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Parameters in the Problem of Slender Ships in Waves

By Hajime MARUOQ.
Department of Naval Arclitecture

Abstiract

The linearized theory of ship motion among waves with forward speed assumes
smallness of two parameters, i.e. the wave steepness ratio and the ship slender-
ness ratio e&. There are other parameters, however, which govern the flow field.
They are frequency parameter w~'l’g and Froude number U/+/gl. As the relative
order of magnitude between each pzrameter changes, the leading term of the
inner solution for the fiuld motion changes accordingly. Discussions are given
concerning the following cases. Case 1. o/[Jg=0(1), U/v/gl=0(1) Case 2.  wVIg
=0(-1F), U/vVgl=0(1) Case 3. w/I[jg=0(:), U/ gl=0(sF) Case 4. wi/llg=0(1),
UV gl=0(7) Case 5. wvIjg=0(1) = O(=1) U/ gl=0(5).

1. Introduction

A mathematical analysis of the fluid motion around a ship moving at a free
surface stands in need of the linearization of boundary conditions, in particular
at the free surface. In the case of steady forward motion, the linearization can
be attained simply by the systematic expansion of ‘the velocity potential in terms
of the beam length ratio or the slenderness ratio. Michell’s thin ship theory? is
a typical linearized theory which is consistent by itself, and the slender ship
theory is another possibility. The fluid motion generated by an oscillating ship
without forward speed can be linearized by means of the amplitude of the oscil-
lation, and there is no need of the restriction for the ship from. If, however,
once the forward speed is introduced to the oscillating ship, the consistent de-
velopment of the linezrized theory turns to be much intricate. - The difficulty in
finding out a rational selution which is not trivial was first demonstrated Ly
Peters and Stoker.® They showed that the hydrodynamic reactions such as the
2dded mass and damping do not appear in the order of approximation for a thin
ship oscillating in the plane of symmetry. There were extensive works by Haskind®

and Hanaoka® about thin ships in longitudinal oscillations in still: water before
that time. A full condemnation of these achievements by reason of inconsistency -

may not be fair, because the consistent structure of theory brezks down on account
of just a single reason of the inclusion of the steady forward velocity, or more
specifically, the velocity potential of the steady forward motion, and the thin ship

theory is consistent at zero forward speed. Moreover it can give a right expres- -

sion for the most important portion of the hydrodynamic reaction, the damping,
as was shown by the rigorous argument of Newman.” The main difficulty in the
oscillating thin ship with forward veloeity lies in the fact that the disturbance
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generated by the periodicz] motion of the ship is weaker than the disturbance due
to the forward motion, but the employment of two independent parameters, namely
the motion amplitede and the beam length ratio, could remove the above trouble.
More serious difficulty appears when the ship is moving in ambient waves. Cross
products between the velocity of the incident waves and that due fo the steady
forward motion appear in the same order of magnitude as that of the fluid motion
due to the oscillation. It gives the free surface condition much complication. 1If,
on the other hand, the assumptien of the slender ship is emploved, the order of
magnitude of the horizontal motion is higher than that of the vertical' motion,
with respect to the slenderness ratio. Therefore the effect of the steady forward
motion does not appear in terms of the lowest order in the far field expansion.
The effect of the steady potential may appear in the lowest order in the near field
expansion, but the solution is not so formidable. It is rather strange that we
cannot fiid any discussion so far, except one by the present writer,® on the
systematic development of the slender ship theory when the ship is moving in
ambient waves with finite forward speed. The first order solution can be found
in 2 neat form, if the wave amplitude and the slenderness ratio are taken as
independent parameters to make the systematic expansion. The trouble of the
simple slender ship theory appears in another aspect. Some numerical computa-
tions” have revealed that the hydrodynamic forces caleulated by the theory show
much deviation from actual phenomena in most parts of the frequency range of
practical interest, and the validity of the slender ship theory is limited in the
case of very low frequency. .

