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Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors
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(Received 20 January 2017; revised manuscript received 30 April 2017; published 12 June 2017)

We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping
carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between
subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this
regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin
dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear
spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin
systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that
the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is
restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If
the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1/

√
t . Based

on the numerical results, we devise a simple formula describing the effect quantitatively.

DOI: 10.1103/PhysRevB.95.214204

I. INTRODUCTION

One of the most remarkable characteristics of organic
semiconductors is long spin coherence times, which makes
these materials suitable for various applications in spintron-
ics [1–3] and magnetotransport devices [4–12]. The reason
behind this valuable property is that the light elements, such
as hydrogen and carbon, from which organic semiconductors
are composed, have very weak spin-orbit interaction, so that
the relaxation of the carrier spin induced by the spin-orbit
coupling [13–16] is diminished. As a result, the hyperfine
coupling between the charge carrier and hydrogen nuclear
spins can be the main source of the carrier spin scattering
[7–9,17–19] and the resulting spin relaxation.

Due to the inherently present disorder, charge transport
in organic semiconductors occurs via incoherent diffusive
random walk over the charge-carrying molecules or π -
conjugated segments of polymers. During the waiting time
between two consecutive hops the carrier spin and the local
hydrogen nuclear spins couple via a hyperfine interaction. Ex-
isting theories of hyperfine-induced spin relaxation and more
general spin-dependent phenomena in organic semiconductors
approximate the hyperfine interaction by locally random static
magnetic fields, acting on the carrier spin [15,16,20–25].
This provides a semiclassical approximation to the quantum
spin dynamics. The distribution of random magnetic fields is
taken to be Gaussian. The hyperfine interaction strength is
then controlled by the mean-square deviation of the Gaussian
distribution bhf. Experimentally established values of bhf are
of the order of a few milliteslas.

The semiclassical approximation neglects the action of the
carrier spin on the local nuclear-spin environment. Thus it
is good for relatively slow nuclear-spin dynamics and fast
carrier hopping. However, the semiclassical approximation
may be inadequate if the carrier spends a long time at the
molecular sites, leading to sizeable changes in the local spin
environments. This can happen, e.g., if the carrier moves in
effectively low dimensions, so that it visits the same site many
times. In this case the average time spent on a given site

depends primarily on the probability of multiple returns to
the same site. For a one-dimensional diffusive random walk
of a total duration t , the average time spent by a carrier on a
given site on its trajectory is ∼√

tτ0, and in d = 2 dimensions
this time is ∼τ0 ln(t/τ0), where τ0 is the average waiting time,
i.e., the average time between consecutive hops [26]. In both
these cases the time spent by the carrier at one site can become
sufficiently long for the quantum dynamics of the local spin
environment to be important. This is unlike the random walk in
d = 3, where the time spent on a site is ∼τ0 and is independent
of t due to the vanishing probability of returns [26].

In this paper we investigate the effect of nuclear-spin
quantum dynamics on the spin relaxation in d = 1. We utilize
numerical simulations based on a Monte Carlo sampling
of random-walk trajectories. To simulate the spin dynamics
of small systems with up to 25 total nuclear spins we
employ the Suzuki-Trotter decomposition of the evolution
operator [27,28]. For systems with a larger number of nuclear
spins we make use of the coherent-state P -representation
approach for quantum central-spin dynamics [29,30].

We study the time decay of the average spin polarization of
a carrier spin P (t) initially injected into an organic layer in the
spin-up state [P (0) = 1]. The spin polarization evolves as the
carrier walks randomly over a linear chain of L molecular
sites, and its spin interacts with N nuclear spins at each
site. The decay of P (t) is controlled by the dimensionless
combination η = (bhfτ0) [21,24,25], which is the average
precession angle of carrier spin between two consecutive
hops (we take h̄ = 1 and the electron gyromagnetic ratio,
γe = 1, making the magnetic fields and the Larmor frequencies
equivalent). We focus on small η � 1, characteristic of organic
semiconductors featuring long spin coherence time.

Our calculations prove that the initial, dominant decay of
spin polarization, down to about P (t) = 0.05, is insensitive to
the dynamics of nuclear spins and can be obtained accurately
from the semiclassical approximation. Therefore the results of
previous studies based on the semiclassical approach [24,25]
remain valid for the initial decay of P (t).

