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Abstract. We consider a multistage algorithm to advance in pseudo-time to find a steady state
solution for the compressible Navier-Stokes equations. The rate of convergence to the steady
state is improved by using an implicit preconditioner to approximate the numerical scheme.
This properly addresses the stiffness in the discrete equations associated with highly stretched
meshes. Hence, the implicit operator allows large time steps i.e. CFL numbers of the order
of 1000. The proposed method is applied to three dimensional cases of viscous, turbulent flow
around a wing, achieving dramatically improved convergence rates.

1 INTRODUCTION

One of the most widespread relaxation methods is the class of schemes devised by Jame-
son, Schmidt and Turkel with extensions [2–4]. In this approach an explicit Runge-Kutta time
integration scheme is augmented with implicit residual smoothing in combination with multi-
grid. This represents a well balanced compromise of simplicity in the basic explicit scheme
and implicit consideration of the cell aspect ratio. Schemes based on this strategy have proven
to be well suited for inviscid flow problems, and they allow for the successful solution of the
Navier-Stokes equations. For viscous, turbulent flows, convergence rates deteriorate from rates
in the order of 0.9-0.95, typically observed for inviscid flow, to 0.98-0.99.

One of the most promising general solution strategies is multigrid, which was originally de-
veloped to solve elliptic equations. Its extension to the Euler equations is still quite efficient.
However, in contrast to the Euler equations, the solution of the Navier-Stokes equations still
poses a formidable challenge. The main difficulty in computing viscous flow is that highly
stretched meshes are required to economically resolve the steep gradients in the boundary lay-
ers, resulting in very high cell aspect ratios. These large cell aspect ratios lead to a severe
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stiffness in the discrete system of equations, significantly reducing the efficiency of existing
numerical algorithms. When using multigrid, the main ingredient is an appropriate relaxation
method to smooth high frequency errors on the current mesh level. Explicit schemes have a low
operation count per iteration and low storage requirements, but they have only limited stability
imposed by the CFL condition. For explicit schemes with standard multigrid the convergence
rate severely deteriorates on meshes with high aspect ratio cells. In contrast, implicit schemes
theoretically offer unconditional stability, but they are computationally more expensive and in-
cur a heavy memory overhead due to the storage of the flux Jacobian matrices. Therefore, in
practice, approximate factorization such as ADI or LU is employed. The factorization error
however prohibits the use of large time steps and thus limits the potential for fast convergence.

Rossow [9,10] developed an efficient preconditioning that uses a first order upwind approxi-
mation to the equations. Using an economic evaluation of the flux Jacobians on the cell faces, a
fully implicit operator is constructed to replace the implicit residual smoothing in the framework
of the Runge-Kutta time stepping scheme. The approximate inverse of the implicit operator is
obtained by performing several sweeps of symmetric Gauss-Seidel (GS). The symmetric Gauss-
Seidel is applied as a sequence of forward and backward sweeps in each coordinate direction.
Thus each symmetric sweep consists of two simple sweeps. In this paper we extend the implicit
upwind preconditioner to three dimensions.

2 BASIC SCHEME

Consider the fluid equations in general coordinatesξ, η, ζ. We express the equations as

J−1∂W

∂t
= −

{
∂F

∂ξ
+
∂G

∂η
+
∂H

∂ζ

}
= Res (1)

J−1 is also the volume of a cell. This can also be expressed in quasi linear form as

J−1∂W

∂t
+ A

∂W

∂ξ
+B

∂W

∂η
+ C

∂W

∂ζ
= 0

whereA andB are the flux Jacobian matrices defined byA = ∂F
∂W

,B = ∂G
∂W

. andC = ∂H
∂W

.
We shall discretize (1) by considering the space and time portions separately. The unknown

variablesW are located at the center of a cell. We discretize the fluxes by a central difference,
i.e. F andG are located at the faces of the cell and are evaluated by an arithmetic average from
the neighboring cell centers. This central difference allows high frequency waves to persist.
Furthermore, it is nonlinearly unstable in the presence of shocks. Hence, we add a matrix
viscosity [12] to stabilize the scheme. The dissipation terms are a blending of second and
fourth differences.

