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Abstract
Interference of light can be used to determine the concentration of a gas, called gas sensing. The
absorption of the light by the gas molecules is measured based on the phase change of the light. In
this report, a hollow core photonic crystal fiber is treated. The gas sample is inserted into the hollow
core. Photonic crystal fibers possess the characteristic to have electromagnetic modes confined to the
core with low attenuation. This means that there can be a high interference rate between the gas and
light, which is desirable for gas sensing.
First, less complicated optical fibers were studied. The analytical solution of the electric and magnetic
field for the TE and TM modes of the simple fiber were derived and for the TE modes of the step-index
fiber. These results were compared to simulation done with COMSOL Multiphysics. Photonic crystal
fiber with circular core was then simulated with COMSOL Multiphysics, but the results did not match
with the literature. Therefore another photonic crystal fiber was simulated with a star-shaped core. The
simulation results found modes concentrated in the core, with low attenuation.
It was attempted to get similar results with a three layer step-index fiber, by varying the imaginary
refractive index of the middle layer. The attenuation of the three layer fiber was much higher than
that of the photonic crystal fiber for all simulations. This indicates that the three layer step-index fiber
does not support propagation modes that are confined to the core. Further research could be done by
studying the effect of the radius of the middle layer and the real part of the refractive index.
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1
Introduction

Currently, there is a quickly growing need for sustainable energy. As fossil fuel is limited and has a
negative influence on the climate, the fossil fuel should be replaced by renewable energy. In the Euro-
pean Climate Law it is stated that the EU should be climate neutral by 2050.[29] Hydrogen can help in
this process, but it also brings some challenges. When hydrogen is used as energy source, it does not
produce any greenhouse gasses and the supply is unlimited, as it can be made from water. However,
to make hydrogen, energy is needed. To be entirely climate neutral, the hydrogen should be made with
sustainable energy sources. In that case, the hydrogen is called ”green hydrogen”.[8]
The main disadvantage of hydrogen is that it is highly flammable.[22] When it comes in contact with
oxygen, it is very explosive. Therefore, it is important for the use, transport and storage of hydrogen,
that the oxygen percentage is below a certain threshold. When there is a leak in a hydrogen storage
tank or during transport, this has to be noticed quickly. To achieve this, instruments are needed that
can accurately measure the concentration of hydrogen in a gas mixture. Optical fibers are often used
for this. In 1978, E. Yablonovitch[33] and S. John[17] were the first to write about the photonic band
gap.[1] This started the research into photonic crystal fibers and their use as gas sensing instrument.

This report will explain the necessary theory about gas sensing and photonic crystal fibers in Chapter 2.
Chapter 3 contains an analytical derivation of the electric and magnetic field for a simple fiber and a
step-index fiber. Chapter 4 is the Experimental Setup, in which the basics of COMSOL Multiphysics[6]
are explained and the settings for the various simulations that are computed. In Chapter 5 the results
are presented and discussed. Chapter 6 contains the Conclusion.
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2
Theory

2.1. Fiber sensing for gas detection
To measure the concentration of a certain element in a gas mixture, optical fibers can be used. Gas
molecules can absorb light for specific wavelengths, depending on the kind of gas.[13] This can be used
to determine the concentration or presence of a gas in a sample. This is called spectroscopy. Another
way to determine the gas concentration in a sample is based on interference. The concentration of
gas in a medium determines the refractive index, which affects the speed of light through that medium.
Therefore, the phase shift of the light contains information about the gas concentration. Optical fiber
can be used for this, because they can guide light through the core with low loss.[21]
Classical optical fibers guide modes based on internal reflections. The modes in a hollow core photonic
crystal fiber are the result of a photonic bandgap. In a hollow core photonic crystal fiber the interaction
of the light with the gas is higher. The loss of light confined in the core is lower than for optical fibers
based on total internal reflection.[31] This gives the photonic crystal fiber a higher sensitivity,[16] but
it also offers a much longer interaction length.[27] This makes it is much more accurate on shorter
distances as well, compared to classical optical fibers.
The principle of a hollow core photonic crystal fiber is the following. The gas sample is pumped into the
hollow core. A light beam with adjustable wavelength is guided into the core from one side. This will
be called the pump light beam, as seen in Figure 2.1. When this light has the ’right’ wavelength, it will
excite the molecules in the gas. For what wavelength this happens depends on the kind of molecules.
After the molecules are excited, they return to the ground state. This generates heat, which causes
changes in the temperature, density, pressure and refractive index of the fiber. The dimensions of the
fiber can also change due to the heat. From the other side, another light beam is sent into the core of
the fiber, but this one has a different wavelength. Called the probe light beam. Due to the heat from the
excited molecules, the phase of the probe light beam changes. This change thus contains information
about the amount of heating. With the knowledge of the used pump wavelength, the percentage of
different kind of molecules can be determined. In this process, the structure and the refractive index of
the fiber play an important role.

Figure 2.1: Schematic drawing of the use of the photonic crystal fiber. The incoming pump light beam with ad-
justable wavelength 𝜆𝑝𝑢𝑚𝑝 and probe light beam with wavelength 𝜆𝑝𝑟𝑜𝑏𝑒.

5



6 2. Theory

2.2. Photonic crystal fiber
The cladding of a photonic crystal fiber (PCF) consists of holes in a certain periodic structure. For this
report a honeycomb structured fiber is used, specifically from the fiber HC-1550-02 (Thorlabs).[12] This
fiber was chosen based on an article from Wan et al.[31] A cross section of the fiber can be seen in
Figure 2.2.
This air hole structure creates bandgaps: wavelengths that lie inside this bandgap cannot travel through
the cladding and are therefore locked in the core of the fiber.[1] This is also the reason that the interac-
tion of light with gas in the core can be very high for photonic crystal fibers, which is desirable for gas
sensing.[27]
To be able to calculate the electric and magnetic field inside the fiber more quickly, it could be helpful
to simplify the honeycomb structure. In this report it is investigated whether the region with the holes,
surrounding the core, can be simplified to a medium with one refractive index. This will simplify the
photonic crystal fiber to a step index fiber with three layers. For the three layer step-index fiber, simu-
lations to calculate the electric and magnetic field can be done much quicker or even analytically.

Figure 2.2: Cross section of the HC-1550-02 photonic crystal fiber.[28]

2.3. Simplification Photonic Crystal Fiber
In this report the main focus is to simplify the geometry of the photonic crystal fiber, as shown in Figure
2.2, to a step-index fiber with 3 layers. The step index fiber that is used for the simplification is shown
in Figure 2.3. The effective refractive index 𝑛𝑒𝑓𝑓 can be adjusted, to best resemble the photonic crystal
bandgap fiber. The values for 𝑛1, 𝑛3, 𝑅1, 𝑅2 and 𝑅3 are predetermined.

Figure 2.3: Step index fiber with three layers, that is used to simplify the photonic crystal fiber. With radii 𝑅1, 𝑅2
and 𝑅3 and refractive indexes 𝑛1, 𝑛𝑒𝑓𝑓 and 𝑛3.



3
Fibers

To gain some knowledge about modes inside a fiber two basic fibers are investigated, the simple fiber
and the step-index fiber. The modes in the fibers are calculated analytically in this chapter. Starting with
the simple fiber and then moving onto the step-index fiber. This is a fiber with two layers with different
refractive indexes. The field inside a fiber can be derived analytically by working out the Maxwell
equations and applying the right boundary conditions.

3.1. Maxwell Equations
The electric and magnetic field in a waveguide adhere to the Maxwell equations without currents or
charges, given in equation (3.1)-(3.4). [7]

∇ ⋅ E = 0 (3.1)

∇ × E = −𝜇𝜕H𝜕𝑡 (3.2)

∇ ⋅H = 0 (3.3)

∇ ×H = 𝜀𝜕E𝜕𝑡 (3.4)

with E the electric field, H the magnetic field, 𝜇 the permeability and 𝜀 the permittivity.
For the rest of this report, we consider waveguides with modes propagating in the 𝑧-direction. Then
the following ansatz is used for the electric and magnetic field.[20]

E = E0𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.5)

H = H0𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.6)
with 𝜔 the angular frequency and 𝑘𝑧 the wavenumber in the direction of propagation, also known as
the propagation constant.
Equations (3.5) and (3.6) can be inserted into equations (3.2) and (3.4). This gives the following set of
equations:

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜕𝐸𝑧
𝜕𝑦 + 𝑖𝑘𝑧𝐸𝑦 = −𝑖𝜔𝜇𝐻𝑥

−𝑖𝑘𝑧𝐸𝑥 −
𝜕𝐸𝑧
𝜕𝑥 = −𝑖𝜔𝜇𝐻𝑦

𝜕𝐸𝑦
𝜕𝑥 − 𝜕𝐸𝑥𝜕𝑦 = −𝑖𝜔𝜇𝐻𝑧

𝜕𝐻𝑧
𝜕𝑦 + 𝑖𝑘𝑧𝐻𝑦 = 𝑖𝜔𝜀𝐸𝑥

−𝑖𝑘𝑧𝐻𝑥 −
𝜕𝐻𝑧
𝜕𝑥 = 𝑖𝜔𝜀𝐸𝑦

𝜕𝐻𝑦
𝜕𝑥 − 𝜕𝐻𝑥𝜕𝑦 = 𝑖𝜔𝜀𝐸𝑧

(3.7)
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8 3. Fibers

Equation (3.7) can also be derived for cylindrical coordinates, with 𝑟 the radial coordinate, 𝜃 the azimuth
angle and 𝑧 the axial coordinate. It is more useful for the circular fibers that are considered, to use
cylindrical coordinates. This can be done using the equation for the curl in cylindrical coordinates
(equation (3.7)).[9]

∇ × u = (1𝑟
𝜕𝑢𝑧
𝜕𝜃 − 𝜕𝑢𝜃𝜕𝑧 ) ⋅ r̂+ (

𝜕𝑢𝑟
𝜕𝑧 −

𝜕𝑢𝑧
𝜕𝑟 ) ⋅ �̂�𝜃𝜃 +

1
𝑟 (

𝜕 (𝑟𝑢𝜃)
𝜕𝑟 − 𝜕𝑢𝑟𝜕𝜃 ) ⋅ ẑ (3.8)

Now working out equations (3.2) and (3.4) give the following cylindrical set of equations, that can be
found in equation (3.9). [26]

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

1
𝑟
𝜕𝐸𝑧
𝜕𝜃 + 𝑖𝑘𝑧𝐸𝜃 = −𝑖𝜔𝜇𝐻𝑟

−𝑖𝑘𝑧𝐸𝑟 −
𝜕𝐸𝑧
𝜕𝑟 = −𝑖𝜔𝜇𝐻𝜃

1
𝑟
𝜕 (𝑟𝐸𝜃)
𝜕𝑟 − 1𝑟

𝜕𝐸𝑟
𝜕𝜃 = −𝑖𝜔𝜇𝐻𝑧

1
𝑟
𝜕𝐻𝑧
𝜕𝜃 + 𝑖𝑘𝑧𝐻𝜃 = 𝑖𝜔𝜀𝐸𝑟

−𝑖𝑘𝑧𝐻𝑟 −
𝜕𝐻𝑧
𝜕𝑟 = 𝑖𝜔𝜀𝐸𝜃

1
𝑟
𝜕 (𝑟𝐻𝜃)
𝜕𝑟 − 1𝑟

𝜕𝐻𝑟
𝜕𝜃 = 𝑖𝜔𝜀𝐸𝑧

(3.9)

From this the transverse electric field components can be simplified to equations (3.10) and (3.11)

𝐸𝑟 =
𝑖

(𝑘2𝑧 − 𝜔2𝜀𝜇)
(𝜔𝜇𝑟

𝜕𝐻𝑧
𝜕𝜃 + 𝑘𝑧

𝜕𝐸𝑧
𝜕𝑟 ) (3.10)

𝐸𝜃 =
−𝑖

(𝑘2𝑧 − 𝜔2𝜀𝜇)
(𝜔𝜇𝜕𝐻𝑧𝜕𝑟 − 𝑘𝑧𝑟

𝜕𝐸𝑧
𝜕𝜃 ) (3.11)

The transverse magnetic field components can be written as (3.12) and (3.13).

