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Abstract

Wearable devices have paved way for several context-aware applications in
the field of health-care and sports to improve the well-being of users and
their performance for human augmentation. During rehabilitation patients
need accurate feedback that can empower and improve the speed of recovery.
On the other hand competitive athletes need a reliable, flexible and real-time
feedback on their performance and technique. In this thesis, we present a
framework capable of performing Micro-Activities Recognition (MAR) by
decomposing complex activities. These models employ data only from the
wearable devices. We present two real-world applications, viz., (i) the ana-
lysis of the Lunge exercise performed during knee rehabilitation and (ii) the
study of the Stroke activity in long-track speed skating.

Hitherto, most of the models used additional data such as camera and
3D tracking for identifying activities. The models proposed in this thesis
aims to go one step forward to understand fine-grained activity (micro-
activity) information. In knee rehabilitation, we proposed models to identify
the exercise performed by the patient and its micro-activities. Providing
feedback in these systems is non-trivial due to the overlapping labels. The
feedback provided using the models proposed is based on the labels that are
highly similar. In speed skating, we aim to identify the micro-activities of
the stroke to determine its frequency, and other characteristics of the speed
skaters. The model identified the top signal/IMU that can classify a stroke
and its micro-activities accurately. The top signal identified the correct
number of strokes across all laps. The model was also able to classify a
stroke performed in straight and curve sections. Furthermore, the average
length and offset values of a stroke for a complete lap is 5.4% and 135 ms
respectively.

In this thesis, we derive fine-grained activity information using data from
IMUs. The models identified the top signal that maximizes the micro-
activity recognition among all the signals. This information can be used
to determine the optimal placement of IMUs and also to reduce the data
collection/processing. The fine-grained information obtained using MAR
can provide meaningful feedback for human augmentation systems.
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‘Science, my lad, is made up of mistakes, but they are mistakes which it is
useful to make, because they lead little by little to the truth.”

– Jules Verne, A Journey to the Center of the Earth
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Chapter 1

Introduction

The advent of ultra-low power microelectronics and computer systems has
led to real-time monitoring of human activities [2]. The ability to observe,
measure and track how individuals function in their daily living is fully pos-
sible now with the help of Internet of Things (IoT) and wearable devices [1].
Specifically, recognition of human activities has enabled the development
of several context-aware applications to improve well-being of the users.
Numerous Human activity recognition systems are developed to quantify
various daily activities performed by users [3, 4] e.g., number of steps, work-
ing/sleeping hours, heart rate, etc.

Human activity recognition systems can be broadly classified into two
ways viz., (i) external and (ii) wearable [21] as shown in Fig. 1.1. External
system requires deployment of sensors in a pre-defined location e.g., training
room, laboratory, etc. Inference of activities performed is based on the inter-
action between these devices and users. This includes deployment of cam-
eras, sophisticated custom hardware and gesture recognizers. The installa-
tion cost of the external system is high and also requires complex processing
to infer activities performed. In contrast, wearable sensors are attached to
the user to identify the performed activities in wearable systems. Inertial
measurement units (IMUs) are capable of measuring human biological data,
such as physiology and motion. A typical IMU includes: (i) system-on-chip
low-power microprocessor, (ii) wireless interface, (iii) MEMS-based IMUs,
such as accelerometer, magnetometer and gyroscope, (iv) sensors such as
temperature, humidity and heart rate, (v) actuators such as auditory or
haptic feedback, (vi) external data storage, and (vii) a power management
system (Li-ion battery).
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Figure 1.1: Human activity recognition systems.

Several IMU based systems such as Moov1, X-IMU2 and Xsens3 are now
commercially available for tracking human activities4. The concept of using
technology to enhance the performance capabilities of a human is known
as Human Augmentation [5]. Companies such as Athos5 or Beast6 use
IMUs along with activity recognition models to track and coach users, e.g.
different exercises of a fitness program. Further, several machine learning
tools have been widely used for activity recognition [9] to distinguish dif-
ferent activities performed by the user [8, 16] such as walking, running,
swimming and rowing [6]. Feedback such as walking speed, total time, dis-
tance covered, number of steps, etc., are provided to raise awareness and
enhance the performance.

Hitherto, most of the human activity recognition models concentrated on
identifying general activities such as walking, running, jumping, cycling and
sleeping [54]. While these models provide necessary information on the activ-
ities performed, it does not provide fine-grained details during the activity.
Recently, Yan et al. [10] proposed a model to break down a complex activity
performed by users into Micro-activities to improve the accuracy of activity
recognition. Further, analyzing micro-activities can be useful to understand
the actions performed by a user during an activity, analyze user behavior
and finally to provide feedback to improve the activity performed. Iden-

1www.moov.cc
2www.x-io.co.uk
3www.xsens.com
4We use the words humans and users interchangeably.
5www.liveathos.com
6www.thisisbeast.com



tification and analysis of micro-activities is a crucial component in several
health and sports related applications for human augmentation.

The use of IMUs in Human Augmentation poses several challenges. Some
of these challenges are: (i) Reliability: since most of the IMUs are low-
cost, the data obtained from these sensors may not be completely reliable;
(ii) Data collection/management: high-frequency data coming from IMUs
needs to be transmitted to an embedded system or smart phones for pro-
cessing with low-latency or stored locally with limited in-built memory; (iii)
Real-time data processing: the data collected from different IMU poses a
challenge on computation in embedded systems such as Raspberry Pi, smart
phones and smart watches; (iv) Different sensors: IMUs used in different ap-
plications vary with the type of sensors used. Hence interoperability and un-
derstanding semantics of the data from different sensors is crucial [11], [12].

Our objective is to develop a framework that employ wearables for hu-
man augmentation. Analysis on data obtained from wearables is used to
provide coaching to enhance user performance. In this thesis, we introduce
a general framework for Micro-activity Recognition (MAR) to provide real-
time feedback. The framework can be implemented on embedded systems
such as Raspberry Pi, Arduino and smart phones/watches. The framework
consists of several building blocks and was evaluated with data collected
from two applications viz., (i) Knee rehabilitation and (ii) Speed Skating.
The framework can be extended to other applications by adding necessary
domain-dependent information. We now provide a brief introduction to the
two applications considered in this thesis for human augmentation.

Knee Rehabilitation: During knee rehabilitation patients need accurate
and periodic feedback on their physiotherapy, ideally as soon as possible.
The quality of this feedback to users can empower and improve the speed
of the patient’s recovery. Analyzing the micro-activities performed by pa-
tients can also help the practitioner to increase his expertise and improving
their therapy programs. We specifically analyzed one of the most common
knee rehabilitation exercise, the lunge. The motivation of this problem is
to overcome the fact that patients receive little or no feedback when they
perform these exercises away from the clinic resulting into a slow recovery.
We present a methodology that provides accurate feedback on the exer-
cises performed by the patients during knee rehabilitation. Specifically, we
propose a two-stage methodology; first, we identify the activity (exercise)
performed and its corresponding micro-activities. Second, we classify the
micro-activities to a set of labels that represent the exercises performed.

Speed Skating: It is a competitive form of ice skating, where skaters race
each other. In this competitive sport, skaters use the feedback given by the
coaches to correct their technique and improve their performance. Most of
the remarks done by the coaches rely on qualitative observations and may



not be accurate. Several efforts have been proposed to use wearables and
other sensors to monitor skaters and improve their performance. Moreover,
most of these systems aim to understand what is the time taken for a lap
and corresponding speed timings. In this thesis we aim to understand each
activity (strokes) in speed skating to provide feedback and improve the per-
formance of skaters. Specifically, we identify the micro-activities within a
stroke like glide, push and reposition. We aim to provide feedback on these
micro-activities to improve skaters technique and eventually increase the
performance.

In this thesis, we employed real-world data collected from several parti-
cipants for the above applications. The data acquisition system for knee
rehabilitation includes a knee coach composed of two IMUs and for speed
skating, seven IMUs were used together with force sensors and 3D track-
ing. Note that, the data collection is not part of this thesis. We used the
data collected by Dutch coast [13] for knee rehabilitation and we used data
collected by STW project [14] for speed skating. In both applications sev-
eral participants were involved during data collection along with a domain
expert to provide annotations.

Thesis Outline

This thesis is organized as follow. We first introduce the problem related to
micro-activity recognition and propose a generic framework in Chapter 2. In
Chapter 3 we present details of knee rehabilitation application. We first enu-
merate specific problems of this case and describe our approach to identify
the micro-activities of the lunge exercise to provide feedback during rehab-
ilitation. In Chapter 4, we provide a brief introduction to speed skating
and the different activities involved. Further, we describe our approach
to identify and analyze micro-activities in a stroke to provide feedback.
Chapter 5 describes the experimental evaluation of the MAR models pro-
posed for both the applications. Finally, we conclude in Chapter 6 and state
proposals for future work.



