'amplifies' the nonlinearity of the vibration, as mentioned in (11,

. It increases the amplitude of response, which is equivalent to

decreasing the damping,
. It increases the region of the coupled mode response.

As can be seen, the presence of an axial compressive load does not change
the vibration behaviour.

CONCLUSIONS

The nonlinear flexural vibration of perfect and imperfect thin-walled
cylindrical shells with damping are analyzed by using Donnell's nonlinear
shell equations. Numerical solutions are obtained by applying Galerkin's
method together with the method of averaging. The study yield the following
conclusions:

a. A good agreement between the present and Ginsberg's [3] analysis is
obtained. The "gap" found in Evensen's analysis [2], which is the
major difference between Evensen and Ginsberg is not found in the
present analysis. In the present author's opinion the "gap" resulted

because Evensen neglected the negative values of cos 2A, in his ring
analysis. Therefore, one can now say that no qualitative difference
exists between the results of the different solution procedures: (a)
Galerkin's method (Evensen [2,5]) and the present analysis, (b) the
small parameter perturbation (Chen [#]), and (c) the special
perturbation procedure (Ginsberg [3]).
b. The general characteristics of the damped response of perfect shells
found by Ginsberg are confirmed by the present analysis, namely
. the damping has a pronounced influence on the coupled-mode response.
Increasing damping can completely eliminate coupled-mode response

peaks,
. damped response of a perfect shell can be divided into five regions,
as shown in Fig. “In region (3) both the single mode and the

coupled-mode responses are unstable. The coupled mode response peak

in the region (4) is stable,

the single mode response between two bifurcation points is unstable.
One of the extra results obtained by the present analysis is that the
stability of the coupled-mode response in region (4) is not always
stable. It depends on the magnitude of damping or excitation, as shown
in Figs. 3 and 4.
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Initial geometric imperfections have a significant influence on the
damped vibrations of either the single or coupled-mode responses under
certain coupling conditions. The general influence of imperfections
is quite similar to that of damping. That is, increasing amplitude of
imperfections can quickly eliminate the coupled-mode response. In
addition, the presence of initial geometric imperfections changes the
stability characteristics of the solutions. It is noted that the
influence of combined imperfection modes cannot be obtained simply
by superposition of the individually determined axisymmetric and
asymmetric imperfection modes.

Axial compressive loads have an influence on the nonlinear vibration
of perfect shells. Such loads amplify the nonlinearity of vibration,
increase the amplitudes of response as well as the region of coupled-
mode response. It does not change the vibration behaviour when A is
less than the 'critical point' of the load.
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APPENDIX A
&1 - 51
52 = ch2
&3 = 62
&u = 63
o - %ch3212R
&6 = Eu
(17 = 05
&8 = 66
&9 = 57
&10 - 88
&11 - 69
&12 - <-310
a,, =¢

where 01, 02,

Ref. [1].

[¢]

iR

and 51, a
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are coefficients defined in C of
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APPENDIX B

100 B?O

y =2 _ 3 2_ _
HUOB1OA u0810(869 89) 1008 (869 88)

2 2 2 2 2 2 2 2 2

48% (B0°-8g)” + o(BgR-Bg)% + H0BT (B2 -Bg) (B2 -By) +
3 2_ 2 2 2 2 <2 3 _ 3 2_

HOB10(Q B ) + 21 Y°Q 86810 + A [8088810 128810(869 89) +

3 y u
3“0810(8 n 88)] + 7808

082 (%8, (8,0%-85) + 882(0%-8,)(8;87=8) = 18, (Bc0~85)*(8g0" -8y

2 2 2 2.2 2 2
10810(869 58) (869 89)+ 2Y°Q 36810[12810f586(869 38) - 286(869 -69)+

_ 20,2 2_. 42 2 2_. \2 _ 3 .2
86(89 88)] + A [8810(869 B )T+ 60810(8 Q 88) 128310(9 87) +

8882 (8 92—88)(8 92-8 ) - 16Bg87, 2 (B¢ Q° “8g) - 8068350(8692-38) N

2 2.2 2 3
52Y° QBB 10] + A [256888

7208u A6

- 3 - ) - 3 2.
160310(869 Bg) = H0BBI(BgR =Bg)] +

2 2 2
[648 +B6(89'88) + 686810(87 Q ) 168 681 (B Q 88) - 168 10(89 8)+
2 2

88, 10(3 a°-8,) + 284(8ca°"8 )<36 2-8)2v%0° + (QYB6) + 482 (2%-8,)°
(8502-8)2(850%-84)2 - 88, ,(2%8,) (82"~ (Bg0"-Bg) +

