Elementarity and dimension

Non impeditus ab utta scientia

K. P. Hart

Faculty EEMCS
TU Delft

Milwaukee, 14 March, 2008: 10:15 – 10:35
Outline

1. Dimensions
2. Elementarity
3. Proofs using elementarity
 - Formulas
 - Bases
 - To work
4. Sources
Covering dimension

Caveat: all spaces are (at least) normal
Caveat: all spaces are (at least) normal

Definition

$$\dim X \leq n$$ if every finite open cover has a (finite) open refinement of order at most $$n + 1$$
Caveat: all spaces are (at least) normal

Definition

\[\dim X \leq n \] if every finite open cover has a (finite) open refinement of order at most \(n + 1 \) (i.e., every \(n + 2 \)-element subfamily has an empty intersection).
There is a convenient characterization.
There is a convenient characterization.

Theorem (Hemmingsen)
\[\dim X \leq n \iff \text{every } n+2\text{-element open cover has a shrinking with an empty intersection.} \]
Large inductive dimension

Definition

\[\text{Ind } X \leq n \text{ if between every two disjoint closed sets } A \text{ and } B \text{ there is a partition } L \text{ that satisfies } \text{Ind } L \leq n - 1. \]
Large inductive dimension

Definition

Ind $X \leq n$ if between every two disjoint closed sets A and B there is a partition L that satisfies Ind $L \leq n - 1$.

The starting point: Ind $X \leq -1$ iff $X = \emptyset$.
Large inductive dimension

Definition

\[\text{Ind } X \leq n \text{ if between every two disjoint closed sets } A \text{ and } B \text{ there is a partition } L \text{ that satisfies } \text{Ind } L \leq n - 1. \]

The starting point: \(\text{Ind } X \leq -1 \text{ iff } X = \emptyset. \)

\(L \) is a partition between \(A \) and \(B \) means:
Large inductive dimension

Definition

\(\text{Ind } X \leq n \) if between every two disjoint closed sets \(A \) and \(B \) there is a partition \(L \) that satisfies \(\text{Ind } L \leq n - 1 \).

The starting point: \(\text{Ind } X \leq -1 \) iff \(X = \emptyset \).

\(L \) is a partition between \(A \) and \(B \) means: there are closed sets \(F \) and \(G \) that cover \(X \) and satisfy: \(F \cap B = \emptyset, G \cap A = \emptyset \) and \(F \cap G = L \).
Definition

\[D_g X \leq n \] between every two disjoint closed sets \(A \) and \(B \) there is a cut \(C \) that satisfies \(D_g L \leq n - 1 \).
Definition
Dg $X \leq n$ between every two disjoint closed sets A and B there is a cut C that satisfies $Dg L \leq n - 1$.
The starting point: $Dg X \leq -1$ iff $X = \emptyset$.
Definition

\(\text{Dg} \, X \leq n \) between every two disjoint closed sets \(A \) and \(B \) there is a cut \(C \) that satisfies \(\text{Dg} \, L \leq n - 1 \).

The starting point: \(\text{Dg} \, X \leq -1 \) iff \(X = \emptyset \).

\(C \) is a **cut** between \(A \) and \(B \) means:
Definition

\(\text{Dg} \ X \leq n \) between every two disjoint closed sets \(A \) and \(B \) there is a cut \(C \) that satisfies \(\text{Dg} \ L \leq n - 1 \).

The starting point: \(\text{Dg} \ X \leq -1 \) iff \(X = \emptyset \).

\(C \) is a cut between \(A \) and \(B \) means: \(C \cap K \neq \emptyset \) whenever \(K \) is a subcontinuum of \(X \) that meets both \(A \) and \(B \).
(In)equalities

- For σ-compact metric X: $\dim X$
For σ-compact metric X: $\dim X = \text{Ind} X$
(In)equalities

- For σ-compact metric X: $\dim X = \text{Ind} X = \text{Dg} X$
(In)equality

- For σ-compact metric X: $\dim X = \text{Ind} X = \text{Dg} X$
- The first equality is classical and holds for all metric X
(In)equalities

- For σ-compact metric X: $\dim X = \Ind X = \Dg X$
- The first equality is classical and holds for all metric X
- The second is fairly recent (1999).
For σ-compact metric X: $\dim X = \text{Ind } X = \text{Dg } X$

The first equality is classical and holds for all metric X

the second is fairly recent (1999).

