QUATERNION ALGEBRA
APPLIED TO POLYGON THEORY
IN THREE DIMENSIONAL SPACE
QUATERNION ALGEBRA
APPLIED TO POLYGON THEORY
IN THREE DIMENSIONAL SPACE

PROEFSCHRIFT
TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN
DE TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE HOGESCHOOL DELFT OP GEZAG VAN DE
RECTOR MAGNIFICUS PROF. IR. B. P. TH. VELTMAN,
VOOR EEN COMMISSIE AANGEWZEEN DOOR HET
COLLEGE VAN DEKANEN TE VERDEDIGEN OP
DINSDAG 5 APRIL 1983, TE 16.00 UUR

DOOR

HERMAN QUEE
GEODEETISCH INGENIEUR
GEBOREN TE GOOR
Dit proefschrift is goedgekeurd door de promotor prof. dr. ir. W. Baarda
Samenvatting.

Dit proefschrift beschrijft een funktioneel model voor de vereffening van driedimensionele geodetische netten met geometrische waarnemingsgrootheden. Het maakt gebruik van door W. Baarda in enkele uit de jaren '60 daterende manuscripten neergelegde ideeën, die de verbinding vormen met zijn in 1966-1969 gepubliceerde theorie voor tweedimensionele puntsystemen.

Anders dan in veel literatuur op dit gebied staan twee uitgangspunten centraal: ten eerste het primaat van het eerste standaardvraagstuk van de vereffeningstheorie, en ten tweede de koppeling van (vereffende) waarnemingsgrootheden aan een gespecificeerd systeem van schrankingskoördinaten.

De eerste drie hoofdstukken zijn gewijd aan het algebraïsch systeem, de definities en onderlinge relaties van de geodetische en de astronomische waarnemingsgrootheden, en enkele belangrijke eigenschappen van het formulesysteem.

Hoofdstuk IV behandelt de introductie van een schrankingsbasis; verder wordt aangetoond dat het op complexe getallen gebaseerde rekenmodel voor tweedimensionele netten een bijzonder geval is van het op quaternionen gebaseerde driedimensionele model.

In hoofdstuk V worden verschillende types voorwaardevergelijkingen en hun afhankelijkheden afgeleid; ook hier valt de sterke verwantschap met het tweedimensionele model op. Tenslotte worden korrektievergelijkingen voor gebruik in het tweede standaardvraagstuk opgesteld.
Levensbeschrijving.

Herman Quee werd op 27 december 1946 geboren te Goor. Hij doorliep de Lagere School in de naburige Gemeente Markelo en in Goor, en daarna van 1959 tot 1964 de HBS (B) te Hengelo (0). Hierna volgde hij de studie voor geodetisch ingenieur aan de Technische Hogeschool te Delft; hij studeerde af in 1971 op een onderwerp dat als een voorloper van dit proefschrift kan worden beschouwd. Na nog een half jaar als ingenieur-assistent aan de TH verbonden te zijn geweest, trad hij op 1 september 1971 in dienst van de N.V. Nederlandse Spoorwegen, waar hij als stafmedewerker systemen ontwierp en realiseerde voor de praktische toepassing van moderne theorieën en technieken op het gebied van de landmeetkunde en kartografie; dit heeft onder meer geleid tot een verdere integratie van het landmeetkundige vakgebied met de spoortech- nische aspekten van het bedrijf.

Dankwoord.

CONTENTS

CHAPTER 0 INTRODUCTION
0.1 Starting points 1
0.2 Historical background of the theory 2
0.3 Practical applications 3
0.4 Suggestions for further research 5

CHAPTER 1 QUATERNION ALGEBRA
1.1 Units and definitions 8
1.2 Addition, subtraction, multiplication and division 9
1.3 A geometrical interpretation of quaternions 11
1.3.1 The geometrical significance of the quaternion quotient 11
1.3.2 Decomposition into orthogonal components 14
1.3.3 Rotations 15
1.3.4 Successive rotations 18
1.4 Differentiation of quaternions 20
1.4.1 The difference quantities of quaternion functions 20
1.4.2 The difference quantity of rotation quaternions 22
1.5 Isomorphism with matrices 25

CHAPTER 2 THE INTRODUCTION OF GEODETIC AND ASTRONOMICAL OBSERVATION VARIATES
2.1 Introduction 29
2.2 The terrestrial-geodetic observation variates 31
2.3 The geodetic-astronomical observation variates 35
2.3.1 Definitions 35
2.3.2 Difference quantities 37
2.3.3 Networks with parallel k-unit-vectors 38

CHAPTER 3 IMPORTANT DIFFERENCE EQUATIONS
3.1 Chains of astronomical rotations 40
3.1.1 The relative difference quantity 40
3.1.2 The coefficients of the astronomical variates 42
3.2 The vector transformation 43
3.2.1 The difference equation for the vector transformation 43
3.2.2 The difference quantity of $\Delta \Pi_{jk}$ 45
3.3 Polar coordinate functions 45
3.4 Units of length and orientations 48
3.4.1 The computation of λ_i and θ_i 48
3.4.2 The difference quantities of λ_i and θ_i 50
3.4.3 The rank of $(q^i \Delta q)_{ik} - (q^j \Delta q)_{kj}$ 52
3.4.4 Networks with parallel k-vectors 53
CHAPTER 4 SIMILARITIES AND DIFFERENCES BETWEEN THE TWO-DIMENSIONAL AND THE THREE-DIMENSIONAL MODEL

4.1 Introduction 54
4.2 The first unit of length and the first orientation 57
4.2.1 The first unit of length 57
4.2.2 The first orientation 57
4.2.3 The position of the first orientation in a network with parallel k-unit-vectors 59
4.3 Estimators and weight coefficients of observation variates are invariant 60
4.4 The introduction of S-coordinates 63
4.5 Observation variates, conditions and unknowns 70

CHAPTER 5 THE ADJUSTMENT MODEL

5.1 Introduction 75
5.2 Conditions 77
5.3 Linearization of conditions 82
5.4 Dependencies of condition equations 84
5.4.1 The dependency between network and polygon conditions 85
5.4.2 Dependencies within the R-condition 85
5.4.3 The dependencies between the components of the A- and the Z-conditions 86
5.4.4 The scalar component of the coordinate conditions 87
5.4.5 The k-component of the coordinate condition 89
5.4.6 The NN- and the NV-model; rank of the system 89
5.4.7 Selection of conditions 91
5.5 Modification of the starting points 93
5.5.1 Deviation from (5.8) 93
5.5.2 Other types of observation variates 94
5.5.3 More loops 94
5.6 The adjustment model of observation equations 96
5.6.1 Unknowns 96
5.6.2 Observation equations 97
5.6.3 Networks with parallel k-vectors 101
Chapter 0.

INTRODUCTION.

In this study a functional model for the adjustment of spatial geodetic networks is described. The model can be used both for terrestrial first order networks including astronomical observation variates and for engineering surveys, e.g. for the measurement of deformations, or for setting out high structures.

0.1 Starting points.

In this study, the use of quaternion algebra for the formulation of spatial functional relations and difference equations is of vital importance [14]. This choice is based on the historical background of the theory, and, in particular, on the way in which it could be linked with the methodological starting points formulated by W. Baarda within the scope of his two-dimensional polygon theory in the complex plane [2]. These starting points are used in the preceding theory and may be shortly summarized as follows:

- An exclusive use is made of operationally defined coordinate systems, or, in W. Baarda's terminology: S-coordinate systems [3].
- Observation variates are put together in so-called "form quantities", because the definition of a coordinate system has to be based on variables that are invariant in similarity-transformations. This means the use of distance-ratios, which requires an algebraic system in which division is defined.
- The model may not contain assumptions or artificial structures (e.g. an ellipsoid) necessitating "model-corrections" of observation variates.
- The adjustment model is set up primarily according to the method of condition equations, i.e. the "standard problem I" in J.M. Tienstra's terminology. It is true that the method of observation equations (standard problem II) is much more usual in international literature, but it is considered to be less satisfactory for the present theoretical investigation, because of the sometimes vague definition of unknown variates, the unsystematic way of introducing approximate values, and the greater risk of singularities slipping in [4].

In view of these starting points, quaternion algebra proves to be a magnificent and efficacious and indispensable tool. For vectors whose dimension is more than two, it is the only associative algebra in which division is defined and in which there are no zero-divisors (contrary to vector calculus).

It is true that the use of quaternion algebra for our purpose gives rise to some problems, but these are limited to the practical elaboration of the system of formulae:

- Because of the absence of the commutative property of multiplication, the formulae generally contain one extra factor (the relations themselves) or one extra term (the difference equations) in comparison with analogue formulae in the two-dimensional theory; for example, consider the transformation of system i to system r:
The vectors described are three-dimensional, the spatial rotation has three independent parameters, however, quaternions have four components (with basis-units 1, i, j, k). This means that the first component of a quaternion is equal to zero, if the quaternion represents a vector:

\[q_{ik} = 0 + i x_{ik} + j y_{ik} + k z_{ik} \quad \text{(vector)} \]

Chapter 3 shows that in dimensionless difference quantities (in which all four components \(\neq 0 \)) there is, both for observation variates and coordinate quantities a linear dependence between the components of the relative difference-variante:

\[(q_{ik}^{-1} \Delta q)_{ik} \]

For the rotation-quaternion:

\[p_{ri} = d_{ri} + i \alpha_{ri} + j \beta_{ri} + k \gamma_{ri} \]

in which all four components \(\neq 0 \), the situation is even slightly more complicated. This is discussed in Chapter 1.

In quaternion algebra, there is no complete "function theory", as is the case with complex numbers. Quaternion functions cannot be integrated, though they can be differentiated. This is sufficient for the purpose of this study.

In addition to the theoretical considerations concerning the choice of quaternion algebra, it is of great importance that here we have an elegant methodical structure for geodetic methods in all three dimensions: one-dimensional levelling, two-dimensional "plane surveying" and three-dimensional first order networks and networks for the construction of high buildings.

In [3] it has already been shown that a one-dimensional network is a "special case" of a two-dimensional network, as far as the structure of the adjustment model, and especially the description of the precision, are concerned. In the present study (see Chapter 4) it is shown that the two-dimensional structure is, in turn, a special case of the three-dimensional one. This uniformity of structure means that the overall system developed by the "Delft school" for the description of stochastic aspects is universally applicable to three-dimensional problems (internal and external reliability; S-transformations and criterion matrices; the \(\lambda \)-theory [5], [6], [3], [7].

0.2 Historical background of the theory.

As early as 1960, hence a considerable time before the finalisation of the theory pertaining to the "polygon theory in the complex plane", Baarda concluded that quaternion algebra would be the most appropriate tool for the
function model of three-dimensional polygon networks. Furthermore, he made an initial exploration of the practical elaboration [8]; in these manuscripts some cardinal points of the system of formulae are solved, such as the use of isomorphy between quaternions and matrices, the definition of a spatial analogue for the two-dimensional \(\Pi \)-quantity, and, closely connected with it, the three-dimensional coordinate condition and its difference equation. Rotations are also briefly described: this aspect was worked out by E. Vermaat some years later [23]. In his graduation paper the present author worked out these studies to a provisional termination [18]. The model described there displays a number of "grey" spots: for example, the linear dependences within the condition model have not been obtained from algebraic analysis, but from computer-aided determination of the rank of matrices. Furthermore, the interpretation of a number of concepts and auxiliary quantities is "geometric" rather than "algebraic" in nature. The gravest shortcoming was the total absence of the transfer to S-coordinates. In the period elapsed since then, the theory has been completed and perfected. The main points studied were:

- the transfer to S-coordinates after adjustment by the method of condition equations, and the links between the transformation designed for this purpose and the general three-dimensional S-transformation, developed in the same period by W. Baarda and later by M. Molenaar [17].
- the analysis of the linear dependences in the condition model.
- the analysis of the special position accorded to the first azimuth (see section 4.2).

As time went by, the progress of the investigation was slowed down more and more by the exigencies of the author's daily work, where he was, at first, mainly occupied with the implementation of the two-dimensional polygon theory, as developed by Baarda, in cartographic measurements and in engineering survey networks. Nevertheless, this practical environment and the study in the three-dimensional theory have had positive effects on each other. For example, there turned out to be a strong similarity between, on the one hand, the way in which horizontal orientation unknowns \(\theta_{\text{i}} \) in networks with non-parallel first axes are transferred via observation variates from one side of the network to the next:

\[
\begin{align*}
e_1 &= A_{12} - r_{12}, \\
e_2 &= e(e_1, r_{12}, \gamma_{12}, \varphi_1, \lambda_{12}, \varphi_2) = r_{21}, \\
e_3 &= e(e_2, r_{23}, \gamma_{23}, \varphi_2, \lambda_{23}, \varphi_3) = r_{32}.
\end{align*}
\]

etc. (see 3.30 and 3.40).

On the other hand, the way in which the initial arguments \(\varphi_i \) of interlinked alignment elements (i) of a track depends upon the initial argument \(\varphi_A \) and the angles \(\Phi \) of alignment elements:

\[
\begin{align*}
\varphi_1 &= \varphi_A, \\
\varphi_2 &= \varphi_1 + \Phi(\ldots p_j^i \ldots), \\
\varphi_3 &= \varphi_2 + \Phi(\ldots p_j^i \ldots),
\end{align*}
\]

etc. (\(p_j^i \) : parameters of the alignment element i, etc; \(\Phi = 0 \) for straight element)
The recognition of this agreement led, in 1974, to the development of an original practical algorithm for the automated solution of alignment equations from conditions, such as the constraint condition [19]. In addition, a profound study in the years 1977-1978, leading to a geodetic system for the control of automatic track maintenance machines, clearly showed that particularly the theory of the S-transformations is indispensable in the formulation of purpose dependent standards for practical geodetic activities [20].

This example refers to the complex plane; as soon as a three-dimensional measuring process is used in the case of setting out, or deformation-measurements of high civil engineering structures the same applies there, and a good functional model is indispensable.

0.3 Practical applications.

The model described here is the missing link in an operational theory for terrestrial-geodetic networks. Here, we must make a distinction between two fields of application, each with its own theoretical and practical problems: the first order geodetic networks (slightly inclined "plane" networks of which the points are more than 10 km spaced apart, and with astronomical orientation of local systems) and the networks for the determination of deformation and for setting out of high buildings and bridges (small networks with great differences in height; the direction of the local gravity and thus the first axis of the theodolite are considered to be parallel).

The problems involved in the conventional procedures in the first order networks are clearly outlined in some papers by W. Baarda [9]: the necessary corrections of observation variates; the regional adaptation of ellipsoids; the units of length, which cannot be equal to the instrumental units of length; the problems encountered during the connection of these networks; the vague determination of the third dimension and the inaccurate definition of the so-called Laplace equation.

It would seem possible to solve part of these problems by the addition of zenith angles and the determination of longitude and latitude in all (or most of the) stations, and also by the measurement of distances; in accordance with this procedure some test networks have been measured since 1965, particularly in mountainous areas in Germany and Switzerland [22], [21], [12]. However, with regard to these test networks, it becomes apparent from publications that the procedure chosen does not comply with the starting points formulated in this introduction: the adjustment is not done in a "S-system", only the method of observation equations is used, and the use of distance ratios is left out of consideration altogether.

Regarding the second field of application, that of small networks for civil engineering problems, only a small number of publications is available. This may well be caused by the fact that in practical geodesy, confronted with "spatial objects", no three-dimensional measurement procedure is chosen, (one might choose spatial radius vectors, possibly supplemented by measurement of some height-differences per floor or storey), but the problem is split up into a two-dimensional procedure for the planimetry and a one-dimensional procedure for the differences in height. This may lead to very complicated problems in the implementation of the measurements, the horizontal position
of the higher storeys being defined very poorly. An example illustrating this is described in [11].

0.4 Suggestions for further research.

This study only covers the description of a functional model for three-dimensional terrestrial networks, in which optional astronomical observation variates are admitted. Further studies, focused on practical applications are required on, inter alia, the following problems:

0.4.1. After the model has been programmed, it will be possible, with the aid of other computer programs of the Department of Geodesy of the Delft University of Technology, designated by the collective name SCAN, to study the optimal construction of networks for the two fields of application.

0.4.2. The interaction between zenith angles and the astronomical observation variates and also the effects of all these observation variates on precision and on the internal and external reliability.

0.4.3. What is the relation between vertical refraction and the so-called Z-conditions in the sides of the network, arising from the direct and reverse measurement of zenith angles?
(see also [13], [10], [1] for the problems encountered in measuring zenith angles).

0.4.4. In chapter 2.3 is suggested, to choose a measuring procedure in which astronomical longitudes (and possibly latitudes) are measured simultaneously in each pair of stations, in order to eliminate the influence of star coordinates and polar motion, and to reduce the influence of time. This has to be elaborated further, both practically and theoretically.

0.4.5. In "engineering survey networks", the direction of the vertical (the first axis of the theodolite) is not determined by astronomical observations. In which cases it is to be preferred to introduce two unknowns for the direction of the vertical in every networkpoint; in which cases is it possible to start from the assumption that these are all parallel to each other? How should the network be designed in these various situations?

In all these problems, the purpose of the network, and especially the question whether the "vertical component" (perpendicular to the earth surface) is by itself significant or only serves to improve the "horizontal component", play an important role.

0.5 Guidelines for the reader.

In Chapter 1 the algebraic apparatus is described: arithmetic procedures; the geometrical interpretation; rotations, difference equations and isomorphic matrices.
In Chapter 2 the introduction of terrestrial and geodetic-astronomical
observation variates is described.
In Chapter 3 the fundamental quantities described in Chapter 2, are linked
to more complex structures: successive rotations, vector rotations.
Subsequently, the first linear dependency is derived and inverse functions
are established (differences of observation variates, expressed in differences
of coordinate quantities). Finally the transfer of orientation unknowns
is discussed, and, simultaneously, that of the length factors.
Chapter 4 deals with three important differences between the three-dimen­sional and the two-dimensional model; these differences are caused by the
fact that the quaternion quotient:
\[
G_{ijk} = q_{ik} q_{ij}^{-1}
\]
is not fully invariant in similarity transformations, contrary to the
analogue quantity:
\[
\Delta q_{ijk} = \sum_i q_{ik} \Delta L_i
\]
in the two-dimensional model. The differences referred to concern:
- The role of the orientation unknowns and the first azimuth.
- The fact that the relations must be established in one of the local systems,
 and the effects thereof on estimators and weight coefficients of obser­vation
 variates.
- The introduction of S-coordinates by the inclusion of the stochastic "basis
 transformation" \(P_{Rr} \).
When using the adjustment method of condition equations, this transformation
is entered in the formula by which, after adjustment, coordinate quantities
\(q^{(R)} \) are computed from the estimators \(\hat{X} \) of observation variates:
\[
q^{(R)} = \hat{X}_{Rr} P_{Rr} q \cdot P_{Rr}^{-1}
\]
with:
\(q^{(R)} \) : "S-coordinates"
\[
q^{(R)} = q (\ldots, X_i, \ldots).
\]
\(\hat{X}_{Rr} \) : \(\hat{X} \) of \(\ldots, X_i, \ldots \).
\(P_{Rr} \) : \(P_{Rr} \) of \(\ldots, X_i, \ldots \).

When using the method of observation equations, the basis transformation,
in the form of four unknowns, is entered in the correction equations.

Regarding this chapter, the method of observation equations seems to be
less sensible for these complications, so it may be once more concluded that
this method is theoretically weaker than the method of condition equations,
because it may be applied on the basis of a much more superficial analysis,
thus involving the risk that the model is incomplete or incorrect.
This chapter also considers the numbers of quantities and condition equations
in the adjustment model for a closed polygon.
Finally in Chapter 5 the condition model is given, starting from W. Baarda's
theory for the complex plane and building on the conclusions in the Chapters
3 and 4. It becomes apparent that the structure remains strongly affiliated
with that in the complex plane, be it that there are more types of observation variates and more types of conditions in it and that the relations between the conditions are considerably more complicated. Finally, the correction equations for the adjustment model of observation equations are established.
Chapter 1

QUATERNION ALGEBRA.

1.1 Units and definitions.

Quaternion algebra was formulated about 1843 by W.R.Hamilton\[14\]. It is a hypercomplex algebra with four base elements

\[1, i, j, k\].

As in algebra with complex numbers, the following applies:

\[iji = 1\]
\[jj = -1\]
\[kk = -1\]

The scalar unit 1 is an inactive operand in multiplications by the three others:

\[i1 = i\]
\[jj1 = j\]
\[kk1 = k\]

The three "imaginary" units generate each other in accordance with cyclic multiplication rules:

\[ij = k\]
\[jk = i\]
\[ki = j\]

They are non-commutative:

\[ji = -k\]
\[kj = -i\]
\[ik = -j\]

A quaternion \(q\) has four base components, e.g. \(w, x, y\) and \(z\):

\[q = w + ix + jy + k z\]
We introduce the following terms and notations:
- the scalar part of \(Q \): \(\text{Sc} \{ Q \} = w \)
- the vector part of \(Q \): \(\text{Vc} \{ Q \} = ix+jy+kz \)
- the \(i \)-component of \(Q \): \(\text{Vi} \{ Q \} = X \)
- the \(j \)-component of \(Q \): \(\text{Vj} \{ Q \} = Y \)
- the \(k \)-component of \(Q \): \(\text{Vk} \{ Q \} = Z \)
- the norm of \(Q \): \(\text{N} \{ Q \} = w^2+x^2+y^2+z^2 \) \((1.6) \)

Hence:
\[
\Phi = \text{Sc} \{ \Phi \} + \text{Vc} \{ \Phi \} = \\
= \text{Sc} \{ \Phi \} + i \text{Vi} \{ \Phi \} + j \text{Vj} \{ \Phi \} + k \text{Vk} \{ \Phi \} . \quad (1.7)
\]

1.2 Addition, subtraction, multiplication and division.

We consider two quaternions:
\[
\Phi_1 = w + ix + jy + kZ_1
\]
\[
\Phi_2 = w + ix + jy + kZ_2
\]

The sum and the difference of \(\Phi_1 \) and \(\Phi_2 \) are then defined as:
\[
\Phi_1 + \Phi_2 = w + w + i [x_i + x_2] + j [y_i + y_2] + k [z_i + z_2] .
\]
\[
\Phi_1 - \Phi_2 = w - w + i [x_i - x_2] + j [y_i - y_2] + k [z_i - z_2] .
\]

Multiplication by a scalar \(a \) gives:
\[
a \Phi_1 = a w + i ax + j ay + k az .
\]

Applying the rules of multiplication (1.1), (1.2) and (1.3), the product of \(\Phi_1 \) and \(\Phi_2 \) becomes:
\[
\Phi_1 \Phi_2 = w_1 w_2 - x_1 x_2 - y_1 y_2 - z_1 z_2 + \\
+ i [w_1 x_2 + w_2 x_1 + y_2 z_1 - z_2 y_1] + \\
+ j [w_1 y_2 + y_1 w_2 + z_2 x_1 - x_2 z_1] + \\
+ k [w_1 z_2 + z_1 w_2 + x_2 y_1 - y_2 x_1]
\]
\((1.8) \)

Now it becomes directly apparent that the product is non-commutative:
\[
\Phi_1 \Phi_2 \neq \Phi_2 \Phi_1 .
\]
However, the following still applies:

\[S \{ \mathcal{G}_t \} = S \{ \mathcal{G}_z \}. \] \hspace{1cm} (1.9)

The product is commutative, if the vector components of \(\mathcal{G}_t \) and \(\mathcal{G}_z \) are "parallel", or if:

\[a \mathcal{V} \{ \mathcal{G}_t \} + b \mathcal{V} \{ \mathcal{G}_z \} = 0 \hspace{0.5cm} \text{than:} \hspace{0.5cm} \mathcal{G}_t \mathcal{G}_z = \mathcal{G}_z \mathcal{G}_t \] \hspace{1cm} (1.10)

We define the "conjugate" of \(\mathcal{G} \) as:

\[\mathcal{G}^T = S \{ \mathcal{G}_t \} - \mathcal{V} \{ \mathcal{G}_r \} \] \hspace{1cm} (1.11)

therefore:

\[(\mathcal{G}^T)^T = \mathcal{G}. \] \hspace{1cm} (1.12)

It also follows from (1.8):

\[(\mathcal{G}_t \mathcal{G}_z)^T = \mathcal{G}_z^T \mathcal{G}_t^T \] \hspace{1cm} (1.13)

Further, see (1.5) and (1.6):

\[\mathcal{G} \mathcal{G}^T = \mathcal{G}^T \mathcal{G} = [S \mathcal{V} \{ \mathcal{G}_t \} + \mathcal{V} \{ \mathcal{G}_r \}] [S \mathcal{V} \{ \mathcal{G}_t \} - \mathcal{V} \{ \mathcal{G}_r \}] = \]

\[= S^2 \mathcal{V} \{ \mathcal{G}_t \} - \mathcal{V}^2 \{ \mathcal{G}_r \} = \]

\[= w^2 + x^2 + y^2 + z^2 = \]

\[= N \{ \mathcal{G} \} \] \hspace{1cm} (1.14)

This means:

\[\frac{\mathcal{G} \mathcal{G}^T}{N \{ \mathcal{G} \}} = \frac{\mathcal{G}^T \mathcal{G}}{N \{ \mathcal{G} \}} = 1. \]

so, by definition, the inverse of \(\mathcal{G} \) reads:

\[\mathcal{G}^{-1} = \frac{\mathcal{G}^T}{N \{ \mathcal{G} \}} \rightarrow \mathcal{G} \mathcal{G}^{-1} = \mathcal{G}^{-1} \mathcal{G} = 1. \] \hspace{1cm} (1.15)

or:

\[\mathcal{G}^{-1} = \frac{1}{w^2 + x^2 + y^2 + z^2} [w - i x - j y - k z] \]

Remark:

Because of (1.6), it follows from \(N \{ \mathcal{G} \} = 0 \) that \(\mathcal{G} = 0 \); therefore the inverse of \(\mathcal{G} \) is always defined, except when \(\mathcal{G} = 0 \).

Consequently, in quaternion algebra there occur no zero divisors.
Because furthermore, with (1.15):

\[\mathcal{G}_1 \mathcal{G}_2 \mathcal{G}_1^{-1} \mathcal{G}_2^{-1} = 1 \]

the following applies by definition:

\[\mathcal{G}_2^{-1} \mathcal{G}_1^{-1} = [\mathcal{G}_1, \mathcal{G}_2]^{-1} \] \hspace{1cm} (1.16)

This can be extended to products with more than two factors; suppose:

\[R = \mathcal{G}_1 \mathcal{G}_2 \mathcal{G}_3 \]

then, with (1.16):

\[R^{-1} = [\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3]^{-1} = \mathcal{G}_3^{-1} [\mathcal{G}_1, \mathcal{G}_2]^{-1} = \mathcal{G}_3^{-1} \mathcal{G}_2^{-1} \mathcal{G}_1^{-1} \] \hspace{1cm} (1.17)

1.3 A geometrical interpretation of quaternions.

The imaginary units i, j and k may be regarded as unit vectors in \(\mathbb{R}_3 \), composing together a right-handed trirectangular trihedral (see fig.1)

Then a quaternion \(q \) with scalar part:

\[\text{Sc}\{q\} = 0 \]

becomes a vector in \(\mathbb{R}_3 \):

\[q = 0 + i x + j y + k z \]

From (1.6) it follows that:

\[N\{q\} = \sqrt{x^2 + y^2 + z^2} = \|q\| : \text{"length" of } q \] \hspace{1cm} (1.18)

1.3.1 The geometrical significance of the quaternion quotient.

We consider two quaternions \(q_1 \) and \(q_2 \) whose scalar parts vanish:

\[q_1 = 0 + i x_1 + j y_1 + k z_1 \]
\[q_2 = 0 + i x_2 + j y_2 + k z_2 \]

Then, according to (1.8) the product of \(q_1 \) and \(q_2 \) is:

\[q_1 q_2 = -x_1 x_2 - y_1 y_2 - z_1 z_2 + i [y_1 z_2 - z_1 y_2] + \]
\[+ j [z_1 x_2 - x_1 z_2] + [x_1 y_2 - y_1 x_2] = \]
Because we consider x_1, y_1, and z_1, respectively x_2, y_2, and z_2, as components of two vectors in a rectangular cartesian coordinate system in \mathbb{R}^3, the laws of "vector analysis" can be applied to (1.19), so:

"scalar product":

$$x_1x_2 + y_1y_2 + z_1z_2 = q_1 \cdot q_2 = l_1l_2 \cos \alpha$$

"vector product":

$$\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = q_1 \times q_2 = e l_1l_2 \sin \alpha$$

(1.20)

Here α is the angle between two vectors and e is the unit normal vector on the plane through the two vectors, which, because the x-, y-, z-system is a right-handed trihedral system, fits in with the sense of rotation of q_1 to q_2.

There are two possibilities: (see fig.2)

a: reversed sense of rotation $q_1 \rightarrow q_2$:

$$e = e^\alpha \quad "upwards"$$

$$\alpha = \alpha^\alpha$$

b: clockwise sense of rotation $q_1 \rightarrow q_2$:

$$e = e^\beta \quad "downwards" \quad (e^\beta = -e^\alpha)$$

$$\alpha = \alpha^\beta = 2\pi - \alpha^\alpha$$

In view of (1.19) and (1.20), the product of q_1 and q_2 is:

$$q_1q_2 = -l_1l_2 \cos \alpha^\alpha + e^\alpha l_1l_2 \sin \alpha^\alpha =$$

$$= -l_1l_2 \cos \alpha^\beta + e^\beta l_1l_2 \sin \alpha^\beta$$

(1.21)

$$N[e^\alpha] = N[e^\beta] = 1.$$
According to (1.15) and (1.11):

\[q_2^{-1} = \frac{q_2^T}{N[q_2]} = -\frac{q_2}{l_2^2} \]

If, in (1.21) \(q \) is replaced by \(q_2^{-1} \), (1.21) passes consequently into:

\[q_1 q_2^{-1} = l_1 \cos \bar{\alpha} a - e^a l_2 \sin \bar{\alpha} a \]

(1.22)

Here the length-ratio

\[v = \frac{l_1}{l_2} \]

comes into play, consequently:

\[\ln v = \ln l_1 - \ln l_2 \]

We now follow the pattern of Baarda's "Polygon theory in the complex plane" [2] and define the angle \(\alpha \) in the horizontal plane as the difference of two directions \(r \):

\[\alpha = r_1 - r_2 \]

The angle \(\bar{\alpha} \) (in the plane of \(q_1 \) and \(q_2 \)) that fits with this choice is:

\[\bar{\alpha} = \bar{\alpha} a \]

Since the graduations of the horizontal circle of a theodolite are numbered clockwise (seen from above), a positive rotation on this circle is right-handed and fits in with \(e^b \). Replacing in (1.22) \(e^a \) by \(e^b \) one obtains:

\[q_1 q_2^{-1} = v \cos \bar{\alpha} + e^b v \sin \bar{\alpha} \]

with:

\[v = \frac{l_1}{l_2} ; \bar{\alpha} \approx r_1 - r_2 \]

(1.23)

The approximate equality for \(\bar{\alpha} \) in (1.23) is only valid when \(q_1 \) and \(q_2 \) are near-horizontal.

From (1.23) it becomes apparent that the four components of the quaternion quotient \(q_1 q_2^{-1} \) determine the shape of a triangle and also describe the spatial position of the plane of that triangle;

Suppose:

\[q_1 q_2^{-1} = D + i A + j B + k C \]

\[e = c + i n_1 + j n_2 + k n_3 \]

\[n_1^2 + n_2^2 + n_3^2 = 1 \]
consequently:

\[
\begin{align*}
A & \begin{cases} v \\ \alpha \end{cases} \text{ govern } \\
B & \begin{cases} n_2 \\ n_3 \end{cases} \text{ two out of the three components of the unitnormalvector}
\end{align*}
\]

The computation rules for \(v, \alpha, n_2 \text{ en } n_3 \) are:

\[
\begin{align*}
\alpha &= \frac{D}{\sqrt{B^2 + A^2 + B^2 + C^2}} \\
\cos \alpha &= \frac{D}{v}
\end{align*}
\]

If \(q_1 \) and \(q_2 \) lie approximately in the \(i-, j- \) plane of the system of coordinates and \(e \) "points downwards" (i.e. the theodolite is not upside down) the following applies: (see fig. 4)

\[
\begin{align*}
n_3 &= \pm 1 \\
\text{then } \alpha \text{ must be chosen such that:}
\end{align*}
\]

\[
\text{sign}\{\sin \alpha\} = \text{sign}\{C\}
\]

\[
\begin{align*}
n_1 &= \frac{A}{\sqrt{\sin \alpha}} \\
n_2 &= \frac{B}{\sqrt{\sin \alpha}} \\
n_3 &= \frac{C}{\sqrt{\sin \alpha}}
\end{align*}
\]

1.3.2 Decomposition into orthogonal components.

We consider the quaternions:

\[
\begin{align*}
q &; \quad \text{Sc}\{q\} = 0 \quad ; \quad N\{q\} = l_q^2 \\
e &; \quad \text{Sc}\{e\} = 0 \quad ; \quad N\{e\} = 1
\end{align*}
\]

According to (1.23) we obtain: (see fig. 5)

\[
e q^{-1} = \frac{1}{l_q} \left[e \cos \alpha + f \sin \alpha \right]
\]

Here, \(f \) is the unit normal vector on the plane through \(e \) and \(q \), so:

\[
N\{f\} = 1 \quad ; \quad \text{Sc}\{f\} = 0 \quad ; \quad \Rightarrow f^{-1} = -f
\]

therefore:

\[
\begin{align*}
[e q^{-1}]^{-1} &= l_q \left[e \cos \alpha - f \sin \alpha \right] \\
e [e q^{-1}]^{-1} &= l_q \left[e \cos \alpha - e f \sin \alpha \right] = \\
&= l_q \left[e \cos \alpha + e f^{-1} \sin \alpha \right]
\end{align*}
\]
According to (1.23):
\[e^{f^{-1}} = \cos \frac{\pi}{2} + q \sin \frac{\pi}{2} = q \]

Here \(g \) is the unit normal vector on the plane through \(e \) and \(f \), so \(g \) lies in the plane of \(e \) and \(q \) (see fig. 6);

Consequently:
\[e[qe^{-1}]^{-1} = l [e \cos \alpha + q \sin \alpha] \]

or:
\[e q e^{-1} = l [e \cos \alpha + q \sin \alpha] \]

is the "mirror image" of \(q \) in relation to \(e \) (1.24)

Remark: \(eqe^{-1} = e^{-1}qe \)

This means: (see fig. 7)
\[q - q' = \frac{1}{2} [q - e^lq e] \]: is the component of \(q \) perpendicular to \(e \)
\[q - q'' = \frac{1}{2} [q + e^lq e] \]: is the component of \(q \) parallel to \(e \) (1.25)

Remark:
Instead of the unit normal vector \(e \) used here, a vector \(d \) with \(N \{ d \} \neq 1 \) can also be used in (1.24) and (1.25).

