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4  Chapter 1: General Introduction 

In the Netherlands the prevalence of shoulder complaints is estimated at 31% 

(Winters, 2008). One of the suspected factors involved in the development of 

shoulder complaints or joint wear is the mechanical loading of the shoulder joint. 

When the mechanical loading is exceeding biological limits (in the case of a 

healthy shoulder) or design limits (in the case of a shoulder endo-prosthesis) this 

will lead to joint wear and the gradual degradation of  the shoulder or endo-

prosthesis. Neither these biological limits in shoulder joint loading are known, nor 

are the load profiles on the joint under daily conditions. To gain more insight into 

the underlying mechanisms of the development of joint damage, and to enable the 

future development of enhanced endo-prostheses, a long term load profile of the 

shoulder joint in daily living conditions is desired. 

 

Such a mechanical load profile of the shoulder joint in daily conditions has not 

been established yet. The only way to estimate shoulder joint load in the healthy 

shoulder is by applying a musculoskeletal model; any invasive method to measure 

joint reaction forces directly with an instrumented prosthesis is at the level of 

patient data. Existing laboratory based methods for the estimation of shoulder 

joint reaction forces cannot be applied since the variables needed as input for 

these methods cannot be measured in daily conditions, or only with great 

difficulty.  

 

Goal of the thesis 

The goal of this thesis is to assemble a method to estimate shoulder joint reaction 

forces, in daily conditions, based on long term collection of ambulatory 

measurable variables, to obtain the desired long term mechanical load profile of 

the shoulder. 
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Background  

The human shoulder combines two inherently conflicting characteristics, namely 

a large range of motion over several degrees of freedom, and a stable joint. For 

standardized Activities of Daily Living humeral elevation reaches approximately 

140°  internal and external rotation 60° and -89° respectively (van Andel et al., 

2008). The glenohumeral joint is unstable by structure, and stability is mainly 

controlled by the rotator cuff  muscles; only if the resultant (the summed force 

vector) from muscular activity is directed towards the glenoid surface of the 

scapula dislocation can be prevented (van der Helm, 1994a). Due to trauma, a 

variety of pathologies or mechanical loading of the joint, stability can be 

compromised, and in the end, lead to severe shoulder dysfunction. In cases where 

the joint is damaged due to severe wear or degeneration, joint replacement using a 

shoulder endo-prosthesis is often indicated.  

Although survival time of shoulder endo-prostheses in the human body is 

comparable to other joint implants nowadays, shoulder endo-prostheses start 

loosening, or show severe wearing of joint surface over time (Torchia et al., 

1997). Several studies have been performed that quantify the load on the shoulder 

during (standardized) Activities of Daily Living (Westerhoff et al., 2009a; Anglin 

et al., 2000), others have limited this to a description of the Range of Motion as an 

indicator for shoulder load (Magermans et al., 2005). These studies were 

laboratory based, and focused on a small, specific set of movements. These results 

form a too small base to be extrapolated to a long term mechanical load profile of 

the shoulder. 
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The shoulder 

As stated, the human shoulder combines two inherently conflicting 

characteristics. This challenge is accomplished by an interaction of the existing 

structure and dynamic stabilization. The human shoulder consists of three bones, 

the clavicle, the scapula and the humerus. The clavicle is attached to the sternum 

and scapula; the scapula is pulled to the gliding plane of the thorax, and closing 

the mechanical chain. The humeral head can be described as a sphere, and the 

glenoid surface is acting as a smaller supporting base for this sphere; it is this 

structure that allows for a large range of motion. The scapula is, within 

constraints, dynamically positioned for optimal support of the humerus. A cuff of 

muscles surrounding the glenohumeral joint provide dynamic stability to keep the 

humeral head in close contact with its supporting base, and counteracting any 

dislocating forces.  

 

Estimation of Shoulder joint load 

The only way to estimate the load on the shoulder is using a musculoskeletal 

model. When using instrumented prostheses the measured output is at the level of 

patient data. A musculoskeletal model is a mathematical description of the 

functional elements of the shoulder and upper extremity, describing and modeling 

force generating (active) elements such as muscles, and passive elements 

ligaments, geometry of bones and joint surfaces. 

Such a model should comprise the full shoulder structure, as well as some of the 

constraints within the system; more specifically, the gleno humeral joint integrity, 

i.e. its resistance to subluxation. The Delft Shoulder and Elbow Model (DSeM) is 

such a model. This model, based on extensive cadaver studies(van der Helm, 

1994b), has been developed in the ‘90’s to gain more insight in the working 

mechanism of the shoulder. It has been since regularly used for a series of 

applications to estimate load on the shoulder complex (see (Bolsterlee et al., 
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2013)  for a recent overview) or simulation of the effect of rotator cuff tears or 

tendon transfers (Magermans et al., 2004). The musculoskeletal model is defined 

as a Multi Body Model and consists of rigid bodies representing the bones of the 

shoulder, active elements which can deliver forces and are representing the 

muscles from thorax to humerus and forearm, and passive elements representing 

the various ligaments crossing the joints. With the model a variety of output can 

be estimated, for example net moments around the joints incorporated, muscle 

length, muscle moment arms, individual muscle forces and their resultant 

summing up into joint reaction forces. For the estimation of shoulder joint load, 

the musculoskeletal model uses two types of input; kinematics of thorax and 

upper extremity, and external force as exerted by the hand in manipulating the 

environment. These variables can be measured under controlled laboratory 

conditions without difficulty. 

 

Requirements for ambulatory estimation of joint load 

However, to estimate a long term shoulder joint load profile in daily conditions, 

upper extremity kinematics and external force have to be measured ambulatory, 

long term, and outside the laboratory. The standard instruments used for the 

measurement of these variables are designed to be used in fixed, laboratory 

settings, are usually not wearable or easily transported, or have a limited 

measurement volume. The standard instruments are therefore not suitable, nor 

practical to be used for ambulatory measurements, and the standard method 

cannot be applied.  

To obtain the desired joint load profile, a method that can estimate joint reaction 

forces based on long term measurement of ambulatory obtainable variables is 

needed. Ambulatory variables should yield information about upper extremity 

kinematics, and external force, or more general stated, the musculoskeletal 

response of the upper extremity while manipulating objects in daily conditions. 
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Ambulatory measurement of kinematics 

For the ambulatory measurement of segment kinematics, Inertial Measurement 

Units (IMU’s) have become a popular and suitable candidate system. These 

sensors are lightweight, low on power consumption, and a dynamic accuracy of 

better than 2° is claimed by the manufacturers (for instance, among others, MTx 

sensors, Xsens, Enschede, Netherlands). IMU’s are small boxes containing three 

types of sensors which measure acceleration, angular velocity and the earth 

magnetic field, all in 3D. In static conditions, gravity and Magnetic north form a 

natural frame of reference, while integration of angular velocity delivers change 

of orientation over time. With a proper fusion algorithm that can correct for 

integration drift the orientation of the sensor can be estimated over prolonged 

periods of time. For the sensors used in the experiments of this thesis, this fusion 

algorithm is implemented as a Kalman filter (Roetenberg et al., 2005). Orientation 

estimation is under the assumption of an average acceleration of zero over ten 

seconds, and a homogeneous earth magnetic field; small violations of these 

assumptions can be corrected for by the filter. Several experiments have been 

conducted to show the usability of these kind of sensors for the ambulatory 

measurement of human 3D kinematics for several types of motion (Cutti et al., 

2008; van den Noort et al., 2013; Picerno et al., 2008).  

 

Inertial Sensors: Assumptions & Threats 

As stated, small violations of the assumption of a homogeneous earth magnetic 

field can be corrected for by the filter. For instance, the near presence of ferro 

containing material causes a distortion of the earth magnetic field, changing the 

direction of the magnetic vector, which can influence the orientation estimation of 

the sensor at that position. Rule of thumb is that at a distance of twice the depth 

(or width) of the object the earth magnetic field is homogeneous. Despite some 
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ferro containing constructions at the sides of our laboratory, the magnetic field 

was assumed to be homogeneous. 

Preliminary results from a pilot study showed otherwise.  

In fact, since several series of experiments were to be conducted in this specific 

laboratory, it forced us to conduct a separate experiment to examine the 

homogeneousness of the earth magnetic field in our own laboratory, to be sure 

circumstances were within operating limits of the equipment used. Chapter 2 

describes the procedure followed to obtain a mapping of the earth magnetic field 

within our standard gait analysis laboratory and its effect on the equipment and 

algorithms used, with surprising, but very useful results.  

 

From wearable sensors to segment kinematics 

IMU’s deliver an estimation of sensor orientation around three axes, with respect 

to the earth frame of reference (the vertical axis aligned with the earth 

gravitational vector, and a heading along the earth magnetic field, up north to the 

magnetic north pole). Besides orientation estimation, calibrated sensor data like 

acceleration, angular velocity, and the vector of the earth magnetic field becomes 

available, all in 3D, in the sensor’s frame of reference. For the measurement of 

segmental kinematics, the sensors relative orientation to the segment’s frame of 

reference has to be determined. Standard laboratory experiments describe 

segmental frames of reference by the measurement of 3D positions of bony 

landmarks, conform guidelines as proposed by (Wu et al., 2005). Since IMU’s do 

not deliver position data, but orientation only, these guidelines cannot be followed 

directly. Besides that, for ambulatory purposes, a sensor to segment calibration 

should preferably be carried out with the IMU’s equipment, independent of other 

means. Several options exist in the definition of segment frames of reference 

using IMU’s only. The manufacturer of the equipment proposed a static posture 

of the subject, a so-called T-pose, in which the frames of reference of all segments 
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are thought to be aligned with each other. Others used dedicated pointers 

equipped with IMU’s to indicate the theoretical axis between two BLM (Picerno 

et al., 2008). An alternative to BLM based frames of reference is the use of 

anatomical axes, or functional axes of rotation of a segment (Luinge et al., 2007). 

It implies the performance of a series of well defined movements, from a subject 

equipped with IMU’s in the same configuration as the intended following 

measurements. Chapter 3 describes the method to obtain these functional axes, the 

repeatability of the procedure, the construction of anatomical interpretable 

coordinate systems, and its relation with the standard method in obtaining 

segmental frames of reference following the mentioned ISB proposal. 

