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Abstract

The linearized theory of ship motion among waves with forward speed assumes
smallness of two parameters, i.e. the wave steepness ratio and the ship slender-
ness ratio e. There are other parameters, however, which govern the flow field.
They are frequency parameter and Freude number U/'/gl. As the relative
order of magnitude between each parameter changes, the leading term of the
inner solution for the fluid motion changes accordingly. Discussions are given
concerning the following cases. Case 1. vv'7=O(1), UJÏ=O(1) Case 2. cev'17g

O(eI-), U/.J7=O(1) Case 3. U//7=O(hI) Case 4. w'7O(1),
Case 5. û'i7=O(l) . O(eI) &7i=O(e'I).

1. Introduction

A mathematical analysis of the fluid motion around a ship moving at a free
surface stands in need of the linearization of boundary conditions, in particular
at the free surface. In the case of steady forward motion, the linearization can
be attained simply by the systematic expansion of the velocity potential in terms
of the beam length ratio or the slenderness ratio. Michell's thin ship theory' is
a typical linearized theory which is consistent by itself, and the slender ship
theory is another possihilit-. The fluid motion generated by an oscillating ship
without forward speed can be linearized b- means of the amplitude of the oscil-
lation, and there is no need of the restriction for the ship from. If, however,
once the forward speed is introduced to the oscillating ship, the consistent de-
velopment of the linearized theory turns to be rauch intricate. The difficulty in
finding out a rational solution which is not trivial was first demonstrated Uy
Peters and St.ol:er.n They showed that the hydrodynamic reactions such as the
added mass and damping do not appear in the order of approximation for a thin
ship oscillating in the piane of symmetry. There were extensive works by Haskind"
and Hanaoka' about thin ships in longitudinal oscillations in still water before
that time. A full condemnation of these achievements by reason of inconsistency
may not be fair, because the consistent structure of theory breaks down on account
of just a single reason of the inclusion of the steady forward velocity, or more
specifically, the velocity potential of the steady forward motion, and the thin ship
theory is consistent at zero forward speed. Moreover it can give a right expres-
sion for the roost important portion of the hydrodynaroic reaction, the damping,
as was shown by the rigorous argument oi ewrnan. The main difficulty in the
oscillating thn ship with forward velocity lies in the fact that the disturbance
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gererated by the periodical motion of the ship is weaker than the dIsturbance due
to the forward motion, but the enpIoymerìt of two independent parameters, namely
the motion amplitude and the beam length ratio, could remove the above trouble.
More serious difficulty appears when the ship is moving in ambient waves. Cross
products between the velocity of the incident waves and that due to the steady
forward motion appear in the same order of magnitude as that of the fluid motion
due to the oscillation. It gives the free surface condition much compUcation. If,
on the other hand, the assumption of the slender ship is employed, the order of
magnitude of the horizontal motion is higher than that of the vertical motion,
with respect to the slenderness ratio. Therefore the eect of the stedy forward
motion does not appear in terms of the lowest order in the far field expansion.
The effect of the steady potential may appear in the lowest order in the near field
expansion, but the solution is not so formidable. It is rather strange that we
cannot find any discussion so far, except one by the present writer, on the
systematic development of the slender ship theory when the ship is moving in
ambient waves with finite forward speed. The first order solution can be found
in a neat form, if the wave amplitude and the slenderness ratio are taken as
independent parameters to make the systematic expansion. The trouble of the
simple siendr ship theory appears in another aspect. Some numerical computa-
tions7 have revealed that the hydrodynamic forces calculated by the theory show
much deviation from actual phenomena in roost parts of the frequency range of
practical interest, and the validity of the slender ship theory is limited in the
ease of very low frequency.

It is widely known that the calculation by the strip theory has given results
which show a reasonable agreement with measurements." It is known also that
the strip theory ìs a rational approximation for slender ships oscillating in still
water with high frequency but without forward speed. The high frequency means,
on the other hand, that the ship is excited by the force of incident waves whose
length is comparable with the beam of the ship. However the problem of practical
importaTné dóés not concern such ashort wave case, but discussions in the practical
field are directed mostly toward the case that the wave length is nearly same as
the length of the ship. Therefore we cannot be satisfied by the apparent agree-
ment between the measured results and those by the strip theory. Another

problem is the effect of the forward speed. The effort of Ogilive and Tuck" to
find out a rational basis for the inclusion of forward velocity in the strip theory
is rather painstaking.