1.3.3 Rotations.
We wish to rotate a quaternion (vector) \(q \) with \(Sq \{ q \} = 0 \) over an angle \(\theta \) about an axis (vector) \(e \); \(\theta \) is a right-handed rotation with respect to \(e \).

Assume: (see fig. 8)
\(q' \) is the vector after rotation
\(q' \) is the component of \(q \perp e \)
\(q'' \) is the component of \(q \parallel e \)

From (1.25) it follows that:
\[q' = \frac{1}{2} [q - e^lq e] \quad (1.26) \]
\[q'' = \frac{1}{2} [q - e^lq e] \quad (1.27) \]

According to (1.23) and because \(N \{ q' \} = N \{ q'' \} \), so \(v=1 \), it applies that:
\(q'q'^{-1} = \cos \theta + e \sin \theta \)
\[q'' = [\cos \theta + e \sin \theta] q' \]

We substitute (1.26) in the right-hand member and (1.27) in the left-hand member of this equation:

\[\frac{1}{2} [q^* - e^*q^*e] = [\cos \theta + e \sin \theta] \frac{1}{2} [q - e^*q^*e] \]

The components of \(q \) and \(q^* \) parallel to \(e \) are equal to each other; therefore, see (1.25):

\[\frac{1}{2} [q^* + e^*q^*e] = \frac{1}{2} [q + e^*q^*e] \]

The addition of the equations I and II now leads to:

\[q^* = \left[\cos \frac{\theta}{2} + e \sin \frac{\theta}{2} \right] q \left[\cos \frac{\theta}{2} - e \sin \frac{\theta}{2} \right] \]

Now assume that the "rotation quaternion" \(p \) is defined as:

\[p = \cos \frac{\theta}{2} + e \sin \frac{\theta}{2} \quad (1.28) \]

then III becomes the general rotation formula of quaternion algebra:

\[q^* = p \cdot q \cdot p^{-1} \quad (1.29) \]

Two important properties apply here:

\[N\{q^*\} = N\{q\} \quad (1.30) \]
\[Sc\{q^*\} = Sc\{q\} \]

In (1.29) the norm of a rotation quaternion need not equal unity. To show this, let \(h \) be a scalar, let \(N\{p\} = 1 \) and define:

\[p = h \cdot p \]
\[p^* = \frac{1}{h} \cdot p^{-1} \]
\[q^* = p \cdot q \cdot p^{-1} = p \cdot q \cdot \frac{1}{h} \cdot p^{-1} = \frac{1}{h} \cdot (p \cdot q \cdot p^{-1}) \]

From the derivation of the rotation quaternion it follows that the four components comply with the following "form-rule":
This will prove important for the differentiation of rotation quaternions, because also
\[\mathbf{p} + \Delta \mathbf{p} \]
must of course comply with (1.32).

The expression (1.29) can also be used for the description of a rotation of the coordinate system over an angle \(\theta \) about an axis \(\mathbf{e} \):

\[
\begin{bmatrix}
i^1, j^1, k^1
\end{bmatrix}
\frac{\theta}{\mathbf{e}}
\begin{bmatrix}
i^2, j^2, k^2
\end{bmatrix}
\]

A rotation of the coordinate system over an angle \(\theta \) about an axis \(\mathbf{e} \) is, in fact, equivalent to the rotation of the vectors over \(-\theta\) about \(\mathbf{e} \), so, with the following rotation quaternion:

\[
\mathbf{p} = \cos \frac{\theta}{2} \mathbf{e} - \sin \frac{\theta}{2} \mathbf{e}
\]
(1.32)

Let the vector \(\mathbf{q} \) be described on two different systems (1) and (2) (see fig. 9):

\[
\begin{align*}
\mathbf{q}^{(1)} &= w^1 + i^1 x^1 + j^1 y^1 + k^1 z^1 \\
\mathbf{q}^{(2)} &= w^2 + i^2 x^2 + j^2 y^2 + k^2 z^2
\end{align*}
\]

Then, introducing the notation \(\mathbf{p} = \mathbf{p}_{21} \) for the rotation quaternion transforming \(\mathbf{q}^{(1)} \) into \(\mathbf{q}^{(2)} \), the rotation formula is:

\[
\mathbf{q}^{(2)} = \mathbf{p}_{21} \mathbf{q}^{(1)} \mathbf{p}_{21}^{-1}
\]
(1.33)

The coordinate system rotates about \(\mathbf{e} \); therefore:

\[
\mathbf{e}^{(1)} = \mathbf{e}^{(2)}
\]

which means that the rotation quaternion \(\mathbf{p}_{21} \) itself is invariant relative to the rotation of system (1) to system (2). This also becomes apparent from:

\[
\mathbf{p}_{21} \mathbf{p}_{21}^{(1)} \mathbf{p}_{21}^{-1} = \mathbf{p}_{21}^{(2)} = \mathbf{p}_{21}^{(2)} = \mathbf{p}_{21}
\]
(1.34)

And, since from the definition of the rotation quaternion it directly follows that:

\[
\mathbf{p}_{12} = \mathbf{p}_{21}^{-1} \quad ; \quad \mathbf{p}_{21} = \mathbf{p}_{12}
\]
(1.35)
it also applies that:

\[p_{21} = p_{21}^{-1} \]

We can combine (1.34) and (1.36) to:

\[p_{21}^{(1)} = p_{21}^{(2)} \]
\[p_{12}^{(1)} = p_{12}^{(2)} \]

This implies that the components of a rotation quaternion apply to both systems, whose rotation relative to each other is described by that quaternion.

1.3.4 Successive rotations.

On what system should the rotation quaternion be described in the case of successive rotations of the system?

We first consider two successive vector rotations of the vector \(q \): (see fig. 10)

\[q_1 \rightarrow p \rightarrow q_2 \rightarrow \overline{p} \rightarrow q_3 \]

The vectors \(q_1, q_2 \) and \(q_3 \) and the rotations \(p \) and \(\overline{p} \) are all described relative to the system: \([i', j', k']\).

According to (1.28) and (1.29) the rotation formulae are:

First step:

\[q_{21}^{(1)} = \overline{p} q_{12}^{(1)} \overline{p}^{-1} \]

with:

\[\overline{p} = \cos \frac{1}{2} \theta + \sin \frac{1}{2} \theta \]

Second step:

\[q_{32}^{(1)} = \overline{p} q_{21}^{(1)} \overline{p}^{-1} \]

with:

\[\overline{p} = \cos \frac{1}{2} \theta + \sin \frac{1}{2} \theta \]...

Subsequently, we consider the two opposite rotations of the system:

\[[i', j', k'] \rightarrow p_{24} \rightarrow [i^2, j^2, k^2] \rightarrow p_{32} \rightarrow [i^3, j^3, k^3].\]

Now the following must apply:

\[q_{3}^{(3)} = q_{2}^{(2)} = q_{1}^{(1)} \]
According to (1.33) the rotation formula for the first step reads:

\[q_{1}^{(2)} = p_{21} q_{1}^{(1)} p_{21}^{-1} \]

with:
\[p_{21} = \cos \frac{\theta}{2} - \frac{\mathbf{e}}{r} \sin \frac{\theta}{2} = \bar{p}^{-1}. \]

Hence:

\[q_{1}^{(2)} = \bar{p} q_{1}^{(1)} \bar{p} \]

(1.42)

Subsequently, for the second step:

\[q_{1}^{(3)} = p_{32} q_{1}^{(2)} p_{32}^{-1} \]

In this formula, \(p_{32} \) is, however, according to (1.37), described on system (2) or system (3):

\[p_{32} = p_{32}^{(2) \text{ or } (3)} = p_{21} p_{31}^{-1} \]

In this expression \(p_{32}^{(1)} \) represents the opposite rotation of \(\bar{p} \), so:

\[p_{32}^{(1)} = \cos \frac{\theta}{2} - \frac{\mathbf{e}}{r} \sin \frac{\theta}{2} = \bar{p}^{-1}. \]

(1.43)

Therefore:

\[q_{1}^{(3)} = \bar{p} \bar{p} q_{1}^{(2)} \bar{p} \bar{p} \]

From (1.42) it follows:

\[\bar{p} q_{1}^{(2)} \bar{p} = q_{1}^{(1)} \]

Hence:

\[q_{1}^{(3)} = \bar{p} q_{1}^{(1)} \bar{p} \bar{p} \]

(1.44)

To verify this result, we apply (1.42) to \(q_{2} \) instead of \(q_{1} \):

\[q_{2}^{(2)} = \bar{p} q_{2}^{(1)} \bar{p} ; \]

by (1.38):

\[= \bar{p} \bar{p} q_{2}^{(1)} \bar{p} \bar{p} \]

\[= q_{1}^{(1)} \]

(1.45a)

and, subsequently (1.44) to \(q_{3} \) instead of \(q_{1} \):
Finally, we convert (1.44) to the form with system rotations instead of vector rotations:

\[
\frac{1}{-1} \mathbf{O} = \frac{1}{(1) \text{ or } (2)} \mathbf{P}_{21} \mathbf{P}_{21} \mathbf{P}_{21} \mathbf{P}_{21} \mathbf{P}_{21} \mathbf{P}_{21} \mathbf{P}_{21} \mathbf{P}_{21} \mathbf{P}_{21} \mathbf{P}_{21}
\]

Substitution in (1.44) leads to:

\[
\mathbf{q}_{\mathbf{L}} = \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32}
\]

In view of (1.37) this may be read as:

\[
\mathbf{q}_{\mathbf{L}} = \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32}
\]

It being agreed that rotation quaternions are always described on one of their own systems, the top-indices may be omitted; thus the general rotation formula for system rotations becomes:

\[
\mathbf{q}_{\mathbf{L}} = \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{q}_{\mathbf{L}} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32}
\]

or, in view of (1.35):

\[
\mathbf{q}_{\mathbf{L}} = \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{q}_{\mathbf{L}} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32} \mathbf{p}_{32}
\]

1.4 Differentiation of quaternions.

1.4.1 The difference quantities of quaternion functions.

We consider the quaternion \(\mathcal{Q} \):

\[
\mathcal{Q} = w + i x + j y + k z
\]

Suppose the components \(w, x, y \) and \(z \) are functions of (scalar) quantities \(a_i \):
\[w = w(..., a_i, ...) \]
\[x = x(..., a_i, ...) \]
\[y = y(..., a_i, ...) \]
\[z = z(..., a_i, ...) \]

so that:
\[\Phi = w(..., a_i, ...) + i x(..., a_i, ...) + j y(..., a_i, ...) + k z(..., a_i, ...) \]

The introduction of the difference quantities \(\Delta a_i \) then leads to the difference quantity \(\Delta \Phi \) of the quaternion, according to:
\[\Phi + \Delta \Phi = w(..., a_i + \Delta a_i, ...) + i x(..., a_i + \Delta a_i, ...) + \ldots \]

Expanding the four functions \(w, x, y \) and \(z \) in Taylor's series, and neglecting terms of the second and higher orders, we obtain:
\[\Phi + \Delta \Phi = w(..., a_i, ...) + \sum_i \frac{\partial w}{\partial a_i} \Delta a_i + \]
\[+ i \left[x(..., a_i, ...) + \sum_i \frac{\partial x}{\partial a_i} \Delta a_i \right] + \]
\[+ j \left[y(..., a_i, ...) + \sum_i \frac{\partial y}{\partial a_i} \Delta a_i \right] + \]
\[+ k \left[z(..., a_i, ...) + \sum_i \frac{\partial z}{\partial a_i} \Delta a_i \right] \]

In view of (1.50) we thus obtain:

\[\Delta \Phi = \sum_i \frac{\partial w}{\partial a_i} \Delta a_i + i \sum_i \frac{\partial x}{\partial a_i} \Delta a_i + j \sum_i \frac{\partial y}{\partial a_i} \Delta a_i + k \sum_i \frac{\partial z}{\partial a_i} \Delta a_i \]

Subsequently, we consider the quaternion function \(R \) of several quaternions \(\Phi_i \):
\[R = R(..., \Phi_i, ...) \]

The introduction of quaternion differences \(\Delta \Phi_i \), see (1.51), then leads to the difference \(\Delta R \) of a quaternion function:
\[R + \Delta R = R(..., \Phi_i + \Delta \Phi_i, ...) \]

In this formula, too, the right-hand member can be expanded in Taylor's series. But, because of the non-commutativity of multiplication, it is essential to take account of the sequence of the factors.
\[R = \Phi_i \Phi_2 \]
\[R + \Delta R = [\Phi_i + \Delta \Phi_i][\Phi_2 + \Delta \Phi_2] = \]
\[= \Phi_i \Phi_2 + \Delta \Phi_i \Phi_2 + \Delta \Phi_i \Phi_2 + \ldots \]
The difference quantity of the inverse quaternion:

Let:
\[R = \mathcal{Q}^{-1} \]

and:
\[\mathcal{R} + \Delta \mathcal{R} = \left[\mathcal{Q} + \Delta \mathcal{Q} \right]^{-1} \]

so, multiplied by \(\mathcal{Q} + \Delta \mathcal{Q} \):
\[[\mathcal{R} + \Delta \mathcal{R}] [\mathcal{Q} + \Delta \mathcal{Q}] = 1 \]

hence:
\[\mathcal{R} \mathcal{Q} + \mathcal{R} \Delta \mathcal{Q} + \Delta \mathcal{R} \mathcal{Q} = 1 \]

and, since \(\mathcal{R} \mathcal{Q} = 1 \):

\[\Delta \mathcal{Q} = -\mathcal{R} \Delta \mathcal{Q} \mathcal{Q} \]

hence:
\[\Delta R = -\mathcal{Q}^{-1} \Delta \mathcal{Q} \mathcal{Q}^{-1} \]

or:
\[\Delta [\mathcal{Q}^{-1}] = -\mathcal{Q}^{-1} \Delta \mathcal{Q} \mathcal{Q}^{-1} \]

(1.53)

1.4.2.
The difference quantity of rotation quaternions

We consider the rotation quaternion \(\mathcal{P} \) for the system rotation; see (1.33):

\[\mathcal{P} = \cos \frac{1}{2} \mathcal{e} - \mathcal{e} \sin \frac{1}{2} \mathcal{e} \]

According to (1.52):

\[\mathcal{P} + \Delta \mathcal{P} = \cos \frac{1}{2} [\mathcal{e} + \Delta \mathcal{e}] - [\mathcal{e} + \Delta \mathcal{e}] \sin \frac{1}{2} [\mathcal{e} + \Delta \mathcal{e}] \]

(1.54)

If \(\mathcal{P} = \mathcal{P}_{12} \), the following applies in this expression:

\[\mathcal{e} = \mathcal{e}^{(i)} \text{ or } (a) \]

Of course this does not apply to the difference quantity \(\Delta \mathcal{e} \); suppose:

\[\Delta \mathcal{e} = \mathcal{e}^{(i)} \]

(1.55)

is defined only on the (1)-system; then:

\[\Delta \mathcal{e}^{(2)} = \mathcal{P}_{21} \mathcal{e}^{(i)} (p_{01})^{-1} \neq \Delta \mathcal{e}^{(i)} \]

We will now consider the meaning of this for \(\mathcal{P} + \Delta \mathcal{P} \); \(\mathcal{P} + \Delta \mathcal{P} \) must comply with the "form-rule" (1.32). This means:

I: \(N \{ e + \Delta e \} = 1 \)

II: \[\cos \frac{3}{4} \{ e + \Delta e \} + \sin \frac{3}{4} \{ e + \Delta e \} = 1 \]

II has been complied with.
I means, since \(N\{e\} = 1 \):

\[
e + \Delta e = e
\]

either: \(\Delta e = 0 \) \hspace{1cm} \text{(1.56)}

or: \(\Delta e \perp e \) \((N\{\Delta e\} \ll N\{e\}) \) \hspace{1cm} \text{(1.56)}

\((1.56^a)\) is complied with, if the axis of rotation is, for example, defined as one of the three unit vectors of the system:

\[e = i \quad \text{or} \quad e = j \quad \text{or} \quad e = k\]

From section 2.3 it will become apparent that this situation applies to the five steps into which an "astronomical" rotation is split up.

\((1.56^b)\) is complied with, if \(Sc \{ e \Delta e \} = 0 \).

When: \(e = 0 + ia + jb + kc \),

this is the case if:

\[a \Delta a + b \Delta b + c \Delta c = 0\]

This is the case if \(c \) is defined as a function of \(a \) and \(b \):

\[c = \sqrt{1 - a^2 - b^2}\]

\[\Delta c = \frac{a}{c} \Delta a - \frac{b}{c} \Delta b\]

This means that in a rotation quaternion, a maximum number of three independent variables can occur:

the angle of rotation \(\theta \) and two out of three components of the axis of rotation \(e \). This is in agreement with the function of the rotation quaternion.

Further elaboration of \((1.54)\), using:

\[p + \Delta p = \cos \frac{\theta}{2} \Delta \theta - \frac{1}{2} \sin \frac{\theta}{2} \Delta e - [e + \Delta e] \left[\sin \frac{\theta}{2} \Delta e + \frac{\theta}{2} \cos \frac{\theta}{2} \Delta \theta \right]\]

Premultiplication by:

\[p^{-1} = \cos \frac{\theta}{2} e + e \sin \frac{\theta}{2}\]

then results in:

\[p^{-1} \Delta p = -\frac{1}{2} e \Delta e - \sin \frac{\theta}{2} e \cos \frac{\theta}{2} \Delta e - e \Delta e \sin \frac{\theta}{2} e\]

\hspace{1cm} \text{(1.57)}

From this it becomes apparent that, if \((1.56)\) has been fulfilled:

\[Sc \{ p^{-1} \Delta p \} = -\sin \frac{\theta}{2} e : Sc \{ e \Delta e \} = 0\]

\hspace{1cm} \text{(1.58)}
This also applies to a rotation composed of several steps, for example:

\[p_{rc} = p_{ra} p_{ab} p_{bc} \]

Then we obtain, according to (1.52), etc.:

\[\Delta p_{rc} = \Delta p_{ra} p_{ab} p_{bc} + p_{ra} \Delta p_{ab} p_{bc} + p_{ra} p_{ab} \Delta p_{bc} \]

\[= \Delta p_{rc} = \Delta p_{bc} p_{ab} p_{ra} \]

Hence:

\[(p^{-1} \Delta p)^{-1} = (\Delta p)_{ra}^{-1} (p^{-1} \Delta p)_{ab}^{-1} (p^{-1} \Delta p)_{bc}^{-1} \]

In this expression we find, according to (1.58):

\[S_c \{ (p^{-1} \Delta p)_{ra} \} = S_c \{ (p^{-1} \Delta p)_{ab} \} = S_c \{ (p^{-1} \Delta p)_{bc} \} = 0 \]

Therefore, in view of (1.30^b), it also applies that:

\[S_c \{ (p^{-1} \Delta p)_{rc} \} = 0 \quad (1.59) \]

The structure of the quantity \((p^{-1} \Delta p)\) is discussed in greater detail in section 2.3.

The coordinate system in which \((p^{-1} \Delta p)\) is defined.

In (1.55) it was already found that \(\Delta e\) and therefore also \(\Delta p\), in contrast with \(p\), are defined on one of the two systems; therefore this also applies to \((p^{-1} \Delta p)\):

\[(p^{-1} \Delta p)_{ra} = e^{-1} \sin [\theta + \Delta \theta]_r [\Delta e^{(a)}]_r [\sin [\theta + \Delta \theta]_r = e^{-1} \Delta p_{ra}^{(a)}] \quad (1.60) \]

Now, by definition:

\[(p^{-1} \Delta p)^{(r)}_{ra} = (p^{-1} \Delta p)^{(a)}_{ra} p_{ra} \]

Hence:

\[(p^{-1} \Delta p)^{(r)}_{ra} = (p^{-1} \Delta p)^{(a)}_{ra} \quad (1.61) \]

If \(p\) is of the type (1.56^a), i.e. \(\Delta e = 0\):

\[V_c \{ p \} = - e \sin \frac{\theta}{2} \Delta e. \]

\[V_c \{ \Delta p \} = - e \frac{\theta}{2} \cos \frac{\theta}{2} \Delta e. \]

So:

\[(a \text{ is a scalar}) \]

\[V_c \{ p \} = a V_c \{ \Delta p \} \quad \text{if} \quad \Delta e = 0 \]
In view of (1.10) Δp and p are now indeed commutative:

This means:

$$
\Delta p^{(r)}_{ra} = p^{(a)}_{ra} \Delta p^{(a)}_{ra} p^{-1}_{ra} = \Delta p^{(a)}_{ra} p^{(a)}_{ra} p^{-1}_{ra}
$$

hence:

$$
\Delta p^{(r)}_{ra} = \Delta p^{(a)}_{ra} \text{ if } \Delta e = 0.
$$

therefore also:

$$
(p^{-1} \Delta p)^{(r)}_{ra} = (p^{-1} \Delta p)^{(a)}_{ra} \text{ if } \Delta e = 0
$$

(1.62)

This formula too, will turn out to be important in section 2.3, where astro­nomical rotations, for which $\Delta e=0$, are discussed.

1.5 Isomorphism with matrices.

In the manuscript [8] W. Baarda has already developed the basic thoughts used in this section.

The partial isomorphism between quaternions and matrices of the order 4 discussed here is very important in two respects:

-It constitutes the basis for the application of the present theory by means of computer programmes,

-The notation of quaternion equations, especially difference equations, in isomorphic matrices is easier interpreted than the notation in quaternions; this may be an advantage in the study of theory and in the analysis of linear dependencies.

A matrix which is isomorphic with quaternions with respect to the quaternion-product, may be derived in a "natural way", i.e. directly from the rules of multiplication (1.8).

We consider the quaternion product:

$$
\mathcal{G} = q_1 q_2
$$

(1.63)

The components W,X,Y,Z of the quaternion product \mathcal{G} are composed according to (1.8). On the basis of Baarda's idea, we now arrange these terms according to the components of q_2 and q_1; so:

$$
W = w_1 w_2 - x_1 x_2 - y_1 y_2 - z_1 z_2,
$$

$$
X = x_1 w_2 + w_1 x_2 + y_1 y_2 + z_1 z_2 = x_1 w_1 + w_2 x_2 + z_2 y_1 - y_2 z_1,
$$

$$
Y = y_1 w_2 + z_1 x_2 + w_1 y_2 - x_1 z_2 = y_2 w_1 - z_2 x_1 + w_2 y_1 + x_2 z_1,
$$

$$
Z = z_1 w_2 - y_1 x_2 + x_1 y_2 + w_1 z_2 = z_2 w_1 + y_2 x_1 - x_2 y_1 + w_2 z_1
$$
This can be represented by matrices in the following two ways:

\[
\begin{pmatrix}
W \\
X \\
Y \\
Z
\end{pmatrix} =
\begin{pmatrix}
w_1 & -x_1 & -y_1 & -z_1 \\
x_1 & w_1 & -z_1 & y_1 \\
y_1 & z_1 & w_1 & -x_1 \\
z_1 & -y_1 & x_1 & w_1
\end{pmatrix}
= \begin{pmatrix}
w_2 & -x_2 & -y_2 & -z_2 \\
x_2 & w_2 & z_2 & -y_2 \\
y_2 & z_2 & w_2 & x_2 \\
z_2 & y_2 & -x_2 & w_2
\end{pmatrix}
= \begin{pmatrix}
w_1 \\
x_1 \\
y_1 \\
z_1
\end{pmatrix}
\]

(1.64)

To denote these matrices we choose:

- () for the column matrices
- () for the square matrix, showing the original sequence \((q_1, q_2)\)
- () for the square matrix, showing the inverted sequence \((q_2, q_1)\)

As basic letter we take, of course, the letter used as symbol for the quaternions in (1.63); thus (1.64) will become:

\[
(q \circ p) = (q_1)(q_2) = (q_2)(q_1)
\]

(1.65)

This can be extended to products of square matrices; from (1.64) it follows directly that:

\[
(q \circ p) = (q_1)(q_2) \\
(q \bar{\circ} p) = (q_2)(q_1)
\]

(1.66)

Furthermore, it becomes directly apparent that both the matrix in (1.66) (normal sequence) and that in (1.66b) (inverted sequence) can be applied for the sum and the difference of quaternions.

Because of (1.15) the inverse of \(q_1\) is:

\[
q_1^{-1} = \frac{1}{N(q_1)} \left[w_1 - i x_1 - j y_1 - k z_1 \right]
\]

The isomorphic matrix for \(q^{-1}\) can thus be obtained by inverting in (1.64) the signs of the components \(x, y, \text{and } z\), and by leaving those of \(w\) unchanged. In doing so, the transposed matrix is obtained!

Hence: (* transpose of matrix)

\[
(q^{-1}) = \frac{1}{N(q)} (q)^* \\
(\bar{q}^{-1}) = \frac{1}{N(\bar{q})} (\bar{q})^*
\]

(1.67)

Furthermore, it now becomes apparent that:

\[
(q^{-1})(q) = \frac{1}{N[q]} (q)^*(q) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

(1.68)
Through post-multiplication of \((1.68)\) by the inverse matrix \((q)^{-1}\), we obtain:

\[
(q^{-1}) = (q)^{-1}
\]

(1.69)

There are consequently two types of isomorphic matrices for quaternions, viz. one for the normal sequence and one for the inverted sequence of the factors of a quaternion product. This will prove to be very important, because owing to this, the awkward non-commutativity can be avoided; in the column version (see 1.65) of the matrix product the two types can, in fact, be used in mixed form.

Let:

\[
\mathbf{q} = q_1 q_2 q_3.
\]

then, according to (1.65):

\[
(\mathbf{q}) = (q_1)(q_2)(q_3)
\]

(1.70a)

but also: (notation: \((q_1 q_2) = (q_1)(q_2)\), etc.)

\[
(\mathbf{q}) = (q_3)(q_1)(q_2)
\]

(1.70b)

and also, see also (1.66b):

\[
(\mathbf{q}) = (q_2 q_3)(q_1) = (q_3)(q_2)(q_1)
\]

(1.70c)

Each of the factors of a quaternion product can therefore be entered as last factor in the isomorphic matrix product. With reference to difference equations, this affords the possibility of placing the difference quaternion at the end.

Rotations.

The general rotation formula (1.33):

\[
q^{(2)}_2 = P_{21} q^{(1)}_1 P_{21}^{-1}
\]

therefore reads in isomorphic matrices: (see 1.66a)

\[
(q^{(2)}) = (p_{21})(q^{(1)}_1)(p_{21})^*
\]

Here, too, the sequence may be changed, by passing to the "column" version (1.65); we place the factor \(q^{(1)}_1\) at the end of the right hand member:

\[
(\mathbf{q}) = (\mathbf{p}_{21})^*(\mathbf{p}_{21})(\mathbf{q}^{(1)}).
\]

(1.71)

If here:

\[
p = a + i a + j b + k c
\]

\[
q^{(1)} = w + i x + j y + k z
\]

\[
q^{(2)} = W + i X + j Y + k Z
\]
this becomes, in accordance with (1.64):

\[
\begin{pmatrix}
W \\
X \\
Y \\
Z
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & d^2 + a^2 - b^2 - c^2 & 2[-dc + ab] & 2[db + ac] \\
0 & 2[dc + ab] & d^2 - a^2 + b^2 - c^2 & 2[-da + bc] \\
0 & 2[-db + ac] & 2[da + bc] & d^2 - a^2 - b^2 + c^2
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
\]

(1.72)
THE INTRODUCTION OF GEODETIC AND ASTRONOMICAL OBSERVATION VARIATES.

2.1 Introduction

In this section we shall consider how the geodetic and geodetic-astronomical observation variates can be linked with the set of concepts developed in Chapter 1.

The basic considerations are given in the present section; it deals, in particular, with the introduction of length units.

Starting from the formulation by Baarda [8], this is worked out, in greater detail, in section 2.2 for the three types of "terrestrial" observation variates, which are combined for each side of a network P_iP_k in the quaternion:

$$q_{ik}$$

and in section 2.3 for the astronomical observation variates, with which, for each couple of local systems (m) and (n) a rotation quaternion:

$$p_{mn}$$

is established.

The relation between the astronomical quantities "longitude" λ and "latitude" φ on the one hand and the zenith angle on the other is established by the k-vectors of the local systems, to be defined as the direction of local gravity, i.e. as "zero direction" for longitude, latitude and zenith angle. The astronomical orientation unknowns (azimuth) and the terrestrial directions r are then defined in the plane of the i- and j-vectors.

Rotations.

Let an orthogonal trihedral of unit vectors be defined in each station P_m:

$$i_m, j_m, k_m : (m) - system \tag{2.1}$$

These "local systems" can pass into each other through a rotation (similarity transformation without translation and scale). We consider the rotation of the (m)-system to the (n)-system, in the first place as vector rotation of the unit vectors according to (1.28) and (1.29):

$$i_n^{(m)} = p_i i_m^{(m)} p_i^{-1} \tag{2.2}$$
$$j_n^{(m)} = p_j j_m^{(m)} p_j^{-1}$$
$$k_n^{(m)} = p_k k_m^{(m)} p_k^{-1}$$
with the rotation quaternion:

\[p = \cos \frac{1}{2} \theta + e \sin \frac{1}{2} \theta \]

Furtheron we shall use the system rotation according to (1.33); so:

\[q = p_{nm} q^{(m)} p_{nm}^{-1} \]

with:

\[p_{nm} = \cos \frac{1}{2} \theta \]

Units of length

From (2.2) it follows that the "lengths" of the unit vectors of all systems are equal to each other:

\[N\{i_n^{(m)}\} = N\{i_m^{(m)}\} = 1; \text{ etc.} \]

"algebraic unit of length"

The way of introducing geometry thus means that the "algebraic" unit of length (= length of the unit vectors) acts as unit of length of the computation system. The question of its "magnitude" is, in principle, not important; on this subject, one could imagine the metre, or any other artificial unit. From section 4.2 it will appear that, for reasons connected with computation, it will be wise to choose this unit such that the lengths of the sides of the network in the computation system are of the order of magnitude 1. (For example, it is possible to choose a multiple of the metre, viz. 500 or 1,000 or 10,000 m.)

In addition, we must define an instrumental unit of length for each local system. Though it will appear from section 2.2 that the computation model may be established, using quotients of these instrumental units of length, we shall explicitly define the relation between the instrumental units and the algebraic unit by the quantities \(\lambda_m \):

\[\lambda_m \text{ is the length(magnitude) of the instrumental unit of length of the } (m)\text{-system, expressed in the algebraic unit (= length of the unit vectors).} \]

From section 3.4 it will appear that the instrumental units of length must be considered as derived variates. In section 4.4 they are linked, as a group, to the length of one of the sides of the network \(P_P \), which, for this purpose, is considered as non-stochastic and thus acts, in fact, as the "absolute" unit of length for the network; this is an aspect of the theory of the "S-transformations" (Dutch: Schrankingstransformaties).

Summarizing, we may thus recognize three "types" of length units:

(see fig. 13)
1. the "algebraic" unit of length; an aid for computation, its magnitude being approximately equal to the average lengths of the sides: \(f \) metre.

2. The group of instrumental length units: stochastic realisations of the metre, therefore:
 \[\overline{\Delta} \approx \frac{1}{f} \]

3. The "unit of the S-system"; the non-stochastic length of the side \(P_i P_s \)

All notations of vectors, units of length and length factors used in the following chapters are summarized in next scheme: (stochastic variates are underlined)

<table>
<thead>
<tr>
<th>Vectors (q)</th>
<th>Units of length</th>
<th>Length factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{ik}^{(i)}) (S_{ik})</td>
<td>(\overline{\Delta}_i \approx \frac{1}{f}) ((\approx 1) metre)</td>
<td>(\overline{\Delta}_i = \frac{\overline{\Delta}r}{\overline{\Delta}r} = \frac{S{ril}}{S{rij}})</td>
</tr>
<tr>
<td>(q_{ik}^{(r)}) (\overline{\Delta}r S{ik})</td>
<td>(\overline{\Delta}_r \approx \frac{1}{f})</td>
<td>(\overline{\Delta}_r = \frac{\overline{\Delta}i}{\overline{\Delta}r} = \frac{S{rij}}{S{rij}})</td>
</tr>
<tr>
<td>(q_{ik}^{(o)}) (\overline{\lambda}^0 \overline{\Delta}r S{ik})</td>
<td>(\overline{\lambda}^0 \approx \frac{1}{f})</td>
<td>(\overline{\lambda}^0 = \frac{1}{f})</td>
</tr>
<tr>
<td>(q_{ik}^{(r)}) (\overline{\lambda}^0 \left[\overline{\Delta}r + \varepsilon \right] \left[S{ik} + \varepsilon \right])</td>
<td>(\overline{\lambda}_r = \overline{\lambda}_r + \varepsilon)</td>
<td>(\overline{\lambda}r = \frac{S{rs}}{S_{rs} + \varepsilon})</td>
</tr>
<tr>
<td>(q_{ik}^{(r)}) (S_{rs} + \varepsilon)</td>
<td>(\overline{\lambda}r = \frac{S{rs}}{S_{rs} + \varepsilon})</td>
<td>"S-transformation"</td>
</tr>
</tbody>
</table>

2.2 The terrestrial-geodetic observation variates.

Remark: In the following sections, the observation variables will always be considered as stochastic variates and will therefore be underlined.

Definitions.

