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[1] This paper presents a calibration framework based on the generalized likelihood
uncertainty estimation (GLUE) that can be used to condition hydrological model
parameter distributions in scarcely gauged river basins, where data is uncertain,
intermittent or nonconcomitant. At the heart of this framework is the conditioning of the
model parameters such as to reproduce key signatures of the observed data within some
limits of acceptability. These signatures are either based on hard or on soft information.
Hard information signatures are defined as signatures for which the limits of acceptability
may be objectively derived from the distribution of long series of observed values, and
which effectively constrain the model parameters. Soft signatures are less effective in
parameter conditioning or their limits of acceptability cannot be objectively derived.
During random parameter sampling, parameter sets are accepted as equally likely if they
meet all the hard limits of acceptability. This results in an intermediate parameter
distribution, which can be used to reduce the sampling limits. Then, the soft information
may be introduced in a second constraining step to reach a final parameter distribution.
The modeler can use the final results as a guideline for a further search for information,
possibly from new observations yet to collect. In an application of the framework to
the Luangwa catchment in Zambia, three information signatures are retrieved from a data
set of old discharge time series and used to condition the parameters of a daily conceptual
rainfall-runoff model. We performed two independent calibration experiments with two
significantly different satellite rainfall estimates as model input. The results show
consistent parameter distributions and considerable reduction of the prior parameter space
and corresponding output realizations. These results illustrate the potential of the proposed
calibration framework for predictions in scarcely gauged catchments.
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1. Introduction

[2] The formulation of hydrological models to assess
water resources, flood and drought risk, and effects of
man-made and climatic change in river basins is jeopardized
when hydrological data are absent or scarce. In fact, the
limited availability of ground data induces ill-quantifiable
uncertainty in model outputs. This problem often restrains
water resource managers from further investigation while
there is a great need for hydrological models in these
ungauged basins. Initiatives to solve the afore-mentioned
problems have been reported under the umbrella of the
research initiative Predictions in Ungauged Basins (PUB)
[Sivapalan, 2003], launched in 2003 by the International
Association of Hydrological Sciences. Since then, work has
been done on newmeasurement techniques [e.g.,Uhlenbrook

and Wenninger, 2006; Selker et al., 2006; Westhoff et al.,
2007], newmodeling frameworks [e.g.,Reggiani et al., 1998;
Zhang et al., 2006; Lee et al., 2007; Schymanski et al.,
2008], use of new and soft data sources [e.g., Seibert and
McDonnell, 2002; Franks, 2007; Immerzeel and Droogers,
2008; Winsemius et al., 2008], new optimization techniques
[e.g., Vrugt et al., 2003; Kuczera et al., 2006] optimal use of
available data [e.g., Atkinson et al., 2002; Wagener, 2003;
Montanari and Toth, 2007; Schaefli and Zehe, 2009] and
improvement of model structures by means of multi-infor-
mative optimization [Vaché and McDonnell, 2006; Son and
Sivapalan, 2007; Fenicia et al., 2008] that may benefit
prediction of streamflow in ungauged basins. A general
consensus has been reached about the opportunity to profit
from any hydrological information that might be available in
these cases. Seibert and Beven [2009] for instance, show
what can be done with very limited available discharge
measurements in model calibration. Other authors showed
that effectively combining information from different inde-
pendent (sometimes highly uncertain) data sources can
result both in constraining of hydrological model parame-
ters and in enhancement of the model structure [Winsemius
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et al., 2006; Klees et al., 2007; Fenicia et al., 2008]. To this
end, multiobjective calibration techniques have been pro-
posed [e.g., Vrugt et al., 2003]. However, these can only be
applied when dealing with well-defined objective functions.
In the presence of limited and uncertain information, formal
calibration methods may be impossible to apply. In fact, a
typical problem of many ungauged or scarcely gauged river
basins in the world is that data are scarce, not accurate,
intermittent, nonconcomitant and collected at different time-
scales, leading to the fact that it is not clear how one can
integrate their nonconventional information content.
[3] In this paper, a framework is proposed to integrate

both hard and soft information delivered by available
hydrological observations, which makes use of the Gener-
alized Likelihood Uncertainty Estimation (GLUE) [Beven
and Binley, 1992] within a limit of acceptability approach
[Beven, 2006]. A well known debate is ongoing within the
hydrological community about the opportunity of using
‘‘formal statistical’’ versus ‘‘informal’’ methods for model
calibration and uncertainty analysis [Mantovan and Todini,
2006; Beven et al., 2007, 2008; Beven, 2008]. The latter
category of methods includes GLUE, which has been often
criticized for being subjective. We generally agree about the
subjectivity of GLUE [Montanari, 2005] but nevertheless
we are convinced that GLUE is potentially useful for
reducing the uncertainty of hydrological model parameters
in conditions of data scarcity, when a formal statistical
assessment would not be reliable. In order to strengthen
the applicability of GLUE in ungauged situations, we
propose a new framework which fixes limits of accept-
ability on ‘‘signatures’’ which are potentially present in any
hydrological data, even when the data is subject to uncer-
tainty, nonconcomitance or other problems related to the
ungauged nature of the studied river basin.
[4] The use of signatures from time series in model

conditioning shows important developments in recent liter-
ature. Vogel and Sankarasubramanian [2003] showed that
statistical signatures of time series reveal significant and
hydrologically meaningful information, which is not con-
veyed by regularly used least squares performance criteria.
Gupta et al. [2008] and Yilmaz et al. [2008] proposed to use
a set of hydrologically meaningful signatures to evaluate
model performance besides less meaningful residual based
methods. Yilmaz et al. [2008] provide an extensive overview
of potentially useful signatures in model calibration. Such
signatures have consequently been used in calibration of
hydrological models [e.g., Pokhrel et al., 2009; Herbst et
al., 2009; Bulygina et al., 2009] and model regionalization
[e.g., Yadav et al., 2007; Oudin et al., 2008]. Direct
calibration or regionalization may however not be applica-
ble in many basins because the conventional data sets
needed, are not available. Therefore this paper focuses on
the use of any information present in nonconventional data
sets available for the basin itself.
[5] Section 2 describes the essentials of the framework

and how limits of acceptability on the information signa-
tures are derived. In Section 3, the framework is demon-
strated in an example case study where the parameters of a
rainfall-runoff model of the scarcely gauged Luangwa basin
in Zambia are conditioned. We employed a number of
information signatures from old discharge records to con-
strain the model parameters, while running the model with

new satellite rainfall data. A validation of the method is
shown in Section 4. Finally, we discuss how the outcomes
of this study can be employed to find what additional
information could contribute effectively to further reduce
parameter uncertainty in Section 5 and summarize conclu-
sions in Section 6.

