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Abstract

ILU smoothers are good smoothers for linear multigrid methods. In this paper, a new ILU
smoother for the incompressible Navier-Stokes equations, called CILU (Collective ILU), is
designed, based on 1-transformations. Existing ILU decompositions factorize the matrix with
real elements. In CILU the elements of the matrix that is factorized are submatrices, cor-
responding to the set of physical variables. A multigrid algorithm using CILU as smoother
is investigated. Average reduction factors and limiting reduction factors are measured to
explore the performance of the algorithm. The results show that CILU is a good smoother.



1 Introduction

Theoretical and practical investigations for about two decades have shown that multigrid
methods are very suitable for solving large systems of algebraic equations resulting from
discretization of partial differential equations. In this paper, we will present a multigrid
method for the incompressible Navier-Stokes equations in general coordinates discretized on
a staggered grid. A new smoother of ILU type, called CILU (Collective ILU), is introduced.

The main components in a multigrid algorithm are smoothing and coarse grid correction.
The smoother should possess the smoothing property, and the coarse grid approximation
should have the approximation property ([4]). In [16], the smoothing and approximation prop-
erties are studied for the incompressible Navier-Stokes equations discretized on a staggered
grid in Cartesian coordinates. In general coordinates a theory is not available. Therefore, the
performance of CILU is tested in numerical experiments.

Classical Jacobi or GauB-Seidel iteration may be used for smoothing. These methods are
simple to implement. However, they are not robust. They fail when the problem contains
anisotropies. Examples of anisotropies are strong convection and large or small aspect ratio
of grid cells, which occur often in discretizations using boundary-fitted coordinates. ILU
decomposition for smoothing in multigrid methods has heen investigated by many authors;
for a survey, see [12]. It is found that ILU smoothing is robust and efficient. This leads us to
consider a smoother based on an ILU decomposition.

For reasons explained elsewhere ([19]), we use Galerkin coarse grid approximation. This
implies that the nonlinear problem to be solved is linearized outside the multigrid algorithm.

Discrete systems approximating the Navier-Stokes equations are indefinite. So direct
implementation of ILU decompositions is problematic. This problem is overcome by applying
an 1-transformation, as proposed in [15],{17] and [18].

This paper is arranged as follows. In section 2, the partial differential equations and
the discrete system that are to be solved are described. Section 3 explains briefly the r-
transformation. An incomplete LU factorization called CILU is described in section 4. In
section 5, a linear multigrid algorithm is presented which covers the V-, W-, F- and A-cycles.
The choices for restriction and prolongation operators are given. Using skewed driven cavity
problems and L-shaped driven cavity problems as test problems, in section 6 the performance
of the linear multigrid using CILU as smoother is investigated.

2 Partial Differential Equations and Discretization

The tensor formulation of the incompressible Navier-Stokes equations in general coordinates
reads as follows:

Uvs =0, (2.1)
0
S (U +(UU®) 5+ (5D~ 7 = B, (22)
where 7% is the deviatoric stress tensor and is given by

%% = Re™Y(g¥'UE, + g"PU2), (2.3)
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with Re the Reynolds number, p the pressure, t the time, U%,a =1, 2, ..., nd the contravari-
ant components of velocity with nd the number of space dimensions, and B* the contravariant
component of the body force. U and B are derived from their physical counterparts u and
b through the contravariant base vectors a* of the general coordinates by

U%=a%-u, B*=2a%"b. (2.4)

Furthermore, ¢* is the metric tensor given by g% = a® . a?. For better accuracy, the
variable V* = ,/gU*? is used instead of U®, where /g is the Jacobian of the mapping; this
is motivated in [5],[9] and [14].

The discrete system of the above equations discretized in general coordinates on a stag-
gered grid in two dimensions (cf. figure 2.1) by using the finite volume method ([5],[6],{14],[9])

ST S SR S

s e — P P P —P

—» : V' -points

4 A T 1 V? -points

- T T + : p -points

e = X o

Figure 2.1: A staggered grid

can be written, for a given time interval At, as:

1 +1 1yt n+l /
— V™l L 9Q/(V 6G =
DV»t = £,
with 1
f = 6B™! + (1-6)B" + ZEVn - (1-6)Q' (V") - (1 -8)Gp™ (2.6)

Here V = (V1,V?), B = (B, B?) and p denote the discrete velocity, right-hand side and
pressure grid functions. The superscript n indicates the time level. The parameter 6 is in
[0,1], and is taken to be 1 in the numerical experiments here, which gives the backward Euler
method. The underlying ordering of the unkowns is

Vlla V217"')V7}17 V'IZ’ V227"'7V1327 Pi, P2y "3 Pnas (27)

with some ordering (for example lexicographic) of the grid points. This will be called the
block-wise ordering,.