 

Ambulatory measure of external force 

Besides kinematics, external force is a required input for the musculoskeletal 

model used. In a laboratory setting external force can be measured with 

instrumented grips or force sensors. In daily conditions it is undoable to measure 

the forces exerted in every manipulation of objects by the subject directly, 

continuously and in 3D. Ideally subjects should wear a kind of instrumented 

glove, measuring all forces exerted by the hand in 3 dimensions. Such an 

instrument is not available yet, the development of such a device was not in the 

scope of this thesis. Since external force, which is one of the required inputs for 

musculoskeletal models to calculate shoulder joint load, is not obtainable in 

ambulatory measurements, these models can practically not be applied. An 

alternative method has to be sought after. During manipulation of an object the 

musculoskeletal response, recordable as surface EMG, can be recorded for longer 

periods of time with ease, and contains information on external force. The use of 

surface EMG is noninvasive, portable, and can comprise the measurement of the 

activation level of multiple muscles over time (Ochia and Cavanagh, 2007).  
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Linking kinematics and EMG to joint reaction force 

From a biomechanical point of view all the information needed for the estimation 

of joint load (kinematics and a measure of external force) can be measured 

ambulatory, in daily conditions, but it still cannot be used directly in the standard 

estimation methods. To obtain the desired mechanical load profile of the shoulder 

in daily conditions a mapping is needed that links kinematics and EMG to net 

joint moments or joint reaction forces.  

Neural Networks have been shown to be useful in the fusion of different data 

sources into a target variable (Song and Tong, 2005; Liu et al., 1999; Schollhorn, 

2004). Neural Networks have good learning capabilities, and once trained, show a 

high processing speed of information, which is a clear advantage when analyzing 

large datasets. With these features Neural Networks appear to be a natural 

candidate method for the estimation of a long term shoulder joint load profile, 

using only kinematics and EMG as input. The emerging method has an appealing 

simplicity. The measurement of upper extremity kinematics and EMG with 

wearable equipment, and completing a minimal set of initial trials to collect data 

to train the neural network, enables the processing of several hours of 

measurements with the trained neural network into the desired variables of joint 

load. Chapter 4 describes an initial exploration of such a method in which a 

Neural Network, using 3D kinematics and relevant EMG from the upper 

extremity, is trained to predict a set of generalized forces and net moments around 

the shoulder. These generalized forces and net moments can concurrently be used 

as input for a musculoskeletal model to calculate full model output, like joint 

reaction forces, passive ligament forces, and estimates of individual muscle 

forces. 
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Direct prediction of joint reaction force 

Joint reaction forces are the mathematical resultant of external force, individual 

muscle force, and passive forces like ligament strain. From that point of view, 

joint reaction forces combine information of all sources of mechanical loading of 

the shoulder in one single variable. A subsequent experiment was conducted in 

training Neural Networks predicting these joint reaction forces directly. Since 

several factors can influence the success of training a Neural Network, this 

experiment investigates in further detail the influence of these factors. For 

instance, the initial approach used, besides segmental kinematics, 13 channels of 

EMG as input for the Neural Networks, which is not a practical setup for long 

term ambulatory measurements. The effect of a reduction in the number of 

channels of EMG on Neural Network performance was examined. Chapter 5 

examines these and other factors in a structured way, while comparing the neural 

network prediction of joint reaction force at the gleno humeral joint with 

corresponding output from a musculoskeletal model. 

 

Chapter 6 integrates and discusses the findings of the preceding chapters, and 

proposes future directions for further development of the method. 
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Abstract 

Background: Ambulatory 3D orientation estimation with Inertial Magnetic sensor 

Units (IMU’s) use the earth magnetic field. The magnitude of distortion in 

orientation in a standard equipped motion lab and its effect on the accuracy of the 

orientation estimation with IMU’s is addressed. 

Methods: Orientations of the earth magnetic field vectors were expressed in the 

laboratory’s reference frame. The effect of a distorted earth magnetic field on 

orientation estimation with IMU’s (using both a quaternion and a Kalman fusing 

algorithm) was compared to orientations derived from an optical system.  

Findings: The magnetic field  varied considerably, with the strongest effects at 5 

cm above floor level with a standard deviation in heading of 29º, decreasing to 3º 

at levels higher than 100 cm. Orientation estimation  was poor with the 

quaternion filter, for the Kalman filter results were acceptable, despite a 

systematic deterioration over time (after 20-30 seconds).  

Interpretation: Distortion of the earth magnetic field is depending on 

construction materials used in the building, and should be taken into account for 

calibration, alignment to a reference system, and further measurements. Mapping 

the measurement volume to determine its ferromagnetic characteristics in 

advance of planned experiments can be the rescue of the data set.  

Conclusions: To obtain valid data, “mapping” of the laboratory is essential, 

although less critical with the Kalman filter and at larger distances ( > 100 cm) 

from suspect materials. Measurements should start in a “safe” area and continue 

no longer than 20 – 30 seconds in a heavily distorted earth magnetic field. 

 

Keywords: inertial magnetic sensing, magnetic distortion, orientation estimation, 

kalman filter. 
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Introduction 

Over the last few years, a strongly increasing interest in ambulatory 

measurements during daily activities can be noticed, for instance to obtain a 

better insight in fall characteristics [1], activity level [2], functional behavior 

following arthroplasties [3] [4], or biomechanical loading of joints [5] in daily 

conditions.  

 

Inertial Magnetic Units (IMU’s) are a rather new motion capture technique. 

IMU’s are lightweight, portable and low on energy usage (e.g. MT-X sensors, 

www.xsens.com). Data storage and transport have also become relatively easy. 

All these features have facilitated the opportunity to obtain long term, high 

quality, 3D kinematics outside dedicated motion laboratories. 

IMU’s are small boxes that combine several types of sensors like accelerometers, 

gyroscopes and magnetometers. The gyroscopes are used to track rapidly 

changing orientations in 3D and IMU heading is obtained from the earth 

magnetic field. This heading is obtained when acceleration of a sensor will be 

zero (apart from gravity) over a period of at least 10 seconds. This yields gravity 

as another vector for estimation of sensor-orientation. By a fusing algorithm these 

sensors data can be used to estimate IMU orientation.  

To be able to use IMU’s, validation is a clear necessity. Validation is usually 

performed in well equipped motion labs, by validating the new equipment against 

a  reference system (e.g. Vicon, reflective markers, Oxford, UK; Optotrak, active 

markers, Northern Digital, Ontario, Canada). In IMU’s, one of the assumptions in 

the fusing algorithms to estimate IMU orientation is the homogeneity of the earth 

magnetic field.  

 



16 Chapter 2: Magnetic distortion in motion labs  

1A 

 

1B 

 

1C 

 

Figure 1a) The motion lab of RRD, current situation, and 1b) during construction, 

early ‘90’s. Notice the amount of constructive iron forming a square, becoming a 

solid basis for the force plates, in figure 1a located under the Vicon calibration 

wand. Figure 1c shows a qualitative mapping, with 15 identical compasses, of an 

area with extremely high distortion. 
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Although not always obvious, it is not unusual that in the labs used for validation 

of this new equipment, the condition of the earth magnetic field is far from 

optimal, if not homogeneous at all. These irregularities can be caused by 

construction iron in floors, walls and ceilings (See figure 1a & b), or  

other equipment in the laboratory [6], and occur in both the horizontal and 

vertical plane. Distortion in the earth magnetic field was experienced in three 

different laboratories (Shoulder lab Delft University, Delft; Motion lab of Human 

Movement Sciences, Vrije Universiteit, Amsterdam; Motion lab of Roessingh 

Research & Development, Enschede, all in the Netherlands), and resulted in a 

more structured experiment on the homogeneity of the earth magnetic field, 

which took place at the gaitlab of Roessingh Research & Development, 

Enschede, Netherlands. 

 

There can be seen some analogy with the Flock of Birds system, which makes 

use of an active generated magnetic field in 3 dimensions, to obtain 6 degrees of 

freedom per sensor. The generated magnetic field suffers from any constructive 

iron or iron containing equipment within the measurement volume, but when 

stationary, this measurement volume can be calibrated and mapped [7]. 

  

For IMU’s, which use a fusing algorithm to estimate orientations, calibrating and 

mapping a lab for a distorted earth magnetic field is not trivial, since the fusing 

algorithm is designed to filter out disturbances to be able to determine the IMU 

orientation. The system is designed and developed to be used ambulatory, 

without prior knowledge of existence and location of disturbances. Besides that, 

IMU’s do not produce position information (yet), only orientation information, so 

mapping of the measurement volume for possible disturbances needs additional 

equipment. However, there are a number of typical sources of error which 

threaten the assumptions in fusing algorithms. Although the fusing algorithms to 
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obtain 3D orientation are designed to filter disturbances in the earth magnetic 

field, there are implications for optimal starting locations of each measurement, 

as well as temporal aspects of the measurements, and output generated from it. In 

fact this accounts for all brands of sensors which make use of the earth magnetic 

field. 

Another issue when validating against a gold standard, is the alignment of the 

different global frames of reference used by the measurement systems. IMU’s use 

gravity and heading of the earth magnetic field, lab based measurement systems 

usually have one axis pointing vertically upwards, and one of the two other axes 

usually aligned with one of the walls of the lab, or the main direction of motion. 

The relationship between both global frames of reference should be known and 

corrected for, to enable a clean comparison between measurement systems. 

 

This paper focuses on the validation process with IMU’s in the light of the 

necessity to perform these using information from the magnetic field, in order to 

measure 3D kinematics. More specifically, we investigated: 

 

1. The distortion of the earth magnetic field in a standard equipped motion 

lab (RRD, Enschede)  

2. The effect of these disturbances on the accuracy of the orientation 

estimation with IMU’s.  

 

Using the above information, we subsequently determined the efficacy  over 

time of two different orientation estimation algorithms, the standard, off the 

shelf, quaternion filter, and a newly developed Kalman filter (MT-Software 

V2.8.5, and MT-Software v2.9.5 XKF3-Beta release V084 resp., both from 

XSens) for validation measurements in the specified laboratory.  
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Methods  

A Vicon six-camera opto-electronic system (Vicon MX, camera’s MX13) was 

used as a reference system. The system was dynamically calibrated with a L-

shaped wand. The origin of the lab coordinate system was defined with the same 

wand placed horizontally on a force plate, whereby the X-axis pointed along the 

long axis of the lab, and the Z-axis pointed vertically up. Marker data were stored 

at 100 Hz. Camera’s and IMU’s were electrically synchronized at 1000 Hz.  

The IMU’s used in this experiment were MTx sensors (XSens, static RMS-error 

< 1º, dynamic RMS-error <2º), attached to a XBus-B system. Data were logged 

at 100 Hz with the standard MT software, which was supplied with the XBus 

system. Raw data as well as calibrated data and orientations from the sensor were 

stored, the latter estimated by the so called quaternion filter implemented in the 

standard MT-software. Since raw data were stored, the experimental Kalman 

filter could also be applied on the same data set. 

Two algorithms were used for the estimation of IMU orientation:  

• a quaternion filter, which can best be seen as a weighed average of 

orientation estimation of the three sources available (acceleration, angular 

velocity integrated to orientation, heading of the earth magnetic field).  