2. A General Framework for Integrating Hard
and Soft Hydrological Information

2.1. Problem Definition

[6] We focus on the problem of calibrating a rainfall-
runoff model for an ungauged basin, where some informa-
tion is available to identify one or several objectives for the
model itself. For instance, the objectives could be to reach a
satisfactory fit of assigned behaviors of the hydrograph
(recession curve, peak flows, etc.). Let us assume that the
objectives can be specified in the form of target values to be
optimized during model calibration. The target values here
represent the information content that we retrieve from the
data and are possibly affected by significant uncertainty
induced by data scarcity or poor data quality. In fact, we
assume that the user does not have a conventional data set
available, namely concomitant and long series of input and
output data observed at the required time step. This implies
that a traditional optimization procedure (either single-
objective or multiobjective), for instance based on least
squares, cannot be carried out.
[7] Nonetheless, our principal goal here is to calibrate

hydrological models under the aforementioned ungauged
circumstances. Generally speaking, in the ungauged case,
formal statistical parameter inference is of limited use since
there is not enough data to apply such methods in a rigorous
way. In fact, a residual time series is either not available or
highly dependent on uncertain input. Either way, a modeler
is not able to test the statistical hypotheses underlying any
formal likelihood measure.
[8] In this context, GLUE offers promising perspectives

to perform model calibration and uncertainty analysis based
on any available information that may provide a measure of
goodness of fit of model response. This is the basic concept
of Bayesian model inference, where subjective probabilities
are used to assess the plausibility of model output. A crucial
issue is to define the probabilities within GLUE. These
should be derived based on demonstrable valid statements.
Valid statements are first of all required to be consistent with
the probability calculus. We explain here below how we
define probabilities based on the concept of limits of accept-
ability for the model output [Beven, 2006].

2.2. Description of the Calibration Framework

[9] The calibration framework that we propose is based
on GLUE and is graphically presented in Figure 1. Gener-
ally, GLUE establishes whether or not for a given model a
parameter set is feasible, by evaluating on some objective
function that conveys information from the data. The target
value to reach during model conditioning is limited by a
generally subjectively chosen threshold of the objective
function. In the framework, proposed in this paper, we
establish multiple objectives along with their related target
values from any information derived from any available
observations. The model output should satisfactorily repro-
duce the targets in order to be accepted as a plausible
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realization of the process. Such targets are estimated based
on both statistical and hydrological signatures of available
river discharge data or any other observations. Many
examples of such signatures are given by Yilmaz et al.
[2008] and Yadav et al. [2007].
[10] Other than in classical cases, we define target values

in the form of ‘‘limits of acceptability’’ of the derived
information signatures [Beven, 2006]. All models that meet
the targets are accepted as equally likely. The limits of
acceptability approach was recently suggested by Beven
[2006] and provides an alternative to fixing threshold values
for informal likelihood measures within GLUE to identify
behavioral solutions [Beven and Freer, 2001]. Acceptability
limits should somehow be estimated from an uncertainty
assessment in the evidential data, which is the subject of a
later section in this paper.
[11] In detail, the framework consists of the following

steps.
[12] 1. First the modeler searches for information content

in the form of signatures in any data that is readily available
(many examples of signatures are provided by Yadav et al.
[2007]). The signatures do not necessarily have to be fully
independent, meaning that the information conveyed by
them could be partially overlapping.
[13] 2. The information is then subdivided into hard and

soft information. Hard information is such that a) it has a
related target value which has a significant impact on the
parameter conditioning of the hydrological model; and
(b) limits of acceptability can be objectively defined for
the target value itself. This last point is a crucial step as the
choice for limits of acceptability may impose a strong
control on the outcome. In a later section, we describe
how to deal with the subjectivity of this choice. We consider

soft information to be of a complementary nature, which
means that a) the information is less effective to condition
the model parameters and/or b) its uncertainty cannot be
objectively quantified. The distinction between hard and
soft data may imply some subjectivity which is difficult to
completely remove when dealing with ungauged basins.
Hard information can be further categorized in statistical
properties, such as the autocorrelation of the river flows,
and hydrological information, such as the time to peak, the
water balance and the shape of a recession curve [Merz and
Blöschl, 2008a, 2008b].
[14] 3. Monte Carlo simulations are performed while

using the limits of acceptability of the hard information to
establish whether or not a randomly sampled parameter set
is feasible given the information content. Any model that
performs within the chosen limits of acceptability is accept-
ed as equally likely, because there usually is not enough
information to assign a likelihood to the accepted models.
Having sampled a satisfactory number of parameter sets, for
each parameter the posterior density may be derived accord-
ing to Bayes’ theorem

p qijS1; S2; � � � ; Snð Þ ¼ L S1; S2; � � � ; Snjqið Þp qið Þ
p S1; S2; � � � ; Snð Þ ; ð1Þ

where qi is a parameter of the given model, S1, S2, � � �, Sn are
the given targets, L(S1, S2, � � �, Snjqi) is the probability of
meeting the targets conditioned on the parameter qi, p(qi) is
the prior probability for qi and p(S1, S2, � � �, Sn) is the
probability of meeting the targets. In practice, L(S1, S2, � � �,
Snjqi) is estimated from the empirical density of the accepted
parameter sets. p(S1, S2, � � �, Sn) is defined as a normalization
constant, so that the posterior distribution p(qijS1, S2, � � �, Sn)