-, . It is widely known that the calculation by the strip theory has given results -

which show a reasonable agreement with measurements.® It is known also that
the strip theory is a rational approximation for slender ships oscillating in still
water with high frequency but without forward speed. The high frequency means,
on the other hand, that the ship is excited by the force of incident waves whose
length is comparable with the beam of the ship. However the problem of practical
“importance does not concern such a short wave case, but discussions in the practical
field are directed mostly toward the case that the wave length is nearly same as
the length of the ship. Therefore we cannot be satisfied by the apparent agree-
ment between the measured results and those by the strip theory. Another
problem is the effect of the forward speed. The effort of Ogilive and Tuck? to
find out a rational basis for the inclusion of forward velecity in the strip theory
is rather painstaking. - e 5 8,2 % o ® 49, o8 oa% Ocwm, Homo @

Oune can turn to the three-dimensional slender ship theory -and try to find out
its possibility to give a right result in +he case of moderate and high frequencies.
To do this, the frequency must be regarded as 2 parameter of changing order of

magnitude. The forward speed is another quantity of which the order of mag-  :- :

nitude must be examized. It is not intended, in the present work, to find out
any explicit formulae for the solution of the slender ship theory, but discussions
will be focused on the possibility of consistent linearized theory when the frequency
parameter @v1jg and Froude number Uj+'gl change their order of magnitude.
The simple slender ship theory stands on the assumption that these parameters
both are of the order of unity. It is known by the works of Vossers*® and Joosen®
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Discussions of Relative Magrnitude 13

that the simple strip theory is valid when w+/'I[Jg=0("*%), U/~"gl=0("*), where
¢ is the slenderness ratio. Ogilive and Tuck discussed the case, w"/Ijg=0(*%),
U/~ gl=(1). A non-linear effect appears in the same orcer as the effect of forward
speed. The latter two cases are short wave problem but the motion of the am-
bient wave was not given a due consideration.

The present paper intends to elucidate how the cho‘ce of the ordcr of mag-
nitude of these parameters affects the perturbation scheme and to what extent the
linearization of the boundary condition is valid.

2. Expansion of boundary conditions by small parameters.

The problem which we are going to discuss is 2 slender body floating on a

regular wave and moving with a2 uniform average speed U in the mean direction-

of its longitudinal axis. In the most general case, the direction of the forward
velocity and the direction of wave propagation differ each other and the body or
the ship makes oscillations of six-degrees of freedom azround its mean position.
To discuss the whole problem in a linearized scheme, the primary requisition is
the small amplitude of oscillation. Since the ship’s oscillation is excited by the
action of the incident wave, the small amplitude of the wave is the basic premise,
but the linearization of the fiuid motion in regular waves needs a condition that
the wave amplitude is much smaller than nothing but the wave length. There-
fore the ratio of the wave amplitude to the wave length 4/ is the basic parameter.
One can employ, instead of the above ratio, the maximum wave slope Kh, where
K is the wave number 2z/2. Then let us define a small parameter §=Kh for the
use of the discussion of the order of magnitude. It must be noted that the order
of magnitude of the wave amplitude changes as the order of the wave number
changes. The definition of the long wave or short wave is based on the compari-
son with the length of the ship 2I. Therefore the order of the wave number or

frequency parameter is related to the dimensionless coefficient Kl=2z/Z or w\'1jg.

One may put l=1, when there is no confusion, because ! is regarded as the re-
ference length in the whole system. Since_the oscillation of the ship is excited
by the action of the_wave, the amplitude of the oscillation kas the same order of

“meagnitude as_that of the-wave amplitude. The velocity of “the fluid™Totion

generated by the oscillation of the ship is of the same order as the oscillatory
part of the velocity of the ship’s surface, which is of the same order as the
velocity of the orbital motion of the wave. Therefore the whole system can be
linearized by a single parater g, if the steady forward motion does not exist, and
no resiriction is imposed on the shape of the ship. If the ship hes a steady
forward speed, on thé other nand, a restriction must be imposed on the shape of
the ship, in order to make the disturbance due to the forward motion small. The
slender ship is assumed in the present discussion.

The ratio of the beam to the length, denoted by &, is much smaller than
unity and the ratio of the draft to the beam is of the order of 1.

The small parameters & and ¢ are utterly independent of each other.

The perturbation method assumes the possibility of expansion of the velocity
potential in series of ascending power of & and . Since & is independent of ¢,
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the expansion can be done first with respect to 3.