Chapter 2

Problem statement

Smart devices such as wrist bands, smart watches and wearables are increas-
ingly being used to analyze user activities and behavior modeling [7]. These
devices monitor users in their daily routines, fitness routines, competitive
sports and health care to collect activities performed and provide associ-
ated statistics [3]. These statistics enable users to analyze their activities
and possible ways to achieve their goals like running a kilometer every day,
counting the number of steps walked, performing fitness exercises and so on.

2.1 Related work

Most of the wearable devices fail to identify similar activities performed by
the user and further do not provide fine-grained information on the activit-
ies performed [15]. Analyzing activities at micro-level enables a unique view
in understanding user activity and to provide detailed feedback for enhan-
cing user performance. Some of the challenges involved in micro-activity
recognition (MAR) using wearables are: (i) The efficacy of the MAR model
will depend on the dataset used for training, e.g. number of data samples,
diversity, consistency, validation data, etc.; (ii) Use of appropriate machine
learning approach to analyze micro-activities, since each application/domain
requires different type of micro-activities to be recognized; (iii) Near real-
time identification of micro-activities calls for low-latency data communica-
tion between IMUs and the embedded devices, distributed data processing
and online algorithms; (iv) Since micro-activities can be defined in several
ways, MAR models require domain experts to provide information on the
micro-activities. Hence identifying micro-activities across multiple applica-
tions is challenging. We now describe the problems associated in MAR for
knee rehabilitation and speed skating.
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Knee rehabilitation: There are around 10.4 M patients visiting doc-
tors for common knee injuries such as fractures, dislocations, sprains and
ligament tears every year [44]. Most of the knee injuries can be success-
fully treated through rehabilitation exercises and some may require surger-
ies. After an injury or surgery, physical therapy for rehabilitation include
exercises that are designed to improve strength of the knee muscles [18].
Patients attend regular sessions with the therapist during the early rehabil-
itation stages. Apart from the periodic visits, patients must also perform the
targeted exercises regularly at home. This eventually quickens the process
of rehabilitation. The therapist monitors the patient progress in the clinic;
however patients have no feedback when performing the exercises in their
home. This might lead to longer recovery process or cause further injury if
sufficient care is not taken [17].

Several research efforts considered the use of various hardware to recog-
nize the exercise performed by patients and to provide feedback [53, 48, 47].
The standard approach to measure the performance of a patient involves the
measurement of the knee angle with a tool called goniometer [19]. Most of-
ten, this is done by observation since electronic goniometers/torsiometers 1

are capable of measuring the knee angle only in motion. Current techniques
employ expensive hardware like kinect health or video processing to track
patient activities and provide feedback on how well the exercises are per-
formed [45, 46]. To this end, recent research works aim to determine the knee
angle using low-cost sensors. Torsiometers and flex-sensors [52] have a good
accuracy in determining the knee angle but are difficult to setup [48, 23].
Other techniques employ expensive hardware like kinect health [22] or video
processing [25] to track patient activities and provide feedback on how well
the exercises are performed [45, 46]. Dejnabadi et al. [51] and Tomaru et
al. [53] make use of IMUs like magnetometers, gyroscopes and acceleromet-
ers to determine the knee angle. They employ kalman filters to estimate the
angle towards ground in a 3D space. Another approach employs artificial
neural networks along with IMUs for measuring the knee angle [47]. Ah-
madi [20, 24] considers the use of an automatic activity classification using
random forest approach. Most of the proposed techniques in literature aim
to understand the knee angle using the IMUs. However patients have little
knowledge on knee angle based feedback. Hence, we aim to analyze the
micro-activities in a exercise to determine the position of the knee and use
pre-defined labels to classify how accurately each participant performed the
exercise.

There are many exercises to be performed during knee rehabilitation based
on the injury. In this thesis, we focus on the lunge exercise. Lunges are one
of the common knee rehabilitation exercise performed to increase the knee

1e.g. http://www.biometricsltd.com/gonio.htm



strength and control. To eliminate the labor intensive process mentioned
previously, we design a system that can collect information on how patients
perform knee rehabilitation exercise. Further, we develop a methodology to
identify the exercise and its corresponding micro-activities to provide accur-
ate feedback for the patients. This enables them to perform the exercise as
described by the therapist and also understand what they are doing wrong.
In Chapter 3, we provide detailed overview of the lunge exercise and the
methodology to identify micro-activities involved in lunges.

Speed skating:

Speed skating is a competitive sport where athletes are timed for a set
distance on an ice rink. In speed skating, the performance of the skaters
can be monitored by comparing time, e.g lap time, and making remarks by
observing their technique. Monitoring an athlete at all points of an long-
track ice rink (typically 400 m) is difficult. Furthermore, when there are
more than one skater on the ice rink, it is very hard to identify and analyze
the techniques at various parts of the lap. Speed skaters performance is
generally examined by the use of video analysis. During training, skaters
perform several laps with different techniques and based on the feedback
received by the expert. This training period is later analyzed to understand
the pitfalls and to improve the performance of the skater.

The performance of speed skating depends on the mechanical power out-
put delivered by the skater and the power required to overcome the fric-
tional forces [39]. In speed skating the total power output is the product of
work per stroke and stroke frequency [33]. Particularly stroke frequency is
used to identify the skating velocity. Each stoke consists of three different
phases viz., glide, push-off and repositioning phase [40, 30]. Most of the
related work on improving speed skaters performance studies the delivered
power output by skaters using the kinematic characteristics such as knee
angle, trunk angle and push-off angle [28]. In [32], multiple digital cameras
and radio-frequency identification tags was used for data acquisition and to
measure kinematic characteristics of speed skaters. Ahmadi et al. [24] uses
a motion analysis framework to recognize activities by integrating classifiers
(such as Lazy IBk, Naive Bayes, and random forest) with signal processing
for analyzing performance and techniques of speed skaters. A three dimen-
sional inverse skater model to analyze speed skating motion on the straight
part of the ice rink is proposed in [35]. Recent works [34, 36, 37] con-
sider IMUs deployed on the speed skaters along with several sensors on the
skate to identify kinematic characteristics and analyze the performance of
speed skaters. Recent projects target providing real-time feedback for bet-
ter skating performance2 [14] by analyzing the data collected from several
professional speed skaters.

2http://skatescience.nl/



In this thesis, we employ the data collected in [14] to determine stroke fre-
quency. Furthermore, we develop semi-supervised methodology to analyze
IMU data to derive the micro-activities (glide, push-off and repositioning)
within a stroke. The objective is to classify the different phases/micro-
activities in a stoke to be able to provide detailed information to the skaters.
Identifying the number of strokes, length of a stroke and different phases in a
stroke is useful for coaches to understand the technique of the speed skaters.
This can further be used to analyze the performance and compare techniques
with other skaters.

Therefore, to summarize, the research questions we try to answer in this
thesis are: (i) How to identify micro-activities in different applications with
minimal domain knowledge? (ii) Which IMU sensors are most optimal to
identify micro-activities? (iii) What type of feedback can be provided for
human augmentation using IMU data?

2.2 General framework

To address the above research questions, in this thesis we propose a general-
ized framework on Human activity recognition. This framework is employed
to identify micro-activities and to provide feedback. Fig. 2.1 shows the pro-
posed generalized framework with building blocks viz., (i) data collection,
(ii) data processing, (iii) modeling (iv) ranking model and (iv) evaluation &
feedback.

Data Collection: Each application requires data collected at various levels
and different granularities. Some of the data sources are viz., (i) External
sensors such as cameras for video/image capture, kinect and 3D tracking;
(ii) IMU sensors, e.g., accelerometer, magnetometer, gyroscope; (iii) Envir-
onmental data, e.g. temperature, barometric pressure, light intensity; and
(iv) Qualitative data provided by an domain expert (e.g., physiotherapist,
coach) with annotations and labels.

Data Processing: The raw data from the above sources may include out-
liers, noise, different units, etc. Hence, most often the data needs to be
processed before applying any data modeling techniques. Use of filters such
as low-pass and kalman filters help to reduce noise, drift and outliers. Fur-
thermore, when qualitative data is available the raw data can be annotated
with labels for data modeling. After processing the raw data, significant
features such as min, max, mean, standard deviation, zero-crossings and
fundamental frequency can be obtained. Feature extraction enables to re-
duce the amount of data stored or transmitted for data modeling.