From station \(P_i \), the distances \(s_{ik} \) to stations \(P_k \) are measured:

\[s_{ik} \text{ is the length of side } P_i P_k \text{ expressed in the instrumental length unit } \overline{\lambda}_i (\overline{\lambda}_i \approx 1 \text{ metre}) \]
By means of a theodolite established in \(P_i \), the two "polar coordinates" of the spatial vector \(P_i P_k \) can be measured:

- the zenith angle \(\theta_{ik} \) and the direction \(r_{ik} \):

\[
\theta_{ik} \text{ is the angle between the vector } P_i P_k \text{ and the upward direction of the first axis of the theodolite set up in } P_i; \tag{2.6}
\]

\[
r_{ik} \text{ is the angle between the zero direction of the horizontal circle and the projection of the vector } P_i P_k \text{ on the plane of that circle.} \tag{2.7}
\]

Since the first axis of the theodolite is perpendicular to the horizontal circle, the local system (orthogonal trihedral \(i, j, k \)) can be defined by linking it up as follows with the theodolite: (see fig. 14)

- the \(i \)-vector lies in the plane of the horizontal circle, in the "zero direction"
- the \(k \)-vector lies in the part of the first axis "pointing downwards"
- the \(j \)-vector completes a right-handed system \(i, j, k \).

By (1.18), the spatial vector \(P_i P_k \) can now be expressed as quaternion \(q_{ik} \) with a scalar part \(= 0 \), by conversion of the rectangular coordinate differences \(x, y, z \) to polar coordinates \(s, r, \theta \):

\[
q_{ik}^{(i)} = 0 + i \frac{r_{ik}}{s_{ik}} \sin \theta_{ik} + j \frac{s_{ik}}{s_{ik}} \sin r_{ik} \sin \theta_{ik} - k \frac{s_{ik}}{s_{ik}} \sin \theta_{ik} \tag{2.9}
\]

We can pass to the "algebraic" unit of length through multiplication by \(\lambda_i \) \(= \text{(approx. } 1/f) \):

\[
q_{ik}^{(i)} = \lambda_i q_{ik}^{(i)} \quad \text{and} \quad \sqrt{N[q_{ik}^{(i)}]} = \lambda_i s_{ik} \tag{2.10}
\]

The rotation to another local system \((r) \) is made, using the rotation quaternion \(p_{ri} \); see (2.3):

\[
q_{ik}^{(r)} = p_{ri} q_{ik}^{(i)} p_{ri}^{-1} \tag{2.11}
\]

On the analogy of (2.10), we now pass to:

\[
q_{ik}^{(r)} = \lambda_r q_{ik}^{(r)} \tag{2.12}
\]
The substitution of (2.10) and (2.12) in (2.11) then gives the transformation between the two local systems (i) and (r):

\[\lambda_r q_{ik}^{(r)} = \lambda_i P_{ri} q_{ik}^{(i)} P_{ri}^{-1} \]

(2.12')

In order to obtain a more logical arrangement of the observation variates on the one hand and the transformation variates on the other, we elaborate this as follows:

\[q_{ik}^{(r)} = \lambda_r^{(i)} P_{ri} q_{ik}^{(i)} P_{ri}^{-1} \]

Finally, the introduction of the "length factor"

\[\lambda_r = \lambda_i \]

leads to the general transformation formula for local instrumental systems:

\[\chi_{ik}^{(r)} = \lambda_r^{(i)} P_{ri} q_{ik}^{(i)} P_{ri}^{-1} \]

(2.14)

is the vector \(P_i P_k \), described relative to the unit vectors and the unit of length of the (r)-system.

Remark: The algebraic unit of length is no longer involved here.

Subsequently, we consider, similar to Baarda, [8] the left-division of two vectors measured from \(P_j \), viz. \(P_i P_k \) and \(P_j P_j \); see fig. 15:

\[\chi_{ijk}^{(i)} = q_{ik}^{(i)} q_{ij}^{(i)} \]

In view of (1.23) this is:

\[\chi_{ijk}^{(i)} = v_{ijk} [\cos \omega_{ijk} + e_{ijk} \sin \omega_{ijk}] \]

with:

\[v_{ijk} = \frac{s_{ijk}}{a_{ij}} \]

Therefore, also the unit of length of the local (i)-system does not occur in (2.15).

The variate \(\chi_{ijk}^{(i)} \) is therefore dimensionless, covering all the terrestrial observation variates of station \(P_j \); it describes the form of a triangle \(P_j P_i P_k \) and also the position of the spatial plane of that triangle relative to the (i)-system.

The properties of \(\chi_{ijk}^{(i)} \) thus agree, to a high extent, with those of the \(\Pi \)-quantity in Baarda's polygon theory in the complex plane.

Difference quantities.

By means of (1.50 etc.), (2.9) can be differentiated to the three observation variates:

\[\Delta q_{ik}^{(i)} = c + i [\cos \omega_{ijk} a_{ij} - \sin \omega_{ijk} a_{ij} + \sin \omega_{ijk} \Delta \omega_{ijk}] + j [\sin \omega_{ijk} a_{ij} + \cos \omega_{ijk} a_{ij} + \sin \omega_{ijk} \Delta \omega_{ijk}] + k [-\cos \omega_{ijk} a_{ij} + \sin \omega_{ijk} \Delta \omega_{ijk}] \]

(2.17)
Premultiplication by:

$$q_{ik}^{-1} = 0 + \frac{i}{5} \left[-i \cos \sin \beta - j \sin \cos \beta + k \cos \beta \right]_{ik}$$

then gives the dimensionless variate:

$$(q^\dagger \Delta q)_{ik} = \frac{i}{5} \Delta S + i \left[-\cos \sin \beta \cos \Delta r - \sin \cos \beta \right]_{ik} + j \left[-\sin \sin \beta \cos \Delta r + \cos \beta \right]_{ik} + k \left[-\sin^2 \beta \Delta r \right]_{ik}$$

(2.18)

In view of (1.64), the quantity \((q^\dagger \Delta q)\) can be represented as an isomorphic column matrix, by splitting up the right-hand member into a coefficient matrix and a column matrix of differences:

$$\rightarrow (q^\dagger \Delta q)_{ik} = \begin{pmatrix} Sc\{q^\dagger \Delta q\}_{ik} \\ V_i \{ \; \} \\ V_j \{ \; \} \\ V_k \{ \; \} \end{pmatrix} = \begin{pmatrix} \frac{i}{5} & 0 & 0 \\ 0 & -\cos \sin \beta & -\sin \beta \\ 0 & -\sin \sin \beta & \cos \beta \\ 0 & -\sin^2 \beta & 0 \end{pmatrix} \begin{pmatrix} \Delta S_{ik} \\ \Delta r_{ik} \\ \Delta \beta_{ik} \end{pmatrix}$$

(2.19)

or, introducing \(\Delta \ln s_{ik}\) and \(\sin \beta \Delta r_{ik}\) as difference quantities:

$$\begin{pmatrix} Sc\{q^\dagger \Delta q\}_{ik} \\ V_i \{ \; \} \\ V_j \{ \; \} \\ V_k \{ \; \} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\cos \sin \beta & -\sin \beta \\ 0 & -\sin \sin \beta & \cos \beta \\ 0 & -\sin^2 \beta & 0 \end{pmatrix} \begin{pmatrix} \Delta \ln s_{ik} \\ \sin \beta \Delta r_{ik} \\ \Delta \beta_{ik} \end{pmatrix}$$

(2.20)

Subsequently, \((2.15)\) is differentiated; applying the rules established in (1.50) etc.:

$$\Delta q_{ijk} = \Delta q_{ik} q_{ij}^{-1} - q_{ik} q_{ij}^{-1} \Delta q_{ij} q_{ij}^{-1}$$

Through premultiplication by \(q_{ik}^{-1}\) and post multiplication by \(q_{ij}\), this passes into:

$$q_{ik}^{-1} \Delta q_{ijk} q_{ij} = (q^\dagger \Delta q)_{ik} - (q^\dagger \Delta q)_{ij}$$

(2.21)

This formula bears a strong resemblance to a formula known from Baarda's polygon theory in the complex plane, (2.2.13) in [2]:

$$\Delta \pi_{ijk} = \Delta \Lambda_{ik} - \Delta \Lambda_{ij}$$

(2.22)
In the latter formula, moreover:
\[\Delta \alpha_i^k = \Delta \theta_{ik} + i \Delta \varphi_{ik} \]
The symbol \(i \) is now the imaginary unit of the complex numbers.

Furthermore, applying the properties of a network in the complex plane:

a) \(J = \pi/2 \) : all the points lie in one horizontal plane
\[(q' \Delta q)_{ik}^{(i)} = \Delta \theta_{ik} - k \Delta \varphi_{ik} + [-i \sin \varphi + j \cos \varphi] \Delta \alpha_{ik} \]

b) \(\Delta \beta = 0 \) : the zenith angles are not observation variates.
\[(q' \Delta q)_{ik}^{(i)} = \Delta \theta_{ik} - k \Delta \varphi_{ik} \] (2.23)

Compare (2.22)

2.3 The geodetic-astronomical observation variates.

2.3.1 Definitions

In section 2.2, the local systems of the stations \(P_m \) are defined as follows: (2.8)

- the unit vector \(k_m \) points in the direction of the "first axis" of the theodolite established in \(P_m \); this is an instrumental realisation of the vertical;

- the unit vector \(i_m \) is situated in the plane perpendicular to \(k_m \), parallel to the zero direction of the horizontal circle.

- the unit vector \(j_m \) completes a right handed system of orthogonal unit vectors \(i_m, j_m, k_m \).

The unit vectors \(k \) of various stations can be interrelated by describing the spatial direction of each \(k \)-vector by means of two polar coordinates; for this, we choose the system of the astronomical longitude \(\lambda \) and latitude \(\varphi \), measurable through astronomical observations; see fig. 16:

The angle in the plane of the horizon between \(i_m \) and the astronomical north of \(P_m \):
\[\vartheta_m \] (2.24)
is the "astronomical orientation" of the \((m) \)-system.

We shall now describe the rotation of the \((m) \)-system to another local system, the \((n) \)-system, as a rotation in steps, according to (1.46).
For this, we define two ancillary systems by \((m)\):

- **the \((m')\)-system:**
 - the \(k\)-vector of the \((m')\)-system is parallel to \(k_m\):
 - the \(i\)-vector of \((m')\) lies in the direction of the astronomical north in \(P\).
 - the \(j\)-vector completes a right-handed system \(i_m', j_m', k_m'\).

- **the \((m'')\)-system:**
 - the \(j\)-vector of the \((m'')\)-system is parallel to \(j_m''\):
 - the \(k\)-vector of \((m'')\) lies in the polar direction of the \(\varphi, \lambda\)-system.
 - the \(i\)-vector completes a right-handed system \(i_m'', j_m'', k_m''\).

The rotation from \((m)\) to \((n)\) can now be described in five successive steps with, consecutively, \(\theta_m', \varphi_m', \lambda_{mn}, \varphi_n\) and \(\theta_n\) as angle of rotation:

1. \(p_{m'm'} = \cos \frac{\lambda_m}{2} \theta_m + \sin \frac{\lambda_m}{2} \theta_m\)
2. \(p_{m'm''} = \cos \frac{\lambda_m}{2} \left[\frac{\varphi_m}{2} - \varphi_m \right] + j \sin \frac{\lambda_m}{2} \left[\frac{\varphi_m}{2} - \varphi_m \right]\)
3. \(p_{m''m''} = \cos \frac{\lambda_m}{2} \left[\lambda_m - \lambda_n \right] - j \sin \frac{\lambda_m}{2} \left[\lambda_m - \lambda_n \right]\)
4. \(p_{n'm'} = \cos \frac{\lambda_m}{2} \left[\frac{\varphi_m}{2} - \varphi_n \right] - j \sin \frac{\lambda_m}{2} \left[\frac{\varphi_m}{2} - \varphi_n \right]\)
5. \(p_{n'n''} = \cos \frac{\lambda_m}{2} \theta_n - j \sin \frac{\lambda_m}{2} \theta_n\)

Remarks:
- The choice of the sign in \(p_{m'm'}\) and \(p_{n'n'}\) means that \(\theta\) turns clockwise (as seen from above);
- The sign in \(p_{m'm''}\) and \(p_{n'n''}\) means that \(\varphi\) is positive on the northern hemisphere;
- The sign in \(p_{n''m''}\) means that \(\lambda\) is counted positive towards the east.

The five steps of (2.27) are all described relative to their "own" systems, and, according to (1.46), they can all be directly multiplied to:

\[
p_{nm} = p_{n'n'} p_{n'm'} p_{m'm''} p_{m''m'} p_{m'm} = p_{n'n'} p_{n'm'} p_{m'm'} p_{m'm'} p_{m'm} \]

This leads, introducing \(\lambda_{nm} = \lambda_m - \lambda_n\) to:

\[
p_{nm} = \cos \frac{\lambda_{nm}}{2} \cos \frac{\lambda_m}{2} \left[\varphi_m - \varphi_n \right] + \sin \frac{\lambda_{nm}}{2} \sin \frac{\lambda_m}{2} \left[\varphi_m + \varphi_n \right] \sin \frac{\lambda_{nm}}{2} \left[\epsilon_m + \epsilon_n \right] +
+ \frac{i}{2} \cos \frac{\lambda_{nm}}{2} \sin \frac{\lambda_m}{2} \left[\varphi_m - \varphi_n \right] \sin \frac{\lambda_m}{2} \left[\varphi_m + \varphi_n \right] \sin \frac{\lambda_{nm}}{2} \left[\epsilon_m + \epsilon_n \right] +
+ j \cos \frac{\lambda_{nm}}{2} \sin \frac{\lambda_m}{2} \left[\varphi_m - \varphi_n \right] \cos \frac{\lambda_m}{2} \left[\varphi_m + \varphi_n \right] \sin \frac{\lambda_{nm}}{2} \left[\epsilon_m + \epsilon_n \right] +
+ k \cos \frac{\lambda_{nm}}{2} \sin \frac{\lambda_m}{2} \left[\varphi_m - \varphi_n \right] \sin \frac{\lambda_m}{2} \left[\varphi_m + \varphi_n \right] \sin \frac{\lambda_{nm}}{2} \left[\epsilon_m + \epsilon_n \right].
\]

In (2.29), the astronomical longitudes \(\lambda\) only occur as difference quantities, contrary to the latitudes \(\varphi\) and the orientation variates \(\theta\). It would be
possible to choose a corresponding measuring procedure, i.e. (approximately) simultaneous measurement of the longitudes at both ends of each network side; beside the fact that time would play a less decisive role, also the influence of polar motion and the definition of "star-coordinates" would be diminished.

In addition, it will appear from the difference quantities (2.34) that in networks covering a limited part of the surface of the earth (which means that the k-vectors are all approximately parallel and the differences in longitude and latitude are small), also with respect to the astronomical latitudes ϕ chiefly the differences are important.

2.3.2. Difference quantities

In section 1.4 rules have been deduced for the differentiation of rotation quaternions; within the scope of these "form rules", see (1.56), they can be differentiated in two ways:

a) according to (1.56a) : $\Delta e = 0$

The five steps of (2.27) comply with this, because here the unit vectors act as axis of rotation e:

$$
2.27/1 \text{ and } 3 \text{ and } 5) : e = k
$$
$$
2.27/2 \text{ and } 4) : e = j
$$

b) according to (1.56b) : $\text{Sc} \{ e \Delta e \} = 0$

Method b:

If (2.29) is differentiated directly to all astronomical variates, and subsequently multiplied on the left by p_{nm}^{-1}, it becomes apparent that:

$$
\text{Sc} \{ p_{nm}^{-1} \Delta \} = 0
$$

In view of (1.57), it follows from this that:

$$
\text{Sc} \{ e' \Delta e \} = 0
$$

We now use method a) by differentiating the five steps of (2.27):

$$
\begin{align*}
\text{1 : } & (p_{nm}^{-1})_{m,n} = 0 + i o + j o + k \frac{1}{2} \Delta \phi_m \\
\text{2 : } & (p_{nm}^{-1})_{m',m} = 0 + i o - j \frac{1}{2} \Delta \phi_m + k o \\
\text{3 : } & (p_{nm}^{-1})_{m'''} = 0 + i o + j o - k \frac{1}{2} \Delta \phi_{nm} \\
\text{4 : } & (p_{nm}^{-1})_{n,n'} = 0 + i o + j \frac{1}{2} \Delta \phi_n + k o \\
\text{5 : } & (p_{nm}^{-1})_{n,n'} = 0 + i o + j o - k \frac{1}{2} \Delta \phi_n
\end{align*}
$$

(2.30)
The difference equation of (2.28) is:

\[
(p^{-1}\Delta p)_{nm}^{(m)} = p_{mn}^{-1} + \sum_{n} p_{mn}^{-1}\left[p_{mn}^{-1}(p^{-1}\Delta p)_{mn}^{(m)} - \frac{\partial p_{mn}}{\partial \theta_n} \frac{\partial p_{mn}}{\partial \theta_m} \sin \theta_n \sin \theta_m \cos \phi_n \cos \phi_m \right] + \frac{1}{2} \Delta \theta_n
\]

The substitution of (2.30) in (2.31) then gives:

\[
(p^{-1}\Delta p)_{mn}^{(m)} = 0 + \left[i \left[\cos \theta_m \sin \phi_m \cos \phi_n - \cos \lambda_{nm} \cos \phi_n \sin \phi_m \right] - \sin \theta_m \sin \lambda_{nm} \cos \phi_n \right] + \frac{1}{2} \Delta \theta_n
\]

or, expressed in an isomorphic column matrix, with symbolic indication of the coefficients in the first and second columns of the coefficient matrix:

\[
\begin{bmatrix}
S_{c}(p^{-1}\Delta p)_{mn}^{(m)} \\
V_i \\
V_j \\
V_k
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \Delta \theta_n \\
\frac{\partial V_i}{\partial \theta_n} & -\frac{\partial V_i}{\partial \phi_n} & \cos \phi_n \cos \theta_m & -\sin \theta_m & 0 & 0 & \frac{1}{2} \Delta \phi_n \\
\frac{\partial V_j}{\partial \theta_n} & -\frac{\partial V_j}{\partial \phi_n} & -\cos \phi_n \sin \theta_m & -\cos \theta_m & 0 & 0 & \frac{1}{2} \Delta \phi_n \\
\frac{\partial V_k}{\partial \theta_n} & -\frac{\partial V_k}{\partial \phi_n} & -\sin \phi_n & 0 & 1 & 0 & \frac{1}{2} \Delta \theta_m \\
\end{bmatrix}
\]

2.3.3
Networks with parallel k-unit-vectors

In a network with parallel k-vectors, we obtain:

\[
\phi_{nm} = \phi_n \quad \text{and} \quad \lambda_m = \lambda_n \quad (\Rightarrow \lambda_{nm} = 0)
\]

Then, the coefficients in (2.33) become:
From the coefficients in the first matrix of the right-hand member it appears that in a network with parallel k-vectors also the astronomical latitudes φ and the orientation variates Θ only act as difference quantities (for the longitudes λ this is always the case).

\[
\left(\begin{array}{c}
\text{Sc}\left(\left\{ \frac{\Delta r}{\Delta \varphi} \right\}_{nm} \right) \\
V_i \{ \varphi \} \\
V_j \{ \varphi \} \\
V_k \{ \varphi \}
\end{array} \right) = \left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \Delta \varphi_n \\
\sin \theta_m & \cos \theta_m & \cos \theta_m & -\sin \theta_m & 0 & 0 & \frac{1}{2} \Delta \varphi_m \\
\cos \theta_m & -\cos \theta_m & \sin \theta_m & -\cos \theta_m & 0 & 0 & \frac{1}{2} \Delta \theta_m \\
-1 & 0 & -\sin \theta_m & 0 & 1 & 0 & \frac{1}{2} \Delta \theta_m
\end{array} \right)
\]

(2.34)
3.1 Chains of astronomical rotations.

In section 2.3, the internal structure of the astronomical rotation quaternion has been analysed as a rotation in five consecutive steps (2.27). What happens, if we connect several astronomic rotations?

We consider four local systems (r), (a), (b), and (i), of which three mutual rotations are known:

\[p_{ra}, \quad p_{ab}, \quad p_{bi} \]

The rotation from (i) to (r) is then:

\[(r) \text{ or } (i) \]

\[p_{ri} = p_{ra} \cdot p_{ab} \cdot p_{bi} \quad (3.1) \]

3.1.1

The relative difference quantity

The difference equation of (3.1) reads:

\[(p^{-1} \Delta p)_{ri} = p_{ia}^{-1} (p^{-1} \Delta p)_{ra} p_{ia}^{-1} + p_{ib}^{-1} (p^{-1} \Delta p)_{ab} p_{ib}^{-1} + (p^{-1} \Delta p)_{bi} \quad (3.2) \]

By means of (2.27), each of the three rotations in (3.1) can be split up into five component factors:

\[p_{ri} = p_{rr} \cdot p_{r'a} \cdot p_{a'a} \cdot p_{aa} \cdot p_{a'a}^{-1} \cdot p_{ab}^{-1} \cdot p_{bb}^{-1} \cdot p_{bi}^{-1} \cdot p_{ii}^{-1} \cdot p_{ii}^{-1} \cdot \quad (3.3) \]

In view of (1.46), all factors are described in this formula relative to their "own" systems.

Now, the following applies:

(i) \[p_{aa} = \cos \frac{1}{2} \theta_a + k \sin \frac{1}{2} \theta_a \]

(ii) \[p_{aa} = \cos \frac{1}{2} \theta_a - k \sin \frac{1}{2} \theta_a \]

hence:

\[p_{a'a} \cdot p_{aa}^{-1} = 1 \quad p_{b'b} \cdot p_{bb}^{-1} = 1 \]

Likewise, with (2.27/2) and (2.27/4):

\[p_{a'a}^{-1} \cdot p_{a'a}^{-1} = 1 \quad p_{b'b} \cdot p_{bb}^{-1} = 1 \]

With this (3.3) passes into the simple form:

\[p_{ri} = p_{rr} \cdot p_{r'r''} \cdot p_{r''} \cdot p_{r''} \cdot p_{b'b} \cdot p_{b'} \cdot p_{bb} \cdot p_{bi} \cdot p_{bi} \cdot (3.4) \]
or, as a function of astronomical quantities:

\[p_{ri} = p_{r...i} = p(\theta_r, \phi_r, \lambda_r,..., \omega_i, \delta_i) \]

(3.4')

The terms with \(\Theta_a, \Phi_b, \Phi_c \), and \(\Phi_g \) will therefore also disappear from the difference formula (3.2); we substitute (2.31) in (3.2), with successively \((n \rightarrow r ; m \rightarrow a)\); \((n \rightarrow a ; m \rightarrow b)\) and \((n \rightarrow b ; m \rightarrow i)\):

\[
(p^1_{\Delta p})^{(i)}_{ri} = p_{ia}\left[p_{ar}, (p^1_{\Delta p})_{rr}, p^1_{rr} + p_{ar}, (p^1_{\Delta p})_{rr}, p^1_{ar} + p_{aa}, (p^1_{\Delta p})_{aa}, p^1_{aa} + \right.
\]

\[
+ p_{aa}, (p^1_{\Delta p})_{aa}, p^1_{aa} + (p^1_{\Delta p})_{aa}p^1_{aa} + \right.
\]

\[
+ p_{ib}, (p^1_{\Delta p})_{bb}, p^1_{ib} + p_{ib}, (p^1_{\Delta p})_{bb}, p^1_{bb} + p_{ii}, (p^1_{\Delta p})_{ii}, p^1_{ii} + \right.
\]

\[
+ p_{ii}, (p^1_{\Delta p})_{ii}, p^1_{ii} + (p^1_{\Delta p})_{ii}p^1_{ii} .
\]

In this formula, the terms containing \(\Delta \Theta_a \) are:

\[
p_{ia}, (p^1_{\Delta p})_{aa}, p^1_{ia} + p_{ib}, (p^1_{\Delta p})_{bb}, p^1_{ib} =
\]

\[
= p_{ia}, (p^1_{\Delta p})_{aa}, p^1_{ia} + p_{ia}, p^1_{aa}, (p^1_{\Delta p})_{aa}, p^1_{ia} =
\]

\[
= p_{ia}, (p^1_{\Delta p})_{aa} + (p^1_{\Delta p})_{aa}p^1_{ia}.
\]

Here, according to (2.29/1) the following applies:

\[
(p^1_{\Delta p})_{aa} = o + \frac{1}{2} \Delta \Theta_a
\]

The rotation \(p_{aa} \), is of the type \(\Delta e = 0 \) (1.56a), therefore (1.62) applies to

\[
(p^1_{\Delta p})_{aa}^{(a)} = (p^1_{\Delta p})_{aa}^{(a)'} =
\]

\[
= o - \frac{1}{2} \Delta \Theta_a
\]

Therefore, in (3.5), the two terms with \(\Delta \Theta_a \) eliminate each other.

It can be demonstrated in a similar way that the terms with \(\Delta \Theta_a, \Delta \Theta_b \) and \(\Delta \Phi_g \) disappear; thus (3.5) passes into:

\[
(p^1_{\Delta p})^{(i)}_{ri} = p_{ia}, (p^1_{\Delta p})_{ar}, p^1_{ar} + p_{ar}, (p^1_{\Delta p})_{ar}, p^1_{ar} + \right.
\]

\[
+ p_{aa}, (p^1_{\Delta p})_{aa}, p^1_{aa} + (p^1_{\Delta p})_{aa}p^1_{aa} + \right.
\]

\[
+ p_{ii}, (p^1_{\Delta p})_{ii}, p^1_{ii} + (p^1_{\Delta p})_{ii}p^1_{ii} .
\]

By placing the factors \(p_{a_1a_2} \ldots p_{a_1a_2} \) of the third, fourth and fifth terms outside brackets, they become:

\[
p_{a_1a_2}[(p^1_{\Delta p})_{a_1a_2} + p_{a_1a_2}(p^1_{\Delta p})_{a_1a_2}p^1_{a_1a_2} + p_{a_2a_1}(p^1_{\Delta p})_{a_2a_1}p^1_{a_2a_1}]p^1_{a_1a_2}
\]

(3.6')
these are the terms containing $\Delta \lambda_{ra}$, $\Delta \lambda_{ab}$, $\Delta \lambda_{bi}$.

According to 2.30/3, the following applies in this formula:

$$(p^{-1} \Delta p)^{-1}_{r''} = 0 - k \frac{1}{2} \Delta \lambda_{ra}$$

$$(p^{-1} \Delta p)^{-1}_{a''} = 0 - k \frac{1}{2} \Delta \lambda_{ab}$$

$$(p^{-1} \Delta p)^{-1}_{b''} = 0 - k \frac{1}{2} \Delta \lambda_{bi}$$

and, according to (2.27/3):

$$p_{a''} = \cos \frac{1}{2} \lambda_{ab} - k \sin \frac{1}{2} \lambda_{ab}$$

$$p_{a''} = p_{a''}^n + p_{a''}^n = p_{a''}^n \left[\cos \frac{1}{2} \lambda_{ab} - k \sin \frac{1}{2} \lambda_{ab} \right]$$

therefore, the term (3.6') becomes:

$$-p_{a''} = k \frac{1}{2} \Delta \lambda_{ra} + \frac{1}{2} \Delta \lambda_{ab} + \frac{1}{2} \Delta \lambda_{bi}$$

In (3.6) this is pre- and post multiplied by p_{ia}^{-1}; therefore, the coefficients of the differences of longitudes become:

$$-p_{ia} p_{a''} = -p_{ia} p_{i''} + p_{i''} b'' + p_{bi}^n = k \frac{1}{2} \Delta \lambda_{ra} + \frac{1}{2} \Delta \lambda_{ab} + \frac{1}{2} \Delta \lambda_{bi}$$

Thus (3.5) finally becomes:

$$(3.7)$$

$$(3.7)$$

with:

$$(p^{-1} \Delta p)_{rr} = -k \frac{1}{2} \Delta e_r$$

$$(p^{-1} \Delta p)_{v''} = j \frac{1}{2} \Delta \theta_r$$

$$(p^{-1} \Delta p)_{i''} = -j \frac{1}{2} \Delta \phi_i$$

$$(p^{-1} \Delta p)_{i'i'} = k \frac{1}{2} \Delta e_i$$

3.1.2

The coefficients of the astronomical variâtes

From (3.7) some conclusions may be directly drawn concerning the coefficients of the differences of astronomical variâtes:
1. In the coefficients of $\Delta \theta_r, \Delta \varphi_r, \Delta \varphi_i$ and $\Delta \theta_i$ the longitudes and latitudes of the "intermediate" systems (a) and (b) do not occur. This means that these coefficients are independent of the "route" chosen, from the (i)- to the (r)-system.

2. The coefficients of all longitude differences $\Delta \lambda$ are equal to each other. Here, only the quantities θ_r and φ_i occur.

3. If the systems (r) and (i) lie on a small part of the earth's surface (i.e. k_r is approximately parallel to k_{ir}), the coefficients of $\Delta \varphi_r$ and $\Delta \varphi_i$ are approximately equal to each other (with opposite signs). The same applies to $\Delta \theta_i$ and $\Delta \theta_r$.

3.2 The vector transformation

3.2.1 The difference equation for the vector transformation

We consider (2.14):

$$q_{ik}^{(r)} = \tilde{x}_{ri} p_{ri} q_{ik}^{(i)}$$ \hspace{1cm} (3.8)

The difference equation of this formula is:

$$\Delta q_{ik}^{(r)} = q_{ik}^{(r)} \frac{\Delta \tilde{x}_{ri}}{\tilde{x}_{ri}} + p_{ri} (\tilde{p} \Delta p)_{ri} p_{ri} q_{ik}^{(r)} - q_{ik}^{(r)} p_{ri} (\tilde{p} \Delta p)_{ri} p_{ri} + \frac{\tilde{x}_{ri}}{p_{ri}} \Delta q_{ik}^{(i)}$$ \hspace{1cm} (3.9)

Premultiplication by:

$$q_{ik} = \frac{1}{\tilde{x}_{ri}} p_{ri} q_{ik}^{(i)}$$ \hspace{1cm} (3.10)

then results in:

$$\left(q \Delta q\right)_{ik}^{(r)} = \Delta \tilde{x}_{ri} + \frac{\Delta \tilde{x}_{ri}}{\tilde{x}_{ri}} - \frac{\Delta \tilde{x}_{ri}}{p_{ri}} (\tilde{p} \Delta p)_{ri} + \frac{\tilde{x}_{ri}}{p_{ri}} (q \Delta q)_{ik}^{(i)}$$ \hspace{1cm} (3.11)

If the transformation quantities \tilde{x}_{ri} and p_{ri} consist of a number of factors, as described for p_{ri} in section 3.1, the quantities in the right-hand member of (3.11) are functions of the following differences:

(2.13): $\Delta \tilde{x}_{ri}$ is the sum of $\Delta \tilde{x}_{ri}$, ..., $\Delta \tilde{x}_{ri}$ (length factors)

(3.7): $(\tilde{p} \Delta p)_{ri}$: $\Delta \theta_r, \Delta \varphi_r, \Delta \lambda_{r \cdot i}, \Delta \varphi_i, \Delta \theta_i$

(astronomical observation variates).

(2.20): $(q \Delta q)_{ik}^{(i)}$: $\Delta \tilde{x}_{ik}, \Delta r_{ik}, \Delta \lambda_{ik}$ (geodetic observation variates).