One can turn to the three-dimensional slender ship theory and try to find out
its possibility to give a right result in the case of moderate and high frequencies.
To do this, the frequency must be regarded as a parameter of changing order of
magnitude. The forward speed is another quantity of which the order of mag-
nitude must be exar'ed. It is not intended, in the present vork, to find out

any explicit formulae for the solution of the slender ship theory, but discussions

will be focused on the possibility of consistent linearized theory when tE frequency

parameter w"77 and Froude number Uh t change their order of magnitude.
The simple slender ship theory stands on the assumption that these parameters
both are of the order of unity. It is known by the works of Vcssers and Joose&1'



DiscusEions of Relative Magr.itude 13

that the simple strip theory is valid when O(_1), UI'i=O(11), vhere
is the slenderness ratio. Ogilive and Tuck discussed the case, w7=Q(1),

U!'. gl=(1). A non-linear effect appears in the same order as the effect of forward
speed. The latter two cases are short wave problem but the motion of the am-
bient wave was not given a due consideration.

The present paper intends to elucidate how the choice of the order o mag-
nitude of thcse parameters affects the perturbation scheme and to what. extent the
linearization of the boundary condition is valid.

2. Expansion of boundary conditions by small parameters.

The problem which ve are going to discuss is a slender body floating on a
regular wave and moving with a uniform average spoed U in the mean direction
of its longitudinal axis. In the most general case, the direction of the forward
velocity and the direction of wave propagation differ each other and the body or
the ship makes oscillations of six-degrees of freedom around its mean position.
To discuss the whole problem in a linearized scheme, the primary requisition is
the small amplitude of oscillation. Since the ship's oscillation is excited by the
action of the incident wave, the small amplitude of the wave is the basic premise,
but the linearization of the fluid motion in regular waves needs a condition that
the wave amplitude is much smaller than nothing but the wave length. There-
fore the ratio of the wave amplitude t.o the wave length It/. is the basic parameter.
One can employ, instead of the above ratio, the maximum wave slope Kh, where
K is the wave number Then let us define a small parameter ö=Kh for the
use of the discussion of the order of magnitude. It must be noted that the order
of magnitude of the wave amplitude changes as the order of the wave number
changes. The definition of the long wave or thort wave is based on the compari-
son with the length of the ship 21. Therofore the order of the vve number or
fretuency parameter is related to the dimensionless coefficient K1=2J2 or w' 1/g.
One may put i1, when there is no confusion, because i is regarded as the re-
ference length in the whole system. Since the oscillation of the ship is excited
by the action of the wave, the amplitude of the oscillation has the same order of
magnitude as that of the wave amplitude. The velocity of the fluid motion
generated by the oscillation of the ship is of the same order as the oscillatory
part of the velocity of the ship's surface, which is of the same order as the
velocity of the orbital motion of the wave. Therefore the whole system can be
ljnearized by a single parafer 6, if the steady forward motion does not exist, and
no restriction is imposed ori the shape of the shjp. If the ship has a steady
focard speed, on the other hand, a restriction must be imposed on the shape of
the ship, in order to make the disturbance due to the forward motion small. The
slender ship is assumed in the present discussion.

The ratio of the beam to the length, denoted by , is much smaller than
unity and the ratio of the draft to the beam is of the order of 1.

The small parameters 6 and L are utterly independent of each other.
The perturbation method assumes the possibility of expansion of the velocity

potential in series of ascending power of 6 and s. Since ô is independent of s,
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the expansion can be done first with respect to ô.
The first term which is independent of ô gives the case when the ship moves

with unifo velocity on still water. Te linearized theory takes terms up to
the first order with respect to ô. Then the term which is linear to ô is simple
harmonic and gives the oscillatory part of the velocity potential. Next one may
expand the above portions of the velocity potential, already linearized by ô, by the
slenderness ratio r. There is a term which is independent f r in the oscillatory
potential. It gives the incident waves which may be assumed as simple harmonic.
The other part gives the disturbance by the ship.