Modeling: Data modeling is a crucial step in activity recognition. Preval-
ent research has proposed various modeling techniques for activity recogni-
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Figure 2.1: General framework diagram for Activity recognition

tion. These include various classifiers (KNN, iBk , decision trees, rules and
clustering techniques such as Expectation-maximization (EM) and k-means
(KM).

Ranking Model: The main objective of the ranking model is to rank the
signals/sensor data that can provide the best outcome for activity/micro-
activity recognition. Ranking the signals/data is a fundamental problem
in information retrieval. Typically, ranking is performed based on certain
accuracy/error metrics. Several ranking models have been proposed in lit-
erature and it depends on the application [26, 27]. Some of the well known
ranking models are AdaRank, RankBoost, Combined Regression and rank-
ing (CRR) and BayesRank. In Chapter 3 and 4, we describe the ranking
models employed for micro-activity recognition in knee rehabilitation and
speed skating.

Evaluation/Feedback: The evaluation block uses the model developed to
determine the activity/micro-activity labels. This block utilize the top-k
results/signals to evaluate new or existing data. Using only top-k signals
will allow for real-time evaluation and comparing with ground truth. The
information on the activities/micro-activities identified are then utilized to
provide feedback.



In summary, the main contributions of this thesis are:

1. We propose a methodology to accurately classify the exercises per-
formed by the patients during knee rehabilitation. The proposed rank-
ing model determines the most influential features that can accurately
identify the set of labels that are similar to the exercise performed
(Chapter 3).

2. We propose a methodology for stroke classification using IMU data
from speed skaters. The proposed model can distinguish different
phases within a stroke to analyze the techniques employed by the
skaters (Chapter 4).

3. We describe in detail the empirical evaluation of the proposed models
by utilizing real data sets collected from various participants (Chapter 5).



Chapter 3

Knee Rehabilitation

In this chapter, we employ IMUs to assist human augmentation for enhan-
cing human productivity and restoring capabilities of the human body. Spe-
cifically, we address the problems involved in physical therapy during knee
rehabilitation of patients. Generally, the therapist monitors the patient pro-
gress in the clinic; however patients have no feedback when performing the
exercises in their home. This might lead to longer recovery process or cause
further injury if sufficient care is not taken.

This labour intensive process has several limitations viz., (i) the therapist
is not aware of how accurately the exercises are performed by the patients;
(ii) patients have no feedback on the exercises performed and their suitab-
ility thus they require regular visit to the doctors; (iii) patients may lose
motivation when performing exercises at home due to lack of feedback; and
(iv) doctors need to keep track of the exercises and specific details for each
patient. Recent research efforts have deployed several wearable devices on
human body to monitor different exercises performed by the patients. These
solutions collect data from various IMUs such as accelerometer, gyroscope
and magnetometer to determine the knee joint angle, movement techniques,
and other temporal aspects of gait [47, 48].

Feedback provided using these mechanisms can be broadly classified into
the following: (i) knee angle based– this indicates the deviation of knee
movements compared to the correct positions; and (ii) activity label based–
this classifies the exercises to one of the labels defined by the therapist and
appropriate feedback is provided based on the identification. Even-though
the above approaches aim to provide information on the exercises performed,
patients often cannot relate directly to the exercises. For example, feedback
on the knee joint angle cannot be understood by the patients to correct
the exercises performed. Similarly, labels obtained by the therapist are
generally a rough approximation. Feedback based on the identified label
may not be accurate as there could be multiple labels associated with the

11



same exercise performed [44]. The labels are defined by the therapist using
visual inspections and are generally ill-defined. Current approaches apply
binary classification to identify the closest label based on the exercise per-
formed [49]. This results in providing inaccurate feedback to the patients.
The activity label based feedback systems has two major challenges,

1. Composite activity – An exercise in rehabilitation is not a simple activ-
ity. Many exercises are composed by several instances of simple activ-
ities, i.e., a composite activity consists of a series of several micro-
activities. For example, a lunge exercise involves stepping forward,
steady position and stepping back. Hence activity recognition needs
to consider micro-activities performed during an exercise.

2. Overlapping labels – Most of the labels defined are based on the visual
inspection of the therapist. These labels are generally overlapping due
to the approximation and inconsistency in definition of labels across
therapists. Hence label based feedback systems need to identify mul-
tiple related labels rather than a single label to provide accurate feed-
back.

In this Chapter, we address the above issues and present a methodology
that provides accurate feedback on the exercises performed by the patients
during knee rehabilitation. Specifically, we propose a two-stage methodo-
logy; first, we identify the composite activity performed and its correspond-
ing micro-activities. Second, we classify the micro-activities to a set of labels
that represent the exercises performed. A knee band comprising of IMUs is
developed to collect data related to the lunge exercise performed. Further-
more, we propose a novel mechanism to classify the micro-activities to one
or more labels defined by the therapist using the data collected. Finally,
based on the identified labels, appropriate feedback is provided to the pa-
tients on the lunge exercise. For instance, if the lunge exercise performed
is classified as “instable” label – refers to the instability in the end position
of legs – the feedback provided to the patient includes the part of the lunge
which was instable due to excessive movements or vibrations. This feedback
can be provided via the mobile phone or in-home displays or web-based ap-
plications in near real-time. Note that the methodology presented here is
applicable to other exercises in knee rehabilitation.
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Figure 3.1: Lunge exercise and the knee band used for data collection.

3.1 Activity: Lunges

Lunges are one of the most common knee rehabilitation exercise performed
to increase the knee strength and control after an injury. Each lunge exer-
cise is a composite activity, which includes several micro-activities, (a) step
forward, (b) steady position and (c) step backward. Fig. 3.1(a) shows the dif-
ferent micro-activities involved while performing a lunge exercise. Hitherto,
most of the feedback systems only identified either a lunge exercise was
performed or not [24]. However, each lunge is composed of several micro-
activities and identifying the micro-activities correctly can enhance the feed-
back systems.

3.2 Data collection

The data acquisition setup includes a knee band, which contains two IMUs
and an Arduino board for data processing. The data was collected with
the help of Dutch-Coast company [13]. The placement of IMUs depend on
the positions that can provide the maximum information of the performed
lunge exercise. We identified two positions, one on the upper leg and the
other on the lower leg, which captures the position and movement of the
corresponding leg [47]. Each IMU consists of 3-axis accelerometer, gyroscope
and a magnetometer. Fig. 3.1(b) shows the knee band worn by the patient.
We used LSM9DS0 from ST micro1 as the IMU. LSM9DS0 has a linear

1LSM9DS0 product sheet [online] https://www.adafruit.com/products/2021.



acceleration full scale of ±2g to ±16g, a magnetic field full scale of ±2 to ±12
gauss and an angular rate of ±245 to ± 2000 dps. This enables to track
the motion accurately. Furthermore, 16 bit range with sampling rate of 50
Hz was used for data collection. The sensed data is then transmitted to the
Arduino board using Bluetooth Low Energy (BLE).

The knee band developed is portable and can be used by the patients
anywhere. We collected data from six participants, four males and two
females. Participants from different age groups were chosen for this study
in order to provide variations in the data collected. Each participant was
asked to perform their normal routine during rehabilitation, which includes a
10 min warm-up followed by several lunges. In total around 200 lunges were
performed by the participants. Furthermore, video footage from the data
collection session was recorded for ground truth information. A therapist
analyzed the lunge exercise performed by the participants and with the help
of video footage and each lunge performed by the participant was labeled.
The labeling was to classify how accurately each participant performed the
lunge exercise. Eight labels were defined viz.,

• Over indicates the over flexion of the knee. In this application, the
knee cap is beyond the position of the foot due to over-leaning in the
forward direction.

• Knee In (KI) indicates that the knee flexes were inside the body. This
is due to bad rotation of knee or wrong leg angles while performing
the lunge.

• Knee Out (KO) indicates that the knee flex is outside the body.

• Instable (Ins) indicates the instability in the end position of legs due
to excessive movement or vibration.

• OverIns refers to Over instable, which is a combination of Over and
Instable.

• Good indicates that the lunge exercise was performed properly.

• Small indicates that a small step was used during the lunge. Produ-
cing a short angle flexion of the knee.

• Fast indicates that the lunge is done faster than average, leading to
a short time in the steady phase.

The data collected was segmented into repetitions during post-processing.
The sensors were calibrated to identify the starting position i.e., standing
straight. Furthermore, a simple automated segmentation method that iden-
tifies the starting position was employed to segment the data collected into
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Figure 3.2: Accelerometer and gyroscope raw data from IMUs for different labels.

repetitions. Fig. 3.2 shows the raw accelerometer and gyroscope data for dif-
ferent labels along with the micro-activities. The different micro-activities
are labeled as (a), (b) and (c) corresponding to stepping forward, steady po-
sition and stepping backward respectively. The x-axis represents the sample
numbers.