• a Kalman filter: a mathematical error model of the sensors (all three types 

used in one IMU) characteristics is used to predict the error in orientation 

estimation, and corrects for this predicted error [8].  

The Kalman filter uses two assumptions: Acceleration (apart from gravity) 

averaged over 10 seconds is zero; the Earth magnetic field is homogeneous, or 

distortion is temporary, and less then 10 seconds. 
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Five IMU sensors were manually aligned and taped on a 

wooden bar. Sensors were placed at 5, 40, 100, 140 and 

180 cm from the base of the wooden bar (Figure 2). A 

local reference system was defined on this bar with five 

reflective markers (diameter 25 mm). The marker 

configuration on the objects and camera alignment in this 

experiment introduced a maximal uncertainty of 0.5 º ± 

0.6º in the reference coordinate system definition due to 

marker positioning errors (Appendix 1). 

To locally align the five IMU’s an outlining 

measurement was conducted to obtain the sensor 

orientations with respect to the wooden bar in a 

mathematical way. In this measurement the bar and 

sensors were rotated several times around the three main 

axes of the bar (Appendix 2). 

 

The alignment between the IMU’s frame of reference and reference system was 

obtained by estimation of gravity and the direction of the earth magnetic field 

during stand still (trial 1).  

Gravity was measured with the accellerometers, subsequently expressed in the 

laboratory’s coordinate system by pre-multiplying with the local alignment 

described in App. II , and the orientation of the bar, and then averaged over ten 

seconds. The angle between gravity and the laboratory vertical was estimated at 

less then 1º for all the five sensors.  

Analogue to the measurement of the gravity vector, the earth magnetic field 

vector can be measured with the sensors magnetometers, and expressed in the 

laboratories coordinate system. Based on a pilot, a magnetic homogeneous area 

was selected as a safe start for the estimation of the direction of the magnetic 

 

Figure 2. Equipment 
used, wooden bar with 5 

MTx sensors, and 5 

Vicon markers with 

diameter of 25 mm 
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field vector, as well as an extremely disturbed area, which was labeled as 

“unsafe”. The safe area was in the middle of the lab at about 180 cm height. In 

the safe area the global heading of the earth magnetic field was measured and 

determined. The IMU magnetic earth vectors showed to be 7.5° relative to the 

laboratory X-axis, which was compatible to the estimated 7° for the geographical 

magnetic North following from the geographic coordinates for the laboratory 

(Roessingh Research & Development, coordinates 52°13', 55.35"N, 6°52', 

42.38"E). 

Based on the combination of the (separately obtained) direction of gravity and 

heading of the magnetic field vector, the global inertial reference system (and all 

data measured in this reference system) was aligned with the laboratory reference 

system. Subsequently, measurements were performed over the full surface of the 

laboratory, at 50 cm intervals, at normal to slow walking speed, to exclude any 

effects from acceleration and/or angular velocity on the orientation estimating 

algorithms. The bar was held upright (vertical), the lower part sliding on the 

floor, to enable simultaneous measurements at five different heights. The 

following trials were performed: 

 

1) Standing still in safe area for 10 seconds, then rotating the bar with sensors 

around its three axes, five times each (further description in Appendix II). 

2) Starting in “safe” area, scan the lab with normal to slow walking speed. 

3) As Trial 2, but starting in “unsafe” area. 

 

The orientation of the earth magnetic field was expressed in the global laboratory 

reference frame using the orientation and position from the reference system and 

thus independent from orientation estimation of the IMU themselves. The IMU 

global coordinate system orientation is based on the combination of the gravity 

vector and magnetic field vector. The reference coordinate system is based on the 



22 Chapter 2: Magnetic distortion in motion labs  

optical vertical and a chosen horizontal direction, in this case the long axis of the 

laboratory.  This implies that, when IMU magnetic vector data are expressed in 

the reference coordinate system, they can be visualized as direction vectors 

relative to the laboratory volume. The projection of the magnetic field vector to 

the horizontal plane, representing the direction of the magnetic field vector 

perpendicular to gravity, should ideally show a systematic, but stable, difference 

from the laboratory X- and Y-axes. If the magnetic field is variable, the IMU 

recordings would show this as a fluctuation over an, in principle, constant 

direction (being the magnetic North). This fluctuation can be expressed as the 

standard deviation of the angle of the individual direction vectors to the mean 

magnetic field vector: 
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field vector is small, instabilities of this field can have extra large effects on this 

variable error. The variable error can be quantified as: 

 

 

 

 

where: 

 
T
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R = the transpose of the outlining of the IMU to the reference coordinate system (sensor 

with respect to the wooden bar); 
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G
= the orientation of the UMI at time step (i) (as measured with the sensor, expressed 

in the laboratory coordinate system); 
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REF
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= the transpose of the reference coordinate system at time step (i) (as measured with 

the optoelectronic system). 

Results 

Recordings from the IMU’s showed that the magnetic field varied considerably. 

Its orientation was strongly dependent on 3-D position in the lab, which clearly 

indicated that the magnetic field was not homogeneous. These effects were 

strongest five centimeter above the floor (Figure 3-B) where the standard 

deviation emf rose to 30º. At 180 cm above the floor, the homogeneity of the 

magnetic field was about 3º (Table 1, Figure 3-A). 
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Figure 3. Heading of the earth magnetic field within the measurement volume of the Viconlab at 

Roessingh Research & Development (RRD), Enschede, at two heights. Figure 3A is at 180 cm, 3B 

is at 5 cm, both top view. Measurements started in the top left area of the graph (X=-2000, 
Y=1500), moving towards positive X, then roughly 50 cm towards negative Y, then towards 

negative X, etc. The two squares are the labs double AMTI force plates, which were, 

unexpectedly, not the main cause of distortion. The oval in figure B is definitely an “unsafe” area, 
at 5 cm height, the oval in figure A indicates a “safe” area at 180 cm height. 
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Errors in orientation estimation between the reference system and the IMU 

system were also estimated after starting IMU measurements in a “safe area”, 

where the magnetic field was known to have the correct direction (trial 2). 

Results proved to be bad for the standard filter, with a standard deviation eal at 

180 cm of 2° and 5 cm above floor level of 14°. For the Kalman filter results 

were better, especially for the 5 cm conditions where errors stayed lower 

(standard deviation eal, Figure 4, Table 1) although a systematic deterioration 

over time could be discerned.  

 

As expected, starting measurements in an “unsafe” area, where the magnetic field 

was known to be unstable, due to “constructive iron” and cable ducts, had no 

added effect on the orientation estimation with the standard quaternion filter, but 

did strongly affect results for the Kalman filter (compare Figure 4 and Figure 5). 

At 5 cm above the floor, the system showed high deviation for a period of 

approximately 50 seconds, after which results improved. However, the overall 

standard deviation eal was still higher than in the previous condition (Table 1, 

Figure 5). 

 

Table 1, variation in magnetic field emf, expressed in the laboratories frame of reference, and 
variable alignment error eal for “safe” and “unsafe” starting conditions (all errors in degrees). 

 Starting in “safe area”, trial 2 Starting in “unsafe area”, trial 3 

Height emf 
Quaternion 

filter error  eal 

Kalman filter 

error  eal 

Quaternion filter 

error  eal 

Kalman filter 

error  eal 

180 cm 3 2 2 2 2 

140 cm 2 2 2 3 2 

100 cm 3 2 2 3 2 

40 cm 10 5 3 4 3 

5 cm 30 14 4 12 8 
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Figure 4, Temporal effect of distortion. Start in safe area, scan the lab with normal walking speed. 

Keep in mind the extremely distorted magnetic field of figure 3-B, for measurements at 5 cm 
height, which can also be noticed from the variation in the heading of the magnetic vector over 

time (middle lower graph). The thick markings at the base-line of the error graphs (left and right) 

indicate the time spent in the extremely distorted, “unsafe” area, as outlined in figure 3A. 
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Figure 5, Temporal effect of distortion. Start in unsafe area, with a deviated magnetic heading at 
start of measurement, then scan the lab. Keep in mind the extremely distorted magnetic field of 

figure 3-B, for the measurement at 5 cm height, which can also be noticed from the variation in the 

heading of the magnetic vector over time (middle lower graph). 
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Discussion 

The variation of the magnetic field in our lab was considerable, both in dip angle 

and in heading. Due to the use of heading of the magnetic field for the definition 

of the IMU X-axis, this factor is the strongest cause of estimation errors in the 

orientation of the IMU reference system. The quaternion filter can not correct for 

errors in the magnetic field direction (see Figures 3 and 4), but the kalman filter 

can, to some extent. The Kalman filter uses a mathematical error model of the 

sensors characteristics (all three types used in one IMU) to predict the possible 

error in orientation estimation when for instance deviations in the earth magnetic 

field are met, and corrects for this predicted error [8]. However, it should be 

determinated to what extent the measurement volume complies to the 

assumptions used in Kalman filtering. 

 

When starting in an “unsafe” area, the Kalman filter needs a considerable 

sampling time before data become more or less reliable. In our case, over more 

than 50 seconds. This effect also works the other way: disturbances of longer 

duration (20 – 30 seconds), or similar, staying in an area where the magnetic 

vector is uniform but deviating from the starting condition / location, will lead to 

an adaptation of the orientation estimation of the Kalman filter to the actual 

measured magnetic vector. 

Results indicated a strong effect of height on the deviations of the magnetic field 

(figure 3). When only measuring with IMU’s, with several sensors placed on 

different body segments, at different heights from floor level, and thus from 

constructive iron elements, there might arise a difference in heading of the local 

reference frames of the segments. Due to a different heading of the magnetic field 

at the heights of the IMU’s, a single segment calibration will not reduce this 

difference in heading.  
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Based on the data of this experiment, it is recommended to perform 

measurements in this specific lab at least at 40 cm height. When using a Kalman 

filter, this recommendation is less strict, as long as there is the guarantee that 

sufficient time is spent in a “safe” area to allow the filter to settle (and vice versa, 

not to stay long in “unsafe” areas, to prevent the filter from setting to a distorted 

value). 

Distortion of the earth magnetic field is depending on the distance of the IMU to 

ferro containing metal, and thus the construction materials used in the building. 

When calibrating an IMU (or a series of IMU’s, as a system) to a reference 

system, e.g. video based like Vicon, this distortion should be taken into account 

for further measurements. A mapping of the measurement volume in advance of 

a series of experiments can be the rescue of the data set, so as to define “safe” 

and “unsafe” areas. 