Subsequently, we consider a variant of (3.11), by placing the factors p_{ri}, ..., p_{ri}^{-1} outside brackets:

$$\left(q \Delta q\right)_{ik}^{(r)} = p_{ri} \left[\Delta \tilde{x}_{ri} + q_{ik}^{(i)} (\tilde{p} \Delta p)_{ri} q_{ik}^{(i)} - (\tilde{p} \Delta p)_{ri} + (q \Delta q)_{ik}^{(i)}\right] p_{ri}^{-1}$$ \hspace{1cm} (3.12)
By means of (1.65) - (1.71), this equation can be put in isomorphic matrices:

\[
\begin{pmatrix}
(q^i \Delta q)^{(c)}_{ik}
\end{pmatrix} = \begin{pmatrix}
(p_r)^{(c)}_i
\end{pmatrix}^* + \begin{pmatrix}
\frac{1}{N} \delta q^{(c)k}_i - (\Delta) \left((p^i_r \Delta p)^{(c)}_i + (q^i \Delta q)^{(c)}_{ik} \right)
\end{pmatrix}^{(c)k}
\]

(3.13)

Suppose:

\[q^{(i)}_{ik} = o + i \times j + k z \quad N \{ q^{(i)}_{ik} \} = S^2_{ik} ;\]

Now (3.13) becomes:

\[
\begin{pmatrix}
Sc \{ (q^i \Delta q)^{(c)k}_i \}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
\Delta q^i_{nk}
\end{pmatrix} + \begin{pmatrix}
\delta q^{(c)k}_i
\end{pmatrix}^{(c)k}
\]

(1.72)

In view of (2.33) here is:

\[
\begin{pmatrix}
0
\end{pmatrix} \begin{pmatrix}
(p^i_r \Delta p)^{(c)}_i
\end{pmatrix} + \begin{pmatrix}
\delta q^{(c)k}_i
\end{pmatrix}^{(c)k}
\]

(3.14)

In view of (2.33) here is:

\[
\begin{pmatrix}
V_i \{ (p^i_r \Delta p)^{(c)}_i \}
\end{pmatrix} = \text{terms with } \Delta p_r, \Delta q_r, \Delta \lambda_{i-1}, \Delta \phi_i \ldots + \begin{pmatrix}
0
\end{pmatrix} \begin{pmatrix}
\Delta \theta_i
\end{pmatrix}
\]

so the coefficients of \(\Delta \theta_i\) in (3.14) are:

\[
\begin{pmatrix}
0 \\
-2xz \\
\frac{2yz}{s^2} \\
-2(x^2 + y^2) \\
\frac{-2(x^2 + y^2)}{s^2}
\end{pmatrix} \nu \Delta \theta_i + \ldots
\]
In view of (2.19), the following applies in (3.14), conversing the polar coordinates \(r_{ik} \) and \(\gamma_{ik} \) in rectangular coordinate differences \(x, y \) and \(z \):

\[
\begin{pmatrix}
S_c \{(q^{-\Delta q})_{ik}^{(i)}\} \\
V_i \{\cdot\} \\
V_j \{\cdot\} \\
V_k \{\cdot\}
\end{pmatrix} = 0 \quad \Delta \ln s_{ik} + \begin{pmatrix}
0 \\
\frac{xz}{s^2} \\
\frac{yz}{s^2} \\
-\frac{(x^2+y^2)}{s^2}
\end{pmatrix} \Delta r_{ik} + \begin{pmatrix}
0 \\
\frac{-y}{\sqrt{x^2+y^2}} \\
\frac{x}{\sqrt{x^2+y^2}} \\
0
\end{pmatrix} \Delta \gamma_{ik}
\]

therefore, the coefficients of \(\Delta r_{ik} \) in the part of (3.14) between braces are:

\[
\begin{pmatrix}
0 \\
\frac{xz}{s^2} \\
\frac{yz}{s^2} \\
-\frac{(x^2+y^2)}{s^2}
\end{pmatrix} \Delta r_{ik} + \ldots
\]

This means that the coefficients of \(\Delta \Theta_i \) and \(\Delta r_{ik} \) are equal to each other in all four components of \((q^{-\Delta q})_{ik} \) (3.15)

Furthermore, it appears directly from (3.14) that:

\[
S_c \{(q^{-\Delta q})\} = \Delta \ln \bar{x}_{ri} + \Delta \ln s_{ik}.
\]

(3.16)

3.2.2

The difference equation of the vector transformation

We apply (3.11) to two vectors measured from \(P_i \):

\[
(q^{-\Delta q})_{ik}^{(r)} = \Delta \ln S_{ri} + q_{ik}^{-1}(P^{-\Delta p})_{ri} q_{ik} - (P^{-\Delta p})_{ri} \Delta p_{ri} + P_{ri} (q^{-\Delta q})_{ik}^{(i)} - I
\]

\[
(q^{-\Delta q})_{ij}^{(r)} = \Delta \ln S_{ri} + q_{ij}^{-1}(P^{-\Delta p})_{ri} q_{ij} - (P^{-\Delta p})_{ri} \Delta p_{ri} + P_{ri} (q^{-\Delta q})_{ij}^{(i)} - I
\]

By subtracting these two equations from each other, the transformation formula for the spatial \(\Delta \Pi \)-quantity, defined in (2.21), is obtained:

\[
\Delta \Pi_{ik}^{(r)} = q_{ik}^{-1}(P^{-\Delta p})_{ri} q_{ik} - q_{ij}^{-1}(P^{-\Delta p})_{ri} q_{ij} + P_{ri} \Delta \Pi_{ik}^{(i)} - I
\]

(3.17)

3.3 Polar coordinate functions.

We consider (3.11): (in this section stochastic variates are underlined).

\[
(q^{-\Delta q})_{ik}^{(r)} = \Delta \ln \bar{x}_{ri} + q_{ik}^{-1}(P^{-\Delta p})_{ri} q_{ik} - (P^{-\Delta p})_{ri} \Delta p_{ri} + P_{ri} (q^{-\Delta q})_{ik}^{(i)} - I
\]

(3.18)
In view of (2.20) here:

\[(q^{(i)} a)_{ik} = \Delta l_n s_{ik} + e'_{ik} [\sin \gamma \Delta \tau]_{ik} + e''_{ik} \Delta \gamma_{ik}\]

with:
\[e'_{ik} = 0 - i \cos \cos \gamma - j \sin \cos \gamma - k \sin \gamma\]
\[e''_{ik} = 0 - i \sin + j \cos + 0\]

Because:
\[q^{(i)}_{ik} = 0 + i \cos \sin \gamma + j \sin \sin \gamma - k \cos \gamma\]

applies:
\[\text{Sc} \{e'_{ik} q_{ik}\} = 0.\]
\[\text{Sc} \{e''_{ik} q_{ik}\} = 0.\]
\[\text{Sc} \{e'_{ik} e''_{ik}\} = 0.\]

The vectors \(q_{ik}, e'_{ik}\) and \(e''_{ik}\) thus constitute a rectangular trihedral; \(e''_{ik}\) lies in the plane \(\perp k_i\).

Furthermore, according to (1.25):
\[q^{(-i)}_{ik}(p^\tau p)_{ri} q_{ik} - (p^\tau p)_{ri} = \text{2 [the component of (p^\tau p)_{ri} \perp q_{ik}]}\]

Summarizing, the following therefore applies:
\[\text{Sc} \{(q^{(i)} a)_{ik}^{(r)}\} = \Delta l_n s_{ri} + \Delta l_n s_{ik}.\]
\[\text{Vc} \{(q^{(i)} a)_{ik}^{(r)}\} \perp q_{ik}\]

The vector part of \((q^{(i)} a)_{ik}^{(r)}\) can therefore be decomposed into any pair of vectors, perpendicular to \(q_{ik}\).

Now assume that:
\[r_{ik} \text{ and } j_{ik}\]

are the polar coordinates of the vector \(P_i p_k\), relative to the unit vectors of the \((r)\)-system:
\[q^{(r)}_{ik} = 0 + i s \cos \sin \gamma + j s \sin \sin \gamma - k s \cos \gamma.\]
Assume further, in analogy with (3.18):

\[e'_{r_ik} = o - i \cos r \cos j - j \sin r \cos j - k \sin j \]
\[e''_{r_ik} = o - i \sin r + j \cos r \]

then the following applies again:

\[\text{Sc}\{e'_{r_ik} q_{ik}\} = 0. \]
\[\text{Sc}\{e''_{r_ik} q_{ik}\} = 0. \]
\[\text{Sc}\{e'_{r_ik} e''_{r_ik}\} = 0. \]

(3.20)

Remark: in general: \(e'_{r_ik} \neq e'_{i_k} \) and \(e''_{r_ik} \neq e''_{i_k} \)
because: \(e'_{r_ik} \) lies in the plane \(\perp k_r \)
\(e''_{i_k} \) lies in the plane \(\perp k_i \)

Therefore, the vectors \(e'_{r_ik} \) and \(e''_{r_ik} \) constitute together with \(q_{ik} \) a rectangular trihedral. In view of (3.19) this means that \(Vc\{ (q^{-1} A q)_{ik}\} \)
can be decomposed into:

\[Vc\{ (q^{-1} A q)_{ik}\} = e'_{r_ik} R + e''_{r_ik} Z \]

(3.21)

Here \(R \) and \(Z \) are scalar functions of the difference quantities, occuring in the vector part of \((q^{-1} A q)_{ik} \); in order to obtain an expression analogous to (3.18), we use the following designations:

\[
\begin{align*}
R &= \sin J_{ik} e'_{r_ik} \\
Z &= \Delta J_{ik} e''_{r_ik}
\end{align*}
\]

(3.22)

"polar coordinate functions".

so that:

\[
(q^{-1} A q)_{ik}^{(r)} = \delta_{i_k} + \delta_{i_k} \Delta J_{ik} e'_{r_ik} + (r) E J_{ik} e''_{r_ik}
\]

(3.23)

This quaternion equation gives the relationships between the four components of \((q^{-1} A q)_{ik}^{(r)} \) on the one hand, and the three "polar coordinate functions" \(\Delta J_{ik} \) \(\Delta J_{i_k} \) \(\Delta J_{k_r} \) being the third) on the other.

Using isomorphic matrices this becomes:

\[
\begin{pmatrix}
\text{Sc}\{ (q^{-1} A q)_{ik}\} \\
V_i \{ \} \\
V_j \{ \} \\
V_k \{ \}
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & -\cos r & -\sin r \\
0 & -\sin r & \cos r \\
0 & -\sin j & 0
\end{pmatrix}
\begin{pmatrix}
\delta_{i_k} + \delta_{i_k} \Delta J_{ik} \\
\Delta J_{ik} \\
\Delta J_{i_k} \\
\Delta J_{k_r}
\end{pmatrix}
\]

(3.24)
From this, the definitions of the three polar coordinate functions can be derived:

\[
\begin{align*}
\Delta \ln r_i + \Delta \ln s_{ik} &= Sc \{ (q_i^* a q)_{ik}^{(r)} \} \\
\left[\sin \frac{\Delta x}{r} \right]_{ik}^r &= \frac{\cos \frac{\Delta y}{r}}{\cos \frac{\Delta z}{r}} V_i \{ (q_i^* a q)_{ik}^{(r)} \} - \frac{\sin \frac{\Delta y}{r}}{\cos \frac{\Delta z}{r}} V_j \{ (q_i^* a q)_{ik}^{(r)} \} \\
\Delta \frac{\Delta x}{r_{ik}} &= -\sin \frac{\Delta y}{r} V_i \{ (q_i^* a q)_{ik}^{(r)} \} + \cos \frac{\Delta z}{r} V_j \{ (q_i^* a q)_{ik}^{(r)} \}
\end{align*}
\]

It also follows from (3.24) that there is a linear dependency between the three vector components of \((q^-1 \Delta q)^{r}_{ik}\):

\[
\cos \frac{\Delta y}{r} V_i + \sin \frac{\Delta y}{r} V_j - \cos \frac{\Delta z}{r} V_k = 0.
\]
or, after conversion of \(r_{ik}^r\) and \(s_{ik}^r\) into rectangular coordinate differences \(x_{ik}^r, y_{ik}^r\) and \(z_{ik}^r\):

\[
\begin{align*}
x_{ik}^r V_i \{ (q_i^* a q)_{ik}^{(r)} \} + y_{ik}^r V_j \{ (q_i^* a q)_{ik}^{(r)} \} + z_{ik}^r V_k \{ (q_i^* a q)_{ik}^{(r)} \} &= 0.
\end{align*}
\]

Remark: (3.25) can also be written as:

\[
Sc \{ q_{ik}^{(r)} (q_i^* a q)_{ik}^{(r)} \} = 0
\]
or: \(Sc \{ \Delta q_{ik}^{(r)} \} = 0\).

which results directly from the definition of \(q_{ik}^\ast\).

3.4 Units of length and orientations.

3.4.1 The computation of \(\bar{\lambda}_k\) and \(\Theta_k\)

We consider the side \(P_i P_k\) of a network; suppose the following observation variates are measured:

"terrestrial" : \(s_{ik}, r_{ik}, \Delta_{ik}, s_{ki}, r_{ki}, \Delta_{ki}\)

"astronomical" : \(\varphi_i, \lambda_{ik}, \varphi_k\)

Also assume that the transformation quantities:

\[
\begin{align*}
\bar{\lambda}_i &: \text{unit of length of the i-system} \\
\Theta_i &: \text{horizontal orientation of the i-system}
\end{align*}
\]

are somehow known.
From (2.12') it follows immediately:

\[
\lambda_k q_{ik}^{(k')} = \lambda_i p_{ki}^{(i)} q_{ik}^{(i)} p_{ki}^{-1}
\]

(3.26)

with:

\[p_{ki}^{(i)} = p(\theta_k, \phi_k, \lambda_i, \varphi_i, \varphi_i)\]

\[q_{ik}^{(i)} = q(S_{ik}, n_{ik}, J_{ik})\]

The vector in the opposite direction is:

\[
\lambda_k q_{ki}^{(k')} = \lambda_k p_{k'k} q_{ki}^{(k')} p_{k'k}^{-1}
\]

(3.27)

with, see (2.27'):

\[p_{k'k} = k \sin \frac{1}{2} \theta_k\]

therefore:

\[
\lambda_k q_{ki}^{(k')} = \lambda_k S_{ki} \left[i \cos [r_{ki} + \theta_k] \sin J_{ki} + j \sin [r_{ki} + \theta_k] \sin J_{ki} - k \cos J_{ki} \right]
\]

(3.27')

In (3.26) and (3.27) the left-hand members only differ in sign; therefore the quaternion equation can be established by means of the right-hand members:

\[
\lambda_i p_{ki}^{(i)} q_{ik}^{(i)} p_{ki}^{-1} = -\lambda_k p_{k'k} q_{ki}^{(k')} p_{k'k}^{-1}
\]

(3.28)

the rank of which in view of (3.25), is three.

From (3.28) we deduce two scalar equations, in order to determine, from this, the unknown quantities \(\theta_k\) and \(\lambda_k\) (whilst underlining the stochastic quantities)

a): \[\sqrt{N\{\text{left hand member}\}} = \sqrt{N\{\text{right hand member}\}}\]

\[\text{hence:} \quad \lambda_i S_{ik} = \lambda_k S_{ki}\]

or:

\[\lambda_k = \frac{S_{ik}}{S_{ki}} \lambda_i\]

(3.29)

b): \[\frac{\arctan V_i\{\text{"left"}\}}{V_i\{\text{"left"}\}} = \arctan \frac{V_i\{\text{"right"}\}}{V_i\{\text{"right"}\}} = \gamma_{ki} + \theta_k \quad (\text{if } V_i > 0)\]

\[= \gamma_{ki} + \theta_k + \pi \quad (\text{if } V_i < 0)\]

therefore:

\[\theta_k = \arctan \frac{V_i\{E_{ki}; q_{ik}^{(i)} p_{ki}^{-1}\}}{V_i\{\ldots\}} - \gamma_{ki} \quad [\text{+} \pi \text{ if } V_i < 0]\]

(3.30)
The units of length and the orientations of the local systems can be successively computed from (3.29) and (3.30), provided that a sufficient number of observation quantities have been measured. For this purpose, one unit of length, \bar{X}^0, and one orientation must be known (the nature of these quantities is discussed in greater detail in section 4.2).

3.4.2
Difference quantities of \bar{X}_k and Θ_k.

The expressions (3.29) and (3.30) for \bar{X}_k and Θ_k respectively can be differentiated in two ways:

a) direct differentiation of (3.29) and (3.30); from this follows:

$$\begin{align*}
\Delta \bar{X}_k &= \Delta \bar{X}_L + \Delta \bar{X}_{sk} - \Delta \bar{X}_{ski} \\
\Delta \Theta_k &= \Delta \left[\arctan \frac{\eta\left(\hat{f}_{ik}\right)}{\eta\left(\hat{g}_{ik}\right)} \right] - \Delta \Theta_{ki}
\end{align*}$$

(3.31) (3.32)

b) first differentiating (3.28); from the difference equation, the difference quantities $\Delta \Theta_k$ and $\Delta \ln \bar{X}_k$ can then be solved.

We now apply method b) and start on the left-hand members of (3.26) and (3.27); they are equal to each other with opposite signs:

$$\bar{X}_k^{(k')} - \bar{X}_k^{(k)}$$

The difference equation deduced from this reads, after division by $\bar{X}_k^{(k)}$:

$$\Delta q_{ik}^{(k')} = - \Delta q_{ki}^{(k')}$$

(3.33)

and this passes, after premultiplication by q_{ik}^{-1} and $-q_{ki}^{-1}$ respectively, into:

$$\begin{align*}
(q^{-1} \Delta q)^{(k')}_{ik} &= (q^{-1} \Delta q)^{(k')}_{ki}
\end{align*}$$

(3.34)

The left-hand member is, according to (3.23):

$$\begin{align*}
(q^{-1} \Delta q)^{(k')}_{ik} &= \Delta \bar{X}_{ki}^{(k')} + \Delta \bar{X}_{sk}^{(k')} + e_{k'ik}^{(k')} [4\pi y \bar{X}']_{ik} + e_{k'ik}^{(k')} \Delta \bar{X}_{ik}^{(k')}
\end{align*}$$

(3.35)

With, according to the definition (2.13):

$$\Delta \bar{X}_{ki}^{(k')} = \Delta \bar{X}_{ik} - \Delta \bar{X}_{ki}$$

The right-hand member of (3.34) is, see also (3.11):

$$\begin{align*}
(q^{-1} \Delta q)^{(k')}_{ki} &= \delta_{ik} \left[q_{ki}^{(k')} - (p \Delta p)^{k'}_{k'k} \right] - (p \Delta p)^{k'}_{k'k} + (q^{-1} \Delta q)^{(k')}_{ki}
\end{align*}$$

According to (2.30) here:

$$(p \Delta p)^{k'}_{k'k} = k \neq \Delta \Theta_k \quad ; \quad (\Delta \bar{X}_{kk} = 0)$$
so, also taking into consideration (3.14) and (3.15) this becomes:

\[p_{kk} \left[(q'Δq)_{ki}^{(k)} \right] \text{in which } Δr_{ki} \text{is replaced by } Δr_{ki} + Δs_k \]

In accordance with (3.18), this may be written as:

\[p_{kk} \left[Δl_{s_{ki}} + e'_{ki} \sin \gamma_{ki} [Δr_{ki} + Δs_k] + e''_{ki} Δ \gamma_{ki} \right] p_{kk}^{-1} \]

\[= Δl_{s_{ik}} + e'_{ki} \sin \gamma_{ik} [Δr_{ki} + Δs_k] + e''_{ki} Δ \gamma_{ki} \]

(3.36)

Since the k-vectors of the systems (k) and (k') are equal to each other, the following applies according to the definitions (3.20):

\[e'_{k'ik} \text{ (in 3.35)} = e'_{ik} = e'_{ik} \text{ (in 3.36).} \]

\[e''_{k'ik} \text{ (in 3.35)} = e''_{ik} = -e''_{ik} \text{ (in 3.36).} \]

and also:

\[\sin \gamma_{k'ik} \text{ (in 3.35)} = \sin \gamma_{ik} = \sin \gamma_{ki} \text{ (in 3.36)} \]

With this (3.36), which is the right-hand member of (3.34), can be converted into:

\[(q'Δq)_{ik}^{(k)} = Δl_{s_{ki}} + e'_{ki} \sin \gamma_{ik} [Δr_{ki} + Δs_k] - e''_{ki} Δ \gamma_{ki} \]

(3.37)

By now subtracting the left-hand member of (3.34), see (3.35), and the right-hand member of (3.34), see (3.37), from each other, we obtain a zero-mean variate:

\[(q'Δq)_{ik}^{(k)} - (q'Δq)_{ki}^{(k)} = 0 = Δl_{s_{ki}} - Δl_{s_{ik}} + Δl_{s_{ik}} - Δl_{s_{ki}} + \]

\[+ e'_{ki} \sin \gamma_{ik} [Δr_{ki} - Δr_{ki} - Δs_k] + \]

\[+ e''_{ki} [Δ \gamma_{ik} + Δ \gamma_{ki}] \]

(3.38)

The next difference quantity follows from the scalar component of (3.38):

\[Δl_{s_{ki}} = Δl_{s_{ki}} + Δl_{s_{ik}} - Δl_{s_{ki}} \]

More important than the units of length are the "length factors" defined in (2.13) (quotients); the length factor of (i)- and (k)-systems is:

\[Δl_{s_{ki}} = Δl_{s_{ki}} - Δl_{s_{ik}} \]

(3.39)

Because \(e'_{k'ik} \) and \(e''_{k'ik} \) are both \(≠ 0 \) and not parallel to each other,
two independent scalar equations can be deduced from the vector component of (3.38):

1: \[\Delta r_{ik'} - \Delta r_{ki} - \Delta \Theta_k = 0 \]

from this it follows:

\[\Delta \Theta_k = \Delta r_{ik'} - \Delta r_{ki} \]

(3.40)

with, see (3.24'):

\[\Delta r_{ik'} = \left[-\cos \frac{\pi}{3} \right] \Delta r_{ik} \]

\[V_i \{(q' \Delta q)_{ik} \} \]

\[\left[-\sin \frac{\pi}{3} \right] \Delta r_{ik} \]

\[V_j \{(q' \Delta q)_{ik} \} \]

\[= R \left(\Delta r_{ik}, \Delta J_{ik}, \Delta \Theta_i, \Delta \Phi_i, \Delta \lambda_{ik}, \Delta \phi_k \right) \]

The complete elaboration of (3.32) gives the same result.

2: \[\Delta J_{ik'} + \Delta J_{ki} = 0 \]

(3.41)

with, see again (3.24'):

\[\Delta J_{ik'} = -\sin \frac{\pi}{3} \]

\[\Delta r_{ik} \]

\[V_i \{(q' \Delta q)_{ik} \} \]

\[+ \cos \frac{\pi}{3} \Delta r_{ik} \]

\[V_j \{(q' \Delta q)_{ik} \} \]

3.4.3

The rank of \((q' \Delta q)_{ik} - (q' \Delta q)_{ki}\)

A network side \(P;P_k\) can thus be used for the computation of length factors \(\Sigma_{ik}\)

and/or orientations \(\Theta_k\); one then starts from an initial unit of length \(\lambda^0\) and an initial orientation \(\Theta^0\) (these need not be defined in the same local system; see fig. 26)

The zero-mean variate (3.38) assumes, depending on the use of side \(P;P_k\), one of the following forms:

I Side \(P;P_k\) is neither used for the computation of \(\lambda_{ik}\) nor for the computation of \(\Theta_i\) from \(\Theta_k\), or reverse. Then, the following is obtained:

\[
(q' \Delta q)^{(r)}_{ik} - (q' \Delta q)^{(r)}_{ki} = \Delta \lambda_{ik} - \Delta \lambda_{ki} + \Delta \lambda_{s_{ik}} - \Delta \lambda_{s_{ki}} + \\
+ e_{k'ik}^{(r)} \sin J_{ik} \left[\Delta r_{ik} - \Delta r_{ki} - \Delta \Theta_k \right] + \\
+ e_{k'ik}^{(r)} \left[\Delta J_{ik} + \Delta J_{ki} \right].
\]

rank = 3

(3.42')
II Side $P_i P_k$ is used for the computation of the length factor \overline{L}_{ik}; than (3.39) is substituted in (3.38), which means:

\[
\begin{align*}
(q_{ik}^{(r)}) &= e_{i,ik}^{(r)} + e_{k,ik}^{(r)} \Delta \overline{L}_{ik} \left[\Delta r_{ik} - \Delta r_{ik} - \Delta \theta_k \right] + \\
\text{rank} &= 2.
\end{align*}
\]

(3.42\text{II})

III Side $P_j P_k$ is used for the computation of Θ_k from Θ_i; than (3.40) is substituted in (3.38):

\[
\begin{align*}
(q_{ik}^{(r)}) &= \Delta \overline{L}_{ij} - \Delta \overline{L}_{ik} + \Delta \overline{L}_{ik} - \Delta \overline{L}_{ik} + \\
\text{rank} &= 2.
\end{align*}
\]

(3.42\text{III})

IV Side $P_j P_k$ is used both for the computation of \overline{L}_{ik} and Θ_k; now we obtain:

\[
\begin{align*}
(q_{ik}^{(r)}) &= e_{i,ik}^{(r)} \Delta \overline{L}_{ik} + \Delta \overline{L}_{ik} + \\
\text{rank} &= 1.
\end{align*}
\]

(3.42\text{IV})

From Chapter 5 it will appear that (3.42\text{IV}) will occur as a condition equation in each side of a completely measured network.

3.4.4 Networks with parallel k-vectors.

As a special case, we now consider a network, in which the k-vectors of all the local systems are parallel to each other. In (2.34) it has been demonstrated that in such a network, the orientations occur as difference quantities in the "astronomical rotation quaternions" $p^{\text{—}1} \Delta p$. This is therefore also the case in the zero-mean variate (3.38). In view of (3.15), the coefficients of $\Delta \Theta_i$ and Δr_{ik} in $(q_{ik}^{(r)})^{(r)}$ are equal to each other; therefore, see (3.40):

\[
\Delta r_{ik} = \left[\Delta r_{ik} + \Delta \theta_i \right] + \ldots \text{other terms}
\]

Thus, in a network with parallel k-vectors, (3.40) passes into the simple form:

\[
\Delta \theta_k = \Delta \theta_i + \Delta r_{ik} + \ldots - \Delta r_{ki}.
\]

(3.43)
Similarities and Differences Between the Two-Dimensional and the Three-Dimensional Model.

4.1 Introduction.

In the Polygon Theory in the Complex Plane \([2]\), the \(\Pi\)-quantity:

\[
\Pi_{ijk} = \frac{\Delta \bar{z}_{ik}}{\bar{z}_{ij}} ; \quad \Delta \Pi_{ijk} = \Delta \bar{z}_{ik} - \Delta \bar{z}_{ij}
\]

plays a fundamental role in the relation between the measuring procedure and the function model for the adjustment. This \(\Pi\)-quantity is fully invariant with respect to similarity transformations in \(R^2\), owing to which orientations and length factors of the instrumental (local) systems do not occur in the conditions of the adjustment model, if they are composed from \(\Pi\)-quantities.

In the polygon theory for three-dimensional space, the Q-quantity:

\[
G_{jik}^{(i)} = q_{ik} q_i^{-1} ; \quad \Delta \Pi_{jik}^{(i)} = (q_i^{-1} \Delta q)_{ik}^{(i)} - (q_i^{-1} \Delta q)_{ij}^{(i)}
\]

is used for the construction of conditions. It is, however, not invariant relative to rotations:

\[
G_{jik}^{(r)} = p_{rij} G_{jik}^{(i)} p_{rij}^{-1} \neq G_{jik}^{(i)}
\]

and, see (3.17):

\[
\Delta \Pi_{jik}^{(r)} = p_{rij} [\Delta \Pi_{jik}^{(i)} + q_{ik} (p_i^{-1} \Delta p)_{ri} q_{ik} - q_{ij} (p_i^{-1} \Delta p)_{ri} q_{ij}] p_{rij}^{-1}
\]

The "three dimensional" \(\Delta \Pi_{jik}\)-quantity is therefore indeed invariant, if:

\[
q_{ik}^{-1} (p_i^{-1} \Delta p)_{ri} q_{ik} - q_{ij} (p_i^{-1} \Delta p)_{ri} q_{ij} = 0
\]

so, if: either a) : \(q_{ij} // q_{ik}\) ("stretched" quaternion \(\mathcal{Q}\))

or b) : \((p_i^{-1} \Delta p)_{ri} \perp q_{ij}\) and \((p_i^{-1} \Delta p)_{ri} \perp q_{ik}\) >

or: \((p_i^{-1} \Delta p)_{ri} // e_{jik}\)

Situation b) is encountered, if the network lies entirely in one plane \(\omega\), and the following applies to all rotation quaternions:

\[
(Vc | p) \perp \omega
\]

\[
\Delta a = \Delta b = \Delta c = 0
\]

(only the angle of rotation is stochastic, the axis is not).
Then:

\[\mathbf{G} = \mathbf{v} \cos \bar{\alpha} + \mathbf{v} \sin \bar{\alpha} \left[i a + j b + k c \right] \]

\[(P \, \Delta p)_{r_i} = \left[: a + j b + k c \right] \% \Delta \alpha_{r_i}.\]

The fact that the \(\Delta \Pi \)-quantities (4.1) are not generally invariant, leads to three important structural differences between the systems of condition equations in the two-dimensional model on the one hand and in the three-dimensional model on the other, to which we shall briefly refer in this introduction and analyse subsequently in sections 4.2, 4.3 and 4.4.

a) In \(R_3 \) orientations of local systems do occur in condition equations. The orientations can be computed as functions of observation variates according to (3.30). If in a network not only terrestrial but also "astronomical" observation variates occur, it will be necessary for at least one azimuth to be measured; otherwise it will not be possible to connect the other astronomical quantities (longitudes and latitudes) with the terrestrial ones, because the rotation quaternions \(p \) would not be fully defined then: see (2.27). But in section 4.2 it will be demonstrated that this initial azimuth does not furnish a contribution to the rank of the system of condition equations: in fact it creates a linear dependency between the horizontal directions \(r \) at the station where this azimuth was measured. It will also become apparent that, if the k-unit vectors of all local systems are parallel to each other, the coefficient of \(\Delta A \) (the azimuth) will become zero in all linearized condition equations. This corresponds to the existence of a linear dependency between the orientations in the adjustment model of the method of observation equations, so that the rank of the system remains unchanged (since the rank is equal to the number of observation variates minus the number of unknowns). From section 4.5 it will become apparent that this is important in the "transition" of the \(R_2 \)-model to the \(R_3 \)-model.

b) The \(Q_{jik} \)-quantities must all be transformed from their "own" local system \((i) \) to one common system \((r) \). Subsequently, conditions may be established for the adjustment model of the method of condition equations. In section 4.3 it will be shown that the adjustment corrections obtained from this—consequently, also estimators \(\mathbf{X}^i \)—and weight coefficients \((G^{ij}) \) of observation variates (not yet of coordinate quantities) are independent of the choice of the \((r) \)-system, i.e. one of the \((i) \)-systems.

c) In the complex plane S-coordinates \(z_{(rs)} \) can be computed from estimators \(\mathbf{X}^i \) of observation variates by:

\[z_{s_k}^{(rs)} = (-1)^n e^{\left[\Pi_{rs} + \cdots + \Pi_{ik} \right]} [z_o^e - z_r^e] \]

with:

\[\Delta \Pi_{jik} = \Delta \bar{\alpha}_{jik} + i \Delta \alpha_{jik} \]
after the choice of two, non-stochastic pairs of coordinates z_r^0 and z_s^0 ($z_r^0 - z_s^0 \neq 0$); backgrounds of this line of thought are to be found in W. Baarda's theory of S-transformations [3].

In the analogous formula for the three dimensional model, the $Q^{(r)}$-quantities have been defined in one of the local systems, the (r)-system (see b) and they are not invariant (see a). The introduction of operationally defined coordinates, an "S-system" (R) must therefore be made by means of a (difference) similarity transformation $\bar{\lambda}_{Rr}; \bar{p}_{Rr}$:

$$q_{ik}^{(R)} = (-1)^n p_{Rr} \bar{G}^{(r)}_{ik} \bar{G}^{(r)}_{ji} \ldots \bar{G}^{(r)}_{rs}, \bar{p}_{Rr}^{-1} q_{rs}^{(R)}$$

with:

$$q_{rs}^{(R)} = \bar{\lambda}_{Rr} p_{Rr} \bar{G}^{(r)}_{rs}, \bar{p}_{Rr}^{-1} \bar{\lambda}_{Rr} : \text{estimators}$$

(4.3)

(4.4)

Notation: see page 31.

This is the "first basis equation"; it has three independent components. By adding to this one component of, for example, the vector q_{rt}, a system of four "basis equations" is obtained. After differentiating - see section 4.4 - $\Delta \in \bar{\lambda}_{Rr}$ and the three independent components of Δp_{Rr} can be solved from these (i.e. expressed in differences Δx_i of estimators of observation variates in the vectors q_{rs} and q_{rt}).

Owing to this (4.4) becomes:

$$q_{rs}^{(R)} = [q_s^0 - q_r^0] = q_{rs}^0$$

and 4.3 becomes:

$$q_{ik}^{(R)} = (-1)^n p_{Rr} \bar{G}^{(r)}_{ik} \bar{G}^{(r)}_{ji} \ldots \bar{G}^{(r)}_{rs}, \bar{p}_{Rr}^{-1} [q_s^0 - q_r^0] .$$

(4.5)

Compare (4.2)!

When applying the adjustment method of observation equations, the transformation $\bar{\lambda}_{Rr}; \bar{p}_{Rr}$ is represented in the observation equations by four unknowns $\bar{\gamma}$:

$$\bar{\gamma}_{Rr} \equiv \bar{\gamma} ; \forall i \{ p_{Rr} \} \equiv \bar{\gamma}^2 ; \forall j \{ p_{Rr} \} \equiv \bar{\gamma}^3 ; \forall k \{ p_{Rr} \} \equiv \bar{\gamma}^4 .$$

In section 4.5 it will be shown that the functional model for the adjustment of a two-dimensional network of closed polygons, despite the discussed structural differences a) and c) (sections 4.2 and 4.4) is a "special case" of the "three-dimensional" model; by removing the zenith angles and Z-coordinates, the system of condition equations for R_3 automatically" becomes R_2, well known from [2]. By "automatic" is meant here that the other differences between the R_3-model and the R_2-model (numbers and types of quantities and condition equations) correspond directly to the algebraic properties of R_3 and R_2: 3 and 2 components respectively in the "coordinate condition"; 4 + 2, respectively 2 + 2 parameters in a complete similarity transformation.

This is illustrated in the list (4.53) of observation variates, unknowns and conditions
4.2 The first unit of length and the first orientation

In section 3.4 it was shown how the units of length \(\overline{X}_i \) and the orientations \(\Theta_i \) of the local systems can be expressed as functions of observation variates \(x^i \), by solution from a series of equations (3.28).

For this, however, an initial unit of length \(\overline{X}^o \), resp. orientation \(\Theta^o \) must be known. Let us assume, for the time being, that these are stochastic quantities, then:

\[
\begin{align*}
(3.29) & \rightarrow \overline{X}_i = \overline{X}_i (\ldots, x^i, \ldots, \overline{X}^o) . \\
(3.30) & \rightarrow \Theta_i = \Theta_i (\ldots, x^i, \ldots, \Theta^o) .
\end{align*}
\]

(4.6a)

(4.6b)

In section 3.4 it was already stated that \(\overline{X}^o \) and \(\Theta^o \) may be located in different stations; on this occasion, we shall see that they also have quite different functions:

\(\overline{X}^o \) is a non-stochastic factor which is only relevant for the computation technique; it is chosen such that the numerical values of the lengths of the sides, \(\sqrt{N|q|} \), are given the order of magnitude 1. (see also the scheme on page 31).

By \(\Theta^o \) the "astronomical" observation variates (longitudes and latitudes) are connected with the "terrestrial" horizontal directions, zenith angles, and distances. It should be determined from azimuth measurements in one of the local systems, \(P_a \), and is then a stochastic variate.

