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Stel1ingen. 

De bewering van Lynch, dat in de 'multi-slice' methode 
diffractie-effecten van hogere orde Laue zones altijd worden 
meegenomen, is onjuist, omdat bij bepaalde laagdikten slechts 
effecten van de nulde orde Laue zone een rol spelen. 

Lynch D.F., (1971), Acta Cryst., A27, 399= 

De bewering van Kalonji dat Bolimann in zijn afleiding van de 
verzameling van oorsprong-punten (Eng: 'O—lattice') een 
mathematisch inkomplete verzameling genereert, is onjuist. 

Bolimann W„, (1982), 'Crystal Lattices, Interfaces, 
Matrices', (Beneva; Bolimann). 

Kalonji B., (1985), J. Physique, 46, coll 4, 249. 

De zogenoemde Primak-methode voor het bepalen van 
activeringsspectra uit de logaritmische tijdsafgel ei de van 
isotherm veranderende grootheden kan belangrijk worden 
verbeterd door een decpnvolutie-proces. 

Primak W., (1955), Phys. Rev., ÏOO, 1677 

Om in het concept van Bollmann's verzameling van oorsprong-
punten, in het Engels aangeduid met 'O-lattice', het Engelse 
woord 'lattice' te gebruiken is incorrect, omdat de punten 
niet equivalent zijn. 

Bolimann W., (1982), 'Crystal Lattices, Interfaces, 
Matrices', (Beneva; Bolimann). 

International Tables for X—ray Crystallography, 
Volume I, (1969), (Birmingham; Kynoch Press 
/lUCr), 6 

Met het gebruik van de term 'superrooster-refJekties', met 
betrekking tot geordende kubisch vlakken-gecenterde — en 
kubisch 1ichaams—gecenterde legeringen, moet voorzichtigheid 
worden betracht. 

Met het oog op de conventie welke wordt aangehanqen met 
betrekking tot rotaties in de 3—dimensional e ruimte, is het 
aan te raden om, ter voorkoming van verwarring, middelbare 
scholieren te gewennen bij het gebruik van een XV-
assenstelsel de positieve X-as vertikaal naar boven gericht 
en de positieve Y-as horizontaal naar rechts gericht te 
kiezen. 



De verklaring die Hirashima et al. geven voor de 
geobserveerde geometrieën van Neodymium complexen met poly— 
ethyl eengl ycol -ketens is twi j-fel achti g . 

Hirashima et al., (1981), Buil. Chem. Soc. Jpn., 54, 1567 
Hirashima et al., (1981), Chem, Lett., 1501 
Hirashima et al., (1982), Chem. Lett., 1405 
Ohmoto et al., (1979), Buil. Chem. 3oc. Jpn., 52, 1209 

Bij de structuurbepaling van L-asparaginezuur sou de 
correctie voor tweelingvorming niet op basis van 
structuurfactoren hebben moeten plaatsvinden, maar op basis 
van intensiteiten. 

Derissen et al., (1968), Acta Cryst.-, B24, 1349 

De overweging door Lagowski et ai. dat dislocatiedichtheden 
in gallium-arsenide substraten worden veroorzaakt door 
condensatie van vacatures tot disiocatieringen, is 
tegenstrijdig met de experimentele bevindingen van Stirland 
et al. waar juist interstitiële disiocatieringen warden 
waargenomen = 

Lagowski et ai., (1984), Semi-insulating III-V Materials, 
Publ. Shiva 

Stir land et. al., (1978), J. Mat. S c , 13, 657 

Bij het onderzoek naar de oorzaken van het toenemende aantal 
beroepen op voorzieningen van de gezondheidszorg, wordt ten 
onrechte geen aandacht geschonken aan de -faktor vrije tijd'. 

'Nota 2000', 2 e Kamerstuk 19500, nrs. 1 en 2, 
vergaderjaar 1985—1986. 

Het gebruik van meer dan één mistachterlicht om zichzelf 
zichtbaar te maken voor medeweggebruikers, is overbodig en 
leidt in de meeste gevallen tot verwarring. 
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List of abbreviations. 

BF 
CB-cone 
CBED 
CSL 
DCP 
DSC 
DG 
FDLZ 
HOLZ 
WP 
ZAP 
ZOLZ 

central disc (brightfield). 
convergent beam cone. 
convergent beam electron diffraction. 
coincident site lattice. 
dichromatic pattern. 
displacement shift complete lattice. 
diffraction group. 
first order Laue zone. 
higher order Laue zone. 
whole pattern. 
zone axis pattern. 
zero order Laue zone. 

List of symbols. 

CRItï 
U 

y . 
7 
superscript * 
superscript T 

indication of a set. 
Seitz operator. 
union of 2 sets. 
intersection of 2 sets. 

for all values of g. 
multiplication; vector product. 
convolution. 

Fourier transformation. 
complex conjugate . 
transpose. 

a,b,c 
«,b,$" unit cell parameters in direct space. 

* . * * a ,b ,c 
* O * v * J unit cell parameters in reciprocal space. 

CuvwD 
< uvw > 

(hkl) 

ChklJ 

axis in direct space. 
axis in direct space, including its 
symmetry related. 
crystal face or lattice plane or 
reflection. 
crystal face or lattice plane or 
reflection, including their symmetry 
related. 

(j) 
C(r) 
C (j) 
9t*Qz 

(j) 

(j) 
the eigenmatrix. 
vector notation for the set of C, 
Bloch wave amplitude. 
g Fourier component of the j Bloch 
wave. 

The symbol * a l s o i n d i c a t e s r e c i p r o c a l 
are t h e r e f o r e e x p l i c i t l y ment ioned i n t h e 

u n i t q u a n t i t i e s . 
l i s t of s y m b o l s . 

These 



(continued) 

C n
 J - h t n eigen vector element (Fourier 

component of the j Bloch wave) of the 
transposed eigenmatrix. 

d n k l - reciprocal lattice vector hkl. 
d u v w - direct lattice vector uvw. 
D - logarithm of intensity; greyvalue. 
E a — accelerating voltage of the incident 

electrons. 
f - first Born approximation atomic 

scattering factor for electrons. 
fx - atomic scattering factors for Xrays. 
FR - structure factor of reflection h (Xray 

scattering). 
F n

e - structure factor of reflection h 
(electron scattering). 

g_, h_ - reciprocal lattice vectors. 
g, h - reflections. 
ĝ ., G - projection of (j in plane normal to the 

zone axis. 
g - vector component of g[ along the zone 

axis. 
G j , 62 - space group of crystal I and II. 

G 2 - the set of diperiodic space groups in 3 
dimensions. 

G" -5 - the set of dichromatic space groups in 3 
dimensions. 

I n — intensity of reflection h. 

k_ J - wave vector of the j Bloch wave. 
k̂ . - vector projection of k. in plane 

normal to the zone axis. 
k2

 J - vector component of k_ J along the zone 
axis. 

K - wave vector of the incident electron 
inside the mean inner crystal potential; 
deviation of incident beam from crystal 
surface normal. 

K - norm of K. 
Pn(rO - propagation function in direct space. 
Pn(h,k) — propagation function in reciprocal 

space. 
qn(r) - transmission function in direct space. 

g. J - inelastic contribution to k_ . 
Q - deviation vector from central axis of 

CB—cone. 
r_ - vector in direct space. 
R - vector projection of r̂  in plane normal 

to the zone axis; rotation matrix. 
s — zone axis in reciprocal space units. 
s — sine/X. 
TQQJ^ - CSL transformation matrix. 
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(continued) 

T„(k_) - transmission in the direction of k+£. 
u - zone axis in direct space units. 
U(r_) - 'reduced' electron potential 

(=2meV(r)/h2). 
U - g Fourier component of U(r). 
U ' - inelastic contribution to U . 
v - amplitude of the g diffracted beam. 
v - vector notation for the set of v . 
V - volume of unit cell in direct space. 
V - volume of unit cell in reciprocal space. 

V(r_), Vc<x,y,z) - crystal potential. 
V'(r_) - inelastic contribution to V(r_). 
^V (x,y) - projected crystal potential. 
V_. , - Fourier component of crystal potential. 
z - zone axis direction; vector component of 

r along the zone axis. 
Z - atomic number. 

« J - Bloch wave excitation coefficient. 
2 2 2 

P . - relativistic correction v /c . 
i J - j eigenvalue. 
5 - delta function. 
Sz - slice thickness. 
Ö - half-angle of scattering. 
X - radiation wave length. 
Tt(h,k> — excitation error of reflection (h,k). 
E - volume ratio of CSL unit cell and 

original unit cell; summation sign. 
f<r_) - Bloch wave. 
X - electron wave vector in vacuum. 
§n(x,y) - mean crystal potential of slice n per 

unit of length. 
P$n(x,y> - projected crystal potential of slice n. 
Xj. - vector projection of X in plane normal 

to the zone axis. 
X z - vector component of X along the zone 

axis. 
W(r) - total wave function. 

2,3,4,6 - n-fold rotation axis. 
m - mirror plane. 
3,4",5 - n-fold inversion-rotation axis. 
d,a - d-glide, a-glide plane. 
primed ' - symmetry operation, including colour 

inversion. 
subscript R - symmetry operation in a diffraction 

group (see section 2.2.3). 
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Chapter 1 : Introduction. 

In recent years, the interest in the structure of grain 
boundaries or, more generally, of interphase boundaries in 
materials has greatly increased. The reason for this interest is 
the important role that these defects play in the behaviour of 
polycrystalline materials in various applications. For instance, 
the mechanical properties of materials are largely determined by 
the size and distribution of grains in the material. In 
semiconductor applications, grain boundaries often cause a 
deterioration of electrical properties of various devices. In all 
of these applications, it is important to obtain knowledge of the 
local structure and composition of the boundary regions in order 
to try to improve the material properties. 
Since the effective grain boundary region consists, in general, 
only of a few atom layers, it is difficult to determine its local 
structure and composition. One of the best experimental 
techniques that can be applied is transmission electron 
microscopy, in which thin foils of material can be analyzed with 
respect to their structure and chemical composition. However, 
even in thin foils, a grain boundary region occupies only a small 
fraction of the volume analysed, and difficulties arise in the 
interpretation of grain boundary effects. In spite of these 
limitations, considerable progress in this field has been made 
over the last ten years, using both electron diffraction and 
high-resolution imaging techniques. 
Another technique used for this purpose is Convergent Beam 
Electron diffraction (CBED). The technique of CBED has often been 
applied to determine the point and space group of single crystals 
from the symmetry of the CBED patterns taken along certain zone 
axes CGoodman 1975, Tinappel 1975, Buxton et al. 19761. 
In the investigation of the structure of crystal interfaces, the 
CBED technique is a useful tool, since the symmetry of the CBED 
pattern is related to the type of interface and particularly to 
the state of translation at the interface. The use of 
conventional diffraction patterns, i.e. spot patterns, is not 
suitable for this kind of investigation, since the difficulty in 
obtaining accurate intensities limits a good interpretation. 
The CBED patterns have been classified according to 31 so—called 
diffraction groups CBuxton et al. 19761. Recently, Schapink et 
al. C19833 and Buxton et al. C19841 have classified the CBED 
patterns that can be obtained from bicrystal specimens, i.e. 
specimens involving a single interface. In the classification for 
bicrystal symmetry determination, the assumption had to be made 
that the bicrystal consisted of a parallel-sided combination of 
two (identical) single crystals, the interface being coincident 
with the mid-plane of the bicrystal specimen (symmetrical 
position). In a symmetrical position of the boundary, symmetry 
elements lying in the plane pf the interface can be observed in 
the CBED pattern. 
The detailed effect of an asymmetrical position of the boundary 
on the symmetry in the CBED pattern could not easily be 
predicted. A computer program has, specifically, been developed 
to investigate the effect of an asymmetrical boundary position. 
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Having obtained such a program, it offers the opportunity to 
investigate properties other than the position of the boundary in 
the case of a bicrystal. For instance, the effect of specimen 
thickness or absorption on the CBED pattern of both single and 
bicrystal specimens can easily be determined. 

This thesis treats the description of the computer program based 
on the N-beam dynamical theory of diffraction CBethe 19281 for 
the simulation of CBED patterns from single crystal and bicrystal 
specimens. The program is used to calculate CBED patterns for 
silicon, gallium-arsenide and gold single crystal and bicrystal 
specimens, in order to assess the usefulness of the technique of 
CBED as an investigative tool for the study of grain boundary 
structures. 
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excitation-error distances. It will be clear that the intensity 
of the primary beam is, in this case, more strongly reduced than 
in the simple two' beam case. The effect is even more pronounced 
if we consider the side effects we are dealing with, such as the 
spread in monochromatism of the radiation source (bandwidth), the 
shape and limiting dimensions of the crystal specimen and the 
thermal motion of the atoms within the crystal. These effects 
account for the observation of intensity of reflections which do 
not completely fulfil Bragg's law, i.e. those reflections having 
small excitation-error distances. 
The dynamical theory of diffraction is used for the description 
of the diffraction phenomenon. The dynamical theory, originally 
developed by Bethe C19283, will be treated in detail in chapter 
4. 

figure 2.1. 1 

Ewald sphere construction for different wavelengths: I. For 
Xray equivalent to the wavelength of Mok<x (0.71069 A) 
II. For electrons accelerated with lOOkV (0.037 A*> . 
Point P satisfies Bragg's law of diffraction. 

Specimen description. 

In the mathematical treatment of high-energy electron diffraction 
by a crystal specimen, the specimen is considered to be a thin, 
electron transparent, parallel-sided platelet, infinite in 
transverse directions. The incoming beam is directed along or 
near the surface normal s and results in a diffraction pattern 
indexed according to the zone axis u, satisfying the relation 

A zone axis is defined as the lowest-indexed direct lattice 
vector closest to the incident beam direction. 
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g_. u = n 2.1.2 

where g is a reciprocal lattice rh indicating the n order Laue zone (fig. 
vector and 

2.1.2) 
stated, since n is usually small (n= 0,1 or 

n an integer, 
Alternatively 

!) , the lattice 
planes in consideration are perpendicular or almost perpendicular 
to the specimen surface (symmetrical Laue case) [Humphreys 19791. 
Reflections from the plane at n=0 are usually referred to as zero 
order Laue zone (ZOLZ) reflections; reflections from higher order 
Laue zones (n > 0) are referred to as HOLZ reflections. 
For high-voltage electrons, electron back-scattering can 
generally be neglected CBuxton 19763; if absorption is not 
considered, the original intensity of the incident electrons is 
conserved in the forward-scattered (transmitted) beams. 

*S 

figure 2.1.2 

Higher order Laue zone (HOLZ) 
direction of the zone axis u. 
case for j.u = 2. 

diffraction. 
The vector £ 

s is in the 
is drawn in the 

2.1.3 Convergent beam electron diffraction. 

In convergent beam electron diffraction (CBED) an incident beam 
cone is focussed on the specimen. The angle of convergence is 
usually of the order of a few milli-radians. As a result, the 
diffraction spots observed in normal diffraction are enlarged 
into diffraction discs in CBED. Figure 2.1.3 illustrates the 
application of CBED. In figure 2.1.4 an example of a CBED pattern 
of a gold single crystal is shown; the axis of the cone is 
directed along the <1 1 1> zone axis, the resulting discs are 
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indexed in the same way as the diffraction spots in a normal 
diffraction pattern. The lines observed in the pattern are 
Kikuchi lines, which result from further elastic scattering of 

1928, 
result 
order 

originally inelastically scattered electrons [Kikuchi 
Hirsch et al. 19653. The concentric rings that are seen 
from the intersection of the Ewald sphere with higher 
lattice planes (c.f. eq. 2.1.2, with n=l,2 and fig. 2.1.2). 
The convergent beam can be thought qf as being composed of a cone 
of (infinitesimal) parallel beams, each with a different 
deviation from the axis of the CB-cone. Providing the individual 
incoming beams can be considered to be mutually independent, the 
resulting CBED diffraction pattern can then be taken as the 
superposition of the individual diffraction patterns. In other 
words, the electron source is considered to be perfectly 
incoherent. Since, in practice this appears to be approximately 
true, this method is used in the simulations to describe the 
convergence of the beam . 
In the higher-order rings of the diffraction pattern the 
intensity profiles of the discs are reduced to thin lines. 
Geometrically this can be explained by considering the fact that 
the points of the reciprocal lattice can be thought of being 
enlarged into lattice 'discs'. The intersection of the Ewald 
sphere with a reflection 'disc' of a HOLZ plane describes an arc 
of a circle. Along that line, the intensity will be at its 
maximum (figure 2.1.5). 

figure 2.1. 3 
Convergent beam electron diffraction. 
diffraction disc. 

g_ indicates a ZOLZ 
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■a*' 

figure 2.1.4 

A CBED pattern of gold at lOOkV. The axis of the incident 
beam cone is directed along the <1 1 1 
pattern shows a 3m symmetry. .> zone axis. The 
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Ewald 
sphere 

ZOLZ plane 

figure 2.1.5 
The intensity pattern of a HOLZ disc (g) is reduced to a 
thin line. 

The observation that more than a single line appears within the 
discs is a result from dynamical interaction between different 
reflections. This will be treated in more detail in section 
4.2.4.. 
The symmetry present in a CBED pattern such as in figure 2.1.4 is 
related to the internal crystal symmetry, as will be outlined in 
the coming sections. A distinction is made between the central 
disc (i.e. the diffraction disc of the transmitted beam), and the 
whole pattern. In some cases the central disc can show a higher 
symmetry than the whole pattern. 

The construction of the 31 diffraction groups. 

2.1 Breakdown of Friedel's law. 
In X-ray diffraction, it is usually observed that between the 
intensity of a diffraction spot h ( «hjhjfw) and the diffraction 
spot h~ the relation exists that 

JR 2.2. 1 

known as Friedel's law CFriedel 19131. This law is easily derived 
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since the structure amplitudes F n and F^ are mutually complex 
conjugate if anomalous dispersion is not considered. In the 
kinematical approach the intensity of a spot is proportional to 
FF , giving eq. 2.2.1. Friedel's law is more accurately 
formulated as CMiyake & Uyeda 1955]: 

'The intensities of the reflections 
(hkl) and (RkT) for a fixed crystal are equal 
to each other provided the directions of the 
incident beams which excite these reflections 
are opposite to each other.' 

The breakdown of Friedel's law in electron diffraction was first 
observed in the measurement of the mean inner potential of 
reflections from £1 1 1> and -CT T T>. faces of zincblende in 1939 
CThiessen & Molière 19393. Miyake and Uyeda E 19503 observed the 
effect in an electron diffraction pattern of zincblende. The 
failure, only occurring in non-centrosymmetric structures, is 
explained by the dynamical relation that exists between 
reflections that are simultaneously excited. As will be seen in 
the next section, where the phenomenon of reciprocity is treated, 
there is an exception that can be made for the central disc of a 
CBED pattern. As a result of reciprocity Friedel's law is 
satisfied in the central disc in all cases, if absorption is left 
out of consideration [Goodman & Lehmpfuhl 19683. 

2.2.2 The reciprocity theorem. 

The principle of reciprocity states that, when a signal 
originating from a point source at point A is detected at point 
B, it will be equal, in amplitude and phase, to a signal 
originating from the same point source at point B and detected at 
A Cvon Laue 19353. 
In electron diffraction through a thin crystal this means that, 
for the transmission T of an electron beam directed from above 
with a deviation K from the crystal surface normal and diffracted 
in a direction g_, the relation exists CBuxton 19763 

T ( + )(K) = T (_)(-K-B) 2.2.2 

where the + and - superscripts denote whether the beam is 
directed from above or below respectively (fig. 2.2.1), and G is 
the projection of g_ onto a plane perpendicular to the zone axis . 

In the notation used, C[ always indicates a lattice point vector 
in reciprocal space (either ZOLZ or HQLZ), and G always the 
projection of g[ on the plane of zero order Laue reflections. G 
needs therefore not necessarily to be coincident with a 
reciprocal lattice point in the ZOLZ plane. 
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The transmission T 
can be applied to 
diffracted electron 
the reciprocity 
elastically scatter 
that in the case of 
holds for the inten 
loss. 
It is noted that 
intensities, eq. 
has been mentioned 

is taken as a dimensionless quantity, since it 
both the amplitudes and the intensities of the 
beams. Von Laue E 19353 proved the validity of 

theorem for the amplitude and phase of 
ed electrons; Pogany and Turner E19683 proved 
inelastic scattering the reciprocity theorem 

si ties, providing there is only a small energy 
when g_ is taken to be zero and T refers, to 
2.2.2 becomes equivalent to Friedel's law, , as 
in the previous section. 

(a) (b) 

figure 2.2.1 
Reciprocity: the transmission resulting from 
identical to the transmission resulting from (b). 

(a) is 

2.2.3 The 31 diffraction groups. 
The pattern symmetries resulting from CBED have been classified 
according to 31 so-called diffraction groups EBuxton et al. 
19763. The number of 31 can be deduced by considering that a CBED 
pattern is a superposition of diffraction patterns seen from 
different directions within the CB-cone projected onto the plane 
of view. In the first instance the 10 plane point groups, as 
tabulated in the Int. Tables for Xray Cryst. vol. I, are 
applicable. The introduction of the effect of reciprocity, as 
described in the previous section, results in an expansion to 31 
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point groups: i.e. the 31 diffraction groups as proposed by 
Buxton et al. C19763 <see also table 2.2). The original 10 plane 
point groups are a subgroup of the 31 (2-dimensional) diffraction 
groups. (As a matter of fact, the 31 diffraction groups are 
isomorphic with the Shubnikov groups of coloured plane figures 
CShubni kov 19643). 
The introduction of the reciprocity relation in the construction 
of the 31 diffraction group, is explained as fallows. The effect 
of reciprocity can actually be detected by inverting the specimen 
or, indirectly, from the presence of horizontal symmetry elements 
in the specimen. For instance, if a crystallographic mirror 
exists which is parallel to the specimen surface, then the -
superscript in the righthand side of eq. 2.2.2 can be changed to 
a +, hereby relating the intensity of diffraction spots when 
looking from one side of the specimen. It is clear that, when 
using CBED, a horizontal mirror plane as described can be seen 
immediately by the extra 2-fold symmetry that is present in the 
central disc of the diffraction pattern, i.e. in the disc of the 
transmitted beam. Reciprocity and crystal symmetry work in a 
complementary manner: reciprocity can be detected, apart from an 
inversion of the specimen, by virtue of additional 
crystallographic symmetry and certain crystallographic symmetries 
can be detected by virtue of the reciprocity relation. To be 
specific, horizontal symmetry elements are detected indirectly 
through the reciprocity relation"*", whereas vertical symmetry 
elements can be seen directly. In addition, one has to realize 
that, what is observed of the crystal (point) symmetry is imposed 
by the point group of the specimen. The latter will always be 
less or equal in point symmetry then the former. For instance, a 
horizontal 3—fold axis will not be observed and a horizontal 4-
fold axis will act like a horizontal 2-fold axis. 

For reference, table 2.2 shows the 31 diffraction groups and the 
internal symmetry relations in connection with CBED. The table 
has been reproduced from Buxton et al. C19763. The first column 
shows the 31 diffraction groups. To indicate the effect of 
reciprocity in the notation of the diffraction groups, Buxton et 
al. use the subscript R. In figure 2.2.2 some examples illustrate 
how the diffraction group (DG) notations can be diagrammatically 
represented. 
The effect of R, if present, may be either seen immediately from 
the diffraction pattern or it may be obscured. An example of the 
first is diffraction group 1 R, which has 2-fold symmetry in the 
central disc. According to figure 2.2.2a, all other discs exhibit 
the same internal 2—fold symmetry when set in the Bragg position 
(see fig. 2.2.3). The whole pattern has symmetry 1. Diffraction 
group 2p (fig. 2.2.2c) has symmetry 1 in both the brightfield and 
the whole pattern. It is therefore, at first sight, 
indistinguishable from diffraction group 1. When looking at zero 

Horizontal here indicates that the symmetry element is 
perpendicular to the zone axis; vertical means that the symmetry 
elements are parallel to the zone axis. 
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Table 2.2 
The relation between the diffraction groups and the CBED 
pattern symmetry. The column indicated with BF (brightfield) 
gives the symmetry for the central disc; the column 
indicated WP gives the symmetry for the whole pattern The 
table has been reproduced from Buxton et al. C19763. 