 

Stability of the Kalman algorithm is, in the end, also time limited in heavily 

disturbed environments, and depending on quality of gyroscopes. The better the 

gyroscope in terms of low drift, the longer it will take before integration drift in 

the form of random walk will increase to unacceptable levels. The current time 

limit with the equipment used is about 30 seconds. This means that a stay of up to 

30 seconds in an disturbed magnetic field, the orientation can be estimated with 

an accuracy of about 3 - 5° (Figures 4 and 5). When measuring in a disturbed, but 

mapped laboratory, this knowledge can be taken into account in the planning of 

measurements. When starting in a distorted area, it can take up to 50 to 60 

seconds before orientation estimation error decreases to about 5 degrees (Figure 

5). 
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Conclusions 

- “Map” your laboratory on ferromagnetic characteristics before validating. 

- Preferably use IMU’s well away from floors, walls and ceilings. In our 

experiment, a distance of at least 40 cm from the floor led to acceptable 

results; 

- The Kalman filter is less sensitive to magnetic disturbances, especially when 

starting in a “safe” area, where the magnetic field has the correct heading. 

Downside is the relative unpredictability when staying in an “unsafe” area for 

longer periods; 

- When calibrating against a reference system, every measurement should start 

at the same location in the measurement volume where calibration and 

alignment took place. This ensures a constant offset and offset correction. 

 



  Chapter 2: Appendix 1 31 

Appendix 1: Estimation of coordinate system uncertainty  

Vicon accuracy, which is dependent on camera resolution, but also on the setup 

of markers, and the definition of the local reference frame based on markers on a 

rigid body. The error measure for this procedure is calculated as follows: 

1. The local reference frame for the Vicon-object and markers, and its initial 

orientation was calculated from a separate trial, according to: 
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2. Subsequently the least squares method of Spoor & Veldpaus [9] was 

applied during tracking of the object to obtain the orientations.  

3. Individual markers during the tracking are expressed in the local 

reference frame which orientation is calculated by the procedure of Spoor & 

Veldpaus. 

4. The variation of these individual marker positions expressed in this local 

reference frame can be seen as the measurement error of Vicon. 

5. When applying the formulas of step 1 in calculating orientation of the 

Vicon Object, on the markers expressed in its local reference frame (step 3 and 

4), the difference in orientation can be expressed as the smallest angle between 

the calculated orientation and unity, by: 
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In Table A1 for every trial the RMS, averaged and standard deviation of 

Viconerror,I is depicted (in degrees). 

 

 

 

 

 

 

Table 1, variation in magnetic field emf, expressed in the laboratories frame of reference, 

and variable alignment error eal for “safe” and “unsafe” starting conditions (all errors in 
degrees). 

 Starting in “safe area”, trial 2 Starting in “unsafe area”, trial 3 

Height emf 
Quaternion 
filter error  eal 

Kalman filter 
error  eal 

Quaternion 
filter error  eal 

Kalman filter 
error  eal 

180 cm 3 2 2 2 2 

140 cm 2 2 2 3 2 

100 cm 3 2 2 3 2 

40 cm 10 5 3 4 3 

5 cm 30 14 4 12 8 
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Appendix 2: Local alignment of an inertial system with an 

optoelectronic system 

 

The local alignment can be estimated by performing a number of rotations around 

the three axis of the object with markers and IMU’s, and using the 3D angular 

velocity vectors of both systems to determine their relative orientation. Angular 

velocity is not critical, but should be well above noise level of the sensors. An 

arbitrary cutoff treshold of 0.2 rad/sec is used here, other cutoff values delivered 

the same results. 

S
vi = 

SO
R(θθθθ) ⋅⋅⋅⋅ 

O
vi , i=1 … N   (1) 

Where: 

S
vi

 
= angular velocity measured with IMU 

SO
R(θ) = Orientation of IMU casing related to Vicon markers on IMU  

O
vi = angular velocity as derived from Vicon markers. 

 

Equation (1) can be written as  

[
S
v1 ……

 S
vN] = 

SO
R ⋅⋅⋅⋅ [

O
v1 …… 

O
vN] 

When having enough data around three axis of rotation, this equation can be 

solved using a least squares: 

SO
R

init
 = [

S
v1 ……

 S
vN] ⋅⋅⋅⋅ [

O
v1 …… 

O
vN]

-p
, where 

–p
 denotes the 

pseudoinverse. 

Due to small measurement errors, the above solution will give a rotation matrix 

that is 

slightly nonorthogonal. This can be solved by an orthogonalization. 
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Abstract  

Background: Inertial Measurement Units (IMU’s) are becoming increasingly 

popular by allowing for measurements outside the motion laboratory. The latest 

models enable long term, accurate measurement of segment motion in terms of 

joint angles, if initial segment orientations can accurately be determined. The 

standard procedure for definition of segmental orientation is based on the 

measurement of positions of bony landmarks (BLM). However, IMU’s do not 

deliver position information, so an alternative method to establish IMU’s based, 

anatomically understandable segment orientations is proposed.  

Methods: For five subjects, IMU’s recordings were collected in a standard 

anatomical position for definition of static axes, and during a series of 

standardized motions for the estimation of kinematic axes of rotation. For all 

axes, the intra- and inter individual dispersion was estimated. Subsequently, local 

coordinate systems (LCS) were constructed on the basis of the combination of 

IMU’s axes with the lowest dispersion and compared with BLM based LCS.  

Findings: The repeatability of the method appeared to be high; for every segment 

at least two axes could be determined with a dispersion of at most 3.8º. 

Comparison of IMU’s based with BLM based LCS yielded compatible results for 

the thorax, but less compatible results for the humerus, forearm and hand, where 

differences in orientation rose to 17.2º.  

Interpretation: Although different from the ‘gold standard’ BLM based LCS, 

IMU’s based LCS can be constructed repeatable, enabling the estimation of 

segment orientations outside the laboratory.  

Conclusions: A procedure for the definition of local reference frames using 

IMU’s is proposed. 

 

Keywords: Sensors, Upper Extremity, Coordinate system, Functional Axes 
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Introduction  

Inertial & Magnetic Measurement Systems (IMU’s) are small devices containing 

accelerometers, gyroscopes and magnetometers. IMU’s modules deliver total 

acceleration including gravity, angular velocity and the earth magnetic vector, all 

in 3D, expressed in the sensors local coordinate system. With a proper algorithm, 

based on the three types of data, sensor orientation estimations with respect to a 

global coordinate system can be made with an accuracy of 1º in static, and 2º 

RMS during dynamic movements (MTx specifications, XSens, Netherlands;(Cutti 

et al., 2008)). IMU’s are becoming increasingly popular for monitoring of 

functional activities, since they are relatively cheap and, in contrast with video 

based systems, easily allow for measurements outside the motion laboratory in a, 

in principle, unlimited measurement volume (Brodie et al., 2008). IMU’s have 

been used for the classification and quantification of physical activity in terms of 

postures and tasks (Coley et al., 2008; Janssen et al., 2008), using statistical 

correlation methods. With the current generation of IMU’s, with a proper 

calibration method, the ambulatory measurement of segment motion, in terms of 

joint angles is now also feasible (Cutti et al., 2008; Picerno et al., 2008). 

Furthermore, the recording of segment motion combined with the external load 

will allow for the estimation of biomechanical loading of joints. For the 

estimation of the load on the upper extremity under everyday conditions, outside 

the laboratory, we intend to record segment motions using IMU’s and use these as 

input for an existing musculoskeletal model of the shoulder (van der Helm, 

1994b).  

 

For the calculation of joint- and segment motion, the relationship of the IMU’s 

coordinate system and a segments local coordinate system (LCS) is needed. The 

standard procedure for the definition of a LCS is based on the measurement of the 
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position of bony landmarks (BLM) (Wu et al., 2005; Cappozzo et al., 1995). This 

is not a practical solution when IMU’s are being used in the field since it would 

require the use of an additional measurement system to record segments BLM 

positions in 3D, relative to the orientation of these IMU’s (Picerno et al., 2008). 

Avoiding the use of such additional equipment, required expertise and analysis 

would simplify the use of IMU’s in obtaining segment kinematics in the field. It 

can be stated that there is a need for an “in the field” calibration procedure for 

inertial sensors, to determine the relation between IMU’s and segment LCS, with 

comparable accurate results as in procedures developed for optical recording 

systems(Kontaxis et al., 2009). 

 

Two options can be considered to construct a segments LCS based on IMU’s data 

(Kontaxis et al., 2009):   

First, the so-called reference method where IMU’s recordings from the standard 

anatomical position (SAP, standing straight, arms hanging along the body, hand 

palms pointing to the front) are related to the standard anatomical axis definitions.  

Second, a functional method in which segments LCS are constructed from 

estimations of the functional axes of rotation of a segment. For a well defined, 

uni-axial movement the angular velocity as measured by the sensors represents 

the functional axis of rotation, by definition. These functional axes of rotation can 

be with respect to an adjacent segment, or to the global coordinate system. Of 

course, a combination of both methods (reference and functional) is also possible. 

Since for each segment multiple combinations of axes are realizable, it has to be 

determined what the best combination of axes is. In addition, these constructed 

LCS are likely to differ from the standard BLM coordinate systems and the 

magnitude of this difference has to be determined. 
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Therefore we will, for the thorax and the upper extremity, excluding the scapula 

and clavicle: 

1) determine IMU’s based “reference” and / or “functional” axes to be 

used for the construction of segment LCS; 

2) determine the inter- and intra-subject repeatability of this procedure; 

3) construct segment LCS using the axes with the highest repeatability; 

4) compare these IMU’s based LCS with BLM based LCS; 

5) propose a procedure for the definition of LCS using IMU’s. 

Methods  

Five healthy subjects (age 27 ± 1.9 year, stature 189 ± 6 cm, weight 83 ± 8.9 kg), 

without a history of shoulder complaints, participated in this study after giving 

their informed consent. The protocol of the study was approved by the VU 

University‘s local ethical committee. Four sensor units were attached to a bus 

master (MT-X sensors and a XM-B-3 bus master, Xsens Technologies, 

Netherlands), operating at 50 Hz. The XSens MT-manager software (v1.5.0, SDK 

v3.1) was used for logging; the implemented Kalman filtering (Roetenberg et al., 

2005) was set at the “human scenario”. As reference system a Vicon MX13 setup 

with 6 MX cameras (50Hz, electronically synchronized) was used. For the 

comparison between the inertial (IMU’s) coordinate systems and the opto-

electronic lab-based coordinate system, an alignment procedure was applied as 

described in (de Vries et al., 2009). 
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MTx sensors were placed (1) on thorax-sternum, (2) 

latero-distally on the right humerus, (3) dorso-

distally on the right forearm, close to the wrist and 

(4) on the right hand, on Metacarpale II and III 

(MCII & MCIII). The sensors were attached using 

dedicated neoprene cuffs. Reflective markers were 

placed on Bony Landmarks conform the ISB 

standard for upper extremity measurements (Wu et 

al., 2005), see also Figure 1.  