Equation (2.5) gives rise to a sequence of systems of equations for a sequence of time
levels. It is linearized with the Newton’s method, for example

(UTPY™ = (U OP) + (OO - (0T (28)

This gives Q' (V1) = Q; V™! + Q3(V") with Q; linear. Note that both Q; and Qg are
evaluated by using V™. The resulting system is denoted by

Kx = f (2.9)
with “
G V™ 1,
K:(g 0)x=(PM1»f=(Q), (2.10)
where 1
Q= E+Q1, f, =1, — Qz(V™). (2.11)

If there exists a stationary solution, then it satisfies

Kx=f; (2.12)

Q G B
s=(D 0)@=<ﬁ). (2.13)

3 The r-Transformation

with

3.1 Iteration with r-Transformation

A classical iteration method solving (2.9) is given by
Xt = xt - M™Y(Kx' - f) (3.1)

with M a splitting of K:
K=M-N. (3.2)

This method converges if the splitting is what is called regular [10]. The zero block in K
makes a regular splitting impossible. A remedy is to introduce a matrix K, such that a
regular splitting

KK=M-N (3.3)

is easy to find. This implies a splitting
K=MK -NK™ (3.4)
resulting in the following iterative method:

x+! = x' - KM Y(Kx* - f). (3.5)



The transformation K has got several names in the literature. In [1], K is called distributive
operator and iteration (3.5) is called distributive iteration; in [15], K is called r-transformation
and the iteration is called transforming iteration. Here we adopt the latter terminology. Many
iterative methods can be fitted into the frame work of (3.3) and (3.5), such as the SIMPLE
method of Patankar and Spalding [8] and its variants, and the DGS method of Brandt and
Dinar [2] ([4],[15],[16],[17],{18]).

In practice, it may be convenient to replace K by an approximation K. Consequently, the
iteration procedure (3.5) becomes

x+l = x' - KM} (Kx' - f). (3.6)

Obviously, (3.6) converges to the solution, if it converges. Convergence may be enhanced by

underrelaxation: _ _ . _
xH'l =x'- wKM'l(Kx' - f) (37)

Method (3.7) is the smoothing iteration method that we use.

3.2 Construction of r-Transformation

A theory of constructing smoothers with r-transformation is given in [16]. Some applications
to the Stokes and the Navier-Stokes equations can be found in [15). We summarize some
results. For use as smoother in a multigrid method, an iterative method must have the
smoothing property, introduced in [4]; see [13] for an elementary introduction. In [16], it is
shown generally that if KK is of the following block-triangular form:

xk=(5 ) (59

and can be splitted regularly into M — N, then the smoothing property holds for system (3.8)

if the iterative matrix
S=M"N (3.9)

S;; 0
S= 3.10
( Sa1 Sa2 ) (3-10)

has the the smoothing property for its diagonal blocks. Hence, the study of the smoothing
property for systems is essentially reduced to the study of of the smoothing property for single
equations. Furthermore, [16] gives conditions under which the smoothing property for the
perturbed method (3.6) follows from the smoothing property for (3.5). Hence, it is attractive
to choose K such that KK has the block triangular form (3.8). A possible choice for K is

with

= [ I Ko
K= ( 0 K ) (3.11)
Then we have
F Q QK12 + GKo;
KK = ( D DKy, . (3.12)



Choosing Ky, and K3; such that QK;; + GK2; = 0 results in the form given in (3.8).

There are many possibilities for choosing K. Wittum’s theory gives us a guide. In (3.12),
we do not have problems in constructing a smoother for Q, provided that the discretization
is appropriate (Q should be an M-matrix). What we should do then is to choose K such that
the smoothing property exists also for the block DKj3.