𝐻𝑟 =
𝑖

(𝑘2𝑧 − 𝜔2𝜀𝜇)
(𝑘𝑧

𝜕𝐻𝑧
𝜕𝑟 − 𝜔𝜀𝑟

𝜕𝐸𝑧
𝜕𝜃 ) (3.12)

𝐻𝜃 =
𝑖

(𝑘2𝑧 − 𝜔2𝜀𝜇)
(𝑘𝑧𝑟

𝜕𝐻𝑧
𝜕𝜃 + 𝜔𝜀𝜕𝐸𝑧𝜕𝑟 ) (3.13)

The modes in a fiber can be transverse electromagnetic modes (TEM modes), transverse electric
modes (TE modes), transverse magnetic modes (TM modes) or hybrid modes. The electric and mag-
netic field components of TEMmodes lie only in the transverse plane and there is no field in the direction
of propagation. TE modes have an electric field that is completely in the transverse direction, so there
is no electric field along the direction of propagation. The TM modes do not have a magnetic field in the
direction of propagation, but only in the transverse direction. Hybrid modes can have both an electric
and magnetic field component in the direction of propagation.
Figure 3.1 shows how TE and TM modes are created by total internal reflection inside a fiber. For the
TE mode, the 𝐸 field is completely transverse and has no component in the 𝑧-direction. Conversely,
the magnetic field is completely in the transverse direction for the TM mode and has no component in
the direction of propagation.
For the simple fiber, the analytical solution of the TE and TM modes will be derived and for the step-
index fiber, only the TE-modes, as the TM modes can be derived in a similar manner. For the TE
mode, the electric field in the propagation direction is 𝐸𝑧 = 0, resulting in the following simplification of
equations (3.10), (3.11), (3.12) and (3.13).

𝐸𝑟 =
𝑖𝜔𝜇

(𝑘2𝑧 − 𝜔2𝜀𝜇) 𝑟
𝜕𝐻𝑧
𝜕𝜃 (3.14)



3.2. Simple Fiber 9

(a) The field directions for a TE mode. (b) The field directions for a TM mode.

Figure 3.1: The electric and magnetic field components before and after reflection at a boundary.

𝐸𝜃 =
−𝑖𝜔𝜇

(𝑘2𝑧 − 𝜔2𝜀𝜇)
𝜕𝐻𝑧
𝜕𝑟 (3.15)

𝐻𝑟 =
𝑖𝑘𝑧

(𝑘2𝑧 − 𝜔2𝜀𝜇)
𝜕𝐻𝑧
𝜕𝑟 (3.16)

𝐻𝜃 =
𝑖𝑘𝑧

(𝑘2𝑧 − 𝜔2𝜀𝜇) 𝑟
𝜕𝐻𝑧
𝜕𝜃 (3.17)

For the TM mode, 𝐻𝑧 = 0, resulting in this simplification.

𝐸𝑟 =
𝑖𝑘𝑧

(𝑘2𝑧 − 𝜔2𝜀𝜇)
𝜕𝐸𝑧
𝜕𝑟 (3.18)

𝐸𝜃 =
𝑖𝑘𝑧

(𝑘2𝑧 − 𝜔2𝜀𝜇) 𝑟
𝜕𝐸𝑧
𝜕𝜃 (3.19)

𝐻𝑟 =
−𝑖𝜔𝜀

(𝑘2𝑧 − 𝜔2𝜀𝜇) 𝑟
𝜕𝐸𝑧
𝜕𝜃 (3.20)

𝐻𝜃 =
𝑖𝜔𝜀

(𝑘2𝑧 − 𝜔2𝜀𝜇)
𝜕𝐸𝑧
𝜕𝑟 (3.21)

Besides the Maxwell equations, the electric field E and magnetic field H also need to satisfy the wave
equation, given in equation (3.22).[5]

∇2u = 𝜀𝜇𝜕
2u
𝜕𝑡2 =

𝑛2
𝑐2
𝜕2u
𝜕𝑡2 (3.22)

Hereu is some function that should adhere to the wave equation, in our caseE andH. 𝑛 is the refractive
index of the medium through which the wave propagates and 𝑐 is the speed of light.

3.2. Simple Fiber
The fiber that we consider in this section is the simple fiber with perfect conductor boundary conditions.
In figure 3.2, the cross section of a simple fiber is shown, with the radius 𝑅 and refractive index 𝑛.

3.2.1. Analytical solution TE-modes
To calculate the field inside the fiber, theMaxwell equations from the previous section need to be solved.
The steps that are taken in this calculation are based on ”Lectures on Theory of Microwave and Optical
Waveguides”[3], ”Fundamentals of Optical Waveguides”[26], ”Microwave and Optical Waveguides”[7],
”Cavity basics”[15] and ”Applications of Maxwell’s equations”[5]. Equation (3.6) in the 𝑧-direction is

𝐻𝑧(𝑟, 𝜃, 𝑧) = 𝐻0𝑧(𝑟, 𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.23)

where 𝐻0𝑧 can depend on 𝑟 and 𝜃. This, in combination with the wave equation (3.22), gives the
following partial differential equation for 𝐻0𝑧.

1
𝑟
𝜕
𝜕𝑟 (𝑟

𝜕𝐻0𝑧
𝜕𝑟 ) + 1

𝑟2
𝜕2𝐻0𝑧
𝜕𝜃2 + 𝐻0𝑧 (

𝑛2𝜔2
𝑐2 − 𝑘2𝑧) = 0 (3.24)
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Figure 3.2: Schematic sketch of the cross section of the simple fiber, with 𝑅 the radius of the fiber ,𝑛 the refractive
index and perfect conductor boundary conditions.

To solve this equation we use separation of variables. Assume that𝐻0𝑧 can be written as amultiplication
of a function of 𝑟 and a function of 𝜃.

𝐻0𝑧(𝑟, 𝜃) = 𝐹(𝑟)Θ(𝜃) (3.25)

Inserting equation (3.25) into equation (3.24), this gives:[5]

𝑟
𝐹(𝑟)

𝜕
𝜕𝑟 (𝑟

𝜕
𝜕𝑟𝐹(𝑟)) + 𝑟

2 (𝑛
2𝜔2
𝑐2 − 𝑘2𝑧) = −

1
Θ(𝜃)

𝜕2Θ(𝜃)
𝜕𝜃2 = 𝑚2 (3.26)

where 𝑚 is the separation constant. For Θ(𝜃) the solution is

Θ(𝜃) = 𝑎 cos(𝑚𝜃) + 𝑏 sin(𝑚𝜃) (3.27)

where 𝑎 and 𝑏 are constants. The fiber has cylindrical symmetry, which means that it can be mirrored
over a radial axis. Choose the axis 𝑦 = 0, giving Θ(𝜃) = Θ(−𝜃). Using equation (3.27), this reduces to
𝑎 cos(𝑚𝜃) + 𝑏 sin(𝑚𝜃) = 𝑎 cos(−𝑚𝜃) + 𝑏 sin(−𝑚𝜃).
From this it follows that 𝑏 = 0. For 𝐹(𝑟) the equation reduces to

𝑟 𝜕𝜕𝑟 (𝑟
𝜕
𝜕𝑟𝐹(𝑟)) + 𝐹(𝑟) (𝑟

2 (𝑛
2𝜔2
𝑐2 − 𝑘2𝑧) −𝑚2) = 0 (3.28)

Let 𝑘2𝑐 =
𝑛2𝜔2
𝑐2 − 𝑘2𝑧 and then introduce the change of variable 𝑥′ = 𝑘𝑐𝑟. Equation (3.28) can then be

written as
𝑥′ 𝜕𝜕𝑥′ (𝑥

′ 𝜕
𝜕𝑥𝐹(𝑥

′)) + 𝐹(𝑥′) (𝑥′2 −𝑚2) = 0 (3.29)

This can be written as
𝑥′2 𝜕

2𝐹(𝑥′)
𝜕𝑥′2 + 𝑥′ 𝜕𝐹(𝑥

′)
𝜕𝑥′ + 𝐹(𝑥′) (𝑥′2 −𝑚2) = 0 (3.30)

This is written in a standard form, for which the solution is a Bessel function.
The Bessel function is the solution of the Bessel equation, which is a differential equation that is often
the result of separation of variables with cylindrical coordinates. The Bessel equation of index 𝜈 is:

𝑥2𝑑
2𝑢
𝑑𝑥2 + 𝑥

𝑑𝑢
𝑑𝑥 + (𝑥

2 − 𝜈2)𝑢 = 0 (3.31)

with 𝑢 a function depending on some variable called 𝑥. The solution is given by

𝑢(𝑥) = 𝐵1𝐽𝜈(𝑥) + 𝐵2𝑌𝜈(𝑥) (3.32)

𝐽𝜈 is the Bessel function of the first kind of index 𝜈 and 𝑌𝜈 is the Bessel function of the second kind of
index 𝜈, also called the Neumann function.[19] The first four Bessel functions of the first kind are plotted
in Figure 3.3 and the first four Bessel functions of the second kind in Figure 3.4. The plots are made
with Python.[14]
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Figure 3.3: The first four Bessel functions of the first
kind 𝐽𝜈.

Figure 3.4: The first four Bessel functions of the second
kind 𝑌𝜈.

For equation (3.30), the general solution is then given by equation (3.32) with index 𝑚.

𝐹(𝑥′) = 𝐵1𝐽𝑚(𝑥′) + 𝐵2𝑌𝑚(𝑥′) (3.33)

with 𝐵1 and 𝐵2 constants. The second order Bessel function, 𝑌𝑚(𝑟), goes to infinity at 𝑟 = 0, as can
be seen in Figure 3.4. The solution needs to be finite at 𝑟 = 0. Therefore, 𝐵2 = 0. Inserting equations
(3.27) and (3.33) into equation (3.25) and then (3.23) gives the following 𝑧-component of the magnetic
field.