 

Subjects started each trial in the SAP for five 

seconds and collected IMU’s data were used for the 

determination of the following segment axes: the 

gravity vector (when standing still gravity is the only acceleration measured; 

averaged over time and normalized to unit length) was used as an estimator for 

the longitudinal axis of a segment; the magnetic vector (averaged over time, 

normalized to unit length) as an estimator of the frontal axis. The derived BLM-

based segment orientations during the SAP were used as a reference in which all 

subsequent trials were expressed. 

 

To determine functional axes of rotation, subjects performed the following series 

of well defined, uni-axial rotations, five times each, avoiding the extremes of the 

range of motion: 

• Thorax:  

- flexion – extension; 

- lateral flexion; 

- axial rotation. 

• Humerus: 

 

Figure 1,  

A subject equipped with IMU’s 

and reflective markers on BLM. 
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- arm forward flexion, elbow extended, holding a light bar at shoulder 

breadth, thumbs pointing lateral; 

- ab – adduction; 

- endo- and exorotation, with the elbows supported at the olecranon; 

- elbow flexion (the movement of the forearm expressed in the humeral 

IMU’s). 

• Forearm:  

- flexion – extension, while holding a light bar, thumbs pointing laterally to 

fix the forearm from pro- and supination, elbows supported at the 

olecranon; 

- pro- and supination, free in the air, hand kept straight in line with the 

forearm; 

- pro- and supination, elbow and ulna supported. 

• Hand: 

- hand flat on the table for 5 seconds; 

- dorsal flexion with the forearm supported, palm of the hand facing the 

table; 

- same position, performing radial ulnar deviation, by sliding the palm of 

the hand over the surface.  

 

Angular velocity as measured with the IMU’s was used as an estimate of the 

functional axis of rotation (averaged over time, and normalized to unit length) 

(Luinge et al., 2007). To enable a clear segmentation, each series of movements 

was followed by a stop of at least two seconds. To ensure a high signal-to-noise 

ratio, a cut-off of 30% of the maximal angular velocity amplitude was used.  

 

To be able to assess within-subject variability, the complete protocol was repeated 

six times for each subject.  The variation over trials was calculated as dispersionε , 
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the average of the six individual smallest angles ( 1iv∆
r

) between 1) the axes 

determined in the six trials ( 1iv
r

), and 2) the average orientation of these axes over 

the six trials (Equation 1): 
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Equation 1 

 

The two non-aligned axes which had the lowest dispersion over trials and subjects 

were chosen for the construction of a local coordinate system, following the same 

rule as that for the calculation of local coordinate systems based on anatomical 

landmarks (Picerno et al., 2008; Wu et al., 2005; Cappozzo et al., 1995; Kontaxis 

et al., 2009). Taking two concurrent cross products of the chosen axes assures 

orthogonality of the LCS [see Appendix 1 for details]. 

 

To determine the difference between methods, for each segment the IMU’s based 

local coordinate systems were compared with the bony landmark-based local 

reference frames expressed as ∆local , the angle of rotation between the BLM and 

IMU’s based reference frames : 
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∆ = Angle of rotation between IMMS and BLM based LCS   

 

Equation 2 

 

In addition, the angles between the individual X,Y, and Z axes from both IMU’s 

and BLM based LCS were expressed as the smallest angle between these two 

vectors. Since a LCS is an orthogonal matrix, the individual axes are vectors of 

unit length, and the smallest angle between two corresponding axes can be 

calculated according to Equation 3. 
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Equation 3 

 

Per segment, a repeated measures ANOVA was performed on dispersion (e.g. for 

the Thorax: gravity vector during anatomical stance, thorax flexion axis, lateral 
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flexion axis and torsion axis). When a significant difference in overall dispersion 

was found, paired-samples T-tests with Bonferroni correction were performed.  

The same procedure was followed to test for the compatibility of the functional 

and BLM method between segments. As a further detailed analysis, paired-

samples T-tests were applied to the individual ∆X, ∆Y and ∆Z from the reference 

frames, to determine which axes deviated significantly.  

A significance level of p = 0.05 was used for all tests. 

Results  

Mean dispersions of axes were quite low (Table 1, Figure 2).  Standard deviations 

of dispersions over trials were generally well below 1º. The highest mean 

dispersion of 8.9º appeared to be of the magnetic vector measured at the hand in 

the SAP. The forearm ‘pro-supination’, and ‘pro-supination fixed’, and humeral 

‘endo-exo rotation’ axes showed the lowest mean dispersion of 1.2º, 1.3º and 1.6º, 

respectively. 

In the SAP the gravity vectors showed a low dispersion of about 2º to 3º, except 

for the hand where dispersion was 6.6º. For all segments, the dispersion of the 

magnetic vector ended highest in the variation ranking, from 4.4º at the thorax up 

to 8.9º at the hand. 
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Thorax N=5  Humerus    

Flexion 2.0 ± 0.8  Endo rotation 1.6 ± 0.8 

Gravity Vector 2.9 ± 2.3  Gravity Vector 2.0 ± 0.5 

Torsion 3.0 ± 2.4  Elbow Flexion 2.8 ± 0.9 

Lateral Flexion 3.9 ± 1.3  Abduction 4.6* ± 1.5 

Magnetic Vector 4.4 ± 2.4  Ante Flexion 5.0* ± 1.9 

     Magnetic Vector 5.2 ± 4.3 

         

Forearm     Hand    

Pro-Supination 1.2 ± 0.4  Gravity Hand Flat 2.4 ± 0.8 

Pro-Supination Fixed 1.3 ± 0.6  Dorsal flexion 2.9 ± 0.5 

Gravity Vector 2.6* ± 0.9  Radiar Ulnar deviation 5.5* ± 1.4 

Elbow Flexion 3.8* ± 1.2  Gravity Vector 6.6* ± 2.8 

Magnetic Vector 6.3* ± 2.9  Magnetic Vector 8.9* ± 3.1 

 
Table 1, Mean dispersion of reference (gravity and magnetic vectors) and functional axes 

(movements) over five subjects, in degrees. Dispersion of these axes is calculated per 

subject, as the variation in orientation over trials (see equation 1). Per segment, axes are 

ranked to Mean dispersion. * denotes a significant difference in paired T-tests over subjects 
(with Bonferroni correction, initial p<0.05). For the relation of these differences see text. 

 

The axes of the thorax showed no significant difference in dispersion indicating 

that any combination of axes can be used to construct a local reference frame. The 

thorax flexion and the gravity vector in the SAP were subsequently used for the 

construction of the thorax local coordinate system. 

 

The dispersion of the axes of the humerus, forearm and hand were significantly 

different (p = 0.025, p=0.000 and p=0.000, respectively).  

Humeral abduction and forward flexion axes had a higher dispersion than internal 

rotation and the gravity vector while the humeral forward flexion axis also 

showed  significantly higher dispersion than  the ‘elbow flexion’ axis (paired-

samples T-test, all p<0.05). These results led to the selection of internal rotation 

and elbow flexion for calculation of the humerus local coordinate system. 
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For the forearm, the dispersion of the gravity vector, elbow flexion and the 

magnetic vector were significantly higher than dispersion for the pro- and 

supination axes. Elbow flexion and the magnetic vector also differed from the 

gravity vector (paired-samples T-test, all p<0.05). The pro-supination axis was 

chosen as the first axis for the construction of the forearm coordinate system. 

Elbow flexion is chosen as the second axis. 

 

The gravity vector (measured with the hand flat on a table) and dorsal flexion 

both differed significantly from the other three functional axes and were selected 

for the construction of a local frame of reference for the hand. 

 

Resuming the above, the ‘reference’ and the ‘functional’ method showed 

dispersion in the determination of the various axes of 1° to 9º over subjects. 

However, for every segment two axes could be determined with a dispersion of at 

most 3.8º over six trials. 

 

The constructed IMU’s coordinate systems were expressed in the corresponding 

segment BLM coordinate system (Figure 2, Table 2).  

 

IMU’s-based and the BLM based local coordinate systems were overall different 

(p=0.016). This mean difference was smallest for the thorax with 6.4º, and rose up 

to 17.2º for the forearm (Table 2). When looking into more detail to these 

differences it appeared that the longitudinal axis of the forearm based on IMU’s 

data differed only 4º from its BLM based equivalent, but lateral and frontal axes 

differed about 17º between IMU’s and BLM based axes (Table 2). 
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Figure 2, A typical example (Subject03) of IMU’s based LCS, a compilation of six trials 

expressed in the segment’s BLM based LCS. Dispersion can be noticed by the bundles of lines, 

the difference with the BLM LCS by the relative orientation of the axes of the IMU’s based LCS 
with respect to the axes of the figure. 
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 Thorax     Humerus    

 Total X Y Z  Total X Y Z 

Mean 6.4 5.9 5.4 3.8  8.7 7.6 6.8 6.0 

SD 4.7 4.8 3.7 3.0  4.0 4.4 3.9 2.5 

 Forearm     Hand    

 Total X Y Z  Total X Y Z 

Mean 17.2 16.9 4.0 17.0  15.6 12.5 14.8 9.9 

SD 6.3 6.3 1.3 6.5  8.5 7.5 8.4 5.2 
Table 2, 

Difference between BLM LCS and IMU’s LCS, averaged over five subjects, 

expressed as smallest rotational angle (in degrees), and as angle (degrees) between the 
individual X,Y and Z components of both LCS. 

 

When IMU’s recordings of humeral motion are applied to the IMU’s based LCS 

and compared with humeral orientation obtained by an optoelectronic system 

which uses a BLM based LCS, a difference in orientation during movement can 

be observed. Figure 3 shows the effect on humero-thoracal orientations during 

forward flexion, lateral flexion and internal rotation, decomposed in Euler-angles. 

Differences between methods vary over movements and segment positions, up to 

20º, but are lower for the elevation angle, up to 10º.  
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Figure 3, Orientations of the humerus (with respect to the thorax) over time [samples], from 

BLM (black line) and IMU’s based LCS (grey line), during three types of motion; humeral 
forward flexion (top row), lateral flexion (middle row), and internal rotation (bottom row), 

one movement each. Humeral orientations are decomposed in Euler angles [in degrees], in 

the following order: plane of elevation (left column), elevation (middle column) and internal 
rotation (right column), conform the ISB proposal. 
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Discussion 

The aim of this study was to determine and propose a simple and easy ‘IMU’s to 

segment’ calibration, or Local Coordinate Systems (LCS), for the thorax and 

upper extremity.  