AD =
(
D2
ξ +D2

η +D2
ζ −D4

ξ −D4
η −D4

ζ

)
W, (2)

where
D2
ξW = ∇ξ

[(
|A|i+ 1

2
,j,kε

2
i+ 1

2
,j,k

)
∆ξ

]
Wi,j,k (3)
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D4
ξW = ∇ξ

[(
|A|i+ 1

2
,j,kε

(4)

i+ 1
2
,j,k

)
∆ξ∇ξ∆ξ

]
Wi,j,k (4)

and∆ξ,∇ξ are the standard forward and backward difference operators respectively associated
with theξ direction. The coefficientsε(2) andε(4) are adapted to the flow as follows:

ε
(2)

i+ 1
2
,j,k

= κ(2) max(νi−1,j,k, νi,j, νi+1,j,k, νi+2,j,k)

νi,j,k =

∣∣∣∣pi+1,j,k − 2pi,j,k + pi−1,j,k

pi+1,j,k + 2pi,j,k + pi−1,j,k

∣∣∣∣
ε

(4)

i+ 1
2
,j,k

= max
[
0,
(
κ(4) − ε(2)

i+ 1
2
,j,k

)]
wherep is the pressure, and the quantitiesκ(2) andκ(4) are constants to be specified. The
operators in (2) for theη andζ directions are defined in a similar manner.

The second-difference dissipation term is nonlinear. Its purpose is to introduce an entropy-
like condition and to suppress oscillations in the neighborhood of shocks. This term is small in
the smooth portion of the flow field. The fourth-difference dissipation term is basically linear
and is included to damp high-frequency modes and allow the scheme to approach a steady state.
Only this term affects the linear stability of the scheme. Near shocks it is reduced to zero.

To advance the scheme in time we use a multistage scheme with n stages. A typical stage of
the Runge-Kutta approximation to (1) is

W k −W 0 = αk
∆t

Vol

[
DξF

(k−1) +DηG
(k−1) +DζH

(k−1) − AD
]

= Resk−1 (5)

whereDξ andDη are spatial differencing operators, andAD represents the artificial dissipation
terms. This scheme is only first order in time. However, as we approach the steady state the
accuracy in time is meaningless. To increase the efficiency of the scheme and also increase the
stability region of the method it is useful to not recalculateAD at each stage but rather only
some stages and use averages of these values within (5).

To accelerate the convergence to a steady state we consider a multigrid method [4] with the
Runge-Kutta method as the smoother. As an additional acceleration technique we implicitly

smooth [4] the residualsResk−1. Thus, we replaceResk−1 in (5) by R̂es
k−1

where(
I − γ(D2

ξ +D2
η +D2

ζ)
)
R̂es

k−1
= Resk−1

whereγ depends on the ratio of the new CFL number to the original CFL number. Since it
is difficult to directly invert the three dimensional operator we replace this by a dimensional
split [3], (

I − γξD2
ξ

) (
I − γηD2

η

) (
I − γζD2

ζ

)
R̂es

k−1
= Resk−1 (6)

The variousγi can be made functions of the aspect ratios in each direction [6].
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Rossow [9, 10] suggested replacing this implicit residual smoothing by a more appropriate
preconditioning based on a first order upwind scheme. Thus we replace (6) by(

I +
∆t

vol

∑
all faces

A+S

)
R̂es

k−1
= Resk−1 −

∑
all faces

A−SR̂es
k−1

NB (7)

whereS is the area of a face, and NB refers to all direct neighbors of the cell being considered
which depends on the direction within the Gauss-Seidel sweep. This is now an implicit method
to find the smoothed residual. To approximately invert the implicit operator of (7) we use several
(typically 2-3) symmetric point Gauss-Seidel sweeps. These are started with an initial guess of
zero. This still requires the inversion of a local5×5 matrix at every grid point in each sweep. To
increase efficiency, the system is converted to primitive variables,(ρ, p, u, v, w), which reduces
the number of operations in inverting the local matrix.

3 ABSOLUTE VALUE MATRIX

We now consider, in more detail, the structure and properties of the matricesA+, A− and
|A| = A+−A−. In addition to the usual speed of soundc, define a modified speed of sound
ĉ. We shall later distinguish between them. Let(Sx, Sy, Sx) denote the three components of
the surface area normal to thex direction. There are similar matrices|B| and |C| using the
surface area normal to they andz directions, respectively. Define|S| =

√
S2
x + S2

y + S2
z . The

contravariant velocity is given byU = uSx + vSy + wSz and the directional Mach number is
M = U

c|S| . To simplify the matrix we predefine some notation. LetT = (1 − |M |)|S|ĉ + µ
3

,

R= |S|(1−|M |)
ĉ

andU+ =U+|U |, U−=U−|U |. U andM are prevented from getting too small
by factors that include some constants and aspect ratios.