There is for each n a locally connected Polish X_n with $\text{Dg } X = 1$ and $\dim X_n = n$ (Fedorchuk, van Mill)
More inequalities

- \(\text{Dg } X \leq \text{Ind } X \) (each partition is a cut)
More inequalities

- $\text{D}g \, X \leq \text{Ind} \, X$ (each partition is a cut)
- $\text{dim} \, X \leq \text{Ind} \, X$ (Vedenissof)
More inequalities

- \(\text{Dg} \, X \leq \text{Ind} \, X \) (each partition is a cut)
- \(\text{dim} \, X \leq \text{Ind} \, X \) (Vedenissof)
- \(\text{dim} \, X \leq \text{Dg} \, X \) (Fedorchuk)
More inequalities

- $\text{Dg } X \leq \text{Ind } X$ (each partition is a cut)
- $\dim X \leq \text{Ind } X$ (Vedenissof)
- $\dim X \leq \text{Dg } X$ (Fedorchuk)

We will reprove the last two inequalities.
A structure (group, field, lattice) A is an **elementary** substructure of a similar structure B if
A structure (group, field, lattice) A is an elementary substructure of a similar structure B if every equation with parameters from A that has a solution in B already has a solution in A.
Definition

A structure (group, field, lattice) A is an elementary substructure of a similar structure B if every equation with parameters from A that has a solution in B already has a solution in A.

These are (apparently) very rich substructures
Examples

- the field \mathbb{Q} is not an elementary substructure of the field \mathbb{R}
Examples

- the field \(\mathbb{Q} \) is not an elementary substructure of the field \(\mathbb{R} \); consider \(x \cdot x = 2 \)
Examples

- The field \mathbb{Q} is not an elementary substructure of the field \mathbb{R}; consider $x \cdot x = 2$
- The ordered set \mathbb{Z} is not an elementary substructure of the ordered set \mathbb{Q}
Examples

- the field \(\mathbb{Q} \) is not an elementary substructure of the field \(\mathbb{R} \); consider \(x \cdot x = 2 \)
- the ordered set \(\mathbb{Z} \) is not an elementary substructure of the ordered set \(\mathbb{Q} \); consider \(0 < x < 1 \)
the field \mathbb{Q} is not an elementary substructure of the field \mathbb{R}; consider $x \cdot x = 2$

the ordered set \mathbb{Z} is not an elementary substructure of the ordered set \mathbb{Q}; consider $0 < x < 1$

the field \mathbb{A} of real algebraic numbers is an elementary substructure of the field \mathbb{R}
Examples

- The field \mathbb{Q} is not an elementary substructure of the field \mathbb{R}; consider $x \cdot x = 2$
- The ordered set \mathbb{Z} is not an elementary substructure of the ordered set \mathbb{Q}; consider $0 < x < 1$
- The field \mathbb{A} of real algebraic numbers is an elementary substructure of the field \mathbb{R}
- The ordered set \mathbb{Q} is an elementary substructure of the ordered set \mathbb{R}
There are plenty of elementary substructures.
How to make them

There are plenty of elementary substructures.

Theorem (Löwenheim-Skolem)

Assume our language of discourse is countable.
There are plenty of elementary substructures.

Theorem (Löwenheim-Skolem)

Assume our language of discourse is countable. Let B be a structure suitable for that language and let $X \subseteq B$ such that there is an elementary substructure A of B such that $X \subseteq A$ and $|A| \leq |X| + \aleph_0$.
There are plenty of elementary substructures.