108, o(22-8,) (Bca°-8)

R2{ug 6, 12071388, * 28-(BgBg) + B, "By(Bed ) - 38 (3692-38)1 .
36 (078, (80%-8) + 168 ((0°-8,)(80°"Bg) = 16 Bgs o(a°6;) +

48, (850280 2(8ca5=8) + 16 848, (B0 8g) (80 ~Eg) *

2 2 2 2 2
128, ,(BgR ~Bg) (B¢ Bg) * 2088, (B2 ~Bg) } o+
2 2 2 2 2 2 2 2 2 2
{uzs6e + us1o(e6n 89) + 1688810 1487 (B0 Bg)

3 .2 2 2_ ey - 2 2_
16087,(27=8,) + 728, (840 68)(869 By) ~ 32BgB o(BgR Bg) *




+

+

KB{ 3

KZ
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176886f0(s692-68)} +

3

76 _ 3 2_ _ 3 2_ y -8
A {32088810 9687 ,(BgR "By) — 20087(80 38)} + 3808, A

10
2. 2.2 2 2 2

2 2_ 2_ 2,.2_ 2_ 3.4 4
“81086(87 Q) + 286(869 88)(869 89) + 66(9 87)(869 68)] + ”869 Yo+

{ay

ue10(n2-s7)2(e692-88) . 2(92-87)(6692-88)2(6692-69)} +

32{uv202r168%, + 38, BE(8,-2%) + BE8g(By=Bg) - 28¢8, (Bl ~Bg) *

28,8, (Bg8g) = UBgBaByo - 28g8o(86R Bg) = BoBg(BgR wBg)]
88?0(92—87)2 - 8810(92-87)(8692—88)(8692-89) - 1688810(87-92)(8692-88)+
12810(92'87)(8692-88)2 - uBg(B,R7-8g)°(8,0%-8) ]} +

R'{28.8, 17071288y + 385(8g78g) = By, ¢ 384(80°-8g)] +

7282 (028, (8ga°=8) * 882((07-8,)(8cn%~8) - 328g870(2°-8,) +

2_ 2,y 2 . \2/n 022 y _ 162 2_
16858, 1 (BoR"=Bg) (BeR =Bg) ~ 6B (B2 ~Bg) (Bg@"-By) — 168gB, o(BgR ~Bg)+

2“88610(8692-88)2 + 12810(8692-88)3} + |
56{1zsgson292 N 3233830 - 368?0(8692-88)2 - 963?0(92-87) +
2 2 2 2 2 2 2
2185 (B0 -Bg) (B -Bg) - 14MBGBY (B ~Bg) = 16848] (B0 Bg)} +

3 =10

1928487, - zue?o(esnz-sg) - 36810(8692-88)} . 1zoe?oA

(v2a2ru(s 02807 + 82(8,-09)2) » usly'a" + (a%-8)%(aga%-8g)%) ¢
(4v2a?08285(8,-0%) = 48, (878 - 4B, (a7-8,) (Bea"~8g) *

2 2,.2 .
4Bg (B R -Bg) (2780} +

2, 382810(87-92)] +

usfo(nz-e7)2 N usé(eGQZ-ea)z . 1688810(92-87)(6692-88) .

Y 22 ..2 22 2 2_
A'{2vcq (887, * 2B¢Bg B (B2 Bg)

2 2 2 Y 2 y
68, (27 =8.) (B0 -8g)" - (BgYR) (B4 =8g) } o+
-6 2.2 2_ 2, 2. 2_
A {us6810Y Q°[3BcBg * 2B (B0 Bg)l + 2ug’ (@ 87)(869 Bg) *

16383fo(na-e7)- 1682810(8692-88) N 1288810(3692-68)2 . 8810(8692-88)3}+
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2 2 2

2.2 2.2 2
10(Be® Bg)