The first term which is independent of 6 gives the case when the ship moves
with uniform velocity on still water. Tre linearized theory takes terms up to
the first order with respect to 4. Then the term which is linear tod is simple
harmonic and gives the oscillatory part of the velocity potential. Next one may
expand the above portions of the velocity potential, already linearized by 5, by the
slenderness ratio . There is 2 term which is independent eof ¢ in the oscillatory
potential. It gives the incident waves which may be assumed as simple harmoniec.
The other part gives the disturbance by the ship.

Consider a relative motion with respect to the coordinates moving with the
average forward velocity U, and take the axis of x in the direction opposite to
the uniform velocity. Then the velocity potential can be written in the form like
Uz+¢, and ¢ satisfies the Laplace equation.

i 76 _ .
x=+6y+a“ 0 1)

e;lm

in the space occupied by the fluid. The boundary conditions satisfied by the
velocity potential are those on the ship’s surface and on the free surface. If the
depth of water is assumed infinite, the condition at the infinity is that the fuid
velocity due to the disturbance by the ship vanishes there and the fluid motion is
just the sum of the uniform flow and the incident wave. The radiation condition
at a great distance should be considered too. The boundary condition at the ship’s
surface is

of (172 af L o9 of _ 35 _
at (U“" ax)o:c bz 3z ady =Jo (&)
at )
y=f{z,2) . (3)

The latter equation gives the expression for the ship’s surface in reference
to the coordinotes fixed in space. Now we assume, for simplicity, that the ship
makes heaving and pitching in longitudinal waves. Designate the vertical position
of the center of gravity by Z and the pitching angle ¢ (positive for bow up), and
take coordinates (x,, ¥, z;) fixed to the ship. Then the relation betw een coodinate
systems (z, ¥, 2) and (%o, ¥, 2) is

Zy=2 cos ¢—(z—2Z) sin ¢
Yo=Y ' ' (4)
Z,=% sin ¢+(z—Z) cos ¢

The equation of the ship’s surface in refererce to the coordmates (zo, Y. 2,) can
be written as

vo=Fol@ 7)., | (5)

Assummg Z and ¢ as quantities of the order of §, and omitting terms of higher
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order, we obtzain

of oo 3o g0y,
at 0X, 02 i

- - -

a afy . of

8f _th  fhog
gx ox, 0%

o 3 3oy,
8z Gz, ox,

where dot means the time-derivative. Then eq. (2) becomes
s 1 () )
ox, 0z éxr /\%x, 0Oz

_v_ﬁ_(f-_fo_i&,;.)_ % 9, . (6)

oy
If we pick up terms which are independent of time, we obtain the boundary con-
dition for the steady potential, denoted by Ug,

(1+§f£)gi+i¢igi—iﬁ=0- : (7
ox /ox, Gz o0z, OY
Take length 7 along the outward normal to the ship’s surface, and denote the
direction cosines of the normal ., 7, 7,  Then the above equation can be
written in the form

%di +n,=0. (8)

on -

Now let us examine the order of magnitude when the ship is regarded very

slender. m, means the slope of the ship’s surface, so that its order of magnitude
is the slenderness ratio . Since the disturbance velecity potential is singular
along the z-axis, the differentiation of the velocity potential along the normal
changes the order of magritude by e*. This fact can be shown materially by
the employment of so called ‘strained coordinzies’ which mezsure lengthwise
direction and lateral direction by different scales, such as x/l, ¥/b, 2/b, where ! is
the half length and b is the half breadth of the ship. This procedure is well
known znd we shall not repeat it here. Therefore the relstion between the order
of magnitude of ¢, and that of o¢./on is ’

oo fon=e0(S) ,
or’
S, ==0(0g,/on) .
Since n,=0(:), the above relation results

&:.=0() .
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The oscillatory part is composed by the incident wave potential $,, which is in-
deperdent of &, and the oscillatory disturbance ¢,. The former can be regarded as
a given function. Now let us examine the corder of magnitude of each term of
eq. (6). It is easily understood that f;==0(:), z=0(s), 9/,/81,=0(s), 8fc/62,=2"20(c)
=0(1) 83:;/6x=0("), 0¢;/8y=c"0(g)=0(), 8g,/6:=0(z) 3¢,/az=0(8)), 6¢,/6y=
£20(8,), 83,/a2=:10(,).