Consider a relative motion with respect to the coordinates moving with the
average forward velocity U, and take the axis of r in the direction opPosite to
the uniform velocity. Then the velocity potential can be written in the form like
Ux+6, and ç satisfies the Laplace equation.

OI ô11- 02
r -- r- (1)

in the space occupied by the fluid. The boundary conditions satisfied by the
velocity potential are those on the ship's surface and on the free surface. If the
depth of water is assumed infinite, the conJition at the infinity is that the fluid
velocity due to the disturbance by the ship vanishes there and the fluid motion is
just the sum of the uniform flow and the incident wave. The radiation condition
at a great distance should be considered too. The boundary condition at the ship's
surface is

ôt \, ôx/ôx ôz ôz ôy

at
y=f(x, z).

The latter equation gives the expression for the ship's surface in reference
to the coordinotes fixed in space. Now we assume, for simplicity, that the ship
makes heaving and pitching in longitudinal waves. Designate the vertical position
of the center of gravity by Z and the pitching angle ç (positive for bow up), and
take coordinates (xe, Yo, z fixed to the ship. Then the relation between coodinate
systems (z, y, z) and (r0, Yo, z0) is

X0=rX cos 45(zZ) sin ç

Yo = Y

z=x sin )±(zZ) cos ç5

The equation of the ship's surface in reference to the coordinates (.r0, yo. z) can
be written as

y0=f0(r, z0) (5)

Assuming Z and ç5 as quantities of the order of ô, and omitting terms of higher

I

(4)
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Since iì:=Q(r), the above relation results
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order, we obtain

6f 6f0
6t 6r

6f ¿:;f 6f0
&X OX0 0Z0

6: 6z 6x0

where dot means the time-derivative. Then eq. (2) becomes

(Zx) (uV -'° .tT ,

ox0 oz0 \ oX

(6)
o: \o2 OX0 J cy

If we pick up terms which are independent of time, ve obtain the boundary con-
dition for the steady potential, denoted by U

/ . 6ç0 \ 6f0 6f0
j i -i-- - I -;---- r- 2 --- -\ OX / 0X oz 0:0 O/

Take length n along the outward normal to the ship's surface, and denote the
direction cosines of the normal n, , v. Then the above equation can be
written in the form

(S)
On

Now let us examine the order of magnitude when the ship is regarded very
slender. n means the slope of the ship's surface, so that its order of magnitude
is the slenderness ratio r. Since the disturbance v5lccity potential is singular
along the Y-axis, the differentiation of the velocity potential along the normal
changes the order of magnitude by This fact can be shown materially by
the employment of so cafled strained coordinates' which measure lengthwise
direction and lateral direction by different scales, such as y!!., b, :15, where ¿ is
the half length and b is the half breadth of the ship. This procedure is well
known and we shall not repeat it here. Therefore the relation between the order
of magnitude of and that of 60/&n is
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The oscillatory part is composed by the incident wave potential , which is in-
dependent of , and the oscillatory disturbance . The former can be regarded as
a given function. Now let us examine the order of magnitude of each term of
eq. (6). It is easily understood that fO(c), zQ(), 6f'6r=O(), 8fc!&z0_1O()
=0(1) 3ô/3x=0(), '6y=Q()=O(:), 6,6z=O() 661J6x=O(ç1), ô/3y=3/3=1Q(5).

Sorne consideration is needed as to the derivative of
We can express the regular wave by the velocity potential

=h'Äexp [KziK(x eQs a+y sin o)iwl. (9)

This potential means a regular wave of amplitude 1? and wave length ,=2;K,
propagating in the direction, making an angle a with the x-axis. Since the co-
ordinates are moving with the ship, o means the circular frequency of encounter,
and the absolute frequency is given by

O))W UK. (10)

There is a relation between the wave number and the frequency as follows.