Choosing
_ I -Q-1GE™'F :
e (3 e 019
with E = DQ~1G results in
- (Q o0
KK = ( D _F ) (3.14)

where F is still to be chosen. We discretize (2.1) and (2.2) with central differences. As a
consequence, Q is not an M-matrix for Re sufficiently large (approximately Re > 2/h in our
examples with h the local mesh-size). If we choose —F to be an M-matrix then it will be
easy (for Re small enough) to obtain a smoother for the product system KK, as discussed
before. The first choice is F=DG corresponding to the distributed GauB-Seidel method of
[2]. Because of the occurrence of Q! and E-1 this K is not practical, and is approximated

by
- I -G
c=(158). 619
The second choice is F = E, giving
- (I -Q7'G
K= ( 0 I ) (3.16)

leading to iterative methods of the so-called SIMPLE type [8]. This gives

- {(Q 0
KK—(D _Dq_lG). (3.17)

For practical purposes Q™! in (3.16) and (3.17) has to be approximated further.

4 CILU Decomposition

4.1 Incomplete decomposition

The residual amplification matrix of (3.6) is I — KKM-1. Hence M should be close to KK
but easily invertible. With incomplete decomposition one chooses

M= (L+D)D(D+U) (4.1)

with L and U strictly lower and upper triangular matrices and D a diagonal matrix. A
possible choice for L, D and U is as follows. Let G be a non-zero pattern, andlet L, D, U #0
only on G. Then we require 3

M;; = (KK)ij, (3,7)€G (42)
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from which L, D and U follow. It is known that the rate of convergence of the resulting
iterative method depends on the ordering of the unknowns. We will number the cells in
lexicographic order. The V!-unknown in the left cell face, V? in the lower face and p in
the center are grouped together in a 3-vector w; = (V1,V?2,p); with i the number of the
cell. Because of this collective treatment of the three unknowns, we call the resulting method
collective ILU decomposition (CILU). This collective ordering induces a 3 x 3 block matrix
representation of KK. Such block matrices are called cell blocks. A typical row, say number 1,
has non-zero elements at postions (4,3 I+1,ixI,sF I+ 1,i+1,i+1=2,i—2,i—2I,i—2I+1),
where I is the number of cells in the £!-direction. The structure of the stencil of KK is given
by

[KK]=| " (4.3)

* ¥ X
¥ [x *
¥ ¥ %

* ok

Here each * represents a 3 X 3 matrix. The * with an undercore corresponds to cell number z.

We choose G = (4,i+ I+ 1,i£ LiFI+1,iE 1) and introduce the following abbreviations:
z=H;i1-1, @=Hii1, bi=Hiir4,
i =Hiim, di=Hi, o g =Hig, (4.4)
fi=Hiir-1, 6 = Higer, pi= Higrre,

where H = KK. The non-zero elements of L, D and U (which are also 3 X 3 matrices) in the

location of 2, a;,- -+, p; are called w;, &, Bi, Yiy 63 iy Cis i and T, respectively. Equation (4.2)
leads to the following recursion:

Wi = Z

o = 0wy _ypi-1-1,

Bi = bi—oub ppier,

vi = 6= Wil ieI-1 ;67 Ci 1,

& = di—wib_qTie1-1— @i i1 — B 1 Gim 141 — 7i6; 4 bi-1, (4.5)
pi = @ —oibTior — Pibimrmi-I+1s

G o= fi— b mi-1,

o= gi— %aTi-1

7 = DPi

All terms with indices pointing outside the grid are defined to be zero.

4.2 Approximation of KK

Temporarily using the blockwise ordering (2.7), we choose the following distribution operator

(cf. (3.16))
- I -QG
K:(O_ Ve ), (4.6)



where the parameter ¢ will be used to enhance multigrid convergence. This gives

~_(Q (-1)G
KK = ( D -DQ-'G | (4.7)
Because Q! is not readily available we approximate Q by Q = diag(Q). This gives
- (1 -Q'G - [ Q -QQ'G+(G
£ (159 ) xe- (3 9T0LE) s

CILU smoothing can now be summarized as
xt = x' - VKM (Kx' - 1), (4.9)

where the matrix M will be the (L + D)D~1(D + U) decomposition of the following approx-
imation KK of KK, using the collective ordering:

—~ -1)G
KK = ( g Eﬁ; Q_)l o ) . (4.10)

Based on numerical experiments we have found w = 0.7 to be a suitable choice. The choice
of ¢ will be discussed later.