Theorem (Łoewenheim-Skolem)

Assume our language of discourse is countable. Let B be a structure suitable for that language and let $X \subseteq B$ then there is an elementary substructure A of B such that $X \subseteq A$ and $|A| \leq |X| + \aleph_0$.
Outline

1. Dimensions

2. Elementarity

3. Proofs using elementarity
 - Formulas
 - Bases
 - To work

4. Sources
Here is Hemmingsen’s characterization of $\dim X \leq n$
Covering dimension

Here is Hemmingsen’s characterization of $\dim X \leq n$ reformulated in terms of closed sets.
Here is Hemmingsen’s characterization of $\dim X \leq n$ reformulated in terms of closed sets and cast as a formula, δ_n, in the language of lattices.
Here is Hemmingsen’s characterization of $\dim X \leq n$ reformulated in terms of closed sets and cast as a formula, δ_n, in the language of lattices

\[
(\forall x_1)(\forall x_2) \cdots (\forall x_{n+2})(\exists y_1)(\exists y_2) \cdots (\exists y_{n+2}) \left[(x_1 \cap x_2 \cap \cdots \cap x_{n+2} = \emptyset) \rightarrow ((x_1 \leq y_1) \land (x_2 \leq y_2) \land \cdots \land (x_{n+2} \leq y_{n+2}) \land (y_1 \cap y_2 \cap \cdots \cap y_{n+2} = \emptyset) \land (y_1 \cup y_2 \cup \cdots \cup y_{n+2} = 1)) \right].
\]
Large inductive dimension

We can express $\text{Ind } X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)
Large inductive dimension

We can express $\text{Ind } X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u)$$

$$[(((x \leq a) \land (y \leq a) \land (x \cap y = 0)) \rightarrow (\text{partn}(u, x, y, a) \land I_{n-1}(u)))]$$
Large inductive dimension

We can express $\text{Ind } X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u) \left[(((x \leq a) \land (y \leq a) \land (x \cap y = 0)) \rightarrow (\text{partn}(u, x, y, a) \land I_{n-1}(u)) \right]$$

where $\text{partn}(u, x, y, a)$ says that u is a partition between x and y in the (sub)space a:
Large inductive dimension

We can express $\text{Ind } X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

$$(\forall x)(\forall y)(\exists u) \left[(((x \leq a) \land (y \leq a)) \land (x \cap y = 0)) \rightarrow (\text{partn}(u, x, y, a) \land I_{n-1}(u)) \right]$$

where $\text{partn}(u, x, y, a)$ says that u is a partition between x and y in the (sub)space a:

$$(\exists f)(\exists g) \left((x \cap f = 0) \land (y \cap g = 0) \land (f \cup g = a) \land (f \cap g = u) \right).$$
Large inductive dimension

We can express $\text{Ind } X \leq n$ in a similar fashion, the formula $I_n(a)$ becomes (recursively)

\[(\forall x)(\forall y)(\exists u) \left[((x \leq a) \land (y \leq a) \land (x \cap y = \emptyset)) \rightarrow (\text{partn}(u, x, y, a) \land I_{n-1}(u)) \right]\]

where $\text{partn}(u, x, y, a)$ says that u is a partition between x and y in the (sub)space a:

\[(\exists f)(\exists g) ((x \cap f = \emptyset) \land (y \cap g = \emptyset) \land (f \cup g = a) \land (f \cap g = u))\].

We start with $I_{-1}(a)$, which denotes $a = \emptyset$.
Here we have the recursive definition of a formula $\Delta_n(a)$:
Here we have the recursive definition of a formula $\Delta_n(a)$:

$\forall x \forall y \exists u$

$[(\{ x \leq a \} \wedge \{ y \leq a \} \wedge \{ x \cap y = 0 \}) \rightarrow (\text{cut}(u, x, y, a) \wedge \Delta_{n-1}(u))]$,
Here we have the recursive definition of a formula $\Delta_n(a)$:

$$(\forall x)(\forall y)(\exists u)
\left[\left((x \leq a) \land (y \leq a) \land (x \cap y = 0)\right) \rightarrow \left(\text{cut}(u, x, y, a) \land \Delta_{n-1}(u)\right)\right],$$

and $\Delta_{-1}(a)$ denotes $a = 0$.
The formula \(\text{cut}(u, x, y, a) \) expresses that \(u \) is a cut between \(x \) and \(y \) in \(a \):
The formula \(\text{cut}(u, x, y, a) \) expresses that \(u \) is a cut between \(x \) and \(y \) in \(a \):

\[
(\forall v)[((v \leq a) \land \text{conn}(v) \land (v \cap x \neq \emptyset) \land (v \cap y \neq \emptyset)) \rightarrow (v \cap u \neq \emptyset)],
\]
The formula $\text{cut}(u, x, y, a)$ expresses that u is a cut between x and y in a:

$$(\forall v)[((v \leq a) \land \text{conn}(v) \land (v \cap x \neq o) \land (v \cap y \neq o)) \rightarrow (v \cap u \neq o)],$$

and $\text{conn}(a)$ says that a is connected:
The formula \(\text{cut}(u, x, y, a) \) expresses that \(u \) is a cut between \(x \) and \(y \) in \(a \):

\[
(\forall v)[((v \leq a) \land \text{conn}(v) \land (v \cap x \neq o) \land (v \cap y \neq o)) \rightarrow (v \cap u \neq o)],
\]

and \(\text{conn}(a) \) says that \(a \) is connected:

\[
(\forall x)(\forall y)[((x \cap y = o) \land (x \cup y = a)) \rightarrow ((x = o) \lor (x = a))],
\]
Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate)
Romeo and Juliet, Act 2, scene 2 (alternate):
O Formulas, Formulas! — Wherefore useth thou Formulas?
Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate):
O Formulas, Formulas! — Wherefore useth thou Formulas?

- \(\dim X \leq n \) iff \(2^X \) satisfies \(\delta_n \)
Wherefore formulas?

Romeo and Juliet, Act 2, scene 2 (alternate):
O Formulas, Formulas! — Wherefore useth thou Formulas?

- \(\dim X \leq n \) iff \(2^X \) satisfies \(\delta_n \)
- \(\text{Ind } X \leq n \) iff \(2^X \) satisfies \(I_n(X) \)
Romeo and Juliet, Act 2, scene 2 (alternate):
O Formulas, Formulas! — Wherefore useth thou Formulas?

- $\dim X \leq n \iff 2^X$ satisfies δ_n
- $\text{Ind } X \leq n \iff 2^X$ satisfies $I_n(X)$
- $\text{Dg } X \leq n \iff 2^X$ satisfies $\Delta_n(X)$
Outline

1. Dimensions
2. Elementarity
3. Proofs using elementarity
 - Formulas
 - Bases
 - To work
4. Sources
Theorem

Let X be compact. Then $\dim X \leq n$ iff some (every) lattice-base for its closed sets satisfies δ_n.

Theorem

Let X be compact. Then $\dim X \leq n$ iff some (every) lattice-base for its closed sets satisfies δ_n.

Proof.

Both directions use swelling and shrinking to replace the finite families by combinatorially equivalent subfamilies of the base.
Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B}, for its closed sets satisfies $I_n(X)$ then $\text{Ind } X \leq n$.
Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B}, for its closed sets satisfies $I_n(X)$ then $\text{Ind } X \leq n$.

Proof.

Induction: given A and B expand them to $A', B' \in \mathcal{B}$. Then find $L \in \mathcal{B}$, between A' and B', such that $\mathcal{B}_L = \{D \in \mathcal{B} : D \subseteq L\}$ satisfies $I_{n-1}(L)$. As \mathcal{B}_L is a base for the closed sets of L we know, by inductive assumption, that $\text{Ind } L \leq n - 1$.

K. P. Hart

Elementarity and dimension
Large inductive dimension

Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B}, for its closed sets satisfies $I_n(X)$ then $\text{Ind } X \leq n$.