3.3 Micro-activity Recognition

Activity classification is used to identify the exercise performed during the
rehabilitation. This can be further used to evaluate the performance of the
exercise. In this section, we first describe a traditional approach to classify
lunges. Furthermore, we propose two methodologies, (i) Average Signal
Model (ASM) and (ii) Ranking Model (RM) to classify the lunge exercise.

3.3.1 Traditional classifier

Fig. 3.3(a) shows the traditional classifier model used to classify lunges per-
formed during rehabilitation. As mentioned previously the collected data
from IMUs are segmented to repetitions, where each repetition represents
a lunge. The data is split according to 90-10 rule where 90% of the data
is used for training and the remaining 10% of the data is used for testing.
Several features were extracted from each lunge repetition and a classifier
model is developed using the features extracted. We employed three classifi-
ers: NaiveBayes (NB), decision trees (J48), and K-nearest neighbor (IBk) for
classifying each repetition. During evaluation, each repetition was evaluated
to the closest label.

The traditional classifier has several drawbacks. First, since the entire
lunge is used for classification, micro-activity recognition is not possible.
This results in considering activities which may not be significant. For ex-
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ample, in a lunge stepping forward and stepping backward are not crucial.
However, the lunge steady position is the most significant micro-activity
that can provide more information on how good the lunge was performed.
Second, the traditional classifiers are generally binary i.e., it classifies a repe-
tition to a label or not. However, most of the labels defined in rehabilitation
and other human augmentation applications have multiple overlapping la-
bels. Hence, classifiers should not only identify the closest label but also
similar labels for each repetition. Third, due to the biased results to one of
the labels, the feedback provided may not be accurate.

3.3.2 Average Signal Model

To overcome the above issues, we propose average signal model (ASM) that
first sections a composite activity into micro-activities and then classifies the
test data by comparing it to the average signal for each label. Fig. 3.3(b)
shows the proposed ASM model. The major components are: sectioning,
profile creation, feature extraction and evaluation.

Sectioning: The objective of sectioning is to determine the micro-activities
from the composite activity. For example, a lunge exercise has three sections



viz., forward, steady and backward as shown in Fig. 3.1. We employ an un-
supervised clustering approach to determine the different sections from each
repetition. Clustering approaches such as Expectation Maximization (EM)
and k-means (KM) with different configurations was empirically evaluated
across all labels and repetitions. EM clustering with 3 clusters was able to
accurately identify the sections (or micro-activities) across all repetitions.

Profile creation: This component determines an average signal for each
label in the dataset. The objective is to create a golden profile for each
label, which can be used during classification of a new repetition. We select
the steady state of the lunge from the sectioning. Since the steady state of
the lunge is the crucial micro-activity, we focus only on this micro-activity.
Profile creation first determines the average length of the steady state for
each label. Since, each repetition may have varying time, we apply time
wrapping (DTW) to stretch or shrink the micro-activity such that all the
repetitions of a label have the same length. We then merge all the corres-
ponding signals for that label to obtain an average signal. For example, we
determine the average length of steady state for all good lunges and then
merge all accelerometer x signals of the good repetitions into one. Finally,
the merged signal represents the golden profile for that label. This merged
profile for each label can be used to compare and identify the similarity
between the lunges.

Feature extraction: Several features from golden profile of each label are
then extracted for classification. The extracted features include fundamental
frequencies (FFT), mean crossing, standard deviation, root mean square,
max, minimum, mean, and size (n samples). Furthermore, features, such
as signal difference between two signals and root mean square of difference
were also extracted. We employed three classifiers, NB, J48, and IBk for
classifying each repetition of a lunge using the average signal.

Evaluation: In this block, a repetition is evaluated with the average signal
of each label. The label that is similar to the repetition is then selected as
its corresponding label.

ASM model sections a composite activity into micro-activities. Further-
more, the test data is compared across all golden profiles of each label and
the closest label is selected. However, ASM model still cannot identify labels
that are similar. Consequently, any mis-classification will result in providing
inaccurate feedback.

3.3.3 Ranking model

Ranking model (RM) aims at determining the set of labels that represent
the test data. The objective of the proposed model is to extend binary clas-
sifiers previously proposed to determine the set of labels that are close to the



test data. Since, the labels across micro-activities are generally overlapped
identifying the set of labels that are similar enables appropriate feedback
to patients. Fig. 3.3(c) shows the ranking model along with its compon-
ents. The functionality of sectioning and feature extraction block remains
the same as ASM. A feature ranking block is added to identify the most
influential features for each label. This information is further utilized to
determine the set of labels that are similar.

Feature Ranking: In ASM all the features were used to classify the test
data. This results in inclusion of features that are similar or noisy, resulting
in poor classification accuracy. Feature ranking block identifies the most
influential features for each label. This saves computation time and considers
only features that are important for that label.

In order to identify features that are influential for a particular label,
we apply weighted cost along with attribute selection ranking tool from
WEKA [50]. The attribute selection ranking provides a set of features that
are most influential across all labels. However, since we want the features
that are influential for each label, a weight cost is applied that penalizes a
feature during mis-classification. This ensures we derive the most influential
features for each label. This also helps in faster convergence. Finally, we use
this ranked features for each label to build a classifier model. The resulting
model includes the probability density function (PDF) of a feature across
labels.

Evaluation: The test data is first sectioned and corresponding features
from the steady state of lunge is extracted. The top-k feature vectors that
are obtained from the feature ranking block are used for evaluation. We
select the set of labels that has high values for the corresponding features,
e.g., labels within 0.2% of standard deviation. The resulting list of labels
indicates the labels that are closest to the test data.

The ranking model determines the labels that accurately represent the
test data using the feature ranking method proposed. The feature ranking
method ensures that the feature, which improves the classification accuracy
is selected. Furthermore, by calculating the probability density function
(PDF) for each top feature, one can select the set of labels that are similar
rather than selecting one label (generally the one with highest value). Feed-
back systems can now exploit this to provide feedback based on the set of
labels determined for a repetition.

In Chapter 5 we describe the evaluation methodology and present the
classification accuracy of identifying different micro-activities. In the next
Chapter, we present the details of MAR model for stroke classification in
speed skating.



Chapter 4

Speed Skating

Speed skating is a competitive sport where athletes are timed for a set dis-
tance on an ice rink. A typical long-track for international competitions has
a distance of 400 m per lap according to the regulations of the International
Skating Union (ISU) [31]. Each lap is composed of four sections viz., two
straight and two curves as shown in Fig. 4.1. In speed skating, the skater
gains forward propulsion by pushing side wards each leg, each cycle of the
leg is called stroke. A complete left and right stroke together is called a
cycle. Furthermore, a stroke can be further classified into three types viz.,
straight, curve and transition. A transition stoke could be described as the
stroke in-to-the curve and out-of-the curve.

0 m

100 m

300 m

200 m

400 m

10 m

Straight Curve 

Figure 4.1: 400 m Speed skating rink [42].

Several research efforts have concentrated to analyze speed skaters move-
ment to improve their performance and technique [32]. Specifically, work per
stroke, stroke frequency, and speed of skaters are monitored and analyzed to
provide detailed feedback. However, most of the techniques proposed em-
ploy either expensive hardware such as camera modules or 3D tracking [34]
to know these features and other kinematic characteristics such as knee

19



Glide RepositionPush-off

Double stance

Glide

Reposition Glide Push-off

Double stance

Right

Left

Figure 4.2: Phases of a stroke: push-off phase, glide phase and reposition phase
[30]

angle, trunk angle and push-off angle [30, 41]. While these techniques are
already in practice they also require lot of data processing to obtain inform-
ation about the performance. Recent works [36, 37] employ IMUs and force
sensors to understand the stroke frequency, mechanical power output, and
other kinematic characteristics. We build on top of the existing techniques
to determine the number of strokes in a lap, length of each stroke and the
different phases of the stroke.

In this thesis, we aim to identify and classify a stroke using only IMUs
data for providing feedback to skaters. In speed skating each stroke has
three phases viz., glide, push-off and reposition. We adapt our framework
described in Chapter 2 to identify strokes, classify into straight and curve.
Furthermore, our model can identify the different phases of a stroke (i.e.,
micro-activities). Identification of these micro-activities can be useful to
obtain detailed information on the technique employed by the speed skaters.
Furthermore, analyzing the length of a stroke and frequency of a stroke will
provide fine-grained information to improve the performance of the skaters.
In this chapter, we present the details of a stroke along with its micro-
activities followed with description of the data collection procedure. Finally,
we describe the model proposed to identify and classify strokes.