𝐻𝑧(𝑟, 𝜃, 𝑧) = 𝐻1𝐽𝑚(𝑘𝑐𝑟) cos(𝑚𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.34)

where 𝐻1 is a constant. With equations (3.14) and (3.15) the transverse components of the electric field
can be calculated. Then use the expression of 𝑘2𝑐 =

𝑛2𝜔2
𝑐2 − 𝑘2𝑧 again and keep in mind that 𝑐𝑛 =

1
√𝜀𝜇

.

𝐸𝑟(𝑟, 𝜃, 𝑧) = −𝐻1
𝑖𝜔𝜇𝑚
𝑘2𝑐𝑟

𝐽𝑚(𝑘𝑐𝑟) sin(𝑚𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.35)

𝐸𝜃(𝑟, 𝜃, 𝑧) = −𝐻1
𝑖𝜔𝜇
𝑘𝑐
𝐽′𝑚(𝑘𝑐𝑟) cos(𝑚𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.36)

The perfect conductor boundary condition implies that the electric field transverse to the boundary is
zero.[11] This means that 𝐸𝜃 = 0 and 𝐸𝑧 = 0 at 𝑟 = 𝑅, so the electric field has to be entirely in the radial
direction. The magnetic field is perpendicular to the electric field. Therefore, this should be zero in the
radial direction (𝐻𝑟(𝑅, 𝜃, 𝑧) = 0). From equation (3.9) and (3.36) it can be seen that

𝐻𝑟(𝑟, 𝜃, 𝑧) = −
𝑘𝑧
𝜔𝜇𝐸𝜃(𝑟, 𝜃, 𝑧) = 𝐻1

𝑖𝑘𝑧
𝑘𝑐
𝐽′𝑚(𝑘𝑐𝑟) cos(𝑚𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.37)

To satisfy the boundary condition, the following should hold.

𝐽′𝑚(𝑘𝑐𝑅) = 0 (3.38)

From this 𝑘𝑐 can be calculated. As can be seen in Figure 3.3, 𝐽𝜈 has multiple maxima and minima.
This means that there are multiple values for 𝑘𝑐 for which equation (3.38) holds. The n’th zero of the
derivative of the m’th Bessel function 𝐽𝑚 gives the value for the TEmn mode. With this the absolute
value of the electric field for the TE-modes can be calculated.

3.2.2. Analytical solution TM-modes
The derivation of the TM-modes is similar to that of the TE-modes. The electric field in the 𝑧-direction
has to satisfy the wave equation (3.22). Similar to the magnetic field for the TE-modes, the electric field
in the longitudinal direction can be written as

𝐸𝑧(𝑟, 𝜃, 𝑧) = 𝐸0𝑧(𝑟, 𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.39)



12 3. Fibers

also with the condition that 𝐸0𝑧 should be finite at 𝑟 = 0. In the same way as for the magnetic field for
the TE-modes (equation (3.34)), with the wave equation (3.22), the electric field along the 𝑧-direction
is given by

𝐸𝑧(𝑟, 𝜃, 𝑧) = 𝐸1𝐽𝑚(𝑘𝑐𝑟) cos(𝑚𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧). (3.40)

Using equations (3.18) and (3.19), the transverse electric field components can be derived.

𝐸𝑟(𝑟, 𝜃, 𝑧) = −𝐸1
𝑖𝑘𝑧
𝑘𝑐
𝐽′𝑚(𝑘𝑐𝑟) cos(𝑚𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.41)

𝐸𝜃(𝑟, 𝜃, 𝑧) = 𝐸1
𝑖𝑘𝑧𝑚
𝑘2𝑐𝑟

𝐽𝑚(𝑘𝑐𝑟) sin(𝑚𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.42)

The same as with the TE-modes, the magnetic field in the radial direction should be zero at the bound-
aries 𝑟 = 𝑅. Equation (3.20) gives

𝐻𝑟(𝑟, 𝜃, 𝑧) = −𝐸1
𝑖𝑚𝜔𝜀
𝑘2𝑐𝑟

𝐽𝑚(𝑘𝑐𝑟) sin(𝑚𝜃)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (3.43)

This results in the following condition that has to be satisfied.

𝐽𝑚(𝑘𝑐𝑅) = 0 (3.44)

Similar as before, Figure 3.3 shows that the Bessel functions of first kind have multiple intersections
with the 𝑥-axis, so multiple zeros. This means again that there are multiple values for 𝑘𝑐 for which
equation (3.44) hold. The n’th zero of the m’th Bessel function 𝐽𝑚 corresponds to the TMmn mode. With
equation (3.41) and (3.42) the electric field of the TMmn-mode can then be calculated.

In Chapter 4.2 the simple fiber is simulated in COMSOL Multiphysics. In Chapter 5.1.1 the analyti-
cal solutions for both the TE and TM modes are calculated for the simple fiber and compared to the
COMSOL simulation.

3.3. Step-Index Fiber
In this section the step-index fiber is analysed. The derivation of the equations is based on ”An Intro-
duction to Optical Fibers”[2], ”Fundamentals of Optical Waveguides”[26] and ”Estimation of photonic
band gap in the hollow core cylindrical multilayer structure”[4]. A cross section of the fiber is shown
schematically in figure 3.5.

Figure 3.5: Schematic sketch of a cross section of the step-index fiber, with 𝑅 the radius of the fiber and 𝑎 the
inner radius, with 𝑛1 the refractive index for 0 ≤ 𝑟 ≤ 𝑎 and 𝑛2 the refractive index for 𝑟 > 𝑎, where 𝑟 is the radial
coordinate. Conductor boundary conditions apply at 𝑟 = 𝑅.
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3.3.1. Analytical solution
In the same way as for the simple fiber, the step-index fiber is analysed. First, the magnetic field in 𝑧-
direction (equation (3.23)) is inserted into the wave equation (3.22). Themagnetic field in the 𝑧-direction
can be separated in a part that depends on 𝜃 and another part that depends on 𝑟 (see equation (3.25)).
This leads to the solution for the 𝜃 dependent part given by equation (3.27), same as for the simple
fiber, because this part does not depend on the radius or any material properties. The 𝑟 dependent
solution, and thus also the total solution, will be different for 𝑟 < 𝑎 and 𝑟 > 𝑎, as the refractive index 𝑛
is different and, therefore, also 𝜔. This gives the following for the magnetic field.

𝐻0𝑧(𝑟, 𝜃) = {
𝐹1(𝑟) cos(𝑚𝜃) 0 ≤ 𝑟 ≤ 𝑎
𝐹2(𝑟) cos(𝑚𝜃) 𝑟 > 𝑎 (3.45)

Then the boundary condition is used that the electric field tangential to the interface should be contin-
uous and the magnetic field perpendicular to the interface should be continuous. [26][20] This means
that 𝐻0𝑧(𝑎−, 𝜃) = 𝐻0𝑧(𝑎+, 𝜃) and 𝐻𝜃(𝑎−, 𝜃, 𝑧) = 𝐻𝜃(𝑎+, 𝜃, 𝑧), where 𝑎− and 𝑎+ mean that this should be
evaluated at 𝑟 = 𝑎 from below and above, respectively. Using equations (3.17) to get 𝐻𝜃(𝑟, 𝜃, 𝑧) this
implies the following.

𝐹1(𝑎) = 𝐹2(𝑎) (3.46)

𝑖𝑘𝑧
(𝑘2𝑧 − 𝜔2𝜀1𝜇) 𝑎

𝐹1(𝑎)𝑚 sin(𝑚𝜃) = 𝑖𝑘𝑧
(𝑘2𝑧 − 𝜔2𝜀2𝜇) 𝑎

𝐹2(𝑎)𝑚 sin(𝑚𝜃) (3.47)

Where 𝜔2𝜀1𝜇 = 𝑘20𝑛21 for the core and 𝜔2𝜀2𝜇 = 𝑘20𝑛22 for the cladding. The magnetic permeability
for 𝑟 ≤ 𝑎 and 𝑟 > 𝑎 is taken to be the same. There are no significant magnetic effects at optical
frequencies, therefore the magnetic permeability can be taken as a constant 𝜇 = 𝜇0, the magnetic
permeability in vacuum.[18] Equations (3.46) and (3.47) can only hold for all 𝜃 if 𝑚 = 0. Which means
that 𝜕𝐻𝑧𝜕𝜃 = 0. Equations (3.14)-(3.17) then simplify to

𝐸𝑟 = 𝐻𝜃 = 0 (3.48)

𝐸𝜃 =
−𝑖𝜔𝜇

(𝑘2𝑧 − 𝑘20𝑛2(𝑟))
𝜕𝐻𝑧
𝜕𝑟 (3.49)

𝐻𝑟 =
𝑖𝑘𝑧

(𝑘2𝑧 − 𝑘20𝑛2(𝑟))
𝜕𝐻𝑧
𝜕𝑟 (3.50)

Equation (3.26) remains the same, but with 𝑚 = 0. For 𝐻0𝑧(𝑟, 𝜃) the 𝜃 dependent part Θ(𝜃) becomes
a constant (equation (3.27). For the 𝑟 dependent part, 𝐹(𝑟), there are two solutions, 𝐹1 for 0 ≤ 𝑟 ≤ 𝑎
and 𝐹2 for 𝑟 > 𝑎. Using

𝜔
𝑐 = 𝑘0, equation (3.28) becomes

𝜕2𝐹(𝑟)
𝜕𝑟2 + 1𝑟

𝜕𝐹(𝑟)
𝜕𝑟 + 𝐹(𝑟) (𝑘20𝑛2(𝑟) − 𝑘2𝑧) = 0. (3.51)

Now let 𝑘2𝑐1 = 𝑘20𝑛21 − 𝑘2𝑧 and 𝑘2𝑐2 = 𝑘2𝑧 − 𝑘20𝑛22. For the field inside the core, this results in equation
(3.52) and for the cladding equation (3.53).

𝜕2𝐹1(𝑟)
𝜕𝑟2 + 1𝑟

𝜕𝐹1(𝑟)
𝜕𝑟 + 𝐹1(𝑟)𝑘2𝑐1 = 0 (3.52)

𝜕2𝐹2(𝑟)
𝜕𝑟2 + 1𝑟

𝜕𝐹2(𝑟)
𝜕𝑟 − 𝐹2(𝑟)𝑘2𝑐2 = 0 (3.53)

Introducing 𝑥1 = 𝑘𝑐1𝑟 and 𝑥2 = 𝑘𝑐2𝑟 equations (3.52) and (3.53) become

𝑥21
𝜕2𝐹1(𝑥1)
𝜕𝑥21

+ 𝑥1
𝜕𝐹1(𝑥1)
𝜕𝑥2

+ 𝐹1(𝑥1)𝑥21 = 0 (3.54)

𝑥22
𝜕2𝐹2(𝑥2)
𝜕𝑥22

+ 𝑥2
𝜕𝐹2(𝑥2)
𝜕𝑥2

− 𝐹2(𝑥2)𝑥22 = 0 (3.55)
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The equation for 𝐹1 is the standard Bessel differential equation, from equation (3.31) with index 0. The
solution has the following form [19]

𝐹1(𝑥1) = 𝐵1𝐽0(𝑥1) + 𝐵2𝑌0(𝑥1) (3.56)

At 𝑟 = 0 the field should be finite, therefore 𝐵2 = 0.
The equation for 𝐹2 is not in the standard Bessel equation form.[19] This is the Bessel equation with
complex argument 𝑥 = 𝑦𝑖, with 𝑦 some real variable. When 𝑥 in equation (3.31) is replaced with 𝑦𝑖,
this gives

𝑦2 𝑑
2𝑢
𝑑𝑦2 + 𝑦

𝑑𝑢
𝑑𝑦 − (𝑦

2 + 𝜈2)𝑢 = 0 (3.57)

The solution to this equation is
𝑢(𝑦) = 𝐵3𝐼𝜈(𝑦) + 𝐵4𝐾𝜈(𝑦) (3.58)

Here 𝐼𝜈 is the modified Bessel function of index 𝜈 and 𝐾𝜈 is called the Macdonald function of index 𝜈.
Figure 3.6 and Figure 3.7 are plots of the first four modified Bessel functions and Macdonald functions,
respectively. The plots are made in Python.[14]

Figure 3.6: The first four modified Bessel functions 𝐼𝜈. Figure 3.7: The first four Macdonald functions 𝐾𝜈.