4.2.1 The first unit of length \(\overline{X}^o \).

We consider (2.10) applied to the side \(P_r P_u \):

\[
\overline{X}_r \leq \overline{S}_{ru} = \sqrt{N|\overline{q}_{ru}|}.
\]

If \(q_{ru} \) is a vector of average length, one achieves by choosing:

\[
\overline{X}^o = \overline{X}_r = \frac{f}{S_{ru}} \quad (f \text{ on page } 31) \quad (f = S_{ru})
\]

(4.7)

that:

\[
\sqrt{N|\overline{q}_{ru}|} \approx 1.
\]

and the lengths of all other sides of the network:

\[
\sqrt{N|\overline{q}_{ik}|} \approx 1.
\]

4.2.2 The first orientation.

According to (2.24) the orientation of a local system is the angle in the horizontal plane between astronomical north and the i-vector of the local system.
The first orientation θ^0 can thus be determined by measuring an azimuth A in one of the stations, P_a. Then θ^0 is:

$$ \theta^0 = \theta_a = A_{ab} - \gamma_{ab} $$

In appendix 1 it is proved, that in each condition equation of the types N, V, Z and A (see chapters) the coefficient of $\Delta \theta^0$ (i.e. $\Delta \theta_a$) equals the sum of the coefficients of all horizontal directions in P_a. Using Baarda's notation [4] for a condition equation with m observation variates x^i:

$$ \Delta y^p = (u^p_i)(\Delta x^i) \quad i = 1 \ldots m $$

and assuming that there are three directions in P_a:

$$ \Delta \gamma_{a1} \equiv \Delta x^1 $$
$$ \Delta \gamma_{a2} \equiv \Delta x^2 $$
$$ \Delta \gamma_{a3} \equiv \Delta x^3 $$

the conclusion of appendix 1 reads:

$$ \Delta y^p = u^p_1 \Delta \gamma_{a1} + u^p_2 \Delta \gamma_{a2} + u^p_3 \Delta \gamma_{a3} + [u^p_1 + u^p_2 + u^p_3] \Delta \theta_a + \ldots u^p_j \Delta x^j $$

Because $\Delta \theta_a$ is not an observation variate, we now substitute the difference equation of (4.8) into (4.9); the azimuth be measured in side P_aP_3:

$$ \Delta \theta_a = \Delta \theta_{a3} - \Delta \gamma_{a3} $$

and (4.9) becomes:

$$ \Delta y^p = u^p_1 \Delta \gamma_{a1} + u^p_2 \Delta \gamma_{a2} + [u^p_1 + u^p_2 + u^p_3] \Delta \theta_a + \ldots u^p_j \Delta x^j $$

There arises a linear dependency between the directions in P_a. The number of observation variates can be reduced by one, by passing from n directions to $n-1$ angles in P_a:

$$ \Delta x_{ja} = \Delta \gamma_{aj} - \Delta \gamma_{aj} $$

then (4.10) becomes:

$$ \Delta y^p = u^p_1 \Delta \gamma_{ja1} + u^p_2 \Delta \gamma_{ja2} + [u^p_1 + u^p_2 + u^p_3] \Delta \theta_{a3} + \ldots u^p_j \Delta x^j $$
4.2.3

The position of the first orientation in a network with parallel k-unit-vectors.

As a special case of spatial networks with astronomically measured rotations, we now consider a network, in which all k-vectors ('first axes' of the local systems) are parallel to each other. In section 2.3.3 it was shown that in this situation the orientations Θ_j in the rotation quaternions p_{rij} exclusively occur as difference quantities. This is, therefore, also the case in the zero-mean variates discussed in the appendix, from which the condition equations are composed: (t_i and u_ji are quaternions)

$$\sum_{i=1}^{n} (q^i \dot{\Delta} q)_k = \ldots + t_{ik} [\Delta \Theta_k - \Delta \Theta_i] \quad (4.13^a)$$

$$\sum_{i=1}^{n} \Delta q_{ik} = \ldots + u_{ik} [\Delta \Theta_k - \Delta \Theta_i]. \quad \text{(closed polygon)} \quad (4.13^b)$$

Moreover, the difference formula (3.40) for the orientation passes into the simple form (3.43):

$$\Delta \Theta_k = - \Delta r_{ki} + \Delta \Theta_i + \Delta r_{ik}. \quad (4.14)$$

so that the differences of the orientations then read as follows:

$$\Delta \Theta_1 = \Delta \Theta + \Delta r_{1a} - \Delta r_{1i}$$

$$\Delta \Theta_2 = \Delta \Theta + \Delta r_{2i} - \Delta r_{2l}$$

$$\Delta \Theta_i = \Delta \Theta + \ldots$$

This means that in the zero-mean variates (4.13^a) and (4.13^b) and therefore also in the condition equations, now the coefficient of $\Delta \Theta^0$ equals zero. In view of (4.9), the coefficient of ΔA in the condition equations then also equals zero:

$$\frac{\partial \dot{y}^0}{\partial A} = 0 \quad (4.14)$$

The azimuth must, therefore, be deleted in the condition model as observation variate; in doing so, the rank of the system of condition equations is b, as in (4.11).
Also in the observation equations (of Δr_{ik}), the orientations now occur as difference quantities; since they act here as "unknowns", this would lead to a linear dependence, and result in singularity of the matrix of the normal equations. In order to prevent this, we pass to the difference quantities \hat{t}_i; for example:

$$\hat{t}_i = \theta_i - \theta_a; \quad \theta_a \text{ is deleted as unknown.}$$ \hspace{1cm} (4.15)

Conclusion.
In a network with parallel "first axes", the observation variate (azimuth) is deleted in both adjustment models, see (4.14) and in the method of observation equations, moreover, one of the orientation unknowns see (4.15).

Schematically:

4.3 Estimators and weight coefficients of observation variates are invariant.

In a spatial polygon network, the following types of observation variates are measured:

- S_{ik}: distance measures
- E_{ik}: horizontal directions
- J_{ik}: zenith angles
- $\Delta \lambda_{ik}$: astr. longitude differences
- φ_i: astr. latitudes

From s_{ik}, r_{ik} en J_{ik} the quaternion:

$$q_{ik}^{(i)} = 0 + i s_{ik} \cos r_{ik} \sin J_{ik} + j s_{ik} \sin r_{ik} \sin J_{ik} - k s_{ik} \cos J_{ik}$$ \hspace{1cm} (4.16)

see (2.9) can be computed in the local system (i).

For carrying out transformations of local systems, the orientations Θ_i are required.

Provided that a sufficient number of observation variates have been measured in the network considered, they can be computed as functions of observation
In view of \((4.8) \) here:

\[
\theta_i = \theta_i(\ldots, x_i, \ldots)
\]

is also a function of observation variates \(x_i \), so we can put:

\[
\theta_i = \theta_i(\ldots, x_i, \ldots)
\] \hspace{1cm} (4.17)

Then the rotations between the local systems can be expressed in the quaternions:

\[
\begin{align*}
\mathbf{p}_{ji} &= \mathbf{p}_{ji}(\theta_j(\ldots, x_j, \ldots), \mathbf{a}_j, \mathbf{a}_i), \mathbf{p}_i(\ldots, x_i, \ldots) = \\
&= \mathbf{p}_{ji}(\ldots, x_i, \ldots).
\end{align*}
\] \hspace{1cm} (4.18)

Furthermore, from the distance measures \(s \), the "length factors" \(\bar{s}_{ik} \) can be computed via network sides in which \(s \) are measured in both directions:

\[
\begin{align*}
(3.27), (2.13): \quad \bar{s}_{ik} &= \frac{s_{ji}}{s_{ij}} = \bar{s}_{ji}(\ldots, x_i, \ldots)
\end{align*}
\] \hspace{1cm} (4.19)

We now choose one of the local systems, the \((r)\)-system and transform all quaternions \((4.16)\) to this system through a "chain" of rotations and length factors:

\[
\begin{align*}
\mathbf{p}_{ri} &= \mathbf{p}_{ra} \mathbf{p}_{ab} \ldots \mathbf{p}_{ke} \mathbf{p}_{ki} \\
\bar{s}_{ri} &= \bar{s}_{rb} \bar{s}_{bc} \ldots \bar{s}_{j} \bar{s}_{ji} \\
q_{ik}^{(r)} &= \bar{s}_{ri} q_{ik} q_{i}^{-1} p_{ri} \quad \text{(4.20)}
\end{align*}
\]

In view of \((4.16)\), \((4.18)\) and \((4.19)\), this may be put as:

\[
q_{ik}^{(r)} = q_{ik}(\ldots, \bar{x}_i, \ldots)
\] \hspace{1cm} (4.21)

or, introducing means \(\bar{x}_i \) of observation variates:

\[
q_{ik}^{(r)} = q_{ik}(\ldots, \bar{x}_i, \ldots)
\] \hspace{1cm} (4.21')

Furthermore:

\[
\begin{align*}
\mathbf{G}_{jik}^{(r)} &= \mathbf{p}_{ri} \mathbf{G}_{jik} \mathbf{p}_{ri}^{-1} = \\
&= \mathbf{G}_{jik}^{(r)}(\ldots, \bar{x}_i, \ldots).
\end{align*}
\] \hspace{1cm} (4.22)

and:

\[
\mathbf{G}_{jik}^{(r)} = \mathbf{G}_{jik}^{(r)}(\ldots, \bar{x}_i, \ldots)
\] \hspace{1cm} (4.22')
With the quantities (4.21') and (4.22'), being functions exclusively of observation variates, we can deduce conditions. In the form of quaternion equations reduced to zero, with means of zero-mean variates \(\mathbf{Y} \) these conditions are:

\[
 \mathbf{Y} = \mathbf{Y}(..., \mathbf{q}_{jik}, ..., \mathbf{q}_{\ell m}(...) = 0. \quad (4.23)
\]

By substitution of observations \(\mathbf{y} \) (4.21) and (4.22), misclosures \(\mathbf{y}^\mathbf{p}(\mathbf{r}) \) are obtained:

\[
 \mathbf{y}^\mathbf{p}(\mathbf{r}) = \mathbf{Y}(..., \mathbf{q}_{jik}, ..., \mathbf{q}_{\ell m}(...) \quad (4.24)
\]

Differentiation leads to:

\[
 \Delta \mathbf{y}^\mathbf{p}(\mathbf{r}) = \sum_{i=1}^{m} \mathbf{G}_{\mathbf{y}^\mathbf{p}(\mathbf{r})} \Delta \mathbf{x}^i + \mathbf{J}_{\mathbf{y}^\mathbf{p}(\mathbf{r})} \Delta \mathbf{p} + \mathbf{K}_{\mathbf{y}^\mathbf{p}(\mathbf{r})} \Delta \mathbf{p}. \quad (4.25)
\]

When choosing another local system, different from the (\(\mathbf{r} \))-system, e.g. the (\(\mathbf{w} \))-system, the series of operations (4.20) - (4.25) leads to quaternion condition equations:

\[
 \mathbf{y}^\mathbf{p}(\mathbf{w}) = \mathbf{y}^\mathbf{p}(\mathbf{r}) \quad (4.26)
\]

Now, the following applies:

\[
 \Delta \mathbf{y}^\mathbf{p}(\mathbf{w}) = \lambda_{\mathbf{w}} \mathbf{P}_{\mathbf{w}} \Delta \mathbf{y}^\mathbf{p}(\mathbf{r}) \mathbf{P}_{\mathbf{w}}^{-1} \quad (4.27)
\]

This means that the system of condition equations \(\Delta \mathbf{y}^\mathbf{p}(\mathbf{w}) \) is linearly dependent on the system \(\Delta \mathbf{y}^\mathbf{p}(\mathbf{r}) \), the same dependency prevailing between the respective misclosures (4.26). The result of adjustment by the method of condition equations is therefore independent of the choice of an (\(\mathbf{r} \))-system, apart from effects of the second order;

Estimators:

\[
 (\mathbf{x}^i)^w = (\mathbf{x}^i)^r \quad (4.28)
\]

Weight coefficients:

\[
 (G^{ij})^w = (G^{ij})^r \quad (G^{ij})
\]
4.4 The introduction of S-coordinates.

According to section 4.3, "invariant" estimators \tilde{X}^{i} and weight coefficients G^{ij} are obtained from least-squares adjustment by the method of observation equations. The substitution of the estimators in the functions (4.16) - (4.21) inclusive gives:

$$q_{(r)}^{(r)} = q_{ik}^{(r)} \left(\ldots, \tilde{X}^{i}, \ldots\right)$$

(4.28')

for all the sides of the network.

The three vector components of these quaternions can be considered as coordinate differences in the (r)-system, i.e. one of the local systems. The transition to an "operationally defined" coordinate system (R)—an "S-coordinate system in the terminology of [3]—is now effected using the similarity transformation:

$$q_{ik}^{(R)} = \tilde{X}_{rr} \ p_{pr} \ s_{ik} \ p_{rr}$$

(4.29)

The transformation (4.29) has four parameters, viz. $\sum_{p=1}^{4} q_{ir}^{(R)}$ and the three independent components of p_{rr}; this is the correct number for a similarity transformation of coordinate differences in R^3.

The (R)-system, apart from the translation, can thus be operationally defined by considering four coordinate differences, or functions thereof, as non-stochastic quantities q^{0}; we adopt the choice made by Baarda in several manuscripts, about 1970:

a) : $q_{rs}^{(R)} = q_{rs}^{0}$

(4.30)

i.e. : all three components of vector q_{rs} are non-stochastic. For q_{rs}^{0} three arbitrary numbers may be chosen, provided $N\{q_{rs}\} \neq 0$.

b) : $\frac{1}{2} \left[q_{rt}^{(R)} + e_{trs}^{0} q_{rs}^{0} \ e_{rs}^{0} \right] = \frac{1}{2} \left[q_{rt}^{0} + e_{trs}^{0} \ q_{rs}^{0} \ e_{rs}^{0} \right]$.

(4.31)

i.e. : of the vector q_{rt}, the component perpendicular to the plane through p_{pr}, p_{ps}, and p_{pt} is non-stochastic.

Because : $e_{trs}^{0} \perp q_{rt}^{0}$ we have:

$$e_{trs}^{0} \ q_{rt}^{0} = -q_{rt}^{0} \ e_{trs}^{0}$$

and the right-hand member of b) is zero.

Therefore b) becomes:

$$\frac{1}{2} \left[q_{rt}^{(R)} + e_{trs}^{0} q_{rs}^{0} \ e_{rs}^{0} \right] = 0$$

Remark :
Only one component of vector q_{rt} is used for the definition of the (R)-system; q_{rt}^{0} does not explicitly occur in (4.31), therefore. It is, however, possible to choose numbers for q_{rt}^{0}, allowing e_{trs}^{0} to be computed as follows:

$$e_{trs}^{0} = \sqrt{\frac{N\{q_{rs}^{0}\}}{N\{q_{rs}\}}} q_{rs}^{0} q_{rt}^{0}$$
A clearer procedure consists in choosing e^{o}_{trs} itself:

$$e^{o}_{trs} = 0 + i a^o + j b^o + k c^o$$

Now it becomes obvious that, in accordance with the fact that (4.31) represents one component, only one number needs to be chosen, since between a), b) and c) there are two relationships:
- first e^{o}_{trs} must be perpendicular to:
 $$q_{rs}^{o} = 0 + i X^o + j Y^o + k Z^o$$
 hence: $a^o X^o + b^o Y^o + c^o Z^o = 0$
- secondly, e^{o}_{trs} is a unit vector, so:
 $$a^{o^2} + b^{o^2} + c^{o^2} = 1$$

We now substitute (4.29), applied to the vectors q_{rs} and q_{rt}, which are measured sides of the network, in the left-hand members of (4.30) and (4.31) respectively:

$$\begin{align*}
\bar{X}_{rs} \bar{P}_{rs} \bar{q}_{rs}^{(r)} e_{trs}^{o} &= q_{rs}^{o} \\
\bar{X}_{rs} \bar{P}_{rs} \bar{q}_{rs}^{(r)} e_{trs}^{-1} + e_{trs}^{o} \bar{P}_{rs} \bar{q}_{rt}^{(r)} e_{trs}^{-1} &= 0
\end{align*}$$

These quaternion equations constitute, on condition that q_{rs} is not $//q_{rt}$, four independent equations in scalars, the so-called "basis equations". From these the four parameters of the (stochastic) transformation $\{X_{rs}: P_{rs}\}$ can be solved, i.e. expressed in components of:

$$\bar{q}_{rs}^{(r)} (\ldots, \bar{x}^i, \ldots) \text{ and } \bar{q}_{rt}^{(r)} (\ldots, \bar{x}^i, \ldots)$$

Hence:

$$\begin{align*}
\bar{X}_{rs} &= \bar{x}_{rs} (\ldots, \bar{x}^i, \ldots) \\
\bar{P}_{rs} &= \bar{p}_{rs} (\ldots, \bar{x}^i, \ldots)
\end{align*}$$

(4.33)

When using the adjustment method of observation equations, the transformation $\{\bar{X}_{rs}: \bar{P}_{rs}\}$ is applied in the computation of S-coordinates \bar{x}^r, from observation variates \bar{x}^i, according to (4.5) of (4.29).

In (4.29) the following applies:

$$\bar{q}_{ik}^{(r)} = q_{ik}^{r} (\ldots, \bar{x}^i, \ldots): \text{see (4.28)}.$$

$$\bar{X}_{rs} = \bar{x}_{rs} (\ldots, \bar{x}^i, \ldots): \text{see (4.33)}.$$

$$\bar{P}_{rs} = \bar{p}_{rs} (\ldots, \bar{x}^i, \ldots): \text{see (4.33)}.$$
Let:

\[q_{ik}^{(R)} = 0 + i X^r + j X^s + k X^t \]

notation: \(X_{ik} = X^r \); \(Y_{ik} = X^s \); \(Z_{ik} = X^t \)

then (4.29) becomes:

\[q_{ik}^R (..., X^r, ...) = \lambda_r (..., \lambda^r, ...) \; P_{rR} (..., X^s, ...) \; q_{ik}^r (..., X^t, ...) \left[P_{rR} (..., X^t, ...) \right]^T. \]

Via a difference equation of (4.35), the weight coefficients for the S-coordinates \(X^s \) can then be computed: see (4.43)

\[(G^{rs})^T = (T^s_i)(G^{ij})(T^j_s)^* \]

In the method of condition equations, the transformation is directly entered in the observation equations in the form of four "unknowns" \(Y^d \). From (4.29) follows directly:

\[q_{ik}^{(r)} = \frac{i}{\lambda_{Rr}} \; P_{Rr} \; q_{ik}^{(R)} \]

Here again, see (4.28):

\[q_{ik}^{(r)} = q_{ik} (..., X^t, ...) \]

with: \(X^t = s_{ik}^R + \varepsilon \); \(z_{ik}^s + \varepsilon \); \(z_{ik}^t + \varepsilon \)

The S-coordinates \(q_{ik}^{(R)} \) are now unknowns \(Y^d \); let:

\[q_{ik}^{(R)} = 0 + i Y^x + j Y^y + k Y^z \]

Assume also:

\[\bar{X}_{Rr} = Y^t \]

\[\bar{P}_{Rr} = \sqrt{i - \bar{I}^2_{Rr} - \bar{J}^2_{Rr} + \bar{K}^2_{Rr}} + i \; \bar{I}_{Rr} + j \; \bar{J}_{Rr} + k \; \bar{K}_{Rr} \]

with: \(\bar{I}_{Rr} = Y^x \); \(\bar{J}_{Rr} = Y^y \); \(\bar{K}_{Rr} = Y^z \)

it will then be possible to deduce observation equations for \(S_{ik} \), \(T_{ik} \), and \(J_{ik} \) from the difference equation of (4.36), after some manipulations (see section 5.6)

The adjustment results in least-squares corrections and weight-coefficients:

\[\Delta Y^d \; ; \; (\bar{G}^{oR}) \]

The solution of \(\Delta \lambda_{Rr} \) and \(\Delta P_{Rr} \) from the basis equations

The four numerical values for \(q_{rs}^o \) and \(e_{tr}^o \) (or: \(q_{rt}^o \)) may be arbitrarily chosen, provided \(N \{ q_{rs}^o \} \neq 0 \)

However, we make a deliberate choice, using the observations \(x^i \):

\[q_{rs}^o = x^i \; q_{rs} (..., x^i, ...) \; \; x^i = s_{rs}, \; r_{rs}, \; j_{rs} \]

\[q_{rt}^o = x^i \; q_{rt} (..., x^i, ...) \; \; x^i = s_{rt}, \; r_{rt}, \; j_{rt} \]
Hence:
\[
\tilde{q}_{rs}^{(r)} \approx \tilde{q}_{rs}^0 \quad ; \quad \tilde{q}_{rt}^{(r)} \approx \tilde{q}_{rt}^0
\]

and we can choose the following approximate values for \(\tilde{A}_{Rr} \) and \(P_{Rr} \):
\[
\tilde{A}_{Rr}^0 = 1 \quad ; \quad P_{Rr}^0 = 1 + i \sigma + j \omega + k \omega
\]

We differentiate the basis equations (4.32):
\[
\tilde{q}_{rs}^{(r)} \Delta \tilde{A}_{Rr}^{(r)} + \Delta P_{Rr}^{(r)} q_{rs}^{(r)} - q_{rs}^{(r)} \Delta \tilde{A}_{Rr}^{(r)} + \Delta \tilde{q}_{rs}^{(r)} = 0
\]
\[
\frac{1}{2} \left[\tilde{q}_{rt}^{(r)} \Delta \tilde{A}_{Rr}^{(r)} + \Delta P_{Rr}^{(r)} q_{rt}^{(r)} - q_{rt}^{(r)} \Delta \tilde{A}_{Rr}^{(r)} + \Delta \tilde{q}_{rt}^{(r)} \right] + \frac{1}{2} e_{tsr}^{(e)} \left[\ldots \right] e_{tsr}^0 = 0
\]

Here \(\Delta P_{Rr} \) is, see (4.39):
\[
\Delta P_{Rr} = 0 + i \Delta \tilde{A}_{Rr}^{(r)} + j \Delta \tilde{A}_{Rr}^{(r)} + k \Delta \tilde{A}_{Rr}^{(r)}
\]

Premultiplication by \(q_{rs}^{-1}(R) \) resp. \(q_{rt}^{-1}(R) \) gives, whilst deleting the upper indices:
\[(q_{rs}^{(r)} = q_{rt}^{(r)} = q) \]
\[
\frac{1}{2} \left[\tilde{q}_{rs}^{(r)} \Delta \tilde{A}_{Rr}^{(r)} + q_{rs}^{-1} \Delta P_{Rr}^{(r)} q_{rs} - q_{rs}^{(r)} \Delta \tilde{A}_{Rr}^{(r)} + \left(q_{rs}^{(r)} \Delta \tilde{q}_{rs}^{(r)} \right) \right] + \frac{1}{2} e_{tsr}^{(e)} \left[\ldots \right] e_{tsr}^0 = 0.
\]

Let:
\[
\tilde{q}_{rs}^0 = 0 + i \alpha + j \beta + k \lambda \quad ; \quad x^2 + y^2 + z^2 = s^2
\]
\[
\tilde{q}_{rt}^0 = 0 + i \alpha + j \beta + k \lambda \quad ; \quad x^2 + y^2 + z^2 = s^2
\]
\[
e_{tsr}^0 = 0 + i \alpha + j \beta + k \lambda \quad ; \quad \alpha^2 + \beta^2 + \lambda = 1.
\]

then the equations (4.40) in matrix notation will read:
\[
\begin{pmatrix}
\Delta \tilde{A}_{Rr}^{(r)} \\
0 \\
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}
\begin{pmatrix}
\Delta T_{Rr}^{(r)} \\
\Delta A_{Rr}^{(r)} \\
\Delta J_{Rr}^{(r)} \\
\Delta K_{Rr}^{(r)}
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}
\begin{pmatrix}
\Delta A_{Rrs}^{(r)} \\
\Delta T_{Rrs}^{(r)} \\
\Delta J_{Rrs}^{(r)} \\
\Delta K_{Rrs}^{(r)}
\end{pmatrix}
\]
\[
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}
\begin{pmatrix}
\Delta T_{Rr}^{(r)} \\
\Delta A_{Rr}^{(r)} \\
\Delta J_{Rr}^{(r)} \\
\Delta K_{Rr}^{(r)}
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}
\begin{pmatrix}
\Delta A_{Rrs}^{(r)} \\
\Delta T_{Rrs}^{(r)} \\
\Delta J_{Rrs}^{(r)} \\
\Delta K_{Rrs}^{(r)}
\end{pmatrix}
\]
\[
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
\]
Between the three vector components of \((4.40^a)\), there is the linear dependency (3.25):

\[
X V_i \{\{(4.40^a)\}\} + Y V_j \{\{(4.40^a)\}\} + Z V_k \{\{(4.40^a)\}\} = 0
\]

The system \((4.40^a)\) thus has the rank \(3\).

From the scalar component of \((4.40^b)\) it becomes apparent that \(\Delta \ln s_{rt}\) does not occur in the transformation. Between the three vector components of \((4.40^b)\) there are two linear dependencies:

\[
a V_i \{(4.40^b)\} + b V_j \{(4.40^b)\} + c V_k \{(4.40^b)\} = 0 .
\]

\[
x V_i \{(4.40^b)\} + y V_j \{(4.40^b)\} + z V_k \{(4.40^b)\} = 0 .
\]

(the first resulting from the first matrix; the second is analogous to the dependency (3.25)

The system \((4.40^b)\) thus has the rank \(1\).

From \((4.40^a)\) it follows immediately:

\[
\Delta \ln \lambda_{Rr} = - \Delta \ln s_{rs} \tag{4.41}
\]

The three components of \(\Delta p_{Rr}\) may be solved from two components of \((4.40^a)\) and the one independent component of \((4.40\).

Via manipulations, such as:

\[
S \sin \alpha = \frac{-y + z y}{a} = \frac{-x + x z}{b} = \frac{-x y + y x}{c} ;
\]

\[
S \cos \alpha = x x + y y + z z
\]

this results in:

\[
\Delta d_{Rr} = o + i \left(\Delta \gamma_{Rr} + j \Delta \zeta_{Rr} + k \Delta \kappa_{Rr} \right).
\]

\[
\Delta \gamma_{Rr} = \frac{(a y - b x) X}{2 S \sin \alpha} \left[\Delta r_{rs} - \Delta r_{rt}\right] - \frac{c x \cos \alpha + y \sin \alpha}{2 \sin \alpha (x y + y x)} \Delta \gamma_{rs} + \frac{c x y}{2 \sin \alpha S (x y + y x)} \Delta \gamma_{rt}
\]

\[
\Delta \zeta_{Rr} = \frac{(a y - b x) Y}{2 S \sin \alpha} \left[\Delta r_{rs} - \Delta r_{rt}\right] - \frac{c y \cos \alpha - x \sin \alpha}{2 \sin \alpha (x y + y x)} \Delta \zeta_{rs} + \frac{c y z}{2 \sin \alpha S (x y + y x)} \Delta \zeta_{rt}
\]

\[
\Delta \kappa_{Rr} = - \frac{i}{2} \Delta r_{rs} + \frac{(a y - b x) Z}{2 S \sin \alpha} \left[\Delta r_{rs} - \Delta r_{rt}\right] - \frac{c z \cos \alpha}{2 \sin \alpha (x y + y x)} \Delta \kappa_{rs} + \frac{c z y}{2 \sin \alpha S (x y + y x)} \Delta \kappa_{rt}
\]

\[
(4.42)
\]

The expressions \((4.41)\) and \((4.42)\) for \(\Delta \ln \lambda_{Rr}\) and \(\Delta p_{Rr}\) can now be substituted in the difference equation of \((4.35)\):

\[
\Delta q^{(K)}_{ik} = \Delta q^{(R)}_{ik} + \bar{q}_{ik} \Delta \ln \lambda_{Rr} + \Delta p_{Rr} \bar{q}_{ik} \Delta p_{Rr} \tag{4.43}
\]

from which the weight coefficients \((4.36)\) are computed.
The S-coordinates, when using the method of condition equations, read:

\[
q^r_{i,k} = q^r_{i,k} (\ldots, x^i, \ldots) \text{ ; } q^r_{r,s} (\ldots, x^i, \ldots).
\]

(4.44')

From the method of observation equations, the coordinate quantities are directly obtained; see (4.38):

\[
q^{(R)}_{i,k} = o + i Y^x I + j Y^x d + k Y^{x^y}, \text{ } q^{(R)}_{r,s}.
\]

(4.44'')

Amongst these the coordinate quantities in the computational base, \(q^{(R)}_{r,s} \) and one component of \(q^r_{r,t} \) are non-stochastic. They will therefore, not have adjustment corrections, so:

\[
q^{(R)}_{r,s} = q^r_{r,s} (\ldots, x^i, \ldots)
\]

The coordinate quantities \(q^{(R)}_{r,s} \) and \(q^{(R)}_{r,s} \) constitute conformal systems; they are mutually transformed according to (4.29), (4.35). The numerical values for \(\Delta R_r \) and \(p_{R_r} \) follow from the basis equations, in which we now substitute the coordinate quantities \(q^{(R)}_{r,s} \) and \(q^{(R)}_{r,s} \):

\[
q^{(R)}_{r,s} = \Delta R_r (\ldots, x^i, \ldots) = \Sigma R_r p_{R_r} q^r_{r,s} (\ldots, x^i, \ldots) p_{R_r}.
\]

From this it becomes apparent that numerical values for \(\Delta R_r \) and \(p_{R_r} \) follow from the least-squares corrections \(\xi_i \) of observation variates in the basis equations:

\[
\begin{align*}
\Delta R_r &= -\xi_i S_{rs} \\
p_{R_r} &= i + i R_r (\ldots, \xi_i, \ldots) + j R_r (\ldots, \xi_i, \ldots) + k R_r (\ldots, \xi_i, \ldots)
\end{align*}
\]

(4.45)

Relationship with the general S-transformation.

In [17] M. Molenaar gives a formula for the general S-transformation for three-dimensional coordinate systems:

\[
\begin{align*}
\Delta q_i^{(rs,t)} &= \Delta q_i^{(a)} - \frac{1}{2} \left[G_{sr_i} \Delta q_i^{(a)} + \Delta q_i^{(a)} T G_{sr_i} \right] + \\
&\quad \left[G_{sr_i} - G_{sr_i}^T \right] \left[G_{sr_i} - G_{sr_i}^T \right]^T \left[\Delta q_i^{(a)} - \frac{1}{2} \left(G_{sr_i} \Delta q_i^{(a)} + \Delta q_i^{(a)} T G_{sr_i} \right) \right] \\
&\quad \left[+ \left[G_{sr_i} - G_{sr_i}^T \right]^T \left[G_{sr_i} - G_{sr_i}^T \right] \right]
\end{align*}
\]

symb. notation:

\[
\Delta q_i^{(a)} = \Delta q_i^{(a)} + M_i (\Delta q_i^{(a)} , \Delta q_i^{(a)})
\]

(4.46)

Molenaar, as in this study, has started from the basis equations (4.32); Molenaar's (4.46) is therefore essentially the same transformation as (4.43), with:

\[
(R) = (rs,t) \text{ ; } (r) = (a).
\]
The right-hand member of (4.46) is, however, composed of differences of orthogonal coordinates, the right-hand member of (4.43) of differences of observation variates, i.e. of polar coordinates, in the basis vectors q_{rs} and q_{rt}. In order to make the formulae comparable, we pass in (4.43), i.e. (4.41) and (4.42) from polar coordinates to orthogonal coordinates as follows:

\[
\begin{pmatrix}
\Delta x_{rs} \\
\Delta y_{rs} \\
\Delta z_{rs} \\
\Delta x_{rt} \\
\Delta y_{rt} \\
\Delta z_{rt}
\end{pmatrix} =
\begin{pmatrix}
\frac{-y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 & 0 & 0 \\
\frac{-z}{S^2x^2+y^2} & \frac{-y}{S^2x^2+y^2} & \frac{x}{S^2x^2+y^2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\frac{x}{S^2} & \frac{y}{S^2} & \frac{z}{S^2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\Delta x_{rs} \\
\Delta y_{rs} \\
\Delta z_{rs} \\
\Delta x_{rt} \\
\Delta y_{rt} \\
\Delta z_{rt}
\end{pmatrix}
\]

We substitute this in (4.41) and (4.42) and obtain:

\[
\Delta I_{Rr} = \frac{-x_a \cos \alpha}{2S^2 \sin \alpha} \Delta x_{rs} + \frac{Z \sin \alpha - X \cos \alpha}{2S^2 \sin \alpha} \Delta y_{rs} - \frac{Y \sin \alpha + X \cos \alpha}{2S^2 \sin \alpha} \Delta z_{rs} + \frac{x}{2S \sin \alpha} \Delta x_{rt} + \frac{x_b}{2S \sin \alpha} \Delta y_{rt} + \frac{x_c}{2S \sin \alpha} \Delta z_{rt}
\]

\[
\Delta J_{Rr} = \frac{-y_a \cos \alpha - Z \sin \alpha}{2S^2 \sin \alpha} \Delta x_{rs} - \frac{Y \cos \alpha - X \sin \alpha}{2S^2 \sin \alpha} \Delta y_{rs} + \frac{X \sin \alpha - Y \cos \alpha}{2S^2 \sin \alpha} \Delta z_{rs} + \frac{y}{2S \sin \alpha} \Delta x_{rt} + \frac{y_b}{2S \sin \alpha} \Delta y_{rt} + \frac{y_c}{2S \sin \alpha} \Delta z_{rt}
\]

\[
\Delta K_{Rr} = \frac{-z_a \cos \alpha - Z \sin \alpha}{2S^2 \sin \alpha} \Delta x_{rs} - \frac{Y \sin \alpha + Z \cos \alpha}{2S^2 \sin \alpha} \Delta y_{rs} - \frac{Z \cos \alpha}{2S^2 \sin \alpha} \Delta z_{rs} + \frac{z}{2S \sin \alpha} \Delta x_{rt} + \frac{z_b}{2S \sin \alpha} \Delta y_{rt} + \frac{z_c}{2S \sin \alpha} \Delta z_{rt}
\]

and:

\[
\Delta \bar{a}_{Rr} = \frac{-x}{S^2} \Delta x_{rs} - \frac{y}{S^2} \Delta y_{rs} - \frac{z}{S^2} \Delta z_{rs}
\]

After, assuming as third basis equation, in accordance with Molenaar:

\[
\Delta q_{Rr}^{(R)} = 0
\]

we can substitute these expressions for ΔI_{Rr} and ΔP_{Rr} in (4.43):

\[
\Delta q_i^{(R)} = \Delta q_{Rr}^{(R)} + \bar{q}_{Rr} \Delta \bar{a}_{Rr} + \Delta P_{Rr} \bar{q}_{Rr} - \bar{q}_{Rr} \Delta P_{Rr}
\]

Then, it becomes apparent that:

\[
M_i (\Delta q_{rs}^{(a)}, \Delta q_{rt}^{(a)}) = \bar{q}_{Rr} \Delta \bar{a}_{Rr} + \Delta P_{Rr} \bar{q}_{Rr} - \bar{q}_{Rr} \Delta P_{Rr}
\]

(4.47)
An important difference between (4.43) and Molenaar's (4.46) is that in (4.43) the basis vectors q_{rs} and q_{rt} must be measured sides of the network; in q_{rs} must be measured: distance measure, direction and zenith angle; in q_{rt}: direction and zenith angle. Contrary to this, q_{rs} and q_{rt} in (4.46) may be arbitrary connections between points of the network.