DG 

1 
*R 2 
2R 
2 1 R mR 
m 
ml R 
2mRmp 
2mm 
2pfnfT)p 
2mm lp 
4 
4R 
4*R 4m Rm R 
4mm 
4RmmR 
4mm lp 
3 
3 1R 3mR 
3m 
3ml R 

6R 
6 1R 6m Rm R 
6mm 
6Rmmp 
6mm lp 

BF 

1 
2 
2 
1 
2 
m 
m 
2mm 
2mm 
2mm 
m 
2mm 
4 
4 
4 
4mm 
4mm 
4mm 
4mm 
3 
6 
3m 
3m 
6mm 
6 
3 
6 
6mm 
6mm 
3m 
6mm 

WP 

1 
1 
2 
1 
2 
1 
m 
m 
2 
2mm 
m 
2mm 
4 
2 
4 
4 
4mm 
2mm 
4mm 
3 
3 
3 
3m 
3m 
6 
3 
6 
6 
6mm 
3m 
6mm 

g in 
gen. 

1 
2 

2 

2 

2 

2 

2 

2 

2 

2 

Bragg 
spec. 

n 
n 
n 
n 
n 
m 
m 
2mm 
m 
m 
m 
2mm 
n 
n 
n 
m 
m 
m 
2mm 
n 
2 
m 
m 
2mm 
n 
n 
n 
m 
m 
m 
2mm 

±g in 
gen. 

1 
1 
2 
2R 
2 1 R 1 
1 
1 
2 
2 
2R 
2 1R 2 
2 
21 R 
2 

. 2 
2 
2 1R 

2 
2R 

2 
2R 21* 

Bragg 
spec. 

n 
n 
n 
n 
n 
m R 
m 
ml R 

-
-
-
n 
n 
n 
-
-
-
-
n 
n 
mR 
m 
ml R 
n 
n 
n 
— 
— 
-
-
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+ 

figure 2.2. 

Diagrammatic representation of certain diffraction 
(DG). (a), (b) , (c) and <d) represent the DG's 1 R, 
and 2pinn)p respectively. In each diagram, the 
indicates the position of the zone axis. 

groups 
mR' 2R + sign 

A general ZOLZ reflection g_ set in Bragg 
indicates the direction of the zone axis. l£ 
vector of the incident beam. 

position. s 
is the wave 
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order Laue zone (ZOLZ) reflections g and g, successively set in 
the Bragg position, it is seen that the patterns of the discs are 
identical in orientation as well as in intensities. Therefore, 
apart from the 180° relation between discs g and —g, there is an 
extra 180° rotation of the pattern within the disc(s) itself. 
This extra rotation is indicated with the subscript R. 
Columns 4 and 5 of table 2.2 describe the symmetry of a 
particular reflection g that will be seen when that reflection is 
set in the Bragg position. Columns 6 and 7 show the symmetry 
relation between reflections g and g when set in their respective 
Bragg position. The symbol n in this table means that there is no 
relation; a dash indicates that the symmetry relation can be 
deduced from columns 5 and 6. 

2.2.4 The projection approximation. 
A special case occurs when the crystal potential is seen to be 
projected in a plane perpendicular to the zone axis: 

fz pV,_<x,y) = | V,_(x,y,z> dz 2.2.3 
Jo 

where (x,y) and Vc<x,y,z> denote the crystal potential in 
two dimensions and three dimensions respectively. Because of the 
periodicity along the z-axis, a unit cell, with its c-axis along 
the z-axis, can be chosen, having the a and b axes 
perpendicular to c by definition. If the integration is taken 
over one period in z, eq. 2.2.3 becomes: 

PVc(x,y) 

It can be shown that the equivalent fourier expansion becomes 
CLipson & Cochran 19533: 

pVc(x,y) = c <En£kVhk0 exp(-27ti (hx+ky) )> 2.2.5 

where V ^ o a r e the fourier coefficients of the crystal potential 
for 1=0 and PV <x,y) is expressed in units of EV3CA3 CGoodman & 
Moodie 19743. 
Since the plane of projection has become a mirror plane in 
itself, it is no longer necessary to differentiate between the 
top and bottom side of the specimen. The + and - superscripts in 
eq. 2.2.2 can, therefore, be omitted, resulting in 
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<K> = T (-K-G 
a - a — 

2.2.6 

This means that,- for g=0 , i.e. the transmitted beam (c.f. 
footnote on page 15), an inversion centre exists for the 
transmission in the directions K and -K, equivalent to a 2-fold 
symmetry in the diffraction disc. In general, when a reflection ĝ  
is set in the Bragg position (K = -J£G, see also fig. 2.2.3) it 
follows from eq. 2.2.6 that a slight deviation Q from that 
position (K = ->&S + Q) results in an equivalent transmission 
in the direction -)£G - Q. In the CBED pattern this centre of 
symmetry through — JèG gives a 2—fold symmetry in the g 
diffraction disc, when set in Bragg position EBuxton et al. 1976, 
Pogany & Turner 19681. 
The diffraction groups that can be obtained using the projection 
approximation are those which emerge when a horizontal mirror 
plane is added. It is obvious that this operation will lead to 
the 10 diffraction groups containing the symbol lp. The fourth 
column of table 2.2 shows that for a general reflection in the 
Bragg position a 2-fold symmetry occurs, as expected. 

The effect of translation-coupled symmetry elements. 

Thus far, the effect of the crystal point group on the 
diffraction pattern has been considered. In fact, information 
concerning only the crystal point group can be obtained from the 
diffraction group classification. On the other hand, the 
diffraction pattern itself contains information also on the 
presence or absence of systematic extinctions, due to either 
lattice translations (Bravais lattice) or to translation-coupled 
symmetry elements. This information can, in turn, be translated 
to information on space group symmetry, as will be outlined 
below. 
In the kinematical treatment of diffraction the intensities of 
the diffraction spots are proportional to FF , where F is the 
structure factor of a certain reflection hkl and F* denotes the 
complex conjugate of F. The phase information, embedded in the 
stucture factor equation, is therefore lost in the intensities. 
Translation-coupled symmetry operations can be detected by their 
systematic extinctions. As a result of the choice of a non-
primitive Bravais lattice on the one hand or the presence of 
screw axes and/or glide planes on the other hand, certain 
reflections can be forbidden: the value of their structure factor 
is zero. In principle, every crystal structure can be placed in a 
primitive lattice. The choice of a non-primitive Bravais lattice 
is imposed by the choice of a unit cell in agreement with the 
point symmetry elements present in the structure. The presence of 
screw axes and/or glide planes is imposed by the unit cell 
contents, i.e. the structure itself. It will be clear that 
ignorance of the translation-coupled symmetry operations can 
easily lead to erroneous results in indexing diffraction spots. 
In dynamical diffraction it is possible to generate kinematically 
forbidden reflections. This can be explained as resulting from 
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causes [Humphreys 19793. Firstly, it may be caused by the effect 
of double (multiple) diffraction, meaning that a beam originating 
from a reflection g_ can act as an incident beam for a reflection 
h_, resulting in a reflection g_+h.f which may be kinematically 
forbidden. Secondly, kinematically forbidden reflections can 
occur in a thin specimen when the specimen thickness is not equal 
to an integral number of unit cells [Morris et al. 19683. 
Gjonnes and Moodie [19653 have set up general conditions for the 
continued absence of kinematically forbidden reflections in 
dynamical diffraction caused by the presence of a screw axis or 
glide plane having its translation component normal to the zone 
axis. Depending on the diffraction conditions, an extinction band 
in the diffraction disc of a kinematically forbidden- reflection 
occurs. The direction of the extinction band makes it possible to 
distinguish between the presence of either a screw axis or a 
glide plane [Steeds et al. 19783. It is therefore possible, using 
the technique of CBED, to determine 191 of the 230 space groups 
uniquely CTanaka et al. 19833. 
Different considerations have to be made for translation—coupled 
symmetry elements having a translation component parallel to the 
zone axis. In contrast to kinematical diffraction, in dynamical 
diffraction the intensities of reflections hkl are phase related. 
In principle it is therefore possible to observe the effect of 
phase differences, caused by these translation components in CBED 
discs not dynamically forbidden. On the other hand, 
considerations made by Goodman [19753 and Buxton et al. [19763 
showed no detectable differences in the CBED pattern. Ishizuka 
[19843 recently showed using calculations based on the multi-
slice method, that the effect of a d—glide plane in the spinel' 
structure on its CBED pattern is negligibly small. 
Based on these considerations, the effect on the CBED pattern of 
a translation parallel to the zone axis, originating from a screw 
axis and/or glide plane, is assumed to be negligibly small. In 
these cases, only the symmetry operation without its translation-
coupled symmetry has to be considered, e.g. a 2-fold screw axis 
parallel to the zone axis is treated as a normal 2-fold axis. 
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Chapter 3 : CBED from bicrystals. 

3.1 Introduction. 
A bicrystal specimen is considered, in analogy to the definition 
of a single crystal in the previous chapter, to consist of a 
parallei-sided combination of two homogeneous crystals separated 
by a plane, the interface. The bicrystal is assumed to be 
infinite in transverse directions. 
In general, both parts of the bicrystal can be crystals of 
different composition, the interface positioned in an arbitrary 
direction. We will restrict ourselves to the special case where 
both crystals differ only in orientation along a common crystal 
axis (rigid body translations included), with the interface 
positioned parallel to the bicrystal surfaces (fig. 3.1.1). The 
location of the interface (or grain boundary) may still be chosen 
arbitrarily. These restrictions offer a sufficient model in 
connection with the specimens investigated experimentally. In 
practice however, often bicrystal specimens with an inclined 
boundary are found, which do not, therefore, fulfil the 
symmetrical Laue condition. On the other hand, this type of 
specimens can in most cases be approximated by having a stepped 
boundary, such that the beam diameter is considerably smaller 
than the distance of the individual steps in the boundary plane 
(figure 3. 1.2) . 
Given the above mentioned restrictions, the relation between both 
parts of the bicrystal can be described as follows. Defining a 

The geometry of a bicrystal specimen. The thickness of the 
constituent parts are z« and z-, for I and II respectively. 
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■figure 3. 1. 2 

The interpretation of bicrystal specimens with an inclined 
boundary. 

coordinate system with the z-axis perpendicular to the bicrystal 
sur-Face, i.e. parallel the common crystal axis, and 
indicating the upper crystal by I and the lower crystal by II, 
the following relation exists 

£Rzlt> I = II 3.1.1 

In the Seitz operator {Rzlt> CSeitz 19363, R
z
+ > describes an 

arbitrary rotation along the common axis and t is an arbitrary 
rigid body translation of one crystal relative to the other. 
Inversely, eq. 3.1.1 becomes 

CRz
_1|-t> II = I 3.1.2 

The order in which the operations Rz and t̂  are applied is 
immaterial. Since the rotation Rz will always be along the common 
crystal axis of rotation, in the forthcoming sections the 
subscript z will be omitted. 
Each different combination of R and t in eq. 3.1.1, for a certain 
location of the grain boundary, will, generally, give rise to a 
different intensity profile of the CBED pattern; the symmetry of 
the pattern need, not necessarily, to be different for each R and 
t. As will be outlined below, it is possible, based on the 
restriction of having the grain boundary coincident with the 
midplane of the.specimen (i.e. zi = z2 *n *ia- 3.1.1), to relate 
the symmetry present in the bicrystal to the symmetry relations 
in the CBED pattern, i.e. to the 31 diffraction groups. 

The rotation matrix R is defined righthanded, the axis of 
rotation pointing towards the viewer; see also appendix A. 

24 



Crystal lographic properties o-f bi crystal specimens. 

Prior to the treatment o-f the specific crystal lographic 
applications on bicrystals, the concept of two-colour symmetry is 
introduced. Colour symmetry operations exhibit the same 
properties as normal symmetry operations, except that in addition 
a change of 'colour' occurs (fig. 3.2.1). The change of 'colour' 
is to be interpreted as a change of some kind of property. 

figure 3.2.1 

An example of a 2-coloured mirror operation. 

In the application of bicrystals the colour is to b 
as belonging either to crystal I or crystal II. 
symmetry operation in this case relates an atom 
(including its environment) belonging to crystal I to an 
the same kind (including its environment) t«o crystal II, 
versa (fig. 3.2.2). Coloured symmetry operations 
indicated by a primed symbol, e.g. 2',m', etc.. 

interpreted 
A coloured 
of a kind 

atom of 
and vice 
wi11 be 

I 

n 

0 o 
• • 

o 
• o • • 

• 

O 
• 

°c 
• • 

t z 

figure 3.2.2 

A bicrystal specimen having a 2-coloured mirror operation in 
the plane of the grain boundary. 
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The method of contructing a bicrystal, described in the previous 
section, can be seen as a three-step procedure. All steps 
together result in the elimination of some of the classical 
symmetry elements, originally belonging to the single crystal 
space group, on the one hand, and the generation of coloured 
symmetry elements relating crystal I and crystal II, on the other 
hand, thus constructing the space group of the bicrystal. The 
three steps are (fig. 3.2.3) 
Step I 
A new pattern is constructed from the superposition of the 
constituent structures. Each structure is assigned a colour 
'black' and 'white' respectively. 
Step II 
The location and orientation of the interface are chosen. 
Step III 
All the 'black' points on one side and all the 'white' points on 
the other side of the interface are subsequently rejected. Points 
lying exactly on the plane of the interface can be chosen to 
belong either to the 'black' structure or the 'white' structure. 
The individual steps are treated in more detail here below, apart 
from step II which is considered to be trivial. 

The construction of a bicrystal specimen. Figures (a), (b), 
and (c) illustrate the different steps in the construction 
(see text). 
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Step I involves the construction of a pattern composed of the two 
interpenetrating structures. This new construction has, depending 
on the state of operation (i.e. the Seitz operator in eq. 3.1.1), 
either translational symmetry in 1, 2 or 3 dimensions (and will, 
therefore, again have a lattice), or has no translational 
symmetry. We will restrict ourselves to the case where a new 3-D 
lattice is generated, the coincident site lattice (CSL) CBollmann 
19703. 
The different constituent structures are assigned a colour 
('black' and 'white' lattices), hereby constructing a dichromatic 
pattern CPond & Bollmann 19793. The symmetry elements that emerge 
from the dichromatic pattern are a result of a dissymmetrization 
of the original space group and the generation of new coloured 
symmetry elements which relate 'black' points to 'white' points, 
and vice versa. 

The construction of a dichromatic pattern can be dealt with in a 
more mathematical way. Consider the space groups of the 
constituent structures, Gj and Ĝ , respectively. Including the 
relation that exists between crystal I and crystal II (eq. 
3.1.1), the space group of the dichromatic pattern (DCP) G. 
will be formed by the union of the classical symmetry elements 
that will remain after the dissymmetrization, and the colour 
symmetry elements that are generated as resulting from the 
relation between I and II. 
The classical symmetry elements that will remain are those which 
coincide after the transformation CR11_>. In the case when two or 
more different rotational symmetry elements are coinciding after 
the transformation, the resulting rotation will be that of the 
lowest, provided that their modulus is zero (for example a 4 fold 
axis coinciding with a 2 fold axis results in a 2 fold axis; a 3 
fold axis coinciding with a 2 fold axis gives no resultant 
symmetry element). In general, following the treatments of 
Gratias and Portier L19B23 and Kalonji C19853, the set of 
classical symmetry elements emerging in the dichromatic pattern 
Gdcp, H is given by 

H = Bj H tRItJ G 2 £R|t>-1 3.2.1 

where the symbol f\ denotes the intersection of two sets. It is 
noted that the resulting set of operators H is expressed on the 
basis of G p a similar set can be generated on the vector basis 
of G-,; the equivalent set based on the CSL can be obtained from 
the similarity transformation THT , where T is the CSL 
transformation matrix (see next section). H will be a subgroup of 
both Gj and G*?. 

Coloured (or anti-) symmetry elements do only occur when the 
constituent parts of the bicrystal are identical crystals, i.e. 
the interface is homophase and the space groups are related by 
the similarity transformation Gj = £R|t>-1 G 2 tR|t>. A 
heterophase interface will result in an empty set of coloured 
symmetry operations. 
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Consider a point in crystal I 
II, related by £R|tJ Xj - x2-
this equation becomes 

» 1 * For all 
and its equivalent in crystal 

the symmetry related points 

£R|tJ GJXJ = {x2> 

and vice versa, 

>.2.2 

{R|t3- 1 G 2x 2 = Cxx> 3.2.3 

Those operations which transfer a point (and its environment) 
from crystal I to crystal II and simultaneously a point from 
crystal II (and its environment) to crystal I will be the common 
operators 
stated: 

-1 out of the sets tR|t> Gj and CR|t> x G 2, or similarly 

G* = £R|t>Gj r\ {RltJ 1 G 2 3.2.4 

where G' denotes the set of 
transfer. Since, in the homophase case, G 9 is related to G. by 

£R|t> Gj £R|t> , eq. 3.2.4 becomes 

operators involving 
32 

colour 
;1 

G' = {R|t> G1 A Gj {R|t> -1 3.2.5 

Finally, the space group of the dichromatic pattern G Q is 
constructed from the union of H and G' 

'dcp = H U G' 3.2.6 

In general, there are 1651 possible space groups to describe 
dichromatic patterns in three dimensions [Shubnikov & Koptsik 
19643. These are normally referred to as the Shubnikov space 
groups. In Vainshtein's notation CGoodman 1984, Vainshtein 19813 
the Shubnikov space groups are referred to as G -̂ , i.e. the 
dichromatic space groups in three dimensions (superscript 3) 
having translational symmetry in three dimensions (subscript 3 ) . 
The classical 230 space groups form a subgroup of G" -j. 

Step III involves the subsequent rejection of all the 'white' 
points on one side of the interface and all the 'black' points on 
the other side. Consequently, not all the space groups of s3 
have to be considered. Caused by the presence of the interface, a 
maximum of 2-dimensional translational symmetry is to be expected 

The brackets lefthand side are a part of the Seitz operator and 
the brackets on the righthand side denote a set. 
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for the pattern resulting after the rejection. Therefore, 
bicrystals should be described with the 80 diperigdic space 
groups in 3-dimensional space, ^ 2 * a subgroup of Ĝ -j [Kalonji 
1985]. The group G^2 is isomorphic with the 80 2-dimensional 
space groups of layers CShubnikov & Koptsik 1964, Pond & 
Bolllmann 1979, Goodman 19843. There are 31 point groups in 
connection with G 2» which have, therefore, from a group-
theoretical point of view, to be isomorphic with the 31 
diffraction groups. Table 3.1 lists the point group operations 
which are possible in case of the bicrystal specimen in 
consideration. 

Table 3.1 

The possible point group operations in case of a bicrystal 
specimen. The orientation is expressed in terms of the zone 
axis (z in fig. 3.1.1). The operations 3', 4' and 6', 
although taken parallel to the zone axis have also a 
component perpendicular to the zone axis. 

orientation symmetry operations 

parallel 2 3 4 6 m 
3' 4"' 6' 

perpendicular T' m' 2' 

An equivalent line of reasoning can be applied by considering the 
122 point groups in connection with group G ^. Basically, this 
set of paint groups is composed of three subsets, namely, the 32 
classical point groups, the 32 grey point groups (equivalent to 
the 32 classical point groups including a coloured centre of 
symmetry, T') and 58 general coloured point groups. The 32 
classical point groups are used to describe the point group of 
bicrystals having different constituent parts, i.e. involving a 
heterophase boundary. The 32 grey point groups are used to 
describe the point symmetry of stacking—faults or inversion 
boundaries [Pond & Vlachavas 19833. The remaining 58 point groups 
are therefore sufficient to describe the point symmetry of the 
patterns of interest. 
Buxton et al. E 1984 3 and Schapink et al. C19833 have tabulated 
the relation between the 58 coloured point groups and the 
resulting DG's in connection with the direction of the incident 
beam (see also appendix B ) . In view of the fact that the 58 
coloured point groups are related to the 31 DG's, it will be 
clear that some of the point groups result in the same DG. For 
instance, the point groups 6'/m'm'm and 6'm2' result in the same 
DG, 3mlp, when the incident beam is taken along the 6' and 6' 
axis, respectively. Although not applicable in all cases, a few 
methods are at hand to determine the point group uniquely in such 
cases. One method involves the interpretation of DG's resulting 
from different zone-axis patterns (ZAP). Experimentally, 
different ZAP's from one bicrystal specimen are often difficult 
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to obtain. Another method is related to the validity of the 
projection approximation. When three-dimensional diffraction 
effects are not present, the projection approximation can be 
applied, making it possible for point groups to be distinguished. 
An example of the latter method is described by Schapink et al. 
E19B31, illustrated in connection with the above mentioned point 
groups. 

The coincident site lattice. 
As has been mentioned in the previous section, we restrict 
ourselves to those transformations 

CR|t> I = II 3.3.1 

which result in 2-dimensional translational symmetry in the plane 
of the interface. The axis of rotation is common to both 
crystals. As a consequence, a new 3-dimensional lattice, the 
coincident site lattice (CSL), can be constructed which is common 
to both the consituent crystal lattices (fig. 3.3.1). 
Since a general translation t̂  does not destroy the translational 
symmetry, the CSL is only dependent on the specific rotation in 
the Seitz operator CBollmann 19823. 
With the coincidence of lattice points, the principle axes of the 
unit cell of the CSL can be expressed in terms of the basis of 
either crystal I or crystal II, using integral indices. The unit 
cell of the CSL is usually larger than the original unit cells of 
the constituent crystals. Defining the ratio of the volume of the 
CSL unit cell and the original unit cell to be E CFriedel 19263, 
it is found that 

detCTr-c, ) = E 3.3.2 

in which Tj-.g[_ denotes the CSL transformation matrix. 
To be consistent with the literature on general crystallographic 
transformations, the transformation matrix T C S L will have the new 
lattice vectors as defined on the basis of crystal I, in rows and 
in a righthanded orientation CInt. Tables of Xray Cryst. vol ID. 
In figure 3.3.1 an example of a E=5 CSL is shown. The CSL is 
obtained by a rotation of 36.9° along one of the principal axes 
of a cubic crystal system or along the unique c—axis of a 
tetragonal system. 
In case E=l, the volume of the unit cell of the CSL is identical 
to the volume of the original unit cell; provided that we are 
dealing with a bicrystal fitting the description as defined in 
the previous sections, the associated point group of the CSL must 
have a coloured centre of symmetry T', or must belong to one of 
the cubic groups CBuxton et al^ 19843. 



figure 3.3.1 

An example of a E=5 CSL. The volume of the CSL unit cell 
(heavy lines) is five times as large as the original unit 
cells. This CSL * can be generated by a rotation of 36.9 o 
along one of the principal axes of a cubic crystal system or 
along the unique c-axis of the tetragonal crystal system. 

As was seen in the mathematical evaluation of the space group of 
a dichromatic pattern Gd(_ , the translational part of the Seitz 
operator (eq. 3.3.1) contributed to the formation of G. . If the 
effect of t is split into the effect of its contribution along 
the zone axis and the effect of its contribution normal to the 
zone axis, it is easy to see what the effect of t will be with 
respect to G . compared to the state of zero translation. 
A translational component parallel to the zone axis changes Gd c p-
The bicrystal space group and point group remain unchanged, i.e. 
all the elements as listed in table 3.1 are conserved despite a 
translation in the z-direction. 
A translation component normal to the zone axis changes G^ as 
well as the bicrystal point group. Considering the highest 
possible symmetry of a DCP, various symmetry operations are 
destructed, due to the translation, having direct consequences 
for G . and the bicrystal point group and, therefore, on the 
resultant DG of the CBED pattern. Consequently, it is possible to 
relate a resulting CBED pattern to a certain translation 
component normal to the zone axis. 
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The difference vectors between the lattice points of crystal I 
and II form, after the transformation of eq. 3.3.1, again a 
translation lattice, the displacement shift complete <DSC) 
lattice CBollmann 19823. From those translations, considered 
within the Wigner-Seitz cell of the DSC, the complete set of 
space groups of the DCP's is obtained, and, therefore, the 
complete set of resulting DG's. In general, different 
translations may lead to the same DG, i.e the relation is not 
unique for each DG. On the other hand, in specific cases, there 
may exist a unique relation between the DG and the translation. 
In such cases it is possible to determine the translation from 
the symmetry of the CBED pattern CSchapink & Mertens 19813. 
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Chapter 4 s The computer program for the 
simulation of CBED patterns. 

This chapter is divided into two parts. The first part (A) 
describes the physical background that is used in the computer 
program. The second part (B) treats the implementation of the 
program, including some considerations on the choice of the 
program language, numerical aspects and the communication with 
the user. With respect to the use of the hardware configuration, 
this is described in the introduction to part B and in section 
4.6.3. 

Physical basis. 

Introduction. 