2469-9950/2017/95(21)/214204(6) 214204-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.214204


V. V. MKHITARYAN AND V. V. DOBROVITSKI PHYSICAL REVIEW B 95, 214204 (2017)

The effect of quantum dynamics of nuclear spins develops
at longer times. For relatively small L and N , we observe
a plateaulike long-time behavior of P (t), where its value is
about (LN )−1, independent of η. This is in sharp contrast
to the semiclassical behavior. For finite N and L → ∞ we
find yet another unique long-time dependence, namely, P (t) ≈
α(N

√
t/τ0)−1, where α ≈ 0.43. On the other hand, for finite L

and increasing N , the long-time polarization disappears, and
P (t) simply regains the semiclassical form.

This paper is organized as follows. In the next section
we discuss the hyperfine interaction between the carrier and
hydrogen nuclear spins and its semiclassical description in
terms of random static magnetic fields. Our results on the spin
relaxation by a quantum nuclear-spin bath and a comparison
with those of the semiclassical approximation are presented
in Sec. III. We discuss our results and provide explanations
for the common features and differences of the quantum and
semiclassical results in Sec. IV.

II. THE HYPERFINE INTERACTION AND ITS
SEMICLASSICAL DESCRIPTION

We consider a diffusive random walk of a carrier over a
linear chain of L molecular sites. Accordingly, the sites are
enumerated by the scalar coordinate, r = 1, . . . ,L. At each
molecular site r , the carrier spin S = 1/2 couples to k =
1,2, . . . ,N nuclear spins Ir,k = 1/2 by a hyperfine interaction.
We will consider an isotropic hyperfine coupling, governed by
the Hamiltonian

Hr = B0Sz + S
N∑

k=1

akIrk, (1)

where B0 is the external magnetic field along the z axis and
{ak}Nk=1 are the hyperfine coupling constants. This description
implies that the carrier-host molecular sties are identical, so
that ak do not depend on r .

Quite generally, theories of spin-related phenomena in
organic semiconductors approximate the quantum Overhauser
field, given by the sum in Eq. (1), by a constant classical
vector,

br =
N∑

k=1

akIrk, (2)

which is not affected by the interaction [20]. The approxima-
tion (2) can be justified as follows. With the interaction (1), the
nuclear-spin precession period scales as

√
N [31]. Therefore,

for large N one can neglect the slow dynamics and consider
the nuclear spins to be static. For large N it is also reasonable
to approximate the distribution of br by the Gaussian with the
standard deviation, bhf = 1

2

√∑
k a2

k .
While one expects that the approximation (2) is good for

increasingly large N , its accuracy for finite N in the presence
of hopping needs to be critically investigated. In organic
materials N ≈ 10 is the expected number of hydrogen nuclei
coupled to a carrier spin at a molecular site [9,21]. With such
a moderate value of N , the relaxation of a diffusing carrier
spin can still be sensitive to the quantum dynamics of nuclear
spins.

III. CALCULATION OF SPIN RELAXATION CAUSED
BY A QUANTUM NUCLEAR-SPIN BATH

In this section we calculate the spin relaxation of a carrier
performing a diffusive random walk over a linear chain of
L sites. At each site the carrier spin couples to N nuclear
spins according to the Hamiltonian (1). We assume that the
random hops occur between the nearest-neighbor sites with
equal probability. Accordingly, the random waiting times
have the average, τ0, which is uniform for all sites, and the
waiting time distribution at each site is Poissonian, N (τ ) =
τ−1

0 exp(−τ/τ0). Note that by this choice of N (τ ) we neglect
the energy and positional disorder of molecular states, which
would lead to a spread in local values of τ0. For finite L,
the boundary conditions for the random walk should also be
specified. However, simulations with periodic and reflective
boundaries yield very close results, so that below we present
the results only for the periodic boundary conditions.

Our calculation of the spin relaxation is based on the
following simple consideration. A carrier, initially injected
at r = r0 in the spin-up state |↑〉, diffusively moves over
the available molecular sites and suffers spin flips. The
system thus begins its evolution from the initial spin state,
|ψ(0)〉 = |↑〉 ⊗ |χ〉, where |χ〉 is the initial wave function of
all LN nuclear spins. In the course of the carrier random
walk with the trajectory r(t), the spin state of the system
evolves according to the Schrödinger equation, i∂t |ψ(t)〉 =
Hr(t)|ψ(t)〉. Its solution can be formally written in terms of the
time-ordered exponent [32],

|ψ(t,[r(t)])〉 = T exp

(
−i

∫ t

0
dt ′Hr(t ′)