Proof.

Induction: given A and B expand them to $A', B' \in \mathcal{B}$. Then find $L \in \mathcal{B}$, between A' and B', such that $\mathcal{B}_L = \{D \in \mathcal{B} : D \subseteq L\}$ satisfies $I_{n-1}(L)$. As \mathcal{B}_L is a base for the closed sets of L we know, by inductive assumption, that $\text{Ind } L \leq n - 1$.

No equivalence, see later.
Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B}, for its closed sets satisfies $\Delta_n(X)$ then
Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B}, for its closed sets satisfies $\Delta_n(X)$ then we can’t say anything about $Dg X$.
Theorem

Let X be compact. If some lattice lattice-base, B, for its closed sets satisfies $\Delta_n(X)$ then we can’t say anything about $Dg X$.

Proof.

Let $X = [0, 1]$ and let B be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[p, 1] \cup \{p - 2^{-n} : n \in \omega\}$ (p irrational).
Theorem

Let X be compact. If some lattice lattice-base, B, for its closed sets satisfies $\Delta_n(X)$ then we can’t say anything about $Dg\ X$.

Proof.

Let $X = [0, 1]$ and let B be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[\rho, 1] \cup \{\rho - 2^{-n} : n \in \omega\}$ (ρ irrational).

B has no connected elements, hence it satisfies $\Delta_0(X)$ vacuously.
Theorem

Let X be compact. If some lattice lattice-base, \mathcal{B}, for its closed sets satisfies $\Delta_n(X)$ then we can’t say anything about $\text{Dg} X$.

Proof.

Let $X = [0, 1]$ and let \mathcal{B} be the lattice-base generated by the family of sets of the form $[0, q] \cup \{q + 2^{-n} : n \in \omega\}$ (q rational) and $[p, 1] \cup \{p - 2^{-n} : n \in \omega\}$ (p irrational). \mathcal{B} has no connected elements, hence it satisfies $\Delta_0(X)$ vacuously but $\text{Dg}[0, 1] = 1$.
Outline

1 Dimensions

2 Elementarity

3 Proofs using elementarity
 • Formulas
 • Bases
 • To work

4 Sources
Let X be a compact Hausdorff space and let L be an elementary sublattice of the lattice 2^X of all closed subsets of X.
Let X be a compact Hausdorff space and let L be an elementary sublattice of the lattice 2^X of all closed subsets of X.

Consider the Wallman space wL of L.
Let X be a compact Hausdorff space and let L be an elementary sublattice of the lattice 2^X of all closed subsets of X.

Consider the Wallman space wL of L.

What can we say about $\dim wL$, $\Ind wL$ and $\Dg wL$?
Theorem

\[\dim wL = \dim X \]
Covering dimension

Theorem

\[\dim wL = \dim X \]

Proof.

Notice that \(\delta_n \) and its negation state that certain systems of equations have solutions.
Covering dimension

Theorem
\[\dim wL = \dim X \]

Proof.
Notice that \(\delta_n \) and its negation state that certain systems of equations have solutions. By elementarity we see that \(2^X \) satisfies \(\delta_n \) iff \(L \) satisfies \(\delta_n \).
Covering dimension

Theorem
\[\dim wL = \dim X \]

Proof.
Notice that \(\delta_n \) and its negation state that certain systems of equations have solutions. By elementarity we see that \(2^X \) satisfies \(\delta_n \) iff \(L \) satisfies \(\delta_n \). Previous theorem: \(L \) satisfies \(\delta_n \) iff \(2^{wL} \) does.
Covering dimension

Theorem
\[\dim wL = \dim X \]

Proof.
Notice that \(\delta_n \) and its negation state that certain systems of equations have solutions. By elementarity we see that \(2^X \) satisfies \(\delta_n \) iff \(L \) satisfies \(\delta_n \). Previous theorem: \(L \) satisfies \(\delta_n \) iff \(2^{wL} \) does. It follows that \(\dim X \leq n \) iff \(\dim wL \leq n \) for all \(n \).
Large inductive dimension

Theorem

\[\text{Ind } wL \leq \text{Ind } X \]
Large inductive dimension

Theorem

\[\text{Ind } wL \leq \text{Ind } X \]

Proof.