An immediate reason for the construction of a computer program 
for the simulation of CBED patterns, has been the fact that in 
the classification of diffraction patterns resulting from 
bicrystals, the assumption had to be made of having the interface 
coincident with the mid-plane of the specimen, as explained in 
the previous chapter (section 3.2). What the effect will be when 
the interface is not coincident with the mid-plane cannot be 
deduced unless the process is simulated, provided that there 
exists a physical basis (theory) which makes this possible. 
The two most commonly used descriptions of the N-beam dynamical 
scattering [Goodman & Moodie 1974D are the Bloch wave or 
eigenvalue method and the multi—slice method. The Bloch wave 
method is based on the N—beam dynamical theory originally 
developed by Bethe C19281 and involves the evaluation of an 
eigenvalue problem for an NxN hermitian matrix. The multi-si ice 
method, developed by Cowley and Moodie E 19571, describes the 
propagation of waves through a crystal' as the propagation of 
waves through a number of thin perfect crystal slices. 
Because the Bloch wave method has been taken as a theoretical 
basis for the program, this method will be treated extensively in 
this part of the chapter. A general description of the Bloch 
wave method is given including the effects of higher order Laue 
zones (HOLZ) and the phenemological treatment of absorption. The 
multi—slice method will be explained shortly. Finally, 
considerations are made to sustain the use of the Bloch wave 
method. 



The dynamical theory of electron diffraction. 

General. 
The formulation of the dynamical theory of diffraction was 
originally developed by Bethe [19283. The theory is based on the 
description of the electron wave function as a superposition of 
Bloch waves. It has been used and described by many others over 
the last decade CHirsch et al. 1965, Buxton 76, Jones et al. 
1977, Baker 19823. In the next overview, the notation used by 
Humphreys E19793 and Hirsch et al. C19653 is followed. 
The. starting point in Bethe's theory is the evaluation of the 
Schrödinger equation (for convenience, the Schrödinger equation 
is presently expressed in units of potential) for the wave 
function of fast electrons in a crystal potential: 

£ -n2 v2 + v(r) + Ea> ?(r) = 0 4.2.1 
2me 

where v'*- is the Laplace operator, -ti=h/2n, m is the relativistic 
mass of the fast electron, e is the absolute value of the charge 
of the electron, V(rJ the crystal potential, eE the energy of 
the electrons, which is determined by the accelerating voltage of 
the incident electrons, and ¥(rj the electron wave function. 
The expression for the electron wave function is twofold: 

I exp<2niX.r) z < 0 
?<r) = | 4.2.2 

I C(r)exp(2nik.r) 0 < z < t 

in which X is the electron wave vector in vacuum with 
X = 2meE /h and k_ is the electron wave vector in the crystal 
specimen of thickness t. The second part of eq. 4.4.2 is usually 
addressed to as a Bloch wave. C(rO has the periodicity of the 
crystal and ylr) can therefore be fourier expanded as 

<P<r> = E C exp(2ni (k+a) .r) 4.2.3 

For convenience we define the reduced potential U(r_) 
the Schrödinger equation is then converted to 

Since we are dealing with high-energy electrons, the wave 
vectors used are assumed to be corrected for relativistic effects 
<see also Humphreys C19793, Fuji wara C19623 and Whelan C19623). 

=2meV(r)/h2; 
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:-l v^ + U(r> + X^ 3 ip<r) = o 4.: 
4n* 

In the same way the reduced crystal potential can be fourier 
expanded to 

U(r> = EhUhexp(2nih.r) 4.2.5 

Substitution of eqs. 4.2.3 and 4.2.5 into eq. 4.2.4 results in a 
linear equation in the Bloch wave coefficients. Consequently, the 
solution of the problem results in a set of linear equations of 
the type: 

V (K2 - <k+a>>2Cg + E h J f gU g_ hC h = 0 4.2.6 

in which K is the magnitude of the mean electron wave vector in 
the crystal after a correction for the change in wavelength due 
to the mean crystal potential (refractive index effect), i.e. 

K 2 = X 2 + U Q 4.2.7 

Equation 4.2.6 involves one solution for each ĝ  considered. If we 
take N reflections into account, there will be N such solutions. 
To distinguish between the different solutions we include a 
superscript j. Equations 4.2.6 can be written as an eigenvalue 
problem of an NxN matrix, giving the N solutions of the 
individual Bloch waves. We write 

A C(j) = y<J)c(J) 4.2.8 

where A denotes the NxN (hermitian) .eigenmatrix, C J one of the 
eigenvectors of the problem and y J the associated eigenvalue. 
Taking g_=(g^,g2) and k_=(kt,k ) , in which the subscripts t and z 
denote the tangential and parallel component of ĝ  and k_ along the 
zone axis, respectively. We evaluate for the eigenvalue >' J 

K 2 - k 2
( j ) 2 a 2K (K - k z

( j )) = -2Ky ( J ) 4.2.9 

having included the high-energy approximation K+kz
 J s; 2K. 

Including reflections belonging to higher—order Laue zones 
(HOLZ), the diagonal elements of the eigenmatrix A become (after 
assuming gT<<k J ): 
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-<kt+gt)*V2K - gz 4.2.10 

and off-diagonal elements 

U h/2K 4.2.11 

Section 4.2.3 will treat the characteristics of the eigenmatrix 
in more detail. 
As there are different solutions fulfilling eq. 4.2.8, the 
appropriate solution for the Schrödinger equation will be the 
superposition of the individual Bloch waves 

W(r) = Ej<x<:i>E C (j)exp2ni <k(j)+a> .r 4.2.12 

in which v. J is the excitation coefficient (or amplitude) of the 
j t n Bloch wave. 
Following eq. 4.2.2 we can write for the total wave function 

I exp2rtiX.r z < 0 
W(r) = | 4.2.13 

I Ej<K<j),P<:i) <r> 0 < z < t 

The excitation amplitudes of the individual Bloch waves can be 
found from the boundary conditions at z = O (continuity in V and 
grad tf), i.e. from the consideration of continuity in the 
tangential components of the wave vectors in vacuum and inside 
the crystal it follows, taking r=(R,z), that: 

exp2/ti Xt.R = EjO;<J>EgCg(j>exp2n:i (kt
(J)+gt) .R 4.2.14 

with r_=(R,z) and X=(Xt,Xz), i.e. the tangential and parallel 
components along the zone axis, respectively. 
The excitation coefficients of the Bloch waves « J remain to be 
determined. Multiplying both sides with exp-2ni(X^-g^').R, where 
g^' is different from g^, then, after integration over the area S 
enclosed by the translational symmetry vectors a and a (i.e. 
V(r+ax)=V(r) and V(r+a )=V(r)), with ax and a in the boundary 
surface CHeine 1963D, we have 

«<gt> = EjO<(J)EgCg
(j)5(kt

<j)- Xt+gt+gt') 4.2.15 
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Since for all the Bloch waves kt
 J (=kt>= X t, and because of the 

delta function on the left-hand side, we get: 

1 = £j oc(j)i:gCg
(j)5(gt) 4.2.16 

The delta function 5(g^.) indicates that only those C 's for which 
g^=0 remain in the summation, i.e. they still may have a 
component g . For clarity we extend our notation to C =C . 
Equation 4.2.16 becomes: * z 

1 = E joc <J )C 0 f 0
(J )+,..+E j« <J >C 0 f g z

< J )+... 4.2.17 

From the characteristics of a hermitian eigenvalue problem we 
know that the resulting (complex) eigenvectors exhibit the 
orthogonality relation, meaning that 

E.C„ _ * ( j ) C . h
 U)=S. 4.2.18 

Therefore, for each possibility.^ *(J> within the set of 
reflections substituted for oc J , ' z equation 4.2.17 is 
fulfilled. On the other hand, we must realize that the 
coefficients C Q J belong to a different Brillouin zone than 
the one we are * z considering. Therefore, the solution is unique 
and we wrikte: 

V J > " co,o* < J > " c o * ( J > 4-2-19 

In conclusion, we can write for the total wave function of a fast 
electron in a crystal potential field, that 

¥(r) = EjC 0* ( J )E gC g
( j >exp2ni(k ( j )+a>.r 4.2.20 

The way in which this wave function is used to calculate the 
intensities belonging to the different diffraction spots (or 
discs in CBED) as a function of specimen thickness, will be 
treated in the coming sections. 

The main objective of the calculations have been to include 
higher order Laue zone effects. Buxton C1976] has treated the 
HOLZ effects using perturbation methods on a two—dimensional 
approximation including the projected vectors (or g.-vectors) of 
higher order Laue zones. These g^-vectors do not necessarily have 
to coincide with reciprocal lattice vectors of the ZOLZ. This 
construction leads to a set of secular equations resulting in 
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BIoch waves for the 2-D case (not to be confused with the general 
approach of the projection approximation in which only g—vectors 
are included as lattice vectors belonging to the zero order 
reciprocal lattice plane). The Bloch wave states in three 
dimensions can then be found by expansion of the 2-D states (see 
also Baker C19823). It must be noted that, with the use of 
secular equations the interlayer interactions are neglected. 
The effects of HOLZ interactions are presently included by 
considering the first term in eq. 4.2.6 as 

K 2 - ( k < j ) + a ) 2 = -2K* ( J > - 2 k z
( j > g z -

(k t + g t ) 2 - g z
2 4.2.6a 

The last term in this equation, g 2 , is neglected since it is 
assumed that g <<k J . The second term on the right-hand side in 
eq. 4.2.6a destroys the hermitian property of the eigenvalue 
problem. By applying the approximation that at high energy 
k ÏÏÏK, the hermitian property is conserved. Jones et al. 
C19773, on .the other hand, treat the second term by substituting 
k J =K+jf J . An appropriate choice of the eigenvectors again 
results in a hermitian problem. 
Jones' approach differs form the present approach by only a 
factor of l/(l+gz/K). Since we are dealing with small values of 
g compared to K, the resulting intensities will show differences 
which are numerically insignificant (see also section 4.6.4). 

4.2.2 Electron scattering and the structure factor. 

The scattering of electrons by the individual atoms can be 
obtained from Mott's formula CMott 1930, Hirsch et al. 1965, 
Humphreys 19793 in terms of the atomic scattering for Xrays: 

fe(s) =0.023934 (Z-fx(s>)/s^ 4.2.21 

p where f (s) is the Born electron scattering amplitude in units of 
CAJ , f (s) the atomic scattering for Xrays, s=sin8/X and Z the 
atomic number (see also the Int. Tables for Xray Cryst. vol. IV). 
In the case where s=0 the scattering amplitudes can be obtained 
from Clbers 19583 

fB(0) = 4nme2/3h2 x Z<r2> 4.2.22 

2 B 
where <r > is the mean-square atomic radius. The values for f (0) 
are also listed in the Int. Tables for Xray Cryst. vol. IV. The 
values for the atomic scattering factors for Xrays can be 
obtained from the Tables or can be calculated by a polynomial 



approximation CCromer & Waber 19653. 
The reduced potential, as used 
Schrödinger equation, is given by in the evaluation o-f the 

Uh(« ;) = V* Fh
e(s)/(n^(l-e2>) 4.2.23 

where F. (s) is the structure -factor based on the scattering o-f 
electrons, P is the relativistic correction and V is the volume 
o-f the unit cell in reciprocal space. 

.3 The eigenmatrix and its solutions. 
In section 4.2.1 it was shown that the resulting eigenvalue 
problem involved the solution o-f a NxN hermitian matrix, in which 
N is the number o-f reflections taken into account. We reconsider 

AC(J) = y(J)C(J) 4.2.8 

in which A is the eigenmatrix, 
fourier coefficients C_ J and $ 
Refering back to eq. 4. 
diagonal elements 

C 
(j) 

<j> .:th 

2.10 it i< 

is the j Bloch wave with 
is the associated eigenvalue. 

known that the eigenmatrix has 

<k t+g t) z/2K - g. 4.2.10 

which are real in all cases, and off-diagonal elements 

U „ . /2K g-h 4.2.11 

The upper triangle of the eigenmatrix is composed of values 
resulting from eq. 4.2.11; the lower triangle with values 
following from the same equation with Un_a substituted for U n. 
Depending on the relation that exists between U _ and Un we 
find that four distinct situations can be recognized for the 
properties of the eigenmatrix. The four distinct situations will 
be treated individually [Acton 1970D. 
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1) elastic scattering and non-centrosymmetry. 
From the definition o-f the structure -factor it -follows that, if 
only elastic scattering is considered (i.e. no absorption) and 
the structure is general non-centrosymmetric, we -find 

Ug-h - Uh-g 4.2.24 

leading to a hermitian eigenmatrix (A = (A ) ) . In general the 
characteristic solution o-f a hermitian matrix results in real 
eigenvalues and complex mutually orthogonal eigenvectors. The 
property o-f mutual orthogonality denotes that the eigenvectors 
exhibit the following relation 

E,.C„*(j)cJj) = S„K and E„C * ( i ) c J j ) = 5, , 
J g 'gh 'g g i j 4.2.25 

(c.f. eq. 4.2.18; it is noted that this orthogonality property 
has been used there to determine the Bloch wave excitation 
amplitudes). 

2) elastic scattering and centrosymmetry. 
If only elastic scattering is considered and the 
centrosymtnetric, we have the relation that 

structure is 

Ug-h = Uh-g = Uh_g 4.2.26 

This can only be the case when the U's are all real, resulting in 
a real symmetric matrix (A = A >, i.e. a special case of the 
hermitian property. The eigenvalues and eigenvectors will now 
both be real ; the eigenvectors will still be mutually 
orthogonal. 

3) inelastic scattering and centrosymmetry. 
In the third case absorption is considered. Because of the 
centrosymmetry we still have the relation U _ = U_ , but due to 
the effect of absorption, the equivalence with it; 
conjugate is lost. Therefore, we have 

is complex 

It must be noted that if there is a degeneracy in eigenvalues 
(equal eigenvalues) not only the associated eigenvectors are a 
solution to the problem but also any linear combination of those 
eigenvectors, including combinations of the type A+iB (c.f. 
appendix A of Jones et al. C19773). 
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Ug-h - Uh-g * "h-g 4.2.27 
i.e. the eigenmatrix is complex symmetrie. The solution is a set 
of complex eigenvalues and associated mutually orthogonal complex 
ei genvectors. 

4) inelastic scattering and non—centrosymmetry. 

In the most general case, absorption is considered and the 
structure is non—centrosymmetric. There will exist no relation 
between U n and Un_ . In general, we have 

g—h h—g 

The eigenmatrix is asymmetric complex, giving complex eigenvalues 
and eigenvectors. The orthogonal property is lost. Instead, the 
eigenvectors exhibit a bi—orthogonal relationship [Acton 1970, 
Wilkinson 1965] with the eigenvectors of the transposed 
eigenmatrix A , meaning 

E j C g * ( J ) 5 h < J > " 5gh SQË £ g C g * ( i ) C g
< J ) = *ij 4 - 2 - 2 9 

where C denotes an eigenvector element of the transposed 
eigenmatrix. In the evaluation of eq. 4.2.17 for the 
determination of the Bloch wave excitation amplitudes, eq. 4.2.29 
should actually be used in cases where the eigenvalue problem 
involves a general complex matrix. 
The computational evaluation of an asymmetric complex eigenvalue 
problem is, despite the availability of elaborate algorithms, 
still a time consuming process. For this reason, the 
phenemological treatment of absorption is included with the use 
of first order pertubation methods as described in section 4.2.6. 

The dispersion surface. 

The evaluation of .the eigenmatrix gives the solution of the 
permitted values k J for each Bloch wave j as a function of the 
incident beam direction expressed by k̂ . (=X^., from the boundary 
conditions). A plot of these permitted values k J against k^ is 
called the dispersion surface. 
In the 'free—electron' case, when the diffracted intensities are 
vanishingly small (all the off-diagonal elements in the 
eigenmatrix are set equal to zero, i.e. '-'__n!S!Un =0) * **■ c a n ^ e 

shown that the solution corresponds to an electron wave vector 
lying on one of the free-electron spheres with radius K. centred 
on the (set of) reflections taken into account. The spheres 
intersect at the Brillouin zone boundary. Degeneracy occurs at 
the intersection with k.=-)tgt_. 
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With potentials of the incident electrons, the influence of the 
crystal potential becomes apparent. Switching on the crystal 
potential ^n-h anc* ^h-a ^ ®* causes the dispersion surface to 
split at the Brillouin zone boundaries. The individual dispersion 
branches are asymptotic to the free-electron spheres . 
Figure 4.2.1 shows a cross-section of the dispersion surface in 
the direction of £ in a 5-beam case. The individual branches are 
labeled according to Humphreys and Fisher C19713. The dispersion 
surface has the symmetry of the weighted reciprocal lattice seen 
along the zone axis. 

-2g g 0 g 2g 
figure 4.2.1 

Cross—section of the dispersion surface in the direction of 
g_ in a 5-beam symmetrical Laue case. The individual branches 
of the dispersion surface are labeled according to Humphreys 
and Fisher C19713. The dispersion surface is symmetric 
across the Brillioun zone boundary. 

Since K is here the electron wave vector corrected for the mean 
inner potential, the free-electron spheres are in fact 
'corrected' free-electron spheres. 
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disc 
diameter 

dispersion 
surface 

figure 4.2.2 

Geometrical contruction of the intersection of the zero 
layer dispersion surface observed in HOLZ diffraction discs 
(1ine a ) . 

The individual branches of the zero layer dispersion surface can 
be seen in a CBED pattern CSteeds et al. 19B2D. If a sphere of 
radius K is drawn from a HOLZ reflection g_ near or in the Bragg 
position, this sphere intersects some of the branches within the 
disc diameter of the convergent beam (figure 4.2.2). Each 
intersection of that sphere (i.e. at certain values of k^) with 
one of the branches of the dispersion surface, gives rise to 
intensity in a point (k^+g^.) in the HOLZ diffraction disc. 
All the points of intersection coming from kx values out of the 
plane of drawing in figure 4.2.2 add up to intensity lines in the 
HOLZ diffraction disc. Each line in the HOLZ diffraction disc 
can, therefore, be geometrically assigned to one of the branches 
in the dispersion surface. 

In the case of a bicrystal, it is not possible to construct a 
dispersion surface by analogy with the single crystal case as 
described above. 
Consider for instance a silicon bicrystal, having a E=3 type 
boundary, viewed along <1 1 1>. The dispersion surfaces of the 
top and bottom part fit exactly in the projection approximation, 
since the mutual rotation of the dispersion surface belongs to 
the rotational symmetry of the weighted ZOLZ plane. In this case 
the dispersion surface can be seen to belong to the entire 
bicrystal. When HOLZ reflections are included, this reasoning is 
not valid, since the individual dispersion surfaces no longer 
coincide. Consequently, it is therefore assumed, that the 
dispersion surfaces of the constituent crystals should be 
treated separately. 



figure 4.2.3 
An _example of the observation of dipersion branches in the 
<5 5 11> HOLZ diffraction disc (c.f. fig. 4.2.2) of silicon. 
The incident beam (100 kV) is directed along the <1 1 1> 
zone axis. 

4.2.5 The diffracted intensities. 
As has been shown in section 4.2.1, the total wave function for 
the description of fast electrons in a crystal potential field is 
given by 

¥<r) = EjC0*(J>rgCg
(J)exp2ni(k<j)+a).r 4.2.20 

In order to calculate the intensities of the transmitted and 
diffracted beams, the amplitudes of the beams must be evaluated. 
The component of the diffracted wave that contributes to the 
intensity of the spot in the diffraction pattern, is the 
component parallel the crystal surface, i.e. in the direction 
kt+gt- Equation 4.2.20 can be expanded to 

•4'(R,z) = EjC 0* ( j )E a Cg(j>exp27ii(kt+gt).R x 

exp2.7ti <kz (j)+gz).z 4.2.30 

Defining the amplitude in the direction kt+g. as v (z), we write 

¥<R,z> = E g vg(z) exp27ci <kt+gt).R 4.2.31 
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From the combination of equations 4.2.30 and 4.2.31, it follows 

vg(z) = Ej C 0* ( j > C g
( j )exp2ni(k 2

( j >+g z).z 

4.2.32 

Subsequently, the resulting intensity is calculated by 

Ig(z) = v <z) x v (z)* 4.2.33 

For the intensity calculations we need the values of k_ to 
evaluate the exponents of eq.. 4.2.32. These values can be 
obtained from the eigenvalues *" J , s i n c e * J = k J - K. A much 
simpler method is using the eigenvalues jf J directly, instead of 
the values kz

 J . Since the term exp(-2reiK+g ) can be taken 
outside the summation sign, and a phase modulation of the 
amplitude does not influence the values of the intensity, we are 
allowed to do this 

In matrix notation we have [Humphreys 19793 

v = C Cexp2rtilr(j) .21 C"1 u 4.2.34 

in which u is a vector having all its elements except the first 
zero, C is the hermitian matrix containing the eigenvectors (in 
columns) which are mutually orthogonal i.e. (C ) -C , and the 
term between brackets denotes a diagonal matrix. 
The intensities are subsequently obtained from multiplying the 
elements of the vector v with their complex conjugate. 

The treatment of absorption. 

In the phenomenological treatment of absorption by inelastic 
scattering of the incoming electrons, two mechanisms are 
generally thought to describe the process [Humphreys 19793. First 
we have the single and collective electron excitation (plasmon 
interaction), and secondly the collective atom excitation (phonon 
interaction). It is not the intention to treat both effects 
separately, but to consider the effect of inelastic scattering 
resulting in a loss in the electron flux one way or the other. 
In analogy to the description of absorption in optics Yoshioka 
[19573 showed that the effect of inelastic scattering can be 
described by the addition of a complex component to the crystal 
potential 
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-Ve"ff(r) ->.V(r) + iv'(r) 4.2.35 

where V(r_) is the elastic contribution and V'(r) the inelastic 
contribution. 
As has been shown by Humphreys and Hirsch C19683, the magnitude 
of the complex component is typically less than or equal to one-
tenth of the real potential. 
Similarly we write for the reduced fourier potentials 

- Ug "> Ug + iU'g 4- 2- 3 6 

Accordingly, since the potential in the Schrödinger equation is 
made complex, the resulting Bloch wave vectors inside the crystal 
will become complex. We write 

k(j)'->-k'(J) + i a
( j ) 4.2.37 

From the boundary conditions (conservation of the tangential 
component of the incoming wave vector inside the crystal) it 
follows that the direction of q_ will be parallel to the zone 
axis. To obtain the equation for the total wave function we 
expand eq. 4.2.20 by substituting eqs. 4.2.36 and 4.2.37, giving 

*(r) = EjC0*(J)E C (j)exp2ni (k(j)+g_).r exp(-27ra(j) .z) 
....4.2.38 

and it is seen that the excitation coefficients of the individual 
Bloch waves are exponentially attenuated: 

C0*(j)(z) = C 0* ( j ) exp(-2ng/j).z) 4.2.39 

In section 4.2.3 it has been mentioned that, as a result of the 
introduction of inelastic scattering into the calculations, the 
eigenmatrix becomes general complex (centro-symmetry not 
considered), having complex eigenvalues and mutual bi-orthogonal 
complex eigenvectors. 
Since the eigenvalue/vector evaluation of such a matrix is a time 
consuming process (for the calculation of the Bloch wave 
.amplitudes even the eigenvectors of the transposed eigenmatrix 
„have to be calculated), the effect of inelastic scattering is 
treated by perturbation methods. Because V" (r_) is typically <̂  0. 1 
V(r_), it will, therefore, yield a good approximation [Humphreys 
19791. 
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It can be established that the values g_ , including HOLZ 
interactions, is obtained from 

q("i) = E gE h U n'/(2(K+gz)) C * < j ) C h
< j ) 4.2.40 

In matrix notation this equation becomes 

q = C x C<U h'/(2(K+gz))}J C 4.2.41 

where q denotes a vector having the values q as its elements, 
C the eigenvector matrix and the term between brackets a square 
matrix having its elements given by the indicated expression. 

Finally, the amplitudes of the diffracted beams for reflections g 
are calculated by (c.f. eq. 4.2.32) CBlom & Schapink 19853 

vg(z) = Ej C 0 * ( j ) Cg
(J>exp2ni <k z

( j >+g 2).z x 

exp(-2nq(J>z) 4.2.42 

The non—degenerate perturbation method is valid under the 
limitations of having a set of non—degenerate eigenvalues. In the 
case of degenerate eigenvalues (occurring in symmetrical cases 
and in case of the 'critical voltage' effect), the actual general 
complex eigenmatrix has to be solved or a degenerate perturbation 
method has to be used ISprague & Milkens 19703. 
To perform accurate calculations (e.g. crystal potentials and 
charge densities) the unperturbed method of evaluating the 
eigenvalue problem has to be used [Humphreys 19791. On the other 
hand, it has been shown by Jones et al. C1977D that, in the 
calculations involving intensity profiles using the non-
degenerate perturbation method, no appreciable differences occur 
compared to calculations using degenerate perturbation methods 
(which is equivalent to the diagonalization of the general 
complex eigenmatrix). 
Consequently, the calculations described in this thesis are based 
on the non-degenerate perturbation method, provided that 
inelastic scattering plays a role, even in cases where a 
degeneracy in eigenvalues occurs. 
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The BIoch wave method versus the multi-siice method. 