)
|↑〉 ⊗ |χ〉. (3)

By writing [r(t)] in the argument we emphasize that
|ψ(t,[r(t)])〉 is the spin wave vector after time t , provided that
the carrier underwent a random walk with the trajectory r(t).
The carrier spin polarization can be defined as P (t) = 2Sz(t),
with the bar standing for a triple average, where the first is
the quantum-mechanical average, the second is the average
over the possible quantum states of the nuclear-spin bath, and
the third extends over different realizations of random-walk
trajectories. Thus

P (t) = 2〈〈〈ψ(t,[r(t)])|Sz|ψ(t,[r(t)])〉〉{χ}〉rw. (4)

The calculation of P (t) from Eq. (4) can be carried out
numerically by utilizing the Suzuki-Trotter decomposition
[27–29] of the time-ordered exponent in Eq. (3), combined
with a Monte Carlo sampling of random-walk trajectories.
However, the computer memory requirements impose limita-
tions on the number of spins that can be modeled [29] because
the required memory grows exponentially with the number of
modeled spins. In our case this means that the total number of
nuclear spins, LN , is restricted to 20–30.

Based on the above scheme, we have simulated the quantum
spin dynamics of various systems with up to 25 nuclear
spins, uniformly distributed over L = 3 − 25 molecular sites.
Representative results of such simulations for a system of
L = 5 sites and N = 4 spins per site with η ≡ (bhfτ0) = 0.1
and a system of L = 7 sites and N = 3 spins per site with η =
0.167 are demonstrated in Figs. 1(a) and 1(b), respectively.
The plots also contain semiclassical results for the same
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FIG. 1. Spin relaxation in various applied magnetic fields, ob-
tained with the numerically exact simulation of quantum spin
dynamics. The numerical results for P (t) are plotted with open
symbols, while the black lines are the results of the semiclassical
approximation. (a) System of L = 5 sites, N = 4 nuclear spins per
site, with η ≡ (bhfτ0) = 0.1 and the hyperfine couplings a1 = 0.83bhf,
a2 = 0.9bhf, a3 = 1.05bhf, and a4 = 1.18bhf. Plotted are the results
for relaxation in the applied fields B0 = 0 (red), B0 = 0.8bhf (green),
and B0 = 3bhf (blue). (b) System of L = 7 sites and N = 3 nuclear
spins per site, with η = 0.167 and a1 = 1.3bhf, a2 = 1.15bhf, and
a3 = 0.99bhf. Red, dark green, and violet symbols represent the
applied fields B0 = 0, B0 = 0.9bhf, and B0 = 3.6bhf, respectively.

systems, obtained from the semiclassical approximation (2)
(for details of the semiclassical calculation of spin relaxation
see Ref. [25]). At small t , the quantum and semiclassical
results in Fig. 1 coincide. This indicates that the initial decay
of P (t) is not very sensitive to the quantum dynamics of
nuclear spins. On the other hand, there is a large qualitative
discrepancy between the quantum and semiclassical results
at longer times. Thus the long-time behavior of P (t) is not
captured by the semiclassical approximation; while the latter
predicts a vanishing spin polarization, the decay of P (t) shows
a long-time plateau behavior, quenching at a small but finite
value.

The quenching of P (t) at long times, seen in Fig. 1, is a
consequence of the nuclear-spin dynamics. However, further
analysis of the effect of nuclear-spin dynamics requires a
modeling of larger spin systems. To this end we employ the
P -representation method for quantum spin system simula-
tion [29,30]. The method is based on a Monte Carlo sampling
of the density matrix in the spin coherent-state basis, allowing
an efficient modeling of large quantum systems with thousands
of bath spins. It also allows assessment of the spin dynamics
at considerably longer times.

To check the accuracy of the P -representation method for
the problem at hand, we compare its outcome for systems of
up to 25 nuclear spins with the results of exact simulation.
The comparison verifies the efficiency and accuracy of the
P -representation approach to our problem. We demonstrate
typical examples of such a comparison in Fig. 2 by plotting
the quantum simulation results of Fig. 1 together with
the P -representation curves for the same systems. The P -
representation curves in Fig. 2 virtually coincide with the exact

FIG. 2. Numerically exact calculation results from Fig. 1 (open
symbols) are plotted together with the results obtained from the P -
representation simulations (black lines). The comparison confirms
the high accuracy of the P -representation approach to this problem.

simulation results in both short- and long-time domains, and
only a minor deviation can be observed at the intermediate
times.