Kw3;g=(w UKY/g (11)

The order of magnitude of w or K may not be unity, so that one needs to include
these quantities in the argument of the order. It can be assumed that the am-
plitude of ship's oscillation is of the same order of magnitude of the wave am-
plitude, but the frequency of the oscillation is not the frequency of the ware w3
hut the frenuency of encounter w. The wave amplitude h is the order of 31K, so
that the velocity of the oscillatory motion of the ship has the order w6K1. The
fluid velocity of the incident vare has, on the other hand, has the order 6K-".
They are not necessarily c the same order. Keeping these facts in mind, we
examine the order of magnitude of the oscillatory part of eq. (6). Taking the
first order terms with respect to 6, we obtain

zx)± Uç±U9- °ç'
8.r0 O OX QZØ

+ °. . (ç5±ç)+
OX OX oz0 oz

-is_ °° =Q. (12)

\ oz0 oz oo: /
where the last term comes from the steady potential at time-varying position.
If we assume U=Q(1) and w=O(1), it will be found that =Q(3). Then taking
terms up to the order of ôz, we obtain

( xJ) ± U+ -
0Z0 0X0 CZ

±
CT3 OX \ OEZ3 O. OOZ /

(13)
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The term of the lowest order has the order of r. Consider the outward normal

to the sectional form of the hull in the plane perpendicular to the x-axis and

designate its direction cosines by , 1f r is omitted, the boundary condition

can be written in the form like

(-.''+ ')-i- - U(Z-x-)---(-) -- (14)

Assuming that ¿ and are given functions and shifting terms, we have

This is the boundary condition to be satisfied by on the hull surface. AH therms

are of the order cf ô. so that the order of magnitude of must be &. One can

divide the periodical potential Ó into a part determined by the oscillation oLthe.

ship and a part oricinated by the diffraction of the ambient w-ave. The former

one is the radiation potential , for which the boundary condition becomes

-=(xç± UÇ)+ U(Z -

while the latter is the diffraction potential , which

condition

Next let us consider the boundary condition
of the free surface is given by the equation

z=(x, y, t)

the kinematical condition there is

St Ç ôx i &x &y ôy ¿z

There is another condition that the pressure is constant on the
Eernouilli's theorem gives

u----
St Sx 2( 6x1 Sy) 6z)

These equations hold on the curved surface z=. Putting

66 . Só 1 (766 \ / 66
of. ox 2 \oZ/ \oy

free surface.

(15)

(16)

has to satisfy the boundary

(17)

of the free surface. 1f the form

(iS)

(10)

Then



Therefore eq. (19) can be written ici the form

d \ dF &á di dó di da-i-- - -- --- -r g---- =0.
JciX 03f 03f 02 CZ CZ

This is the exact non-linear form of the free surface condition. Let us examine
the Order of magnitude iii the aear field, bearing in nird ti-he fact that the
differentiation with respect to y or z changes the order by ¿W', owing to the as-
sumption of the slender ship. We have written the velocity potential in the form
like

Inserting in (2:) the abve decomposition of the potential, and pickingup the
time-ir.dependent part, we obtain

&:6 ±24±()± +-±O()=0, (24)
0x OXQ3f 03f- 2 oL, \ 03/ cx o- Li 02

Then term of the lowest order is (g, U)d.'d: which has the order of e. There-
fore the free surface condition for the steady potential of the lowest order is

or,.,_L_. =0 at z=0,
02

that is idencal with the condition of rigid wall. We cannot proceed to the next
order without handling the non-linear terms in the free surface condition. Let us
examine next, the periodical part of the free surface condition, that can be written

° +2U +U-±g--f-2U
ut otox oX- 02

+2U2.,° P'
0X03] 03/ oy\oyl dy

-- (-- ±
d3f \.5t dx J dy

u2í'xY\oy/ 09-

and we have the rigid rall condition again.