4.1 Activity: Strokes

In this section we describe in more detail the strokes and its different micro-
activities. Fig. 4.2 shows the different phases of a stroke. The three micro-
activities are:

• Glide(G) In this phase the body is supported over one leg, being the
transition between reposition and push-off.



(a) IMU sensors on skaters body [43].

X

Y

Z

(b) Force sensors on the skate.

Figure 4.3: Location of sensors deployed during speed skating.

• Push-off (P) Right after the glide phase the skater pushes sidewards
away from the body extending the leg almost completely. The Push-off
finishes when the skate is lift off from the ice.

• Reposition(R) The skate is retracted back to the center of the body.
In this phase the skate is on the air, thus the force sensors register it’s
minimum value.

The intersection of the final part of the Push-off of one leg and the first
part of the other leg’s Glide, is called Double stance (DS) [35]. During
double stance both skates are in contact with the ice. The distinction
between the left and right stroke can also be seen in Fig. 4.2. Further,
each left/right stroke has an independent Glide, Push-off, Reposition (GPR)
cycle. Moreover, each stroke can belong to straight section or curve or trans-
ition.

4.2 Data collection

We employ the data set collected in a STW project called Real-time feedback
for better skating performance [14]. In this project, a wearable body suit
sensor system along with 3D tracking system was employed to collect data
from several speed skaters [36, 38].

The wearable body suit consists of seven motion capture Shimmer IMUs1

and four force sensors. Fig. 4.3a shows the distribution of the Shimmer IMUs
on skaters body. There is a IMU on upper back of the skaters followed with
two sensors on the lower leg, upper leg and on each skate. Fig. 4.3b shows

1Shimmer: http://www.shimmersensing.com
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Figure 4.4: Raw accelerometer, gyroscope and force data.

the location of the instrumented skates’ [37] force sensors. Each skate has
two force sensors one in the front and the other in the back. This results
in 54 signals from 7 IMUs (each consists of accelerometer, gyroscope) and 4
force (all with 3-axis) sensors. The 3D tracking includes Qualisys systems2

for accurate data collection of biomechanics coordinates in a 3D space.

The IMUs and force data from the skaters were collected for the complete
lap. However, the qualisys tracking system recorded a 50 m straight section
of the ice rink. Hence qualisys data is available only on a part of straight
section. The data from both the systems had a common timestamp with
a sampling frequency of 100 Hz. The qualisys data was used to label the
straight part and to synchronize the data collected. Four skaters, two female
(P1,P2) and two male (P3,P4) participated in the data collection process.
We utilized 29 laps of straight section data from all the four participants
and two complete laps from P2 and P3 for our analysis.

Fig. 4.4 shows the raw accelerometer, gyroscope and force data from

2Qualisys: http://www.qualisys.com/



3 IMUs on right leg and the force sensor data of the right skate for a
stroke. Note that, analyzing force data with simple machine learning tools
can already derive micro-activities. However, in this thesis we aim to use
data only from IMUs (accelerometers and gyroscopes) for stroke and micro-
activity recognition.

4.3 Micro-activity Recognition

Pattern recognition techniques such as classification and clustering are widely
used to recognize activities [29]. The key challenge is to find the proper
mechanism that employs minimal data to identify the activity and its micro-
activities. In this section we describe the approach used to identify strokes
and its micro-activities. We restrict the classification of strokes to only
straight and curve sections. Since there is no clear definition of a transition
section we classify all the strokes as either straight or curve. In an ideal
scenario, the first and last stroke of the curve could be termed as transition.
Furthermore, we identify the combination of Glide, Push-off (GP) and re-
position micro-activity from the IMUs data. Note that, we do not employ
force data for identification of micro-activities.

The proposed MAR model for stroke recognition employs semi-supervised
clustering mechanism to recognize the various micro-activities using IMU
data. Fig. 4.5 shows the proposed Signal Ranking Model (SRM) for stroke
identification. The different building blocks of the model are:

Data: We used data from three sources viz., (i) IMUs, (ii) 3D tracking
system (iii) Force sensors. However, we use only IMUs data for micro-
activity (GP and R) recognition. The force and 3D tracking data was used
as ground truth to evaluate the accuracy of our models. The raw data from
the IMUs are pre-processed with a low pass filter to remove any outliers,
gaps, and eliminate partial data.

Clustering: To identify the different micro-activities, we employ an semi-
supervised clustering mechanism like Expectation Maximization (EM). EM
algorithm takes the IMU signal data to derive a cluster sequence. Moreover,
other clustering mechanisms like K-means and Support Vector Machines
(SVM) can also be used at this stage by specifying the number of clusters
equivalent to the micro-activities to be recognized. The number of clusters
from EM will determine the micro-activities and the length of each cluster
sequence represent the length of the micro-activity. Fig. 4.6 shows an ex-
ample of cluster sequence using EM clustering mechanism on a IMU signal
(Right Skate Gyroscope Z) with a filter of 1.5 Hz. The cluster sequence
is compared with the right skate force data (ground truth). The grey lines
mark the ground truth point for the beginning and end of a micro-activity.
The combination of two cluster sequences (GP and R) represent a stroke.
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Figure 4.5: Signal ranking model along with training and testing phase

Post Processing: During our analysis, we found that IMU signals at the
beginning of the lap has some variation/noise. This may be due to the initial
impact of skate in the ice or the data collection error. Hence we discarded
few initial data samples from the cluster sequence. The algorithm computes
the length of the first cluster sequence and if the length of the sequence is
less than 50 frames, we discard the first cluster sequence. In Fig. 4.6, the
first cluster sequence (blue dotted line) is less than 50 samples and hence
is eliminated before evaluating the micro-activities. We selected 50 frames
since, average micro-activity in speed skate is always greater than 50 frames.

Ranking model: The wearable body suit has 7 IMUs with 2 sensors (i.e.,
3-axis accelerometer and gyroscopes) resulting in 42 signals, it is important
to identify the top signals that can accurately identify micro-activities. To
this end, we propose two metrics that can be used to evaluate the cluster
sequences obtained against the ground truth. The ranking model aims to
select top-k signals that maximizes the micro-activity recognition and min-
imize the metric value. The two metrics considered in this ranking model
are length and average offset.
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Figure 4.6: Cluster sequence of a IMU data vs Ground truth (force data)

• Length: The length metric is the difference between the length of the
stroke from ground truth and the length of the stroke obtained from
the cluster sequence. The average length metric for all the sections
(N) of a lap is defined as,∑N

n=1 abs(
len(GTn)−len(Cn)

len(GTn)
)

N
(4.1)

where len(GTn) is the length (in frames) of the ground truth micro-
activity and len(Cn) the length of the cluster.

• Average offset: The average offset metric identifies the average delay
in start of the micro-activity as compared with the ground truth. It
is given by,

∑N
n=1(GT Startn − C Startn)

N
(4.2)

where GT Startn is the start point time (ms) of the ground truth and
C Startn) is the start point of the cluster. We compute length and aver-
age offset metric for each micro-activity (GP and R) and the stroke across
all signals. Furthermore, we rank the signals based on the metric values
obtained. Fig. 4.7 shows the length and offset error for a stroke.
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Labeling: We calculated a series of features such as, mean, min/max, stand-
ard deviation, etc., for the top-k signals. These features are used to identify
the labels of the micro-activities by comparing against the ground truth to
obtained the labels for each cluster as GP or R. With the top-k signals we
then compute various statistics such as number of strokes in a lap, length
and offset of a stroke, GP and R micro-activities.

In the testing phase, new data from IMUs of a different participant is
utilized to determine the micro-activities. In this case, we only use the top-
k signal derived in training period from all the IMU signals for micro-activity
recognition. Fig. 4.5 shows the flow of training and testing phase.

In the next Chapter, we discuss the accuracy of stroke and micro-activity
detection. Furthermore, we provide detailed analysis on classification of
strokes into straight and curve section along with possible feedback provided
to the skaters.



Chapter 5

Evaluation and results

5.1 Knee rehabilitation

5.1.1 Lunge classification

The first step in providing feedback to the patients is by determining if a
lunge was correctly performed or not. To this end, we applied K-nearest
neighbor (IBk) classifier to distinguish a lunge from other activities such as
walking, running and jumping performed during rehabilitation. The classi-
fier accuracy of identifying a lunge was close to 96%. The high classification
accuracy obtained is mainly due to the unique characteristic of lunges i.e.,
different micro-activities such as stepping forward, steady state and stepping
backwards.