‘Some consideration is needed as to the derivative of §..

‘We can express the regular wave by the velocity potential

o=hVg/K exp [Kz—1K(x cos a+ y sina)—iwt] . (9)

This potential means a2 regular wave of amplitude » and wave length i=2-'K,
propagating in the direction, making an angle a with the 2-axis. Since the co-

rdinates are moving with_the ship, w_means_the cjrcular frequency of encounter, _

and the absolute frequency is given by
o,=w0—UK. (10)
There is a relation between the wave number and the frequency as follows.
K=ws*{g=(w—UK)lg ' (n

The order of magrnitude of v or K may not be unity, so that one needs to include
these quantities in the argument of the order. It can be assumed that the am-
plitude of ship’s oscillation is of the same order of magritude of the wave am-
plitude, but the frequency of the oscillation is not the frequency of the wave w,
but the frequency of encounter w. The wave amplitude .k is the order of 6/K, so
that the velocity of the oscillatory motion of the ship has the order wéK™:. The
fluid veiocity of the incident wave has, on the other hand, has the order K-¥2.
They are not necessarily ¢° the same order. Keeping these facts in mind, we
examine the order of magnitude of the oscillatory part of eq. (6). Taking the
first order terms with respect to 6, we obtain

_§_f2_z: af,(z SJ)—‘-UOf" ,Uado 3f°¢

0z, ox 0z
o 8 (50 ;L__ - -°¢o

+ o1 o7 S+ 3 3z, 9z G +o—U

9 s UZ — _%i_o___a_és_)_ ' 12
5y Gt P)—UZ ”<oz_,. 0. . 0D

where the last term comes from the steady potential at time-varving position.

If we assume U=0(1) and o=0(1), it will be four.d that ¢,=0(5:). Then taking
terma up to the order of &:, we obtain

o "r' .. 0f 0 , b7} .
Hogay s Logr Bl oy’ B s
0-.-, oz‘) 0y 02
- "\: . !! I3
+ e Be _pizrg (L T2 T ). as
or, or 01, 0Z° dyoz :
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Discussions of Relative Magnitude 17
The term of the lowest order has the order of e. Consider the outward normal
» to the sectional form of the hull in the plane perpendicular to the z-axis and
designate its direction cosines by v, ¥, If & is omitted, the boundary condition
can be written in the form like : -

(Zris Uiyt B vz=00 (S ) + 2 =0 0
oy oYy oz oy

Assuming that &, and ¢, are given functions and shifting terms, we have

(G Ut UG — 20y (S %, as
v . oy \ 02 oY

This is the boundary condition to be satisfied by ¢, on the hull surface. All therms
are of the order of &, so that the order of magnitude of ¢, must be d:. One can

divide the periodical potential ¢, into 2 part Jetermined by the oscillation of the.

Ship and a part originated by the didraction of the ambient wave. The former
one is the radiation potential ¢, for which the boundary condition becomes

305 — _(F—dt Uhs,+ UZ — x;r)@(i?"-). 16)
oy oy oz

while the latter is the diffraction potential ¢, which has to satisfy the boundary
condition ;

i@:-—% . . (17)

oy oy

Next let us consider the boundary condition of the free surface. If the form
of the free surface is given by the equation

=Lz, ¥, 1), (18)
the kinematical condition there is .
a———(b+—‘21)°—‘-——ﬁ—°—64—£¢—=0 BT
ot ot jox ¢y 6y oz

There is another condition that the pressure is constant on the free surface. Then
Bernouilli’s theorem gives

& a¢.1((a¢'=.(acs‘=. AR '
—— 3+ U=+l = == )+ l=") 76—V
5 ox :ztaac)"r ay) (az)} g-=0 0
These equations hold on the curved surface z={. Putling )
S L0901 (/36 \? 05 \? oo \?
Fxs ) 1t =—o:‘_+u—_+_ ( >+( < ); == l
@y, 2. 0=2 or 2 \éx gy/ "\édz/)’ @
we can write
:=—%F(r, XY @