(2

(25)

(27)

c: \ ot ox J t ox 2 \ 03f / j 02

- u : (- ± (26)

Tle lowest order term is of the order of 5 arid the next one is of the order of
8e. Thotgh these are linear with respect to , if and are assumed to be
known functions, the non-linear effect appears in the form of product terms of
61 and ó. which make the boundary value problem unpractical. If only the term
of the lowest order is taken, the free surface condition for the radiation potential
becomes

's H. M.aro
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The free surface condition in the far field takes a different form from the
above, because the differentiation with respect to i' or z does not affect the order
of magnitude. Therefore the leading term of the equation gives simply the
linearized boundary condition as follows,

6x c'±2i -i-L-- rg=0, atz=0. (2)
at oOX 0Ç CZ

For the periodical xncon with circular frequency w, we can write =C" and
the boundary condition becomes

r' üfi1 &Ç33ürÓ-r2sLiw rL» ,.
OX OX- CZ

The Green function for this boundary condition is known and is expressed by

, , 1 ]G(x, y, z; a', , , z ) - - -
r1 T:

-!--
\d7?1 'dn exp [_1y_l/I/m__n2±m (XX1)]

x{cos ('nz+) cas (nz'--)--- cos nz cos flz)/./m+n2

+ -- exp I(z±z')(nì J_yPl/m2_(iui U-+-w)41Q2

ini (x')](m. T±w)I.'m - (in U±w)11'g , (30)

where

r1= (X_x)!+(y_yl)+(z_z)

z=(niU+w)Ìgn
and the radical of imaginary in the last integra) takes an appropriate sign in
accordance with ti-e radiation condition. The outer solution is expressed by means
of this Green function.

3. Some cases when order of magnitude of the frequency porameter and/or
the Froude number changes.

We discussed in the preceding section the boundary condition when the fre-
quency arid the forward speed are assumed to be of the order of unity. As
mentioned before, however, the order of magnitude of these quantities can be
different from unity. Then the boundary conditions will take another form.

Here we will discuss five cases.
Case 1. colg=O(1), U;=O(1)

This is the case discussed in the previous section, ar.d the result by this

(29)



ass.:mption may be called the simple slender ship theory. The free surface con-
dition in the near field is

at z=O. (31)

If we divide the periodical potential ç in the radiation potential and the dif-
fraction potential . we have again the rigid wall condition for R as eq. (2T).

Becauso of the relation for the surface elevation namely

r g .t
the condition for the diffraction potential can be written as

u; at :==0 - (32)

This boundary condition at the plane z=0 can be transformed to the boundary
condition on the hull surface. If ve put

it satisfies the rigid wall condition

=0, at :=0. (34)
oz

The boundary condition for on the hull surface becomes

-i =(±x± UÇ),±U(Z xv') -- (--
o._ OJ \0Z

(35)
o \oz

In the case of a slender ship on longitudinal w.ves, one can write

\at ax
zw.

Therefore the bouudary condition for on the hull surface can be written

.-=.,(_- + U - (36)

It is interesting to observe that the above equation means the condition as if
each section makes a movement of vertical displacement Zx'-- which is the
deviation from the wave surface.

The boundary value problem with boundary conditons (36) ar.d (34) can be
solved without diculty in the twoimensional motion. If we designate the

20 H. MARt.0

-- (33)
oz
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solution by the velocity potential P is given by

000çp2°Li-------rg(x),
oz

where g(r) is funìction of r only, which can he determined by means of match-
ing with the outer solution expressed by the Greeen function (30). We cannot
take account of the term of next order in the free surface condition, without
handling the non-linear effect.
Case 2. 77Q(g_1/:), LTO(1)

This is the case of high frecuency arid high speed, which was discussed by
Ogilvie and Tuck. The relation between the wave length and the ship's length
is ¿/2l=k1=O(»:). Therefore the wave length is not very short in comparison
with the ship's length. The wave height is of the order of ö' and the velocity
of the orbital motion is 5, so that the order of çf is Sc.