-8 2 2 2_
A {B6B1OY Q° + 168587, = 158 48881 (BeR ~Bg) *

- 2“8?0(92-87)} +

=10 3.0 ua3 2_ 4y =12
+ & {usg] By - 4By (BgR Bg)l + 208, A
y
= 208,
3 _ .3 2_ 4 =2
= {u888810 487 (BgR Bg) *+ 1208, B
2.2 .22 2.2 2 2 2 2 2
= {86810Y Q% + 168587, ~ 1587,(Bg ~Bg) 48B g8 (Bgl Bg) *
_ 3 2_ =2 3 _ 3 2_ _ 3 2_
2487, (@ 87)} + B {19288810 3687, (B "Bg) - 2487 (B8R 89)} +
y =y
+ 3808, B
_ 2, 2.2 2_ 2 .2 2_ . 2, 2.
= {ue6s10Y °[384+2(B,0"-Bg)] + 2481 (R B,) (B -Bg) 168g87(°-B,) *+

g2 2_ 2 \2 2 .3
1688, (B ~Bg) *+ 128gB, (B2 =Bg)" + 88, ,(B(R Bg)”

-2 2 2.2 _ ...2 22 _ agl3 (o2
+ B {12(86B1OYQ) + 32BgB1, 36810(869 Bg) 96810(9 87) +

2 2 2 2 2 2 2
+ 2487 (B R -Bg) (BRT=Bo) — 144BgBI (B2 ~Bg) 168487 (B4 39)} +

-y 3 3 2_ _ 3 2_ y -
B {32038310 20087 (B2 ~Bg) = 9687 (BgR 39)} + 7208, B

2 2 2 2 4

10°°7
2 , 2 . 2 2, 2. \2 2_ 2_
+ 4B7(%-B)" + UBg(Bs0"-Bg)" + 168, 8g(2°~8,)(BgA"~Bg) +

2.2 2 22 2
= {v°a (168, * 4BgBg * 688

- 6810(92-87)(8692-88) - (3692-38)"} +

2.2 2 2 2 2 2 2
+ BE{Y 0 [2U4BLBgB,, * 6BgB,(ByBg) = 8BgBy, * 688, (B2 ~Bg)] *

r 1262 (0280 (8g0%-8g) + 882(07-8,) (Ba7-By) = 32887 (2°-8,) +

2 2 2 2 2 2 2
+ 1688810(869 -88)(869 89) 6810(669 88) (869 89) 16 88810(669 88) +

2. .2 2 \3
+ 2UgB. ((B,R -Bg)" + 128,,(Bc0 Bg) b+
=Y 22 .22 2 2 2 2.2 2 2_ 2
+ B {428gBY Y707 + 4B  (BERT-BG)T + 16887, + THB (B0 "Bg) *

_ 3,52 2 2_ 2_ _ 2 2_
160 810(9 67) + 72810(869 88)(869 89) 3288810(869 89) +
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176686fo(s692-68)} +

-6 3 3 2_ _ 3 2_ y -8
B°{1968487, - 40887 (8,2°-8¢) 16087, ( 848 89)} + 7808, B
22 .2 2 2 2 2 2
= {4v“g [8688(87 Q) - “810(369 88)] us1o(n 87) (BQ 88) +

ugg(8R°-Bg) (2°-8,) ) +

B2{uvZa®L 1685 382610(87-92> v 8Bg(8=8g) - 28,8, (B0 Bg) *
288,80 ~By) = 2848, (Bg~Bg) - U8B, o~BaB (Bl ~Bg)] *
88?0(92—37)2 - 8810(92-87)(8692-88)(8692-89) . 1688810(92-87)(8692-88)+
126, ,(028,) (827-85) - UBg(8ca”-8)°(8ea"~80)} +

5% {uv202 038288, ,* 2638, o(BgBg) *+ UBGBL ~BE8, o(BGR "Bg) *

3828, (Bga2-8g)] + 8882 (2°-6,)(8ca7-Bg) + 1687 (0%~8,)(8g0°=8) +
168485 ,(2°-8,) - 4, o (BgR"-B4) 7 (8,07-8g) + 16848, (B0 8g) (B,2°=8y) +
12810(8692'88)2(8692-89) * 2088810(8692-88)2} +
22 22

-6 2 2 2 2 2 2
B {5286810Y 2% + BB (B -Bg)" + 6087, (B0 -8g)

_ 3 (02-
128310(9 87) +
2 2 2 2 2 2 2

8887 (B2 Bg) (B2 -Bo) ~ 168487 (B4R -84) - 80BgRY (B(R -38)} +

-8 3 3 4 =10
B {8088810 3408, 1B

{Y292[4(8692-88)2 N 82(87-92)2],+ uez(Yn)"+(92-s7)2(8692-68)2} .