After identification of lunge exercise performed, we applied an automated
segmentation method to determine individual repetition of lunges as de-
scribed in Section. 3.2. For each individual repetition, we applied the tra-
ditional classifier to classify the test repetition to one of the labels defined
by the therapist. We employed three classifiers viz., IBk, J48 and NB to
determine the labels. IBk performs better than the other classifiers with an
average classification accuracy of 24.8% across all labels. The poor classific-
ation accuracy is due to the inability of standard classifiers in identifying the
micro-activities of lunge. Since the step-forward and step-backward micro-
activities across all labels are similar, traditional classifiers cannot distin-
guish them across labels. Hence identifying different micro-activities and
using the right micro-activities for classification is crucial to get accurate
classification of lunges.

Average Signal model

ASM model first sections the composite activity into micro-activities. We
employed a clustering approach to determine the different micro-activities.
The semi-supervised method first identifies the clusters that correspond to
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the micro-activities. These clusters are then labeled with the help of a do-
main expert. To identify the correct cluster configuration (a combination of
signals and parameters), we developed a brute force algorithm to empiric-
ally derive the best configuration. The different parameters evaluated were
the clustering mechanisms (EM, K-means), the number of clusters (2,3,4,5)
and the smoothing parameter (low-pass filter of 10, 15 and 20Hz). The
smoothing parameter ensure outliers and noisy data points are eliminated.
The number of clusters indicate the number of micro-activities present in
the composite activity. For the lunge exercise, we found EM clustering with
3 clusters and 15 Hz smoothing parameter to correctly identify the three
micro-activities of lunge accurately across different labels. Furthermore, we
merged all the signals of a particular label to derive its corresponding golden
profile. The test data was evaluated with the golden profile across multiple
classifiers. The average classification accuracy of identifying the correspond-
ing label for NB, J48 and IBk were 39.6%, 45.2% and 51.8%, respectively.
IBk classifier has better performance than other classifiers and the detailed
accuracy of each label is described in Table. 5.1. The metrics employed to
study the efficacy of the classifiers are:

• True positives indicate the number of labels that was correctly classi-
fied.

• False positives indicate the number of labels that were incorrectly clas-
sified,

• Precision is the number of true positives divided by the total number
of elements labeled as belonging to a particular label.

• Recall is the number of true positives divided by the total number of
elements that actually belong to a label.

• F-measure indicates the accuracy of the classifier and it is the harmonic
mean of precision and recall.

Table. 5.1 shows the TP, FP, precision, recall and F-measure for each la-
bel using IBk classifier. It can be seen that for some labels the accuracy
is high (e.g. 100% for fast) and for others the accuracy is as low as 40%.
Moreover, ASM classifies a repetition to only one of the label and eliminates
the others. Hence a mis-classification may result in providing a completely
wrong feedback to the patients during rehabilitation. Hence, feedback sys-
tems should determine the set of labels that are similar to the test data,
particularly when the exercise is composed of several micro-activities and
overlapping labels.



Table 5.1: Classification accuracy across labels for ASM and ranking model.

Labels Fast Ins KI KO OverIns Good Over Small Mean

TP Rate 1.00 0.60 0.50 0.00 0.00 0.57 0.80 0.67 0.52
FP Rate 0.00 0.10 0.04 0.00 0.00 0.32 0.05 0.04 0.07

ASM Precision 1.00 0.60 0.50 0.00 0.00 0.40 0.80 0.67 0.50
Recall 1.00 0.60 0.50 0.00 0.00 0.57 0.80 0.67 0.52
F-measure 1.00 0.60 0.50 0.00 0.00 0.47 0.80 0.67 0.50

TP Rate 0.13 0.30 0.22 0.40 0.00 0.36 0.56 0.22 0.27
FP Rate 0.00 0.00 0.00 0.19 0.00 0.00 0.18 0.00 0.05

RM Precision 1.00 1.00 1.00 1.00 0.33 0.62 0.00 1.00 0.74
Recall 1.00 0.57 0.60 1.00 1.00 1.00 0.00 0.67 0.73
F-measure 1.00 0.73 0.75 1.00 0.50 0.77 0.00 0.80 0.69

Ranking model

Unlike ASM, ranking model aims to determine the set of labels that represent
the test repetition. Fig. 5.1 shows the Top-5 features that are influential for
each of the labels. We employed attribute selection ranking with weighted
cost matrix from WEKA tool to obtain the top features that are import-
ant for each label. The attribute selection ranking performs an exhaustive
search over all features to identify the top features. Then a weighted cost
matrix ensures mis-classifications are highly penalized. This ensures that
the obtained features will certainly improve the classification accuracy for
each label. Furthermore, to select the set of labels, we compute the prob-
ability distribution function for each feature across labels. This allows one
to identify the set of labels that are closest.

Rank Fast Ins KI KO OverIns Good Over
1 13_SigDiff 12_RMS 13_RMS 13_Max 3_Mean 13_Max 13_Max
2 13_SigRMS 13_RMS 13_Max 13_RMS 15_Mean 13_Mean 13_RMS
3 8_StdDev 12_SigRMS 14_SigDiff 13_Mean 15_Max 13_RMS 13_Mean
4 12_RMS 12_Max 13_Mean 12_RMS 15_Min 12_RMS 13_Min
5 8_SigRMS 16_Mean 14_SigRMS 12_SigRMS 3_Max 12_SigDiff 12_SigRMS

Figure 5.1: Top-5 features selected for each label.
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Figure 5.2: Boxplot of probability distribution of 3 Mean across labels.

Fig. 5.2 shows the values for a feature 3 mean (corresponding to the
accelerometer x-axis on the lower leg IMU) across all labels. It can be
clearly seen that for OverIns label this feature is unique. This enables the
classifier to determine the corresponding label based on the top features
obtained.
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Figure 5.3: Evaluation of 5 repetitions across labels using ASM and RM.

Fig. 5.3 shows the probability distribution for 5 test repetitions across
different labels with average signal and ranking models. It can be clearly seen
that ASM is completely biased to one of the labels and mis-classifications
will lead to providing inaccurate feedback to the patients. However, for
ranking model using the probability we can identify a set of labels that are
similar. This can be seen in Fig. 5.3 where for some repetitions only one
label has high probability and for other repetitions more than one label has
similar probabilities. For example, Repetition 1, 4 was clearly identified as
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Figure 5.4: Set of labels derived using ranking model that are overlapped.

a Small lunge, whereas, in Repetition 3, it can be seen that the probability
of being Instable or KO or Good is similar. Hence labels that have similar
probabilities are selected as the predicted labels. Feedback is provided to
patients based on the obtained set of labels rather than a single label.

Finally, Fig. 5.4 shows the set of labels that are overlapped. The colored
column block indicates that the label is similar to the corresponding row
label. Note that this mapping between labels may vary depending on the
training data. This allows our proposed methodology to be adaptive and
learn new patterns in the collected data over time.

Table. 5.1 shows the TP, FP, precision, recall and F-measure obtained
using the ranking model with top-3 features. The higher accuracy is due to
the classification of test data to a set of labels that are similar. The average
accuracy across all labels is around 70% with high precision of 74%.

5.1.2 Feedback

The key challenge in human augmentation is providing near real-time feed-
back to users regarding the activities performed. Providing feedback is non-
trivial, especially when there exists micro-activities, due to the overlapping
labels. In traditional feedback systems, based on the identification of the la-
bels, appropriate recommendation is provided to the patients. For example,
if the label predicted is Over the feedback includes, (i) keep your upper body
straight, you may be leaning forward too much, (ii) your forward step might
be too short, (iii) you might be lowering your body too much. Similarly,
if the label identified is Instable the feedback includes, (i) Do the exercise
slower, to get more control (ii) do not step too hard on the front leg, etc.

Since there exists multiple labels representing the same micro-activity
performed, identifying only one label or a mis-classification may lead to in-
accurate feedback. To overcome this, we proposed a micro-activity classifier
that identifies a set of labels that represent the activity performed. Fig. 5.3



shows the labels that are similar from the collected data using IMUs. Feed-
back is provided based on the labels that are highly similar. For example,
if the predicted label of a test repetition is Over and Instable label, then
the system selects feedback corresponding to these two labels. Furthermore,
based on the probabilities associated to each label, the feedback system can
select the associated recommendations accordingly. This allows users to
know what went wrong when the lunge exercise was performed. The hypo-
thesis here is that by providing feedback from the set of labels increases the
accuracy compared to that of a single label based feedback.

The corresponding feedback is provided to the users on their phone or
in-home displays. This allows users to know in real-time how accurately
exercises were performed. Furthermore, it allows users to know how they
can improve themselves. This significantly enhances the recovery process
and eliminates the frequent visits to the therapist. The feedback can also
be sent to the therapist who can then adapt the feedback to provide more
personalized recommendations.