R e —— -
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Therefore eg. (19) can te written in the form

E ..-+ﬁ)%f:+;ogi+ﬁ£+gg9_=o_ @5

This is the exact non-linear form of the free surface condition. Let us examine
the order of magnitude in the near fleld, bearing in mind the fact that the
differentiation with respect to ¥ er z changes the order by ¢!, owing to the as-
sumption of the slender ship. We have written the velocity potential in the form
like

¢= L’¢O+¢1 +¢u‘ v

Inserting in (23) the a2bove decomposition of the potential, and picking up the
time-independent part, we obtain

GGy o 05 05 , 3 0°3, [69,\*, 06; O 03,
=2 2 .—)(—.,":"—) ap =2 éo +-2_ %% oE)=0, (249)
ox oxay oy° 2 oy* \oy dxr dyt U: oz

Then term of the lowest order is (g/U")6¢,/67 which has the .order of =. There-
fore the free surface condition for the steady potential of the lowest order is

% 0 at 2=0, : @)
0z :

that is idertical with the condition of rigid wall. We cannot proceed to the next
order without handling the non-linear terms in the free surface condition. Let us
examine next, the periodical part of the free surface condition, that can be written

Lo Loy Zh 28y 1 g5 Loy 00 (.i v )
at* otox ox® oz dy \aot dx /oy
Loy 96 39, U,_a_ aéa>=§¢_1 . U‘-’(a’é‘) a°g,
' drdy oy éy\ oy / dy oy / oy
. 0°3; [ 0, oo (8% , 1-736,\} &°6
_Do.u(.._:_ 1>VL_T._ "—(.')~ O1
6zt \ ot UGJ: TY e T 2 oy /) oz
S e U‘lf’i)+0(as=)=o : 26)
oz~ \ ot ox

The Jowest order term is of the order of & and the next one is of the order of
d:. Though these are linear with respect to &, if ¢, and &, are assumed to be
known functions, the non-linear effect appears in the form of product terms of
¢, and &,. which make the boundary value problem unpractical. If only the term
of the lowest order is taken, the free surface condition for the radiation potential
becomes 3 ' :

s
Z2 =0, @n

and we have the rigid wall condition again.
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Discussions of Relative Magnitude 19

The free surfzce condition in the far field takes 2 different form from the
above, because the differentiation with respect to y or z does not affect the order
of magnitude. Therefore the leading term of the eguation gives simply the |
linearized boundary condition as follows, C

&° 0° .0x2 ., o ' :

2¢+2U-? +U = +9g—=—=0, atz=0. (28) .

ot* étor G'¢ oz ' .
_For the periodical mction with circular fregquency w, we can write g,=¢“'¢ and . &

the boundary condition becomes

—wig, +2i U0 £ U S0 g 90 g - 29 .-
: o - oxf 0z ‘ -

The Green funection for this boﬁndary condition is known and is expressed by

G(ﬂf.y.Z;ac'.y'.z'=—1——i :
= - !
-+ 2 S dm S drnexp[—ly—y'|Vmi+nl+im(z—2’))
T Jeoo 1] {
X{eos (nz+¢) cos (n2’ +£)— cos nz cos n2’}vVmt+nt . 9

+% S" dm exp [(z+2) (mU+w)lg—ly—y |Nm = (m UT o) gt A - ‘

+im(z—x)(m U+ )V m*—mU+w)'/g®, . (30

where

n=NE— -y 62,

=N (@—2' P+ Y-y + ),

A e=—mU+tw)gn , . . S

- e

and the radical of imaginary in the last integra] takes an appropriate sign in
accordance with the radiztion condition. The outer solution is expressed by means
of this Green function. )

3. Some cases when order of magnitude of the frequency parameter and/or
the Froude number changes.

We discussed in the preceding section the boundary condition when the fre-
quency and the forward speed are assumed to be of the order of uxity. As
mentioned before, however, the order of meagnitude of these guantities can be .
different from unity. Then the boundary condizions will take znother form. U

Here we will discuss five cases. )
Case 1. wVTg=0(l), U/irgl=0() :