If we take up to the order of öcl! in the free surface condition, the condition
for the radiation Potential 6R becomes

OpO2c0
o»ç5 oz oox oy otoy oz ot

The first two terms are of the order of ô and the others are of the order of
Sr»!. If only the terms of the lowest order are taken, the linearized free surface
condition

526

ut Sz

is obtained. The effect of the forward speed cannot be taken into consideration,
unless quadratic terms which are the product of the steady potential and the
radiation potential can be handled. The outer solution is expressed by means of
the Green function defined by (30) such as

ç -e' dx'm(x')G(x, y, z; f, (1,0) (40)

Taking an asymptotic expansion for large w, the double integral of the third
term on the right hand side of (30) becomes 2;r, while the last term becomes

- -exp [(z+z')(m U±w)giIy--(m

,+e-1,--1,'I),j9 Ç 5 1±(z±z'iyy') 2wUnL
1re 'd7n . -

g g)
Therefore Touries integral theorem gives

RCt'c{n(x) ±(z+iyI)2° m'(x)} . (41)

The first term in the parenthesis means a plane wave propagating in the y-

21

(37)

(39)

9
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direc:ion and gives the twoimensional motion in the piane perpendicular to the
-axis, but m'(x)=dm(xh'd.x in the second terms means that the interference exis:s

betwen different sections. Therefore the boundary value problem cannot be
formulated by tile two-dimensional form. If only the term of the lowest order
is taken, the boundary condition takes a simple form for which the two-dimensional

solution is valid. The effect of the forward speed appears in the higher order,
and can be expressed as a correction term which will be added to the result of
the strip theory. Ogilvie and Tuck were able to give compact expressions for
the correction terms to hydrodyr,amic forces and moments. According to them,
the effect of forward speed does not appear in the added mass and damping but
appears only in the coupling terms between different modes of oscillations.

Case 3. W\ f_Q(::) Uh i=Q(')
This is the case of short wave such that the wave length is of the same

order as that of the breadth of the ship. In this case the order of mag:litude
of ó is The free surface condition for the radiationpotential becomes

at :=0, (42)
ot ax

up to the order of ö. The next term is of the order of 5Z', in which the
effect of the forward speed appears with the quadratic terms. Therefore the
forward speed cannot be taken into account by the linearized theory. The asymptotic
forrì for the outer solution takes the form

2i
ÇR e' 'n(x)

g

that means out-going plane waves, so that the motion is purely two-dimensional
and the strip theory without forward speed is valid. However the strip theory
is not applicable to the diffraction potential because of the short wave length.

Case 4. O)\ l/g=O(1), U/'gl=O()
The wave length in this case is comparable with the ship's length, and the

forward speed is not so high. Since the Froude number of ordinary ships is not
rauch higher than the order of 0.3, the speed parameter Ugt is of the order of
10. Therefore the present case corresponds to the ordinary ships in waves of
moderate length.

The order of magnitude of the radiation potential is ô but the effect of
forward speed appears in the term of the order of öc'2. The lowest order term
in the free surface condition has the order of 5 and the next order is ô. If we
take up to the order of òz, the free surface condition in the near field becomes

Ç1 ±g-±U,-=0, atz=0. (44)
at o; oz

The quadratic terms appears in the higher order of Ö', so that the radiation
potential satisfies the linearized free surface condition without forward speed, eq.
(42), and the free surface condition for the diffraction potential can be transformed
to the boundary condition on the hull surface as was shown before. Because of

(43)

i)
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the assumption of the slender ship, the velocity po:ential of the lowest order in
the near feld takes the form

(45)

where is the two-dimensional potential function. Therefore the boundary
condition on the hull surface does not rdate to the threeimer.sioa.! part se long
as the lowest order term is taken. However the three-dimer.sior part has an
effect in the term of the order Lgher than the lowest one by s. The free surao
condition (-t4) involves the terms of this order. Therefore the consistent approxi-
mation must involve the three-dimensional effect. The effect of the fùrward speed
in the three-dimensional portion is of still higher order, s.o that it need not be
taken into account. The three-dimensional part of the inner SOlUtIOn is deter-
mined by matching with the outer solution, and the resulting expression takes
the form"

=)_e'[?(x)(1_i_Kz)(I--)--- -- (1--Kr)

X In (2Klxx'!)dx'-K(1±Kr) in(x')

<{H(Klxx'l)± Y(K!x__x'D±2iJc(Kx_x'i){dxl], (46)

where ' is Euler's constant, H3 is the Struve function, Y0 and J0 are Bessel
functions, and m(x) is the strength of the source term in the two-dimensional
potential. The free surface condition for the radiation potential is