5 The Multigrid Algorithm

5.1 The Linear Multigrid Algorithm

Adaptd from [11] and [13), the structure diagram of the linear multigrid algorithm which
includes the V-, W-, F- and A-(adaptive) cycle is given in figure 5.1. The linear system

Lholt = fls (5.1)

is to be solved, with ls the finest grid index; ! is the grid index, nmg, nsc, npre, npost are the
number of multigrid iterations, the number of iterations on the coarsest grid, the number of
pre-smoothings and the number of post-smoothings, respectively; cycle chooses a multigrid
strategy from the V-, W-, F- and A- cycles; tolf is the accuracy tolerance factor: if the
residual norm on the finest grid is smaller than the product of this factor and the norm of
the right-hand side, the multigrid iteration terminates. The parameter mazgam controls the
number of visits to a grid, which is useful when the A-cycle is used. If the number of visits to
a grid coming from the next coarser grid exceeds mazgam, then the next finer grid has to be
visited. The parameters 6, 7 and tolc have effect only when the A-cycle is used. 6 is called the
residual norm tolerance factor: when the residual norm on a grid is smaller than the product
of 6 and the residual norm on the finer grid, a coarse grid correction takes place to the finer
grid, otherwise a restriction is done. The parameter 7 is referred to as the smoothing rate
tolerance. When the smoothing factor, defined later, is larger than %, then smoothing stops.



P! stands for prolongation of corrections from grid I — 1 to [, and R/ represents restriction of
the residual from grid [ + 1 to I. In order to avoid redundant computations, variables llast
and Inrm are introduced; [last prohibits redundant smoothing, when the A-cycle is employed
and 7 is exceeded; Inrm provents the residual norm from being computed if computation of
the residual norm just took place on the same grid. The smoothing algorithm SA should take
the structure given in figure 5.2. Here S'(¢', f') represents one smoothing. The coarse grid
solver SAC can be the same as SA, solving the system on the coarsest grid in nsc iterations,
or can use other iterative or direct solution methods.

To investigate the multigrid algorithm with CILU as smoother, we design the following
tests. Starting from the finest grid from the zero solution, 2 time steps, each accompanied by
two (multigrid) interations, are performed first to give an initial start for the solution. Then
20 multigrid iterations are carried out, in which we measure the average reduction factor and
the limiting reduction factor, which are to be explained later. The multigrid cycle uses the W-
cycle, with one pre- and one post-smoothing. The coarsest grid is fixed at 2 x 2. For transfer
operators, we distinguish between the prolongation operators for the computation of coarse
grid matrices and those for the computation of coarse grid correction. In the formulation of
the coarse grid matrices by means of Galerkin coarse grid approximation, two versions will
be used for the prolongation of V. Version 1 is so-called hybrid interpolation (explained in
[19]), which is a mixture of piecewise constant and bilinear interpolation. Version 2 is bilinear
interpolation. Piecewise constant interpolation is used for p. The prolongation operator in the
computation of coarse grid correction is of version 2. The restriction operator is the adjoint
of the version 1 prolongation operator. See [19] and [20] for the details about the choice of
prolongation and restriction operators and an efficient formulation of Galerkin coarse grid
approximation for systems of equations.



Figure 5.1: Linear MG, including the V-, W-, F- and A-cycle

choose ¢'f, nmg,nsc, npre, npost, cycle, tolf, mazgam

cycleeq A F
§=0,n=1
¥ = mazgam
choose §, n, tole, T cycleeq V F
npre, npost y=1 =2

rnorm(is) = |[f - s

eps(ly) = tolf || f7], Inrm =14

n(ly) = nmg,l =1, llast = 0

while n(l¢) gt 0 and rnorm(ly) gt eps(ly) do

T l eq 1 or n(l) eq 0 or rnorm(l) It eps(l) and cycle eq A I3
T leql (Al cycle eq A and llast eq [ 7
SAC(¢', ', 1, cycle, nsc, SA(@ f11
s J sty 2 TWSC, 7, , [yl eycle, npre, 7,
tole, eps(l), v, rnorm(l), Inrm) togf, eps(D), !, rnorm(l?,
if (cycleeq F)y=1 Inrm)
I=1-1
f=1+1 n(l) =7

of = of + Plpi-1

if

(cycleeq F)