The multi-siice method. 

A second method for the description of dynamical diffraction is 
the multi-si ice method originally developed by Cowley and Moodie 
C1957, 1958, 1959a, 1959bl. 
The wave field emerging at the exit face of a crystal of 
thickness t can be found by considering the propagation of the 
wave field through m consecutive slices of the crystal with 
thickness Sz, with mSz=t. The phase changes of the wave field can 
be described by a transmission function qn<r) describing the 
phase changes resulting from the crystal potential field in the 
n slice, and a propagation function Pn<r_) describing the phase 
changes caused by propagation of the wave field (free space 
propagation). 
The consecutive slices do not have to be of equal thickness, but 
from a computational point of view it is an advantage to choose 
the thickness in such a way that the transmission function and 
the propagation function remain unchanged when considering the 
transmission through a slice ESelf et al. 19833. 
Following Huygens' principle the wave function after the n 
slice is given by 

4» <r) = (¥„ , (r) @ P„<r>> . q„(r) 4.3.1 
n — n—1 — "n — ^n — 

where the symbol @ denotes a convolution. 
The solution to the problem is exact in the limit of m going to 
infinity and 5z going to zero, such that m5z=t. From this point 
of view the finite thickness 5z must be chosen in such a way that 
the error introduced by the use of a finite slice will be 
negligible. 
Since we are dealing with a 2-dimensional problem, we take 
r_=(x,y) in eq. 4.3.1. The transmission function is taken as a 
phase grating function given by 

qn(x,y) = exp (icf§n (x ,y> 5z) 4.3.2 

where $ (x,y) is the mean crystal potential per unit length 
projected on a plane at the centre of the slice perpendicular to 
the zone axis (c.f. section 2.2.4 where the projected potential 
is defined) t Goodman & Moodie 1974, Dawson et al. 19743 and <s is 
the relativistic interaction coefficient. Values for c are given 
by Doyle and Cowley C19743. 
Similar to eq. 2.2.5 we write for the mean crystal potential per 
unit length (in case of the projection approximation) 
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§<x,y> = E n E k V h k 0 exp(-2ni(hx+ky)> 4.3.3 

where x and y are expressed in fractional coordinates of a unit 
cell having its c—axis along the zone axis and therefore the a* 
and b axes in the plane of projection. 
The propagation function, for convenience expressed in reciprocal 
space, is given by 

P(h,k) = exp(2ni t.(h,k)5z> 4.3.4+ 

where P(h,k) is the fourier transform of p(x,y) and ^.(h,k) is the 
excitation error of the reflection <h,k), i.e. the distance 
parallel to the zone axis'of the reflection (h,k) from the Ewald 
sphere. 
The starting point in the calculations is the second slice, since 
the wave function emerging from the first slice is simply given 
by q-(x,y>. The recursive evaluation of eq. 4.3.1 finally results 
in the amplitudes of the diffracted beams provided that the 
fourier transformation of the wave function is taken as the final 
step. Therefore, it will be a more convenient way to treat eq. 
4.3.1 in terms of reciprocal space quantities as 

Tfr' ¥n(h,k> = J CJ- x C *n_1(h,k).P(h,k):.qn(x,y)> 

■ ■ m m " ■ O ■ vJ 

where J" and J- denote the fourier transform and the inverse 
fourier transform respectively. 
Apparently, the calculations involve two fourier transformations 
per slice, apart from the initialization of the functions P(h,k) 
(or p(x,y>) and QR(h,k) (or q (x,y)). 
In order to obtain a good approximation using the multi-slice 
method with only a limited number of slices, tests are available 
to get optimal results in such cases CMoodie 1965, Anstis 1977, 
Shannon 19783. 
The introduction of an absorption correction is applied in 
analogy to that of the Bloch wave method by considering the 
crystal potential to be changed by an additional inelastic 
component (c.f. eq. 4.2.35) 

VBf,f(r) -> V(r) + iV'(r) 4.2.35 

where V(r) is the elastic contribution and V'(r) the inelastic 
contribution. The effect of absorption, (V <r) < 0. 1 V(r)) can 
be incorporated in the phase grating function. 

The subscript n has been omitted since the phase grating 
function is assumed to be equal for each slice considered. 
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HOLZ interactions are introduced using the phase grating 
■function. The construction o-f the phase grating -function (in 
direct space) involves the -following integration -for each slice n 
[Goodman & Moodie 19743 

pZ+Sz 
p$n(x,y) = | V(x,y,z) dz = §n(x,y)«z 4.3.6+ 

V 
Z 

where V(x,y,z) is the potential distribution within the slice 
(c.f. eq. 2.2.4). The slice thickness 5z is chosen in such a way 
that it is not correlated to the repeat distance c in the z-
direction. Hence, it can be taken either greater or smaller than 
c, resulting in a mean crystal potential distribution different 
for each slice. If the slice thickness just equals the repeat 
distance c then it can be shown that the mean crystal potential 
per unit length ($R(x,y)) is given by eq. 4.3.3, i.e. no HOLZ 
effects are taken in to account (see also section 2.2.4). 
Another possibility is taking the slice thickness 5z less than 
the repeat distance c. Equivalently to eq. 4.3.3 we then define 
[Self et al. 19B3D 

*n(x,y) = E hE kE 1 V n k l exp(-27ii (hx+ky) ) x 

exp(-2niln«z/c) x sin(nlSz/c)/(nlSz/c) 4.3.7 

From a computational point of view it will be convenient to 
choose 5z as an integer multiple of c. The projected potential 
function will then repeat itself within a (few) number of slices. 
On the other hand, care must be taken that 'false' HOLZ effects 
might be introduced [Goodman & Moodie 19743. If in eq. 4.3.4 the 
excitation error ^.(h,k) is just equal to (a multiple of) 1/Sz 
the propagation of this reflection is reinforced [Lynch 1971 D 
introducing 'false' HOLZ effects. In this case the slice 
thickness has to be reduced. 

A comparison between the Bloch wave method and the multi-
slice method. 

In order to decide which of the methods described above is most 
suitable for the simulation of CBED patterns, a comparison is 
made between the Bloch wave method and the multi-siice method. 
Since it is not the intention and subject of this thesis to give 

The left-hand side of eq. 4.3.6, the projected crystal 
potential, is expressed in [V"][AJ and has therefore been 
indicated with a superscript p in order to distinguish it from 
the mean crystal potential per unit length, which is used in the 
phase grating function eq. 4.3.2. 
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an overview on the differences and similarities of both methods, 
the reason for deciding to use the Bloch wave method as the 
physical basis for the simulations, is treated from the point of 
view of its application. 

Both the Bloch wave method and the multi-siice method have been 
used extensively in simulation processes on digital computers 
and, as a result, a lot is known about the differences and 
similarities between both methods CSelf et al. 1983, Goodman & 
Moodie 1974, Shannon 1978, Cowley 19753. As a matter of fact, it 
has been proven that equivalent calculations with both methods 
based on 49 reflections do not show differences larger than 10 
of the intensities CCowley 19751 , confirming the similarity in 
result. 
From a computational point of view, both methods differ 
considerably. The evaluation of an eigenvalue problem as in the 
Bloch wave method is proportional to N"~, where N „denotes the 
number of reflections taken into account. For the multi-slice 
method the equivalent is proportional to ^ l o g N CSelf et al. 
1983] when using a FFT algorithm and taking N as a power of 2. 
The total calculation time needed for one slice is then of the 
order of 2N2log2N CIshizuka & Uyeda 1977]. Generally, the multi-
slice method will be faster for calculations involving 16 
reflections or more CSelf et al. 1983], On the other hand, if the 
thickness of the specimen increases, the number of slices will 
increase accordingly. The advantage of computation time in the 
multi-si ice method over the Bloch wave method is then decreased. 
In summary, it can be said that both methods give identical 
results and could therefore be used for the simulation of CBED 
patterns. They are both suited for the introduction of local 
defects from the perfect crystal structure. From a computational 
point of view, the multi slice method is more suitable. 
The main objective in the simulation of CBED patterns has been 
the introduction of HOLZ interactions into the calculations. 
Compared with the multi-si ice method, the Bloch wave method is 
clearly more suitable for this purpose. 

Cowley ('Diffraction Physics',1975,p239) mentions here the 
unpublished work of Fisher,Turner and Warburton in 1968. 
Whether the work included the effect of HOLZ interactions is 
not known to the present author. 
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Imp1ementat1on. 

Introduction. 

Having described the physical basis of the program -for simulating 
CBED patterns in detail, the next step in the development of the 
program is the implementation of the theory. It is not the 
intention to give a detailed description of the program itself, 
but rather to give a synopsis of how it has been constructed and 
to emphasize some points which have not yet been dealt with in 
the first part of this chapter. 
Section 4.5 deals with the program construction and the program 
flow. The different forms with respect to output, i.e. the way 
the calculated data are displayed and offered to the user, are 
treated in detail. In addition, some sections have been included 
in order to give a closer look at certain specific parts in the 
program. For instance, the way in which the CB-cone is 
constructed, the use of the parameters, considerations on the 
CSL-transformation and finally some aspects on the eigenmatrix 
setup are treated respectively. 
In section 4.6 some remarks are made on the diagonalization of 
the eigenmatrix and the choice of FORTRAN. An important part of 
this section is reserved for the processing of the calculated 
results, i.e. the way they are displayed, the resolution obtained 
and the accuracy of the calculated data in connection with 
symmetry relations in the CBED pattern. 
Finally, before presenting the simulations, some preliminary 
remarks are made on the differences between the calculated 
patterns and the experimentally observed patterns. 

The computer program, in its present state, is written in 
F0RTRAN77 and has been operational on the Amdahl 470 mainframe of 
the Delft University of Technology (this mainframe has been 
replaced by an IBM 3083 mainframe in June 1985) and on the CYBER 
205 supercomputer of the Stichting Academisch Rekencentrum 
Amsterdam <SARA). The use of the CYBER 205 involved the 
vectorization of certain parts of the program, which will be 
dealt with in more detail in section 4.6.3. 
At present, the program uses 2500 k.B of memory when compiled with 
a maximum allowed number of 200 reflections. When less 
reflections are required, the program can be re—compiled with 
smaller array dimensions, thereby reducing the memory needed. 
A Versatec 1200-A electrostatic plotter of the Department of 
Technische Natuurkunde, section Pattern Recognition, has been 
used to visualize the calculated CBED patterns. The plotter has a 
total of sixteen different greylevels. 
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Program construction. 

Program flow. 

The program has been constructed in such a way that it can be 
used in the treatment of the most general case of crystal 
specimens belonging to the triclinic crystal class . 
The program actually consists of four parts (fig 4.5.1). It was 
apparent from the beginning that the eigenvalue/eigenvector 
calculation would be the most time—consuming part of the program. 
This part has, therefore, been used in a batch environment. 
Two programs are available to handle the input parameters. One 
program (CRYSTIO) treats the more rigid parameters, such as unit 
cell parameters, the reflections hkl used in the calculation in 
connection with the accelerating voltage of the incident 
electrons etc.. The other program (SIMIO) treats the parameters 
that are more often adjusted, such as the specimen definition and 
the form in which the output is desired. A detailed description 
of the input parameters is given in section 4.5.4. 
Both CRYSTIO and SIMIO operate interactively. They are based on 
the input of some simple instructions defining the input 
parameters for program EIGSIM. 

Program EIGSIM is the most important part of the program package. 
Figure 4.5.2 shows the flow-chart of program EIBSIM. The 
following program blocks can be distinguished. 
If a CSL transformation is involved, the new unit cell dimensions 
in direct and reciprocal space are first calculated. In addition, 
the original reflections h_ and the atomic positions are 
transformed to the coordinate system of the CSL. In cases where 
the CSL transformations includes a unit cell enlargement (E > 1 ) , 
additional atoms are generated. 
The second block involves the extension of data in the case of a 
bicrystal specimen. The set of reflections ĥ  is extended with the 
reflections Rh_ <R denoting the rotation-relationship between 
crystal I and crystal I D , non-common to the set th>. 
Subsequently, the atomic positions of the second part of the 
bicrystal (crystal II) are generated. 
The third part of program EIGSIM involves the actual eigenmatrix 
setup, the eigenvalue/vector evaluation and the amplitude 
calculation. The eigenmatrix is first set up for each 
infinitesimal, parallel, incoming beam direction within the CB-
cone. In addition, the eigenvalues and eigenvectors are 
calculated and the resulting amplitudes are evaluated for a 
certain thickness of the specimen. This sequence is repeated for 
crystal II, for the case of a bicrystal, ; the total thickness of 
the specimen is then divided into two parts, one in connection 
with crystal I and the other in connection with crystal II. 

Appendix A gives a survey on the general transformations in an 
oblique coordinate system. In table 2.1 the geometrical relations 
for the triclinic crystal class are summarized. 
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figure 4.5.1 
Block diagram illustrating the construction of the 
for the simulation of CBED patterns. 

program 
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Finally, when the number of incoming beam directions reaches the 
number with which the convergent beam is described, the loop is 
terminated. 
It is evident, depending on the number of reflections taken into 
account and depending on the number of beams with which the CB-
cone is described, that the use of program EIGSIM involves a 
large computation time. It is observed that the eigenvalue/vector 
evaluation and the amplitude calculation are the most time 
consuming parts of the program. 

.2 Presentation of the output. 
There are five different forms of output that can result from the 
EIGSIM program. Two of them involve the visualization of the 
results. The other three involve plotting line-scans through the 
diffraction discs or plotting cross-sections of the dispersion 
surface. 
In considering visualization, it has been the intention to be 
able to compare the simulated results with the experimental 
results. Since, in experimental cases, the greylevel of 
photographic material is related logarithmically to the incident 
intensity, the calculated intensities are transformed using (D— 
values) 

D = log(I) 4.5.1 

The different forms of output are treated individually here 
below. 

1) XY-plot. 
A rectangular grid is used to describe the incident convergent 
beam (figure 4.5.3a). Each gridpoint symbolises the tangential 
vector component of the incoming beam direction (i.e. k^) . The D-
value is calculated for each gridpoint within each diffraction 
disc. Finally, the D—values are assigned a certain greyvalue; 
they are converted to integer values within a certain greylevel 
scale. The gridpoint density can be chosen arbitrarily; a default 
grid of 64*64 is implemented. Section 4.5.3 treats the use of the 
grid in more detail. 
The range of the greylevel scale is dependent on the output 
device that has been used for displaying the plots, for instance, 
a line-printer. By superimposing certain symbols (letters,numbers 
etc.) the suggestion of different greylevels can be obtained. In 
this case the greyvalues were based on a 21 greylevel scale. 
The method used most extensively has been a TV-monitor connected 
to a dedicated system for image manipulation, controlled by a 
HP1000 computer system. The individual picture elements (pixels) 
can be directed with S bits deep, equivalent to a range of 256 
different greyvalues. The hardware limits the size of the images 
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to a maximum of 256*256 pixels. Since, in all cases, the 
calculated plots involve images of 64*64 pixels, a linear 4 
nearest—neighbour interpolation has been performed in order to 
obtain 256*256 images. 
To obtain a hard copy o-f the video screen, a Versatec 120O-A 
electrostatic plotter was used. This plotter has only a 16 
greylevel basis. Thus, the resolution that can be obtained with 
the video display is inevitably reduced, when a hardcopy of it is 
taken (see also section 4.6.4). 
The images that are obtained show the contrast of the micrograph 
images resulting from the electron microscope, i.e. to eliminate 
confusion, they have the inverse contrast of the images seen on 
the fluorescent screen of the electron microscope. 

2) RPHI-plot. 

A radial grid is used to describe the incident convergent beam 
(fig. 4.5.3b). Each gridpoint symbolises a certain incoming beam 
direction by its tangential vector component k. . The CB-cone is 
scanned radially, i.e. in steps along R and along f. For each 
gridpoint the D-value is calculated. 
To obtain 'true' images of the diffraction discs the results 
should be plotted in the same radial fashion. As it has not been 
possible to output the data in this format, the radial grid is 
tranformed to a rectangular grid with the horizontal axis 
coincident with the y-axis and the vertical axis coincident with 
the R-axis. As a result the image of the diffraction disc is 
'unfolded'. Subsequently, the image are treated in the same way 
as an XY-plot. The gridpoint density of the radial grid can be 
chosen arbitrarily; a default grid of 64*64 is used. 
The reason for the implementation of the Rphi-plot facility 
arises from the fact that rotational symmetry might get lost when 
using the XY—plot facility. One method to overcame this 
observation is to take a higher resolution of the XY grid, with 
the consequence that the computation time increases. A much 
simpler solution is to apply the radial grid as described. 
Rotational symmetry can then be detected with a minimum of a 12-
points resolution along y, and even mirror symmetry is detected 
if the resolution of the applied grid is sufficient. 
A disadvantage in the use of the radial grid is the way the Rphi-
plot is displayed; because the image is 'unfolded', the result 
has lost its direct connection with the discs observed in CBED 
patterns. 

A difficulty in the implementation of both the XY-grid and Rphi-
grid, in connection with the possibility of using varying grid 
resolutions, has been the memory allocation. To reduce the 
allocation of core—memory, at certain steps in the program, the 
resulting intensities calculated up to that point are written to 
background memory. As a consequence, for images having more than 
360 pixels, different parts of one image reside on different 
parts of background memory. Program CRPLOT is used to re-organize 
the data in such a way that blocks of one image are obtained. 
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3) Line—scan. 

As an alternative to the plot facilities, a simple line-scan of a 
diffraction disc can be obtained. The direction of scanning is 
indicated by a lattice vector of the ZGLZ plane; the scanning 
takes place over the diameter of the disc. The line-scan option 
is very useful to detect the presence of a mirror plane in a 
certain direction. The scanning direction must then, of course, 
be perpendicular to the mirror plane direction. 
Since in the line-scan option, usually only a limited number of 
incoming beam directions within the CB-cone are taken, the 
computation time is reduced considerably, for possibly the same 
information on the symmetry relations within the CBED pattern. 

4) Radial-scan. 

Equivalent to the line-scan option a radial-scan option is 
included. The diffraction discs are scanned in a radial way at a 
fraction of the total disc radius, i.e. Rr <̂  ̂ disc* This option 
can be very useful to detect rotational symmetry elements. 
In addition, computation time can be reduced considerably, for 
the same reasons as with the line-scan option. 

5) Dispersion surface plot. 

For each of the incoming beam directions, the associated set of 
eigenvalues (or dispersion branches) is calculated and the 
eigenvalues are plotted against the tangential component of the 
incoming beam direction (c.f. section 4.2.4). 
The direction of scanning is indicated by a lattice vector g_ 
belonging to the ZOLZ plane. The plot, therefore, gives an 
intersection of the dispersion surface along g_. The scanning can 
be taken either from O to ĝ  or from -g_/2 to g/2, i.e. the 
scanning is over one Brillouin zone. 

4.5.3 Convergent-beam description. 

As has been mentioned in the previous section, there are two 
different grid-types that are used in the calculations to 
describe the convergent beam: a rectangular grid and a radial 
grid (fig 4.5.3). Each gridpoint (in both types) stands for the 
tangential component k_. of an incoming beam direction within the 
CB—cone. The CB-cone itself is described by its semi-angle and 
the deviation from the zone axis. For each vector k. (or, in 
other words, for each gridpoint) the associated intensity (and 
subsequently its D-value) is calculated. 
The gridpoints are expressed in terms of the reciprocal crystal 
lattice. Firstly, the centre of the grid is taken to be 
coincident with the origin of the reciprocal lattice. Secondly, 
the orientation of the grid is taken such that each gridpoint is 
expressed in terms of a reciprocal lattice vector lying in the 
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ZGLZ plane of interest. The choice of this orientation is 
immaterial. Finally, the vectors are scaled to vectors in terms 
of units of k̂ .. 

The density of the applied grid (either XY or Rphi), i.e. the 
number of gridpoints within the angle of convergence, is directly 
proportional to the amount of detail that is obtained. On the 
other hand, a higher resolution results in an increase of the 
computation time (and therefore in a decrease in throughput on 
multi-user systems). A more detailed discussion on computational 
aspects in general is given in section 4.6.2. 

\ k t 

0 

\ 

figure 4.5.3 

The different gridtypes to be used: 
(b) radial grid. 
an incoming beam direction 

(a) rectangular grid, 
Each gridpoint symbolises the vector k_. of 

4.5.4 Program parameters. 

Having treated the different ways in which the results of the 
calculation can be obtained, the parameters are treated that 
determine the crystal specimen and the CBED pattern to be 
calculated, in the following overview. 
The program parameters can roughly be divided into two sets of 
parameters: structure determining and specimen-configuration 
determining. The two sets will be considered separately. 
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1) Structure determining parameters. 

The crystal structure of the specimen is described by the unit 
cell and its contents. The unit cell is given by the dimensions 
a, b, c, <x, & and tf; the contents is given by the different atoms 
of a certain type and their position within the unit cell 
expressed in relative coordinates. Since there is no automatic 
generation of the space group symmetry related atoms included, 
all the atoms in one unit cell have to be specified. 
The scattering amplitudes (or scattering factors) of the atoms of 
a type are introduced using the Cromer-Waber coefficients 
CCromer & Waber 19653 for a third degree polynomial approximation 
of the Xray scattering factors as a function of sine/x. The way 
in which the Xray scattering factors are related to the electron 
scattering factors has been treated in section 4.2.2. The 
electron scattering factors are used for calculating the 
(reduced) fourier potentials. 
The effect of absorption is introduced by a perturbation factor 
defined by V'/V (see section 4.2.6). The perturbation factor is 
usually less than, or equal to, 0.1 [Humphreys 19791. Whether or 
not absorption is taken into account depends on the atoms in the 
unit cell; electron scattering is generally more subjected to 
absorption when heavy atoms are present. 
The diffraction pattern to be calculated is given by the zone-
axis (zone-axis pattern or ZAP). The subset of reflections hkl of 
a ZAP used in the calculation determine the degree of 
approximation of the simulations. Usually, those reflections 
lying near to, or on, the Ewald sphere are known to contribute to 
the image formation CJones et al. 19771. The radius of the Ewald 
sphere is determined by the accelerating voltage of the incident 
electrons. The choice of the accelerating voltage and the choice 
of the subset of reflections arer therefore, mutually related. 

2) Specimen-configuration determining parameters. 

In addition to the description of the crystal structure, a 
specimen is exclusively described by its thickness, since 
parallel sided boundaries are assumed. 
In case of a bicrystal, the relation CR|t> between crystal I and 
crystal II is included. The associated CSL is introduced by the 
transformation matrix TQO|_- The position of the interface, 
expressed as a fraction of the total thickness, determines the 
individual thickness of the crystals I and II. The range of 
uniquely different positions of the boundary is between O and 
0.5. Because of the reciprocity relation, positions of the 
interface indicated by values above 0.5 is equivalent to the same 
configuration turned upside down. 
The angle of convergence of the incident beam (designated by the 
semi—angle) in connection with the number of beams with which the 
convergence is described, determine the amount of detail that 
will be obtained. 
Finally, a deviation parameter determines the orientation of the 
axis of the incident CB-cone relative to the zone-axis. 
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5.5 The eigenmatrix setup. 

As has been seen in section 4.5.1 (fig. 4.5.2), for each 
(parallel) incident beam direction within the CB-cone, the 
eigenmatrix has to be set up. Subsequently the eigenvalues and 
eigenvectors are determined. 
The diagonal elements (c.f. eq. 4.2.10) are a function of the 
incident beam direction. Consequently, these elements have to be 
evaluated for each incoming beam direction. 
The off-diagonal elements, on the other hand, are dependent on 
the values of U R (c.f. eq. 4.2.11). Therefore, they have to be 
calculated only once (and for a bicrystal, once for each 
crystal,). Due to the hermitian property of the eigenmatrix 
(A =A >, either the upper or lower triangle is sufficient. In the 
case where absorption is taken into account, the hermitian 
property is conserved, since absorption is treated using 
perturbation methods. 

5.6 Eigenvalue and eigenvector evaluation. 

For the determination of the eigenvalues and eigenvectors of the 
eigenmatrix, the standard procedure F02AXF of the NAG-library 
[Numerical Algorithms Group 19843 of mathematical tools has been 
used. This routine uses the Householder algorithm for the 
reduction of the eigenmatrix to a tridiagonal form. In addition, 
the QL algorithm (an adaptation of the QR algorithm) is applied 
for the evaluation of the eigenvalues and associated 
.eigenvectors. 

6 Discussion. 

6.1 The choice of FORTRAN. 

The programming language FORTRAN has been extensively used in 
scientific application over the last decades. Even after the 
latest improvements released in F0RTRAN77 (FTN5), the language is 
not as well structured (thereby reducing its readability) as 
other programming languages such as Pascal, Algol68 and the 
recently developed language Ada. On the other hand, because of 
its extensive use, FORTRAN is supported for use on many different 
types of computer configurations (i.e. portability). In addition, 
a number of library packages consisting of standard scientific 
routines (NAB-lib etc.) are known to support the FORTRAN-
programmer. 