The results of this paper reveal that when an appropriate protocol is used, with a 

well-controlled reference position and in which movements to obtain functional 

axes are performed in a standardized manner, a low dispersion over trials can be 

obtained (Table 1). Low dispersion, by definition, means high repeatability. This 

was the first requirement for the development of an ‘IMU’s to segment’ 

calibration. Additionally, the method is independent of 3D position information, 

and therefore independent on equipment of a motion lab and/or expertise of a lab 

technician.   

Direct comparison of dispersion results with previously published values was 

quite difficult, since most of those data concern the lower extremity and data that 

are based upon the BLM method. However, the reported variation obtained in this 

experiment was comparable to the dispersion of 2.2º to 15.7º as published by 

(Stokdijk et al., 2000) for the elbow flexion extension axis and the directional 

accuracy of 4.36 ± 2.12º for pro-supination as reported by (Tay et al., 2008). 

 

The comparison of BLM and IMU’s-based LCS yielded both compatible (thorax) 

and quite different results (humerus, forearm and hand). For the humerus, the two 

methods showed a relatively large difference of around 9º, with two potential 

causes: first, soft tissue artifacts might have affected the orientation of the sensor 

on the humerus in two ways; the sensor does not follow the complete excursion of 

the humeral bone during internal rotation (Cutti et al., 2006), and the sensor might 

be tilted during elbow flexion. Second, the fixation of the forearm with a light 

wooden bar, which should prevent lateral sway, might have induced unwanted 

pro-and supination of the forearm during elbow flexion. This then results in a 
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composite axis, pointing more dorsally and caudally than the anatomical flexion 

extension axis known from the literature (Cutti et al., 2008; Stokdijk et al., 2000) 

(Cutti et al., 2006; Ericson et al., 2003). Since, however, the dispersion of this 

movement is rather low, it is still a suitable candidate. For the forearm the same 

effect might have occurred since the flexion axis was derived using the same 

procedure.  

 

For the hand, the differences between the IMU’s -based LCS and the BLM based 

LCS deserve special attention, since these differences were rather large, 

significant, and varied over subjects. An important cause to these differences 

might be based in the choice of bony landmarks PU, PR and MCIII to construct 

the LCS of the hand, where PU and PR are in fact landmarks on two different 

segments. Since the ISB proposal does not include a final definition of BLM to be 

used for the construction of a LCS for the hand, it is of course possible to further 

explore different BLM that would lead to a closer fit of the two coordinate system 

derivations. 

 

It should be noted that the differences between BLM and IMU’s based orientation 

in segment motion, as visualized for the humerus in figure 3, are a cumulated 

effect. First, the different definition of the LCS which can cause an offset between 

methods, and second, soft tissue artefacts (STA) having a dissimilar effect on 

both systems used (markers on BLM versus IMU’s), of both segments involved 

(humerus and thorax), which can result in variation over time. 

 

Limitations of the method 

To enable a proper comparison of the IMU’s-based method with data derived 

from BLM, or the transformation of the one into the other, norm data on both 

methods are needed as well as consensus on the most appropriate methods. A 
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transformation matrix from IMU’s based to BLM based LCS would enable 

comparison of kinematics based on functional axes. It should, however, be kept in 

mind that inter-individual differences do exist and that no single, unique 

transformation will exist that can be used to map the one reference frame onto the 

other for all individuals. In that sense this process will always be an estimate.  

The dataset in this experiment was collected with the help of healthy subjects, 

with no history of upper extremity complaints, or any pathological restrictions in 

movement performance. The application of the functional method might be 

limited in individuals with musculoskeletal disorders because of limited ranges of 

motion, or compromised joint rotation (as in severe osteoarthritis). Depending on 

type and severity of the restriction, alternative motions might be necessary, or the 

BLM method might work out to be the only suitable procedure for the 

construction of LCS.  

Since the scapula is not under voluntary control, and can only be measured for a 

restricted range of motion (van Andel et al., 2009; Karduna et al., 2001), this 

segment is not addressed in the method. To obtain the 3D orientation of the 

scapula for the full range of motion, to serve as input for a musculoskeletal model, 

a regression method is preferred (de Groot and Brand, 2001), in this stage of the 

project. However, these regression equations are only valid and applicable to 

healthy subjects. When aiming at musculoskeletal modeling on patient data, 

tracking scapular orientations conform (Cutti et al., 2008), although for a 

restricted range of motion, will be more appropriate. 

Conclusions 

The method to determine IMU’s based axes is repeatable. Using the axis with the 

lowest dispersion as the main axis for constructing a LCS seems a logical choice; 

analog to the ISB proposal, where the longitudinal axis, based on markers on 
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BLM, is argued to be the most stable and repeatable axis. Appendix 1 comprises a 

proposal for the construction of LCS when using IMU’s. 
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Appendix 1: Construction of local frames of reference with 

functional axes. 

 
IMMS placement (based on ‘best practice’) 

Thorax: on sternum, double sided tape to avoid sliding down, elastic / 

neoprene bandage to avoid loosening from tape; 

Humerus: on latero-caudal side of the humerus, with a neoprene cuff; 

Forearm: on the dorso-caudal side of the forearm, close to the wrist, with 

a neoprene cuff, connectors and cables pointing to the elbow, to 

avoid contact friction with  the hand IMMS during dorsal 

flexion of the hand; 

Hand: with a neoprene cuff or gloves, base on MCII and MCIII, on 

dorsal side of the hand, with connectors and cables pointing to 

the fingers, to avoid contact and friction with the forearm 

IMMS during dorsal flexion. 

 

Movement protocol 

All movements should be performed at a moderate speed. 

 

Thorax 

Primary axis:  Five times forward flexion of the trunk (0º to 40º flexion). Keep 

the arms aligned with the thorax, try to avoid neck flexion. 

Start and end with standing still and upright for a few seconds. 

Secondary axis:  From standing still in anatomical reference position for 5 

seconds. 

 

Humerus 

Primary axis: while seated, the olecranon supported at a table, elbow flexed at 

about 90º, perform five times endo-exo rotation of the humerus. 

Try to avoid elbow flexion-extension, or forearm pro and 

supination during the movement. 

Secondary axis: while seated, both elbows (olecranon) supported at a table, 

elbows at shoulder breadth, holding a stick with both hands at 

shoulder breadth, thumbs pointing laterally, perform five times 

elbow flexion and extension, ranging from 20º to 50º flexion. 

Since movement of the forearm is used to define the lateral axis 

of the humerus which is not moving, data from the IMMS on 

the forearm is expressed in the coordinate system of the IMMS 

on the humerus.  
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Forearm 

Primary axis: while seated, olecranon supported at a table, ulna supported and 

fixated to avoid endo exo rotation of the humerus during the 

movement, perform five times pro and supination of the 

forearm. 

Secondary axis: Elbow flexion, same procedure as in obtaining the secondary 

axis of the humerus. IMMS data of the forearm is now used 

with respect to the forearm IMMS. 

 

Hand 

Primary axis: while seated, keep the hand flat on a table, for five seconds. 

Use the gravity vector obtained during this measurement. 

Secondary axis: while seated, start with the forearm and hand flat on a table, 

perform five times dorsal flexion of the hand, from 0º to 30º. 

 

Construction of the local coordinate system (LCS) 

IMMS data are first processed into functional axes; subsequently these axes are 

used to construct a LCS with respect to the sensor and transormed into segment 

orientation, according to the general formula below: 

[ ],

functional axis1

functional axis2

IMMS

segmentIMMS IMMS

segment segment IMMS

segment

global IMMS

segment IMMS on segment segment

functional axis 1

Where:

= functional axis with lowest disper
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b v a

c a b
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R a b c R

R

R R R

v  

=

= ×

= ×

= =
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= functional axis with second lowest dispersion

= segment LCS with respect to IMMS

= segment orientation in global based on IMMS data and LCS based

v  

R    

RF    on functional axes

denotes the cross product

denotes matrix multiplication

 

 

×

•

 

To obtain a right handed, orthogonal LCS which matches the naming conventions 

of the ISB proposal, the following order in the determination of segment 

orientation is proposed. 
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Thorax: 

flexion extension

gravity in SAP

flexion-extension

gravity in SAP

Where

= functional axis obtained from thorax flexion

= acceleration vector during standard anatomical position
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Humerus: 

endo exorotation

flexion extension
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Where:

= functional axis obtained from humeral endo and exo rotation

= functional axis obtained from elbow flexion-exte
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Forearm: 

pronation-supination

flexion extension

pronation-supination

flexion-extension

Where:

= functional axis obtained from forearm pronation-supination

= functional axis obtained from elbow flex
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Hand:  

, ,

,

gravity hand flat

dorsalflexion

gravity, hand flat

dorsalflexion

Where:

= acceleration vector obtained with the hand flat on a table

= functional axis obtained from dorsal flexion of th
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Abstract 

To gain more insight in the development of joint damage, a long term load profile 

of the shoulder joint under daily living conditions is desirable. Standard 

musculoskeletal models estimate joint load using kinematics and external force. 

However, the latter cannot be measured continuously in ambulatory settings, 

hampering the use of these models. This paper describes a method for obtaining 

such a load profile, by training a Neural Network (NN), using kinematics and 

EMG. 

A small data set of specified movements with known external force is used in two 

ways. First, the model calculates several variables of joint load, and a set of 

Generalized Forces and Net Moments (GFNM) around the models degrees of 

freedom. Second, using kinematics and EMG, a NN is trained to predict these 

GFNM, which can concurrently be used as input for the model, resulting in full 

model output independent of external force. The method is validated with an 

independent trial. The NN could predict GFNM within 10% relative RMS, 

compared to output of the model. The NN–model combination estimated joint 

reaction forces with relative RMS values of 7 to 17 %, enabling the estimation of 

a detailed load profile of the shoulder in daily conditions.  

 

Keywords: Ambulatory; Upper Extremity; Joint Reaction Forces; 

Musculoskeletal model; Neural Network. 
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Introduction 

It is commonly accepted that the mechanical loading of the shoulder joint plays a 

role in the development of shoulder complaints when exceeding biological limits 

(in the case of a healthy shoulder), or when exceeding design limits in the case of 

a shoulder endo-prosthesis. However, neither biological limits in shoulder joint 

loading are known, nor are the load profiles on the joint in daily conditions. To 

gain more insight into the underlying mechanisms of the development of joint 

damage, and to enable the future development of enhanced endo-prostheses, a 

long term load profile of the shoulder joint under daily living conditions is a 

necessity. Such a load profile, in terms of Net Moments (NM) around a joint, 

Joint Reaction Forces (JRF), and individual Muscle Forces (MF) can be estimated 

with a detailed musculoskeletal model (van der Helm, 1994b) (Dutch Shoulder 

and Elbow Model, DSeM), using upper extremity 3D kinematics and external 

force as input. To obtain the kinematics, Inertial Magnetic Measurement Systems 

(IMU’s) have been shown to be an adequate candidate for the ambulatory 

measurement of upper extremity kinematics (Cutti et al., 2008; de Vries et al., 

2010). Obtaining external force data in daily conditions is not yet feasible and 

therefore an inverse dynamic musculoskeletal model cannot be directly applied in 

daily living conditions outside the motion lab. However, the musculoskeletal 

response to external loads and tasks can be sampled and might be useful for the 

estimation of input data, in combination with 3D kinematic input. Neural 

networks have been used for muscle force prediction from EMG (Liu et al., 

1999), the mapping of EMG to joint angles (Cheron et al., 2003; Shrirao et al., 

2009), and the prediction of net moments around the elbow joint based on EMG 

(Song and Tong, 2005). Others compared NN prediction of isokinetic knee 

torque, based on EMG, joint kinematics and several other parameters, with a 
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forward stepwise regression model, showing NN results to be more accurate 

(Hahn, 2007). 