SA((pl, fla la cycle, npost, UE then
tole, eps(l), r, rnorm(l), y=2
Inrm)

end if
llast =1
n(l)=n(l)-1

eps(l) = é * rnorm(l + 1)
fl = RlpH1
¢h=0

if (Inrm eq !) then
rnorm(l) = | f — L'




Figure 5.2: The structure of the smoother SA

SA(¢, f1,1, cycle,n,tolc,ﬁ,eps,r’,rnorm, Inrm)

Ty = THOTM

if (I ne Inrm) vy = || f* — L'¢'||
T =T

791 =0

nsmth =0

if (cycleeq A and | eq 1) eps = tolc * 1

while r5; 1t n and 7, gt eps and nsmth le n do

nsmth = nsmth + 1
', 1Y

cycle eq A or nsmth eq n

,,.l = fl _ Ll(pl

ry = |lr||

if (l gt 1) T21 = 7‘2/1‘1
™M =T

TROTM = T, Intm =
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Figure 6.1: The skewed driven cavity problem and the grid used

6 Test Problems and Results

Let r = f — Kx be the residual of equation (2.9), and let » = ||r|| with || - || the l;-norm.
" After linearization, a number of multigrid iterations is carried out, after which V* and p
are updated outside of multigrid iterations. Let r¢ be the initial residual norm on the finest
grid, and 7, be the residual norm on the finest grid after » multigrid iterations. The average
reduction factor p, is defined by .

Pn = ('7'.2> i . (6'1)

To
The reduction factor at the i-th iteration is defined by

;= —. 6.2

Pi 1 (6.2)

If p; has a limit for ¢ tending to infinity, then it is the asymptotic reduction factor. Let
r; = f; — K x be the residual of equation (2.12) and r5 = ||r,||. A steady state is reached if

—<ex1 (6.3)
8
is satisfied, with 70 being r, at the initial time level and ¢ being 7, at time level t.

6.1 The Skewed Driven Cavity Problem

The driven cavity problem is chosen first (cf. figure 6.1). A bench-mark solution for this
problem is available recently in [3], where the grid used is a collocated grid. This problem
is also solved in [7] by a nonlinear multigrid method for the steady case on a staggered grid.
Here we do not want to solve the differential equations very accurately, since our purpose
is to investigate the performance of the multigrid algorithm with the CILU smoother. In
accordance with [7], the Reynolds numbers will be 100 and 1000, respectively. The numbering
of cells is lexicographic. Figures 6.2 and 6.3 give the streamlines obtained after 20 time steps
and agree well with the solutions presented in [3] and [7]. The time step At = 1, and one
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Figure 6.2: Streamlines for the skewed driven cavity problem, Re = 100, At =1, 20
time steps, rf/r0 < 3.570 x 10712, on 128 x 128 grid

Figure 6.3: Streamlines for the skewed driven cavity problem, Re = 1000, At = 1,
20 time steps, rt/rd < 6.424 x 10~3, on 128 x 128 grid

multigrid iteration is performed for each time step. Larger time steps are not used because
it is found that with a larger time step, 7 decreases at a slower speed than with a smaller
time step and therefore the termination time for achieving the same r! is larger with a larger
At. Furthermore, convergence problems arise after several time steps with larger time steps
for high Reynolds number cases; At has to be taken sufficiently small in order to maintain
the diagonal dominance and improve smoothing. This can be seen in the next test problem.
Table 6.1 presents reduction factors for 5 successive iterations on various grids before rounding
error takes effect, taking the solution obtained after 2 time steps with At = 5 as the initial
solution for the linear multigrid iterations. If the effect of rounding error does not come into
play, the reduction factors for the last five iterations are presented.

The dependence of multigrid convergence on ( is given in table 6.2. The prolongation
operators for RAP are of version 2. Apparently, { should not be too large. The rate of
convergence is not very sensitive to (.