To derive the absolute value of the Jacobian matrices it is easier to work with the entropy
variables(dp

ρc
, du, dv, dw, dS) with dS = dp− c2dρ. Note, that in addition to changing from the

densityρ to the entropyS we have also changed the order of the variables. We denoteAS as
the Jacobian matrix with respect to the entropy variables. We use the following combination of
eigenvalues

• Q+ = |U+c|S||+|U−c|S||
2

• Q− = |U+c|S||−|U−c|S||
2

• Q0 = Q+ − |U |

For subsonic flow this reduces to

• Q+ = c|S|

• Q− = |U |

• Q0 = c|S| − |U | = c|S|(1− |M |) = T
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We calculate the absolute value of a matrix by diagonalizng, taking the absolute values and
transforming back. Assuminĝc=c thenQ0 = |S|T and|U |+Rc2 = |U |+|S|(1− U

c|S|)c=c|S|.
So in entropy variables we have for the inviscid terms

AS =


U Sxc Syc Szc 0
Sxc U 0 0 0
Syc 0 U 0 0
Szc 0 0 U 0
0 0 0 0 U


We define the normalized surface areas byŜx= S

|S| etc. Then

|AS| =


Q+ ŜxQ− ŜyQ− ŜzQ− 0

ŜxQ− |U |+ Ŝ2
xQ0 ŜxŜyQ0 ŜxŜzQ0 0

ŜyQ− ŜxŜyQ0 |U |+ Ŝ2
yQ0 ŜyŜzQ0 0

ŜzQ− ŜxŜzQ0 ŜyŜzQ0 |U |+ Ŝ2
zQ0 0

0 0 0 0 |U |



subsonic
=


c|S| ŜxQ− ŜyQ− ŜzQ− 0

ŜxQ− |U |+ Ŝ2
xT ŜxŜyT ŜxŜzT 0

ŜyQ− ŜxŜyT |U |+ Ŝ2
yT ŜyŜzT 0

ŜzQ− ŜxŜzT ŜyŜzT |U |+ Ŝ2
zT 0

0 0 0 0 |U |



=


|U |+Rc2 Sx|M |c Sy|M |c Sz|M |c 0

Sx|M |c |U |+ Ŝ2
xT ŜxŜyT ŜxŜzT 0

Sy|M |c ŜxŜyT |U |+ Ŝ2
yT ŜyŜzT 0

Sz|M |c ŜxŜzT ŜyŜzT |U |+ Ŝ2
zT 0

0 0 0 0 |U |


(see e.g. [5,17,18]),A+

S = As+|As|
2

, |U |+Rc2 → c2

ĉ
|S|+ |U |(1− c

ĉ
).

We next consider the accuracy for low Mach number flows. From [14] a necessary condition
that the solution of the compressible equations converges to the solution of the incompressible
equations, asM∞→0, is

|AS| ∼



O
(

1
M2
∞

)
O
(

1
M∞

)
O
(

1
M∞

)
O
(

1
M∞

)
0

O
(

1
M∞

)
O(1) 0

O
(

1
M∞

)
O(1) 0

O
(

1
M∞

)
O(1) 0

0 0 0 0 O(1)


asM∞ → 0
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with all the non-given terms alsoO(1). We see that this is true if and only if we precondition

the speed of sound so thatR andT areO(1). Hence,̂c = O(1) while c = O
(

1
M∞

)
. One way

to accomplish this is to choose

M2
ref = min

{
max(

q2

c2
,M2
∞)

}
α =

1−M2
ref

2
ĉ2 = (αq)2 + q2

ref (8)

see, for example, [8,13]. For transonic flowĉ is close tocwhile for low speed floŵc behaves like
the convective speed,q. In the computations we have not used any low speed preconditioning
[13, 15, 16] or the modified̂c for the case withM∞ = 0.30 since the artificial viscosity is not
modified to handle this case.