6.2 Considerations on computation time. 

Because of the large number of eigenvalue/vector problems 
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involved, computation time is unavoidably increased in a 
situation where a plot with high resolution is required. In 
general, from a computational point of view, the algorithms for 
the evaluation of an eigenvalue problem running on scalar 
processors are proportional to N if N denotes the dimension of 
the problem. In the present case, N is equivalent to the number 
of reflections taken into account. Usually N is in the order of 
20-100. In the case of a bicrystal, the number of eigenvalue 
problems is even doubled. 
As has been shown above, electron diffraction in a bicrystal is 
treated on the basis of the CSL. 
An alternative method for the description of electron diffraction 
involves the treatment of the diffracted beams leaving the first 
crystal as incoming beams to the second crystal CSheinin & 
Corbett 1976, Button & Pond 19783. Defining the number of 
reflections taken into account to be Nj and N 0 for the crystals I 
and II respectively, _the commutation time usï"ng this method will 
be proportional to N* 0 + N*^ 0* for a single incident beam within 
the CB-cone. If £g> represents the set of reflections used in 
crystal I and equivalently £h> the set used in crystal II, the 
amplitude of a particular reflection 1 is obtained by summing all 
the contributions of the combinations g_ + h = 1_ CSutton & Pond 
19783. In general, the sets -£g> and £h> need not necessarily to 
be equal. 
In the CSL method, the reciprocal lattice of the CSL contains all 
the diffraction vectors common to both crystals that are relevant 
to diffraction for the bicrystal. The CSL is continuous across 
the interface; the location of the atoms in the unit cell is 
different in both crystals. Due to continuity across the 
interface, the set of reflections taken into account for both 
crystals will be the same, i.e. the Bloch waves in both crystals 
will have the same number of components. Therefore, matching at 
the interface is a simple procedure. Defining the number of 
reflections to be N 1 2» t n e computation time will be proportional 
to 2Nj2"" "for each incident beam within the CB-cone, since the 
eigenvalue problem of dimension N«2 n a s to be solved two times, 
once for each crystal. By analogy to the previous method, the 
equivalent set of reflections taken into account will be the 
union of the sets Cg> and Ch>, transformed to the vector basis of 
the CSL, i.e. TCSL<:gï \J Tcsl_Ch>. 
Both methods, though different in approach, yield the same result 
when sufficiently large sets Cg> and <h> are used in the actual 
computations. From a computational point of view, both methods 
are different. The difference in total computation time depends 
on the relative magnitude of Nj and No on the one hand and N j ^ o n 

the other. In the limiting case of where no common reflections 
exist, i.e. when N ^ = N< ■+ N 7 - 1, it is easily seen that the 
CSL method requires less computation time for N«=N2 > 13, i.e. 
N 1 2 > 25 CBlom & Schapink 19853. In practice, common reflections 
are frequently.observed. Therefore, the CSL method can become 
more advantageous for even lower values than indicated. 



4.6.3 Implementation on the Cyber 205. 

The program for the simulation of CBED patterns has first been 
made operational on the Amdahl 470 mainframe of the Delft 
University of Technology. In the course of its use, it was 
clearly observed that even simple calculations (line-scan etc.) 
involved large computation times and, therefore, a low throughput 
of results. With the implementation of the program on the CDC 
Cyber 205 computer at the Stichting Academisch Rekencentrum 
Amsterdam (SARA), this disadvantage was overcome. 

The Cyber 205 is a vector computer. At SARA a version of the 
/ Cyber 205 is installed with one floating-point vector processor. 

The computer runs using VS0S (Virtual Storage Operaring System). 
To make optimal use of the vector capability, a large amount of 
data involving the same operation (addition, multiplication etc.) 
has to be offered to the vector processor as data from 
consecutive memory locations, i.e. a vectorization of data. Apart 
from an initialization period, a result is produced, each clock-
cycle. The Cyber 205, having a clock-cycling period of 20ns 
(clock frequency of 50MHz), is capable of performing 50 x 10* 
floating-point operations per second (50 Mflop/s) in connection 
with an operand length of 64 bits CHwang & Briggs 1984D. With a 
operand length of 32 bits the peak performance is doubled (100 
Mflop/s). 

In general, the application of vectorization is useful for the 
time consuming parts of a program, provided that these parts are 
suitable to undergo vectorization. In the program described, the 
time—consuming parts are the eigenvalue/vector evaluation and the 
intensity calculations based on the eigenvalues and eigenvectors 
(± 907. and ± 8"/. of the total computation time on the Amdahl 470, 
respectively, absorption not included). 
It is known that vectorization is most appropriate when using 
large dimensions of the array data structures. The present 
problem involves array data structures with dimensions in the 
order of 20-100. Although not large, compared to the dimensions 
required to obtain optimal use of the processor capabilities, 
enough reduction in computation time can be obtained in 
comparison with simple scalar processing, considering the fact 
that successive calculations (4000 times or more) have to be 
performed for one image only. Therefore, the vectorization of 
parts of the program has been restricted to those parts involving 
the eigenvalue/vector evaluation and the intensity calculation. 

A vector-adapted version of the NAG-library routine F02AXF for 
the computation of the eigenvalues and eigenvectors has been 
obtained by the pre-compilation of the routine with the VAST 
(Vector and Array Syntax Translator) pre-compiler for 
vectorization. Subsequently, the resulting source code has been 
compiled with the FTN200 vector compiler. In terms of reduction 
in computation time, the ultimate result may not be optimal. 
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The intensity calculation part of the program has been vectorized 
by re-writing parts of the source code in such a way that data 
are presented in vectors (reconstruction of computation loops: 
implicit vectorization). In some parts standard vectorization 
utilities ('gather' and 'scatter') known to the FTN200 compiler 
have been implemented to obtain additional vectorization 
(explicit vectorization). To avoid stride problems the dimensions 
of certain array data structures (e.g. the eigenmatrix etc.) have 
been adjusted, for each calculation made, to the number of 
reflections involved. 

The efforts made in vectorization have been effective. An overall 
reduction in computation time by a factor of 9 has been 
obtained"*". Using the Cyber 205, the eigenvalue/vector evaluation 
and intensity calculation take respectively ± 977. and ± 37. of the 
total computation time. Therefore, the vectorization of the 
intensity calculation has been relatively more effective. In the 
case where absorption is included the values are ± 807. and ± 19%, 
respectively. 

4.6.4 Symmetry detection. 

In order to detect any symmetry present in a pattern or part of a 
pattern, a comparison of numbers (or pixels) has to be made. As 
an example, figure 4.6.1 shows the result of a radial scan of the 
000 disc of a CBED pattern resulting from a simulation of a 
silicon bicrystal specimen. The interface is a twin boundary 
(E=3, orientation relation {60°|0} + + along <1 1 1>) and is 
positioned at 0.5 of a total thickness of 2000 A. The cone of 
incidence is directed along the <1 1 1> zone-axis. 
From the theory, it follows that the resulting CBED pattern has 
diffraction group 3mlo (see also next chapter). According to 
table 2.2, this means that the whole pattern (WP) has symmetry 3m 
and the central disc (in table 2.2. indicated by BF) has symmetry 
6mm. Looking at the third column of figure 4.6.1, it is seen that 
the sequence of intensities is repeated every 60°, i.e. a six
fold symmetry; the dotted lines indicate mirror operations. 
Consequently, a 6mm symmetry is present. 
On the other hand, it is also observed that the values of 
symmetry related intensities are not exactly equal in all cases. 
As has often been found, a discrepancy at the fourth decimal 
place occurs with symmetry related intensities. Although the 
symmetry has to be exact, since it is imposed by the symmetry 
within the specimen, the numerical evaluation imposes its 

In comparison with the Amdahl 470, a reduction in computation 
time by a factor of 5 is obtained when the Cyber 205 is operating 
in scalar mode, i.e. when vectorization is excluded. 

This is a short-hand notation of the Seitz operator having a 
rotation matrix involving a 60° rotation and a zero translation. 
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I N T E N S I T I E S OF DISK O 0 O f O O O ) RADIAL-SCAN 
ORIENTATION : 0 . 0 0 DEGREES 

- . U 7 2 7 E * 0 0 - . 7 9 3 1 E + 0 0 0 . 8 5 2 « F > 0 0 6 

- . U 6 9 2 E * 0 0 - . 8 0 0 7 E + 0 0 0 . 0 6 1 3 E + 0 0 
- . U 6 9 1 E * 0 0 - . 8 0 0 7 E + 0 0 0 . 8 6 1 3 E * 0 0 
- . U 7 2 7 £ * 0 0 - . 7 9 3 1 E + 0 0 0 . 8 5 2 U E + 0 0 
- . 5 1 2 9 E + 0 0 - . 7 8 6 2 E * 0 0 0 . 8 B 1 2 E + 0 0 
- . b 0 3 6 E * 0 0 - . 7 2 9 5 E + 00 0 . 7 8 5 6 E + 00 
- . 3 8 7 0 E + 0 0 - . 5 9 9 6 E + 0 0 0 . 5 0 9 3 E > 0 0 
- . 3 8 7 2 E « 0 0 - . 5 9 9 7 E + 0 0 0 . 5 0 9 6 E + 0 0 
- . 5 0 3 7 E * 0 0 - . 7 2 9 6 E - » 0 0 0 . 7 8 6 1 E + 0 0 
- . 5 1 2 9 E » 0 0 - . 7 8 6 2 E + 0 0 0 . 8 0 1 1 E + 0 0 
- . «J727E + 00 - . 7 9 3 1 E » 0 0 0 . B 5 2 Ü E + 0 0 
- . U 6 9 1 E + 0 0 - . 8 0 0 8 E + 0 0 0 . B 6 1 3 E + 0 0 
- . < 4 6 9 1 E * 0 0 - . 8 0 0 8 E + 00 0 . 8 6 1 3 E + 0 0 
- , U 7 2 7 E * 0 0 - . 7 9 3 1 E * 0 0 0 . 8 5 2 U E + 0 0 
- . 5 1 2 9 E * 0 0 - . 7 0 6 1 E + 0 0 0 . Ü 8 1 1 E + 0 0 
- . 5 0 3 6 E + 0 0 - . 7 2 9 U E + 0 0 0 . 7 8 5 6 E + 0 0 
- . 3 8 6 9 E + 0 0 - . 5 9 9 5 E + 0 0 0 . S 0 9 1 E + 0 0 . 
- . 3 8 7 1 E « 0 0 - . b 9 9 7 E * 0 0 0 . 5 0 9 Ü E + 0 0 
- . 5 0 3 7 E + 0 0 - . 7 2 9 5 E - » 0 0 0 . 7 B 5 9 E + 0 0 
- . 5 1 2 8 E + 0 0 - . 7 8 6 1 E * 0 0 0 . 0 8 1 0 E + 0 0 
- , i 4 7 2 b E » 0 0 - . 7 9 3 1 E + 00 0 . 0 5 2 3 E + 0 0 
- . U 6 9 0 E « 0 0 - . 8 0 0 B E * 0 0 0 . 6 6 1 3 E + 0 0 
-.H690E+00 -.B008E+00 0.B612E+00 
-.U726E+00 -.7931E+00 0.8b23E*00 
-.5129E+00 -.7861E*00 0.6810E+00 
-.b036E*00 -.729SE+00 0.7857E+00 
-.3870E*00 -.5996E+00 0.b093E*00 
-.3b70E*00 -.5996E+00 0.S092E+00 
-.b036E*00 -.729UE*00 0.7857E+00 ,on» -.bl29E*00 -.7861E + 00 0.8810E*00 , B 0 
-.U72GE*00 -.7931E*00 0.8523E+OO 
-.«690E+00 -.6008E*00 0.8613E+00 
-.«691E+00 -.8008E+00 0.8613E+00 
-.U726E+00 -.7931E+00 0.8523E-»00 
-.5129E*00 -.7861E*00 0.6810E+00 
-.b037E*00 -.729SE+00 0.7859E+00 
- . 3 8 7 1 E * 0 0 - . b 9 9 7 E * 0 0 0 . 5 0 9 U E + 0 0 
- . 3 8 7 0 E « 0 0 - . 5 9 9 5 E - » 0 0 0 . b 0 9 2 E * 0 0 
- . 5 0 3 & E + 0 0 - . 7 2 9 U E + 0 0 0 . 7 8 b 6 E * 0 0 
- . b l 2 9 E * 0 0 - . 7 8 6 1 E + 0 0 0 . 8 8 1 1 E + 0 0 
- . U 7 2 7 E » 0 0 - . 7 9 3 0 E + 00 0 . 8 5 2 « E * 0 0 
- . U 6 9 1 E + 0 0 - . 6 0 0 6 E * 0 0 0 . Ü 6 1 3 E + 0 0 
- . * 4 6 9 1 E * 0 0 - . 8 0 0 8 E + 0 0 0 .Ü613E+C0 
- . M 7 2 7 E + 0 0 - . 7 9 3 1 E + 0 0 0 . 8 5 2 U E + 0 0 
- . b l 2 9 E * 0 0 - . 7 8 6 1 E + 0 0 0 . 8 8 1 1 E + 0 0 
- . b O 3 8 E * O 0 - . 7 2 9 6 E + 0 0 0 . 7 8 6 0 E + 0 0 
- . 3 8 7 2 E + 0 0 - . 5 9 9 7 E + 0 0 0 . 5 0 9 5 E + 0 0 
- . 3 8 7 U E + 0 0 - . b 9 9 6 E > 0 0 0 . 5 0 9 3 E * 0 0 . 
- . b 0 3 6 E * 0 0 - . 7 2 9 U E + 0 0 0 . 7 8 b 7 E * 0 0 
- . b l 3 0 E * 0 0 - . 7 B 6 1 E + 0 0 0 . 8 8 1 1 E + C J 
- . 4 7 2 7 E + 0 0 - , 7 9 3 0 E * 0 0 0 . 0 5 2 U E + 0 0 
- . U 6 9 2 E + 0 0 - . 8 0 0 7 E + 0 0 0 . 8 G 1 3 E + 0 0 
- . U 6 9 2 E + 0 0 - . 8 0 0 7 E + 0 0 0 . 8 6 1 3 L + 0 0 
- . U 7 2 7 E * 0 0 - . 7 9 3 0 K + 0 0 0 .G52UE+00 
- . b l 2 9 E * 0 0 - . 7 8 6 2 E + 0 0 0 . 8 8 1 1 E * 0 0 
- . 5 O 3 7 E « 0 0 - . 7 2 9 5 E + 0 0 0 . 7 8 6 0 E + 0 0 
- . 3 B 7 l E * O 0 - . 5 9 9 7 E + 00 0 . b 0 9 5 F > 0 0 
- . 3 8 7 1 E * 0 0 - . 5 9 9 6 E + 0 0 0 . b 0 9 5 E * 0 0 
- . 5 0 3 7 f c > 0 0 - . 7 2 9 b E * 0 0 0 . 7 8 5 9 E * 0 0 . . . . 
- . 5 1 2 9 E + 0 0 7e62E»00 Ü . 8 0 1 2 K + 0 0 — 3 6 0 

f i g u r e 4 . 6 . 1 

An intensity profile of the OOO disc of a Si-bicrystal 
specimen using the radial-scan method. The interface is 
positioned at 0.5 of the total thickness (2000 A*) . Columns 1 
and 2 give the real and imaginary part of the amplitude, 
column 3 shows the intensity. A 6mm symmetry is observed. 

indicates a mirror operation. 
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limitations on the precision. Intensities which are related by 
symmetry, but which have different values, are said to be 
numerically equivalent. 
A general and satisfactory criterion for numerical equivalence is 
difficult to establish. It depends on the hardware presentation 
of the data and the accuracy of the algorithms used. Therefore, 
it will be different for each environment in which the programs 
are executed. In the presently used computer configuration, 
deviations in the fourth decimal place between symmetry related 
intensities have been commonly observed; in case of absorption 
the effect is already apparent in the second decimal place. 
From this point of view, it can be said that the detection of 
symmetry elements within the pattern using computational methods 
will involve elaborate ('errorfree') algorithms covering the 
relation of symmetry in connection to numerical equivalence. 

The best method for presenting the calculated results is to 
display them using the XY-plot and RPHI-plot methods described. 
One advantage compared to the line-scan and radial-scan methods 
is its direct connection with the experimentally obtained 
results. If the resolution of the applied grid has been 
sufficient, even fine details can be compared. 
Additionally, the human eye is known to be sensitive for pattern 
regularities, i.e. patterns involving some kind of symmetry. 
Therefore displaying the plots in the way described, enables the 
observer to detect symmetry at a glance. 

As has been mentioned earlier, the amount of detail that is 
obtained is, firstly, dependent on the resolution of the applied 
grid. Secondly, the amount of detail obtained is dependent on the 
greylevel resolution. In fact, symmetry might be obscured, if the 
amount of detail is too low. Consequently, one has to be aware 
that sufficient greylevels are used to display the image. In 
principle, the amount of detail obtained is proportional to the 
number of greylevels within the greylevel-scale. In practice, 
limitations are imposed by the number of greylevels of the device 
on which the plots are displayed. In the present case a TV 
monitor has been used. It is known that even for high quality TV 
monitors the sensitivity of the combination display-
device/observer, indicated by the perceived dynamic range (PDR), 
is about 110 just noticeable differences (JND's) across the 
dynamic range of the display CPizer et al. 19823. Therefore, the 
use of a greylevel-basis consisting of 256 greylevels is assumed 
more than adequate. 
A reduction of the number of greylevels within the greylevel-
basis has been inevitable when a hardcopy of the monitor screen 
is made, causing a discrease in detail. In this case, care has to 
be taken, since a decrease in detail can also artificially 
generate symmetry. 
Using the radial-scan method, it is possible to deduce radial 
symmetry reasonably easily. To observe mirror symmetry using this 
method is, on the other hand, more difficult. A mirror can be 
detected if the resolution along v> is increased. If, in advance, 
the position of the mirror plane is known (or presumed), the 
line-scan method is preferred. 
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5 Limitations with respect to the calculated CBED patterns. 

In view of the next chapter in which the calculated results aire 
presented, a few remarks on the differences between the 
calculated and experimental results are made in this section; 
they are known in advance and relate to all the presented 
simulations. The topics described here will therefore not be re-
examined in the next chapter. 

Firstly, the simulations are an approximation of the experiment, 
since the number of reflections and type of reflections (i.e. 
their indices) determine the degree of approximation. In the 
calculations, the set of reflections used is assumed to be the 
limiting set contributing to diffraction. 
Secondly, in the case of a bicrystal, the local rearrangement of 
individual atoms near the interface to energetically preferred 
positions (atomshuff les) is not taken into account. Since only a 
few atom-layers Are assumed to be involved in this process, its 
contribution to the pattern formation is considered to be 
negligible, compared to the contribution of the major part of the 
specimen. 
Thirdly, the mutual overlap of the diffraction discs, if present, 
is not taken into account. A large unit cell of the (CSL) lattice 
in combination with a large angle of convergence of the incident 
beam can give rise to partial overlap of diffraction discs. The 
diffraction in the directions k_j+g< and k^+g^, converging at the 
same place in the diffraction pattern are treated independently. 
Therefore, discs that overlap in the experiment are simulated as 
though they do not overlap, i.e. an infinite camera length is 
presumed. Experimentally, overlap of the diffraction discs can be 
avoided using the Tanaka method LTanaka et al. 19803. 
Finally, double (or multiple) diffraction can be simulated 
provided that the effect is introduced into the calculations. All 
the reflections contributing to a case of double or multiple 
diffraction must be included in the calculation. 

According to its definition, the concept of simulation can be 
formulated as CDSTT 19743 

Simulation : 'An imitation of some or all of the 
behaviour of one system with a 
different, dissimilar system. 

Although this formulation is not considered to be the most 
complete description of the concept of simulation, it is 
sufficient to be used as an analogy for the treatment of the 
different subjects presented in this chapter. 
The system to be simulated, i.e. the one system' in the 
formulation, is the complex of a crystal specimen that is 
subjected to an incident (convergent) electron beam, the result 
of which is a (convergent beam) diffraction pattern. 
The different dissimilar system is some kind of model 
('simulation model') which can be used as the analogy of the 
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complex process described above. In the present case, the 
simulation model basically consists of three parts, mutually 
linked together: a description of the specimen, a description of 
the diffraction process and a description (presentation) of the 
results. The limitations of the simulation model determine the 
degree of imitation obtained. 

Limitations are obtained using a computer for the calculation of 
the results. Although the computer is assumed to be merely a tool 
rather than a constituent part of the simulation model, it 
imposes its own limitations. 
Firstly, the dynamical theory allows an infinite number of 
reflections to be taken into account. A large number of 
reflections taken into account is, as has been mentioned, 
impractical, both from the point of memory allocation as well as 
from the point of view of computation time (see also section 
4.6.2.). 
Secondly, the computer imposes its limitations on the display of 
the results. The number of greylevels used for the imaging of the 
intensities determine the correspondence between experimental and 
calculated results (see also section 4.6.4). 
Thirdly, the convergent beam is described by a number of parallel 
incident beams having different incoming directions. In 
considering computation time, this number is limited. (see also 
section 4.5.3). 

A different type of limitation is observed in the description of 
the diffraction process. Although, these are considered to be 
side effects, they are worth mentioning. The diffraction process 
is treated using the dynamical theory of diffraction originally 
developed by Bethe C19283. As has been shown the dynamical theory 
describes a great deal of the features observed in electron 
diffraction. Only a few of the observations, for instance, 
Kikuchi lines and background scattering, cannot be described 
using the dynamical theory. The dynamical theory of diffraction 
also imposes its limitations on the description of the specimen. 
For instance, local thickness variations seen by a finite probe 
size of the incident beam, cannot be treated. 

Having considered the above arguments, it is relevant to ask to 
what extent the (complex) model is indeed an imitation of the 
experiment. Using the dynamical theory of diffraction, we have a 
quantitative analogy of the diffraction process. Although we have 
lost a one to one imitation of the diffraction process, the 
analogy is assumed to be sufficient to justify the use of the 
term simulation in the present case [Shannon 19753. As will be 
seen in the forthcoming chapter, the presented results are an 
imitation of the experiment, within the limitations described 
above. They offer, on the other hand, sufficient information to 
draw conclusions about the nature of the simulated systems. 
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Chapter 5 : Comparison of computer—generated and 
experimental CBED patterns. 

5.1 Introduction. 

In this chapter simulations of CBED patterns are presented and 
discussed. Most of the computer calculated images shown, involve 
simulations of the central (000) disc of the CBED pattern. Where 
possible, a comparison is made with the equivalent image using 
electron microscopy. 
The results that are presented describe different sets of 
parameters in crystal structure (Si, BaAs or Au) and/or specimen 
type (bicrystal or single crystal, thickness variations, etc.). 
Each result is presented in a different section including a 
discussion on the topic in question. In each section only the 
most important parameters will be mentioned; appendix C gives the 
complete set of parameters used in each of the calculations. 
The topics treated in this chapter are simulations on : 

1) Silicon, single crystal specimen. 
The simple case of a single crystal specimen is used for 
testing the computer program. 

2) Thickness variations. 
The effect of specimen thickness on the pattern profile is 
illustrated with the example of single crystals of gold. 

3) The effect of absorption. 
The application of perturbation methods, in order to deal with 
absorption, is illustrated with the example of single crystals 
of gold. 
The influence of absorption on the symmetry relations in the 
pattern, that are observed as a result of reciprocity, is 
treated for single crystal and bicrystal specimens. 

4) Variations in the position of a twin boundary in a silicon 
bicrystal specimen. 

5) Bicrystal specimens of silicon containing an additional 
translation component in the description of the orientation 
relation of the crystal parts. The effect of translation on 
the symmetry of the CBED pattern is treated. 

6) A bicrystal specimen of gold having a E=7 type twist boundary. 
7) The Tanaka method. 

The last section of this chapter deals with a general discussion 
on the results presented. Conclusions concerning the comparison 
between the computed and the experimental images are made. In 
addition, some comments are made on the extent to which an 
approximation of the experimental observations is obtained. 

All the calculated images that are presented are a hard copy of 
the video screen and have been made using a Versatec 1200-A 
electrostatic plotter. The resulting images are based on a 16 
greylevel range. All the experimental results presented have been 
obtained using a Philips EM400T electron microscope. 
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5.2 Results. 