The solutions for 𝐹2 are thus the modified Bessel functions with index 0.

𝐹2(𝑥2) = 𝐵3𝐼0(𝑥2) + 𝐵4𝐾0(𝑥2) (3.59)

The modified Bessel function of index 0 (𝐼0(𝑟)) diverges to infinity at 𝑟 = ∞, see Figure 3.6. The field
should be bounded at infinity, therefore 𝐵3 = 0. The total magnetic field in the 𝑧-direction from equation
(3.45) is now given by

𝐻𝑧0(𝑟, 𝜃) = {
𝐵1𝐽0(𝑘𝑐1𝑟) 0 ≤ 𝑟 ≤ 𝑎
𝐵4𝐾0(𝑘𝑐2𝑟) 𝑟 > 𝑎 (3.60)

The total electric and magnetic field tangential to the boundary at the interface 𝑟 = 𝑎 should be con-
tinuous.[18] This includes 𝐸𝜃, 𝐸𝑧, 𝐻𝜃 and 𝐻𝑧. As this is a TE mode, 𝐸𝑧 = 0 and from equation (3.48),
𝐻𝜃 = 0. With 𝐸𝜃 from equation (3.49), the following conditions apply at the interface.

𝐵1𝐽0(𝑘𝑐1𝑎) = 𝐵4𝐾0(𝑘𝑐2𝑎) (3.61)

𝐵1
𝑘𝑐1

𝐽′0(𝑘𝑐1𝑎) = −
𝐵4
𝑘𝑐2

𝐾′0(𝑘𝑐2𝑎) (3.62)

Solving for 𝐵1 gives 𝐵1 =
𝐵4𝑘0(𝑘𝑐2𝑎)
𝐽0(𝑘𝑐1𝑎)

, so the two conditions together can be rewritten as

𝐽′0(𝑘𝑐1𝑎)
𝑘𝑐1𝐽0(𝑘𝑐1𝑎)

= − 𝐾′0(𝑘𝑐2𝑎)
𝑘𝑐2𝐾0(𝑘𝑐2𝑎)

(3.63)
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Using the variables 𝜅1 = 𝑘𝑐1𝑎 and 𝜅2 = 𝑘𝑐2𝑎 and the expressions for the derivatives of Bessel functions
𝐽′0(𝑥) = −𝐽1(𝑥) and 𝐾′0(𝑥) = −𝐾1(𝑥) ,[19] the following is obtained.

𝐽1(𝜅1)
𝜅1𝐽0(𝜅1)

= − 𝐾1(𝜅2)
𝜅2𝐾0(𝜅2)

(3.64)

Beside this, there is another relation between 𝜅1 and 𝜅2, because 𝑘2𝑐1 − 𝑘2𝑐2 = 𝑘20𝑛21 + 𝑘20𝑛22.

𝜅21 − 𝜅22 = 𝑘20𝑎2 (𝑛21 + 𝑛22) (3.65)

With equation (3.64) and (3.65) the values of 𝜅1 and 𝜅2 can be calculated and then also 𝑘𝑐1 and 𝑘𝑐2.
The magnetic field in the 𝑧 direction is then given by

𝐻𝑧(𝑟, 𝜃, 𝑧) = {
𝐵1𝐽0(𝑘𝑐1𝑟)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) 0 ≤ 𝑟 ≤ 𝑎
𝐵1

𝐽0(𝑘𝑐1𝑎)
𝐾0(𝑘𝑐2𝑎)

𝐾0(𝑘𝑐2𝑟)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) 𝑟 > 𝑎 (3.66)

Then with equation (3.49) and (3.50) the electric field in the 𝜃 direction and magnetic field in the 𝑟
direction can be derived.

𝐸𝜃(𝑟, 𝜃, 𝑧) = {
−𝐵1

𝑖𝜔𝜇
𝑘2𝑐1
𝐽1(𝑘𝑐1𝑟)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) 0 ≤ 𝑟 ≤ 𝑎

𝐵1
𝑖𝜔𝜇
𝑘2𝑐2

𝐽0(𝑘𝑐1𝑎)
𝐾0(𝑘𝑐2𝑎)

𝐾1(𝑘𝑐2𝑟)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) 𝑟 > 𝑎
(3.67)

𝐻𝑟(𝑟, 𝜃, 𝑧) = {
𝐵1

𝑖𝑘𝑧
𝑘2𝑐1
𝐽1(𝑘𝑐1𝑟)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) 0 ≤ 𝑟 ≤ 𝑎

−𝐵1
𝑖𝑘𝑧
𝑘2𝑐2

𝐽0(𝑘𝑐1𝑎)
𝐾0(𝑘𝑐2𝑎)

𝐾1(𝑘𝑐2𝑟)𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) 𝑟 > 𝑎
(3.68)

From these equations, together with the condition from equations (3.64) and (3.65), the TE-modes can
be calculated. The electric field inside a step-index fiber is simulated with Comsol in Chapter 4.3 and
calculated analytically in Chapter 5.1.2.





4
Experimental Setup

In this chapter and Chapter 5, a variety of fibers were investigated. For convenience, the specifics of all
the fibers can be found in Table 4.1. They are also shown in Figure 4.1 for the simple fiber, Figure 4.2
for the step-index fiber, Figure 4.3 for the photonic crystal bandgap fiber and Figure 4.4 for the three
layer step-index fiber.
The incoming wavelength for all fibers is chosen to be 𝜆 = 1.55⋅10−6 m, because this is the propagation
wavelength for the photonic crystal fiber, Fiber C. For simplicity this is chosen the same for all other
fibers. For the simple fiber, Fiber A, the radius of the fiber is chosen in the range of a few wavelengths,
to ensure multi-mode guidance. The refractive index is that of silica glass and conductor boundary
conditions are applied. The structure of the step-index fiber, Fiber B, is based on an example from the
book ’An Introduction to Optical Fibers’.[2] For the photonic crystal fiber, Fiber C, the specifics belong
to the fiber HC-1550-02 (Thorlabs).[12] The values for Fiber E are based on Fiber D.
This chapter focuses on COMSOL Multiphysics [6] and the simulations of the fibers from Table 4.1.

Table 4.1: The radii, refractive indexes and boundary condition for the outer most layer of the different fibers that
are used. PML is short for perfectly matched layer, which resembles an infinite domain outside of the fiber. With
the simple fiber: Fiber A (Figure 4.1), the step-index fiber: Fiber B (Figure 4.2), the hollow core photonic crystal
fiber HC-1550-02 and adjusted version: Fiber C and D, respectively (Figure 4.3) and three layer step-index fiber:
Fiber E (Figure 4.4).

Fiber A Fiber B Fiber C Fiber D Fiber E
Radii 𝑅 = 5 ⋅ 10−6 m 𝑎 = 43.5 ⋅ 10−6 m 𝑅1 = 4.75 ⋅ 10−6 m 𝑅1 = 3𝑅52 = 3.48 ⋅ 10−6 m 𝑅1 = 3.48 ⋅ 10−6 m

𝑅 = 62.5 ⋅ 10−6 m 𝑅2 = 34.2 ⋅ 10−6 m 𝑅2 = 9.5𝑅5 = 22.04 ⋅ 10−6 m 𝑅2 = 22.04 ⋅ 10−6 m
𝑅3 = 35.4 ⋅ 10−6 m 𝑅3 = 10𝑅5 = 23.2 ⋅ 10−6 m 𝑅3 = 23.2 ⋅ 10−6 m
𝑅4 = 1.75 ⋅ 10−6 m 𝑅4 = 1.044 ⋅ 10−6 m
𝑅5 = 3.8 ⋅ 10−6 m 𝑅5 = 2.32 ⋅ 10−6 m

Refractive 𝑛 = 1.45 𝑛1 = 1.458 𝑛𝑎𝑖𝑟 = 1 𝑛𝑎𝑖𝑟 = 1 𝑛1 = 1
indexes 𝑛2 = 1.427 𝑛𝑔𝑙𝑎𝑠𝑠 = 1.45 𝑛𝑔𝑙𝑎𝑠𝑠 = 1.45 𝑛3 = 1.45

𝑛𝑒𝑓𝑓 is adjustable
Boundary Perfect electric Perfect electric PML PML PML
condition conductor conductor

17
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Figure 4.1: Schematic sketch of the simple fiber, Fiber A from Table 4.1, where 𝑅 = 10 ⋅ 10−6 m, 𝑛 = 1.45,
𝜆 = 1.55 ⋅ 10−6 m and with conductor boundary conditions.

Figure 4.2: Schematic sketch of the step-index fiber, Fiber B from Table 4.1, where 𝑅 = 125⋅10−6 m, 𝑎 = 62.5⋅10−6
m, 𝑛1 = 1.451, 𝑛2 = 1.45 and 𝜆 = 1.55 ⋅ 10−6 m.

Figure 4.3: Schematic sketch of the cross-section of the Photonic Crystal Bandgap fiber, Fiber C from Table 4.1,
where 𝑅1 = 4.75⋅10−6 m, 𝑅2 = 34.2⋅10−6 m, 𝑅3 = 35.4⋅10−6 m, 𝑅4 = 1.75⋅10−6 m, 𝑅5 = 3.8⋅10−6 m, 𝑛𝑔𝑙𝑎𝑠𝑠 = 1.45
and 𝑛𝑎𝑖𝑟 = 1 is the refractive index in all the holes, including the hole in the center.
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Figure 4.4: Schematic sketch of the three layer step-index fiber, Fiber D from Table 4.1, with 𝑅1 = 3.48 ⋅ 10−6 m,
𝑅2 = 22.04 ⋅ 10−6 m, 𝑅3 = 23.2 ⋅ 10−6 m, 𝑛1 = 1 and 𝑛3 = 1.45. 𝑛𝑒𝑓𝑓 is a refractive index that can be adjusted to
best match the photonic crystal fiber.

4.1. Comsol
The main tool that is used in the research for this report is COMSOL Multiphysics[6], which will be
referred to as Comsol from now on.