Contrary to this, q_{rs} and q_{rt} in (4.46) may be arbitrary connections between points of the network.

4.5 Observation variates, conditions and unknowns.

Starting from a specified vector of observation variates \(\mathbf{x} \), this section will present a provisional consideration of the numbers of conditions and unknowns in the function model of a closed polygon with astronomically measured rotations between the "local systems". The relationship between the function model of a spatial network and that of a network in the complex plane will be described via two intermediate forms.

We specify the vector of \(m \) observation variates as follows:

\[
\begin{align*}
2n & \quad \text{directions } r \\
2n & \quad \text{distance measures } s \\
n & \quad \text{zenith angles } \gamma \\
n & \quad \text{astr. differences of longitude } \lambda \\
n & \quad \text{astr. latitudes } \varphi \\
1 & \quad \text{azimuth } A
\end{align*}
\]

\[
m = 8n + 1
\]

A preliminary determination of the rank of the condition model

We consider the fully measured closed polygon of \(n \) points \(P_1, P_2, \ldots, P_n \) and choose the local system of \(P_1 \) as \((r)\)-system.

Now the following series of computations, following the sides of the polygon, can be carried out:

\[
\begin{align*}
q_{rs}^{(i)} &= q_{rs}^{(i)}(z_{rs}, r_{rs}, z_{rs}^*) \\
q_{rt}^{(i)} &= q_{rt}^{(i)}(z_{rt}, r_{rt}, z_{rt}^*) \\
\epsilon_r &= \epsilon_r = A_{rs} - r_{rs} \\
p_{rs}^{(i)} = p(\epsilon_r, q_{rs}, -A_{rs}, \varphi_r, \varphi_s) \\
q_{rs}^{(s)} &= q_{rs}^{(s)}(z_{rs}, r_{rs}, z_{rs}^*) \\
p_{rs}^{(s)} = p(\epsilon_r, q_{rs}, -A_{rs}, \varphi_r, \varphi_s)
\end{align*}
\]
Now, six conditions have come into being:

\[
\begin{align*}
\chi_{12}^1 + \chi_{23}^1 + \cdots + \chi_{n1}^1 &= 0 \\
y_{12}^1 + y_{23}^1 + \cdots + y_{n1}^1 &= 0 \\
z_{12}^1 + z_{23}^1 + \cdots + z_{n1}^1 &= 0 \\
\chi_{tn}^* &= -\chi_{nf}^1 \\
y_{tn}^* &= -y_{nf}^1 \\
z_{tn}^* &= -z_{nf}^1
\end{align*}
\]

This notation has been adapted from Baarda's [2], and it anticipates Chapter 5. "The coordinate condition" cannot be linearly dependent on the "polygon condition", because there are more observation variates in the polygon condition than in the coordinate condition: viz. \(s_{1n}, r_{1n} \) and \(\Sigma_{1n} \).

There remain \(n \) observation variates, which have not yet been used in this computation:

- \(n - 1 \) zenith angles \(\{ \Sigma_{21}, \Sigma_{32}, \ldots, \Sigma_{n,n-1} \} \)
- 1 difference of longitude \(\{ \Delta_{nn} \} \).

These \(n \) variates may be expressed in the form of \(n \) condition equations as a function of the \(m-n \) other observation variates (this is discussed in greater detail in Chapter 5). Consequently, now \(n + 6 \) conditions have been found by the procedure of computation alongside the polygon; if, by way of precaution, we assume that, possibly, conditions may have been overlooked, this number is a lower limit for the rank \(b \) of the condition model:

\[
b \geq n + 6
\]

By analysing linear dependencies in a set of \(n + 12 \) conditions, an upper limit, which also equals \(n + 6 \), shall be determined in section 5.4.

Unknowns

In case directions and distance measures are used as observation variates, the following "unknowns" are frequently chosen in the function model in the context of position determination of a point.
complex plane for adjustment according to the method of observation equations:

\[\begin{align*}
2n - 4 & \text{ coordinates} \\
n & \text{ orientations } e_i \\
n & \text{ length factors } \Delta_{ik}
\end{align*} \]

\[4n - 4 \]

The number of non-stochastic coordinates (four) equal the number of parameters of a similarity transformation in \(\mathbb{R}_2 \); this is connected with the "operational definition" of coordinate quantities ("S-coordinates"). In analogy there are in a spatial network of \(n \) points: 3 \(n - 7 \) stochastic coordinate unknowns (the \((R)\)-system; see section 4.4).

In \(\mathbb{R}_2 \), the relation between the S-coordinate system \((R)\) and the \(n \) local systems is established by \(n \) pairs of quantities:

\[\Theta_{R_i} : \text{ orientations} \]
\[\ln \Delta_{R_i} : \text{ logarithm of length-factors} \]

In section 4.4 we have seen that in \(\mathbb{R}_3 \), the relationship between the S-coordinate system \((R)\) and the first local system \((r)\) is established by the four variates of the "basis transformation"; see (4.39):

\[\begin{align*}
\ln \Delta_{R_i} ; I_{R_i} ; J_{R_i} ; K_{R_i}
\end{align*} \]

As in \(\mathbb{R}_2 \), the other \(n - 1 \) length factors \(\Delta_{R_i} \) can now be defined as unknowns; with regard to the orientation unknowns there arises, however, a difference between \(\mathbb{R}_2 \) and \(\mathbb{R}_3 \); so as to enable all local systems to be rotated astronomically, \(n \) orientations \(\Theta_i \) are required; moreover, \(n \) astronomical latitudes and \(n \) astronomical longitudes or \(n - 1 \) astronomical longitude differences.

Summarizing, in a fully measured spatial network of \(n \) points, the following unknowns occur:

\[\begin{align*}
3n - 7 & \text{ S-coordinates} \\
1 & \text{ "first" length-factor} \\
3 & \text{ parameters of the basis transformation} \\
n & \text{ other length-factors} \\
n & \text{ orientations} \\
n & \text{ astronomical latitudes} \\
n - 1 & \text{ astronomical longitude differences}
\end{align*} \]

\[7n - 5 \]

This number agrees with the number of observation variates \(m = 8n + 1 \) (4.48) and the provisionally determined number of conditions \(b = n + 6 \) (4.51), since:

\[8n + 1 - (n + 6) = 7n - 5 \]

The transition from \(\mathbb{R}_3 \) to \(\mathbb{R}_2 \)

We shall now describe the relationship between the three-dimensional function model and the two-dimensional model through a transition via two intermediate forms:
1. A spatial network with parallel k-unit vectors ("first axes" of local systems), as described in section 4.2.

2. The same spatial network as above, where no astronomical quantities (latitudes φ_i and longitude differences λ_{ik}) occur, i.e. networks as used for e.g. trigonometric levelling.

In (4.53) the numbers of observation variates, unknowns and conditions are stated in columns for the general R_3 model, the two intermediate forms and the R_2 model; regarding the types of conditions, we must anticipate Chapter 5 here.

<table>
<thead>
<tr>
<th>Observation variates</th>
<th>R_3</th>
<th>R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>general</td>
<td>k^i // without φ and λ</td>
</tr>
<tr>
<td>directions</td>
<td>2n</td>
<td>2n</td>
</tr>
<tr>
<td>distance measures</td>
<td>2n</td>
<td>2n</td>
</tr>
<tr>
<td>zenith angles</td>
<td>2n</td>
<td>2n</td>
</tr>
<tr>
<td>differences of longitude</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>latitudes</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>azimuth</td>
<td>1 *</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknowns</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8n + 1</td>
<td>8n</td>
</tr>
<tr>
<td></td>
<td>6n</td>
<td>4n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S-coordinates</th>
<th>R_3</th>
<th>R_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3n - 7</td>
<td>3n - 7</td>
</tr>
<tr>
<td>first rotation</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>first length factor</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>other orientations</td>
<td>n *</td>
<td>n - 1</td>
</tr>
<tr>
<td>other length factors</td>
<td>n - 1</td>
<td>n - 1</td>
</tr>
<tr>
<td>differences of longitude</td>
<td>n - 1</td>
<td>n - 1</td>
</tr>
<tr>
<td>latitudes</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conditions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinate condition</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Polygon condition</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Z-conditions</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Sum of longitude diff.</td>
<td>1</td>
<td>n + 6</td>
</tr>
</tbody>
</table>

The differences * between the "general" R_1 model and the model of "parallel k-vectors" are analysed in section 4.2; the azimuth obtains coefficients $= 0$ see (4.14), between the orientations there arises a dependency, see (4.15).

The differences between the second and the third model are trivial; all "astronomical" observation variates and unknowns disappear and so does the condition "sum of longitude differences".

The differences between the third and fourth (the R_2 model) are either trivial:
a - zenith angles are not entered in R_2 as observation variates in the function model.
b - the Z-conditions arise in the R_3 model through the measurement of zenith angles in both directions, therefore they do not occur in the R_2 model.

or they follow directly from the algebraic properties of R_3 and R_2:

- three, resp. two coordinates per point.
- seven, resp. four parameters in a similarity transformation.
- a rotation has three parameters, resp. one.
- the network or coordinate condition has three, resp. two components.

This shows that the R_2 model is a "special case" of the R_3 model.
Chapter 5.

THE ADJUSTMENT MODEL

5.1 Introduction.

In this Chapter, the theory described will be applied for the construction of a system of functional relations (conditions) of observation variates, with a view to the application of the adjustment theory, as standardized by Baarda [4].

These functional relations apply to means of stochastic quantities.

\[(Y^r) = (Y^r(..., \bar{X}^i,...)) = (o). \] (5.1)

"adjustment model of condition equations"

\[(X^i) = (X^i(..., Y^\alpha,...)) = (o). \] (5.2)

"adjustment model of observation equations"

Here:

\(X^i \): observation variates, \(i = 1 \ldots m \)

\(Y^\rho \): zero-mean variates \(\rho = 1 \ldots b \)

\(Y^\alpha \): unknowns \(\alpha = 1 \ldots m-b \)

The introduction of the stochastic observation variates \(X^i \) furnishes "misclosures":

\[(\bar{Y}^r) = (Y^r(..., X^i,...)) \] (5.3)

The estimators to be obtained, \(\bar{X}^i \) and \(Y^\alpha \), should comply with (5.1) and (5.2):

\[(o) = (Y^r(..., \bar{X}^i,...)) \] (5.4a)

\[(X^i) = (X^i(..., Y^\alpha,...)) \] (5.4b)

In view of the linearization of the functional relations (5.1) and (5.2), a complete set of approximate values \(X^i_o \), \(Y^\alpha_o \) must be chosen, also complying with (5.1).

Hence:

\[(Y^r(..., X^i_o,...)) = (o) = (Y^r_o) \] (5.5a)

\[(X^i_o) = (X^i(..., Y^\alpha_o,...)) \] (5.5b)

Now (5.3) can be linearized by expansion in a Tailor series of

\[(\bar{Y}^r - Y^r_o) = (u^r_o)(x^i - X^i_o) \]
or, whilst neglecting terms of the second and higher orders:

\[
(\Delta y_i^o) = (u_i^o)(\Delta x_i^o)
\]

with:
\[
(u_i^o) = \left(\frac{\partial y_i^o}{\partial x_i^o}\right)_{x_i^o}
\]

See also (17.21) in [4].

It also follows from (5.4) with (5.5):

\[
(X_i^r - X_o^r) = (a_{a_i}^r)(Y_o^d - Y_o^d)
\]
or:

\[
(\Delta X_i^r) = (a_{a_i}^r)(\Delta Y_o^d)
\]

with:
\[
(a_{a_i}^r) = \left(\frac{\partial X_i^r}{\partial Y_o^d}\right)_{x_i^o, y_o^d}
\]

See also (17.23) in [4].

Relation with the Polygon theory in the complex plane.

In a manuscript by Baarda [8], dating back as far as 1962-64, an elegant structural agreement was found between the quaternion relations elaborated there, and the relations in complex numbers, as they are known from the two-dimensional polygon theory [2]. Accordingly, the choice and the notation of the quaternion relations in section 5.2 are adapted from them. The TT-quantity plays a central part in the structural relation between the two- and three-dimensional polygon theories:

- two-dimensional:
 \[
 \Delta \Pi_{jik} = \Delta \Lambda_{ik} - \Delta \Lambda_{ij}
 \]
 (complex number, see [2] (2.2.17)
 with: \(\Re \{ \Delta \Pi_{jik} \} = \Delta \frac{\partial}{\partial x} Y_{jik} \)

- three-dimensional:
 \[
 \Delta \Pi_{jik}^{(i)} = (q^{(i)} \frac{\partial}{\partial q})_{ik} - (q^{(i)} \frac{\partial}{\partial q})_{ij}
 \]
 (quaternion, see (2.21)
 with: \(\Im \{ \Delta \Pi_{jik}^{(i)} \} = \Delta \frac{\partial}{\partial x} Y_{jik} \)

From section 5.4 it will become apparent that not only the quaternion conditions and the \(\Delta \Pi \)-quantities, but also the dependencies between the conditions roughly present the same structure as those in the two-dimensional theory.

In the three-dimensional theory it will, however, be necessary to introduce more types of conditions, owing to which the overall system of dependencies becomes more complicated.

In order not to obscure the subject matter unnecessarily, the sections 5.2, 5.3 and 5.4 will be restricted to the discussion of a network, consisting of one closed polygon, \(P_1 \ldots P_n \), with complete measurement according to (4.48).
Orientations Θ_i and length factors Δ_{ik} are computed according to (3.29/30), via the sides $P_1, P_{a+1}, \ldots, P_n$ and via $P_a P_{a-1} \ldots P_1$. This means that only on the side $P_n P_1$ the quantity:

$$(q^{ij} \Delta q)_{ik} - (q^{ij} \Delta q)_{ki}$$

assumes the form of (3.42). On all other sides, it assumes the form (3.42)_IV, i.e.:

$$(q^{ij} \Delta q)^{(r)}_{ik} - (q^{ij} \Delta q)^{(r)}_{ki} = e^{ii}_{ki} [\Delta_{ik} + \Delta_{jk}]$$

(5.8)

In section 5.5 an example of a case, differing from this pattern, will be discussed.

Remark on the notation.

In the following sections, one starts tacitly (i.e. by omitting the indices (r) and °) from the assumption that in all (quaternion) difference equations, the coefficients are computed according to (5.5) in one of the local (instrumental) systems, i.e. the (r)-system: thus, for example:

$$q_{ik} = q_{ik}^{(r)} = \lambda^o_{ri} p^o_{ri} q_{ik} p^{-1}_{ri}$$

5.2 Conditions.

We now again apply the procedure indicated in [8], viz. subsequent computation of the sides in a closed polygon with n points, starting in side $P_n P_1$:

$$q_{n1}$$

$$q_{12} = -G_1 q_{n1}$$

$$q_{23} = (q^{-1})G_2 q_{n1}$$

$$q_{31} = (q^{-1})G_3 q_{n1}$$

$$\vdots$$

$$q_{n-1,n} = (q^{-1})G_{n-1} G_{n-2} \ldots G_2 G_1 q_{n1}$$

By the summation of these equations, a zero vector is obtained in the left-hand member:

$$q_{nn} = q = [1 - G_1 + G_2 G_1 - \ldots + (-1)^{n-1} G_{n-1} G_{n-2} \ldots G_2 G_1] q_{n1}$$

(5.10a)

Through postmultiplication by q^{-1} ($\neq 0$)

this becomes:

$$q = [1 - G_1 + G_2 G_1 - \ldots + (-1)^{n-1} G_{n-1} G_{n-2} \ldots G_2 G_1]$$

(5.10b)
The series (5.9) may be continued by:

\[q_{nf} = (-1)^n \gamma_{n} \gamma_{n-1} \cdots \gamma_{z} \gamma_{f} q_{nf} \]

or, after reducing to zero:

\[o = -q_{nf} + (-1)^n \gamma_{n} \gamma_{n-1} \cdots \gamma_{z} \gamma_{f} q_{nf} \]

or, through postmultiplication by \(q_{nf}^{-1} \):

\[o = -1 + (-1)^n \gamma_{n} \gamma_{n-1} \cdots \gamma_{z} \gamma_{f} \]

Thus, we see the conditions known from [2], viz. "coordinate condition" and "polygon condition" come into being, both in a form with dimension length: (5.10\(a\)) and (5.11\(a\)) resp. and in a dimensionless form (5.10\(b\)) and (5.11\(b\)) resp.

How to choose from these?
The dimensionless forms would seem to deserve preference, because they were composed from exclusively dimensionless observation variates (length ratios and angles). In the difference equations of (5.10\(a\)) and (5.11\(a\)), however, the non-dimensionless factor \(\Delta q_{nf}\) obtains zero coefficients. This means that in the difference equation there are only dimensionless observation variates. The choice may thus be based on other reasons.

From section 5.3 it will become apparent that for the coordinate condition, the non-dimensionless shape (5.10\(a\)) deserves preference. Therefore:

\[o = \left[1 - \gamma_n \gamma_{n-1} \cdots \gamma_z \gamma_f \right] q_{nf} \]

"Coordinate condition" \(N_{(n), 1, \ldots, n-f}\); See [2]: (4.2.2).

As far as the polygon condition is concerned, it will become apparent, see (5.25), that in the dimensionless form (5.11\(b\)), the distance ratios occur in the scalar component and all other observation variates occur in the vector components of the difference equations. Owing to this elegant nature, we consequently choose the dimensionless form for the polygon condition; therefore:

\[o = -1 + (-1)^n \gamma_n \gamma_{n-1} \gamma_{n-2} \cdots \gamma_z \gamma_f \]

"Polygon condition" \(V_{1, z, \ldots, n}\); See [2]: (4.3.1).

Other conditions.

From the preliminary consideration of section 4.5 it becomes apparent that, contrary to the plane polygon theory, the number of linearly independent conditions is also dependent on the number of sides of the network (this is caused by the zenith angles). Therefore, for each fully measured side, an extra condition must be established; in principle, each of the three vector components of
may be used for this purpose. If, however, the network is of limited size (in comparison with the circumference of the earth), the k-unit vectors of the local systems are approximately parallel to each other and to those of the \((r) \)-system.

The zenith angles then have small coefficients in:

\[
V_i \{ \Delta q_{ik}^{(r)} + \Delta q_{ki}^{(r)} \} \quad \text{and} \quad V_j \{ \Delta q_{jk}^{(r)} + \Delta q_{kj}^{(r)} \}
\]

Therefore, we choose as condition on each side with two zenith angles:

\[
o = V_k \{ q_{ik}^{(r)} + q_{ki}^{(r)} \}
\]

"Z\(\text{ik} \)-condition"

Between the astronomical rotations \(p_{ik} \), which are composed from difference quantities (longitude differences \(\lambda_{ik} \)) and also the latitudes \(q_i \), there exists a "condition of rotation":

\[
o = -1 + p_{i1} + p_{i2} + \ldots + p_{iL}
\]

"Condition of rotation": \(R_i \ldots i \)

In section 4.1 it was shown that, in a spatial network with astronomical rotations, one azimuth must be measured so as to connect the astronomical observation variates with the "terrestrial" ones. The coefficients of this first azimuth are small in all condition equations and equal to zero, if the k-unit vectors are parallel to each other; see (4.14). The addition to the network of each next azimuth results in the creation of a condition, in which both azimuths have a large coefficient (i.e. approx. \(=1 \)). If the first azimuth is measured on side \(P_a P_b \) and a second on side \(P_j P_k \), this condition can be adapted from the quaternion equation (see fig. 37)
Here, in the quaternions $q_{ik} A$ and $q_{ab} A$ the azimuth takes the place of the direction, thus:

$$q_{ik} A = q^{(r)}_{ik} A = \lambda_{ri} p_{ri} q^{(i)}_{ik} p_{ri}^{-1}$$

with:

$$p_{ri} = p_{ri} (e_r, q_r, \lambda_{r...i}, \Phi_i, \theta = 0)$$

$$q^{(i)}_{ik} = q_{ik} (s_{ik}, A_{ik}, \lambda_{ik}).$$

Now:

$$q^{(r)}_{ab} = \lambda_{ra} p_{ra} q (s_{ab}, [r_{ab} + e_a], \lambda_{ab}) p_{ra}^{-1}$$

According to (4.9), Θ_A in the condition model is, however, replaced by $A_{ab} - r_{ab}$, therefore:

$$q^{(r)}_{ab} = \lambda_{ra} p_{ra} q (s_{ab}, A_{ab}, \lambda_{ab}) p_{ra}^{-1} \equiv q_{ab} A$$

Through premultiplication by q_{ik}^{-1}, reduction to zero and substitution of (5.16'), (5.16) passes into:

$$o = -1 + (-1)^m q_{ik} A G_{j;k} G_{j;i} \cdots G_{ab} q_{ab}$$

"Azimuth condition": $A_{a...i}$

Relations between coordinate and polygon conditions.

In section 5.4 it will be shown that of the Z-, R- and A-conditions, only one component is independent. Regarding the N- and V-conditions the situation is different. Also in order to establish links with the polygon theory in the complex plane, in which the N- and V-conditions take a central place, we now first consider the relations (dependencies) between the N- and V-conditions.

The coordinate condition (5.12) contains $n-1$ of the $n G$-quantities. As in the two-dimensional theory there are, consequently, in a fully measured closed polygon of n points n different coordinate conditions. Because quaternion algebra is non-commutative relative to multiplication, here—contrary to the two-dimensional theory—also the n polygon relations (obtainable from cyclic changing of the factors) are different!

We now introduce zero-mean variates, see (5.1); we use the characters N and V:

$$Y^0 = N^{(n)} = \left[\begin{array}{c} 1 - \Phi_1 + \Phi_2 \Phi_1 - \cdots + (-1)^{n-1} \Phi_{n-1} \Phi_n \cdots \Phi_{n-1} \Phi_n \end{array}\right] q_{n1}$$

$$= N^{(a)} = \left[\begin{array}{c} 1 - \Phi_2 + \Phi_3 \Phi_2 - \cdots + (-1)^{n-1} \Phi_{n-1} \Phi_n \cdots \Phi_{n-1} \Phi_n \end{array}\right] q_{12}$$

$$= N^{(t)} = \left[\begin{array}{c} 1 - \Phi_3 + \Phi_4 \Phi_3 - \cdots + (-1)^{n-1} \Phi_{n-1} \Phi_n \cdots \Phi_{n-1} \Phi_n \end{array}\right] q_{13}$$

$$= V^{(a)} = -1 + (-1)^n \Phi_2 \Phi_n \cdots \Phi_{n-1} \Phi_n$$

$$= V^{(t)} = -1 + (-1)^n \Phi_1 \Phi_n \cdots \Phi_{n-1} \Phi_n$$

(5.18)
Now (5.19) directly supplies a relation between two "consecutive" polygon conditions:

\[V_{2...1} = G_{i-1} V_{1...n} G_{i}^{-1} \]

Likewise, if the polygon conditions do not directly succeed each other:

\[V_{i...i-1} = G_{i-1} G_{i-2} ... G_{i} V_{1...n} G_{i}^{-1} G_{i+1}^{-1} ... G_{i-2}^{-1} G_{i-1}^{-1} \] (5.20)

This means that of the \(n \) polygon conditions, only one is independent.

From (5.18) follow the relations:

\[N_{(2)} - N_{(1)} = q_{zf} - (-1)^n G_{f} G_{n} ... G_{3} G_{2} q_{zf} \] (5.21\(a \))
\[N_{(1)} - N_{(n)} = q_{1n} - (-1)^n G_{n} G_{n+1} ... G_{2} G_{1} q_{1n} \] (5.21\(b \))

Therefore also:

\[G_{f} [N_{(1)} - N_{(n)}] = q_{1z} - (-1)^n G_{f} G_{n} ... G_{2} q_{1z} =
\]

(5.21\(a \))

\[= - [N_{(2)} - N_{(1)}] \cdot
\]

In consequence, there exists the following relation between each three coordinate conditions:

\[N_{(i)} - N_{(i-1)} = - G_{i-1} [N_{(i+1)} - N_{(i-2)}] \] (5.22)

This means, that of the \(n \) coordinate conditions, only two are independent.

From (5.21\(b \)) follows:

\[[N_{(1)} - N_{(n)}] q_{1n}^{-1} = 1 - (-1)^n G_{n} G_{n+1} ... G_{2} G_{1} =
\]

(5.21\(b \))

\[= - V_{1...n} \]

In consequence, there exists the following relation between two coordinate conditions and one polygon condition:

\[N_{(i)} - N_{(i-1)} = V_{i...i-1} q_{i-1,i}^{+1} \] (5.23)

Conclusion:

The relations (5.20), (5.22) and (5.23) lead to the conclusion that two independent coordinate and polygon conditions can be established in a fully measured closed polygon, viz.:

either: two network conditions

or: one network condition and one polygon condition
5.3 Linearization of conditions.

After the introduction of approximate values, complying with (5.5), the conditions N, V, Z, R and A are linearized by expansion in a Taylor series; if the approximate values are good enough, the terms of the zero and first order will suffice.

In all the difference equations, the terms \(\Delta G \) will be replaced by \(\Delta \Pi \), according to:

\[
\begin{align*}
(2.21) : \quad & \Delta G_{jik} \rightarrow q_{ik} \Delta \Pi_{jik} q_{ij}^{-1} \\
& \text{By substitution of stochastic observation variates, the conditions mentioned in the previous chapters are now transformed into "condition equations".}
\end{align*}
\]

The coordinate condition equation.

We differentiate the equations (5.9):

\[
\begin{align*}
\Delta q_{nt} &= q_{nt} (q \Delta q)_{nt} \\
\Delta q_{t2} &= - \Delta G_{t} q_{nt} - G_{t} \Delta q_{nt} = - q_{t2} \Delta \Pi_{t} q_{tn} q_{nt} - q_{t2} q_{tn} \Delta q_{nt} = q_{t2} \Delta \Pi_{t} + q_{t2} (q \Delta q)_{nt} \\
\Delta q_{23} &= \text{likewise } q_{23} \Delta \Pi_{2} + q_{23} \Delta \Pi_{t} + q_{23} (q \Delta q)_{nt}. \\
\Delta q_{n-1,n} &= q_{n-1,n} \Delta \Pi_{n-1} + \cdots + q_{n-1,n} \Delta \Pi_{2} + q_{n-1,n} \Delta \Pi_{t} + q_{n-1,n} (q \Delta q)_{nt}.
\end{align*}
\]

As after (5.9) we add these equations and thus obtain the difference equation of (5.10) / (5.12) As in (5.18/19) we use \(N_{(n)} \) as zero-mean variate in the left hand member; introducing observations \(\Delta x_{1} \) in the right hand member, \(N_{(n)} \) becomes the "misclosure":

\[
\begin{align*}
\Delta N_{(n)} &= q_{n-1,n} \Delta \Pi_{n-1} + \cdots + q_{n-1,n} \Delta \Pi_{2} + q_{n-1,n} \Delta \Pi_{t} + q_{n-1,n} (q \Delta q)_{nt} \\
\text{or: } \quad & \Delta N_{(n)} = \sum_{i=1}^{n-1} q_{in} \Delta \Pi_{jik} \\
& \text{with: } \Delta \Pi_{jik} = \Pi_{jik} (\ldots, \Delta x_{1}^{i}, \ldots). \\
\end{align*}
\]

The difference equation of the quaternion coordinate condition is thus identical to that of the two-dimensional coordinate condition equation, see (17.1.5) in [2].

The polygon condition equation.

Differentiation of (5.13), after the introduction of the misclosure \(\Delta V_{1} \ldots n \) as \(\Delta Y^{p} \)-quantity, gives:
\[\Delta V_{1\ldots n} = (-1)^n q_{n_1} \Delta \Pi_{1} q_{n_1} + \]
\[+ (-1)^n G_{n_1} q_{n_1} \Delta \Pi_{n_1} q_{n_1} + \]
\[+ \cdots + (-1)^n G_{n_1} G_{n_1} \cdots G_{2} \Delta \Pi_{2} q_{n_1} \]
\[= (-1)^n q_{n_1} \left[(-1)^{n-1} \Delta \Pi_{1} + \cdots + (-1)^{n-n} \Delta \Pi_{n_1} \right] q_{n_1} \]

therefore:

\[\Delta V_{1\ldots n} = q_{n_1} \left[\Delta \Pi_{1} + \Delta \Pi_{2} + \cdots + \Delta \Pi_{n_1} \Delta \Pi_{n_1} \right] q_{n_1} \] \hspace{1cm} (5.25)

Because:

\[\text{Sc} \{ \Delta \Pi_{1} \} = \Delta \Pi_{i} v_{i} \]
\[\text{Sc} \{ \Delta V_{1\ldots n} \} = \sum_{i=1}^{n} \Delta \Pi_{i} v_{i} \] \hspace{1cm} (5.25')

Here, too, the strong resemblance with the polygon condition equation in the complex plane is striking; see (17.2.2) in [2].

The Z-condition equation

The difference equation of (5.14) reads:

\[\Delta Z_{ik} = v_{k} \{ \Delta q_{ik} + \Delta q_{ki} \} \] \hspace{1cm} (5.26)

We expand this by the other components to:

\[i \Delta x_{ik} + j \Delta y_{ik} + k \Delta z_{ik} = \Delta q_{ik} + \Delta q_{ki} = \]
\[= q_{ik} \left[(\Delta q_{ik})_{ik} - (\Delta q_{ki})_{ki} \right] ; \]

According to (5.8) this expression becomes on all sides except \(P_{n} P_{1} \):

\[= q_{ik} e_{k,ik}^{\prime} \left[\Delta y_{ik} + \Delta y_{ki} \right] = \]
\[= -\sqrt{N} q_{ik} e_{k,ik}^{\prime} \left[\Delta y_{ik} + \Delta y_{ki} \right] = \]
\[= l_{ik} \left[\alpha + i \beta + j \gamma \right] \left[\Delta y_{ik} + \Delta y_{ki} \right] . \]

Consequently:

\[\Delta x_{ik} = l_{ik} \alpha \left[\Delta y_{ik} + \Delta y_{ki} \right] . \]
\[\Delta y_{ik} = l_{ik} \beta \left[\Delta y_{ik} + \Delta y_{ki} \right] . \]
\[\Delta z_{ik} = l_{ik} \gamma \left[\Delta y_{ik} + \Delta y_{ki} \right] . \]

Remark:

\((\alpha, \beta, \gamma) \perp \Delta q_{ik} \)
\(\alpha \approx 0 ; \beta \approx 0 ; \gamma \approx -1 \)
To all sides, except $P_n P_1$, the following therefore applies:

$$\alpha q_{ik} + \Delta q_{ki} = \left[c + i \frac{a}{b} + i \frac{b}{c} + k \right] \Delta Z_{ik}. $$

i.e. the i- and the j-component depend on the k-component, which is the Z-condition.

By premultiplication by q_{ik}^{-1}, the left-hand member of (5.8) is obtained again:

$$\left(q^{-1} \alpha q \right)_{ik} - (\alpha^{-1} \Delta q)_{ki} = \left[c + i \frac{a}{b} + i \frac{b}{c} + k \right] \Delta Z_{ik} $$

on all networksides except $P_n P_1$.

\[\begin{align*}
 f_{ik} &= \frac{1}{t_{ik}} \left[-V_i q_{ik} + \frac{b}{c} V_k q_{ik} \right]. \\
 g_{ik} &= \frac{1}{t_{ik}} \left[V_i q_{ik} - \frac{a}{c} V_k q_{ik} \right]. \\
 h_{ik} &= \frac{1}{t_{ik}} \left[-\frac{b}{c} V_i q_{ik} + \frac{a}{c} V_j q_{ik} \right].
\end{align*} \]

The R-condition equation.

The difference equation of (5.15) reads:

see also (3.7)

$$\Delta R_i \ldots i = p_{i,i+1} (P_{i} \Delta P)_{i,i+1} p_{i,i+1}^{-1} p_{i,i+1} + p_{i,i+1} (P_{i} \Delta P)_{i,i+1} p_{i,i+1}^{-1} p_{i,i+1} + \ldots + (P_{i} \Delta P)_{i-1,i} p_{i-1,i}^{-1} $$

After rotation to the (r)-system:

$$\Delta R_{i \ldots i}^{(r)} = p_{r,i+1} (P_{r} \Delta P)_{r,i+1} p_{r,i+1}^{-1} p_{r,i+1} + p_{r,i+1} (P_{r} \Delta P)_{i,i+1} p_{i,i+1}^{-1} p_{i,i+1} + \ldots + p_{r,i} (P_{r} \Delta P)_{i-1,i} p_{i-1,i}^{-1} p_{r,i}^{-1} $$

The A-condition equation.

The difference equation of (5.17) reads:

$$\Delta A_{i \ldots i} = (-1)^m (-1)^m q_{ik}^{-1} \Delta q_{ik} A \Delta q_{i,k} G_i \ldots G_b q_{ab} + $$

$$+ (-1)^m q_{ik}^{-1} \Delta q_{ik} A \Delta q_{k} G_i \ldots G_b q_{ab} + $$

... + (-1)^m q_{ik}^{-1} \Delta q_{ik} A \Delta q_{ab} = $$

$$= (-1)^{2m+1} (q^{-1} \alpha q)_{ik} A + (-1)^{2m} \Delta \Pi_i + \ldots + (-1)^{2m} (q^{-1} \alpha q)_{ab}. $$

therefore:

$$\Delta A_{i \ldots i} = -(q^{-1} \alpha q)_{ik} A + \Delta \Pi_i + \Delta \Pi_j + \ldots + \Delta \Pi_b + (q^{-1} \alpha q)_{ab} $$

(5.28)

5.4 Dependencies/Selection of condition equations.

In this section we shall analyse the linear dependencies between the condition equations described in section 5.3, or between components of these condition equations.
As a continuation of (5.23), we start with the dependency between two coordinate condition equations and a polygon condition equation.