5.2.1 Silicon single crystal specimens. 

An essential step in the development of a new technique is 
testing phase. When applied to the present case, i.e. 
development of a computer program for the 
patterns, the computed results have, at 
compared with the experimental results, i.e 
obtained from the electron microscope using 
the specimen—model used in computations. 
conditions of the electron beam, i.e. the angle of convergence of 
the. incident beam and the accelerating voltage used, must be 
equivalent. 
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f i g u r e 5 . 2 . 1 

Experimental image of the (000) disc of a <1 1 1> ZAP CBED 
pattern taken at 10O kV. Clearly visible is the HOLZ line 
pattern within the disc. The HOLZ lines are indexed 
accordingly. 
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lines can be used to obtain an accurate determination of lattice 
parameters as a function of, for instance, the temperature. The 
position of the HOLZ lines must then, of course, be corrected for 
dynamical effects [Jones et al. 19773. 
Kinematically, it is easily shown that the position of the HOLZ 
lines shift with varying accelerating voltage. Experimentally, it 
has been shown CJones et al. 19773 that the three <5 5 11> FOLZ 
lines shift from their positions at 100 kV to intersect exactly 
at the centre of the (000) disc at 102.7 kV. This effect can 
clearly be seen in figure 5.2.1 and 5.2.2' respectively. This 
behaviour gives, therefore, an excellent opportunity for testing 
the simulation program. The computed image is shown in figure 
5.2.3a. The image has been calculated using 22 reflections, 9 of 
which belong to the FDLZ of the <1 1 1> zone axis (3x<5 5 11>, 
6x< 1 9 9*>. The specimen thickness has been taken to be 2000 A. 
The angle of convergence is 0.2°, which is different from the 
angle of convergence in the experimental case of figure 5.2.2 
(0.4°). For convenience, figure 5.2.3b shows the image of figure 
5.2.2 at a different micrograph magnification: thus, figures 
5.2.3a and 5.2.3b arE directly comparible. In figure 5.2.3a it is 
seen that the three <5 5 11> FOLZ lines do indeed intersect at 
the centre of the (000) disc, in agreement with the experimental 
image (figure 5.2.3b). 
The mutual dynamical interaction between the different FOLZ lines 
is clearly visible in the experimental image. In figure 5.2.3b 
the short arrow indicates the dynamical splitting at the crossing 
of the <5 5 11> line with the <1 9 9> and <11 7 3> lines; the 
long arrow indicates a dynamical splitting which is caused by the 
interaction between two <1 9 9> lines. In the computed image the 
mutual dynamical interaction between the two <1 9 9> lines is 
visible (indicated by the long arrow in figure 5.2.3a). The 
dynamical interaction between the <5 5 11>, <1 9 9> and <11 7 3> 
lines (short arrow) is not as apparent as in the experimental 
image, which may be explained by the fact that the <11 7 3> 
reflections were not included in the calculation. 
The bright concentric rings, which are both observed in the 
experimental image as well in the computed image, are thickness 
contours (see also the next section). It is apparent that the 
position of the rings is different in both cases, indicating that 
the thickness must have been different. A quantative comparison 
in thickness is not possible, since the thickness was not 
determined experimentally. 

The crystal structure of silicon is described with space group 
Fd3m. When viewed along the <1 1 1> zone axis the arrangement of 
the Si-atoms exhibits a 3m symmetry as shown in figure 5.2.4. It 
is therefore expected that the diffraction group of the CBED 
pattern is èpimrin, resulting in a 3m symmetry in the (000) disc 
(see table 2.2). 
The experimental image (figures 5.2.2 and 5.2.3b) clearly shows 
the 3m symmetry. The computed image shown in figure 5.2.3a lacks 
this symmetry. Instead, a 3—fold symmetry is present and only one 
of the three mirror lines. It is a coincidence that this mirror 
lies along the diagonal of the rectangular grid from top-left to 
bottom-right. It is therefore reasonable to suggest that the 
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figure 5.2.2 

Experimental 
disc of a 
pattern of 
102.7 kV. 
i ntersecti on 
FOLZ lines at 
disc. 

image of the (000) 
<1 1 1> ZAP CBED 
silicon taken at 
It shows the 
of the <11 5 5> 
the centre of the 

(a) figure 5.2.3 (b) 

Comparison of computed and experimental images. a) Computed 
image of the (000) disc of a <1 1 1> ZAP of silicon at 
102.7 kV. b) Micrograph magnification of. part of figure 
5.2.2.. The arrows in a) and b) indicate places where 
dynamical splitting of HQLZ lines can be observed. 
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absence of the other two mirror lines results from the 
rectangular grid construction. In order to verify the presence of 
the mirror lines, the Rphi grid-type has been used. The result is 
shown in figure 5.2.5. As explained in section 4.5.2, this image 
is a different representation of the diffraction disc. In figure 
5.2.5 both the 3-fold symmetry as well as the mirror lines are 
now clearly visible. 

figure 5.2.5 

Rphi representation of the 
image presented in figure 
5.2.3a. The 3m symmetry is 
clearly observed. 

0° 360° 

Another aspect of the simulations is the degree to which it 
approximates the experiment. The agreement between the computed 
image and the experimental image is influenced by the number of 
reflections that are taken into account, the specimen thickness 
and the treatment of absorption. The latter two will be dealt 
with in the forthcoming sections. 
The number of reflections taken into account determines the 
degree of approximation of the description of the diffraction 
phenomenon. Figure 5.2.6a shows a computed image of the (000) 
disc of a silicon <1 1 1> ZAP. The calculation has been based on 
88 reflections"1", 51 of which belong to the FOLZ. The angle of 
convergence is 0.2° and the specimen thickness is 2000 A. Based 
on the accelerating voltage of 100 kV the image should be 
compared with the image shown in figure 5.2.1. Since the angle of 
convergence is different in both cases (experimental: 
0.41±0.02°), a magnified image of the central region of figure 
5.2.1 is presented in figure 5.2.6b so that a comparison of the 
calculated and experimental images can be made. 

+ In the calculation mentioned the (11 3 ? ) , (TT 3 9) and (9 1 ?) 
reflections have been left out by mistake. Therefore the number 
of 88 should have been 91. Since it results in only a minor 
difference, the image based on the 8B reflections is used for the 
presentation. 
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(a) (b) 
figure 5.2.6 

a) Computed image o-f the (000) disc of silicon (single 
crystal; <1 1 1> ZAP at 100 kV) . The calculation is based on 
88 reflections. The 3m symmetry is not present because the 
(11 3 7) reflection is missing as indicated. b) Micrograph 
of figure 5.2.1, magnified in order to account for the 
difference in angle of convergence. The disagreement of the 
position of the thickness contours indicates that the 
specimen thickness is different in a) and b ) . 

The images presented in figures 5.2.6a and 5.2.6b are in good 
agreement, apart from the difference in position of the thickness 
contours, as explained above. Even the fine details of the 
experimental image can be observed in the computed image. 
The 3m symmetry is absent in the computed image because the (11 3 

7) reflection was omitted in the calculation, (see also footnote 
on the previous page). Had it been present, the 3m symmetry would 
have been complete. 
Although the (11 3 7) was originally left out by mistake, it 
illustrates the fact that those reflections lying on the Ewald 
sphere within the angle of convergence, should, at least, be 
included into the calculations in order to obtain a satisfactory 
agreement with the experimental results. It is known that the 
degree of approximation is dependent on the number of Bloch waves 
describing the diffraction process, i.e. the number of 
reflections taken into account. Therefore, a large number of 
reflections, including reflections which do not ly on the Ewald 
sphere within the angle of convergence, gives a better 
approximation of the diffraction process. On the other hand, the 
computation time increases non-1inearly with the number of 
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re-flections. It should, there-fore, be realized that the aim of 
the calculations is to obtain either a good (accurate) agreement 
with a long computation time or a satisfactory agreement with an 
acceptable computation time. It will be clear that the criterion 
for this decision depends on the computer configuration used. 

Thickness variations and image contrast. 

As has been mentioned in the previous section for the case of 
silicon, thickness variations can be determined from the number 
of concentric rings within the central disc of the CBED pattern. 
Since absorption is assumed to be negligibly small, the total 
electron flux will remain constant. The electron intensity 
oscillates between the primary beam and the diffracted beams 
('Pendellösung') over the 'extinction distance' along the zone 
axis (since the extinction distance and the effect of 
Pendellösung are actually defined in a two-beam case and here the 
concepts are used in a multi-beam case, the concepts of 
extinction distance and Pendellösung should be treated with care; 
the quotes used here indicate this difference). Therefore, the 
image contrast is repeated over the 'extinction distance'. 
In the presence of absorption, e.g. in gold, the total electron 
flux is attenuated along the depth within the specimen. The image 
contrast is not repeated. It is therefore appropriate to have a 
closer look at the effect of specimen thickness on the intensity 
profile of the CBED patterns. This will be illustrated with the 
examples of <1 1 1> ZAP's of gold single crystal specimens. The 
absorption is, in each of the specimen models used, equally 
treated with an absorption factor V'/V of 0.1. In the next 
section, the effect of absorption, in connection with thickness, 
is treated in more detail. Figures 5.2.7 a to d show the images 
of the (000) disc of the <1 1 1> ZAP CBED pattern of Au specimens 
with a thickness of 230 A*, 300 A*, 350 A* and 400 4 respectively. 
The change in pattern caused by a thickness difference of 50 A is 
remarkable. 
In analogy with the case of <1 1 1> ZAP's of silicon, the 
patterns show a 3m symmetry. The crystal sructure of gold is 
described with space group Fm3m. When viewed along the <1 1 1> 
zone axis the Au-atoms exhibit a 3m symmetry relationship. 
Referring to figure 5.2.4 for the case of silicon, this figure is 
also applicable to gold, provided that each symbol is treated as 
a Au-atom instead of a pair of Si-atoms. The diffraction group 
will therefore be 6RmmR, and according to table 2.2 this gives a 
3m symmetry in the (000) disc. 
At the time of the calculations no experimental data were 
available to verify the calculations. At a later stage, 
experimental data was obtained from a gold single crystal 
specimen with a thickness of 460 A±10X . The thickness was 
determined using the extinction contour method. 
Figure 5.2.7e shows the calculated image of the (000) disc for a 
thickness of 460 A and figure 5.2.8 the experimentally obtained 
image. The angle of convergence is, in both cases, identical 
within the error (0.4» and 0.40±0.02° respectively). 
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(a) (b) 

h i 

o r * * ,4 
i 

(c) <d) 

figure 5.2.7 

Computed (000) discs -for gold single crystal specimens 
having varying thickness. The zone axis is directed along 
<1 1 1>. The figures a) to e) show the results for 230 A, 
3O0 A, 350 4, 400 A* and 460 A* respectively. The angle of 
convergence is in all cases 0.4°. Absorption is treated with 
an absorption factor of 0.1. The symmetry is 3m. 
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(continued) 

figure 5.2.8 

Experimental image of the (000) 
disc of a gold single crystal 
specimen having 460 A±10% 
thickness. The angle of 
convergence is 0.40±0.02°. The 
symmetry is approximately 3m. 

It is seen that the experimental image has the characteristics of 
figure 5.2.7e, but also of figure 5.2.7d. In fact, the agreement 
is such, that it is difficult to decide which agreement is 
better. The discrepancy can be explained either by a wrong 
treatment of absorption in the calculated case, or a deviation 
from specimen thickness in the experimental case. Gold is 
considered to be a strongly absorbing material, having an 
absorption factor of 0.1 CHumphreys & Hirsch 1968, Cowley 19753 
(see also the next section). Therefore, it is justified to 
conclude, based on the visual agreement of the images, that the 
actual thickness of the specimen in the experimental case must 
be, within the inaccuracy of the extinction contour thickness 
measurement, at the lower side of 460 A. In order to determine 
the thickness in such a case more accurately, additional 
calculations within the range of 400 A to 460 A should be 
performed. Since it is not the intention of the present subject 
to determine the thickness, these calculations are omitted. 
The effect of increasing thickness in computed images is extended 
in figure 5.2.9a (see section 5.2.3) for a thickness of 600 A. As 
the absorption factor of 0.1 is used in this case, the image fits 
into the sequence shown in figure 5.2.7. Again, it is seen that 
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the pattern has altered considerably. 
From the point o-f view of thickness measurements, it has been 
shown that the computer program can be used to determine the 
thickness in a more accurate way than the extinction contour 
method. On the other hand, the calculation method can lead to 
laborious efforts if no information on the thickness and 
absorption factor is available in advance. 

The effect of absorption. 

The exclusion of absorption from calculations for the case of 
gold is known to give images which show poor agreement with 
experimental images CSchapink et al. 19853. Figures 5.2.9a and 
5.2.9b show the difference in computed images which result if 
absorption is included, or excluded from, the calculation. The 
images show the (000) disc of a <1 1 1> ZAP of a gold single 
crystal specimen. They are based on a thickness of 600 A. The 
image shown in figure 5.2.9a has been based on a calculation 
with an absorption factor (i.e. V'/V) of 0.1. It is seen that the 
introduction of the effect of absorption changes the pattern 
drastically. 
In the previous section, in which thickness variations in gold 
single crystal specimens were considered, absorption was taken 

(a) (b) 

figure 5.2.9 

Computed (000) disc of a gold single crystal specimen 
(thickness 600 4 ) . a) Absorption is included with an 
absorption factor bf 0.1. b) Absorption is excluded. 
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into account with an absorption factor of 0.1. The effect of 
altering the absorption factor from a value of 0.05 to 0.1 is 
illustrated in figure 5.2.10a and 5.2.10b. The thickness was in 
both cases 460 A* (figure 5.2.10b is identical to figure 5.2.7e). 
The images of figures 5.2.10a and b show a remarkable similarity. 
The difference in absorption factor does not seem to change the 
pattern drastically in the range from 0.05 to 0.1. 
An explanation for the described behaviour is difficult to 
establish, because of its complexity. In analogy to Beer's law, 

I = I e l exp(-4nq.z) 5.2.1 

keeping the product of absorption factor and thickness constant 
(i.e. q.z=C), it should result in the same intensity. Comparing 
figures 5.2.7a and 5.2.10a, it is obvious that it is ' not the 
case. An explanation is found by the fact that the intensity, as 
a result of elastic scattering only, is thickness dependent (c.f. 
eqs. 4.2.32 and 4.2.33), i.e. Beer's law is not applicable. In 
addition, it must be realized, that the intensities are scaled to 
a certain greyvalue, using 

greyvalue = Clog(I) - log(Imin>>/<log<Imax) - log(Imin>) x n 

5.2.2 

in which n is the number of greyvalues within the grey-scale. 
Introducing the mean absorption, q , identical for each Bloch 
wave and diffraction direction, it is easily seen that the mean 

(a) (b) 

figure 5.2.10 

Computed image of the (000) disc of a gold single crystal 
specimen (thickness 460 A ) . Absorption is treated with an 
absorption factor of 0.05 (a) and 0.1 (b) respectively. 
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absorption disappears using eq. 5.2.2, i.e. the same image is 
obtained. Experimentally, this is equivalent to an increment of 
the exposure time. 
On the other hand, the absorption -factor, q, is in fact different 
for each Bloch wave and diffraction direction (c.f. eq. 4.2.42), 
making it impossible to obtain a simple relation, comparible to 
Beer's law. The observation that figures 5.2.10a and b show such 
a similarity, suggests that, in this particular case of thickness 
and range of absorption, absorption may be treated using a mean 
absorption. 

A different aspect of the effect of absorption is the observation 
that it may destroy the pattern symmetry which is observed by 
virtue of the reciprocity relation. This will be illustrated with 
two examples, the first involving a single crystal of GaAs and 
the second involving a bicrystal óf Au. 
The crystal structure of gallium-arsenide (GaAs) is described 
with space group F4"3m. When viewed along the <1 T 0> zone axis 
there are two mirror planes: one parallel and the other 
perpendicular to the zone axis. The expected diffraction group is 
therefore m^Ri giving a 2mm symmetry in the (000) disc of the 
CBED pattern (c.f. table 2.2). In figure 5.2.11 the symmetry of 
this disc is shown using the radial-scan method for a thickness 
of 400 A. Clearly the 2mm symmetry is present in the case of 
figure 5.2.11a in which absorption has been excluded from the 
calculations. In figure 5.2.11b absorption has been included with 
an absorption factor of 0.05. The 2mm symmetry is reduced to m. 
On the other hand, the deviation from 2mm symmetry is not 
pronounced. Although the 2-fold symmetry is destroyed, the values 
near the original mirror lines (indicated by the dotted line) 
almost show a mirror symmetry. At a higher thickness of 800 A 
(figure 5.2.11c), the same behaviour is observed, i.e. the 
deviation from 2mm symmetry is not pronounced. Therefore, it is 
expected that, experimentally, not a m-symmetry, but rather a 2mm 
symmetry is observed, i.e. the effect of absorption on the 
symmetry of the pattern is difficult to observe, the more so if 
we consider that GaAs is a low absorbing material. Figure 5.2.lid 
shows an experimental image of the (0O0) disc of a <1 T 0> ZAP of 
GaAs at 100 kV. It is seen that in this case the symmetry is 2mm. 
For the second example a bicrystal specimen of gold is used. The 
interface is of the type E=7 +, which means that crystal I and 
crystal II are related by £38.22 ° I0>1 = 11, if I and II denote the 
respective crystal parts. The bicrystal space group is R32'. In a 
<1 1 1> zone axis orientation three 2' axes are perpendicular to 
the zone axis. In order to fulfil the condition that the 2' axes 
can be detected by virtue of the reciprocity relation, the 
interface is positioned at 0.5 of the total specimen thickness of 
850 A, i.e. the specimen exhibits the 2' symmetry operation; it 
is not a crystallographic symmetry operation like the mirror in 
the case of GaAs. With the interface positioned at 0.5, the 

The characteristics of a E=7 type CSL are explained in more 
detail in section 5.2.6. 
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(c) (d) 
figure 5.2.11 

a) Radial scan of the (OOO) disc of a GaAs <1 T 0> ZAF, for 
a thickness of 400 A, absorption excluded; the symmetry is 
2mm. b) As in figure 5.2.11a, absorption included with a 
factor of 0.05; the symmetry is m. The mirror lines are 
indicated. c) As in figure 5.2.11b for a thickness of 800 $ 
d) Experimental image of the (OOO) disc of a GaAs <1 T 0> 
ZAP at 100 kV. The pattern shows symmetry 2mm. 
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'R- giving a 3m symmetry in diffraction group is expected to be 3m 
the (000) disc (c.f. table 2.2). 
Figure 5.2.12 shows the computed images of the (000) disc of 
<1 1 1> ZAP CBED patterns for the case where absorption is 
treated with an absorption factor of 0.1 (figure 5.2.12a) and for 
the case where absorption is excluded (figure 5.2.12b). It is 
seen that the pattern in figure 5.2.12a has a 3-fold symmetry 
whereas the pattern in figure 5.2.12b has a 3m symmetry. 
In the above two cases it has been shown that, caused by 
effect of absorption, the symmetry relations which are expected 
to be seen in the CBED pattern, by the reciprocity relation, may 
not be observed. In the case of gold, the effect is such, that 
the reciprocity relation can no longer be applied. In the case of 
gallium-arsenide, the effect is less pronounced: the application 
of the reciprocity relation is still valid. 

the 

(a) (b) 

figure 5.2.12 

Computed image of the (000) disc for 
specimen (<1 1 1> ZAP) with a E=7 
a) Absorption is included (v"/V=0.1), 
symmetry . b) Without absorption, it 
symmetry. 

a gold 
type 

giving 
results 

bicrystal 
boundary. 
a 3-fold 
in a 3m 
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The position of a twin boundary in a bicrystal specimen. 
As has been pointed out by Schapink et al. C19833 and Buxton et 
al. C1984D, horizontal bicrystal colour symmetry elements are 
observed in the CBED pattern if the boundary coincides with the 
midplane of the specimen (see also chapter 3 ) . If the boundary 
lies asymmetrically, the bicrystal specimen no longer exhibits 
the coloured (horizontal) symmetry operations. We have 
investigated the influence of the position of the boundary on the 
existence of symmetry relations in the CBED pattern originating 
from horizontal coloured symmetry elements, using the example of 
a silicon bicrystal having a <1 1 1> twin boundary. 
A <1 1 1> twin boundary is constructed by rotating the second 
crystal 60° along <1 1 1> (a righthanded or lefthanded rotation 
is unimportant in this case) relative to the first crystal. In 
terms of the Seitz operator we therefore have the relation 
£60°|0M = II, if I and II denote the respective crystal parts. The 
unit cell of the lattice which is continous over the interface 
(CSL) is three times as large as the unit cell of either 
constituent crystal, i.e. E=3. The space group G. of the 
dichromatic pattern, as shown in figure 5.2.13, is P6'/m'm'm. 
The symmetry elements which are observed in a CBED pattern with 
the incident beam directed along <1 1 1>, will be a vertical 3-
fold axis, three vertical mirror planes and a horizontal coloured 
mirror plane. The latter will be observed as a 2-fold symmetry in 
the (000) disc of the pattern, provided that the horizontal m' 
operation is in the midplane of the specimen. Defining the 
position of the boundary in terms of the total specimen 
thickness, diffraction group expected is 3mlp in case the 
boundary is positioned at 0.5; for all other values than 0.5, 
i.e. when the interface is not coincident with the midplane, the 
diffraction group will, in theory, be 3m. Referring to table 
2.2, diffraction group 3mlp shows a whole pattern symmetry of 3m 
and a 6mm symmetry for the central disc; diffraction group 3m 
shows a 3m symmetry for the whole pattern, the central disc 
having simply 3m symmetry. 

Experimentally, the following specimen was investigated (figure 
5.2.14a). The specimen has faces which were determined to be 
•C112>; the interface i s a < l 1 l> twin boundary (i.e. E=3) . 
Taking a <1 1 1> ZAP, therefore, results in an actual 
asymmetrical Laue case. Although an inclination of 19.5° is 
present, the entrance and exit faces of the specimen are assumed 
to be parallel to the boundary plane within the spot of the 
focussed electron beam (see also figure 3.1.2). The asymmetrical 
Laue case is hereby treated as symmetrical. From this known 
geometry, the thickness of the specimen could be determined to be 
2000 ^±107.. 
The micrographs shown in figures 5.2.14b and 5.2.14c show the 
(000) disc of the specimen in question, at 100 kV. They have been 
taken at different positions along the interface as illustrated 
in figure 5.2.14a. In figure 5.2.14b the symmetry of the pattern 
is not distinguishable from 6mm symmetry. A slight shift of the 
incident beam along the plane of the interface gives the pattern 
of the (000) disc shown in figure 5.2.14c. Here, the symmetry of 



figure 5.2.13 
Dichromatic pattern of a E=3 
type CSL for silicon. The space 
group is P6'/m'm'm. The open 
and closed symbols indicate the 
'colour' difference. The 
symbols indicate pairs of Si-
atoms (c.f. figure 5.2.4) 

{112} 

(a) 

(b) (c) 
figure 5.2.14 

a) Specimen configuration illustrating how the CBED patterns 
at different depths of the boundary have been obtained. b) 
Experimental image of the (000) disc of silicon (bicrystal, 
E=3). The position of the boundary is near 0.5. The symmetry 
is indistinguishable from 6mm. c) As in b) with the position 
of the boundary away from 0.5. The symmetry observed is 3m. 
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the pattern is clearly 3m. Considering -figures 5.2. 14b and 
5.2.14c, it is apparent that these observations are according to 
what has been expected. However, because the exact locations o-f 
the beam, with respect to the boundary, are not known, the 
observations do not give in-formation on the relation between 
symmetry and the position of the boundary. 
In order to establish the minimum deviation o-f the boundary 
position from the midplane of the specimen, needed to cause a 
detectable change in symmetry, calculations have been performed 
for the boundary position at 0.5, 0.48 and 0.46. The total 
specimen thickness has been set at 2000 A, the accelerating 
voltage at 100 kV. The calculations are based on 31 reflections, 

Computed (000) disc of silicon (bicrystal, E=3). A change in 
symmetry results form a difference in positions of the 
boundary. Figures a to c show the result for boundary 
positions of 0.5, 0.48 and 0.46 respectively. The observed 
symmetry is reduced from 6mm to 3m. 
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of which 18 belong to the FOLZ. The results are shown in figures 
5.2.15a, 5.2.15b and 5.2.15c respectively. Figure 5.2.15a clearly 
shows the 6mm symmetry as expected. 
On changing the position of the boundary from 0.5 to 0.46 it is 
seen that the symmetry changes from 6mm to 3m. At 0.48 the 
deviation from 6mm symmetry is hardly detectable. At 0.46 a 3m 
symmetry is observed rather than a 6mm symmetry. Therefore, there 
is only a small range of 4% of the total thickness at either side 
of the midplane position where the effect of horizontal colour 
symmetry elements is observed, at least when using an imaging 
system based on 16 greylevels; a better greylevel resolution can 
give even a smaller range in which the effect of horizontal 
symmetry elements might be observed. Referring to figure 5.2.14b, 
we can, therefore, conclude that this micrograph is obtained from 
an area where the position of the boundary is approximately 0.5. 