6.2 The L-Shaped Driven Cavity Problem

This problem is proposed in [7] and is illustrated in figure 6.4. In order to get rid of wiggles
in the solution, a smooth grid generated by a bi-harmonic grid generator is used ([7]). The
computational domain is depicted in figure 6.5. We find that the multigrid algorithm does

12



Table 6.1: Reduction factors for the skewed driven cavity problem, { =2

Re = 100, P for RAP version 1
Grid 16 x 16 32x 32 64 x 64 128 x 128
i 16 16 16 16
pi 3424 5951 7314 .8061
Pi+1 3416 . .5951 7313 .8072
Pi+2 .3409 .5950 7312 .8081
Pi43 .3403 .5948 7311 .8088
Ditd .3497 .5946 7310 .8093
o0 1209 x 10~2 | .1680 x 10~% | .1398 x 10~* | .1308 x 10~
Tirq | 5165 x 10712 | 2729 107 | 1175 x 10=> | .4784 x 10~°
p .3400 5761 .7018 75654
Re = 1000, P for RAP version 1
i 16 16 16 16
pi 4887 AT79 .5924 .6046
Pit1 .4855 4811 .5985 .5886
Pi+2 4901 4817 .6036 6152
Pi+3 .5095 4796 6091 6621
Pita .5205 4765 6144 .6868
ro | .8282x 1073 | .1261x 10~% | .9889 x 10~ | .5778 x 10~
Tirs | 7269 x 107° | 4235 x 107° | .1384 x 10~ | .2706 x 10~7
p 4979 4746 | .5097 6074
Re = i-OO, P for RAP version 2
i 16 16 16 16
pi .3466 .3504 3213 4825
Pi+1 .3481 3447 .3506 4829
Pi+2 .3493 .3409 4266 4832
Pi+3 .3505 .3396 4573 4833
Pitd 3515 .3407 4381 ‘ 4832
To 9608 x 103 | .1270 x 10~% | .8138 x 10~° | .5088 x 10~
Tiga | -8049 X 10713 | 1306 x 10712 | 2364 x 10~ | .5613 x 10~11
p 3134 3167 3742 4001
Re = 1000, P for RAP version 2
i 16 16 16 16
pi 4735 4733 4105 4396
Pi+1 4839 4724 4156 4541
Pit+2 .5059 4721 4087 4643
Pit3 5191 AT13 4146 AT706
Pi+d 5206 A717 4118 4741
To 8115 x 1073 | .1435x 10~% | .1245x 1072 | .5575 x 10~2
rivq | 6937 x 107° | 2613 x 10~° | .2429 x 10~ | .2036 x 10~*!
p 4973 4603 4116 .3786
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Table 6.2: The dependence of multigrid convergence on ¢ in the skewed driven cavity
problem, finest grid=128 x 128, RAP version 2

Re = 100, ro = 5088 x 10-2
¢t pi | pi+r | Pi+2 | Pi+3 | Pitd Titd p
1,16 | .7707 | .7719 | .7726 | .7730 | .7731 | .6219 X 10=7 | .6373
1.5,16 | .4116 | .4127 | .4138 | 4148 | .4157 | .1752 X 1071 | 3774
2,16 | .4825 | .4829 | .4832 | .4833 | .4832 | .5613 X 10~11 | .4001 |
4,16 | .5712 | .5729 | .5728 | .5745 | .5908 | .2079 x 10—° | .4793
5,16 | .6841 | .7250 | .7467 | .7330 | .6975 | .6709 X 10~% | .5702

6, * div
Re = 1000, 7o = .5575 X 10~3
1,* div

1.5,16 | .4097 | .4108 | .4118 | .4127 | .4136 | .8955 x 10~1% | .3633
2,16 | 4396 | .4541 | .4643 | .4706 | .4741 | .2036 x 1011 | .3786
4,16 | .4619 | .4628 | .4648 | .4715 | .4812 | .6364 X 10710 | .4497
5,16 | .6322 | .6711 | .6851 | .6760 | .6490 | .8905 x 10~° | .5131

6, * div
D —_— C
T ] | T I / [
] 7/ 7 7 7 7
| i / VA /.
] 7 7 7
7 7 7
7 7
| B A4
Y A AR 4 g
77 »
1 77
Y A A
177 |
//
111
E //"—
F A
L | |
L1 ///
L ft -
/V/’
A B