4.1.1. Finite element method
Comsol simulations are based on the finite element method, also called FEM. FEM is a numerical
method that is used to approximate the solution of systems of partial differential equations.[23] This is
very useful, as many problems in physics can be written as a set of partial differential equations. In
this case the partial differential equations that need to be solved are the Maxwell equations (3.1)-(3.4).
To apply the FEM, the domain needs to be partitioned into smaller domains, called elements. The
elements are defined by node points x𝑖 with 𝑖 ∈ {0, 𝑛}, with a total of 𝑛+1 nodes.[20] In one dimension
elements of the partition are then defined as intervals [𝑥𝑗−1, 𝑥𝑗] with 𝑗 ∈ {1, 𝑛}. In two dimensions, the
elements are usually triangles or sometimes quadrilaterals. The node points are then the corners of
the triangles or quadrilaterals. FEM approximates the solution of the partial differential equations, in
this case the electric field, with a linear combination of functions 𝜓𝑖.

𝐸 ≈
𝑛

∑
𝑖=0
𝑎𝑖𝜓𝑖 (4.1)

with 𝑎𝑖 the coefficients and 𝜓𝑖 are called the basis functions. The 𝜓𝑖 are assigned a value of 1 at node
𝑖 and 0 for all the other nodes in the mesh.[26] Then the function between the nodes is usually linear,
but can also be chosen as a different continuous function, such as polynomials of higher degrees. The
total function 𝜓𝑖 is continuous differentiable on the elements and continuous on the whole domain.[20]
Methods with discontinuous functions also exist, but they will not be considered in this report. For a
one dimensional domain in the 𝑥-direction with piecewise linear 𝜓𝑖, see Figure 4.5, the 𝜓𝑖 are defined
as follows

𝜓𝑖(𝑥) = {
(𝑥 − 𝑥𝑖−1) / (𝑥𝑖 − 𝑥𝑖−1) if 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖
(𝑥𝑖+1 − 𝑥) / (𝑥𝑖+1 − 𝑥𝑖) if 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1
0 otherwise

(4.2)

where the elements are the intervals [𝑥𝑗−1, 𝑥𝑗] with 𝑗 ∈ {1, 𝑛}, as mentioned earlier.
A function 𝑓(𝑥) can be approximated by linear interpolation on the subintervals ([𝑥𝑖 , 𝑥𝑖+1]), when the
value of 𝑓 is known at the nodes. The approximation is the continuous piecewise linear interpolant
𝜋𝑓(𝑥).

𝜋𝑓(𝑥) =
𝑛

∑
𝑖=0
𝑓(𝑥𝑖)𝜓𝑖(𝑥) (4.3)

There are also other ways to approximate 𝑓(𝑥), for example the L2-projection.[20] The L2 projection
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Figure 4.5: Example of a linear 𝜓4 function for a 1D problem in the 𝑥-direction, with value 1 for the fourth node.

method projects the function 𝑓 onto the function space with linear functions (𝑎𝑥 + 𝑏) for every interval
[𝑥𝑖 , 𝑥𝑖+1]. This approximation does not have to be equal to the value of 𝑓 at the nodes, unlike the inter-
polant.

In general a differential equation can be written as 𝐿(u) = 𝑓(x). In this case the Maxwell equations
should be solved. In Comsol, the Maxwell equations are combined into one equation for the electric
field. The following time independent differential equation needs to be solved to compute the modes.

∇ × (∇ × E′) − 𝑘0𝜀𝑟E′ = 0 (4.4)

In Comsol this is called the electric wave equation. Where the time dependent solution is E(𝑥, 𝑦, 𝑧, 𝑡) =
E′(𝑥, 𝑦, 𝑧)𝑒𝑖𝜔𝑡. Comsol uses the ansatz that E′(𝑥, 𝑦, 𝑧) = Ẽ(𝑥, 𝑦)𝑒−𝑖𝛽𝑧−𝛿𝑧𝑧, where 𝛽 is the propagation
constant and 𝛿𝑧 the attenuation constant. Equation (4.4) can be derived from the Maxwell equations.
When taking the curl of equation (3.2), interchanging the time derivative and the curl and then inserting
equation (3.4) gives

∇ × (∇ × E) = −𝜇 (∇ × 𝜕h𝜕𝑡 ) = −𝜇
𝜕
𝜕𝑡 (∇ × E) = −𝜇𝜀

𝜕2E
𝜕𝑡2 (4.5)

This gives equation (4.4), with the time dependent solution give above, 𝜀 = 𝜀0𝜀𝑟 and 𝑘0 =
𝜔
𝑐 , where

𝑐 = 1
√𝜇0𝜀0

and assuming that 𝜇 = 𝜇0.[25]. Now the FEM is used to approximate E′ from equation (4.4).
First a variational formulation of equation (4.4) should be derived. In general a variational formulation
is obtained by multiply the given differential equation with some test function v and then integrating. In
this case this gives

∭
Ω
∇ × (∇ × E′) ⋅ v𝑑x =∭

Ω
𝑘0𝜀𝑟E′ ⋅ v𝑑x (4.6)

where Ω indicates the whole domain. This can be simplified to[20]

∭
Ω
(∇ × E′) ⋅ (∇ × v) 𝑑x−∯

𝜕Ω
(∇ × E′) × n̂ ⋅ (v) 𝑑x =∭

Ω
𝑘0𝜀𝑟E′ ⋅ v𝑑x (4.7)

The function E′ can then be approximated as E′ℎ, where

E′ℎ =
𝑛

∑
𝑖=0
𝑎𝑖𝜓𝑖 (4.8)

the 𝜓𝑖 are the basis functions that are explained earlier. They should be 1 at node 𝑖 and 0 at all other
nodes. 𝑎𝑖 are the coefficients that need to be determined. The following has to hold for all possible test
functions v

∭
Ω
(∇ × E′ℎ) ⋅ (∇ × v) 𝑑x−∯𝜕Ω

(∇ × E′ℎ) × n̂ ⋅ (v) 𝑑x =∭Ω
𝑘0𝜀𝑟E′ℎ ⋅ v𝑑x (4.9)
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v can be an infinite number of functions, as long as the integral from equation (4.6) exists and v should
adhere to the boundaries of the problem. From this the coefficients 𝑎𝑖 of Eℎ can be calculated, when
the boundary conditions are known.[20] When the Galerkin method is used, the test functions v and E′ℎ
can only be functions that are linear between the nodes and continuous over the whole domain. This
function space can be spanned by a finite number of functions. Then this gives a system of equations
which can be solved.

4.1.2. Settings
Comsol has a variety of modules, but here only the Wave Optics module is used. This module spe-
cialises in the analysis of electromagnetic waveswith wavelengths in themicro- and nanometer range.[25]
Within the Wave Optics module, the ”Electromagnetic Waves, Frequency Domain” (ewfd) physics in-
terface is used for all the simulations in this report.

Global definitions
In Comsol a few steps need to be taken to set up a Comsol model. In the beginning there is an option
to add global definitions. This can be used to define parameter values. In future steps the parameter
can be used instead of writing the specific value. This also makes it easier to change the values for
one parameter all at the same time. An example of the parameter section can be found in Figure 4.6.

Figure 4.6: Example of the parameter section in Comsol.

Geometry
The next step is to create the geometry. This is done in the component section. Material properties,
such as the refractive indexes can be added to the different regions of the geometry. For the fibers that
are simulated in this report, a 2D geometry of the cross section of the fibers can be used. Comsol has
the option to extend the cross-section in the third dimension (over the 𝑧-axis) to create a 3D object.
This can only be done, because the modes that exist in the fibers do not depend on the length of the
fiber, so the solution does not change in the axial direction.

Boundary conditions
There is an option to add a perfectly matched layer (PML) as an artificial domain in the definitions
tab. Perfectly matched layers can be used to resemble the boundary conditions for an infinite domain
outside of the fiber. When the light enters a perfectly matched layer, it is absorbed and cannot reflect
back into the fiber.[31] For this it is important that the mesh is dense enough inside the layer. This
should be at least 5 mesh layers.[24] The typical wavelength of the PML should be selected and for all
the fibers, the PML should be based on a cylindrical geometry. A PML is used for the photonic crystal
fibers and the three layer step-index fiber, Fiber C, D and E. The exact setting of the used PMLs can
be found in Chapter 4.4 and 4.5.
When the geometry is made, the boundary condition can be added. These are a part of the chosen
physics interface, in this case ewfd. One boundary conditions that will be used is the Perfect Electric
Conductor. This condition adheres to the following equation

n × E = 0 (4.10)

where n is the normal vector of the boundary. This means that the electric field is completely in the
direction normal to the boundary. As the electric field and magnetic field are always perpendicular for
electromagnetic waves,[32] the magnetic field normal to the boundary has to be zero, n ⋅H = 0. This
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condition is applied to Fiber A and B from Table 4.1, that are studied in Chapter 4.2 and 4.3. In ewfd
there is the option to apply the Electric Wave Equation to parts of the domain and there is an option to
set an initial value for the electric field. This value will then be used as the start guess for the solver.
Also in the ewfd settings, the option should be selected to solve for a three-component vector.

Mesh
The mesh of the geometry is then created; this can be done automatically with a physics controlled
mesh. This will be used for all the simulations in this report. When ewfd is selected as the the contrib-
utor, there is an option to base the maximum size of a mesh element on the study. The mesh will then
have a maximum element size that is 1

5 of the smallest wavelength that the study uses.[25] The mesh
is used to indicate for which points the study should be calculated. An example of a mesh can be seen
in Figure 4.10.

Study and results
The last step is to select the study and fill in the study details. The study indicates what Comsol should
calculate. The study that is used in these experiments is the mode analysis. This study looks for the
modes of the fiber. A parametric sweep can be used to conduct the study over specific values for a
certain parameter.
When the study is conducted, it is important to distinguish the propagating modes, as Comsol can also
show modes that do not propagate. There are many different ways to display the result. For example
in a table, with a 2D surface graph, or in 1D at 𝑦 = 0. The results that Comsol gives, are calculated
using the finite element method.

4.2. Simple fiber Comsol
In this section Fiber A from Table 4.1 is simulated in Comsol. The values for the radius, wavelength,
frequency and refractive index are defined in the parameter section of Comsol, see Table 4.2.

Table 4.2: Parameters section in Comsol for the simulation of Fiber A from Table 4.1.

Name Expression Value Description
r 5[um] 5 ⋅ 10−6 m radius
lambda0 1.55[um] 1.55 ⋅ 10−6 m wavelength
f0 c_const/lambda0 1.9341 ⋅ 1014 1/s frequency
n 1.45 1.45 refractive index

Then the geometry is made, see Figure 4.7. The material is given the earlier defined refractive index
𝑛 = 1.45.

Figure 4.7: The geometry of the Comsol simulation of Fiber A from Table 4.1.
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In ewfd the boundary conditions are added. The wave equation for the electric field (equation (4.4))
and an initial value of E = 0 as start guess are applied to the whole domain. The boundary is assigned
perfect electric conductor properties (equation (4.10)).
The mesh is set to have ”extremely fine” elements. The ewfd is used as contributor and the maximum
element size is based on the study, as explained in Chapter 4.1.2. The mesh is shown in Figure 4.8.