Returning to primitive variables(ρ, p, u, v, w), we first consider the inviscid contribution.
Initially we useA+

S = AS+|AS |
2

, and then convert from entropy variables to primitive variables.
Let Y = 1 + Q−

c|S| . This gives

A+ =
1
2


U+ Q+−|U |

c2
ρSxY ρSyY ρSzY

0 Q+ + U+ Sxρc
2Y Syρc

2Y Szρc
2Y

0 Sx
ρ Y U+ + Ŝ2

xQ0 ŜxŜyQ0 ŜxŜzQ0

0 Sy
ρ Y ŜxŜyQ0 U+ + Ŝ2

yQ0 ŜyŜzQ0

0 Sz
ρ Y ŜxŜzQ0 ŜyŜzQ0 U+ + Ŝ2

zQ0



subsonic=
1
2


U+ R Sxρ(1 +M) Syρ(1 +M) Szρ(1 +M)
0 U+ +Rc2 Sxρc

2(1 +M) Syρc
2(1 +M) Szρc

2(1 +M)
0 Sx

(1+M)
ρ U+ + Ŝ2

xT ŜxŜyT ŜxŜzT

0 Sy
(1+M)
ρ ŜxŜyT U+ + Ŝ2

yT ŜyŜzT

0 Sz
(1+M)
ρ ŜxŜzT ŜyŜzT U+ + Ŝ2

zT


To this we add a viscous contribution. For the examples in this paper we only add these in the
η direction. This is given by

B =
α

ρV ol


0 0 0 0 0
B21 B22 0 0 0
0 0 B33 B34 B35

0 0 B43 B44 B45

0 0 B53 B54 B55


Defineα =

√
γM∞
Re

. This contribution arises from the nondimensionalization in the code. Then
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we have

B21 = −γ µ

Pr

p

ρ
|∇η|2

B22 = γ
µ

Pr
|∇η|2

B33 = (λ+ µ)η2
x + µ|∇η|2

B44 = (λ+ µ)η2
y + µ|∇η|2

B55 = (λ+ µ)η2
z + µ|∇η|2

B43 = B34 = (λ+ µ)ηxηy

B53 = B35 = (λ+ µ)ηxηz

B54 = B45 = (λ+ µ)ηyηz

We chooseλ=−2
3
µ. The termB21 destroys the zero structure of the first column (below the

diagonal) of the matrix. Hence, for convenience it is neglected.

4 RESULTS

We assess the results for the computation of viscous, turbulent airfoil flow about an ONERA
M6 wing, with a 192× 48× 32 C-O mesh at an angle of attackα = 3.06◦ and a Reynolds
number ofRe = 21.158 million using a Baldwin Lomax turbulence model. All schemes are
run with a local time step, matrix viscosity, multigrid and a five stage Runge-Kutta smoother.
For the standard scheme we use Runge-Kutta coefficientsαk = .25, .1667, .375, .5, 1.0. We
update the artificial viscosity on the first, third and fifth stages. These are combined, on the
odd stages, with the previous artificial viscosity using weights of1, .56, .44. For the upwind
preconditioning we treat the scheme as an upwind scheme even though the major discretization
is a central difference with a matrix viscosity. This is feasible because a matrix viscosity makes
the scheme similar to an upwind scheme. Computationally, we have found that when using a
scalar viscosity on the finest mesh that the scheme no longer converges. Nevertheless, we do
use a scalar viscosity on all the coarser meshes. However, one must decrease the coefficient
of the scalar artificial viscosity on the coarse grids by a factor of about 3-5 compared with
the standard scheme. For the new upwind preconditioner we choose Runge Kutta coefficients
.0695, .1602, .2898, .506, 1.0. The artificial viscosity is now evaluated at every stage which also
increases the cost of the new scheme. The residual smoothing of the original scheme allows a
CFL of 6.5. With the new upwind preconditioning we use a CFL of 1000.

We now compare the performance of these two schemes for a range of Mach numbers. The
first case we consider is an inflow Mach numberM∞=0.84. For this transonic case the change
to ĉ has a minor impact. We first present a comparison of the convergence rate of the residual
and lift. Both codes were begun on the finest mesh, with a constant flow initialization, without
obtaining a better initial guess from a sequence of coarser meshes (FMG). We stress that both
runs were identical except for the calls to either residual smoothing or else to the new implicit
upwind preconditioner. As noted above there are differences in the input parameters as to the
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CFL number, Runge-Kutta coefficients, level of artificial viscosity on the coarse grids and times
where the artificial viscosity is evaluated.