5.2 Speed skating

5.2.1 Stroke classification

In Chapter 4 we described our signal ranking model (SRM) to classify dif-
ferent phases in a stroke. The combination of glide, push-off and reposition
phases forms a stroke in speed skating. SRM model identifies the differ-
ent micro-activities using only IMUs data. As described in Section 4.1, in
speed skating there can be a stroke in straight section of the lap and in the
curve section. The modeling presented here can distinguish both types of
strokes. We first describe the evaluation of strokes in straight section and
then provide results for the total lap.

Stroke: Straight section

In Section 4.2 we mentioned that the dataset collected in [14] includes 29
straight section data from 4 speed skaters. For these 29 straight section
data, we also had the Qualisys data along with force data was used as
ground truth. Specifically, P1 contributed to 3 laps, P2 to 9, P3 to 10 and
P4 to 7. In this section, we consider only the straight section of the lap for
micro-activity recognition.

Ground truth: The force data and Qualisys data together was used to
derive the strokes, length of a stroke and the identification of GP and R. The
ground truth information was also provided as part of the dataset [36, 38].

Signal ranking model (SRM)

SRM model takes the IMU data from the wearable body suit of the skater to
determine the stroke frequency, length of the stroke and its micro-activities.
The raw signal data was pre-processed by applying a Butterworth filter (with
values of 0.5, 1.0, 1.5, 2.0 and 2.5 Hz). This pre-processed signal data was
used by clustering algorithm to obtain the cluster sequence. We used EM
and K-means (KM) clustering algorithms to obtain the cluster sequences.
The number of cluster was set to 2, on the grounds that there are two micro-
activities (GP & R). The resultant cluster sequences was then processed to
filter initial noise as described in SRM model.

The number of clusters represent the number of micro-activities, the
length of a cluster sequence represent the length of the micro-activity. For
all cluster sequences, we then computed the length and offset values using
Eq. 4.1 and Eq. 4.2 respectively. Specifically, we computed 3 combinations
of length and offset values for GPR, GP and R. GPR represents a complete
stroke and GP and R represents the micro-activities, the corresponding met-
rics are:



• Length GPR indicates the difference between the length of GPR from
ground truth and SRM model.

• Offset GPR indicates the difference between the start of the GPR from
ground truth and SRM model.

• Length GP indicates the difference between the length of GP micro-
activity and the length of GP obtained from SRM.

• Offset GP indicates the difference between the start of the GP from
ground truth and the start of GP obtained in SRM.

• Length R indicates the difference between the length of R from ground
truth and SRM model.

• Offset R indicates the difference between the start of R from ground
truth and SRM model.

The length metric takes a non-negative value, lower the value the better
is the signal performance. The offset metric is a integer where a negative
value indicates the micro-activity starting earlier than the actual start and
a positive value indicates the micro-activity starting later than the actual
start. The 42 signals from 7 IMUs was then ranked based on the length and
offset metrics. The top-5 signals for both length and offset metrics were the
same. Table 5.2 shows the top-5 signals for the strokes found by the SRM.

Table 5.2: Top-5 signals along with cluster configurations.

Top
Sensor

location
Signal

Low Pass
filter (Hz)

Cluster
Method

1 Right Skate Gyroscope Z 1.0 KM
2 Right Upper leg Accelerometer Z 1.0 KM
3 Right Upper leg Accelerometer Z 1.5 KM
4 Right Upper leg Accelerometer Z 2.0 KM
5 Right Skate Gyroscope Z 1.5 KM

Fig.5.5 shows an example of the ground truth force stroke data of a right
skate along with the cluster sequence obtained from SRM for the top signal.
Fig. 5.5a shows the length metric of a stroke. It can be seen that the length
error for GPR (total stroke) is 0. Further, micro-activities GP and R has
a length error of 15% and 20% respectively. Similarly, Fig. 5.5b shows the
offset metric for a stroke. The total stroke (GPR) has an offset error of
200 ms (20 frames).
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Figure 5.5: Stroke Error examples.

Fig. 5.6 shows the box plots of the length and offset values of the top
signal (Right Skate, Gyroscope Z) evaluated for all the 29 straight sections.
It can be seen in 5.6a that, the difference between the ground truth stroke
length and derived stroke length is less than 4%.
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Figure 5.6: Length and offset errors top signal for all users across all laps.

Furthermore, the number of strokes obtained using our SRM model matches
the total number of strokes in ground truth. Fig. 5.6b shows the offset val-
ues for GPR, GP and R micro-activity. The average offset value for GP and
R is close to 46 ms and 54 ms respectively. The minimum values for GP and
R are 0, see Table 5.3.



Table 5.3: Top 1 metric values.

Top 1 Length (%) Offset (ms)

ft. GPR GP R GPR GP R
AVG 3.9 6.5 10.3 70 46 54
Max 17.6 16.5 21.7 190 230 170
Min 0.4 0.0 0.0 10 0 0

In summary, the length and offset values obtained for all 29 straight sec-
tions are very low, indicating the good performance of SRM model.

Table 5.4 shows the average length and offset values of all 29 straight
sections for each signal in Table 5.2. It can obtain that, the average length
and offset values for the top-5 signals are 8.5% and 84 ms respectively.

Table 5.4: Average length & offset of top 5 signals for all laps

Length (%) Offset (ms)

Signals GPR GP R GPR GP R
1 3.9 6.5 10.3 70 46 54
2 4.2 8.2 10.7 73 109 64
3 4.5 9.4 11.3 95 101 96
4 5.3 11.0 11.0 95 91 96
5 6.6 8.1 16.5 142 63 68
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Figure 5.7: Metric values of top 5 signals for all users across all laps (GPR/stroke).

The distribution of length and offset values for top-5 signals is shown in
Fig. 5.7. It is worth noticing that the 1st and 5th top signals come from the
same sensor (Right skate, Gyroscope Z) but different configuration (1.0 and
1.5 for the Low pass filter), they have a smaller distribution on their offset
error than the signal from the Right Upper leg, Accelerometer Z sensor.
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Figure 5.8: Length and offset error of P2 and P3

These differences are due to the position of the IMU and it’s signal. Strokes
are determined by whether the skate is on the ice or not, therefore it makes
sense that an IMU on the skate will show a more correlated pattern to the
skating strokes.

Finally Fig. 5.8 shows the length and offset distribution of two skaters, P2
and P3. The length and offset values are lower for P3 as compared to P2.
However, the proposed SRM model used the same top-signal obtained from
other participants. Further, the number of strokes was correctly identified
for both the skaters. Hence, using just the IMU data the proposed model
can derive the number of strokes, stroke length and also identify the micro-
activities. The evaluation indicates that not all the IMUs may be required
for detection of strokes. Further, with the above results we can identify the
optimal placement of IMU for accurately classifying a stroke and different
micro-activities. Consequently, resulting in deploying fewer IMUs, lesser
data processing and communication.



Stroke: Total lap

In the previous section, we considered only the straight section of the lap
for classification of strokes. In this section, we use the same analysis for the
complete lap. Thus, we evaluate the top signal obtained from straight section
analysis for all the sections in a lap. As shown in Fig. 4.1 in Chapter 4, there
are 2 straight and curve sections in a lap. Since, the dataset does not have
the ground truth for the total lap, we utilized the ground truth information
derived by Eline et al. [14]. They analyzed the total lap data along with
force and other sensors data to derive the ground truth information. This
information was used to compare the number of strokes and micro-activities
obtained from SRM with only top-signal data.

Since a complete lap includes different sections (straight and curve), we
applied a two-level clustering for distinguishing strokes from these parts.
The steps involved are:

1. The complete lap data of the top-signal was used to derive the cluster
sequence. The SRM model aimed at identifying the different micro-
activities i.e. GP and R. The combination of GP and R was rep-
resented as a stroke. In the next step, we describe the procedure to
distinguish between the stroke in straight and curve section.

2. The length of each stroke obtained from the previous step was calcu-
lated. We used the length of a stroke to further classify if the stroke
is in straight or curve section. In general, the length of the stroke in
the curve section is smaller than the length of the stroke in straight
section. Fig. 5.9 shows the length of the stroke in straight and curve
sections. On average, a straight stroke takes 1950 ms while the curve
is around 1390 ms in our dataset.

Curve Stroke Straight Stroke

Figure 5.9: Curve and straight sections strokes.
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Figure 5.10: Metrics value for a complete lap.

The above approach used only the top-signal to derive the type of stroke,
number of strokes, length of stroke and the GP, R micro-activities. From
the dataset collected, we used 2 total laps from two skaters for stroke clas-
sification.