Figure 4.8: The mesh used for the Comsol simulation of Fiber A from Table 4.1, with 6550 domain elements and
160 boundary elements.

The mode analysis study is computed for a total of 16 modes. The frequency 𝑓0 =
𝑐0
𝜆 that is used, was

defined earlier as a parameter (Table 4.2) and the modes are sought for around the refractive index
𝑛 = 1.45.

4.3. Step-index fiber Comsol
Next, a step-index fiber is simulated in Comsol. This is Fiber B, for which the specifications are given
in Table 4.1. The parameters, as they are defined in Comsol, can be seen in Table 4.3.

Table 4.3: Parameters section in Comsol for the simulation of Fiber B from Table 4.1.

Name Expression Value Description
r1 43.5[um] 4.35 ⋅ 10−5 m radius core
r2 62.5[um] 6.25 ⋅ 10−5 m radius cladding
lambda0 1.55[um] 1.55 ⋅ 10−6 m wavelength
f0 c_const/lambda0 1.9341 ⋅ 1014 1/s frequency
nco 1.458 1.458 refractive index
n2 1.458 1.427 refractive index cladding



24 4. Experimental Setup

The geometry that is made in Comsol is shown in Figure 4.9. For the material of the inner circle, the
refractive index is set at 𝑛1 = 1.458 and for the cladding or ring, the refractive index is 𝑛2 = 1.427.

Figure 4.9: The geometry of the Comsol simulation of Fiber B from Table 4.1.

Then the settings for ewfd are selected. The electric wave equation (4.4) is applied to the whole do-
main and the initial value is set to 0. For all the outer boundaries the conditions for a Perfect Electric
Conductor (equation (4.10)) are added.
The physics controlled mesh is selected with the mesh size set to ”extremely fine” and ewfd is used as
contributor. The maximum element size is depending on the study. Figure 4.10 shows the final mesh.

Figure 4.10: The mesh used for the Comsol simulation of Fiber B from Table 4.1, with 6156 domain elements and
272 boundary elements.

Finally, the settings for the study are inserted. The mode analysis study is used with mode analysis
frequency 𝑓0, that was defined as a parameter (Table 4.3). A total of 9 modes are computed around
𝑛1 = 1.450.

4.4. Photonic crystal fiber
Finally, the goal is to investigate the photonic crystal bandgap fiber HC-1550-02, that was also used in
the article from B. Wan et al.[31] The fiber that is being investigated is fiber C from Table 4.1. In the
process of simulating this fiber a lot of issues have been encountered. The parameters that are defined
in Comsol to model this fiber can be seen in Table 4.4.
The first geometry that was made with Comsol can be seen in Figure 4.11. A perfectly matched layer
is used with a thickness of 6𝜆 = 9.3 ⋅ 10−6 m and typical wavelength 𝜆/𝑛𝑔𝑙𝑎𝑠𝑠 ≈ 1.07 ⋅ 10−6 m. The
geometry type of the perfectly matched layer is set to cylindrical.
The electric wave equation (4.4) is again applied to the whole domain and initial values are set to be
0. The outer boundary is set to be a Perfect Electric Conductor, equation (4.10).
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Table 4.4: Parameters defined in Comsol for the simulation of Fiber C from Table 4.1.

Name Expression Value Description
pitch 3.8[um] 3.8 ⋅ 10−6 m pitch
vert_disp tan(60[degree])*pitch/2 3.2909 ⋅ 10−6 m vertical displacement
r_hole 3.5[um]/2 1.75 ⋅ 10−6 m radius air holes
r_core 9.5[um]/2 4.75 ⋅ 10−6 m radius core
r_clad 70.8[um]/2 3.54 ⋅ 10−5 m radius cladding
n_holes 10 10 number holes in radius
wavelength 1.55[um] 1.55 ⋅ 10−6 m wavelength
n_air 1 1 refractive index airholes
n_glass 1.45 1.45 refractive index glass

Figure 4.11: The geometry of the Comsol simulation of Fiber C from Table 4.1, with a perfectly matched layer with
thickness 6𝜆 = 9.3 ⋅ 10−6 m.

The mesh is set to be physics-controlled and have normal sized elements. ewfd is selected as the
contributor and element size is based on the study. The mesh is very dense. This can be seen in
Figure 4.12. The perfectly matched layer has a mapped mesh. This means that elements with four
edges are used (quadrilaterals). In this case they make up a cylinder, so they have two curved edges.
The remaining mesh has triangular shaped mesh elements.

(a) The mesh on the whole domain. (b) The mesh in the air hole region. (c) The mesh in the perfectly matched layer.

Figure 4.12: The mesh used for the Comsol simulation of Fiber C from Table 4.1, with 255884 domain elements and 18131
boundary elements.
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Then a mode analysis is computed for 6 modes and the mode analysis frequency was set to be 𝑐/𝜆.
The modes are sought for around an effective refractive index of 0.995. This is the same setting that
B. Wan et al.[31] used. This is not an actual refractive index, as they should always be larger than 1,
but it is the complex refractive index. The complex refraction index is related to the attenuation of the
fiber.[34] The results from the simulation can be found in Chapter 5.2.3. In short, these are not the
results that are expected and they do not match the findings from B. Wan et al.[31]. The modes are
not centered in the core of the fiber.

After contacting Comsol support, it turned out that the HC-1550-02 could not be modeled with Comsol.
This geometry was a very sensitive design, meaning that it only works for very specific parameters.
With the help of Comsol support, a new, similar hollow core photonic crystal fiber was modeled, with a
few changes. This new model was supplied by Thomas Esselink, a master student at the TU Delft, who
used this model for his research.[10] Fiber D from Table 4.1 has the dimensions of the new photonic
crystal fiber. The circular core is replaced with a star shaped core. This new shape is based on an
article from Kunimasa Saitoh and Masanori Koshiba.[30] The new model is much more stable than the
old one, so it works for a larger range of parameter values. The parameter values that are used in this
new model can be seen in Table 4.5.

Table 4.5: Parameters defined in Comsol for the simulation of Fiber D from Table 4.1.

Name Expression Value Description
lda0 1.55[um] 1.55 ⋅ 10−6 m wavelength
lambda 2.32[um] 2.32 ⋅ 10−6 m pitch
dNormalized 0.9 0.9 ratio air holes pitch
d dNormalized*lambda 2.088 ⋅ 10−6 m air hole diameter
nAir 1 1 refractive index air holes
nGlass 1.45 1.45 refractive index air glass
nEffExp 0.987 0.987 effective refractive index
nRadialGlass sqrt(nGlass2-nEffExp2) 1.062
ldaPML lda0/nRadialGlass 1.4592 ⋅ 10−6 m wavelength PML
tPML ldaPML 1.4592 ⋅ 10−6 m thickness PML
f0 c_const/lda0 1.9341 ⋅ 1014 1/s frequency
N 8 8 air holes in radius

The adjusted geometry is modeled in Comsol, see Figure 4.13. The perfectly matched layer has a
thickness and typical wavelength of 1.4592 ⋅ 10−6 m and a cylindrical type geometry.

Figure 4.13: The geometry of the Comsol simulation of Fiber D from Table 4.1, with a perfectly matched layer with
thickness 1.4592 ⋅ 10−6 m.
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Perfect electric conductor conditions are applied to the most outer layer and the electric wave equation
is set on the whole domain (equations (4.10) and (4.4). The initial values are set at 0 V/m.
The mesh is calculated with normal element size and again with ewfd as contributor. The maximum
element size is based on the study, as explained in Chapter 4.1.2. Figure 4.14 shows the mesh for
different parts of the geometry. Similar as for Fiber C, the perfectly matched layer has a mapped mesh.
The rest of the mesh is made up of triangular elements.

(a) The mesh on the whole domain. (b) The mesh in the air hole region. (c) The mesh in the perfectly matched layer.

Figure 4.14: The mesh used for the Comsol simulation of Fiber D from Table 4.1, with 135168 domain elements and 11293
boundary elements.

Next a mode analysis is computed to find 6 modes with mode analysis frequency 𝑓0 = 𝑐/𝜆. The modes
are sought for near an effective refractive index of 0.987. This was set by Comsol support. From
experience, the effective refractive index should be just below one, to find guiding modes. The result
from this study are shown and discussed in Chapter 5.2.3. For this fiber, the modes do propagate and
are confined to the core.

4.5. Three layer step-index fiber
The last step is estimate the photonic crystal fiber with an easier fiber, Fiber E from Table 4.1, for which
the field could be computed analytically. The three layer step-index fiber is chosen to try to approximate
the photonic crystal fiber with star-shape core, Fiber D from Table 4.1. The three radii are chosen to
be the core radius, radius of the air hole region and the cladding radius of Fiber D. The refractive index
of the core is the same and the refractive index of the outer layer is that of the cladding of Fiber D.
The refractive index of the middle layer should be determined to best match the modes of Fiber D. In
general the goal is to get a mode confined to the core.

As an estimate the refractive index of the middle layer is chosen to have a real part that is the av-
erage of the two surrounding layers, so Real(𝑛𝑒𝑓𝑓) = (𝑛1 +𝑛3)/2 = 1.225. The refractive index is also
given an imaginary part, because this simulates the attenuation. A parametric sweep is done for the
imaginary part from 0 up to 1 with steps of 0.1.
Fiber E from Table 4.1 is then modeled in Comsol. The parameter section that is used can be found in
Table 4.6.
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Table 4.6: Parameters defined in Comsol for the simulation of Fiber E from Table 4.1.

Name Expression Value Description
lambda0 1.55[um] 1.55 ⋅ 10−6 m wavelength
f0 c_const/lda0 1.9341 ⋅ 1014 1/s frequency
r1 3.48[um] 3.48 ⋅ 10−6 m radius core
r2 22.04[um] 2.204 ⋅ 10−5 m radius middle layer
r3 23.2[um] 2.32 ⋅ 10−5 m radius cladding
n1 1 1 refractive index core
n3 1.45 1.45 refractive index cladding
neff_real 1.225 1.225 real refractive index middle layer
nEffExp 0.987 0.987 effective refractive index
tPML labda0/sqrt(n32-nEffExp2) 1.4592 ⋅ 10−6 m thickness PML
neff_im 0.5*i 0.5𝑖 imaginary refractive index middle layer

The geometry is shown in Figure 4.15. A perfectly match layer is used with the same settings as used
for the simulation of Fiber D, a cylindrical geometry type and a thickness and typical wavelength of
1.4592 ⋅ 10−6 m.

Figure 4.15: The geometry of the Comsol simulation of Fiber D from Table 4.1, with a perfectly matched layer with
thickness 1.4592 ⋅ 10−6 m.

The electric wave equation (4.4) is applied to the whole domain; electric conductor boundary conditions
(equation (4.10) are applied to the outer boundary of the perfectly matched layer and the initial values
for the electric field are set to 0. A physics-controlled mesh is used with normal element size and ewfd
as contributor. The maximum element size is based on the study. The resulting mesh can be seen in
Figure 4.16.
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(a) The mesh on the whole domain. (b) The mesh in and around the core. (c) The mesh in the perfectly matched layer,
outer layer and partly of the middle layer.