Figure 1. A schematic diagram of the proposed framework.
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has a cumulative value of unity, such as suggested by Beven
and Binley [1992].
[15] 4. Based on analysis of the intermediate parameter

distributions, a new Monte Carlo simulation is performed,
now using the intermediate results as prior. This allows for a
computationally efficient subsequent constraining. Now, the
soft information with related limits of acceptability is
included for further constraining.
[16] 5. Analysis of the results provides the modeler

insights into which part of the parameter space, and,
consequently, which outputs are well constrained by means
of the included information and what constraints are still
lacking. The user may then decide what information has the
potential to further condition the parameters and, if deemed
feasible, to collect this information.
[17] 6. After the collection of new information, the

procedure may be repeated to update the parameter distri-
butions with new targets.
[18] One does not necessarily need to perform a two-

stage optimization and therefore the distinction between
hard and soft information is not strictly necessary. In fact, a
simultaneous assessment of the achievement of all the hard
and soft targets is in principle possible. The advantages of
performing a two stage procedure are the following. First of
all, if there is a significant difference among the constrain-
ing powers of hard and soft targets, the two-stage procedure
is computationally more efficient. Due to the hard informa-
tion the parameter space is first reduced to a smaller region
where the soft information, which may be less efficient in
constraining the parameters, can be more profitably used.
Second, with a two stage procedure the soft information can
be used, according to the user needs, for instance to refine
the posterior distribution of selected parameters only. Finally,
the intermediate parameter distribution can inform the user
which parameters are poorly constrained by the hard targets
and what information is needed to further condition these
parameters. This is essential because any collection and
processing of new data is costly and time consuming.
[19] The framework cannot generalize the used signatures

as these are strongly dependent on available data, the
dominant processes and related timescales and nonlinear-
ities of the basin studied and even the user’s perception,
which may be influenced by the objective of the model
itself. However, this is also the case in any classical
calibration approach, where the modeler decides on the
objective function used. Instead, the generality lies in the
method to reduce the subjectivity of rejection criteria for
models, and the iterations that the modeler can go through
after the first results have been obtained. The first results
can act as a learning tool to discover what additional
information is required for further constraining.

2.3. Definitions of the Limits of Acceptability

[20] A crucial part in this framework is the identification
of the limits of acceptability of the target values. It is a
delicate step of the analysis because it is usually subjective.
For the hard information, we propose a procedure for
eliminating part of the subjectivity, which can be applied
when a multiyear observation is available. Accordingly, the
limits of acceptability are based on the analysis of the
interannual variability of each target value. In this way
one can get an objective indication about the uncertainty
affecting the evaluation of the given target.

[21] In detail, we can compute the identified target value
from the data for a number of hydrological years, therefore
obtaining a sample of targets. Then, we transform the
sample to the Gaussian distribution by using the normal
quantile transform (NQT) [see Kelly and Krzysztofowicz,
1997; Krzysztofowicz and Kelly, 2000]. By assuming that
the underlying random variable is stationary we can con-
struct a 95% confidence interval for each transformed target
value to define the related limits of acceptability in the
Gaussian domain (i.e. m ± 1.96s, where m and s are
respectively the mean and standard deviation of the trans-
formed sample). Finally, by applying the inverse of the
NQT we obtain the 95% confidence interval for each target.
When interpolation is not possible, the inverse of the NQT
is computed numerically, by linear extrapolation of the tails
of the NQT. In this study, we selected the upper and lower 3
points of the NQT. More details about the computation of
the NQT and its inverse are given by Montanari and Brath
[2004]. We assume that the signature is a stationary process.
Of course, this assumption does not hold if significant
changes in the catchment have occurred during the obser-
vation period.
[22] Given that the limits of acceptability are defined on

the basis of the interannual variability of the corresponding
target values, during model calibration the objective func-
tion should be evaluated for each hydrological year for
which the model has been run. Only the parameter sets for
which the simulation satisfies the limits of acceptability in
each simulated hydrological year should be retained.

3. Application to the Luangwa River, Zambia

[23] In order to demonstrate the proposed framework in
detail we refer to a real world case study of the Luangwa
river basin for which only scarce hydrological data is
available. The Luangwa basin (Figure 2) is a relatively
pristine and remote area of about 150 000 (km)2, located in
Zambia, Southern Africa. The Northern, most upstream part
of the basin is mountainous and is subject to many locally
generated flash floods. The downstream parts consist of
sandy/loam soils (among which black cotton soils) covered
by typical tropical savanna vegetation such as Miombo,
Mopane [Frost, 1996] and acacia species. Many of these
lower areas are interspersed with wetlands, locally called
‘‘dambos,’’ which are also used for land cultivation. The
northeastern boundary (the Muchinga escarpment) consists
of densely forested pristine wetland areas, having a different
hydroclimatology from the low lying savannas. Temper-
atures on the escarpment are much lower and given the type
of vegetation present, these areas have a higher capability of
retaining moisture during the dry season than the lower
savannah regions. This was also shown by modeling of the
evaporation regime in the work by Winsemius et al. [2008].
The annual rainfall in the catchment is around 1000 mm per
year. Rainfall is concentrated in one wet season from
November until April.

3.1. Data Availability

[24] A daily river discharge time series is available near
the outlet of the basin at the bridge on the Great East Road
(see Figure 2). About 20 years of daily records are therein
available from 1956 until 1976. Data were collected by
observing the river stage that was subsequently converted to
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river discharge by means of a rating curve. Some of the
years are affected by gaps or unreliable data. A subset of
16 hydrological years was selected (from October to Septem-
ber, 1956–1973, with exception of 1960), with only a minor
amount of missing values, that were linearly interpolated.
[25] A considerable amount of monthly rainfall data was

found in the Global Historical Climatology Network v. 2,
for the period 1956–1973 (GHCN) [Vose et al., 1992].
Although these records were originally based on daily
rainfall, collected by the meteorological department of
Zambia in some of the larger towns surrounding the basin,
these numbers are no longer available to the public. There-
fore, submonthly rainfall is not available over the same
period as the available discharge records. Instead, two
satellite rainfall estimates at finer timescale for the period
2002–2006 have been considered for this study: product
3B42 of the Tropical Rainfall Measuring Mission (TRMM)
[Huffman et al., 2007], which is available at 3 hour
intervals, and the CPC/Famine Early Warning System
(FEWS) daily estimates [Herman et al., 1997]. Both data
sets are merged rainfall estimates from different satellite
instruments, among which microwave imagers and cold
cloud duration from geostationary satellites. The TRMM
satellite is the first satellite carrying a space-based radar
instrument. Figure 3 shows a comparison of the two rainfall
estimates, lumped over the whole catchment. From Figure 3
(top), there appears to be discrepancies over the years,
which may be due to uncertainties in retrieval algorithms,
instrumental errors, low availability of ground stations and

aliasing problems related to the overpass frequency of the
satellites used. However, there is a remarkable resemblance
in the spectral properties (Figure 3, bottom). All available
data, along with their observation period and observation
time intervals have been summarized in Table 1.