Another example involves a bicrystal of gold with a E=3 <1 1 1> 
twin boundary. It is the same type of bicrystal as described 
above, except that silicon has the diamond structure (space group 
Fd3m) whereas gold has a cubic face centered structure (space 
group Fm3m). The space group of the dichromatic pattern 8^ is 
P6'/m'm'm. A CBED pattern taken along the <1 1 1> zone axis 
should, therefore, give either diffraction group 3mlp or 
diffraction group 3m, depending on the position of the boundary. 
Figure 5.2.16a shows the experimental CBED image of the central 
disc of the specimen described. In the image, a symmetry 
indistinguishable from 6mm, is observed. The position of the 
boundary should therefore be near to 0.5. 
Figure 5.2.16b shows the simulated image based on a total 
thickness of 800 A. The boundary position has been taken at 0.5, 
and absorption has been included into the calculation with an 
absorption factor of 0.1. The calculation is based on 55 
reflections of which 42 belong to the FOLZ. Again a good 
agreement between the experimental image and calculated image is 
obtained. 
It has only been the intention to compare-the symmetry in the 
experimental and computed image. The fact that the images show, 
in addition, such a good agreement in intensity profile, is due 
to the choice of thickness of 800 A. Since no experimental 
information on specimen thickness could be retrieved in this 
case, this choice must be considered to be merely fortuitous, the 
more so if we consider the fact that the pattern is very 
sensitive to thickness variations (see also section 5.2.2). 
Referring to section 5.2.3, where the effect of absorption on the 
symmetry of the pattern has been treated, figure 5.2.16b also 
illustrates the reduction in symmetry due to the effect of 
absorption. Theoretically, diffraction group 3ml~ is expected if. 
the interface is positioned at 0.5, giving a 6mm symmetry in the 
(000) disc. Figure 5.2.16b lacks this symmetry if certain image 
details are considered; in fact only a 3m symmetry is observed. 
For instance, the arrow indicates a certain detail in the image 
which is not repeated by 6—fold symmetry. The deviation from 6mm 
symmetry in the experimental image of figure 5.2.16a is not 
apparent, which may be caused by the poor quality of the 
micrograph. 
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(a) (b> 

■Figure 5. 2. 16 

a) Experimental image of the (000) disc of gold (bicrystal, 
E=3, <1 1 1> ZAP). The symmetry observed is indistinguish
able from 6mm. b> Computed image equivalent to a. The angle 
of convergence is 0.37±0.02° and 0.4° respectively. 

The effect on the symmetry of CBED patterns of a 
translation at the boundary of bicrystal specimens. 

Up to this point only bicrystals hav"e been considered which had a 
simple rotational relationship between the constituent crystals I 
and II. In this section bicrystals are considered which are, in 
addition, translated with respect to each other (c.f. eq. 3.1.1). 
As has been explained in section 3.2 and 3.3, each state of 
translation is related to a certain space group of the 
dichromatic pattern ^ . In addition, each space group is 
related to a diffraction group of the CBED pattern. The relation 
between the D6 and the translation is, in general, not unique for 
each D6, since different translations can lead to the same DG. On 
the other hand, in specific cases, DG's can uniquely be related 
to the translation. In such cases, the translation can be 
determined from the symmetry of the CBED pattern. 
The complete set of Bj 's and, therefore, the complete set of 
DG's, relating all the possible translations, can be constructed 
by considering only those translations which lie within the 
Wigner—Seitz cell of the DSC lattice. Bchapink and Mertens C19813 
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have illustrated, using the case of a E=3 type boundary, that 
certain states of translation give specific diffraction groups of 
a <1 1 1> ZAP CBED pattern, which are different from the state of 
zero translation. Figure 5.2.17 shows the DCP of the state of 
zero translation and the Wigner—Seitz cell of the DSC. The unit 
cell of the DSC is bounded by 1/6CT T 23 and 1/6CÏ 2 Ï3, 
expressed in terms of the crystallographic coordinate system of 
crystal I. 
The work of Schapink and Mertens is illustrated here with two 
calculated examples of bicrystal specimens with a E=3 type 
boundary. Although the examples refer to translations which are 
not likely to be met experimentally, they illustrate the change 
in symmetry resulting from such a translation. A comparison with 
reality can, therfore, not be made. For convenience, the position 
of the boundary is taken at 0.5 in which case horizontal coloured 
symmetry elements, if present, apply to the bicrystal specimen 
and can therefore be observed. 
The first example (figure 5.2.18a ) involves a silicon bicrystal 
specimen having a E=3 type boundary. The relation existing 
between crystal I and crystal II is £60"I1/12<Ï2Ï» along 
<1 1 1>. As a result the space group of the DCP is determined to 
be Cmc'a' (see figure 5.2.18b); for comparison the space group of 
the zero translation state is P6'/m'm'm (see also section 5.2.2 
and Table I of Schapink & Mertens C19813). 
The diffraction group of the CBED pattern taken along <1 1 1> is 
expected to be mlp, the lp operation resulting from the a' glide 
plane. According to table 2.2 the central disc must show a 2mm 
symmetry. 
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figure 5.2.17 
The dichromatic pattern (DCP) seen along <1 1 1> for the 
state of zero translation in case of a E=3 type boundary. 
The symbols indicate atom positions in the case of Au and 
pairs of atoms in the case of Si. The Wigner—Seitz cell of 
the DSC-lattice is included. 
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The calculation has been performed using a specimen thickness of 
2000 A*, the accelerating voltage was set at 100 kV. The number of 
reflections taken into account is 31, of which 18 belong to the 
F0LZ. In figure 5.2.18a the 2mm symmetry is clearly observed, 
confirming Schapink & Mertens' result. 
The second example (figure 5.2.19a) involves the same type of 
specimen as presented in the first example, apart from the fact 
that the translation at the boundary has been adjusted to 
l/6<0 1 T>, i.e. the relation that exists between the constituent 
crystal parts is {60°|l/6<0 1 T>> along <1 1 1>. The space group 
of the DCP is determined to be P3jl2 (see figure 5.2.19b) and 
therefore the diffraction group of the <1 1 1> zone axis CBED 
pattern is expected to be 3m^, since in the <1 1 1> zone axis 
orientation the 2' axis is perpendicular to the zone axis giving 
a nip operation in the diffraction group. According to table 2.2 
the central disc should therefore show a 3m symmetry. The 
calculation parameters have been set equivalent to the previous 
example. In figure 5.2.19a the 3m symmetry is clearly observed. 
In the present example a 3-fold screw axis is directed along the 
zone axis. The effect of this translational-coupled symmetry 
element is not observed in figure 5.2.19a and is, therefore, 
considered to be too small to contribute to the pattern 
formation. This is in agreement with the work of Goodman C19753, 
Buxton et al. C19763 and Ishizuka C19843. 
Comparing figures 5.2.18a and 5.2.19a, it is seen that, apart 
from the difference in symmetry, the images show a close 
correspondence. Compared with the image involving the zero state 
of translation, (figure 5.2.15a) the correspondence is also 
apparent. In practice this will mean that the determination of 
the state of translation at the boundary, based on a simple 
comparison of the experimental and calculated patterns only, is 
questionable, and can lead to erroneous results. The 
determination of the state of translation at the boundary is 
valid only when the images are of good quality and clearly show 
the symmetry of the pattern. 

This particular translation at the boundary is not included in 
Table I of Schapink & Mertens C19813. For completeness it should, 
therefore, be added. 
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(b) 

figure 5.2.18 

a) Computed image of the (OOO) disc of a silicon bicrystal 
(E=3). The boundary is positioned at 0.5. A translation of 
1/12CÏ 2 TD is included. The symmetry is 2mm. b) The 
dichromatic pattern belonging to a; the symbols indicating 
pairs of Si-atoms (c.f. figure 5.2.4). 

Vw*< 

(a) (b) 

figure 5.2.19 

a) Computed image of the (000) disc of a silicon bicrystal 
(E=3). The boundary is positioned at 0.5. A translation of 
1/6C0 1 Tl is included. The symmetry is 3m. b) The 
dichromatic pattern belonging to a; the symbols indicate 
pairs of Si-atoms (c.f. figure 5.2.4). 
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5.2.6 A £=7 twist type boundary in a bicrystal of gold; a case of 
multiple diffraction. 

Figure 5.2.20a shows a CBED pattern of a gold bicrystal specimen 
having a E=7 type boundary. The micrograph is taken at an 
accelerating voltage of 100 kV. The angle of convergence is 
0.47±0.02°. 
A E=7 twist type boundary can be constructed using the relation 
{38.22°|0>1=1I, giving the disc pattern shown in figure 5.2.20c. 
Only a part of the Z0LZ reflections, and that part of the F0LZ 
reflections near the intersection of the Ewald sphere, are shown; 
the large circle indicates where the Ewald sphere belonging to 
100 kV intersects the FQLZ plane. It is seen that most of the 
CBED discs partially overlap. Complete overlap is, besides the 
(000) disc, found for 6 F0LZ reflections, i.e. they are common to 
both crystal I and II. The orientation of figure 5.2.20c is such 
that it is compatible to figure 5.2.20a. 
The dichromatic pattern has space group R3m' resulting in 
diffraction group 3nin for the <1 1 1> ZAP, provided that the 
interface is coincident with the midplane of the specimen so that 
the horizontal 2' symmetry axis is detected. Diffraction group 
3m^ gives a 3-fold symmetry for the whole pattern and a 3m 
symmetry for the (000) disc. On the other hand, it is known that 
when absorption is included, as is the case with the gold 
specimen, the reciprocity relation may not be applicable, i.e. 
the 3m symmetry within the (000) disc is reduced to 3-fpld 
symmetry, despite the fact that the position of the interface, 
which is unknown in the present case, is at 0.5. Both figures 
5.2.20a and 5.2.20b show a 3-fold symmetry. 

A peculiar observation in the CBED pattern of figure 5.2.20a is 
the reflection which is indicated by the arrow (by symmetry it is' 
repeated every 120°). It is shown at greater magnification in 
figure 5.2.20d. From the Ewald sphere construction we expect the 
line profile of a F0LZ disc to be concentric with the origin in 
the pattern. Clearly it is observed that the reflection in 
question is concentric with a different origin. Another feature 
is that this reflection cannot be indexed in terms of the F0LZ 
reflection set obtained from the superposition of both the single 
crystal F0LZ reflection sets, i.e. those reflections indicated in 
figure 5.2.20c. 
This behaviour could be explained if a diffracted beam leaving 
crystal I is subsequently diffracted by crystal II. It must be 
possible to confirm this behaviour, if valid, using the 
simulation program. 
In order to use the simulation program in this case, a number of 
quantities has to be determined. Firstly, the reflection in 
question has to be indexed. The most probable construction for 
the subsequent diffraction observed is that the (0 2 2) 
reflection of either crystal I or II (the (2 5 4) reflection in 
CSL terms) and the (7 3 9) reflection of either crystal II or I 
(the (23 T 2Ï) reflection in CSL terms) gives the intensity 
profile in the (25 7 T7) reflection expressed in terms of the 
CSL. The symmetry related reflections of (25 7 T7) can be found 
by taking the symmetry related reflections of the contributing 
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(d) 
(b) figure 5.2.20 

a) CBED pattern 
arrow indicates 
diffraction in 
magnification of 

of a gold bicrystal <E=7> at 100 kV. The 
a CSL reflection originating from multiple 
crystal I and crystal II. b) (000) disc 

a. c) Disc pattern for a, the circle 
indicates the intersection of Ewald sphere and 
d) Magnified micrograph of the region arrowed in a. 
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reflections. The positions of the three reflections in the CBED 
pattern is indicated by the dots in figure 5.2.20c. 
Secondly, the thickness of the specimen has to be determined in 
order that a good comparison of the experimental and computed 
images can be made. From the assumed specimen configuration, as 
illustrated in figure 5.2.21, the total (bicrystal) specimen 
thickness has been determined to be 850 &±107., based on the 
individual thickness of the constituent single crystals. 
Thirdly, the position of the interface has to be known for 
performing the calculation. From figure 5.2.21 it follows that 
the position of the boundary is at 0.46. For the calculations a 
value of 0.5 has been used. This value is allowed, since it is 
within the inaccuracy of the thickness measurement using the 
extinction contour method. In addition, it is assumed that the 
process of subsequent diffraction is not disturbed by the 
position of the interface, unless in extreme cases (crystal I 
very thin compared to crystal II, or vice versa). 
The calculation has been based on 34 reflections including the 
<2 5 4>, <7 3 9"> and <25 7 l7> reflections and a total of 21 
FOLZ reflections. The accelerating voltage is identical to the 
experimental case, taken to be 100 kV. Absorption has been taken 
into account with an absorption factor of 0.1. 
The result is shown in figure 5.2.22. The discs are presented 
correctly in their relative orientation, but incorrectly in their 
mutual distances (scaling). For reference, the (19 5 23) 
reflection disc is also included. The (000) disc shows the 3-fold 
symmetry as expected (the fact that its pattern is different from 
the image shown in figure 5.2.12a is explained by the fact that 
in both calculations different sets of reflections have been 
used; see also Appendix C) . The intensity profile of the 
(19 5 23) reflection disc is concentric with the origin of the 
pattern. The intensity profile of the (25 7 Ï7) reflection disc 
is clearly deviating from this concentric situation. The 
calculations therefore confirm the suggestion that the reflection 
in question is the <25 7 17> CSL reflection which is generated by 
the subsequent diffraction in crystal II of a diffracted beam 
leaving crystal I. 

390A' 
850& 

J 
A60A 

f i g u r e 5 . 2 . 2 1 

Specimen configuration for the thickness determination of 
the specimen belonging to figure 5.2.20. 
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25 717 

000 

figure 5.2.22 

Calculated CBED pattern showing the relative orientation of 
the (25 7 T7) and (19 5 23) disc (expressed in terms of the 
CSL) for a Au bicrystal (E=7). The intensity profile of the 
(25 7 T7) is not concentric with the origin of the pattern. 
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Miscellaneous : the Tanaka method. 
In CBED the separation of diffraction discs is limited by the 
Bragg angle of the nearest reflection. In cases in which the 
specimen involved has a large lattice spacing, overlap of 
reflection discs is more likely. To overcome this problem, the 
Tanaka method or Large Angle CBED <LACBED> method [Tanaka et al. 
1980 D can be of help to detect the symmetry present in the discs 
without interference from overlap. 
In the Tanaka method, a large angle of convergence 3 to 5 times 
as large as in normal CBED, is used. In order to separate the 
transmitted and the diffracted beams, the specimen is raised 
slightly from its focussed position to a defocussed position. The 
central bright field beam can then be selected using the 
diffraction aperture. 
An experimental example of the Tanaka method is illustrated in 
figure 5.2.23a which shows the pattern of the transmitted beam 
in a <1 1 1> ZAP of a single crystal specimen of gold. The 
thickness of the specimen was determined to be 460 A±10%. The 
accelerating voltage was set at 100 kV. The angle of convergence 
is determined to be 1.9O±0.02°. The calculated image is presented 
in figure 5.2.20b. The angle of convergence has been set to a 
wide angle of 1.5°. Absorption is treated with an absorption 
factor of 0.1. The images show good agreement, both in detail and 

(a) (b) 
figure 5.2.23 

a) Experimental example of the Tanaka or Large angle method 
on a gold single crystal specimen, b) Computed equivalent of 
a. The angle of convergence is 1.90±0.02° and 1.5° 
respectively. Comparison can be performed within the dotted 
line of 5.2.23a. 
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in symmetry (3m). The angle o-f convergence is not exactly equal 
in both cases, which explains why the details seen near the edge 
o-f the disc in the experimental image are not observed in the 
computed image. The images are therefore only comparible within 
the dotted line indicated in the experimental image. 

Conclusions. 
In the previous sections results have been presented of CBED 
patterns obtained using a theoretical model. With this model it 
has been established that it is possible to calculate the CBED 
pattern resulting from specific types of specimen as defined in 
sections 2.1.2 and 3.1, i.e. involving a parallel-sided single 
crystal or a parallel-sided combination of two homogeneous 
crystals separated by the interface. 
Based on the simulations presented, often in connection with the 
experimental data, the following conclusions can be drawn. 
A Single crystal specimens. 
1) The position of the HOLZ lines within the calculated (000) 
disc of the CBED pattern is in agreement, including dynamical 
effects, with that which is experimentally observed, provided 
that the accelerating voltage is identical in both cases. 
2) In order to obtain good agreement with experimental work, only 
those HOLZ reflections which are excited within the angle of 
convergence of the incident beam need to be included in the 
calculations. Of course, if more reflections are included, there 
will be more Bloch waves and a better approximation is obtained, 
although the image does not change noticeably. 
3) In order to obtain a good agreement between the calculated and 
experimental image the thickness of the specimen must be known. 
In the case of silicon it has been reasoned that since absorption 
can be neglected, thickness differences appear only in the 
position and number of the thickness contours in the (000) disc. 
In the case of gold, on the other.hand, the calculated images 
change noticeably with thickness. In these cases the thickness of 
the specimen should be known to within at least 10% accuracy. 
4) The treatment of absorption using first—order perturbation 
methods leads to satisfying results. A simple relation between 
thickness and absorption is difficult to establish, since purely 
elastically diffracted intensities are thickness dependent. In 
addition, the absorption factor is different for each Bloch wave 
and diffraction direction. 
5) The effect of absorption may destroy those symmetry elements 
in the CBED pattern which are induced by horizontal 
crystallographic symmetry operations. In the case of GaAs the 
effect is not noticeable. In tha case of gold the effect is such, 
that the reciprocity relation must be treated with care. 

B Bicrystal specimens. 
1) From the example of a silicon bicrystal having a E=3 type 
boundary perpendicular to<l 1 1>, it has been shown that good 
agreement can be obtained when the set of single crystal 
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reflections is extended to include the set of reflections that 
are generated by the rotation relation between crystal I and 
crystal II. In this relatively simple example it means that the 
ZDLZ reflection set is identical to that of the single crystal, 
i.e. the set of ZOLZ reflections is common to both crystals. The 
set of FQLZ reflections is doubled in number, i.e. extended "with 
the set that is generated as a result of the 60° rotation. 
2) Simulations based on the example of a silicon bicrystal 
specimen with a <1 1 1> E=3 type boundary, have shown that, -even 
a slight deviation from the symmetrical boundary position 
destroys the symmetry in the CBED pattern arising from horizontal 
symmetry elements. 
3) Calculations have shown that the state of translation at the 
boundary can, in specific cases, be determined from the symmetry 
of the CBED pattern, in agreement with Schapink and Mertens' work 
E 1981D. It has been illustrated that, although different states 
of translation are applied, the image profiles are, 'apart from 
the symmetry, remarkably similar. Therefore, this determination 
should be treated with care and only in cases in which the 
symmetry of the pattern can be clearly observed. 
4) In the experimental image of a <1 1 1> ZAP at 100 kV, of a 
gold bicrystal specimen having a E=7 type boundary, a reflection 
in the FOLZ ring is observed which cannot be indexed according to 
the set of reflections obtained from the superposition of the 
FOLZ reflections of the individual crystals. The simulations have 
proved that the reflection in question is constructed from the 
<0 2 2> reflection in crystal I or II and the <7 3 9> reflection 
in crystal II or I respectively. 
5) In analogy with the case of a single crystal of gold, in both 
the cases involving gold bicrystals having a E=3 and E=7 type 
boundary in the symmetrical position, the effect of absorption 
destroys the symmetry in the CBED pattern that is expected from 
horizontal coloured symmetry elements in the bicrystal. Therefore 
in cases of a gold bicrystal undergoing absorption, the 
reciprocity relation can no longer be applied. 
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APPENDIX A 

Al Orthonormalization. 
Consider in the most general 
the three basic translation 
angles oc, £ and X. The recip 
usual way E Int. Tables o-f 
b*=(cxa)/V and c*=(axb>/V wi 
Jf , where V denotes the vol 
vectors a, b_ and c. 
An orthonormal coordinate 
triclinic coordinate system ( 
the coincidence of the a-axis 
axis of the orthonormal syst 
system being orientated in 
coordinate system. 

case a triclinic lattice defined by 
vectors a, b_ and c_ with enclosing 
rocal lattice is then defined in the 
Xray Cryst. vol II by 
th the enclosing angles «", 
ume of the unit cell enclosed by the 

a =<bxc)/V, p* and 

system can be superimposed on the 
fig. A.1.1). The choice is made for 
of the triclinic system with the X— 

em, and the b-axis of the triclinic 
the XY plane of the orthonormal 

figure A.1.1 
The superposition of an orthonormal coordinate system onto a 
triclinic coordinate system. 

The orthonormalization matrix 
redefining a vector from 
orthonormal coordinates v„ : 

—o 

is defined 
triclinic 

as the transformation 
coordinates into 

^o °dY-t A. 1. 1 

where 0^ stands for the orthonormalization matrix in direct 
space. The matrix-vector product is calculated in the standard 
way, i.e. rows versus column ( see for instance Bollmann 1982). 
It is easily seen that if 
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a b c 
v X X 

Gd ay by cy A > 1 - 2 
az bz cz 

where a is the x-component of a in orthonormal units etc., every 
linear combination of a, b and c can be transformed in this way 
[Int. Tables of Xray Cryst.^ vol ID. Evaluation of 0., using 
det(Od)=V and |c| 2 = - - 2 - - 2 - ^ ~ - 2 n-~ -- *^-
orthogonalisation matrix 
det(Od)=V and |c|^ = c^ + c z + c z results in the 

with q 

D d = o 

I = 4<1 -

bcosjr 
bsinir" 
0 

2 cos v. -

ccosp 
c(cos« - cospcosi') /sinj" 
cq/sini' 

2 2 
cos P - cos i' + 2coso<cD 

A. 1.3 

is possible to set up an orthonormalization 
fines a vector h^ from reciprocal space into 

A.1.4 

Because of the relation between a and a*, b and b* and c and c*, 

I 
m 
o 

n the same way 
atrix 0 r, 
rthonormal 

*o " 

it 
which rede 
units 

°r̂ t 

Üos 

O is given by 

(b 
(b 
(b 

X 
X 
X 

c) (g_ x a) (a x b) 
0 r = 1/V (b x c>* (c x a>* (a x b) * A. 1.5 

in which (b x c) = a * = bwc- - c wb, etc.. x "x y*~z ~y"z 

Consider the transpose of the adjoint matrix of 0., i.e. the 
matrix composed of the sub—determinants of 0 . : 

T b cz-c b z c a2-a c z aybz-bxa_, 
(adj(0d))T = S<bz"bxcz ax cz~ cx az bx az~ ax bz A- A- 6 

bx cy" cx by cx ay~ ax cy ax by~ bx ay 
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therefore 

0r = (adj(Od))T/V A. 1.7 

From the definition of the inverse of Qd, 

0 d
_ 1 = adj<0d)/V A. 1.8 

we have 

0r = (0d
_1>T A. 1.9 

The transformation of a vector from direct to reciprocal space 
Td_>r and vice versa the transformation from reciprocal to direct 
space T v.d are defined as 

Td->r " 0r_1-°d A' 1- 1 0 

Tr->d " °d_1-Dr ft-1-11 

respectively, with the relation 

Tr->d_1 » (Oc" 1^,)- 1 = 0r"1.0d = T d_ > r A. 1.12 

Rotations 
In orthonormal 3-dimensional space a rotation is represented by 
an orthogonal transformation (R = R ), i.e. it preserves the 
norm of a vector (det(R)= 1). If a rotation matrix is defined as 

rll r12 r13 
o ~ r21 r22 r23 A. 2.1 

r31 r32 r33 

the angle of rotation 9 can be calculated from the trace t of R : 

t = rtl + r 2 2 + r 3 3 = 2cos8 + 1 A.2.2 

The axis of rotation 1̂ , one of the eigen vectors of the rotation 
matrix, can be calculated from l_ = <r23-r32* r31-r13* r12~r21)" 
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With the axis of rotation pointing towards the viewer , the angle 
of rotation forms a right handed screw with respect to 1̂  (figure 
A.2.1). 

viewers 

c ^ 

f i g u r e A . 2 . 1 

The definition of rotation. The choice is departing from the 
conventional definition. 