In a previous study we  (de Vries et al., 2014) explored the feasibility of using a 

Neural Network (NN) with upper extremity 3D kinematics and EMG as input for 

the prediction of one parameter (JRF) of the mechanical loading of the shoulder 

joint directly. No information on external force was needed, apart from some 

initial trials to generate training data for the NN, prior to the long term ambulatory 

measurements. However, to obtain a more detailed load profile, including Net 

Moments and Joint Reaction Forces around all joints involved, more extended 

model output is desirable.  

The musculoskeletal model used in this experiment (van der Helm, 1994b) 

consists of thorax, clavicle, scapula, humerus, and forearm, including all muscles 

and their musculoskeletal parameters. The DSeM transforms external force and 

upper extremity 3D kinematics into “Generalized Forces and Net Moments” 

(GFNM) around its degrees of freedom. In a second step the required muscle 

force to accomplish this task is calculated using a cost function to minimize the 

load sharing problem. A basic cost function is used by the minimization of 

summed muscle stress, weighted by physiological cross-sectional area (van der 

Helm, 1994b). To minimize computational load, but maintain a mechanically 

consistent system, this optimization is performed around the eight most important 

degrees of freedom. These are “Generalized Forces” at the acromioclavicular joint 

in cranial and posterior direction, at the trigonum spinae in lateral direction, net 

moments around the humeral head in 3D, flexion moment at the elbow, and pro-

supination moment of the forearm. 

 

The DSeM can also accept these GFNM as input. To enable full model output 

independent of external force, a two stage approach in estimating a detailed 

shoulder joint load profile in daily conditions is presented here.  
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1. The first stage is the training of a NN, with upper extremity 3D 

kinematics and surface EMG of relevant muscles as input, to predict the 

Generalized Forces and Net Moments.  

2. In the second stage, the Generalized Forces and Net Moments predicted 

by the trained NN are used as input for the model to calculate full model 

output.  

 

In this experimental setting the external force were recorded or could be 

calculated from the weight and its measured acceleration. Every result from the 

two stage NN approach can be compared to output obtained with the standard 

approach, the inverse dynamic musculoskeletal model using kinematics and 

external force. 

 

The goal of this study is the development of a method to assess a general load 

profile on the shoulder in daily conditions, based on variables that can be 

measured in an ambulatory setting, e.g. kinematics and EMG. Based on previous 

results, the NN approach is expected to achieve an accuracy of 10% (relative 

RMS value over a complete trial) in predicting the Generalized Forces and Net 

Moments. Output of the DSeM based on input as predicted by the NN will 

therefore differ from output estimated with the standard method, which uses 

kinematics and measured external force. For variables like JRF a difference of 

10% to 15% relative RMS over a complete trial is considered acceptable, and 

useable for the ambulatory assessment of a joint load profile. 
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Methods 

A healthy subject (age 30 years, stature 180 

cm, weight 80 kg), with no history of shoulder 

dysfunction, was invited to participate in this 

pilot study. The study was approved by an IRB, 

and standard guidelines considering 

experiments with human subjects and the 

measurement of human motion were followed. 

After explanation of the aims and procedures of 

the study, informed consent was signed. 

An IMU’s consisting of four sensors and a 

busmaster (MTx sensors, XM-B-3 busmaster, 

Xsens Technologies, Netherlands) was used for 

recording kinematics of thorax, humerus, 

forearm and hand (figure 1). MT-manager 

logging software was used, the implemented 

kalmanfilter was set at the “human scenario” 

with a sample frequency of 50 Hz. (Based on 

the chosen scenario the implemented 

kalmanfilter will apply appropriate filter settings recommended for the 

application, being human motion, not fast movements, nor robotic or industrial 

movements). Sensor to segment calibration was performed following (de Vries et 

al., 2010). To enable the orientation estimation of clavicle and scapula over the 

full range of motion a regression equation was used (de Groot and Brand, 2001), 

the required initial orientations of clavicle and scapula were measured using an 

additional sensor unit on a scapula locator (van Andel et al., 2009). 

 

 

Figure 1, a fully equipped subject, 
with four IMU’s units on thorax-

sternum, right upper arm, right 

forearm and hand, and 13 channels of 
surface EMG. 
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The IMU’s were electrically 

synchronized with a 16 channel 

wireless EMG measurement system 

(Biotell 99, Glonner, Planegg, 

Germany), which was used to record 

the EMG of thirteen muscles around 

the shoulder girdle (table 1).  

Bi-polar Ag/AgCl electrodes were 

placed following the guidelines 

proposed by (Hermens and Freriks, 

1997). EMG data were sampled at 1000 Hz (bandpass filter 16 –  

 400 Hz). Subsequently off line processing into srEMG was performed by 

applying a 2
nd

 order Butterworth low pass filter with cutoff frequency of 2.18 Hz 

to create a linear envelope after offset removal and rectification of the signal. 

 

MVC values were obtained for all muscles or muscle groups following guidelines 

by (Hermens and Freriks, 1997). For normalization of the EMG the maximum 1-

second average srEMG value was used. 

 

To generate training data for the Neural Network the following trials were 

performed by the subject: 

1. Random movements for one minute, through the complete range of 

motion of the upper extremity, at varying velocity, while holding a known 

mass in the right hand. Masses ranged from 0 to 2.5 kg in steps of 0.5 kg, 

resulting in six trials total. 

2. Five activities of daily living (ADL): Brushing teeth, combing hair, 

perineal care, washing armpits, eating, 10 seconds each, while holding a 

Table 1, Muscles selected for the recording 
of surface EMG 

1 M. Trapezius ascendens 

2 M. Trapezius transversa 

3 M. Trapezius descendens 

4 M. Deltoideus anterior 

5 M. Deltoideus medial 

6 M. Deltoideus posterior 

7 M. Latissimus dorsi 

8 M. Infraspinatus 

9 M. Serratus anterior 

10 M. Pectoralis major, pars Sternalis 

11 M. Pectoralis major, pars clavicularis 

12 M. Triceps, caput longum 

13 M. Biceps, caput longum 



66  Chapter 4: NN predicting input for a musculoskeletal model  

known mass in the right hand. Masses ranged from 0 to 1.5 kg, in steps of 

0.5 kg, resulting in 4 separate trials. 

 

One separate trial with ADL movements with a mass of 0.2 kg in the right hand 

was kept apart, e.g. not used in the training of the NN, and used for validation 

purposes. As a final step, all motion data were filtered with a 2nd order zero lag 

low pass Butterworth filter with cutoff frequency of 3 Hz. 

A standard Neural Network was constructed, similar to (de Vries et al., 2014), 

with the following structure: an input layer of 40 cells (3D Kinematics of 

segments, orientations, accelerations, angular velocity, and 13 channels of 

normalized srEMG), one hidden layer of 30 cells, and one output layer of eight 

cells representing the Generalized Forces and Net Moments. The transfer function 

from input to the hidden layer was a tangent sigmoid function, from hidden to 

output layer a linear function was used. The network was trained with back 

propagation, using the Levenberg-Marquardt algorithm at a learning rate of 0.05, 

and with momentum of 0.7. Training of the NN was stopped when the mean sum 

of squares of the network errors dropped below a goal set at MSSE=0.01 

(determined by experiment), or when network error on a subset of data used for 

validation began to rise for a certain number of iterations to prevent over fitting.  

 

Validation of the trained neural network (figure 2A) was performed by simulating 

a complete motion trial. This independent trial of ADL movements with 0.2kg in 

the right hand was not used for training. Neural Network predictions of 

Generalized Forces and Net Moments were compared to those calculated by the 

musculoskeletal model by expressing the differences between both methods as 

absolute and relative RMS values over the complete trial. Relative RMS is 

expressed here as the absolute RMS value related to the range of values of that 

variable as calculated by the musculoskeletal model. 
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Figure 2A, Schematic of the procedure used to train a Neural Network with back propagation in 

predicting generalized forces and net moments in the shoulder girdle. Only during this training 

phase, known external force are required as one of the inputs for the musculoskeletal model. This 
can be a known mass in the hand, and its kinematics, or data from a force transducer measuring 

actual external force. The comparison of NN output, and its target (calculated by the 

musculoskeletal model), and the update of internal parameters of the neural network is implemented 
in the NN toolbox which was used for the construction, training and validation of this procedure. 

 

Validation of the complete procedure was obtained by using the generalized 

forces and net moments predicted by the Neural Network from the independent 

trial as input for the musculoskeletal model. From full model output, as an 

example, JRF of Sternoclavicular, Acromioclavicular, Glenohumeral and 

Humero-ulnar joint were compared. Differences in JRF between both methods 

were described as relative RMS values over the complete trial. Figure 2A and 2B 

depict the schematics of the described validation procedures. 

Figure 2B, Schematic of the validation of the complete procedure, in which a novel,  independent 

task, not used in the training, is simulated with the trained NN, and its prediction of Generalized 

Forces and Net Moments, is used as input for the musculoskeletal model (Mode 2). Output of the 
combination NN-musculoskeletal model is compared to corresponding output of the 

musculoskeletal model using external force (known mass in the hand) and upper extremity 

kinematics (Mode 1). This paper addresses the validation of GFNM and JRF at the various joints of 
the shoulder complex. 
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Results 

The first step in validating the trained neural network is the simulation of an 

independent trial, not used in training, and the comparison of the output of the NN 

with its equivalent, the generalized forces and net moments as calculated by the 

musculoskeletal model. The independent trial consisted of ADL movements while 

holding a mass of 0.2 kg in the right hand. This resulted in a moderate loading of 

the shoulder girdle, with Net Moments around the GH joint varying from 2 to 10 

Nm, and maximum JRF of about 70 N, 140 N, 350 N and 250 N for the SC, AC, 

GH and HU joint respectively. Although a certain overshoot can be observed for 

peak values from the NN prediction, the relative RMS values calculated over the 

complete trial were below 10% for seven of the eight components of the 

Generalized Forces and Net Moments (figure 3). The prediction of the generalized 

force at the Acromioclavicular joint in cranial direction (Netforce channel 01) 

shows an acceptable low absolute RMS value of 4 Newton, which is comparable 

to the absolute RMS values of the other two Generalized Forces; however, due to 

the low variation of the signal over the trial a high relative RMS value of 23% is 

obtained. 
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Figure 3, the eight components of the generalized forces and net moments, as calculated by the 
DSeM (Black), and predicted by the Neural Network (Gray). 
 