Figure 6.4: The L-shaped driven cavity problem with a grid generated by a bi-
harmonic grid generator
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A B

Figure 6.5: The computational domain for the L-shaped driven cavity problem (for
the physical domain, see figure 6.4)

not work well or fails for lower Reynolds numbers and smaller mesh sizes, if the numbering of
cells is the lexicographic ordering as used for the skewed driven cavity problem. The reason
is explained in [13] (see section 7.8 and the references therein) for anisotropic convection-
diffusion equations. Therefore, instead of the lexicographic ordering, a backward lexicographic
ordering is employed, in which the numbering of cells takes place first in the reverse direction
of the £!-direction and then in the reverse direction of the £2-direction, starting from corner D.
The Reynolds numbers are 100 and 1000, respectively. Figures 6.6 and 6.7 give the streamlines
for the two cases and are in good agreement with those given in [7]. One multigrid iteration
is employed for each time step. Note that the time steps for Re = 100 and Re = 1000 are
different. Compared with the time step for the skewed driven cavity problems, the time step
for Re = 1000 has to be smaller, otherwise the multigrid algorithm fails after a few time
steps, because of lack of diagonal dominance, as discussed before. Of course the time step
can be larger for low Reynolds numbers, for example for Re = 100 here. But in accordance
with the case for Re = 1000, we take At = .5 for both cases in measuring reduction factors.
The reduction factors and the dependence of multigrid convergence on { are presented in
tables 6.3 and 6.4.

In this test problem, the parameter { must be greater than 1 and can be rather large.
From both the skewed driven cavity and the L-shaped driven cavity problems, it is clear that
the optimal value of  is problem-dependent and an appropriate choice of ( improves the
multigrid performance. But in both cases { = 2 would give satisfactory convergence.
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Figure 6.6: Streamlines for the L-shaped driven cavity problem, Re = 100, At = 1,
20 times steps, rt/r? < 1.905 x 10~°, on 128 x 128 grid

~

Figure 6.7: Streamlines for the L-shaped driven cavity problem, Re = 1000, At = .2,
100 times steps, ri/r® < 1.172 x 10~4, on 128 x 128 grid
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Table 6.3: Reduction factors for the L-shaped driven cavity problem, { = 2

Re = 100, P for RAP version 1
Grid 16 x 16 32 x 32 64 X 64 128 x 128
i 16 16 16 16
Pi 3281 3364 .3268 1.054
Pit+1 .3296 3384 3322 1.054
Pi+2 .3309 .3401 .3367 1.054
Pit3 .3319 3415 .3404 1.054
Pi+d .3328 .3428 .3433 1.054
ro | .3178 x 1073 | .3315x 10~2 | .3518 x 1073 | .1931 x 102
Tips | 1117 X 10~ | 1744 % 10~13 | 2170 X 10~1° | .6013 x 10~ 2
p .3001 .3062 .3087 1.058
Re = 1000, P for RAP version 1
i 16 16 16 16
0i 3061 2792 3307 3305
Pit1 .3081 .2869 .3343 .3406
Pit2 .3095 .2857 3370 .3417
Pi+3 3104 .2894 .3390 .3427
Pit4 .3110 .2956 .3407 3436
ro | .1241x 1072 | .1939 x 10— | .1468 x 10~ [ .9756 x 10~*
Tipa | 6374 x 10715 | 3265 x 1074 | .3407 x 1071° | .1066 x 10~
p 2726 .2893 3111 3176
— Re = 100, P for RAP version 2
i 16 16 16 16
pi .3256 3338 3392 .5285
Pi41 3274 3360 3418 .2465
Pi+2 3290 3377 13438 2215
Dit3 .3303 3392 .3453 .4931
Pit4 3313 .3404 .3465 .3166
ro | .3096 x 1072 | .3104 x 10~ | .3076 x 10~° | .4837 x 10>
Tipa | 9552 x 10714 [ 1471 x 10713 | 11531 x 10713 | .1873 x 10713
p .2982 .3046 .3054 .3016
Re = 1000, P for RAP version 2
i 16 16 16 16
pi 3126 2737 .3200 .3384
Pit+1 .3143 .3098 .3255 .3395
Pi42 .3156 3135 3312 .3405
Pi+3 3164 .2879 .3360 3414
Pit4 3169 .2834 3391 .3423
To 1208 x 1072 | .1859 x 103 | .1438 x 10™° | .9281 x 10~*
Tiya | -8155 x 1071° | 5311 x 101 | .1032 x 102 | .1025 x 10~1°
p _ 2764 .2970 3110 3178
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Table 6.4: The dependence of multigrid convergence on ( in the L-shaped driven
cavity problem, finest grid=128 x 128, RAP version 2