In the more general triclinic case, a rotation matrix in direct 
space is defined as : 

Rd " °d lRo°d A.2.3 

and its equivalent rotation in reciprocal space as : 

R = O *R O r r or A.2.4 

in which 0^ and 0 r are the orthonormalization matrices for direct 
space and reciprocal space respectively (see Al). The above 
similarity transformation preserve the determinant of the 
matrices R, but not their orthogonality. Using the standard 

x relations (AB)T = BTAT ar 
eqs. A.2.4 and A.1.9, it follows 
matrix relations (AB)T = BTAT and (AB) * =B 1A * together with 

(Rr
T) 1 = ((0r 1RQ0r)T) 1 = 0 r

TR o
T(0 r

 1 ) T 

= <°d lRoT°d)_1 " °d 1 ( Ro T ) lQd 
Comparing this result with eq. A.2.3, 
orthogonality principle R = <R ) , we have 

A.2.5 
together with the 

Rd = (Rr hT A.2.6 

It must be noted that the definition of the rotation direction 
is contrary to the usual convention. 
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APPENDIX B 

The relation between the 58 dichromatic point groups and 
the 31 diffraction groups. 
Tables I and II give the relation between 58 of the dichromatic 
point groups (since the 32 classical and the 32 grey point groups 
are not of interest they have been left out) and the 31 
diffraction groups suggested by Buxton et al. E 19763. Table I has 
been reproduced from Schapink et al. E 19833, table II has been 
reproduced from Buxton et al. E19B43. 
In both tables the X indicate the possible diffraction group for 
each dichromatic point group depending on the direction of view; 
the O indicate that the projection approximation has been 
applied. 
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Table I 
The relation between the diffraction groups and 
dichromatic point groups for bicrystals with E > 1. 
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Table II 

The relation between the diffraction groups and 
dichromatic point groups for bicrystals with E = 1, i.e. 
either belonging to a group with T', or to a cubic group. 
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APPENDIX C 

Cl List of calculation parameters. 

In section 5.2 the calculated results are presented giving the 
values of only the parameters of interest. In the list below a 
detailed description of the used calculation parameters is given 
for each of the simulations. The numbers given refer to the 
figure numbers used in section 5.2. 

Crystallographic properties : 

Silicon (Si) 
space group Fd3m, 
atomic positions 

, a=5. 
: 0 

1/8 
1/8 
5/8 
5/8 
7/8 
3/8 
3/B 
7/8 

ff. : 

<s=0) 

,4305 & 
0 0 
1/8 1/B 
5/8 5/8 
1/8 5/8 
5/8 1/8 
7/8 7/8 
3/8 7/8 
7/8 3/8 
3/8 3/8 
5.6627 
0.9195 
: 6.00 

2 
1 
A 

Cromer-Waber coeff. : 5.6627 2.6652 3.0716 38.6634 2.6245 
n 3932 93.5458 1.2471 

electron scatt. 

Gold <Au> 
space group Fm3m, a=4.0702 A 
atomic positions: 0 0 0 

1/2 1/2 0 
1/2 0 1/2 
0 1/2 1/2 

Cromer-Waber coeff. : 16.8819 0.4611 18.5913 8.6216 25.5582 
1.4826 5.8600 36.3956 12.0658 

electron scatt. <s=0) : 10.57 A* 

Gallium-Arsenide (GaAs) 
space group F4"3m, a=5.6543 A 
a t o m i c p o s i t i o n s : Ga As 

0 0 0 1 / 4 1 / 4 1 / 4 
1/2 1/2 0 3/4 3/4 1/4 
1/2 0 1/2 3/4 1/4 3/4 
0 1/2 1/2 1/4 3/4 3/4 

Cromer-Waber coeff. : Ga 15.2354 3.0669 6.7006 0.2412 4.3591 
10.7805 2.9623 61.4135 1.7189 

As 16.6723 2.6345 6.0701 0.2647 3.4313 
12.9479 4.2779 47.7972 2.5310 

electron scatt. (s=0) : Ga 7.11 A 
As 7.32 A* 
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5.2.3a 
Crystal type : silicon, single crystal 
Thickness : 2000 A* 
Accelerating voltage : 102.7 kV 
No. of re-flections : 22 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<9 1 9>, 

3x<5 5 11> 
Angle of convergence : 0.2° 

5.2.5 
Crystal type : silicon, single crystal 
Thickness : 2000 A* 
Accelerating voltage : 102.7 kV 
No. of reflections : 22 
Reflections : (0 0 0) , 6x<2 2 0>, 6x<4 2 2>, 6x<9 1 9>, 

3x<5 5 11> 
Angle of convergence : 0.2° 

5.2.6a 
Crystal type : silicon, single crystal 
Thickness : 2000 A 
Accelerating voltage : 100 kV 
No. of reflections : 88 (see footnote on page 73) 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<4 4" 0>, 

6x<6 6 0>, 6x<2 5 4>, 6x<4 6 2>, 6x< 11 1 
5x<9 3 11>, 6x<9 1 9>, 6x<7 3 9>, 6x<7 5 
3x<5 5 9>, 5x<3 11 7>, 6x<3 9 5>, 3x<5 11 
5x<l 9 7> 

Angle of convergence : 0.2° 

5.2.7a 
Crystal type : gold, single crystal 
Thickness : 230 A* 
Accelerating voltage : 100 kV 
No. of reflections : 34 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9" 3>, 

3x<5 9 5>, 6x<T 7 9>, 6x<3~ 5 9> 
Angle of convergence : 0.4° 
Absorption factor : 0.1 

5.2.7b 
Crystal type : gold, single crystal 
Thickness : 300 A* 
Accelerating voltage : 100 kV 
No. of reflections : 34 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9 3>, 

3x<5 9 5>, 6x<T 7 9>, 6x<3 5 9> 
Angle of convergence : 0.4° 
Absorption factor : 0. 1 

5.2.7c 
Crystal type : gold, single crystal 
Thickness : 350 A 
Accelerating voltage : 100 kV 
No. of reflections : 34 
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Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 -9 3>, 
3x<5 9 5>, 6x<i 7 9>, 6x<3 5" 9> 

Angle of convergence : 0.4° 
Absorption factor : 0.1 

5.2.7d 
Crystal type : gold, single crystal 
Thickness : 400 A 
Accelerating voltage : 100 kV 
No. of reflections : 34 _ 
Reflections : (0 O 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9 3>, 

3x<5 9 5>, 6x<l 7 9>, 6x<3 5 9> 
Angle of convergence : 0.4° 
Absorption factor : 0.1 

5.2.7e 
Crystal type : gold, single crystal 
Thickness : 460 A* 
Accelerating voltage : 100 kV 
No. of reflections : 34 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9 3>, 

3x<5 9 5>, 6x<l 7 9>, 6x<3 5 9> 
Angle of convergence : 0.4° 
Absorption factor : 0.1 

5.2.9a 
Crystal type : gold, single crystal 
Thickness : 600 A* 
Accelerating voltage : 100 kV 
No. of reflections : 34 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9 3>, 

3x<5 9 5>, 6x<T 7 9>, 6x<3 5 9> 
Angle of convergence : 0.2° 
Absorption factor : 0.1 

5.2.9b 
Crystal type : gold, single crystal 
Thickness : 600 A* 
Accelerating voltage : 100 kV 
No. of reflections : 34 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9 3>, 

3x<5 9 5>, 6x<l 7 9>, 6x<3 5 9> 
Angle of convergence : 0.2° 
Absorption factor : no absorption 

5.2.10a 
Crystal type : gold, single crystal 
Thickness : 460 & 
Accelerating voltage : 100 kV 
No. of reflections : 34 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9 3>, 

3x<5 9 5>, 6x<T 7 9>, 6x<3 5 9> 
Angle of convergence : 0.2° 
Absorption factor : 0.05 
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10b 
Crystal type : gold, single crystal 
Thickness : 460 A* 
Accelerating voltage : 100 kV 
No. of reflections : 34 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9" 3>, 

3x<5 9" 5>, 6x<T 7 9>, 6x<3 5 9> 
Angle of convergence : 0.4° 
Absorption factor : 0. 1 

11a 
Crystal type : gallium—arsenide, single crystal; radial-scan 
Thickness : 400 A* 
Accelerating voltage : 100 kV 
No. of reflections : 25 
Zone axis : 1 T 0 
Reflections : (0 0 0 ) , 2x<2 2 0>, 2*<0 0 2>, 4x<l l l>, 

4x<l 1 3>, 4x<3 3 1>, 4x<7 5 19>, 4x<1 9 15> 
Angle of convergence : 0.4° 
Absorption factor : no absorption 

lib 
Crystal type : gallium-arsenide, single crystal; radial-scan 
Thickness : 400 A1 
Accelerating voltage : 100 kV 
No. of reflections :25 . 
Zone axis : 1 T 0 
Reflections : (0 0 0 ) , 2x<2 2 0>, 2x<0 0 2>, 4x<1 1 1>, 

4x<l 1 3>, 4x<3 3 1>, 4x<7 5 19>, 4x< 1 9 15> 
Angle of convergence : 0.4° 
Absorption factor : 0. 1 

lie 
Crystal type : gallium-arsenide, single crystal; radial-scan 
Thickness : 800 A* 
Accelerating voltage : 100 kV 
No. of reflections :25 
Zone axis : 1 T 0 
Reflections : (0 0 0 ) , 2x<2 2 0>, 2x<0 0 2>, 4x<1 1 1>, 

4x<l 1 3>, 4x<3 3 1>, 4x<7 5 19>, 4x<1 9 15> 
Angle of convergence : 0.4° 
Absorption factor : 0. 1 

12a 
Crystal type : gold, bicrystal 
Thickness : 850 A5 
Accelerating voltage : 100 kV 
No. of reflections : 49 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<7 9 3>, 3x<5 9 5>, 

6x<T 7 9>, 6x<3 5 9> + the equivalent 
non-commons of crystal II 

Angle of convergence : 0.4° 
Absorption factor : 0. 1 
Rotation relation : 38.22° 
Translation relation : no translation 
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Position of boundary : 0.5 
CSL transformation matrix : 2-1 O 

0 2 - 1 
- 1 0 2 

5.2.12b 
Crystal type : gold, 
Thickness : 850 A* 
Accelerating voltage : 100 
No. of reflections : 49 
Reflections : (0 0 0 ) , 6x<2 

bicrystal 

kV 
n 0>, 6x<7 «? 3>, 3x<5 9 5>, 

6x<T 7 9>, 6x<3 5 9> .+ the equivalent 
non-commons of crystal II 

Angle of convergence : 0.4° 
Absorption factor : no absorption 
Rotation relation : 38.22° 
Translation relation : no translation 
Position of boundary : 0.5 
CSL transformation matrix : 2 - 1 0 

0 2 - 1 
- 1 0 2 

bicrystal 

kV 
2 0>, 
the 

5.2.15a 
Crystal type : silicon, 
Thickness : 2000 A* 
Accelerating voltage : 100 
No. of reflections : 31 
Reflections : (0 0 0 ) , 6x<2 

3x<5 5 11) + 
crystal II 

Angle of convergence : 0.2° 
Rotation relation : 60° 
Translation relation : no translation 
Position of boundary : 0.5 
CSL transformation matrix : 1 0 

-1 1 
1 1 

6x<4 2 2>, 
equivalent 

6x<9 1 9>, 
non-commons 

-1 
0 
1 

5.2.15b 
Crystal type : silicon, bicrystal 
Thickness : 2000 A 
Accelerating voltage : 100 kv 
No. of reflections : 31 
Reflections : (0 0 0 ) , 6x<2 2 0>, 

3x<5 5 11) + the 
crystal II 

Angle of convergence : 0.2° 
Rotation relation : 60° 
Translation, relation : no translation 
Position of boundary : 0.48 
CSL transformation matrix : 1 0 

-1 1 
1 1 

6x<4 5 2>, 
equivalent 

6x<9 1 9>, 
non—commons 

-1 
0 
1 
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15c 
Crystal type : silicon, bicrystal 
Thickness ; 2000 A* 
Accelerating voltage : 100 kV 
No. o-f re-flections : 31 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<9 1 9">, 

3x<5 5 11) + the equivalent non-commons of 
crystal II 

Angle of convergence : 0.2° 
Rotation relation : 60 ° 
Translation relation : no translation 
Position of boundary : 0.46 
CSL transformation matrix : 1 0 - 1 

-1 1 0 
1 1 1 

16b 
Crystal type : gold, bicrystal 
Thickness : 800 A3 
Accelerating voltage : 100 kV 
No. of reflections : 55 
Reflections : <0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9 3>, 

3x<5 9 5>, 6x<T 7 9>, 6x<3 5 9> 
+ the equivalent non-commons of crystal II 

Angle of convergence : 0.4° 
Absorption factor : 0.1 
Rotation relation : 60° 
Translation relation : no translation 
Position of boundary : 0.5 
CSL transformation matrix : 1 0 - 1 

- 1 1 0 
1 1 1 

18a 
Crystal type : silicon, bicrystal 
Thickness : 2000 A* 
Accelerating voltage : 100 kv" 
No. of reflections s 31 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<9 1 9>, 

3x<5 5 I D + the equivalent non—commons of 
crystal II 

Angle of convergence : 0.2° 
Rotation relation : 60° 
Translation relation : 1/12<T 2 T> 
Position of boundary : 0.5 
CSL transformation matrix : 1 0 - 1 

-1 1 0 
1 1 1 

19a 
Crystal type : silicon, bicrystal 
Thickness : 2000 A* 
Accelerating voltage : 100 kV 
No. of reflections : 31 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<9 1 9>, 
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3x<5 5 11> + the equivalent non-cammons 
crystal II 

Angle of convergence : 0.2° 
Rotation relation : 60° 
Translation relation : l/6<0 1 T> 
Position of boundary : 0.5 
CSL transformation matrix : 1 0 - 1 

-1 1 0 
1 1 1 

5.2.22 
Crystal type : gold, bicrystal 
Thickness : 850 A* 
Accelerating voltage : 100 kV 
No. of reflections : 34 
Reflections in terms of CSL : (0 0 0 ) , 6x<2 S 2>, 6x<2 4 

6x<23 2_1 1>, 6x<15 25 1_1_>, 
3x<£9 23_5>, 3 x < H 25 13>f 
3x<7 25 T7> 

Angle of convergence : 0.4° 
Absorption factor : 0.1 
Rotation relation : 38.22" 
Translation relation : no translation 
Position of boundary : 0.5 
CSL transformation matrix : 2 - 1 0 

0 2 - 1 
- 1 0 2 

5.2.23b 
Crystal type : gold, single crystal 
Thickness : 460 A* 
Accelerating voltage : 100 kV 
No. of reflections : 34 _ 
Reflections : (0 0 0 ) , 6x<2 2 0>, 6x<4 2 2>, 6x<7 9 3>, 

3x<5 9 5>, 6x<l 7 9>, 6x<3 5 9> 
Angle of convergence : 1.5° 
Absorption factor : 0.1 
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Summary. 

A brief introduction to this thesis is given in chapter 1= The 
fundamentals of Convergent Beam Electron Diffraction (CBED) are 
treated in chapter 2, in which a general description is given of 
the symmetry and the interpretation of CBED patterns, including 
the classification into the 31 diffraction groups as proposed by 
Buxton et al. C19763. 

Chapter 3 deals with the subject of CBED patterns resulting from 
bicrystal specimens. The concept of colour symmetry is 
introduced to describe the bicrystal symmetry , after which the 
general construction of bicrystal space groups is discussed; the 
classification as given by Schapink et al. C1983] and Buxton et 
al. C1984H, based on bicrystals having a CBL type boundary, is 
treated. 

Chapter 4 is divided into two parts. 
The first part gives a detailed description of the dynamical 
theory of diffraction, originally developed by Bethe C1928], 
including the effect of higher order Laue zone reflections. The 
first-order perturbation method for the description of absorption 
is included. A brief comparison is made between the Bloch wave 
method and the multi—slice method, which is an equivalent method 
for describing dynamical diffraction. 
In the second part, the implementation based on the dynamical 
theory is treated. In particular, specific attention is given to 
the implementation of the convergence of the incident beam and 
the program parameters. Since the main objective in the 
presentation of the results has been the ability to make a good 
comparison between the experimental and calculated results, the 
method in which the results are presented is discussed in detail. 
Finally, the use of the CDC Cyber 205 computer of the Stichting 
Academisch Rekencentrum Amsterdam (SARA) is treated, based on 
considerations of computation time. 

The results of the calculations are presented in chapter 5. A 
comparison is made between calculated and experimental images 
where passible. All the experimental results have been obtained 
using a Philips EM400T electron microscope. The calculated images 
are presented in such a way to allow a direct comparison with the 
diffraction images obtained in electron microscopy. In addition, 
line-scans of certain CBED patterns have been determined from the 
point of view of the computation time needed for the calculation 
of images. These line—scan calculations reduce the calculation 
time considerably, whilst retaining virtually the same amount of 
information on the symmetry relations within the CBED pattern. 
The following subjects are treated. 
1) Images are presented which have been obtained during the 
testing phase of.the computer program, using known observations 
in CBED patterns of silicon single crystal specimens. It is shown 
that, in order to obtain good agreement between the calculated 
and experimental results, only those reflections which lie on the 
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Ewald sphere within the angle o-f convergence need to be included 
in the calculations. 
2) The e-f-fect o-f thickness variations is illustrated using the 
example o-f gold single crystal specimens. In order to obtain a 
good agreement in the case o-f gold between the calculated and 
experimental image, the specimen thickness needs be known to 
within an accuracy o-f at least 10X . 
3) The effect of absorption is treated using the examples of 
single crystal specimens of gold and gallium-arsenide and a 
bicrystal of gold. Because of its complexity, it is difficult to 
generalize the relation between the intensity profile of the CBED 
pattern and the effect of absorption. It is illustrated that in 
the case of gold, those symmetry relations which are observed in 
the CBED pattern by virtue of the reciprocity relation are 
destroyed by the effect of absorption. In the case of gallium-
arsenide this behaviour is not apparent. 
4) The effect of position of a <1 1 1> twin boundary in bicrystal 
specimens of silicon and gold on the symmetry of the CBED pattern 
is discussed. It is shown, based on a resolution of 16 
greylevels, that a deviation of the interface greater than 4X 
from the symmetrical (mid-plane) position destroys the symmetry, 
which is specific for the bicrystal construction. 
5) The change in symmetry in CBED patterns is calculated for 
bicrystal specimens of silicon having an additional translation 
of 1/6C0 1 T] and 1/12CÏ 2 Ï3 at thé twin boundary respectively. 
The symmetry observed in the calculated images is in agreement 
with that expected for these translations. The resulting images, 
still however, show a remarkable similarity with the image 
belonging to the state of zero translation. The translation at 
the boundary can, therefore, only be established when the 
symmetry of the pattern is clearly observed. 
6) A more complex type of boundary is discussed using the example 
of a bicrystal of gold, having a <1 1 1> E=7 type twist boundary. 
In the experimental image at 100 kV, a FOLZ reflection is 
observed, which shows an abnormal intensity distribution and 
cannot be indexed according to the superposition of the 
individual single crystal reflections. It is calculated that this 
particular reflection is the (25 7 Ï7) CSL reflection. 
7) Finally, a calculation based on a single crystal specimen of 
gold illustrates the application of the Tanaka method. 
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Samenvatti ng. 

Een korte inleiding tot het onderwerp beschreven in dit 
proefschrift wordt gegeven in hoodfstuk 1. Hierna worden de 
beginselen van Convergerende Bundel Elektronen Diffraktie (CBED) 
besproken in hoodfstuk 2. Een algemene beschouwing wordt gegeven 
betreffende de symmetrie en de interpretatie van CBED patronen. 
De classificatie van de mogelijke symmetrie relaties in CBED 
patronen volgens Buxton et al. C19763 wordt geïntroduceerd. 

Hoodfstuk 3 is toegespitst op de beschouwing van de symmetrie in 
CBED patronen, afkomstig van bikristallen. Voor de beschrijving 
van bikristal symmetrie wordt het concept van gekleurde symmetrie 
operatie geïntroduceerd, met daaraan verbonden een algemene 
mathematische beschrijving van de ruimtegroep synthese voor 
bikristallen. De classificatie volgens Schapink et al. C19B3D en 
Buxton et al. C19833 wordt besproken. 

Hoofdstuk 4 is gesplitst in twee delen. 
In het eerste deel wordt uitgebreid ingegaan op de dynamische 
theorie, zoals ontwikkeld door Bethe £19283, inclusief het effect 
van hogere orde Laue zone reflecties. De beschrijving van 
absorptie vindt plaats met behulp van eerste orde 
storingsrekening. Een korte vergelijking tussen the Bloch-golf 
methode en de 'multi-slice' methode wordt gegeven. 
Het tweede gedeelte is gereserveerd voor de behandeling van de 
implementatie op basis van de dynamische theorie. Specifiek wordt 
ingegaan op de beschrijving van de convergentie van de inkomende 
bundel en de parameters voor het beschrijven van het kristal 
preparaat. Ook wordt nader ingegaan op de manier van presentatie 
van de resultaten, omdat tot één van de voornaamste doelen heeft 
behoord, de mogelijkheid van een vergelijking van berekende en 
experimentele resultaten. Het gebruik van de CDC Cyber 205 van de 
Stchting Academisch Rekencentrum Amsterdam (SARA) wordt 
gemotiveerd aan de hand van overwegingen met betrekking tot de 
rekentijd. 

In hoofdstuk 5 worden de resultaten van de berekenigen 
gepresenteerd en besproken. Waar mogelijk wordt een vergelijking 
gemaakt met experimentele resultaten, verkregen met behulp van 
een Philips EM400T elektronen microscoop. De meeste berekende 
resultaten zijn zodanig gepresenteerd, dat een direkte 
vergelijking met de experimentele resultaten mogelijk is. Ook 
zijn een aantal 'line-scan' berekeningen uitgevoerd, welke 
illustreren dat, met slechts een aantal berekende intensiteiten, 
en daarmee een sterk gereduceerde rekentijd, informatie kan 
worden verkregen over de symmetrie in een CBED patroon. 
De volgende onderwerpen worden behandeld. 
1) Aan de hand van berekeningen aan silicium éénkristallen wordt 
de testfase van het computerprogramma besproken. Zo wordt 
aangetoond dat, voor een goede overeenkomst tussen de berekende 
en experimentele beelden, slechts die reflecties voor de 
berekeningen hoeven te worden beschouwd welke op de Ewald bol 
liggen binnen de convergentie van de inkomende bundel. 
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2) Het effect van preparaatdikte op het resulterende 
intensiteitsprofiel van de beelden wordt geïllustreerd aan de 
hand van berekeningen aan goud éénkristallen. Voor een goede 
overeenkomst tussen berekende en experimentele beelden is 
bekendheid van de dikte binnen 10% nauwkeurigheid noodzakelijk. 
3) Het meenemen van absorptie effecten bij de berekenigen wordt 
geïllustreerd met behulp van berekenigen aan modellen van goud en 
gal 1 iurn—arsenide éénkristal len en goud bi kristal len. Gezien de 
complexiteit van het effect dat absorptie heeft op de patronen is 
het niet mogelijk om dit effect te generaliseren. Wel wordt 
aangetoond dat absorptie invloed heeft op de symmetrie relaties 
in het CBED patroon van goud één- en bikristallen, welke kunnen 
worden geobserveerd als gevolg van het omkeerbaarheids principe. 
In het geval van gallium-arsenide wordt dit effect wel met 
berekeningen aangetoond, maar blijkt het te klein om geobserveerd 
te worden. 
4) In geval van een silicium bikristal wordt de invloed van de 
positie op de symmetrie van het CBED patroon van een <1 1 1> 
tweeling grensvlak in het preparaat bekeken. Er wordt aangetoond, 
aan de hand van berekende beelden gebaseerd op 16 grijswaarden, 
dat een afwijking van het middenvlak van het preparaat van 
slechts 4% voldoende is om de symmetrie, specifiek voor het 
bikristal, te verstoren. 
5) De symmetrie van CBED patronen behorende bij een silicium 
bikristal met een translatie van, respectievelijk, 1/6C0 1 Tl en 
1/12-CT 2 Tl aan de tweel inggrens wordt berekend. De symmetrie is 
overeenkomstig de verwachtingen. Aan de andere kant wordt 
aangetoond dat de patronen veel lijken op het beeld behorende bij 
het geval zonder translatie. Voor de bepaling van de translatie 
aan het grensvlak is een duidelijke aanwezigheid van de symmetrie 
daarom noodzakelijk. 
6) Een meer complex geval betreft een silicium bikristal met een 
<1 1 1> torsie grensvlak van het type E=7. Het experimentele 
beeld bij 100 kV vertoont een reflectie, welke een abnormale 
intensiteits distributei vertoont en niet te indiceren is op 
basis van de superpositie van de FOLZ reflecties van de 
individuele éénkristallen. Aan de hand van berekenigen wordt 
aangetoond dat de reflectie in kwestie de (25 7 T7) CBL reflectie 
is. 
7) Als laatste wordt aan de hand van een berekend beeld gebaseerd 
op een goud éénkristal de Tanaka methode geïllustreerd. 
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