2.2:.2,, _o2 _ 2_ _ _ a2
Q [86(87 Y )(B9 88) + 286(869 88)(89 88) 1486610(87 Q") +

2_ 2_ 2_ 2, 2_ 2_ 3 vy U
168, (B2 -Bg) + 2B5(BA =85) (B0 =By) + Bg(R°-B,)(8c0°-Bg)]+ HBL(YR)™

2_ - 3 2_
o BgR =Bg) - 12887,(8.0 69)} + 4U4OB
82| 2v

u810(92-87)2(8692-88) N 2(92-87)(B6Q2-68)2(B692-89)} +

“4; 2 2 2 2 2 2 2, _ 2_
B {Y°Q [ousy, + 36(89-88) + 686810(87 2%) - 168,8,,(BcR Bg) *

2 2 2 2 y y
1688, ,(BgBg) = B8BgB, (B0 -Bg) + 2B4(BA°~85) (B0 Bg)D + Bg(YR)" +
2 2 .2 2 . \2,, 2., \2 _ 2_ 2_
485, (2°-B,)" + (852 -By)“(BA-8g) 19810(9 B,) (82 -Bg) *
2 2 2 '
88, (278, (B, =Bg) (8@ 89)} +

56

22,2 . 2 _ .2 2 v 02 2_
YR [28.8, (Bg=Bg) ~ 2UBGBI, ~ 1088, ((BeR"=Bg) — HBGB, (B2 =8o)]

2,2 2 2 ,.2_ 2y 2_ 2 .2
4082 (2%-8,) (Bea =8g)+ 887(2°-8,) (B -Bg) = 48, (B8R -Bg) (BeR™=8g)"s
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10810(8692-88)2(8692-89)} +

-8 22 .22 2 2 .2 2 2 2 _ 3,2
B {21B6B1OY Q% + U (B0 89) + 2587 (B0 Bg) 4087 (@ 87) +

2 2_ 2_
4087 (B2°~Bg) (BgR 89)} +
Q2 12

=10 3 2_ 3 _ y =
B {90310(869 Bg) * 10087 (8¢ 88)} + 1008, B
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APPENDIX C DERIVATION OF EQUATIONS (12)

Equations (12) are derived from equations (7) using the method of
averaging which is often employed in nonlinear vibration problems.
To apply the method of averaging to equations (7), let

A= Ao(t)cos[wt + ¢o(t)] = A0 cosy, (Ci-1)
B = Bo(t)31n[mt + wo(t)] = BO siny, , , (C1-2)
where AO, BO, ¢0 and wo are assumed to be slowly varying functions of time
t, and
Xy = wt + ¢0(t)
Xy = wt + wo(t)
Taking the derivative of A and B respectively gives
dA dAO d¢ ‘
3T ° T °°° Xy -.Aom sin x, - AO 3o 8in x, (C2-1)
dB dB. dy ‘
3T - @ sinx, ¢ Bow cos x, * BO 3T €08 X, (C2-2)
Using the assumptions that Ao, BO’¢0 and wo are slowly varying functions of

time gives

da d¢0
Jo ©08 X, ~ Ay gr sinx, =0 (C3-1)
dBO dwo
3o sinx, + BO Ol cos X, = 0 (C3-2)
and .
dA . :
It " A0m31n X \ (Ch-1)
dB
at = Bowcos X5 (Cy-2)
d2A dzB
The second derivatives — and - are then, computed from equations (C4)
dt dt
2 dA ©do
9—% = - — wsin Xy " Aow2cos Xy " A0 0 weos X, (C5-1)
dt dt dt
.2 dB dy
d'B 2_. _ 0 - _
— = + weos X, Bom sin x, BO — wsin x, (C5-2)

dt dt dt




Substituting the equations
dA

dt

_ ;Rh

@y ——{(a ousinx, )2
dB

0 dt

O

2
(Bowcosxz)
dA

8 (- I

siny. - A w’
n,% wSLMX 4 o
én'1(62+62)} +
%2R
L {_

2

cosx1 + 6
- 2 2
ag Aocos X4 +

A2

Omsinx

1.COE’aX 1

n.g (62+62)}

a, {(Aocos

a5
{a,

%11

X 2,2 -
+ (8031nx2) e+ a3 {(Aoc
and
_ dB »
81{+ T mcosx2 - Byusinx, -
_ lth
+ Bu > —{(a w51nx ) 0
d¢
2 2 2 2
AO It weos X4 + Bo w Cco
dy
2 . 2
B0 3o wsin'x, + Gn,l(
Bosinx2 +
_ iRh .
+ 85 —E——{-Aom siny,cosy,
+ 66 AOBOSIHX2003X1 + 87 A
8051nx2