3.2. Model Setup

[26] A lumped conceptual model has been preliminarily
identified for the Luangwa river. It has been derived by
modifying the HBV model [Lindström et al., 1997]. For the
purpose of this study, the structure was slightly simplified
into the structure schematized in Figure 4 to obtain a more
parsimonious tool in terms of involved parameters. The
model structure’s storage compartments consist of an inter-
ception store, a soil moisture store Su [L] and two flow
generating stores Sq [L] and Ss [L]. Interception I is limited,
either by a threshold to net precipitation Pn [L T�1],
represented by parameter D [L T�1], by the amount of
rainfall P [L T�1] or by the amount of potential evaporation
Ep [L T�1]. Therefore, interception can be computed as

I tjDð Þ ¼ min P tð Þ;D;Ep tð Þ
� �

; ð2Þ

where q is the parameter set. Then, net rainfall is estimated
as

Pn tjDð Þ ¼ P tð Þ � I tjDð Þ: ð3Þ

Throughfall is transferred to an unsaturated soil zone,
corresponding to the HBV soil zone, with storage Su, whose
outgoing fluxes are controlled by 3 parameters, referred to

Figure 2. Luangwa basin, located in Southern Africa. The study area is plotted in red. The large water
bodies and larger dambos are indicated in blue. The tarred road network is also plotted to emphasize the
remoteness of the area. All smaller untarred roads inside the basin are only accessible in the dry season.
At Great East Road Bridge, a long old time series of daily discharge data is available.
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as Smax [L], B (dimensionless) and lp (dimensionless) (they
are equivalent to the abbreviations ‘‘FC,’’ ‘‘BETA’’ and
‘‘LP,’’ respectively, as used by Lindström et al. [1997]). In
detail, outgoing fluxes are transpiration Ta [L T�1] and
fraction of recharge rc (dimensionless). The former is
computed as

Ta tjqð Þ ¼ min
Su tjqð Þ
Smaxlp

; 1

� �
Tp tð Þ; ð4Þ

where Tp [L T�1] is the amount of potential evaporation
left over after evaporation of intercepted water i.e. Ep(t) �
I(tjD). And rc is given by

rc tjqð Þ ¼ Su tjqð Þ
Smax

� �B

: ð5Þ

Figure 3. (top) Accumulated rainfall from FEWS and TRMM over the period 2000–2007. (bottom)
Periodogram of FEWS and TRMM data.

Table 1. Summary of the Available Hydrological Information

Variable Data Source
Observation
Interval Start End

Discharge Local authority Daily 1956 1973
Rainfall GHCN v. 2 (ground data) Monthly 1956 1973
Rainfall TRMM 3B42 (satellite based) 3 hourly 1998 ongoing
Rainfall FEWS (satellite based) Daily 2001 ongoing

Figure 4. Structure of the modified HBV model.
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Recharge (rcPn) is transferred to an upper zone with
storage Sq. Streamflow is generated from this zone,
assuming that it behaves as a linear reservoir with reciprocal
of the residence time Kq [T

�1]. Qq represents the fast flow
generated from water bodies or seasonal wetlands (dambos).
Finally, a lower zone with storage Ss [L] (conceptualizing
groundwater) receives a maximum amount of percolation R
[L T�1] from the upper zone, determined by the parameter
Fperc [L T�1], according to the relationship

R tjqð Þ ¼ min Sq tjqð Þ=dt; Fperc

� �
: ð6Þ

[27] This zone also behaves as a linear reservoir, contrib-
uting to the base flow (Qs) with one parameter Ks [T�1]
representing the reciprocal of the average residence time.
[28] Table 2 provides a list of the model parameters along

with the respective prior range. This latter was based on
previous experiences, also described by Winsemius et al.
[2008].
[29] In order to apply the calibration framework herein

proposed, after analyzing the available hydrological data,
we identified the following objectives, along with the
related target values, to be used to drive parameter estimation.
[30] 1. Shape of the recession curve of the hydrograph.

Hard hydrological information.
[31] 2. Spectral properties of nonconcomitant daily river

flows. Hard statistical information.
[32] 3. Monthly water balance estimates based on old

monthly averaged records of rainfall and stream flow. Soft
hydrological information.
[33] The computation of the above target values along with

the related limits of acceptability is reported in Section 3.3.

3.3. Target Values and Limits of Acceptability

3.3.1. Shape of the Recession Curve
[34] The low flow behavior during flow recession periods

is a property that is insensitive to rainfall forcing. In many
cases the receding limb of the hydrograph can be described
by a linear storage-discharge relationship and therefore
generally plots as a straight line after a log transform of
the discharge. The offset of this straight line is dependent on
the initial storage condition. Lamb and Beven [1997]
showed that recession periods may be combined into a
master recession curve, which consequently may be used in
model calibration, specifically for low flows. Fenicia et al.
[2006] used this concept in a stepwise calibration of a
conceptual model, showing that deviation from the straight
line is caused by percolation and capillary rise. Depending
on the climatic conditions, one may find fixed recession
periods. Particularly in the tropics, seasonally defined dry
periods without significant rainfall in each hydrological year

can be identified by the modeler. Furthermore, in these
periods the discharge contribution has a quite limited range,
which mainly depends on the offset of the recession curve
within the dry season period.
[35] In previous applications, recession curve analysis