5.4.1
The dependency between network and polygon conditions

From (5.24) follow:

\[\Delta N_{(n)} = q_{1n} \Delta \pi_{1} + q_{2n} \Delta \pi_{2} + \ldots + q_{n-1,n} \Delta \pi_{n-1} \]

\[\Delta N_{(t)} = q_{2t} \Delta \pi_{2} + \ldots + q_{n-1,t} \Delta \pi_{n-1} + q_{nt} \Delta \pi_{n} \]

therefore:

\[\Delta N_{(t)} - \Delta N_{(n)} = q_{nt} \left[\Delta \pi_{1} + \Delta \pi_{2} + \ldots + \Delta \pi_{n} \right] = \Delta V_{1 \ldots n} q_{nt}. \]

(5.29)

Note: This result is also obtained from the direct differentiation of (5.23):

\[\Delta N_{(t)} - \Delta N_{(n)} = \Delta V_{1 \ldots n} q_{nt} + \Delta q_{nt} \]

in which \(V = 0 \)

(compare [2]: (17.3.2)

5.4.2
Dependencies within the R-condition

According to the general difference formula (3.7) for an open chain of astronomical rotations with longitude differences, (5.27') can be reduced to:

\[\Delta R_{i \ldots i'} = p_{ri} \left[p_{i'i'} (p_{i'i'})^{-1} p_{i'i'}^{-1} + p_{i'i'} (p_{i'i'})^{-1} p_{i'i'}^{-1} + \ldots \right] \]

Here the terms with orientations and latitudes of the "intermediate" systems have been deleted, (see figure 19)

Because we are faced here with a closed chain, (i, i + 1, ..., i - 1), also the terms with \(\Delta \Theta_{i} \) and \(\Delta \varphi_{i} \) cancel each other in pairs:

since:

\[\Delta R_{i \ldots i'} = p_{i'i'} (p_{i'i'})^{-1} p_{i'i'}^{-1} = - p_{i'i'} k p_{i'i'}^{-1} \frac{1}{2} \Delta \Theta_{i} = - k \frac{1}{2} \Delta \Theta_{i} \]

\[\left(p_{i'i'} \parallel k \right). \]

\[(2.30') \quad (p_{i'i'})^{-1} = k \frac{1}{2} \Delta \Theta_{i}. \]
(likewise the terms with $\Delta \varphi_i$, i.e. $(p^{-1} \Delta p)_{i'i}$ and $(p^{-1} \Delta p)_{i''i'}$ cancel each other)

Therefore, in the R-conditions equation only the terms of the differences of longitude remain:

$$\Delta R_{i...i} = -p_{r'i} k p_{r'i}^{-1} \sum [\Delta \lambda_{i,m} + \ldots + \Delta \lambda_{i,1}]$$

If: $p_{r'i} = d + ia + jb + kc$, this is:

$$\Delta R_{i...i} = -\frac{1}{k} \left[o + i 2(db+ac) + j 2(-da+bc) + k(d^2-b^2-c^2) \right] \left[\sum \Delta \lambda_{i,m} \right]$$

(5.30)

Because $Sc \{ R_{i...i} \} = 0$, this means that the scalar component of the R-condition equation has been fulfilled identically:

$$Sc \{ \Delta R_{i...i} \} = 0$$

and also that there are two dependencies between the three vector components:

$$V_l \{ \Delta R_{i...i} \} = \frac{2(db+ac)}{d^2-a^2-b^2-c^2} V_k \{ \Delta R_{i...i} \}$$

$$V_j \{ \Delta R_{i...i} \} = \frac{2(-da+bc)}{d^2-a^2-b^2-c^2} V_k \{ \Delta R_{i...i} \}$$

(5.31)

Out of the four components of the R-condition, only one is non-identical and non-dependent. In a network, in which the k-vectors of the local systems are approximately parallel, a and b are approximately $= 0$ and $d^2+c^2 \approx 1$. This means that the difference quantities $\Delta \lambda$ only have large coefficients in the k-component of the R-condition equation (5.30)

5.4.3

The dependencies between the components of the A- and the Z-condition equations.

We split up the $\Delta \Pi$-quantities according to (2.21) into (q Δq)-quantities; A_{Π}. is now used as misclosure of the A-condition equation:

$$\Delta A_{\Pi} = (q' \Delta q)_{ik} + (q' \Delta q)_{ik} - (q' \Delta q)_{ij} - (q' \Delta q)_{ij} - (q' \Delta q)_{k} + (q' \Delta q)_{k}$$

$$(\varepsilon.8)$$

If all sides of the trajectory $P_a P_b \ldots P_j P_i$ comply with (5.8), this can be rewritten by substitution of (5.27) as:

$$\Delta A_{\Pi} = (q' \Delta q)_{ik} + \sum_{m,n} \left[i_f m_n + j g_m n + k h_{m_n} \right] \Delta Z_{m_n}$$

(5.32)
Applying (3.23) this becomes with \((i')\) instead of \((r)\):

\[
\left(q^{-1} \Delta q \right)_{ik}^{(r)} = \Delta \delta_{ik} + \Delta s_{ik} + \frac{1}{n} \left[e_{ik}^{(i')} \Delta \theta_{ik} - \left(\Delta r_{ik} \right)^2 + \frac{1}{n} \left(\Delta r_{ik} \right)^2 \right] \Delta A_{ik} + \ldots \text{terms with } \Delta P_{rik} \ldots
\]

and, with (5.16):

\[
\left(q^{-1} \Delta q \right)_{ik,A} = \Delta \delta_{ik} + \Delta s_{ik} + \frac{1}{n} \left[e_{ik}^{(i')} \Delta \theta_{ik} - \left(\Delta r_{ik} \right)^2 + \frac{1}{n} \left(\Delta r_{ik} \right)^2 \right] \Delta A_{ik} + \ldots \text{terms with } \Delta P_{rik} \ldots
\]

In these formulae, the terms with \(\Delta P_{rik}\) are equal.

Remark: Contrary to (3.38), the \(\left(q^{-1} \Delta q \right)\)-quantities in (5.32) are pointing in the same direction; therefore, the terms with \(\Delta P\) are annulled in the difference.

Thus, (5.32) passes into

\[
\Delta A_{a...i} = e_{ik}^{(r)} \Delta \omega_{ik} \left[-\Delta A_z + \Delta r_{ik} + \Delta r_{ij} \right] + \sum_{m,n} \left[f_{mn} + j g_{mn} + k h_{mn} \right] \Delta Z_{mn} \quad (5.33)
\]

The second azimuth therefore only occurs, through the quantity \(\left(q^{-1} \Delta q \right)_{ik,A}\) in the A-condition equation. From (5.33) it becomes clear that the scalar component of the A-condition equation has been fulfilled identically:

\[
S \left(\Delta A_{a...i} \right) \equiv 0
\]

If \(e^{(r)}_{ik} = 0 + iA + jB + kC\), the three vector components of the A-condition equation are:

\[
\begin{align*}
V_i \left[\Delta A_{a...i} \right] &= A \Delta \omega_{ik} \left[-\Delta A_z + \Delta r_{ik} + \Delta r_{ij} \right] + \sum_{m,n} f_{mn} \Delta Z_{mn} \\
V_j \left[\Delta A_{a...i} \right] &= B \Delta \omega_{ik} \left[-\Delta A_z + \Delta r_{ik} + \Delta r_{ij} \right] + \sum_{m,n} g_{mn} \Delta Z_{mn} \\
V_k \left[\Delta A_{a...i} \right] &= C \Delta \omega_{ik} \left[-\Delta A_z + \Delta r_{ik} + \Delta r_{ij} \right] + \sum_{m,n} h_{mn} \Delta Z_{mn}
\end{align*}
\]

Between these equations there are two dependencies:

\(A \approx 0 \quad C \approx -1\)

\[
\begin{align*}
V_i \left[\Delta A_{a...i} \right] &= \frac{A}{C} V_k \left[\Delta A_{a...i} \right] + \sum_{m,n} \left[f_{mn} - \frac{A}{C} h_{mn} \right] \Delta Z_{mn} \\
V_j \left[\Delta A_{a...i} \right] &= \frac{B}{C} V_k \left[\Delta A_{a...i} \right] + \sum_{m,n} \left[g_{mn} - \frac{B}{C} h_{mn} \right] \Delta Z_{mn}
\end{align*} \quad (5.34)
\]

Only one of the three components of the A-condition equation is, therefore, independent: the azimuths only have large coefficients in the k-component. If the network is approximately plane, then:

\[
\Delta r_{ij} \approx \Delta A_1 + \Delta r_{ij} + \ldots + \Delta r_{ij} - \Delta r_{ij}
\]

and the \(h_{mn}\) are \(\approx 0\); \(V_k \left(e^{(r)} \right) \approx -1\); therefore:

\[
V_k \left[\Delta A_{a...i} \right] \approx -\Delta A_z + \Delta A_1 + \Delta r_{ij} + \ldots + \Delta r_{ij} + \Delta r_{ij} \quad (5.35)
\]

5.4.4
The scalar component of the coordinate conditions.

We now consider the network condition \(N_{(n)}\), see (5.24); after splitting up
the ΔT-quantities, this becomes:

\[
\Delta N_{(n)} = q_{1n}[-(q' \Delta q)_{1n} + (q' \Delta q)_{12}] + q_{2n}[-(q' \Delta q)_{21} + (q' \Delta q)_{23}] + \ldots \\
\ldots + q_{n-1,n}[-(q' \Delta q)_{n-1,n-2} + (q' \Delta q)_{n-1,n}].
\]

In using $q_{2n} = q_{1n} + q_{11}$ etc., the following arrangement of the terms obtained:

\[
\Delta N_{(h)} = \frac{\Delta q_{1n} - \Delta q_{11} - \ldots - \Delta q_{n-1,n-2} + \Delta q_{n-1,n}}{n} + \sum_{i=1}^{n-1} q_{in}[(q' \Delta q)_{i,i} - (q' \Delta q)_{i+1,i}].
\]

(5.36)

Of the "a-terms", the scalar component equals zero:

a: $Sc\{\Delta q_{i,i'}\} = 0$.

Of the "b-terms" the scalar part is:

$Sc\{q_{in}[(q' \Delta q)_{i,i} - (q' \Delta q)_{i+1,i}i]\} = \frac{Sc\{[i] - \chi_{in}V_{i}i[[]] - y_{in}V_{i}i[[]] - z_{in}V_{i}i[[]]}}{n}.$

Because side $P_{in}P_{1}$ is absent from the b-terms, (5.27) applies in all the b-terms, thus:

b: $Sc\{q_{in}[(q' \Delta q)_{i,i} - (q' \Delta q)_{i+1,i}]\} = [-\chi_{in}f_{i,i} - y_{in}q_{i,i} - z_{in}h_{i,i}] \Delta Z_{i,i} = W_{i,i} \Delta Z_{i,i}.$

The scalar component of the coordinate condition equation is consequently dependent on $n - 2$ of the Z-condition equations:

\[
Sc\{\Delta N_{(n)}\} = w_{12} \Delta Z_{12} + w_{32} \Delta Z_{32} + \ldots + w_{n-1,n-2} \Delta Z_{n-1,n-2}.
\]

(5.37)

In the same way, the coordinate condition equation $N_{(1)}$ can be rewritten as:

\[
\Delta N_{(1)} = \Delta q_{11} - \Delta q_{21} - \ldots - \Delta q_{n-1,n-2} + \sum_{i=1}^{n-1} q_{1i}[(q' \Delta q)_{i,i} - (q' \Delta q)_{i+1,i}].
\]

(5.38)

Also here, side $P_{1}P_{2}$ is absent from the "b-terms"; thus (5.27) can be used again, and (5.38) becomes:
\[
S_0 \{ \Delta N_{(i)} \} = w_{zz} \Delta Z_{zz} + w_{zz} \Delta Z_{zz} + \ldots + w_{i,n-1,n} \Delta Z_{i,n-1,n}.
\] (5.39)

5.4.5
The k-component of the coordinate condition

Subsequently, we subtract (5.38) from (5.36):
\[
\Delta N_{(n)} - \Delta N_{(i)} = -\Delta q_{i} + \sum_{i=1}^{2} q_{in} \left[(q_{i}^2 a q)_{i,i} - (q_{i}^2 a q)_{i,i} \right] + \\
- \left[\Delta q_{nt} - \Delta q_{n,n} \right] - \sum_{i=1}^{n-1} q_{in} \left[(q_{i}^2 a q)_{i,i} - (q_{i}^2 a q)_{i,i} \right].
\] (5.40)

"a-terms" "b-terms"
(the other a-terms cancel each other).

The k-components of the "b-terms" are: see (5.27):
\[
V_k \left[q_{in} \left[(q_{i}^2 a q)_{i,i} - (q_{i}^2 a q)_{i,i} \right] \right] = \left[x_{in} g_{ji} - y_{in} f_{ij} \right] \Delta Z_{i,i} =
\]

Suppose:
\[
V_k \left[q_{in} \left[(q_{i}^2 a q)_{i,i} - (q_{i}^2 a q)_{i,i} \right] \right] = V_{i,j} \Delta Z_{i,j}.
\]

Thus, the k-component of (5.40) becomes:
\[
V_k \left[\Delta N_{(n)} - \Delta N_{(i)} \right] = -\Delta Z_{nt} + \Delta Z_{n,n} + \nu_{n+1} \Delta Z_{nt} + \ldots + \nu_{n,n-1,n} \Delta Z_{n,n-1,n}.
\]

therefore:
\[
V_k \left[\Delta N_{(n)} - \Delta N_{(i)} \right] = -\Delta Z_{nt} + \Delta Z_{n,n} + \left[\nu_{n+1} - \nu_{n+1} \right] \Delta Z_{tt} + \ldots \\
+ \left[\nu_{n,n-1,n} - \nu_{n,n-1,n} \right] \Delta Z_{n,n-1,n}.
\] (5.41)

There is, consequently, a dependency between the k-components of the two coordinate condition equations and all Z-condition equations.

5.4.6
The NN and the NV-model; rank of the system.

Formula (5.29) signifies, as already concluded in (5.23), that in a fully measured closed polygon, there are either two independent coordinate conditions or one coordinate and one polygon condition. Consequently we can specify two condition models:

<table>
<thead>
<tr>
<th>NN-model</th>
<th>number of components</th>
<th>NV-model</th>
<th>number of components</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 network conditions</td>
<td>8</td>
<td>1 network condition</td>
<td>4</td>
</tr>
<tr>
<td>n Z-conditions</td>
<td>n</td>
<td>1 polygon condition</td>
<td>4</td>
</tr>
<tr>
<td>1 R-condition</td>
<td>4</td>
<td>n Z-condition</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 R-condition</td>
<td>4</td>
</tr>
</tbody>
</table>

\[n + 12 \] \[n + 12 \]
In this table the azimuth conditions, if any, have been left out of consideration: in fact, the added azimuths occur, according to (5.33), exclusively in the azimuth conditions. These are therefore, at any rate, independent of the other conditions, and therefore do not play a part in an analysis of dependencies between conditions.

In the preceding sections, the following six dependencies have been found:

\[(5.31) : \quad Sc\{A_R\} \equiv 0 \quad 1\]
\[(5.31) : \quad Vi\{A_R\} \quad \text{and} \quad V k\{A_R\} \quad 2\]
\[(5.31) : \quad V j\{A_R\} \quad \text{and} \quad V k\{A_R\} \quad (5.33)\]
\[(5.37) : \quad Sc\{AN(n)\} \quad \text{and} \quad n-2 AZ's \quad 4\]
\[(5.39) : \quad Sc\{AN(1)\} \quad \text{and} \quad n-2 AZ's \quad 5\]
\[(5.41) : \quad Vk\{AN(n)\} \quad \text{and} \quad Vk\{AN(1)\} \quad \text{and} \quad AZ_{n1} \quad 6\]

Note: the latter only applies in the NN-model, owing to the existence of two coordinate conditions.

If, in this case too, we assume, by way of caution, that dependencies have been overlooked, this implies an upper limit of the rank of the NN-model:

\[b \leq n+12 - 6\]
\[\text{(5.42) (5.43)}\]

Because, however, in (4.51), a lower limit was found:

\[b \geq n+6\]

we now arrive at the conclusion:

\[b = n+6\] \quad \text{(5.44)}

Specification of observations: (4.48).

The NV-model

The NV-model too, must contain six dependencies. The dependencies (5.43/1, 2, 3, 4) apply to both the NN and to the NV-model. The remaining two dependencies can be derived from those of the NN-model with the aid of (5.29).

We write the dependencies (5.43/5 and 6) of the NN-model, as equations with the misclosures as variables, in the form of a matrix:

\[(5.43) \rightarrow 0 = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & \cdots & w_{12} & \cdots & w_{i_1, n-2, n-1} & w_{i_1, n-1, n} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & \cdots & V_{n1} & [V_{i1} - V_{i2}] \cdots [V_{n,n-2,n-1} - V_{n,n-1, n}] & [1-V_{n,n,n}] & -1 & 0 & 0 & 0 & 0 \\ \end{pmatrix}\]

\[\begin{pmatrix} Sc & V_i & V_j & V_k & \Delta Z_{i2} & \Delta Z_{i3} & \cdots & \Delta Z_{n-2,n-1} & \Delta Z_{n-1,n} & \Delta Z_{n1} & Sc & V_i & V_j & V_k \end{pmatrix}\]

To this we add (5.29), also in the form of a matrix:

\[q_{n1} = 0 + ix + jy + kz\] \quad \text{(5.45)}
From the system of six equations thus obtained, the four components of $\Delta N_{(1)}$ can be eliminated; this leads to the two equations (dependencies) sought between the conditions of the NV-model:

$$(5.43^5 - 5.21') \rightarrow$$

$$0 = -Sc\{\Delta N_{(h)}\} + w_{i23} \Delta Z_{i23} + \ldots + w_{n-i,n} \Delta Z_{n-i,n} + x_{n} VI\{\Delta V_{i...n}\} +$$

$$+ y_{n} Vj\{\Delta V_{j...n}\} + z_{n} Vk\{\Delta V_{k...n}\}. \quad (5.46')$$

$$(5.43^6 + 5.21^4) \rightarrow$$

$$0 = V_{n+i2} \Delta Z_{i2} + [V_{n+12} - V_{i2}] \Delta Z_{i2} + \ldots + [V_{n-n-i,n} - V_{i,n-n-i,n}] \Delta Z_{h-z,n-i} +$$

$$+ [1-V_{n-i,n} - \Delta Z_{h-z,n} - x_{n} VI\{\Delta V_{i...n}\} - y_{n} Vj\{\Delta V_{j...n}\} +$$

$$z_{n} Vk\{\Delta V_{k...n}\} \quad (5.47')$$

The overall system of dependencies within the NV-model thus consists of (5.43/1, 2, 3, 4) and (5.46), (5.47). Here, the i, j and k-components of the coordinate condition do not occur, whereas all four components of the polygon condition are present. This implies that the coordinate condition rather takes a position of its own. This substantiates for spatial networks Baarda's conclusion (see section 4.5 of [2]) that the coordinate condition "is the most fundamental condition".

5.4.7
Selection of conditions.

From the condition models NN and NV, six conditions must be eliminated. As a general criterion for this choice it applies that the matrix of weight coefficients of the remaining misclosures, $(g_{\rho \tau})$ in the terminology of [4], must be as orthogonal as possible. From this requirement follows that those misclosures that have the largest coefficients in the dependency equations (5.31, 5.37, 5.39, 5.41 and 5.47) are those to be considered above all for elimination, because otherwise, the diagonal elements of $(g_{\rho \tau})$ would become very small.

As far as the R-condition is concerned, these are:

$$VI\{\Delta R_{i...i}\}$$

$$Vj\{\Delta R_{i...i}\}$$
Moreover Sc \{ \Delta R_{i..i} \} is deleted.

The Z-conditions have been introduced on account of the reciprocal measurement of zenith angles on the network sides; the number of Z-conditions is therefore equal to the number of sides and it also re-occurs in the rank of the overall condition model. In principle, the elimination of one (or more) of the Z-conditions is possible, but this would lead to a less balanced structure of the condition model. Consequently, we can also eliminate from the NN-model:

- see (5.37): Sc \{ \Delta N_{(n)} \}
- see (5.39): Sc \{ \Delta N_{(1)} \}
- see (5.41): Vk \{ \Delta N_{(n)} \} or Vk \{ \Delta N_{(1)} \}

Thus, the specification of the NN-model becomes:

$$
\begin{array}{cccccc}
\text{Sc} & \text{Vi} & \text{Vj} & \text{Vk} & \text{Sc} & \text{Vi} \\
\text{N}_{(n)} & \text{N}_{(1)} & \text{R}_i,..i-1 & \text{Z}_{12},....Z_{n1} & \text{b}=n+6 \\
\end{array}
$$

In addition to three components of \(\Delta R \), in principle Sc \{ \Delta N_{(n)} \} and each of the four components of \(\Delta V \) can be eliminated from the NV condition model. However, Sc \{ \Delta V \} and Vk \{ \Delta V \} have small coefficients in (5.47) and (5.46) respectively and are thus less suitable for being eliminated. Therefore, we eliminate: Sc \{ \Delta N_{(n)} \}, Vi \{ \Delta V \} and Vj \{ \Delta V \}:

$$
\begin{array}{cccccc}
\text{Sc} & \text{Vi} & \text{Vj} & \text{Vk} & \text{Sc} & \text{Vi} \\
\text{N}_{(n)} & \text{V}_1...n & \text{R}_i,..i-1 & \text{Z}_{12},....Z_{n1} & \text{b}=n+6 \\
\end{array}
$$

This leads to complete agreement with the NV-model of the two-dimensional polygon theory:

- the coordinate condition there, is composed of two, and here of three "vector" components,
- the polygon condition in the two-dimensional model reads:

$$
\text{Re} \{ \Delta V \} = \sum_{i}^{n} \alpha N_{ij} \text{v}_{jik} \\
\text{Im} \{ \Delta V \} = i \sum_{i}^{n} [\alpha r_{ik} - \alpha r_{ij}]
$$

and, in the three-dimensional model:

$$
\text{Sc} \{ \Delta V \} = \sum_{i}^{n} \alpha N_{ij} \text{v}_{jik} \\
\text{Vk} \{ \Delta V \} = \sum_{i}^{n} [\alpha_1 \Delta r_{ik} - \alpha_2 \Delta r_{ij} + \text{terms with small coefficients} ...] \\
\alpha_1 \approx 1 \\
\alpha_2 \approx 1
$$
(the R- and Z-conditions do not occur in the two-dimensional theory).

5.5 Modification of the starting points.

5.5.1 Deviation from (5.8)

In the preceding sections, we have started from the fact that (5.27) applies, viz. that one side P_nP_1 is not used for the computation of orientations and length factors and that, moreover, those coordinate conditions are chosen, in which the ρ-quantities (or: $\Delta \Pi$-quantities) of P_n and P_1 are absent. What are the consequences for the system dependencies, if we depart from this? The number of possibilities amounts to $n^3(n-1)$, i.e. even in a triangle there are as many as 54!

location of N_a: n
location of N_b: $n-1$
location of α: n
location of β: n

We should, therefore, restrict ourselves to the discussion of one single example:

Assume: the side P_nP_1 is used for the computation of the orientations. This means that one of the other sides, P_1P_m, does not comply with (3.42)$^\mathrm{IV}$, but with (3.42)$^\mathrm{III}$:

$$(q \Delta q_{2m} - (q \Delta q)_{m,1}) = \Delta l_{12} + \Delta l_{13} + \Delta l_{23} + \Delta l_{14} + \Delta l_{24} + \Delta l_{34} + \Delta l_{15} + \Delta l_{25} + \Delta l_{35} + \Delta l_{45}.$$

However, now:

$$\Delta l_{12} = \Delta l_{13} + \Delta l_{23} + \Delta l_{14} + \Delta l_{24} + \Delta l_{34} + \Delta l_{15} + \Delta l_{25} + \Delta l_{35} + \Delta l_{45}.$$

So:

$$(q \Delta q)_{2m} - (q \Delta q)_{m,1} = Sc \frac{\alpha V}{V + \beta V} + \frac{\alpha V}{V + \beta V} = Sc \frac{\alpha V}{V + \beta V} + \frac{\alpha V}{V + \beta V} \Delta Z_{m,1}.$$

The vector components of $[(q \Delta q)_{2m} - (q \Delta q)_{m,1}]$ thus remain unmodified, but the scalar component was $=0$ and now becomes: $Sc \{\Delta V\}$. With this, the dependency relations can now be adapted.

In the NN model:
(5.37) and (5.39) remain unchanged, since there only the vector components of $(q^{-1} \Delta q)$ occur; however, (5.41) changes now:

$$V_k \{q_{lm} [(q \Delta q)_{2m} - (q \Delta q)_{m,1}]\} = z_{lm} Sc\{\alpha V\} + \gamma_{lm} \Delta Z_{m,1}.$$

$$V_k \{q_{lm} [(q \Delta q)_{2m} - (q \Delta q)_{m,1}]\} = z_{lm} Sc\{\alpha V\} + \gamma_{lm} \Delta Z_{m,1}.$$

93
Consequently (5.41) becomes:

\[V_k \{ \Delta N_{(n)} - \Delta N_{(i)} \} = \left[z_{\xi_i} - z_{\xi_k} \right] Sc \{ \Delta V \} + \{ \text{the terms as stated in (5.41)} \} \quad (5.50) \]

Here we must replace \(Sc \{ \Delta V \} \), which does not occur in the NN-model, by means of (5.29) by:

\[
Sc \{ \Delta V_{1...n} \} = Sc \left[\left[\Delta N_{(n)} - \Delta N_{(i)} \right] q_{nl}^{-1} \right] = \\
- \sum_{i} \frac{x_{nl}}{\ell_{nl}} \cdot \left[V_i \{ \Delta N_{(n)} - \Delta N_{(i)} \} - \sum_{j} \frac{y_{nl}}{\ell_{nl}} \cdot V_j \{ \Delta N_{(n)} - \Delta N_{(i)} \} - \sum_{k} \frac{z_{nl}}{\ell_{nl}} \cdot V_k \{ \Delta N_{(n)} - \Delta N_{(i)} \} \right]
\]

in the NV-model: because (5.41) passes into (5.50), (5.47) passes into:

\[
0 = \{ \text{the terms stated in (5.47)} \} + \left[z_{\xi_n} - z_{\xi_i} \right] Sc \{ \Delta V_{1...n} \}
\]

5.5.2
Other types of observation variates

- Pseudo distances.
 From (5.25') it becomes apparent that, as in the polygon theory in the complex plane, the scalar component of the V-condition has been fulfilled identically; so:

 Pseudo distances \(\rightarrow \) \(Sc \{ \Delta V \} \equiv 0 \)

- Astronomical longitudes.
 From (5.30) it becomes apparent that the same applies to the R-condition if, instead of astronomical differences of longitude, longitudes are measured:

 astronomical longitudes \(\rightarrow \) \(\Delta R \equiv 0 \)

Astronomical differences of latitude

When differences of latitude \(\varphi_{ik} \) are measured this does not lead to the creation of an additional condition, as already shown by (5.30). A condition of differences of "latitude"

\[\sum \varphi_{ik} = 0 \]

would only arise, if all the differences of longitude \(\lambda_{ik} = 0 \)

5.3.3
More loops.

We apply the specification of observation variates (4.48) to a network, composed from more than one loop, which have all been fully measured. So as to determine the number of observation variates, \(m \), the number of sides \(z \) must be introduced in addition to the number of points \(n \).

(4.48) then passes into:
2 z directions
2 z distance measures
2 z zenith angles
z astronomical differences
of longitude
n astronomical latitudes

+ 1 azimuth

\[m = 7z + n + 1 \] \hspace{1cm} (5.51)

According to (4.52), the number of unknowns, \(m - b \) only remains dependent on the number of points \(n \).

In polygon networks there is a relation between the numbers of:
- points: \(n \)
- sides: \(z \)
- loops: \(k \)

since, by extending a network by one loop, with \(p \) new points, the number of sides is increased by \(p + 1 \):

\[
\begin{align*}
 n_{k+1} &= n_k + p \\
 z_{k+1} &= z_k + p + 1
\end{align*}
\]

\[\rightarrow (z-n)_{k+1} = (z-n)_k + 1 \] \hspace{1cm} (5.53)

In a network consisting of one loop, the number of sides is equal to the number of points, therefore: \((z-n)_1 = 0 \). therefore, with (5.53):

\[(z-n)_2 = 1 ; (z-n)_3 = 2 ; \text{etc.} \]

or:

\[(z-n)_k = k-1 \] \hspace{1cm} (5.54)

or: \(n = z - k + 1 \)

Herewith (5.51) becomes:

\[m = 8z - k + 2 \]

(5.52):

\[m - b = 7z - 7k + 2 \rightarrow b = m - 7z + 7k - 2 ; \]

hence:

\[b = z + 6k \]

(this agrees with (5.44) for one loop: \(k = 1, z \rightarrow n \)).

The condition models NN and NV comprise \(z \) pieces of Z-conditions.
(they occur per side and not per point !) In view of (5.54) each loop contains 6 pieces of the other types of conditions, also in a polygon network consisting of more than one loop.
5.6 The adjustment model of observation equations.

5.6.1 Unknowns

In (5.44) was demonstrated that the rank of the condition model is:

\[b = n + 6 \]

in a closed polygon with \(n \) points, when there are \(8n + 1 \) observation variates according to (4.48).

This means that there are \(7n - 5 \) unknowns \(Y^\alpha \):

\[Y^\alpha_i, \quad \alpha = 1, ..., 7n - 5 \]

"unknowns", see (4.52).

The coordinates are \(3n - 7 \) S-coordinates in the \((R)\)-system, in accordance with (4.35). They may be introduced in observation equations by means of the quaternions:

\[\begin{align*}
\tilde{q}^{(R)}_{ik} &= o + i \left[\tilde{X}^R_{i} - \tilde{X}^R_{k} \right] + j \left[\tilde{Y}^R_{i} - \tilde{Y}^R_{k} \right] + k \left[\tilde{Z}^R_{i} - \tilde{Z}^R_{k} \right], \\
\tilde{X}^R_{i}, \tilde{Y}^R_{i}, \tilde{Z}^R_{i} : &= 3n - 7 "S-coordinates" (means).
\end{align*} \]

The astronomical latitudes \(\varphi_i \) and differences in longitude \(\lambda_{ik} \) are both observation variate and unknown. Together with the observation unknowns \(\Theta_i \), they constitute rotation quaternions \(p_{ri} \):

\[\begin{align*}
\tilde{p}_{ri} &= p_{ri} \left(\tilde{e}_{r}, \tilde{a}_{r}, \tilde{X}_{ri}, \tilde{Y}_{ri}, \tilde{Z}_{ri} \right) \\
\text{n orientation unknowns} &\quad \begin{cases} \\
\text{n latitude unknowns} &\quad 3n - 1 \quad (5.60) \\
\text{n - 1 longitude unknowns} &\quad \\
\end{cases}
\end{align*} \]

The relation with the \((R)\)-system is established by the basis transformation \(p_{Rr} \); see (4.39):

\[\begin{align*}
\tilde{X}_{Rr} = \tilde{X}^R_{r} + i \tilde{Y}^R_{r} + j \tilde{Z}^R_{r} + k \tilde{R}^R_{r}.
\end{align*} \]

According to (1.32), here one component depends on the three others; let:

\[\begin{align*}
\tilde{p}_{Rr} &= \sqrt{1 - \tilde{Y}^2_{Rr} - \tilde{Z}^2_{Rr} - \tilde{R}^2_{Rr}} + i \tilde{Y}_{Rr} + j \tilde{Z}_{Rr} + k \tilde{R}_{Rr}. \\
\tilde{X}_{Rr}, \tilde{Y}_{Rr}, \tilde{Z}_{Rr}, \tilde{R}_{Rr} : &= 4 unknowns (means)
\end{align*} \]
The length factors λ_{ik} are quotients of the instrumental length units, see (2.13):

\[\lambda_{ik} = \frac{\Delta k}{\Delta i} = \frac{\text{length unit in } P_k}{\text{length unit in } P_i} \]

\[\lambda_{ik} : n - 1 \text{ unknowns (mean) } \]

According to (5.59), (5.60), (5.61) and (5.62) there is therefore a total number of:

- (5.5) 3n - 7
- (5.60) 3n - 1
- (5.61) 4
- (5.62) n - 1

7n - 5 unknowns

5.6.2 Observation equations.

Distance measures, directions and zenith angles occur jointly per measured side of a network in the vector quaternion:

\[q_{ik}^{(i)} = o + i \tilde{s}_{ik} \cos \tilde{f}_{ik} \sin \tilde{f}_{ik} + j \tilde{g}_{ik} \sin \tilde{f}_{ik} \sin \tilde{f}_{ik} - k \tilde{h}_{ik} \cos \tilde{f}_{ik} \]

(5.63)

For each network side we can now establish an equation in which the observation variates X^1 and the unknowns γ^α occur together:

\[q_{ik}^{(R)} = \lambda_{ik} P_{ik} P_{ir} \]

or, bringing all factors with γ^α-quantities in the right-hand member:

\[q_{ik}^{(i)} = \frac{1}{\lambda_{ik} P_{ir}} q_{ik}^{(R)} P_{ir} P_{ir} P_{ir} P_{ir} \]

(5.64)

The i, j and k-components of the left-hand member are functions of the three observation variates s_{ik}, r_{ik}, J_{ik}; see (5.63). In order to obtain observation equations for these observation variates, we solve these as follows:

\[\ln s_{ik} = \ln \sqrt{V_i V_i + V_j V_j + V_k V_k} \]

\[r_{ik} = \arctan \frac{V_j}{V_i} + n \pi ; \quad n = 0 \mid V_i > 0 ; \quad n = 1 \mid V_i < 0 \]

(5.65)

According to (5.5) approximate values X^1_0 can now be computed from approximate values γ^α_0 via (5.64) and (5.65).