This is the case discussed in the previous section, ard the result by this
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assumption may be called the simple slender ship theory. The free surface con-
dition in the near field is

g@—U%?P—(""—w U"i’—”)ﬂ). at z=0. 31)
0z 0z \ ot oxr

If we divide the periodical potential &, in the radiation potentiai gz and the dif-
fraction potential @, we have again the rigid wall condition for ge as eq. 29).
Because of the relation for the surface elevation namely

' 1 (a¢, 0% )
rv-= o(( 25 p U‘—.—““ 0
® g \at ox
the conditicn for the diffraction potential can be written as
8o = _pz, L 4y :=0. (32
oz dz*

This boundary condition at the plane 2=0 can be transformed to the boundary
condition on the hull surface. If we put

-

6:=gu+ ULu 22 (33)

"n:az ’

it satisfies the rigid wall condition

-~

992 —0, at z=0. (39

-~

(24

The boundary condition for . on the hull surface becomes

%: o (F—apt Ut U —20) 5 (2

ov v \ 0z
- . -~ -
00, « 0 {GG, -
—== 4+ U= {(=7), (&5
oy oy \ 0z .

In the case of a slender ship on longitudinal waves, one can write

Therefore the bouudary condition for ¢. on the hull surface can be written

B s+ U L) 2900 —UT (2 22900 - (36)
oy ot ox G. \ 6z
It is interesting to observe that the above equation means the condition as if
each section makes a movemert of vertical displacement Z—x¢—3s which is the
deviation from the wave surface.-

The boundary value problem with boundary conditons (36) 2nd (34) can be
“solved without difficulty in the two-dimensional motion. If we designate the

)

————
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Discussions of Relative Magnitﬁde 21
calunon bv ;5,"” tbe \elocxtv potentxal 8, is given by . ' _ . (Y Lalj, Sl
. ‘ eo_[r, 9% ( ) (3;7) irs buiy - PLU‘/CG
' x .
¢ p az g A ) . IW M 'y a2
v;vhere g(z)-is a function of = only, which.can he determined by means of match-
ing with the outer solution expressed by the Greeen function (30). We cannot | . ) _f
take a2ccount of the term of next order in the free <urface condmon, without ‘ N
handling the non-linear effect. ‘ .

Case 2. wvIg=0(-177), UA/gl=0(1)
This is the case of high frequency and high speed, which was discussed by T .
Ogilvie and Tuck. The relation between the wave length and the ship’s length () N >
is 4/2l==/kl=0(*). Therefore Wy short in comparison '
with the ship’s length. The wave height is of the order of 6:'/* and the \e10c1ty ‘
of the orbital motion is 6, so that the order of ¢, is de.
If we take up to the order of 6:/? in the free surface condition, the condition
for the radiation potential d; becomes °c

3 e oy T0e 1y B e B Ba g, @
00, oz otox dy d&toy 0r at _ - '3

The first two terms are of the order of & and the others are of the order of

é:12, If only thé terms of the lowest order are taken, the linearized free surface = _"T'_‘.; )
condition . :
azdn °¢n
rg ¥R =0, - 39
at* vl 0z )

is obtained. The effect of the forward speed cannot be taken into consideration,
unless quadratic terms which are the product of the steady potential and the
radiation potential can be handled. The outer solution is expressed by means of
the Green function defined by (30) such as

G — :Te‘“‘ Xdz’-m(x’)G(x-, ¥.2; 2,0,0. | . (40)

Taking an asymptotic expansion for large w, the double integral of the third
term on the right hand side of (30) becomes 2/r., while the last term becomes

_%S- exp [@+2)m U+ w)/g—ily— y'l("" Utw) /g-’-zm(:r—:c’)]dm _

e,_;z_i_ecnu-'du-y'bw% S- { 1+(~-,—z'—1.|y y') — 2wUm }e""““"dm o
g —co

Therefore Fouries integral theorem gives
21 U

pam—Zreiiinlmg) tiei 2 mww) . @

The first term in the parenthesis means a plane wave propagating in the y-
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direction 2nd gives the two-dimensionz! motion in the plane perpendicular to the ‘\