- 2 .
By {(Aocosx1) + (Bgsinx

: 2
wsmx1 Aow cosx1 A

msmxzcosx2 (Bowsinxz)

: 2 -
(8031nx2) } o+ ag (Aocosx1

2 . 2 2 -
{(Aocosx1) + (Bgsiny,) } (Ageosx,)" + ay,

dt
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(c5), (Cu) and (C1) into equations (7) yields
o
0 dt
dA
dt

wcosx1} + az{-A wsinx1} +a.{a

0 cosx1} +

370

p2 20

wsiny Ao @

cosx, - (Aowcosx1)
¥ de

O dt

1 weoS X ,*

FrwsinTx, *

do
0
cosy, - Ay gpweosx )(62+6 )} {Aocosx1 +

(s +62)51nx1}

- A wén’2

2 C s
+ Bowcosx231nx2 0

2

+
2 : 2 - 2
x;)" *+ (Bysinx,) b+ ag {(Aocosx1)
3., = 2 . 2
)+ %0 {(Aocosx1) + (B031nX2) } Aocosx1 +
2
{(Aocosx1) +

F

2 . 212
osx1)_ + (B031nx2) } Aocosx1 D cos(x1 ¢O)

(C6-1)

dy
0 dt
dA
at

B ws1nx2} + BZ{Bomcosxz} + 83{8051nx2} +
wsiny, cosy, - (A wcosy )2 +
1 1 0 1
dB >
0dt (Bgusinx,)
d¢
" Ao a

32x2 + B
dA

wsinxzcosx2 -

~

. 2 0
wsing, (Aow cosx, pweosX )(6 2)}

+B2

0 - A ws

0
2 . 2
{(Aocosx1) + (Bysin,) }

wsiny,cosX,, ’2(62+62)51nx1} Bgsinx,*

2 . 2 -
OBosmxzcosx1 + 88

2 . - 2
2) ] A08081nx2008x1 + 610 {(Aocosx1) +
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. 2 . ' '
+ (Bysiny,) } Bysinx, = 0 (C6-2)

Both sides of equation (C6-1) are multiplied by'cosx1, and the results are
added to equation (C3-1) after the latter has been multiplied by msinx1.

This procedure yields

- 2 2 4 - - 2
a {- Aow cosx, - Ay g w} + az{- A0w31nx1cosx1} + a3{Aocos x1} +
2 Rh dA d¢
- 32 2 _ .2 0 : 3 _ .32 ] _ .3 0
+ay 2 {Aow sin’ X,008°X; = Ay g w51n*1cos x, - AguTeos'x, = Ay 5=
wcosux1 +
52, 20042 2 dB 2 22 . 2 2
+ OAOw cos x1cos X2 OBO T mSlanCOSXZCOS Xq AOBOw sin xzcos X4 +
dy dA
2 0 2 2 _ . 2 _ .22 3
+ BOA0 at wsin X 5C08 X, + Gn,z[ AO I w51nx1cos X, Aom cos X, +
d¢ - dA
_ a2 0 3 22 . 2
Ao qo weos x1](62+62) + Gn’ (a Ow sin X1C08X AO o wsiny,cos 'y, +
- Azwzcos3 2 Sﬁg wcos3 + 82 20032 cos + B ® siny.cosy.,cos
0 X17ho T Xq 7 Bo¥ XpC08Xy * By gprwsinx,eosx 008Xt
- Bzw2sin2 coSs - 82 d¢0 sin cos - Sﬂ— wsiny, cos - A 2cos2 +
0 X2C99X4 0 dt wWSM XpB%0%Ky T G§y XqCO8Xy 7 Ag¥ X
d¢ ~
0 2 2
AO at wcos )(1) (52+§2) } +
2
% Rh
L _ a3 3 2 2. _ 2 . 2
+ as m { Aowsinx1cos X4 + AOBOmsinxzcosxzcos X4 5n,l Aow31nx1cos X5
(52+62) +
+ 6 [-Azwsinx coszx + Bzmsinx cosy ,cosy, - A w(s +g )siny,cosy )
n,% 0 1 1 0 2 2 1 0 2 "2 1 1
(6,46,)} +
- 2 3 - 2 2_. 2 - 2 <3
+ ag AjcosTy, + a, {A cogx1 + Bgsin XZCOSX1} + ag {Aocos Xy *

a3 b -
9 Ajcos x, *+ a

5 2.2 2 3 =
cos’x, *+ ABysin‘x,cos X1} + o

2sin2
0 X

4 2 .2 2
cos x, *+ ABgsin“x,cos X1} +
2 2 2
12{Aocos-x1 + B0

2.2 2
2} Apcos x, = FDc':os(x1 ¢4)cOSX, (C-7)