Notice that \(I_n(a) \) and its negation state that certain systems of equations have solutions.
Theorem

\[\text{Ind } wL \leq \text{Ind } X \]

Proof.

Notice that \(I_n(a) \) and its negation state that certain systems of equations have solutions. By elementarity we see that \(2^X \) satisfies \(I_n(X) \) iff \(L \) does.
Theorem

\[\text{Ind } wL \leq \text{Ind } X \]

Proof.

Notice that \(I_n(a) \) and its negation state that certain systems of equations have solutions. By elementarity we see that \(2^X \) satisfies \(I_n(X) \) iff \(L \) does. By previous theorem we know \(\text{Ind } wL \leq n \), whenever \(L \) satisfies \(I_n(wL) \).
Theorem

\[\text{Ind } wL \leq \text{Ind } X \]

Proof.

Notice that \(I_n(a) \) and its negation state that certain systems of equations have solutions. By elementarity we see that \(2^X \) satisfies \(I_n(X) \) iff \(L \) does. By previous theorem we know \(\text{Ind } wL \leq n \), whenever \(L \) satisfies \(I_n(wL) \).

Thus: \(\text{Ind } X \leq n \) implies \(\text{Ind } wL \leq n \).
Theorem

\[Dg \, wL \leq Dg \, X \]
Theorem

\[D_g wL \leq D_g X \]

Nonproof

Notice that \(\Delta_n(a) \) and its negation state that certain systems of equations have solutions.
Theorem

\[Dg \omega L \leq Dg X \]

Nonproof

Notice that \(\Delta_n(a) \) and its negation state that certain systems of equations have solutions. By elementarity we see that \(2^X \) satisfies \(\Delta_n(X) \) iff \(L \) does.
Theorem

\[Dg \, wL \leq Dg \, X \]

Non-proof

Notice that \(\Delta_n(a) \) and its negation state that certain systems of equations have solutions. By elementarity we see that \(2^X \) satisfies \(\Delta_n(X) \) iff \(L \) does.

By previous theorem we know nothing yet about \(Dg \, wL \).
Proof.

Let A and B be closed and disjoint in \mathcal{W}_L. Wlog, $A, B \in \mathcal{L}$.

There is $C \in \mathcal{L}$ that is a cut between A and B in X and that satisfies $\Delta_{n-1}(C) \leq n-1$.

Inductive assumption: $D_{wL}C \leq n-1$ in \mathcal{W}_L, because $\mathcal{M} = \{D \in \mathcal{L} : D \subseteq C\}$ is an elementary sublattice of $\{D \in 2^X : D \subseteq C\}$ and C-in-\mathcal{W}_L is \mathcal{W}_M.

Still to show: C-in-\mathcal{W}_L is a cut between A and B in \mathcal{W}_L.
Theorem

\[\text{Dg } wL \leq \text{Dg } X \]

Proof.

Let \(A \) and \(B \) be closed and disjoint in \(wL \). Wlog: \(A, B \in L \).
Theorem

\[\text{Dg } wL \subseteq \text{Dg } X \]

Proof.

Let \(A \) and \(B \) be closed and disjoint in \(wL \). Wlog: \(A, B \in L \).
There \(C \in L \) that is a cut between \(A \) and \(B \) in \(X \) and that satisfies
\[\Delta_{n-1}(C) \leq n - 1. \]
Theorem

\[\text{Dg } wL \leq \text{Dg } X \]

Proof.