was primarily used to construct a master recession curve
without considerations of uncertainties herein. To construct
limits of acceptability, a number of sampled slopes can be
derived from a number of recession periods. It is hypoth-
esized here that the variability in the slope of the recession
curve can be caused by uncertainties during river flow
measurement [Di Baldassarre and Montanari, 2009], var-
iability in the spatial distribution of soil moisture in the
catchment at the beginning of the recession period or other
natural variability, unaccounted for in the model structure.
[36] Within the present application, given that the climate

over the Luangwa river basin is characterized by one dry
period per year, the slope of the recession curve and the
average discharge within recession periods was computed
on a yearly basis from the daily river flow data collected in
the period 1961 until 1972. Consequently, the limits of
acceptability were constructed based on the NQT of the
distribution of yearly sampled slopes and discharge contri-
butions, using the method described in Section 2.3. A 95%
confidence interval has been used. We assume that a
parameter set is behavioral if it produces a river discharge
simulation whose yearly slope and average discharge of the
recession curve fall within the related limits of acceptability.
3.3.2. Spectral Properties of the Daily River Flows
[37] A relevant hydrological signature is provided by the

spectral density function of discharge time series. Monta-
nari and Toth [2007] described a maximum likelihood
calibration procedure for rainfall-runoff models based on
matching the spectral density of the modeled and observed
discharge [see also Whittle, 1953]. Montanari and Toth
[2007] proved that the Whittle likelihood is a powerful
measure for model performance under the assumption of
stationarity. Moreover, the estimator can be applied when
the observed rainfall forcing over the basin is not concom-
itant with the available river discharge record.
[38] Let us assume that the spectral properties of daily

river discharges are largely constrained by a lag-1 autore-
gressive process, i.e. the periodogram of the discharge time
series is for a large part determined by the mean value, mQ,
standard deviation, sQ and lag-1 autocorrelation coefficient,
r1(Q) of the observed series. Therefore, mQ, sQ and r1(Q)
allow us to define a three-element target vector to resemble
the spectral calibration given by Montanari and Toth
[2007]. Again, the related limits of acceptability can be
estimated from the interannual variability of the targets (see
Section 2.3). We assume that a parameter set is behavioral if
it produces a river discharge simulation of which these

Table 2. Uniform Prior Parameter Ranges for the Modified HBV Model

Parameters Description Unit min max

D Interception threshold mm day�1 2 (fixed) 2 (fixed)
Smax Unsaturated zone capacity mm 100 2500
lp Moisture stress fraction - 0.1 1
B Runoff generation power shape - 1 5
Fperc Maximum percolation rate mm day�1 0.01 4
Kq Reciprocal of fast reservoir residence time day�1 0.01 0.5
Ks Reciprocal of slow reservoir residence time day�1 0.001 0.1
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yearly statistics fall within the related limits of acceptability
for each year of the model simulation.
3.3.3. Monthly Water Balance
[39] We now turn to the analysis of a soft information

signature, that is delivered by an auxiliary rainfall-runoff
model at monthly timescale. GHCN (see Section 3.1)
provides monthly ground station rainfall data in the period
1956–1973, during which daily river discharges at the basin
outlet are also available. GHCN provides monthly rainfall
for many parts of the world in historical periods so these
data are potentially available in many basins, therefore
allowing the computation of monthly mean areal rainfall
over the catchment. These rainfall estimates were used to
calibrate an auxiliary rainfall-runoff model running at
monthly timescale, to reproduce estimates of mean monthly
discharge for any period for which monthly rainfall is
available. The daily time step model can then be constrained
toward reproducing the discharges provided by the monthly
auxiliary model (for more information about the use of
auxiliary models, see Seibert [2001] and Schaefli and Gupta
[2007]).
[40] As auxiliary model, we used a modification of the 5-

parameter rainfall-runoff model HYMOD [Boyle, 2000],
which was automatically calibrated with the self-adaptive
differential evolution algorithm [Brest et al., 2006] on the
time period 1956–1973. The first year was used as a spin-
up period.
[41] The model allowed us to reconstruct the monthly

discharges at the basin outlet for the period 2002–2006, the
run time period of the daily modified HBV model for which
daily satellite rainfall observations are available that can be
averaged to monthly values. The estimated monthly dis-
charges were then used to constrain the daily modified HBV
model simulation. The reasons why we consider this type of
information as soft are the following: first of all the monthly
water balance is less effective for parameter constraints
compared with the two previous target values; second, the
limits of acceptability have to be constructed through an
auxiliary model, rather than directly from available obser-
vations. Furthermore, the accuracy of the rainfall used for

the calibration of the auxiliary model may be strongly
related to the density of the rain gauge network. The
estimates may not prove accurate enough to warrant hard
constraints.
[42] Limits of acceptability for the monthly discharges

were computed by dividing the hydrological year into 4
seasons: November–January, February–April, May–June
and July–October. For each of these seasons, we computed
the season-averaged residuals of the modified HYMOD
model, over the calibration period 1956–1973. The inter-
annual variability of these residuals allowed us to estimate
the related 95% confidence limits around the predicted
value for each season. Figure 5 shows the seasonal limits
for the period 2002–2006 and the case that FEWS satellite
rainfall is used. Any model realization of the daily modified
HBV model that gives any seasonally averaged discharge
estimate outside the limits of acceptability presented here,
has therefore been rejected.
[43] The derived limits of acceptability of each target

value are given in Table 3.

3.4. Presentation of the Results

[44] Three million parameter sets have been sampled
from the prior uniform distributions over the ranges given
in Table 2. It turned out that D was quite insensitive with

Figure 5. Limits of acceptability of seasonal-averaged discharge for the period 2002–2006 based on
the HYMOD model, running at monthly time steps, using FEWS satellite rainfall as input.