Re = 100, ro — 4837 x 103
()1 pi_| Pit1 | piv2 | pi+3 | Piva | Tit4 | »
1,% div

1.5,16 | .6650 | .6855 | .6890 | .7198 | .7366 | .1207 x 10~8 | .5246
2,16 | .5285 | .2465 | .2215 | .4931 | .3166 | .1873 x 1013 | .3016
4,10 | .1919 | .1951 | .1934 | .1934 | .1978 | .2582 x 10~1° | .1846
6,10 | .1504 | .1550 | .1566 | .1561 | .1554 | .1940 x 10~ | .1534
10,10 | .1308 | .1358 | .1406 | .1454 | .1685 | .3214 x 10~1° | .1350
20,10 | .1476 | .1500 | .1523 | .1553 | .1933 | .2704 x 10~1° | .1333
Re = 1000, ro = .9281 x 104
1,* . div
1.5,16 | .6405 | .7172 | .7516 | .7658 | .7729 | .9667 x 10~1* | .4476
2,16 | .3384 | .3395 | .3405 | .3414 | .3423 | .1025 x 10~13 [ .3178
4,14 | .2188 | .2196 | .2202 | .2215 | .2232 | .5794 x 1016 | .2099
6,13 | .1840 | .1842 | .1845 | .1846 | .2058 | .1683 x 10~1¢ | .1780
10,12 | .1730 | .1728 | .1726 | .1730 | .1856 | .2123 x 10~1° | 1622
20,12 | .1787 | .1786 | .1785 | .1788 | .1910 | .2378 x 10~1° | .1633
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7 Conclusions

Based on collective incomplete LU factorization with r-transformation, a new smoother, called
CILU, is presented for the incompressible Navier-Stokes equations in general coordinates. In-
stead of working with scalar elements as ordinary ILU, CILU works with elements that are
3 X 3 matrices. Apart from the underrelaxation factor w, another parameter ¢ is introduced
to enhance smoothing performance. A multigrid algorithm using CILU as smoother is inves-
tigated numerically, using the skewed driven cavity and the L-shaped driven cavity problems
as test problems. The performance of the multigrid algorithm is studied by measuring the
limiting reduction factor and the average reduction factor on various grids and for different
choices of prolongation operators in the computation of coarse grid matrices by means of
Galerkin coarse grid approxiamtion (RAP). Two versions are used for the prolongation op-
erators: in version 1, the prolongation operators for the velocities are the so-called hybrid
interpolations, and that for the pressure is a piecewise constant interpolation; in version 2, the
prolongation operators for the velocities are a bilinear interpolation, and that for the pressure
remains the same as in version 1. The multigrid schedule is the W-cycle with one pre- and
one post-smoothing, and the coarsest grid is fixed at 2 x 2.

The numerical experiments show that with version 2, the reduction factors are almost
independent of mesh sizes and slightly dependent on the Reynolds number. But with version 1,
the reduction factors grow with refining mesh sizes, and are mostly larger than those obtained
with version 2, and the algorithm works better for the low Reynolds number case than for
the high Reynolds number case. So the multigrid algorithm with prolongation operators from
version 2 seems to be more promising.

The effect of the parameter ( is investigated on 128 x 128 grids. The results show that
a proper choice of { improves the multigrid performance, sometimes very much as in the
L-shaped driven cavity prolem. The optimal value of { is problem-dependent, but a fixed
choice { = 2 seems to be a good compromise.

The well-known anisotropy of ILU smoothers is encountered here in the L-shaped driven
cavity problem, where meshes are stretched more in a direction than in another. This problem
is cured by simply changing the ordering of cells.

Due to central differencing of the partial differential equations, the time step should be
sufficiently small for high Reynolds numbers. Otherwise the algorithm may fail after several
time steps.

To sum up, CILU smoother is a good smoother.
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