z-axis, but m’(r)=dm(x)/dz in the second terms means that the interference exists
between diferent sections. Therefore the boundary value problem canrot be
formulated by the two-dimensional form. If only the term of the lowest order ;
is taken, the boundary condition takes a simple form for which the two-dimensional |
solution is valid. The eTect of the forward speed appears in the higher order, ,
and can be expressed zs a correction term which will be added to the result of .
the strip theory. Ogilvie and Tuck were able to give compact expressions for ! N
the correction terms to hvdrodvnamic forces and moments. According to them, . )
the effect of forward speed does not appear in the added mass and damping but g
appears only in the coupling terms between different modes of oscillations. i
Case 3. v Tg=0@E"), U/ gl=0(") ;
This is the case of short wave such that the wave length is of the same '
order as that of the breadth of the ship. In this case the order of maguitude
of ¢, is 6°. The free surface condition for the radiztionpotentizl becomes ;

)
"

l

P2 1g%r=0, atz=0, | (42)
i az

Q)

up to the order of §:'/%. The next term is of the order of d8:%*, in which the )
effect of the forward speed appears with the quadratic terms. Therefore the -

forward speed cannot be taken into account by the linearized theory. ‘The asymptotic '
form for the outer solution takes the form |

gam— P ettt (s, 43)

that means out-going plane waves, so that the motion is purely two-dimensional

and the strip theory without forward speed is valid. _ngvever the strip theory / ’U{o ‘»

is not applicable to the diffraction potential because of the short wave length. o, f )
“Case 4. o\1/g=0(1), Ulgl=0("%)

The wave length in this case is comparable with the ship’s length, and the
forward speed is not so high. Since the Froude number of ordinary ships is not
rauch higher than the order of 0.8, the speed parameter U%/gl is of the order of
10-!. Therefore the present case corresponds to the ordinary ships in waves of
moderate length.

The order of magnitude of the radiation potential is ¢ but the effect of f
forward speed appears in the term of the order of 6:%*. The lowest order term
in the free surface condition has the order of & and the next order is dz. If we
take up to the order of &z, the free surface condition in the near field becomes

P9 19% s, L0 =0, atz=0. (4 -

The quadratic terms appears in the higher order of %%, so that the radiation
potential satisfies the linearized free surface condition without forward speed, eq.
(42), and the free surface condition for the diffraction potential can be transformed o
to the boundary condition on the hull surface as was shown before. Because of

= w f'--.‘..)‘,}‘ \-:1“-.‘_{':‘.5' . y v—g‘a: ST

N
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the assumption of the slender chip, the velocity potentizl of the lowest order in
the near field takes the form

6=9,%F+g(2), 45)

where 6,“® ic the two-dimensionzl potential function. Therefore the boundary
condition on the hull surface dees not relate to the three-dimensiornz! part sc long
2s the Jowest order term is taken. However the ihree-dimensionz! part has an
effect in the term of the .order Ligher than the lowest cne by e. The free surfaca
condition (44) involves the terms of this order. Therefore the consistent approxi-
mation must involve the three-dimensional effect. The effect of the forward speed
in the three-dimensional portion is of still higher order, so that it need not be
teken into zccount. The three-dimensional part of the inner solution is Jdeter-
mined by matching with the outer so]utxon and the resuliing expression takes
the form?®

G ¢J‘=°’—e’“'[2n A+ K)G+=)+ % 1+ Kz) S m/(x")sgn(x—2x’)
X In @K|z—z'|)dz’— —‘Z—K(l-i—Kz) Sm (="
X {Ha(K!x—x’l)+ Yo(Klz—2'|)+2iJ(K|z—2x'}) d:c'] (16)

where y is Euler’s constant, H, is the Struve function, Y, and J, are Bessel
functions, and m(x) is the strength of the source term in the two-dimensional
potential. The free surface condition for the radiation potential is -

odp

at z=0, ' 47)

Or=

In oxder to deal with the free surface condition for the diffraction potential, the
auxiliary function &. defined by (33) rmust be emploved. It saticfies the free
surfzce condition similar to (47) and the effect of the forward speed is transformed
to the boundary condition on the hull surface. such as the last term of (35). The
method of solution of the boundary value problem is similar to what is described
in the literature (12).
Case 5. w lig=0(1) > O™, U/vgl=0(7)

We have examined so {ar the cases in which w and U have definite order of

magnitude. Since however, these parameters have wider variation in general, the

discussion which holds only in a limited range of the parameters is not conveni-
ent for practical purposes. The Froude number of conventional merchzantile vessels
is not much higher than 0.3, so that the speed parameter U'%/gl is of the order
of 107 as in the previous czse. However the wave length hes a wide variation
from the zame order as the ship’s heam to the order of the skip's length, and an
zpproximation which ezn cover such a wide range of frequency is desirable. Let
us consider here a valid approximation in the frequency range from G(1) to O(="*").