Table 3. Limits of Acceptability Based on the Normal Quantile

Transforma

Description Lower Limit Upper Limit

Recession: slope (day�1) 0.0055 0.014
Recession: mean contribution (m3 s�1) 50.6 146
r1(Q) 0.968 0.994
sQ (m3 s�1) 269 1943
Water balance: Q, Nov–Jan (mm month�1) �4.24 +10.69
Water balance: Q, Feb–Apr (mm month�1) �20.7 +12.4
Water balance: Q, May–Jun (mm month�1) �1.84 +3.3
Water balance: Q, Jul–Oct (mm month�1) �0.91 +0.92

aThe water balance limits of acceptability are dependent on the output of
the monthly HYMOD auxiliary model. Therefore, only the deviation (+/�)
from the modeled output is given. Figure 5 shows the time varying limits of
acceptability in case FEWS rainfall is used as input.
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respect to the selected targets. Therefore we decided to fix
the value of D. Literature suggests to use a value between 1
and 5 mm day�1 for Southern Africa [e.g., de Groen and
Savenije, 2006]. Pitman [1973] concluded that a value of
1.5 mm day�1 should be adequate for many river basins in
South Africa. The large size of the basin and full spatial
averaging of the rainfall used, suggests that a relatively low
value should be sufficient, given the nonlinear behavior of
this process. We selected a value of D equal to 2 mm day�1.
To emphasize the sensitivity of the results with respect to
the rainfall input, we performed two calibration experiments
by using the two available rainfall forcings (FEWS and
TRMM). Therefore, for each parameter set the modified
HBV model was run twice. Model run time was from 1
November 2000 (the start date of availability of the FEWS
rainfall data set) until 30 September 2006. The first
23 months of model run time were used as spin-up time.
This leaves precisely 4 years for model evaluation (i.e.
1 October 2002 until 30 September 2006). The simulations
that satisfied the limits of acceptability for all the considered
target values were retained as behavioral.
[45] First, three posterior parameter distributions were

derived for each of the two calibration experiments, by
considering only one of the objectives in turn. This was
done in order to inspect the sensitivity of the model
parameters to each objective. The resulting marginal poste-
rior parameter distributions are given in Figure 6 for
recession, spectral properties and monthly water balance,
respectively. Figure 6 (top) presents the results using FEWS
rainfall, while Figure 6 (bottom) presents the case with
TRMM rainfall. Figure 6 displays smoothed (for display
purposes) histograms over a total of 50 bins, being normal-
ized so that the integral of the density over the 50 bins
equals 1.
[46] It is clear that the individual objectives have a limited

capacity to constrain the parameter space. The routing
parameters Fperc, Kq and Ks are clearly conditioned, all by
a different information signature. Fperc is well conditioned
by the water balance, while Kq is well constrained by the
spectral properties. Intuitively, Ks is well conditioned by the
recession objective. In fact, Ks is in this model exactly
equivalent to the slope of the log transform of the recession
curve, which means that this parameter is automatically cut
off at the upper and lower limit of acceptability. The original
full prior range (0.001 < Ks < 0.1) is therefore not plotted.
[47] The other three parameters that determine how

rainfall is partitioned into evaporation and streamflow,
generally exhibit less sensitivity to the objectives used and
their posterior distributions obtained through the different
objectives are somewhat contradicting. Consider for in-
stance Smax, which, according to the objective related to
spectral properties, shows a much lower mode than the ones
obtained by the other objectives. This is not surprising as
the different objectives focus on different behavior of the
hydrograph. There are also some slight disagreements
between the use of FEWS and TRMM rainfall estimates
which may be an effect of their uncertainty (see Figure 3).
[48] Figure 7 shows the resulting marginal parameter

distributions in histogram form, conditioned on the hard
information (black dash-dotted line) and conditioned on all
considered information (blue continuous line), obtained by
application of equation (1). Again the top plots present

results generated with FEWS rainfall while the bottom plots
present results generated with TRMM rainfall. If all objec-
tives are used, about 99.94% of all model realizations had to
be rejected but clear constraints could be found for the
parameters Fperc, Kq and Ks. It is evident that the constraint
on the water balance results in a slight shift in the distribu-
tion of parameters Smax and B. Analysis of the relation
between lp and B reveals correlation (not shown here) which
suggests the possible presence of equifinality. It is important
to note that the final posterior parameter distributions are
quite insensitive to the rainfall estimate used, although the
rainfall estimate is significantly different (see Figure 3).
[49] The effect of the different constraints on the vari-

ability of the outputs becomes apparent in Figure 8. The
graphs show what we refer to as ‘‘plausibility intervals,’’
which reflect the band of the model output encompassed by
the behavioral parameter sets. These intervals should not be
regarded as confidence intervals because there is still
subjectivity involved and only parameter uncertainty is
considered [Montanari, 2007]. Introduction of the hard data
results in a considerable reduction of variability in the
discharge outputs. Furthermore, it can be seen that the soft
information is capable of reducing the discharge uncertainty
considerably as well. Finally, it can be seen from Figure
8 (bottom) that the evaporation regime is only marginally
constrained by the targets used. It means that the modeled
evaporation regime is insensitive to any of the targets
considered for model calibration. Both the fact that the
water balance related parameters are generally poorly iden-
tifiable and the fact that evaporation shows almost no
sensitivity to our calibration efforts, indicates that additional
information should be sought to better constrain these
parameters. Given the results, it is likely that information
on the soil moisture regime (i.e. conditioning parameters
Smax, lp and B, and constraining the evaporation) may
provide an additional strong constraint.

4. Validation

[50] For this particular basin, we do not have enough data
to perform a meaningful split sample model validation. In
fact, concurrent rainfall and runoff data are not available to
check the reliability of the model to reproduce out-of-
sample river flow records. This is a common situation in
ungauged basins. However, in view of the available infor-
mation, it is possible to assess the model reliability in
reproducing the statistical properties, used for calibration,
during a validation period.
[51] In detail, we ran all the accepted parameter sets for a

2 year time span outside the calibration period (October
2006 until September 2008) and computed for each year the
hard targets, i.e. the recession slope, recession contribution,
lag-1 autocorrelation, mean and standard deviation from the
simulated discharge. Furthermore, the auxiliary rainfall-
runoff model has been run for the period 2006–2008 to
provide limits of acceptability of the seasonal discharge, as
described in Section 3.3. Hence, a validation could be made
by evaluating how well the accepted models were able to
reproduce in a new independent time series the hydrograph
behaviors as identified by the limits of acceptability of the
signatures. This analysis has been performed with both the
FEWS rainfall and TRMM rainfall product.
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Figure 6. Effect of individual targets on the posterior parameter distribution using (top) FEWS and
(bottom) TRMM.
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Figure 7. The effect of combinations of targets on the posterior parameter distribution using (top)
FEWS and (bottom) TRMM.
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[52] The results are presented in Figure 9 as normalized
values with respect to the upper and lower limit of accept-
ability of each target. It demonstrates that most of the
parameter sets satisfy all targets in each year. In detail,
some inconsistencies were found for the lag-1 autocorrela-
tion in the year 2007–2008 in the case FEWS rainfall is
used as input, for which only 68% of the accepted parameter
sets remain within limits. Moreover, the limits of accept-
ability on the seasonal water balance were fully met by 78%
of the model realizations when TRMM rainfall was used,
and by 97% when FEWS was used. This demonstrates some
of the differences present in the two rainfall estimates and
the related modeling uncertainty.