With the P -representation method at hand we are able
to investigate both larger spin systems and longer times.
In particular, we examine the long-time behavior of the
spin relaxation in the regime η � 1 (corresponding to fast
hopping), where the relaxation is slow.

Our P -representation simulations reinforce the previous
conclusion that at long times the decay of P (t) is very slow,
so that the spin polarization nearly quenches to a few percent
of its original value. We also find that the value of P (t) at the
long-time plateau is almost insensitive to η. This is shown in
Fig. 3, where P (t) is plotted for various values of η for the
system with L = 5, N = 4. Moreover, as seen in Figs. 1 and 2,
the plateau value of P (t) is almost independent of the external
magnetic fields of the order of bhf. Therefore the plateau value
is universal in the sense that it is determined by L and N and
is practically independent of η and B0.

Further numerical analysis of the long-time dynamics
shows that the amplitude of the long-time plateau of P (t)
decreases with both L and N . Specifically, for not too large
L and N the amplitude of the long-time plateau scales as
(LN )−1. For η = 0.1, we demonstrate this dependence in

FIG. 3. Long-time behavior of P (t) for L = 5, N = 4, and η =
0.25 (orange), η = 0.167 (green), η = 0.1 (red), η = 0.07 (blue), and
η = 0.05 (magenta).
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FIG. 4. Dependence of the long-time plateau value of P (t) on
the number of molecular sites L and number of spins per site N for
η = 0.1. (a) P (t) is plotted for L = 5 and five different N ranging
from 3 to 20. For N → ∞, the curves saturate at the dashed line,
which is the semiclassical approximation result for the same L. (b)
P (t) is plotted for five different L values ranging from 4 to 20 and
N = 4 fixed. The dashed line is the saturation curve, N = 4, L → ∞.

Fig. 4. For fixed L and increasing N , P (t) eventually saturates
at the curve obtained from the semiclassical description (2)
[see Fig. 4(a)]. This saturation means a total elimination of
the effect of nuclear-spin dynamics for large N . The decay
regime of P (t) with a fixed small N and increasingly large
L is less obvious. The saturation curve of P (t) in Fig. 4(b)
retains the long-time tail and thus differs from the result of
semiclassical approximation qualitatively. This is an indication
that the long-time behavior of P (t) remains sensitive to the
quantum dynamics of nuclear spins for L → ∞.

To understand this effect, we investigate the large-L
saturation curves for different N . We infer that in this regime
the long-time tail of P (t) slowly decays with time as 1/

√
t

and scales with N as 1/N . Figure 5 illustrates this dependence
for η = 0.1. We further checked that this result is almost
insensitive to η, at least for η = 0.2 − 0.01. However, we note
that the overall amplitude of the effect is small; for N = 2, for
example, the 1/

√
t decay sets up at P (t) ≈ 0.012 (see Fig. 5).

IV. DISCUSSION

As we have shown above, the quantum dynamics of nuclear
spins does not influence the initial relaxation of P (t) but shows
up at long times as a plateau for finite LN or as a slow decay
∼1/

√
t for L → ∞.

FIG. 5. Large-L saturation curves for η = 0.1 and N = 1 (ma-
genta), N = 2 (blue), N = 3 (green), and N = 4 (red). Black lines
are plotted from Eq. (6). The statistical error bars are of the order of
the symbols size.

The fact that the initial decay of P (t) is not affected
by the nuclear-spin dynamics can be understood from the
following reasoning. Defining the cumulant expansion, P (t) =
exp[

∑∞
n=1 Kn(t)], where Kn ∝ bn

hf, from Eq. (4) one can find
the first nonvanishing cumulant K2 to be

K2(t) = −2b2
hf

∫ t

0
dt1

∫ t1

0
dt2GL(0,t1 − t2), (5)

where GL(r,t) is the Green’s function of the random walk
over L sites. Equation (5) coincides with the second cumulant
function obtained from the semiclassical approximation [25].
This explains why the initial relaxation is insensitive to the
quantum dynamics of nuclear spin, even in the ultraquantum
case N = 1.

Similar to the semiclassical result [25], the approximation
P (t) ≈ exp[K2(t)] correctly describes the dominant spin
relaxation, so that the spin relaxation time τS is set by K2(t) and
is insensitive to the nuclear-spin dynamics. For large number of
sites (L � η−2/3) the form P (t) ≈ exp[−(t/τS)3/2], with τS �
τ0/η

4/3, follows from the results of previous semiclassical
treatments [24,25].