The case w=0(1) is identiczl with Case 4. If we change the order of @ to e,

- e e e
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¥
the order of wl/ becomes unity and non-linear terms appear in the order higher ?
by ¢ in the free surface condition. Since this is the order of terms which- were ;
taken into consideration in Case 4, the linearized solution will become inconsistent
when o is increased to O(="*%). If we take only the term of the lowest order, A ¢
the radiation potential is of the order of &:, and the free surface condition for it . -
is of the order of &, namely :
0_?_6._—_‘0. (48) . B

0z

The next term which has been omitted is of the order of d:. The effect of the
forward speed in the radiation potential appears in the order of 3:¥* which still -
satisfies the boundary condition (43). In Case 3, on the other hand, the term of
the lowest order in the radiation potential is of the order of é:%/%, which satisfies
the free surface condition 2 i

g%z + 282 =9 49
Gz ot _

If we employ the above equation as the free surface condition, it means that we
are taking account of terms up to the order of J:/* in the radiation potential.
If, on the other hand, the order of w is changed towards unity, the second term .
of (49) becomes the higher order. However it will not result in any harmful .
effect, even if the second term in (49) is retained. The effect of the forward
speed, which comes from the boundary condition at the hull surface is involved
with the order of approximation when w=0(1), but will shift to the higher order
term of 0(:%) in the Case of w=0(:""%. The effect of the three-dimensional
motion appears in the order higher than the lowest order by ¢, so that it is out-
side the present order of approximation.

Thus the valid approximation in the present case is the two-dimensional
motion. with the free surface condition given by (49), and the boundary value
problem can be solved at each section independently, that means the strip theory
is valid. The boundary condition on the hull surface is expressed by eq. (36)
which involves the effect of forward speed. Though the second term on the the nght
hand side may make some trouble, it is not the case in the calculation on of hydro-
dLamxc forces and moments as long as the radxatlon potentxal is concerned owmg
“to the theorem found by Tuck.” i ) : -

The above argument wiil provide Justlﬁcatlon of the stnp theory by whxch .
the effeet of forward speed is taken into account. . The strip theory may be ap-" ’” LJ Q)( W{W‘-U.L

|
|
|

plicable to the diffraction potential too when tbe wave length is not very short, U/C_If

but further examination is needed, because it does not hold in the case of short
wave, as was mentloned in Case 3. e . ° e L 8 Ee o & % "o,

Conclusion

o TR A - °83572°80 & 9

The principal aim of the preeent argument is to examine to what e'{tent the . _ o .
usual linearized form of the free surface condition of the form .. : - :
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B

i F6 199 —0, at2=0,
ot? 0z
is valid, and the ordindry strip theory is applicable. ’ ..
It has been found that the possibility of the strip theory as a rational and :
celf-consistent approxiniation is rather limited. If the freguency parameter and

the Froude number have definite order of mzgnitude, the strip theory can become

a consistent a2pproximation only when 2 ship is oscillating in still water with high ' T
frequency but with a forward speed which is not higher than the order of &% , .
The effect of the forward speed appears in the higher order term which can not

be included in the linearized theory. If we 'need, however, a practical method . |

which is applicable to the range of wider variation of the frequency parameter, B
the strip theory which involves the effect of forward speed can be regarded as a ]
lower approximation for the computation of hydrodynamie forces and moments
on 2zn oscillating ship in still water. Though this riethod is a weaker solution, ‘
it still has a uniform velidity in a wider range of varving frequency. This fact |
may provide a justification for the good agreement between the measured result
and the computation by means of the strip theory. : i
: |
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