5. Discussion

5.1. Limitations of the Method

[53] A considerable limitation of our proposed framework
is that the user needs multiyear information related to each
objective to infer the limits of acceptability for the hard
information. Moreover, the question remains how reliable
the limits of acceptability are when only a limited number of
years is available to estimate the variability of the target
values. Nonetheless, this method may prove to be useful in
many cases. For instance, it is well known that in Africa
many hydrometric measurements were in fact taken from
colonial times until the mid 70s, which resulted in the
availability of quite long historical time series of river
flows. Many of them are affected by missing values, or
are not associated to concurrent rainfall observations, but

nevertheless could be well used within the framework
proposed here. Another possible limitation of the proposed
approach is the assumption of stationarity that we intro-
duced in order to compute statistical properties of river
flows along a possibly extended time span.
[54] The methodology cannot prevent the occurrence of

some subjectivity. For instance, it is up to the modeler what
model structure to select, what information signatures to
retrieve from the data, and to a certain extent, which
information to consider ‘‘hard’’ and which ‘‘soft.’’ Subjec-
tivity in model calibration cannot be completely eliminated
in the proposed approach. We believe this is unavoidable
when modeling ungauged basins. In fact, the need for expert
(subjective) knowledge increases with decreasing amount
and reliability of the available information. However, we
would like to underline that the framework we propose
reduces the subjectivity of GLUE.
[55] Although the authors are aware of these limitations,

we feel that the proposed framework allows the user to
fairly objectively profit from any available observations to
calibrate a hydrological model. We believe this is a valuable
opportunity for ungauged basins.

5.2. What New Information Should Be Considered?

[56] The results show that the targets used in the
Luangwa case study encapsulate information that allows
us to constrain the model parameters. Clearly the constrain-
ing abilities of a target value depend on the hydroclimato-
logical behavior of the catchment. For instance, in flash
flood dominated catchments, the shape of the recession

Figure 8. Parameter plausibility intervals of the output with multiple constraints: (top) discharge and
(bottom) evaporation. The graphs show 5% and 95% plausibility intervals based on posterior parameter
distributions.
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curve may not provide a strong control (there may be no
base flow at all), while the spectral properties may form a
more significant constraint. Based on the intermediate and
final analysis of the parameter distributions, the modeler can
identify additional information that may be useful to support
the user in planning which additional data to collect. For
instance, in the Luangwa River case study the posterior
distribution of Smax, lp and B appears poorly constrained
while lp and B are correlated. Therefore a supplementary
information source should be sought that can provide
constraints on other fluxes than discharge. An independent
soft data source that can be considered is for instance
GRACE gravity information [e.g., Tapley et al., 2004], which
provides estimates of large-scale water storage variability.
When properly postprocessed [Klees et al., 2007], they may
be applied when a river basin is at least 200 000 (km)2 and
has a regular shape. Models that do not obey the large-scale
monthly change in storage, observed by GRACE may then
be rejected. Unfortunately, the Luangwa basin is too small
to apply this data source already, although solutions and
spatial filters, used to reduce noise, are improving (e.g.,
anisotropic optimal filters [Klees et al., 2008]). Other data,
which could provide valuable information for further con-
ditioning are satellite-based evaporation estimates [e.g.,
Bastiaanssen et al., 1998]. These data can typically provide
information about the spatiotemporal variability of the
evaporation regime within the catchment, which was shown
to be poorly constrained by the chosen discharge-related
objectives. Unfortunately uncertainty of satellite-based
evaporation estimates in natural catchments is hard to
quantify. Therefore they may be considered as soft data
[Seibert and McDonnell, 2002; Winsemius et al., 2008] and
limits of acceptability should be imposed in a different way

than proposed here. This will be the subject of study in a
future paper.

5.3. On the Value of Qualitative Observations

[57] In the description of our calibration framework, we
have suggested the use of qualitative observations. Al-
though we do not use qualitative information in our case
study, it is important to identify the potential use of such
information in ungauged conditions. Seibert and McDonnell
[2002] show a case study in a well gauged catchment where
many qualitative informations are used in a fuzzy accept-
ability framework because qualitative information is inher-
ently soft. In principle, a modeler can use qualitative
information in two ways: (a) by superimposing an updated
prior parameter distribution; or (b) by superimposing a
constraint on the model output. In the work by Seibert
and McDonnell [2002], both approaches are used, depen-
dent on the information considered, in a conceptual model
structure that well simulates the physical properties of the
catchment. In the ungauged case however, it is more likely
that parameters will have to compensate for misconceptions
in the model structure. This means that a modeler should be
aware that model parameters in ungauged basins will have
fewer physical meaning than in gauged basins, which means
that it is usually safer to constrain the model output, which
will consequently reflect on the parameter inference, than
directly constrain the prior parameter distribution, which
imposes strong assumptions on the physical representative-
ness of the parameters themselves.