[a2

sm2 cosy, |} +
XpC053K4 0

2
By 10

y
* o‘11{"0

- 2 2
+ a13{Aoco§ X4 + B

sin2 }2A cos +
X2l Bo%9%X,
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In this state of the analysis, this equation is "averaged" by integrating
over one period on X4 or Xo In the integration, AO, BO, ¢0 and wo are

approximated by their average values K, B 5 and @, for example,

2 2 2n = 2 -
fo Ao(t)cos )(1dx1 = fo Acos x1dx1 = Ar
d¢ do

2n 3 0o .3 27 <3 3 )
fo Ao(t) qo cos X,Idx1 = fo A® 4t cos X dx, = 0
fg“ Fcos¢ dx1 = 2nF cosa
727 & p2cos2(e -y )dx, = 2rAB-cos2h

0 00 0 7'0 1

where d¢/dt and A are the average value of d¢0/dt and ¢0-w0, respectively.
When equation (C7) is averaged in this fashion, it becomes

- 2 -
b B2l e a - oo,z M1 32 3 2348
{ 2mA at v TAw } + a, {0} + a3 {nA} Yoy { > TA W m mA at @ +
1 ==22 1 - 1 ==dB . .= 1 ==22 1 -
* 3 TAB w (1+ 3 cos2h) m TAB 3t wsin2a 5 TABw™ (1 2cosZA) +

1 27224y (1 ooon
+ TAB It @ (1 5 cos2h) + §

2 Al

~ 2 -2
n,2(62+62) {-mhw® - wA £

2
_ 2%Rn o __ ) ) N ) i}
. a5 _g___ {_ ﬂ ABwa]-nZA} + a {O} 0,7 {0} + (!8 {O} + (19 {3 3} +

=3

3 n

1o 1§ ™73
1

37

+

+ a AB2(1- 5 cos2a)} + &11 {o} + 512 {o} +

+ a13 {8 3B (3 - cos2h) + % wﬁﬁu(é - cos28)} = n?dcos$ (c-8)

It should be noted that the steady-state vibrations are studied in the
present analysis, which means the average values A and ¢ remain steady
(i.e., constant) with time. In this case, the average derivatives dﬂ/dt,

dﬁ/dt, da/dt and d@/dt are identically zero, and equation (C8) can be
reduced to

%.°Rh
- =2 = = % 132 13=22... 1 = 1 ==22
o, Au® +ag A+ oy —— { 5 AW” + 5 ABTW (14 5 cos2s) - 5 AB"w
2
£°Rh
-1 7y - S TS D N = 333
(1- 5 cos2a) an 2Aw (s +52) } > { T B wsin2a} + ag P AT+
- 1333, 152-1 - 535, 133823 - - .1 -==h
+ 10{u > AB 201 > 1 cos2n)} + a13{8 5 AB7(5 cos2a) +  AB
(E - cos2p)} = F cosé (C-9)

In nondimensional form. equation (C9) is
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Q{1 + 31(32

3

-2 - ~ 2 - e S
B cos2a + 2an'2(52+52) )} o+ gZA YQAB“B, sin2a +
3

5

{58° + uA

+

8,A +28 RB2(1- £ cos2d) + B 523 - cos2a) + 2AB (3 - cos2d)]

3 2 5
?Dcosa (C-10)

where

02 - 2pR%w?
E

2_
_ 2R°F,

D Eh2

Y =¢/ V¥ 2Ep

R2

In a similar fashion, the equation (12-2) is obtained by
(1) Multiplying both sides of equation (C6-1) by sin X,

(2) Adding this result to equation (C3-1) after multiplying the latter by
- weosy,

(3) Averaging the final equation by the method of averaging.
These manipulations give equation (12-2).

Similarly, the equations (12-3) and (12-4) can be obtained by multiplying
both sides of equation (C6-2) by sinx2 respectively COSY s and then using

the procedure mentioned above.
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