Fig.5.10 shows the length, offset values for straight and curve section for
two skaters. The cluster sequences and the corresponding length and values
are obtained based on the top signal derived previously. The SRM model
correctly identifies the total number of strokes in straight and curve sections
for both the skaters. Furthermore, the average length error in straight and
curve for P2 is 20% and 119 ms respectively. Similarly, the average length
error for straight and curve is 11.3% and 101 ms for P3. It can be seen
that, the average length values for straight section is much lower than curve
section across all total stroke, GP and R. Note that, the curve section was
never modeled before in our analysis. This error could be reduced by training
the SRM model in curve section. Furthermore, the offset in straight section
is generally positive as compared to offset values in the curve section. This
information can be considered in our modeling to further reduce the offset



values. Table 5.5 shows the length and offset errors for two skaters across
the total lap, only straight and curve sections.

Table 5.5: Length & offset error percentage values

Length (%) Offset (ms)

User GPR GP R GPR GP R

P2 Straight 4.2 4 14.2 95 84 116
P2 Curve 6.6 29.1 55.7 162 165 80
P2 Lap 5.5 17.4 37.3 132 127 96

P3 Straight 6.1 14.1 15.2 149 162 18
P3 Curve 4.2 9.6 18.6 123 103 47
P3 Lap 5.2 12 16.8 136 135 31

5.2.2 Feedback

Currently, coaches give feedback by timing each lap or section of the lap,
ideally this feedback should be given near real-time. For example, the skater
should know if his current speed is right, too fast or too slow, in which
sections he is losing time, which phase (G,P,R) he has to improve, etc.
With the proposed approach one can identify the number of strokes, the
length and the micro-activities GP and R. This information can be used to
analyze the technique of the skater, their performance and possible ways to
improve. For example, we can provide feedback to skaters such as i) number
of strokes done in each section strokes per minute; (ii) length of a stroke; (iii)
which section is the skater losing time as compared to others. Furthermore,
the proposed modeling can be used to compare the techniques across skaters
and to improve the performance. By identifying the GP section on both leg
strokes it is possible to compute the double stance (DS) frequency.

The proposed model has low length and offset error indicating the good
performance in classifying the stroke. Furthermore, we proposed an adaption
technique to improve the accuracy of classification of micro-activities and
strokes.

Finally, the proposed model can be implemented on embedded devices
such as Raspberry Pi, Arduino and smart phones/watches/glass to provide
feedback to skaters. recent efforts use systems such as google glass [55]
or haptic [56] to provide feedback. Also, the SRM model can be adapted
to provide near real-time feedback and the latency depends on the data
communication and processing limitations of the hardware.



5.3 Discussions

In this thesis, we presented a ranking based model for identifying micro-
activities in various applications. Specifically, we adapted the generic frame-
work to identify micro-activities in two applications (i) knee rehabilita-
tion and (ii) speed skating. Several strategies were proposed to accurately
identify different micro-activities, however there still exist some challenges.

• Sensors The selection of IMUs and their placement is highly depend-
ent on the application [11]. For knee rehabilitation, two IMUs were
sufficient for the analysis of the Lunge exercise. However, for stroke
classification in speed skating 7 IMUs were deployed. Moreover, to
identify other characteristics such as knee angle, force, etc. the po-
sition of the IMUs play an important role. In both applications we
determine the most optimal IMU placement that maximizes the ac-
curacy of detecting the micro-activity we are interested. However, for
other activities the placement of IMUs may vary. Furthermore, since
the dataset was not collected as part of the thesis, there may exist other
placement position for IMUs which can maximize the micro-activity
classification.

• Data labeling Accurately labeling composite activities is non-trivial
due to the micro-activities involved. Hence classification approaches
presented should consider overlapping labels, inconsistent labels and
similar labels during evaluation. The approach for knee rehabilitation
described in this paper is agnostic to the number of labels. Thus, the
ranking model can determine the set of labels that can accurately rep-
resent the test data. In speed skating micro-activities are well defined
and the validation with quantitative ground truth. Yet we had to
group two micro-activities (G & P) in order to work with the data,
due to lack of precise distinction between these.

• Feedback systems Providing near real-time feedback is a crucial
component in human augmentation systems. However in the case of
rehabilitation, most systems analyze the entire composite activity per-
formed as a whole, leading to inaccurate feedback systems. This thesis
identifies the set of labels rather than a single label. To improve the
accuracy, more distinctive labels or proper feedback for set of labels
should be done. For speed skating we provide feedback in terms of
number of strokes, length of a stroke and the different phases. How-
ever, other information such as knee angle, force, speed, etc., may also
be useful. The proposed models can be extended to provide other key
statistics for the skaters.





Chapter 6

Conclusions and Future
Work

6.1 Conclusions

The main research objective of this work was to present a framework that
can analyze user activities using wearables and provide feedback to enhance
the performance capabilities of users. In this thesis, we proposed variants of
ranking model to identify the micro-activities performed by user. Analyz-
ing micro-activities provides a unique view in understanding user activity.
Furthermore, the proposed models were able to identify the most signific-
ant signals and the IMUs required to identify these micro-activities. We
considered two real-world applications and demonstrated the efficacy of the
models proposed. The ranking models was adapted for each application to
identify the micro-activities. The information obtained from analyzing these
micro-activities was used to provide feedback to users (patients and skaters)
to enhance their performance. This thesis is a step towards identification of
fine-grained user activity information to provide accurate feedback.

In Chapter 3, we presented a system that helps in faster rehabilitation of
knee injury patients using a wearable knee band comprising of two IMUs. We
described a novel methodology to accurately classify the exercises performed
by the patients. Unlike the existing systems, the techniques presented in
this thesis can identify the micro-activities involved in a particular exercise.
The proposed ranking model determines the most influential signals/features
that can accurately identify the set of labels that are similar to the test
repetition. The predicted set of labels is then used to provide feedback on the
quality of exercises performed. The proposed models perform significantly
better than traditional classifiers. The classification accuracy of identifying
the correct set of labels using ranking model is close to 70%.
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In Chapter 4, we adapted the general ranking model for speed skating
application. The model identified the strokes performed by the skaters along
with different phases (micro-activities) using the data from a wearable body
suit (with 7 IMUs). The model identifies the most significant signal that
can classify a stroke and its micro-activities. This information can be used
to reduce the number of IMUs deployed for stroke identification. Unlike
previous works, we used only IMUs data from four skaters to identify strokes.
The proposed model was able to identify all the strokes across different
sections of the lap. The stroke classification has an average length and
offset error of each micro-activity of 5.2% and 122 ms respectively for the
straight sections for the lap. The average length and offset for the total
lap from two skaters is 5.4% and 135 ms respectively. . Information on the
number of strokes, length of a stroke and different phases in a stroke can
now be provided to the coaches to understand the technique of the speed
skaters. This can further be used to analyze the performance and compare
techniques with other skaters.

The proposed framework can be applied to other applications such as
swimming, basketball, rowing, and other rehabilitation exercises to identify
accurately the micro-activities. Furthermore, the proposed models can be
run online on an embedded systems to provide near-real time feedback tot
he users. We believe that the novel methodology and analysis presented in
this thesis will make the rehabilitation and sport coaching simple, faster and
accurate by exploiting the advantages of wearables for human augmentation.

6.2 Future work

In this thesis, we analyzed our proposed models for two real-world applic-
ations (i) Knee rehabilitation and (ii) Speed skating. We have identified
several points that need improvement or that can be further enhanced.

• Applications and activity recognition: In Chapter 3, we proposed ASM
and RM models to recongize lunge exercise performed by the patients.
However, our models can be extracted to other exercises such as squats,
jumping jacks, etc. Similarly, for speed skating, the analysis can be
extended to identify other kinematic characteristics such as knee angle,
double support, etc. Hence, applicability of the ranking models to
other applications and activities needs to be investigated.

• Nano-Activities: As shown in this thesis, analyzing fine-grained activ-
ity information i.e., micro-activities helps to understand user activities
and more importantly to provide detailed feedback. Hence, decompos-
ing micro-activities to Nano-Activities will give a better description of



the activity. These nano-activities can further help to monitor user
exercises and actions to provide precise feedback.

• Bottom-Up model: In both applications we design the MAR from a
Top-down approach, i.e., the labels were partially provided and our
models used this information to derive micro-activities. Alternative
approach (bottom-up) may be developed completely unsupervised to
determine the micro-acitvities and to label them. This approach may
indeed identify only those activities which are prominent, consequently
eliminating the need of domain experts for labeling.

• Model parameters: In the ranking models presented in this thesis,
we used different configuration parameters such as type of clustering,
number of clusters, and filtering mechanism for each signal. The main
objective was to identify the most influential signal for a particular
application. These parameters needs to be fine tuned for different
applications. Furthermore, our models can be extended to combine
two or more signals to improve the classification accuracy or to add
reliability in detection of micro-activities.
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