None of these differences should effect the final converged solution. To demonstrate the
accuracy of the solution we compare, forM∞ = 0.84, in figures 1 through 4, the computed
pressure distributions with experimental data [11] at four spanwise locations.

The improved convergence rate demonstrates the potential of the present approach. On a
DEC single processor workstation the standard code required about 320 minutes for 1200 time
cycles while the new algorithm required about 200 minutes for 200 time cycles. Hence, the
upwind preconditioner code is about four times slower per iteration than the implicit residual
smoothing code even though we use three symmetric Gauss-Seidel sweeps to invert the pre-
conditioner. We also did runs with only two symmetric point Gauss-Seidel sweeps using four
permutations of sweep directions (backward in all directions, forward only in j, backward only
in j, and forward in all directions). This required about 160 minutes for the same 200 MG it-
erations. In summary, to reduce the residual by six orders of magnitude the standard scheme
required 1027 iterations and 273 seconds. The new implicit method with three symmetric GS
sweeps required 48 iterations and 48 seconds which gives an efficiency factor of 5.7. When
using two symmetric GS sweeps, 51 iterations were required which took 40.8 seconds and so
is 6.7 times faster than the standard scheme. We see this graphically in figure 5. For the con-
vergence of the lift, figure 6, and drag, figure 7, it is difficult to distinguish between the cases
with two or three symmetric GS sweeps. The plots for lift and drag only display the first 200
iterations so that the difference between the two convergence rates is clearer. So we get similar
increases in efficiency based on converging the lift and drag rather than reducing the residual.

We next consider, in figures 8-10, the same parameters, with three symmetric GS sweeps,
but with M∞ = 0.95. In figures 11-13 we present the results for the supersonic case, with
M∞=1.10. For these cases we get a similar improvement but the reduction in the residual is a
little less. ForM∞=1.20 (not shown) we get a more substantial slowdown in convergence. We
note, that the grid is not appropriate for supersonic flow. Finally, in figures 14-16 we consider
the case withM∞ = 0.30. To use the low speed modifications to the speed of soundc one
must modify not only the acceleration techniques but also the artificial viscosity. Since this was
not done we do not employ the change ofĉ for low speed and and do not use any low speed
preconditioning [13–17,19]. Now, the residual reduction, with the new upwind preconditioner,
is even slower but still much more efficient than the code with residual smoothing. The lift and
drag are now displayed for a total of 600 iterations to see the difference in convergence rates.
In table 1 we present the average convergence rate of the residual for each case at the end of the
computation.
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Mach type avg conv rate
0.30 standard .989
0.30 implicit .922
0.84 standard .987
0.84 implicit .879
0.84 implic-4 .883
0.95 standard .987
0.95 implicit .887
1.05 standard .987
1.05 implicit .886
1.10 implicit .888
1.20 standard .993
1.20 implicit .941

Table 1: Comparison of inviscid lift and drag with/without preconditioning
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Figure 1:Cp at station 0.20
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Figure 4:Cp at station 0.90
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Figure 5: Residual Convergence,M∞=0.84
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Figure 6: Lift convergence forM∞=0.84
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Figure 7: Drag Convergence forM∞=0.84
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Figure 8: Residual convergence,M∞=0.95
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Figure 9: Lift Convergence forM∞=0.95
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Figure 10: Drag convergence forM∞=0.95
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Figure 11: Residual ConvergenceM∞=1.10
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Figure 12: Lift convergence forM∞=1.10
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Figure 13: Drag Convergence forM∞=1.10
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Figure 14: Residual ConvergenceM∞=0.30
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Figure 15: Lift convergence forM∞=0.30
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Figure 16: Drag Convergence forM∞=0.30

5 CONCLUSIONS

We consider a central difference approximation to the compressible Navier-Stokes equations.
For stability this is supplemented by a matrix viscosity using a combination of second and fourth
differences. To advance in time we use a multistage scheme coupled with multigrid. The usual
residual smoothing is replaced by a first order upwind scheme. This is inverted by point Gauss-
Seidel iterations.

We consider an application to three dimensional turbulent flow over an ONERA M6 wing
for a range of Mach numbers. It is demonstrated that the new preconditioner leads to a dramatic
increase in efficiency. We also consider modifications for low speed flow.
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