Figure 4.16: The mesh used for the Comsol simulation of Fiber E from Table 4.1, with 360638 domain elements and 3020
boundary elements.

Lastly the mode analysis study is computed. The mode analysis frequency is 𝑓0 = 𝑐/𝜆, a total of 6
modes are computed around 0.987. This is firstly done with the earlier mentioned parametric sweep
over the imaginary part of the refractive index from 0 to 1 with steps of 0.1. After this another sweep
is done for values of Im(𝑛𝑒𝑓𝑓) from 10 to 100 with step size 10. The results can be found in Chapter
5.2.4.





5
Results and Discussion

5.1. Analytical
This chapter contains the results and a discussion of the analytical calculations of the electric field for
a simple fiber and for a step-index fiber.

5.1.1. Simple Fiber
The electric field of the simple fiber, Fiber A from Table 4.1, is calculated analytically. Equations 3.35,
3.36 and 3.38 fromChapter 3.2.1 are used to get the analytical solution for the TE-modes and equations
3.41, 3.42 and 3.44 from Chapter 3.2.2 for the TM-modes. The following values are chosen conve-
niently at 𝐻1 = 1 and 𝐸1 = 1, as they do not influence the distribution of the field. The wavelength
is calculated with 𝜔 = 2𝜋𝑐

𝜆𝑛 and the following constant values are used 𝜇 = 4𝜋 ⋅ 10−7 kgms-2A-2 and
𝑐 = 3 ⋅ 108 ms-1. The wavelength of the incoming wave is set at 𝜆 = 1.55 ⋅ 10−6 m, see Figure 4.1. This
was the same in the Comsol simulations from Chapter 4.2. The result is plotted with Python. Figure A.1
shows 16 of the TEmn modes and Figure A.2 shows 16 of the TMmn modes The fields are calculated
for the same points as the Comsol simulation of Fiber A, from Chapter 4.2.

Looking at Figure A.1, for the TEmn modes, it can be seen that the modes where n = 1, have one
maximum in the radial direction, modes with n = 2 have two radial maxima, etc. In general it seems
that there are n radial maxima. In the radial direction something similar can be noticed. The m = 0
modes have no azimuthal maxima or minima. The field is constant when varying over 𝜃, but keeping
𝑟 fixed. This also becomes clear when looking at equations (3.35) and (3.36). For m = 0, the electric
field in the 𝑟 direction is zero. The only non constant term that remains is 𝐽′𝑚(𝑘𝑐𝑟) in the equation for
the electric field in the 𝜃 direction. Therefore, the field for m = 0 only varies with 𝑟. For m = 1 there are
two maxima, for m/2 there are four maxima and so on. It can be concluded that there are 2m maxima
in the azimuthal direction.
Similar to the TEmn modes, the TMmn modes have n maxima in the radial direction and m/2 maxima in
the azimuthal direction, see Figure A.2.

In all cases, the electric field is zero in the centre, except for the m = 1 modes. This is because
the derivative of all Bessel functions is zero at 𝑟 = 0, except for m = 1. First consider all modes with
𝑚 > 1. The Bessel functions with index larger than one, are zero at 𝑟 = 0, but also their derivative is
zero, see Figure 3.3. Therefore, the electric field in the 𝑟 and 𝜃 direction is zero, see equations (3.35),
(3.36), (3.41) and (3.42). For the m = 0 modes, the derivative of the Bessel function is still zero, but
the Bessel function itself is not. However, with m = 0 the electric field also vanishes. Only for m = 1,
the derivative of the electric field is non zero. This leaves an electric field in the 𝜃 direction for the TE
modes and in the 𝑟 direction for the TM modes.
The results that are found match the electric fields shown by E. Jensen.[15]
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5.1.2. Step Index Fiber
The electric field of the TE-modes of the step-index fiber, Fiber B from Table 4.1, is also calculated
analytically and then plotted with Python. The specific values that are used can also be found in Figure
4.2. These are the same values that are used for the Comsol simulations of Fiber B in Chapter 4.3.
Equations (3.64) and (3.65) are used to derive the values for 𝜅1 = 𝑘𝑐1𝑎 and 𝜅2 = 𝑘𝑐2𝑎, before it is
possible to compute the electric field. As these equations are too complex, because of the multiple
Bessel equations, the values need to be derived numerically. Figure 5.1 shows the functions that need
to be solved (𝑓1 = 𝑓2) to find 𝜅1. The following expressions are used for 𝑓1 and 𝑓2.

⎧
⎪

⎨
⎪
⎩

𝑓1 =
𝐽1(𝜅1)
𝜅1𝐽0(𝜅1)

𝑓2 =
𝐾1(√𝑢2−𝜅21)

√𝑢2−𝜅21𝐾0(√𝑢2−𝜅21)

with 𝑢 = √𝑘20𝑎2 (𝑛21 + 𝑛22) (5.1)

Figure 5.1: Functions 𝑓1 and 𝑓2 from equation (5.1), plotted against 𝜅1.

From this figure, it can be seen that the first intersection is around 2.5 and the second near 3.5. With
the ’nsolve’ command from sympy, the solution of nonlinear equations can be estimated numerically
in Python. This is used to compute the value of 𝜅1. When 2.5 is given as a start estimate for 𝜅1, the
value of 𝜅1 ≈ 3.82 is found, so the intersection at 2.5 is not found. This raises the question if there is
an actual intersection. The function seems to have a jump discontinuity here. Looking at the Bessel
functions in Figure 3.3, it can be seen that 𝐽0 = 0 around 𝑥 = 2.5. This is the cause of the discontinuity.
With the value 𝜅1 ≈ 3.82, the results of the norm of the electric field are plotted and shown in Figure
5.2. For convenience and without loss of generality, the field is calculated with 𝐵1 = 1.
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Figure 5.2: The analytical solution of the norm of the electric field (V/m) for the step-index fiber with 𝜅1 = 3.82,
made with Python. For a fiber with the 𝑅, 𝑎, 𝑛1, 𝑛2 and 𝜆 that are specified in Figure 4.2.

This mode is confined to the core, which is to be expected as the result of total internal reflection. For
small enough angles, the light is totally reflected at the interface, according to Snell’s law.[18]

5.2. Comsol
5.2.1. Simple Fiber
The modes of Fiber A from table 4.1 are computed according to the steps from Chapter 4.2. It took 15
seconds to compute the study. The data of the electric field for all 16 modes is exported from Comsol.
Python is used to plot the modes from this data, see the Appendix, Figure A.3. This shows the norm
of the electric field. The absolute value of the electric field in the direction of propagation is illustrated
in Figure A.4 and absolute value of the magnetic field in propagation direction in Figure A.5.

From these figures, it is expected that modes 1, 2, 3, 4, 7, 8, 12, 13, 15 and 16 are TE modes, as
they do not have an electric field in the 𝑧-direction. Mode 11 has a very small, but not negligible electric
field. Modes 5, 6, 9, 10 and 14 have no magnetic field in the propagation direction. Therefore, these
modes are probably TM modes. Oddly enough, mode 11 has a significant electric and magnetic field
in the propagation direction. However, if the norm of the electric field of mode 11 is compared to mode
10, these are similar, but rotated over an angle. From this, it can be expected that mode 11 is a TM
mode like mode 10.
It can be noticed that all modes are shown twice, but rotated over an angle, except for mode 9 and
10. This might be, because mode 9 and 10 have cylindrical symmetry. For the other modes, the two
matching modes correspond to two different polarisations. With a superposition of these two polarisa-
tions, all other polarisations of that mode can be made.[15]

These simulated modes from Figure A.3 can be compared to the earlier results of the analytically
determined modes from Chapter 5.1.1, Figure A.1 and A.2. It can be seen that modes 1 and 2 have
the distribution of the TE12 mode. Mode 3 and 4 do not match any of plotted TE or TM modes. They
have a similar form as the TE21 and TE31, but with a total of eight azimuthal maxima instead of four
and six respectively. From this, it can be assumed that mode 3 and 4 are TE41 mode. So modes 1,2,3
and 4 are indeed TE modes as expected from the electric field in the 𝑧-direction. Mode 5 and 6 match
the TM21 mode, 7 and 8 with the TE31 mode. This is also in line with the earlier remark that mode 5
and 6 are TM modes and mode 7 and 8 are TE modes. Mode 9 is the TE01 mode, mode 10 and 11 are
TM11 modes. This confirms the assumption that 11 is a TM mode like 10, but still raises the question
why the magnetic field in the propagation direction is so large. Mode 12 and 13 have the same field as
TE21 mode, mode 14 is a TM01 mode and mode 15 and 16 are TE11 modes.
It can now also be noticed that the modes that are not shown twice, mode 9 and 14, are all the modes
with m = 0. These fields have only a transverse electric field in the 𝑟 direction or 𝜃 direction for TM and
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TE modes, respectively.

5.2.2. Step-index Fiber
The results of the study of Fiber B from table 4.1 are displayed and discussed here. The results are
obtained following the steps from Chapter 4.3. It took 16 seconds to compute this study. The data is
again exported from Comsol and Python is used to plot the fields. Figure A.6 shows the norm of the
electric field. Figures A.7 and A.8 show the absolute value of the electric field and magnetic field in the
𝑧-direction, 𝐸𝑧 and 𝐻𝑧 respectively.

The fields of all fibers are contained inside the core, as is expected from total internal reflection. The
modes all seem to have an electric and magnetic field in the propagation direction, which means that
these are hybrid modes.

Figure 5.3 shows a comparison between the analytical solution from Chapter 5.1.2 and the seventh
Comsol mode. Both are evaluated over the 𝑥-axis, so 𝑦 = 0. For the Comsol result, this is done with a
2D cut line. This means that the solution is given for points on a chosen line, in this case the line 𝑦 = 0.
The analytical solution is just calculated for 𝑦 = 0. Both the results are normalised by dividing by the
maximum value, which means that the maximum will be one. The plot is made in Python.

Figure 5.3: The analytical solution of the norm of the electric field for the step-index fiber, Fiber B from Table 4.1
at 𝑦 = 0 and norm of the electric field of the seventh Comsol mode from Figure A.6 also at 𝑦 = 0, both plotted
against the 𝑥-coordinate.

From this figure, it can be seen that the Comsol result and analytical solution match. Figure 5.4 shows
the error of Comsol compared to the analytical solution. This is the absolute value of the difference
of the normalised functions. There is not a big difference between the two results. There are small
differences around 𝑥 = −4 ⋅ 10−5 m and 𝑥 = 4 ⋅ 10−5 m. This is at the interface of the two media,
𝑟 = 𝑎. This could be a result of the way that FEM calculates the field near the boundaries. However,
the Comsol simulations all seemed to be hybrid modes and this one matches with the analytical TE
mode.
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Figure 5.4: The absolute value of the difference between the normalised analytical solution and the normalised
Comsol solution of the step-index fiber, Fiber B from Table 4.1.