-.-----Ä9R=O , at .z=0,
(-'Z

In order to deal with the free surface condition for the diffraction potential, the
auxiliary function ç' defined by (33) must be employed. It satisfies the free
surface condition similar to (47) and the effect of the forward speed is transformed
to the boundary condition on the hull surface, such as the last term of (35). The
method cf solution of the boundary value problem is similar to what is described
in the literature (12).
Case 5. w i=O1) - O(s), U/' i=O(53mn)

We have examined so far the cases in which c and U have definite order of
magnitude. Since however, these parameters have vider variation in general, the
discussion which holds only in a limited range of the parameters is not conveni-
ent for practical purposes. The Fraude number of conventional mcrchantile vessels
is not much higher than 0.3, so that the speed parameter U,'g1 is of the order
of 10 as in the previous case. However the wave length has a wide variation
from the same order as the ship's beam to the order of the ships length, and an
approximation which can cover such a wide range of freauencv is desirable. Let
us consider here a valid approximation in the frequency range from 0(1) to
The case w=01) is identical with Case 4. If ve change the order of w to s,

s

(47)
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the order of wU becomes unity and non-linear terms appear in the order higher
by e in the free surface condition. Since this is the order of terms which were
taken into consideration in Case 4, the linearized solution will become inconsistent
when w is increased to O(e"). If we take only the term of the lowest order.
the radiation potential is of the order of ò, and the free surface condition for it
is of the order of , namely

=0.
(48)

Conclusion

The principal aim of the present argument is to examine to what extent the
usual linearized form of the free surface condition of the form

$

t

The next term which has been omitted is of the order of ôi. The effect of the
forward speed in the radiation potential appears in the order of &' which still
satisfies the boundary condition (48). In Case 3, on the other hand, the term of
the lowest order in the radiation potential is of the order of which satisfies
the free surface condition

j 9R

i3z 6t2

If we employ the above equation as the free surface condition, it means that we
are taking account of terms up to the order of 5e312 in the radiation potential.
If, on the other hand, the order of w is changed towards unity, the second term
of (49) becomes the higher order. However it will not result in any harmful
effect, even if the second term in (49) is retained. The effect of the forward
speed, which comes from the boundary condition at the hull surface is involved
with the order of approximation when w=O(1), but will shift to the higher order
term of Q(52) in the Case of w=O('). The effect of the three-dimensional
motion appears in the order higher than the lowest order by e, so that it is out-
side the present order of approximation.

Thus the valid approximation in the present case is the two-dimensional
motion with the free surface condition given by (49), and the boundary value
problem can be solved at each section independently, that means the strip theory
is valid. The boundary condition on the hull surface is expressed by eq. (36)
which involves the effect of forward speed. hough the second term on the right
hand side may make some trouble, it is not the case in the calculation of hydro-
dynari1c forc and moments as long as the radiation potential is concerned, owing
to the theorem found br Tuck.

The above argument will provide justification of the strip theory by which
the effect of forward speed is taken into account. The strip theory may be ap-
plicable to the diffraction potential too when the wave length is not very short,
but further examination is needed, because it does not hold in the case of short
wave, as was mentioned in Case 3. -

(49)
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is valid, and the ordinary strip theory is applicable.
lt has been found that the possibility of the strip theory as a rational and

sell-consistent approxin.ation is rather limited. If the frequnev parameter and
the Froude number have denite order of magnitude, the strip theory can become

a consistent a1:proima(ion only when a ship is oscillating in still vater with high

frequency but with a forward speed which is not higher than the order of e.
The effect of the forward speed appears in the higher order term which can not
be included in the lineariced theory. If we need, however, a practical method
which is applicable to the range of wider variation of the frequency parameter,
the strip theory which involves the effect of forward speed can be regarded as a
lower approximation for the computation of hydrodyr.amic forces and moments

on an oscillating ship in still vater. Though this method is a weaker solution,
it still has a uniform validity in a wider range of varying frequency. This fact

may provide a justification for the good agreement between the measured result
and the computation by means of the strip theory.
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