Let \(A \) and \(B \) be closed and disjoint in \(wL \). Wlog: \(A, B \in L \).
There \(C \in L \) that is a cut between \(A \) and \(B \) in \(X \) and that satisfies \(\Delta_{n-1}(C) \leq n - 1 \).
Inductive assumption: \(\text{Dg } C \leq n - 1 \) in \(wL \)
Theorem

\[\text{Dg } wL \leq \text{Dg } X \]

Proof.

Let \(A \) and \(B \) be closed and disjoint in \(wL \). Wlog: \(A, B \in L \).
There \(C \in L \) that is a cut between \(A \) and \(B \) in \(X \) and that satisfies \(\Delta_{n-1}(C) \leq n-1 \).
Inductive assumption: \(\text{Dg } C \leq n-1 \) in \(wL \), because \(M = \{ D \in L : D \subseteq C \} \) is an elementary sublattice of \(\{ D \in 2^X : D \subseteq C \} \) and \(C \)-in-\(wL \) is \(wM \).
Theorem

\[\operatorname{Dg} wL \leq \operatorname{Dg} X \]

Proof.

Let \(A \) and \(B \) be closed and disjoint in \(wL \). Wlog: \(A, B \in L \).

There \(C \in L \) that is a cut between \(A \) and \(B \) in \(X \) and that satisfies

\[\Delta_{n-1}(C) \leq n - 1. \]

Inductive assumption: \(\operatorname{Dg} C \leq n - 1 \) in \(wL \), because

\(M = \{ D \in L : D \subseteq C \} \) is an elementary sublattice of

\(\{ D \in 2^X : D \subseteq C \} \) and \(C \)-in-\(wL \) is \(wM \).

Still to show: \(C \)-in-\(wL \) is a cut between \(A \) and \(B \) in \(wL \).
Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does not meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$.

Down in wL we have exactly the same relations, so H_A and H_B show F is not connected.
Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.
Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected. Find H in L around F, disjoint from C.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$. Down in wL we have exactly the same relations, so H_A and H_B show F is not connected.
Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does not meet both A and B.

Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.
Find H in L around F, disjoint from C.
Back in X no component of H meets C, hence it does not meet both A and B.
By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that
Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does not meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$.
Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C.

Back in X no component of H meets C, hence it does not meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$.
Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.
Find H in L around F, disjoint from C. Back in X no component of H meets C, hence it does not meet both A and B.
By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$. Down in wL we have exactly the same relations, so H_A and H_B show F is not connected.
Proof (continued)

Let F be a closed set in wL that meets A and B but not C. We show F is not connected.

Find H in L around F, disjoint from C. Back in X no component of H meets C, hence it does not meet both A and B.

By well-known topology and elementarity there are disjoint elements H_A and H_B of L such that $H = H_A \cup H_B$, $A \cap H \subseteq H_A$ and $B \cap H \subseteq H_B$.

Down in wL we have exactly the same relations, so H_A and H_B show F is not connected.
Let X be compact Hausdorff and let L be a *countable* elementary sublattice of 2^X. Then
Let X be compact Hausdorff and let L be a countable elementary sublattice of 2^X. Then

Vedenissof: $\dim X = \dim wL = \text{Ind } wL \leq \text{Ind } X$
Let \(X \) be compact Hausdorff and let \(L \) be a countable elementary sublattice of \(2^X \). Then

Vedenissof: \(\dim X = \dim wL = \text{Ind} wL \leq \text{Ind} X \)

Fedorchuk: \(\dim X = \dim wL = \text{Dg} wL \leq \text{Dg} X \)
Let X be compact Hausdorff and let L be a countable elementary sublattice of 2^X. Then

Vedenissof: $\dim X = \dim wL = \Ind wL \leq \Ind X$

Fedorchuk: $\dim X = \dim wL = \Dg wL \leq \Dg X$

There are X with $\dim X < \Dg X$, so $\Dg wL < \Dg X$ and $\Ind wL < \Ind X$ are possible.
Website: fa.its.tudelft.nl/~hart

V. V. Fedorchuk,

On the Brouwer dimension of compact spaces, Mathematical Notes* 73* (2003), 271–279,

K. P. Hart.