5.2.3. Photonic crystal fiber
The modes of Fiber C from Table 4.1 are computed by taking the steps from Chapter 4.4. It took 20
minutes and 41 seconds to compute the study. This is much longer than the simulations of the simple
fiber and step-index fiber. The mesh of the photonic crystal fiber contains more elements than the
meshes used for the simple and step-index fiber. This causes the large difference in computation time.
The norm of the electric field is plotted for all modes with Python,[14] see Figure 5.5. Table 5.1 shows
the attenuation for the different modes.

Table 5.1: The attenuation constant per m in dB for the six modes from Figure 5.5.

Mode 1 2 3 4 5 6
Attenuation (rad/m) 5.253 ⋅ 104 5.253 ⋅ 104 1.375 ⋅ 104 1.375 ⋅ 104 5.786 ⋅ 102 1.142 ⋅ 101
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Figure 5.5: The norm of the electric field of the first six mode of fiber C from Table 4.1 that are computed with
Comsol.

These modes are not concentrated in the core of the fiber as desired and shown by Wan et al.[31]
Instead, a large part of the electric field exists in the cladding, which is not desirable for gas sensing.
From Table 5.1, it can also be seen that the attenuation is very large. Therefore, the calculated modes
will not propagate. After multiple tries to find propagating modes, Comsol support was contacted. They
indicated that the simulations with this geometry are not reliable and this geometry should not be used.

The second photonic crystal fiber that is simulated is Fiber D from Table 4.1. The modes are computed
in Comsol with the steps from Chapter 4.4. The computation took 14 minutes and 23 seconds. Python
is used to display the norm of the electric field, see Figure 5.6. The attenuation for these simulated
modes is shown in Table 5.2.

Table 5.2: The attenuation constant per m in dB for the six modes from Figure 5.6.

Mode 1 2 3 4 5 6
Attenuation (rad/m) 1.579 ⋅ 103 1.579 ⋅ 103 8.027 ⋅ 101 2.857 ⋅ 101 5.443 ⋅ 10−1 5.444 ⋅ 10−1
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Figure 5.6: The norm of the electric field of the first six modes computed with Comsol for Fiber D from Table 4.1.

In this case, there are modes that are largely confined to the core, mode 5 and 6. The attenuation
for these modes is also smaller than 1, so these modes do propagate. In general all modes for this
fiber, Fiber D are much more confined to the core than the modes from Fiber C from Table 4.1, that are
visible in Figure 5.5. The modes shown in Figure 5.6 are the desired modes, that are expected from
a photonic crystal fiber.[31] When a gas sample is added inside the hollow core, the light can interact
better with the sample. As the electric field is almost completely confined inside the core, the intensity
of the light will be higher. The low attenuation means that the light can travel over a long distance inside
the fiber, which realises a longer interaction length with the gas sample.

5.2.4. Three layer step-index fiber
The attenuation of the three layer step-index fiber, Fiber E from 4.1 is computed according to the steps
from Chapter 4.5. It took 13 min and 46 second to calculate the six modes for Im(𝑛𝑒𝑓𝑓) = 0.9. This is
not much faster than the computation of the modes for the photonic crystal fiber.
The attenuation was calculated for all six modes for all eleven values of the imaginary refractive indexes
from the parametric sweep from 0 to 1 with steps of 0.1. Table 5.3 shows the minimum attenuation for
all the different refractive indexes over the six modes.

Table 5.3: The minimum attenuation constant per m in dB for the different imaginary parts of the refractive indexes
𝑛𝑒𝑓𝑓 for Fiber E from Table 4.1.

Im(𝑛𝑒𝑓𝑓) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Attenuation (⋅104 rad/m) 12.87 11.54 10.27 9.327 8.701 8.294 8.033 7.869 7.773 7.727 6.961
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It can be seen that the attenuation is very high and the modes will not propagate. The attenuation de-
creases slightly for higher values of the imaginary part of the refractive index. The norm of the electric
field for the modes with the lowest attenuation of refractive indexes Im(𝑛𝑒𝑓𝑓) = 0.9 and Im(𝑛𝑒𝑓𝑓) = 1
are shown in Figure 5.7.

Figure 5.7: The norm of the electric field for the three layer step-index fiber, Fiber E from Table 4.1, with Im(𝑛𝑒𝑓𝑓) =
0.8, 0.9 and 1.0 for the mode with the lowest attenuation.

The field of the mode with Im(𝑛𝑒𝑓𝑓) = 0.8 looks more like the field from the photonic crystal fiber than
the other two modes. All the modes are confined in the core, but the modes from Im(𝑛𝑒𝑓𝑓) = 0.9 and
Im(𝑛𝑒𝑓𝑓) = 1.0 do not have the maximum in the center of the core. For gas sensing this is not desired,
as the field should be mainly focused in the center to have a high interaction rate.

A second parametric sweep is computed to see if the attenuation decreases even more for higher
values of Im(𝑛𝑒𝑓𝑓). The minimum attenuation for each Im(𝑛𝑒𝑓𝑓) of the six calculated modes is dis-
played in Table 5.4.

Table 5.4: The minimum attenuation constant per m in dB for the different imaginary parts of the refractive indexes
𝑛𝑒𝑓𝑓 for Fiber E from Table 4.1.

Im(𝑛𝑒𝑓𝑓) 10 20 30 40 50 60 70 80 90 100
Attenuation (⋅101 rad/m) 2478 293.0 86.45 36.45 18.66 10.85 6.830 4.556 3.214 2.343

The attenuation is again decreasing for increasing Im(𝑛𝑒𝑓𝑓). The decrease becomes slower as Im(𝑛𝑒𝑓𝑓)
gets higher. Figure 5.8 shows the mode of Im(𝑛𝑒𝑓𝑓) = 100 with the lowest attenuation 23.43 rad/m.
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Figure 5.8: The norm of the electric field for the three layer step-index fiber, Fiber E from Table 4.1, with Im(𝑛𝑒𝑓𝑓) =
100 for the mode with the lowest attenuation.

This mode is not exactly the same as the mode in the photonic crystal fiber (Figure 5.6), but it does
have a maximum intensity in the center of the fiber.





6
Conclusion

6.1. Simple fiber
The analytical equations for the electric field inside a simple fiber, that are derived in Chapter 3.2,
match with the fields found by E. Jensen.[15] The modes of the simple fiber, that are simulated with
Comsol, have similar distributions of the electric field norm as the analytical result showed. However,
Comsol seems to show all TEmn and TMmn with𝑚 ≠ 0 twice. This could be because of the polarisation
direction. With two different polarisation direction, all other possible polarisations can be made by a
superposition of the two. The electric field in the propagation direction is zero for all the TE modes, as
expected. However, there is one TM mode for which the magnetic field in the propagation direction is
not negligible. It is recommended to look further into what exactly Comsol does to compute the modes

6.2. Step-index fiber
The analytical equation for the step-index fiber matches with the simulations for the step-index fiber
that were computed with Comsol. The Comsol solutions were all hybrid modes. However, at least one
of the modes matches with the analytically calculated TE mode. This again confirms that the field in
the direction of propagation that Comsol gives, might not be correct or should be interpreted differently.
The Comsol solution has a slight derivation from the analytical solution at the interface between the
two layers of the step-index fiber. This could be the result of the meshing at the interface. In that case
mesh refinement techniques can be used to get better results. One option is to reduce the element
size.

6.3. Photonic crystal fiber
It was not possible to simulate the HC-1550-02 photonic crystal fiber with Comsol, as was done by B.
Wan et al.[31]. The modes that are simulated for this fiber are not confined in the core and have a
very large attenuation, which indicates that they will not propagate. The lowest attenuation that was
found for this fiber was 1.142 ⋅101dB rad/m. It is advised to simulate a different photonic crystal fiber as
Comsol also was not able to produce a working model. Therefore, a similar fiber is used that is based
on an article from K. Saitoh and M. Koshiba.[30] For this fiber a mode with an attenuation constant in
dB per meter was found of 5.443 ⋅ 10−1 rad/m. This mode was largely confined to the core. From this
it can be concluded that this fiber indeed has modes that propagate and are confined inside the core.
This is useful for gas sensing, as a high interaction rate and long interaction length between the gas
and the light can be realised.

6.4. Three layer step-index fiber
The goal was to find a three layer step-index fiber with a similar mode as the photonic crystal fiber.
The norm of the electric field is calculated with Comsol for a variation of refractive indexes for the
middle layer. Especially, the imaginary part of the refractive index is varied. The results showed that
the attenuation is very large for all modes with imaginary parts between 0 and 100. However, the
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attenuation decreased with increasing imaginary part of the refractive index. The attenuation constant
in db per m was still too high for the mode to propagate, namely 23.43 rad/m. The attenuation constant
might be low enough for even higher imaginary parts of the refractive index. However, it is questionable
if it is possible to ever realise a medium with such refraction index.
For further research, it is advised to estimate the refractive index of the middle layer on the structure
of the air holes in the cladding of the photonic crystal fiber, for example by determining the effective
refraction index of the photonic region. Besides this, it is wise to gather more information about complex
refractive indexes. In this research, only the imaginary part of the refraction index of the middle layer
is varied. It could also be beneficial to look into the influence of the real part of the refraction index or
the radius of the middle layer.
In general, it could be beneficial to be able to estimate the modes of photonic crystal fibers with the
modes of three layer step-index fibers. The computation time in Comsol is not much faster for the three
layer step-index fiber that was used, but it would be possible to analytically calculate the electric field.
In this report the analytical solution for the simple fiber and step-index fiber are derived. This could also
be done for the three layer step-index fiber, which means that an analytical estimation of the electric
field inside photonic crystal fibers could be made.
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Appendix

A.1. Simple fiber analytical
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Figure A.1: Analytical solution for the TEmn modes of the simple fiber, Fiber A from Table 4.1, plotted with python.
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Figure A.2: Analytical solution for the TMmn modes of the simple fiber, Fiber A from Table 4.1, plotted with python.
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A.2. Simple fiber Comsol

Figure A.3: Results from the Comsol simulation for the norm of the electric field in V/m for the first 16 modes of
Fiber A from Table 4.1, plotted with Python[14].
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Figure A.4: Results from the Comsol simulation of the absolute value of the electric field in the direction of propa-
gation 𝐸𝑧 in V/m for the first 16 modes Fiber A from Table 4.1, plotted with Python[14].
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Figure A.5: Results from the Comsol simulation of the absolute value of the magnetic field in the direction of
propagation 𝐻𝑧 in A/m for the first 16 modes Fiber A from Table 4.1, plotted with Python[14].
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A.3. Step-index fiber Comsol

Figure A.6: Results from Comsol simulation of the norm of the electric field in V/m for the first 9 modes of Fiber B
from Table 4.1, plotted with Python[14].
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Figure A.7: Results from Comsol simulation of absolute value of the electric field in the propagation direction 𝐸𝑧 in
V/m for the first 9 modes of Fiber B from Table 4.1, plotted with Python[14].
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Figure A.8: Results from Comsol simulation of absolute value of the magnetic field in the propagation direction 𝐻𝑧
in A/m for the first 9 modes of Fiber B from Table 4.1, plotted with Python[14].
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