Observation equations (5.7) are obtained by differentiating (5.64) and (5.65).
(5.65) gives, after substitution of polar coordinates in the coefficients and whilst adding Sc \(\{ \Delta q_{ik} \} = 0 \) : (in the left hand member \(\Delta l_{ik} = S_{ik} + \varepsilon \), etc.)

\[
(\Delta l_{ik}) = \frac{(\Delta \lambda_{ik})}{(\Delta R_{ik})} = \begin{bmatrix}
0 & \cos \delta \varepsilon_3 & \sin \delta \varepsilon_3 & -\varepsilon_3 \\
0 & -\sin \delta \varepsilon_3 & \cos \delta \varepsilon_3 & 0 \\
0 & \cos \varepsilon_3 & \sin \varepsilon_3 & \sin \varepsilon_3 \\
\end{bmatrix}
\]

\[
(\Delta \phi_{ik}) = \begin{bmatrix}
0 \\
1 \\
0 \\
\end{bmatrix}
\]

The difference equation of (5.64) reads:

\[
\Delta q_{ik}^{(i)} = -q_{ik}^{(i)} \left[\Delta \lambda_{ik} \right] - \left[\frac{1}{p_{ri}(p_{i} \Delta p)_{ri}} \right] q_{ik}^{(i)} + \Delta q_{ik}^{(R)}
\]

In isomorphic matrices this reads:

\[
\begin{bmatrix}
\delta l_{ik}^{(i)} \\
\delta \phi_{ik}^{(i)}
\end{bmatrix} = \begin{bmatrix}
\delta \lambda_{ik} \\
\delta \phi_{ik}
\end{bmatrix}
\]

(5.67)

Here:

\[
\left(\delta l_{ik}^{(i)} \right) = \begin{bmatrix}
0 \\
-s_{ik} \cos \delta_{ik} \sin \delta_{ik} \\
-s_{ik} \sin \delta_{ik} \sin \delta_{ik} \\
-s_{ik} \cos \delta_{ik} \sin \delta_{ik}
\end{bmatrix}
\]

(5.61) furnishes:

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 2 \cos \delta_{ik} \sin \delta_{ik} & 2 \sin \delta_{ik} \sin \delta_{ik} & 0 \\
0 & -2 \cos \delta_{ik} \sin \delta_{ik} & -2 \cos \delta_{ik} \sin \delta_{ik} & 0 \\
0 & -2 \sin \delta_{ik} \sin \delta_{ik} & 2 \cos \delta_{ik} \sin \delta_{ik} & 0
\end{bmatrix}
\]

(5.68)

Suppose: \(\left(T_{Ri}^{(i)} \right) \).
The substitution of (5.67), add (5.68) in the right-hand member of (5.66) now gives the observation equations:

\[
\begin{pmatrix}
\Delta x_{ik} \\
\Delta r_{ik} \\
\Delta j_{ik}
\end{pmatrix} = \begin{pmatrix}
\Delta x_{Rr} + \Delta x_{Ri} \\
0 \\
0
\end{pmatrix} + 2 \begin{pmatrix}
0 & 0 & 0 & 0 \\
-\cos \theta & \sin \theta & 0 & 0 \\
0 & -\sin \theta & \cos \theta & 0
\end{pmatrix} \begin{pmatrix}
(P_{ri})^{-1} & (\Delta i_{Rr}) & (\Delta J_{Rr}) \\
0 & 0 & 0
\end{pmatrix} + \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\]

This is the most general form of observation equations for distance measures, directions and zenith angles.

Furthermore, the length of the side S_{ik} is the length of the side $P_i P_k$ in the R-system, to be designated by:

\[
\lambda_{ik} = \lambda_{Rr} \lambda_{ri} S_{ik}
\]

We shall now work out (5.69) for the case in which the unit vectors of the (R)-system are parallel to those of the (r)-system, thus for approximate values:

\[
\begin{align*}
S_{Rr} & = 1, \\
I_{Rr} & = J_{Rr} = K_{Rr} = 0.
\end{align*}
\]

Then (5.68) becomes:

\[
(P_{AP})^{-1}_{Rr} = \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\Delta i_{Rr} \\
\Delta J_{Rr} \\
\Delta K_{Rr}
\end{pmatrix} = \begin{pmatrix}
0 \\
\Delta i_{Rr} \\
\Delta J_{Rr} \\
\Delta K_{Rr}
\end{pmatrix}
\]

(5.71)
and:

\[
(P_{rr}) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

(5.71)

Assume further:

\[
(P_{ri})^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & A & B & C \\
0 & D & E & F \\
0 & G & H & I
\end{pmatrix}
\]

Symbolic notation for (1.72); A, B, C, D, E, F, G, H, I constitute an orthogonal matrix

(5.72)

According to (3.7), the terms with \((p_i - A p)_{ri} \) can be expressed in differences \(\Delta \theta, \Delta \phi, \Delta \ln \lambda, \Delta \psi \) and \(\Delta \Theta \).

Substitution of (5.70), (5.71), (5.72) and (3.7) in (5.69) now gives the observation equations:

\[
\Delta \lambda s_{ik} = - \Delta \lambda s_{rr} - \Delta \lambda s_{ri} +
\]

\[
+ \frac{\partial}{\partial \lambda s_{ik}} \left[\sin \lambda s_{ik} A + \sin \lambda s_{ik} D - \cos \lambda s_{ik} G \right] \Delta X_{ik} +
\]

\[
+ \frac{\partial}{\partial \lambda s_{ik}} \left[B - E \right] \Delta Y_{ik} +
\]

\[
+ \frac{\partial}{\partial \lambda s_{ik}} \left[C - F \right] \Delta Z_{ik}.
\]

(5.73)

\[
\Delta r_{ik} = 2 \left[\begin{array}{cc}
- \cos \lambda s_{ik} & \sin \lambda s_{ik} \\
\sin \lambda s_{ik} & \cos \lambda s_{ik}
\end{array} \right] \Delta \lambda r +
\]

\[
+ 2 \left[B - E \right] \Delta T_{rr} +
\]

\[
+ 2 \left[C - F \right] \Delta K_{rr} +
\]

\[
+ \left[- \cos A_{ik} \cos \lambda s_{ik} + \cos A_{ik} \sin \lambda s_{ik} \sin \lambda s_{ik} \right] \Delta \Theta_r +
\]

\[
+ \left[\sin A_{ik} \sin \lambda s_{ik} \cos \lambda s_{ik} + \sin A_{ik} \cos \lambda s_{ik} \sin \lambda s_{ik} \right] \Delta \phi_r +
\]

\[
+ \left[\cos A_{ik} \cos \lambda s_{ik} \cos \lambda s_{ik} + \cos A_{ik} \sin \lambda s_{ik} \sin \lambda s_{ik} \right] \Delta \xi_r - \Delta \Theta +
\]

\[
+ \frac{\partial}{\partial \lambda s_{ik}} \left[\sin \lambda s_{ik} A + \cos \lambda s_{ik} D \right] \Delta X_{ik} +
\]

\[
+ \frac{\partial}{\partial \lambda s_{ik}} \left[B + E \right] \Delta Y_{ik} +
\]

\[
+ \frac{\partial}{\partial \lambda s_{ik}} \left[C + F \right] \Delta Z_{ik}.
\]

(5.74)
\[\Delta \gamma_{ik} = 2 \left[\sin \alpha \cos \beta \right] \Delta \gamma_{rr} + 2 \left[\sin \beta + \cos \theta \right] \Delta \gamma_{rr} + 2 \left[\sin \beta + \cos \phi \right] \Delta K_{rr} \]

\[+ \left[\sin \beta \cos \beta (\cos \gamma_{ik} \cos \gamma_{il} - \sin \lambda_{rl} \cos \gamma_{il}) - \cos \lambda_{ik} \sin \lambda_{rl} \cos \gamma_{il} \right] \Delta \theta_{l} + \]

\[+ \left[\cos \lambda_{ik} \cos \lambda_{rl} + \sin \lambda_{ik} \sin \lambda_{rl} \sin \phi_{l} \right] \Delta \phi_{l} + \]

\[- \sin \lambda_{ik} \cos \phi_{l} \Delta \lambda_{rl} - \cos \lambda_{ik} \Delta \phi_{l} + \]

\[+ \frac{1}{f_{ik}} \left[\cos \cos \theta A + \sin \cos \theta D + \sin \cos \theta G \right] \Delta X_{ik} + \]

\[+ \frac{1}{f_{ik}} \left[\cos \cos \theta B + \sin \cos \theta E + \sin \cos \theta H \right] \Delta Y_{ik} + \]

\[+ \frac{1}{f_{ik}} \left[\cos \cos \theta C + \sin \cos \theta F + \sin \cos \theta I \right] \Delta Z_{ik}. \]

(5.75)

Observation equations for astronomical observation variates

Astronomical latitudes occur both as observation variates and as unknown. The observation equations are:

\[\Delta \gamma_{0} = \Delta \gamma_{i} \]

(5.76)

Of all astronomical longitudes (unknowns) one may be chosen, \(\lambda_{o} \), because longitudes only occur as difference quantities. The observation equations are:

\[\Delta \lambda_{ik} + \epsilon = \Delta \lambda_{ik} \]

(5.77)

An observation equation for the azimuth is obtained from (4.8):

\[\Delta A_{ab} = \Delta r_{ab} + \Delta \phi_{a} \]

We now substitute the observation equation for \(\Delta r_{ab} \), see (5.74):

\[\Delta r_{ab} = \ldots \ldots \ldots \Delta \phi_{a} + \ldots \ldots \ldots \]

hence:

\[\Delta A_{ab} = [\text{the observation equation of } \Delta r_{ab}, \text{ the term } \Delta \phi_{a} \text{ excluded}] \]

(5.78)

5.6.3 Networks with parallel k-vectors.

Subsequently we work out (5.69) for a network with parallel k-unit vectors, as described in section 4.2.3. This means:
\[p_{ri} = \cos \frac{1}{2} [\theta_i - \theta_r] + k \sin \frac{1}{2} [\theta_i - \theta_r] \]

then:

\[
(P_r)^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos [\theta_i - \theta_r] & \sin [\theta_i - \theta_r] & 0 \\
0 & -\sin [\theta_i - \theta_r] & \cos [\theta_i - \theta_r] & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Thus in the formulae (5.72) etc.

\[A = \cos [\theta_i - \theta_r] ; \quad E = A \]

\[B = \sin [\theta_i - \theta_r] ; \quad D = -B \]

\[C = F = G = H = 0 \]

\[L = 1. \]

Furthermore; see fig 44:

\[\cos A - \sin B = \cos [\theta_i + \theta_r - \theta_i - \theta_r] = \]

\[= \cos [A_{ik} - \theta_r] = \]

(5.71): \(\theta_r = \theta_i \ldots \ldots \)

\[= \cos [A_{ik} - \theta_r] = \cos \psi_{ik} \]

and: \(\cos B - \sin A = \sin \psi_{ik} \)

in which \(\psi_{ik} \) is the "argument" relative to the \(i \)-unit vector of the \(\{R\} \)-system.

With this, the observation equations become:

\[
\Delta \tilde{u}_{ik} = -\Delta \tilde{x}_{Rr} - \Delta \tilde{x}_{ri} + \frac{\sin \tilde{y}_{ik}}{\tilde{d}_{ik}} \cos \psi_{ik} \Delta x_{ik} + \frac{\sin \tilde{y}_{ik}}{\tilde{d}_{ik}} \sin \psi_{ik} \Delta y_{ik} + \]

\[-\frac{\cos \tilde{y}_{ik}}{\tilde{d}_{ik}} \Delta z_{ik}; \quad \text{(5.79)} \]

\[
\Delta r_{ik} = -2 \frac{\cos J_{ik}}{\sin J_{ik}} \cos \psi_{ik} \Delta r_{Rr} - 2 \frac{\cos J_{ik}}{\sin J_{ik}} \sin \psi_{ik} \Delta r_{Rr} - 2 \Delta k_{Rr} + \\
+ \Delta \theta_{r} - \Delta \theta_{i} + \sin A_{ik} \frac{\cos J_{ik}}{\sin J_{ik}} \left[\Delta q_{i} - \Delta q_{r} \right] + \\
+ \left[-\cos A_{ik} \frac{\cos J_{ik}}{\sin J_{ik}} \cos q_{i} + \sin q_{i} \right] \Delta r_{r...i} + \\
- \frac{\sin \psi_{ik}}{\tilde{d}_{ik} \sin J_{ik}} \Delta x_{ik} + \frac{\cos \psi_{ik}}{\tilde{d}_{ik} \sin J_{ik}} \Delta y_{ik}. \quad \text{(5.80)}
\]
\[\Delta \hat{J}_{ik} = -2 \sin \psi_{ik} \Delta \hat{I}_{rr} + 2 \cos \psi_{ik} \Delta \hat{J}_{rr} + \]
\[- \cos A_{ik} \left[\Delta \hat{y}_i - \Delta \hat{y}_r \right] - \sin A_{ik} \cos \phi_i \Delta \hat{A}_{ri} + \]
\[+ \frac{1}{\ell_{ik}} \cos J_{ik} \cos \psi_{ik} \Delta \hat{x}_{ik} + \frac{1}{\ell_{ik}} \cos J_{ik} \sin \psi_{ik} \Delta \hat{y}_{ik} + \frac{1}{\ell_{ik}} \sin J_{ik} \Delta \hat{z}_{ik}. \]

(5.81)

Remark:
In these observation equations all k-vectors are parallel!
Thus in the formulae (5.72) etc.

\[A \cdot \mathbf{e}_v = \mathbf{e}_v \cdot \mathbf{b} = B \cdot \mathbf{e}_v = \mathbf{b} \cdot \mathbf{e}_v, \]

\[A \cdot \mathbf{e}_a = \mathbf{e}_a \cdot \mathbf{b} = B \cdot \mathbf{e}_a = \mathbf{b} \cdot \mathbf{e}_a. \]

Furthermore, see Fig. 4A:

\[\mathbf{e}_a \cdot \mathbf{e}_b = \mathbf{e}_b \cdot \mathbf{e}_a = 0. \]

\[\mathbf{e}_a \cdot \mathbf{e}_c = \mathbf{e}_c \cdot \mathbf{e}_a = 0. \]

\[\mathbf{e}_b \cdot \mathbf{e}_c = \mathbf{e}_c \cdot \mathbf{e}_b = 0. \]

In which \(\mathbf{V}_a \) is the "argument" relative to the 1-unit vector of the 1-system.

With this, the observation equations become

\[\begin{align*}
A \cdot \Delta \mathbf{e}_v &= - \mathbf{e}_v \cdot \Delta \mathbf{b} = B \cdot \Delta \mathbf{e}_v = \mathbf{b} \cdot \Delta \mathbf{e}_v = 0, \\
A \cdot \Delta \mathbf{e}_a &= - \mathbf{e}_a \cdot \Delta \mathbf{b} = B \cdot \Delta \mathbf{e}_a = \mathbf{b} \cdot \Delta \mathbf{e}_a = 0, \\
A \cdot \Delta \mathbf{e}_c &= - \mathbf{e}_c \cdot \Delta \mathbf{b} = B \cdot \Delta \mathbf{e}_c = \mathbf{b} \cdot \Delta \mathbf{e}_c = 0.
\end{align*} \]
Appendix

1. Coefficients of $\Delta \theta_a$ and Δr_a. in orientations $\Delta \theta_i$.

The first orientation is:

$$\theta_0 = \theta_a$$

Other orientations are computed via the sides of the network, as a function of observation variates; see (3.30):

$$\theta_b = \arctan \frac{V_i \{p_{k_a}^{(k)}\} - r}{V_i \{q_{k_a}^{(k)}\} - \Delta r_{k_a}}$$

See (3.40):

$$\Delta \theta_b = \frac{-\cos \gamma}{\sin \gamma \cos \gamma} \left[\sum_{ab} V_i \{q_{i_1}^{(b)}\} \right] - \frac{\sin \gamma}{\sin \gamma \cos \gamma} \left[\sum_{ab} V_j \{q_{j_1}^{(b)}\} \right] - \Delta r_{k_a}$$

in which, see (3.11):

$$V_i \{q_{i_1}^{(b)}\} = q_{i_1}^{(b)} (p_{i_1}^{(e)} + q_{i_1}^{(a)} - (p_{i_1}^{(e)})_{k_a} + p_{k_a} \{q_{i_1}^{(a)}\} \}$$

In (3.15) it is shown, that in this formula the coefficients of $\Delta \theta_a$ and Δr_{k_a} are equal. This means, that also in $\Delta \theta_b$ these difference quantities have equal coefficients; suppose:

$$\Delta \theta_b = t_{b_1} \{ \Delta \theta_a + \Delta r_{a_1} \} + t_{b_1} \{ \Delta \theta_a + \Delta r_{a_1} \} + t_{b_1} \{ \Delta \theta_a + \Delta r_{a_1} \}$$

Via the next networks, $P_{b_1} P_{c_1}$, we obtain in a similar way:

$$\Delta \theta_c = t_{c_1} \{ \Delta \theta_a + \Delta r_{a_1} \} + t_{c_1} \{ \Delta \theta_a + \Delta r_{a_1} \} + t_{c_1} \{ \Delta \theta_a + \Delta r_{a_1} \}$$

and via $P_{a_1} P_{d_1}$:

$$\Delta \theta_d = t_{d_1} \{ \Delta \theta_a + \Delta r_{a_1} \} + \ldots \ldots \ldots$$

2. Coefficients of $\Delta \theta_a$ and Δr_a. in zero-mean variate V_{ik}.

We consider the zero-mean variate:

$$V_{ik} = V_e \{ q_{i_1}^{(r)} \} - \{ q_{j_1}^{(r)} \}$$

There will occur three orientations in V_{ik}:

$$\Delta \theta_r, \Delta \theta_i, \Delta \theta_k.$$
Suppose: (symbolic notation)

\[(\q^T - \eta)^{r}_{ik} = \Delta \theta_{rk} + \Delta \eta_{st} + v^r_{ik} \Delta \theta + v^r_{ik} \Delta \eta + \cdots + v^r_{ik} \Delta \theta + \cdots + v^r_{ik} \Delta \eta + \cdots \]

There has to be made a distinction between several different situations:

I. \(P_i\) is not \(P_a\) and \(P_k\) is not \(P_a\);

\[\theta_r, \theta_i \text{ and } \theta_k \text{ via } r_{ab}\]

Now \(V^{(r)}_{ik}\) becomes:

\[V^{(r)}_{ik} = v^r_{ik} \Delta \theta + v^r_{ik} \Delta \eta + v^r_{ik} \Delta \theta + v^r_{ik} \Delta \eta + \cdots \text{other terms} = [v^r_{ik} + v^r_{ik}] t_{rb} t_{ba} [\Delta \theta_a + \Delta \eta_{ab}] + v^r_{ik} t_{ir} r_{ba} [\Delta \theta_a + \Delta \eta_{ab}] + \cdots \]

II. Idem, but: \(\theta_k \text{ via } P_c, P_d\).

Now \(V^{(r)}_{ik}\) becomes:

\[V^{(r)}_{ik} = [v^r_{ik} + v^r_{ik}] t_{rb} t_{ba} + v^r_{ik} t_{ir} r_{ba} t_{ba} [\Delta \theta_a + \Delta \eta_{ab}] + \cdots \text{other terms} = \]

III. \(P_i \equiv P_a; P_k \equiv P_b\)

Now \(V^{(r)}_{ik} \equiv V^{(r)}_{ab}\) becomes:

\[V^{(r)}_{ab} = v^r_{ab} \Delta \theta + v^r_{ab} [\Delta \theta_a + \Delta \eta_{ab}] + v^r_{ab} \Delta \theta + v^r_{ab} \Delta \eta + \cdots = [v^r_{ab} + v^r_{ab}] t_{rb} t_{ba} + v^r_{ab} t_{ba} [\Delta \theta_a + \Delta \eta_{ab}] + \cdots \text{other terms} \]

IV. \(P_i \equiv P_a; P_k \equiv P_c\)

Now \(V^{(r)}_{ik} \equiv V^{(r)}_{ac}\) becomes:

\[V^{(r)}_{ac} = v^r_{ac} \Delta \theta + v^r_{ac} [\Delta \theta_a + \Delta \eta_{ac}] + v^r_{ac} \Delta \theta + v^r_{ac} \Delta \eta + \cdots = [v^r_{ac} + v^r_{ac}] t_{rb} t_{ba} + v^r_{ac} t_{ba} [\Delta \theta_a + \Delta \eta_{ab}] + \cdots \text{other terms} \]
Conclusion:

In all different positions of the zero-mean variate $V^{(r)}$ with respect to P_a and P, the coefficient of $\Delta \Theta_a$ is equal to the sum of the coefficients of all directions in P_a, occurring in $V^{(r)}_{ik}$:

$$V^{(r)}_{ik} = u_b \Delta r_{ab} + o \Delta r_{bc} + o \Delta r_{ae} + u_b \Delta \Theta_a + \ldots \text{other terms}$$

or:

$$= u_b \Delta r_{ab} + u_e \Delta r_{ae} + [u_b + u_e] \Delta \Theta_a + \ldots \text{other terms}$$

or:

$$= u_b \Delta r_{ab} + u_c \Delta r_{ae} + u_e \Delta r_{ae} + [u_b + u_c + u_e] \Delta \Theta_a + \ldots \text{other terms}$$

3. The coefficients of $\Delta \Theta_a$ and Δr_{a1}, Δr_{a4} in a closed polygon.

We now consider the closed polygon $P_1 P_2 P_3 P_4 P_n$, with the zero-mean variate:

$$W^{(r)}_{ik} = \Delta \Theta_{ik}^{(r)} + \Delta r_{a1}^{(r)} + \Delta r_{a4}^{(r)}$$

Introduction of a symbolic notation for $\Delta q^{(r)}_{ik}$:

$$\Delta q^{(r)}_{ik} = q^{(r)}_{ik} \left[\Delta r^{(r)}_1 + \Delta r^{(r)}_2 \right] + w_i^1 \Delta \Theta_r + w_i^2 \Delta r_r + w_i^3 \Delta r_{r-1} +$$

$$+ w_i^n \Delta r_i + w_i^r \left[\Delta \Theta_{ik} + \Delta r_{ik} \right] + w_i^s \Delta q^{(r)}_{ik}$$

In the network shown in figure, with $P_r \equiv P_3$, the coefficients of $\Delta \Theta_a$ and Δr_{a1}, Δr_{a4} become:

$$W^{(r)}_{ik} = \begin{bmatrix} w_i^1 t_3 t_4 a + \\
+ w_i^2 t_3 t_4 a + w_i^3 t_3 t_4 a + \\
+ w_i^4 t_3 t_4 a + w_i^s t_3 t_4 a + \\
+ w_i^t t_3 t_4 a + w_i^u t_4 a + \end{bmatrix} \begin{bmatrix} \Delta \Theta_a + \Delta r_{a1} \\
+ w_i^t t_4 a \end{bmatrix} + \ldots$$

For this zero-mean variate the same conclusion may be drawn:

$$W^{(r)}_{ik} = u_i \Delta r_{a1} + u_i \Delta r_{a4} + [u_i + u_a] \Delta \Theta_a + \ldots \text{other terms}$$

4. The condition equations.

We will now prove, that all condition equations mentioned in chapter 5 are composed from zero-mean variates $V^{(r)}_{ik}$ and $W^{(r)}_{ik}$...
Polygon condition:

From (5.25) it becomes apparent that, by splitting up the \(\Delta \Pi \)-quantities, the polygon condition reads:

\[
\Delta \mathbf{V}_{i...n}^{(r)} = q_{int} \sum \left[(q_{\Delta q})_{ik}^{(r)} - (q_{\Delta q})_{ki}^{(r)} \right] = q_{int} \sum V_{ik}^{(r)}.
\]

Network condition:

From (5.36) it becomes apparent that this also applies to the so-called "b-terms" of the coordinate condition; in the "a-terms", however, the terms \(\Delta \mathbf{q}_{n-1,n} \) must be replaced by \(-\Delta \mathbf{q}_{n,n-1} \) in order to reach similarity between the a-terms and \(\mathbf{W}_{1...n} \);

the a-terms of (5.36):

\[
- \Delta \mathbf{q}_{1n} - \Delta \mathbf{q}_{2n} - \cdots - \Delta \mathbf{q}_{h-1,n-1} + \Delta \mathbf{q}_{n-1,n} = \\
= - \sum_{\text{polygon}} \Delta \mathbf{q}_{ik} + \Delta \mathbf{q}_{n-1,n} + \Delta \mathbf{q}_{n,n-1} = \\
= - W_{i...n}^{(r)} + q_{null_h...n} \left[(q_{\Delta q})_{h-1,n} - (q_{\Delta q})_{h,n-1} \right] = \\
= - W_{i...n}^{(r)} + q_{null_h...n} V_{h...n}^{(r)}
\]

therefore also the a-terms of the coordinate condition are composed of zero quantities of the types \(\mathbf{V} \) and \(\mathbf{W} \).

Z-condition:

(5.26):

\[
\Delta \mathbf{Z}_{ik}^{(r)} = V_k \{ \Delta \mathbf{q}_{ik}^{(r)} + \Delta \mathbf{q}_{ki}^{(r)} \} = \\
= V_k \{ q_{ik} \left[(q_{\Delta q})_{ik}^{(r)} - (q_{\Delta q})^{(r)}_{ki} \right] \} = \\
= V_k \{ q_{ik} \mathbf{V}_{ik}^{(r)} \}.
\]

A-condition:

From (5.39) it becomes apparent that the differences \(\Delta \mathbf{a} \), \(\Delta \mathbf{r} \) do occur in the A-condition via:

1- the \(\Delta \mathbf{Z}_{ik} \) quantities; these are of the type \(\mathbf{V}_{ik}^{r} \).

2- the orientation \(\Delta \mathbf{a} \); the latter is:

\[
\Delta \mathbf{a} = \mathbf{r}_{i...a} \left[\Delta \mathbf{a} + \Delta \mathbf{r} \right] + \cdots \text{other terms} \cdots.
\]

R-condition:

In the R-condition neither directions in \(\mathbf{P} \), nor \(\Delta \mathbf{a} \) occur, because (5.27') fulfills 3.1.2.1.
Conclusion:

All types of condition equations are composed of zero-mean variates of the types V_{ik} and $W_i \ldots n$; therefore the coefficient of $A\theta_a$ equals the sum of the coefficients of all directions in P_a, occurring in that condition equation:

$$
\Delta y^p = u^p_1 \Delta r_{a_1} + u^p_2 \Delta r_{a_2} + \ldots + u^p_n \Delta r_{a_n} + [u^p_1 + u^p_2 + \ldots + u^p_n] A\theta_a + \\
\ldots \text{all other terms}
$$

Remark: $u^p_1 \ldots u^p_n$ can be $= 0$, but at least one of them $\neq 0$ in every condition equation N, V, Z and A.
<table>
<thead>
<tr>
<th>1</th>
<th>Alberda, J.E.</th>
<th>Vertical angles; Deviations of the vertical and adjustment. Netherlands Geodetic Commission Vol.1, nr. 1. 1961</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Baarda, W.</td>
<td>Polygonontheory in the complex plane. Lecture notes of the geodetic institute TH-Delft 1966-1969</td>
</tr>
<tr>
<td>4</td>
<td>Baarda, W.</td>
<td>Vereffeningstheorie</td>
</tr>
<tr>
<td>7</td>
<td>Baarda, W.</td>
<td>A personal report on activities in special study group No. 1.14 - Travaux de l'AIG, 24 Paris</td>
</tr>
<tr>
<td>8</td>
<td>Baarda, W.</td>
<td>Manuscripts 1960 - 1962</td>
</tr>
<tr>
<td>10</td>
<td>Bahnert, G.</td>
<td>Refraktionseinflüsse auf trigonometrisches Nivellement (Vermessungstechnik 29/3)</td>
</tr>
<tr>
<td>13</td>
<td>Glissmann, T. and Williams, D.</td>
<td>Ein koinzidenzverfahren zur Messung von refraktionsfreien Richtungen; ZfV 103/5</td>
</tr>
<tr>
<td>14</td>
<td>Brand, L.</td>
<td>Vector and Tensor Analysis. New York 1947</td>
</tr>
<tr>
<td>16</td>
<td>Meerdink, E.F.</td>
<td>Het mathematische model van triangulaties op bol en ellipsoide. T.H. Delft 1961</td>
</tr>
<tr>
<td>17</td>
<td>Molenaar, M.</td>
<td>A further inquiry into the theory of S-transformations and criterion matrices. Delft 1981</td>
</tr>
<tr>
<td>18</td>
<td>Quee, H.</td>
<td>Afstudeerscriptie 1971</td>
</tr>
</tbody>
</table>

Een kriteriumtheorie voor boogkorrekties. NGT 1978/4/5

Several publications on the testnet Stuttgart ZfV 104/1 (1979); ZfV 105/10 (1980)

Dreidimensionale Ausgleichung des Testnetzes Westharz. DGK Reihe B Heft 32, 1978

Driehoek en viervlak; afstudeerscriptie 1970

Vectors, quaternions and spinors - a discussion of Algebras underlying threedimensional Geodesy. Forty years of thought I, Delft 1982

Stellingen behorend bij het proefschrift:
"Quaternion algebra, applied to polygon theory in three
dimensional space"
van ir. H. Quee.

Promotor: prof.dr.ir. W. Baarda.

1. De vorm van een driehoek en de stand van het vlak van die
driehoek ten opzichte van een driedimensioneel koördinaat-
stelsel kunnen beschreven worden met behulp van één quater-
nion.

2. Tussen de vier componenten van een relatief differentie-
quaternion (zowel van "rotatie"- als van "vectorquaternionen")
bestaat altijd één lineaire afhankelijkheid.

3. Het op complexe getallen gebaseerde rekenmodel voor gesloten
veelhoeken in het platte vlak kan rechtstreeks worden afgeleid
van het op quaternionen gebaseerde model voor de driedimen-
sionele ruimte, door uit differentievergelijkingen de termen
van de astronoomsche waarnemingsgrootheden en de zenithhoeken
weg te laten, en in de coefficienten de plaatselijke schiet-
loodrichtingen evenwijdig te nemen.

4. Het aantal onafhankelijke voorwaardevergelijkingen in een
volledig gemeten gesloten ruimtelijke veelhoek van n zijden
bedraagt n+5 indien astronoomsche lengten, en n+6 indien
astronoomsche lengteverschillen zijn gemeten.

5. In ruimtelijke veelhoeknetten is het netverband om twee
redenen belangrijker dan het veelhoekverband: in de eerste
plaats omdat—evenals in het platte vlak—in een gesloten
veelhoek of twee netverbanden of één net- en één veelhoek-
verband voorkomen (dus in ieder geval één netverband) en in
de tweede plaats omdat in het model met één net- en één
veelhoekverband van het netverband alleen de scalaire component,
en van het veelhoekverband twee componenten lineair afhankelijk
zijn.

6. In correktievergelijkingen voor horizontale richtingen en
zenithhoeken dienen, naast de drie componenten van de rotatie
van het betreffende locale assenstelsel, ook die van de drie
vectorische componenten van de schrankingstransformatie voor
teken, waarmee de (vereffende) waarnemingsgrootheden
gekoppeld worden aan een koördinaatstelsel.

7. Voor een goede beoordeling van de nauwkeurigheid van een
uitzetting is het noodzakelijk om het gehele stochastische
proces: opmeting — vereffening — berekening van koördinaten Y^\alpha
en uitzetmaten u^i, in beschouwing te nemen; als kriteriumgroot-
heid voor de nauwkeurigheid kan hiertoe het verschil v van de
berekende en de uitgezette functie worden genomen:

\[v = f(u^i(Y^\alpha)) - f(u^i) \]
8. Het kiezen van kleine uitzetmaten (lengten) heeft uiteraard "praktische" voordelen, maar betekent ook dat de precisie en de betrouwbaarheid van de uitzetmaten onafhankelijk zijn van de keuze van een schrankingsbasis; hierdoor is het mogelijk om het kwaliteitsnivo van de uitzetting af te stemmen op de eisen die daaraan worden gesteld.

9. Indien tracéparameters d.m.v. het tracé-algoritme van NS worden opgelost uit een stochastisch puntenveld, gedraagt een punt t van de tracélijn zich in een S-transformatie op dezelfde wijze als een op dezelfde plaats gelegen punt i van het puntenveld:

$$z_t^\ominus = z_i^\ominus$$

10. De door de Deutsche Bundesbahn gebruikte methode voor "Gleisvermarkung" (=vastlegging van spoortracés) leidt tot een onnodig lage externe betrouwbaarheid van de referentiepunten, doordat een aan de fotogrammetrie ontleende opzet voor de metingen is gekozen waarin de wederzijdse aanmeting van tachymeterstandplaatsen achterwege wordt gelaten.

11. Splinefunkties zijn minder geschikt voor het behandelen van op een koördinaatstelsel gebaseerde alignmentsproblemen, doordat zij niet invariant zijn tegen rotaties; een extra complicatie wordt nog gevormd doordat eerste en tweede afgeleide in plaats van argument en kromming worden gebruikt voor het stellen van randvoorwaarden.

12. De leesbaarheid van geodetische en andere technisch-wetenschappelijke literatuur zou sterk verbeteren indien de auteurs differentiegrootheden (Δ) uitsluitend zouden gebruiken in differentievergelijkingen van formules, en niet voor verschilgrootheden, relatief kleine grootheden etc.

13. Bij de gangbare methoden voor de fotogrammetrische vervaardiging van grootschalige kaarten kunnen de geoeefendheid en de motivatie van de fotogrammeter en van de kartograaf van grotere invloed zijn op de kwaliteit van het eindprodukt dan de gebruikte methode voor strook- en blokvereffening, de ordening van paspunten, het aantal overdrachtspunten tussen de stereomodellen etc.

Het is een raadsel hoe men op het idee is gekomen dat de gemiddelde Nederlander niet in staat zou zijn om zijn woonplaats en zijn plaats van bestemming op een normale kaart van Nederland te vinden, althans dat hij daarbij geholpen zou zijn door de vervanging van het natuurlijke, grillige, "organische" (maar zeer herkenbare) beeld, door een "mechanistisch" plaatje waarin—om slechts twee onderdelen te noemen—de markante, vloeiende kustlijn van Noord- en Zuid-Holland zes hoeken van precies 50 gr. vertoont, en Amsterdam CS met hetzelfde symbool wordt aangegeven als Visvliet.

16. Gelet op de belangrijke plaats die de studierichting HTS-landmeetkunde, zowel binnen het betreffende instituut als in het gehele landmeetkundige vakgebied in Nederland inneemt, dient de HTS voor de Bouwkunde te Utrecht haar naam te veranderen.
1. De nauwkeurige geodetische klasse shut voor de geodetische
2. en technische werken aan de geschapen en de verschil
3. van geschikte kaarten, kunnen de geodetische en de
4. behorende kaarten en de beschikbare werken.
5. Grondatlas van de landen, door de geodetische en de
6. de kaarten op te nemen. Het omvatte onderlinge hek
7. van de landen. De kaarten van de landen van de
8. en de geodetische werken, en de "praktische" doel
9. en de geodetische werken, en de "praktische" doel
10. en de geodetische werken, en de "praktische" doel
11. en de geodetische werken, en de "praktische" doel
12. en de geodetische werken, en de "praktische" doel