6. Conclusions

[58] In this paper, we have proposed a calibration frame-
work based on GLUE, which can be applied to ungauged

Figure 9. Performance of accepted models during validation. The box plots show for each signature and
for each simulated year (x axis, 2006–2007 and 2007–2008) how well the accepted parameter sets
remain within limits of acceptability. The box indicates the upper and lower quartiles, and the whiskers
show upper and lower values found in all simulations. For display purposes, the targets have been
normalized, so that the lower limits resemble the value 0 and the upper limits resemble the value 1. The
limits of acceptability are shown by red dashed lines.
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catchments. The framework enables parameter conditioning
under the circumstances of highly uncertain data, and
nonavailability of residual time series. Instead it uses
information signatures with related limits of acceptability
as calibration targets. The general subjectivity of GLUE is
significantly reduced by means of an objective selection of
acceptability limits. The framework allows for the integra-
tion of hard and soft information in the parameter condi-
tioning process.
[59] In short, it consists of the following steps: a) From

available rainfall and discharge observations, hard and soft
information signatures are extracted. For hard information,
calibration targets, in the form of limits of acceptability, are
constructed based on the year-to-year variability of the
signature present in the data. Because of the limited number
of yearly samples usually available under data scarcity, a
Normal Quantile Transform approach is used to construct
95% confidence intervals in the Gaussian domain. For soft
information, the limits are either retrieved from a transfer
model, if such a model was used to obtain the information,
or they are based on the modeler’s prior expert knowledge.
b) An intermediate marginal parameter distribution is
derived for each parameter through Monte Carlo sampling,
where models, obeying all the hard targets are accepted as
equally likely and all others are assigned a zero probability.
c) Further sampling in a reduced parameter space is per-
formed, now including soft information. d) Based on the
posterior density of the parameters and the variability in the
associated output realizations, the modeler may decide
which information is expected to provide an additional
strong constraint on the parameter space and if it is feasible
to collect this information. e) The modeler includes, after
collection, information retrieved from the newly observed
variables (not necessarily discharge) in a further constrain-
ing step.
[60] In a case study, a daily rainfall-runoff model for the

Luangwa catchment in Zambia has been conditioned using
the framework. We have demonstrated the use of three
information signatures, that are expected to be relatively
insensitive to the absolute accuracy of the data used: the
shape of the recession curve, the spectral properties of the
discharge process and, as soft information, monthly esti-
mates of the water balance through a calibrated auxiliary
monthly water balance model, based on available concom-
itant monthly rainfall and discharge records. Two calibration
experiments with our framework have been conducted,
using two different satellite-based rainfall estimates, both
generating considerably different rainfall amounts. The
resulting parameter distributions show clear constraints in
the parameters. The results of the two experiments are
consistent with each other. While the number of behavioral
discharge regimes is seriously reduced by the introduction
of the information signatures, the water balance of the soil
moisture, and consequently the evaporation regime
remained marginally constrained. This indicates that addi-
tional independent information of the soil moisture or
evaporation regime would be needed to further reduce
parameter uncertainty.
[61] We believe the approach presented here is a valuable

tool for prediction in ungauged basins. In fact it provides the
modeler with a stepwise and objective procedure to condi-
tion parameter optimization on his perception and a guide

to further data collection, based on the information at
hand.
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Merz, R., and G. Blöschl (2008a), Flood frequency hydrology: 1. Temporal,
spatial, and causal expansion of information, Water Resour. Res., 44,
W08432, doi:10.1029/2007WR006744.
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Oudin, L., V. Andréassian, C. Perrin, C. Michel, and N. Le Moine (2008),
Spatial proximity, physical similarity, regression and ungaged catch-
ments: A comparison of regionalization approaches based on 913 French
catchments, Water Resour. Res. , 44 , W03413, doi:10.1029/
2007WR006240.

Pitman, W. V. (1973), A mathematical model for generating monthly river
flow from meteorological data in southern Africa, Rep. 2, Hydrol. Res.
Unit, Dep. of Civ. Eng., Univ. of Witwatersrand, Johannesburg, South
Africa.

Pokhrel, P., K. K. Yilmaz, and H. V. Gupta (2009), Multiple-criteria
calibration of a distributed watershed model using spatial regularization
and response signatures, J. Hydrol., doi:10.1016/j.jhydrol.2008.12.004,
in press.

Reggiani, P., M. Sivapalan, and S. M. Hassanizadeh (1998), A unifying
framework for watershed thermodynamics: Balance equations for mass,
momentum, energy and entropy, and the second law of thermodynamics,
Adv. Water Resour., 22, 367–398.

Schaefli, B., and H. V. Gupta (2007), Do Nash values have value?, Hydrol.
Processes, 21, 2075–2080.

Schaefli, B., and E. Zehe (2009), Hydrological model performance and
parameter estimation in the wavelet-domain, Hydrol. Earth Syst. Sci.,
13, 1921–1936.

Schymanski, S. J., M. Sivapalan, M. L. Roderick, J. Beringer, and L. B.
Hutley (2008), An optimality-based model of the coupled soil moisture
and root dynamics, Hydrol. Earth Syst. Sci., 12(3), 913–932.

Seibert, J. (2001), On the need for benchmarks in hydrological modeling,
Hydrol. Processes, 15, 1063–1064, doi:10.1002/hyp.446.

Seibert, J., and K. J. Beven (2009), Gauging the ungauged basin: How
many discharge measurements are needed?, Hydrol. Earth Syst. Sci.,
13, 883–892.

Seibert, J., and J. J. McDonnell (2002), On the dialog between experimen-
talist and modeler in catchment hydrology: Use of soft data for multi-
criteria model calibration, Water Resour. Res., 38(11), 1241, doi:10.1029/
2001WR000978.

Selker, J., N. van de Giesen, M. Westhoff, W. Luxemburg, and M. B.
Parlange (2006), Fiber optics opens window on stream dynamics,
Geophys. Res. Lett., 33, L24401, doi:10.1029/2006GL027979.

Sivapalan, M. (2003), Prediction in ungauged basins: A grand challenge for
theoretical hydrology, Hydrol. Processes, 17, 3163–3170.

Son, K., and M. Sivapalan (2007), Improving model structure and reducing
parameter uncertainty in conceptual water balance models through the
use of auxiliary data, Water Resour. Res., 43, W01415, doi:10.1029/
2006WR005032.

Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins
(2004), GRACE measurements of mass variability in the Earth system,
Science, 305, 503–505.

Uhlenbrook, S., and J. Wenninger (2006), Identification of flow pathways
along hillslopes using electrical resistivity tomography (ERT), in Predic-
tions in Ungauged Basins: Promise and Progress, edited by M. Sivapalan
et al., IAHS Publ., 303, 15–20.
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