Our findings for the long-time behavior of P (t) can be
summarized in the empirically derived formula

P (t) ≈ 1

N

(
1

L
+ α√

t/τ0

)
, t � τS, (6)

where α ≈ 0.43. The combination in the parentheses in Eq. (6)
is approximately the inverse number of sites visited by the
carrier. Indeed, for small L and t/τ0 � L2, all the L sites are
visited equally many times, and the inverse number of visited
sites is 1/L. For L → ∞, on the other hand, the average
number of sites visited by the carrier is ∼√

t/τ0, and thus its
inverse is α/

√
t/τ0. Then Eq. (6) is the inverse number of

nuclear spins that couple to the carrier spin during a long-term
diffusion.

To further elucidate this behavior we note that the Hamilto-
nian (1) conserves the z component of the total spin. Therefore
the initial carrier spin polarization does not average to zero but
becomes redistributed between the carrier and nuclear spins,
so it is reasonable to expect that for systems with a smaller
number of nuclear spins P (t) can stay essentially nonzero for
arbitrarily long times (in the absence of other spin relaxation
mechanisms). However, the fact that this redistribution leads to
a nonoscillatory, fixed or slowly changing P (t) at long times
is nontrivial. Moreover, the peculiar dependence (6) means
that the polarization becomes evenly distributed between the
carrier spin and nuclear spins which couple to the carrier spin
in the course of diffusion. We should also keep in mind that the
Hamiltonian (1) neglects the nuclear-spin relaxation, as well
as the carrier spin relaxation, e.g., due to spin-orbit coupling,
dipolar coupling to other electronic spins in the sample, or
some other relaxation channels. Thus the time intervals over
which the polarization dynamics is considered in this paper,
including the ones we call “long times,” are always shorter than
the nuclear-spin relaxation and other spin relaxation times but
much longer than the typical time of the hyperfine-induced
relaxation of the carrier (electronic) spin.

It is also remarkable that the amplitude of the tail is
almost independent of η but is determined by L and N .
This independence resembles the central-spin problem (L = 1,
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large N ), where the central-spin polarization evolves into 1/3
of its initial value regardless of the interaction strength [20,31]
and relaxes from this value very slowly [29,30,33].

The treatment presented in this work excludes the energy
and positional disorder. Such a disorder is characteristic of
organic semiconductor systems. It leads to a wide spread in the
average hopping times (instead of the single parameter τ0) and
introduces multiple time scales into the problem. On average,
this disorder results in longer waiting times and, for low-energy
sites, increases the probability of returns to the same sites.
These factors would make the effect of the nuclear-spin
dynamics more pronounced. However, a detailed examination
of the joint impact of disorder and nuclear-spin dynamics
would lead to technical complications and would obscure
the main point of the work, the impact of the nuclear-spin
dynamics. The model adopted in our current work reduces
the number of relevant parameters while at the same time
preserving the random character of the waiting times and
thus makes it possible to understand the key features of the
nuclear-spin dynamics in quantitative detail.

It is interesting to explore the role of the nuclear-spin
dynamics within two- and three-dimensional transport models,
although this would require much longer computation times
and more computer memory. Our results suggest that the effect
of nuclear-spin dynamics depends primarily on the average
number of sites visited (or revisited) by the carrier. Thus one
might speculate that the effect of the nuclear-spin dynamics
could be important, e.g., for two- and three-dimensional

transport with deep traps (when the carrier can stay on a single
site for a long time) and would be weak if the transport in
two and three dimensions is free of deep traps, when the
carrier quickly leaves the current site and rarely returns to
this site again. However, in order to confirm or refute these
speculations, separate detailed studies are needed in the future.

In conclusion, we have demonstrated that the quantum
dynamics of nuclear spins leads to the long-time steadily
or slowly decreasing carrier spin polarization, a feature
which is not captured by the semiclassical approximation.
The long-time behavior extends up to the times when other
relaxation mechanisms become important (e.g., carrier spin-
lattice relaxation times or hydrogen nuclear-spin dephasing
times). The effect can be strong for carriers diffusing over
fewer molecular sites, e.g., in the situation realized in tunnel
magnetoresistance experiments in organic spin valves at the
onset of multiple-step tunneling [7].
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