These Generalized forces and Net Moments, predicted by the NN based on data of 

the independent trial, were subsequently used as input for the DSeM to calculate 

full model output. From the resulting output the estimations of the JRF at the 

Sternoclavicular (SC), Acromioclavicular (AC), Glenohumeral (GH) and the 

Humero-ulnar (HU) joint were compared to their equivalents as obtained by the 

DSeM using external force and upper extremity 3D kinematics as inputs.  

For the sake of clarity, the relative RMS value of a variable is the RMS value 

between time series of that variable from output of NN-DSeM predictions and 

DSM calculations, related to the range of that variable (maximum – minimum) as 

calculated by DSeM. 

 

As an example, Glenohumeral Joint Reaction Forces in 3D are depicted in figure 

4. With full model output available, not only the order of magnitude, but also the 

direction of the JRF can be examined. Deviation of the NN-DSeM estimation of 

Total Glenohumeral JRF is 12% relative RMS. However, several spikes can be 

observed during the task “Washing Armpits” and an overestimation of the NN-

DSeM prediction during the task “Eating”. The JRF in Y-direction (longitudinal 

axis of the humerus) as estimated by NN-DSeM shows the highest relative RMS 
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value of 18%, for respectively X and Z direction the relative RMS value is 13% 

and 11%. During the task “Perineal Care” the output of the NN yielded an 

incompatible set of Generalized Forces and Net Moments, which could not be 

“solved” by the DSeM. Therefore results of this task could not be compared, and 

are not shown in the graph. 
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Figure 4, JRF of the glenohumeral joint, for its three axes and Total JRF (in N). Relative RMS 

values range from 11% to 13% over the complete trial. However, in the NN-DSeM prediction 

several spikes can be noticed during the task “washing armpits” and a clear overestimation in X and 
Y direction during the task eating. 

 

Table 2 depicts the relative RMS values for the JRF of the SC, AC, GH and HU 

joint, in three dimensions. Although the relative RMS values of SC-X and AC-Y 

are noticeably higher, the absolute RMS values are at the same order of 

magnitude as at the other axes of that particular joint.  
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Table 2, relative RMS values of JRF between methods for four joints, in 
their local coordinates in 3D (X+ to the right, Y+ vertical up, Z+ 

pointing backwards) and Total JRF. 

 X Y Z Total 

Sterno-Clavicular 18% 14% 13% 14% 

Acromio-Clavicular 12% 26% 14% 17% 

Gleno-Humeral 13% 13% 11% 12% 

Humero-Ulnar 4% 5% 8% 7% 

 

The graphs in figure 5 show the Total JRF over time, for the independent trial not 

used in training of the neural network, for the four joints described. Relative RMS 

values between both methods (DSeM versus NN-DSeM) vary from 7% to 17% 

for the several joints. As can be noticed the spikes during the task “Washing 

Armpits” appear at the SC, AC and GH, but not at the HU joint, which will be 

addressed in the discussion.  
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Figure 5, Total JRF of Sterno-Clavicular, Acromio-Clavicular, Gleno-Humeral, and Humero-ulnar 
joint, calculated by NN based DSM (gray lines) and the standard approach, DSM (black lines), for 

an independent trial, not used in the training of the neural network. Relative RMS values between 

methods vary from 7% to 17% for the various joints. 
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Discussion 

The overall performance of the NN in predicting Generalized Forces and Net 

Moments for an independent trial, not used in the training of the NN is good. 

Predictions showed a relative RMS of less than 10% for seven of the eight 

components. The first component, Generalized Force at the acromioclavicular 

joint, showed an acceptably low absolute RMS value of 4 Newton, comparable to 

the RMS of the other components of Generalized Force, despite the calculation of 

the relative RMS amounted to a value of 23% (due to low variation in the signal 

over time). The same phenomenon can be observed for the calculation of relative 

RMS values of components of the JRF of the SC and the AC joint. Although the 

absolute RMS value of the Y component of the JRF of AC is higher than expected 

(a possible explanation is given below), the relative RMS value was doubled to 

26% due to low variation in the JRF signal over time. Also here the absolute and 

relative error should not be used apart from each other.  

 

A sensitivity analysis of the trained NN was performed. The network simulated a 

dataset with one of the inputs at 90% and 110%, for each input channel 

separately, and the output channel its gradients were calculated. The network 

generally showed a larger dependency on kinematic variables, but also fluctuation 

of this dependency over time. Peaks in sensitivity occurred at the extremes of the 

range of motion of the upper extremity kinematics. This phenomenon can be 

explained by the fact that NN are good in interpolation, but analog to regression 

equations, are not very suitable for extrapolation.  

 

In this experiment, besides normalization, no further pre-processing of input data 

was performed. Since the extremes of range of motion are less represented in the 

data, the risk of extrapolation increases, and an increase in sensitivity for 
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fluctuations can be seen in these areas. As a result from this overestimation of Net 

Moments around GH-X and GH-Z during the task “Eating”, the NN-DSeM shows 

an overestimation of muscle forces (mainly M. Deltoid pars clavicularis, and M. 

Pectoralis, sternal and clavicular part) in these areas, which is reflected in a clear 

overestimation of the JRF in Y direction at the GH joint, but also the SC and the 

AC joint. This effect can possibly be reduced by a more dedicated selection of 

data on which the NN is trained. The NN can, for instance, be trained on data 

consisting of local peaks in the Generalized Forces and Net Moments instead of 

data from complete trials. In this way, the NN can probably be tuned to have a 

better prediction for these peak values, at the cost of a less accurate prediction of 

the lower range of these values. However, this will hamper the collection of a 

balanced Load Profile in daily conditions. Another possible method to improve 

the quality of NN-prediction is preprocessing of the dataset in such a way that all 

unique combinations of input samples have equal distribution. Numerous other 

options exist considering extended input, preprocessing of data, type and 

architecture of NN used, types of motion, etc. and will certainly be addressed in 

future research in estimating a load profile for unconstrained upper extremity 

motion. 

 

Another phenomenon to be discussed is the occurrences of spikes in the NN-

DSeM estimation of JRF during the task “washing armpits”. During this task 

faster humeral rotations were measured (endo- and exorotation, possibly including 

Soft Tissue Artifacts of sensors). Since the kinematics as measured with the 

sensors are used for both direct calculation of JRF with the DSeM and for the 

“NN-DSeM” combination (see Figure 2B), the cause of this phenomenon should 

be sought in another part of the scheme. A likely explanation is the sensitivity of 

the NN prediction of Net Moments around the GH joint for humeral kinematic 

input, since this sensitivity could easily lead to larger fluctuations. As a result, the 
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needed muscle forces as calculated by the DSeM can than easily be exceeded for 

the most effective but smaller muscles, which are, due to the load sharing 

optimization, accounted for by larger but less effective muscles, leading to 

unrealistic high JRF. Again, a more dedicated selection of input data for the 

training of the NN might possibly reduce the sensitivity for just one or a few of 

the input variables. 

 

Overall performance of the NN-DSeM method is acceptable in obtaining a 

general load profile of the shoulder girdle over time, based on ambulatory 

obtainable variables. With the prediction of Generalized Forces and Net Moments 

by the NN, more extended output of the DSeM becomes available. JRF for four 

joints of the shoulder girdle were examined in 3D. Except for two components, 

most JRF components in three dimensions were estimated with an accuracy of 

about 5 to 15% relative RMS value. This opens the way to a more detailed load 

profile of the upper extremity in ambulatory settings, including Net Moments and 

Joint Reaction Forces in 3D around the joints involved. It is expected that with 

such a long term load profile insight can be gained into the mechanisms of the 

development of joint damage, or to enable the future development of enhanced 

endo-prostheses. 

Role of the funding source 

This research project is conducted within the “Freemotion Consortium”, and 

“Fusion Consortium”, which were both granted by Senter (a delegate of the Dutch 
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paper. 

 



 

 



 

 

5 

Can shoulder joint reaction forces be estimated 

by neural networks? 

W.H.K. de Vries1,2, H.E.J. Veeger1,3, C. Baten2, F.C.T. van der Helm1 
 
Submitted. 
 
1) Department of Biomechanical Engineering, Faculty of Mechanical, Maritime & 
Materials Engineering, Delft University of Technology, the Netherlands.  
2) Roessingh Research & Development, Enschede, the Netherlands 
3) Research Institute MOVE, Department of Human Movement Sciences, VU University 
Amsterdam, the Netherlands 
 



78  Chapter 5: Neural networks estimating joint reactions forces  

 

Abstract 

To facilitate the development of future shoulder endoprostheses, a long term load 

profile of the shoulder joint is desired. A musculoskeletal model using 3D 

kinematics and external force as input can estimate the mechanical load on the 

glenohumeral joint, in terms of joint reaction forces. For long term ambulatory 

measurements, these 3D kinematics can be measured by means of Inertial 

Magnetic Measurement Systems. Recording of external force in daily conditions 

is not feasible; estimations of joint loading should preferably be independent of 

this input. EMG signals reflect the musculoskeletal response and can easily be 

measured in daily conditions. This study presents the use of a neural network for 

the prediction of glenohumeral joint reaction forces based upon arm kinematics 

and shoulder muscle EMG. Several setups were examined for NN training, with 

varying combinations of type of input, type of motion, and handled weights. 

When joint reaction forces are predicted by a trained NN, for motion data 

independent of the training data, results show a high intraclass correlation (ICC 

up to 0.98) and relative SEM as low as 3%, compared to similar output of a 

musculoskeletal model. A convenient setup in which kinematics and only one 

channel of EMG were used as input for the NN’s showed comparable predictive 

power as more complex setups. These results are promising and enable long term 

estimation of shoulder joint reaction forces outside the motion lab, independent of 

external force. 

 

Keywords: Ambulatory, IMU’s, Joint Reaction Forces, Upper extremity, Neural 

networks. 
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Introduction 

In the process of developing future endoprostheses for the shoulder, information 

on the mechanical loading of the shoulder is essential. Ideally, this information 

embraces a long term load profile of the shoulder joint under daily living 

conditions. The glenohumeral joint reaction force represents the resultant of 

muscle forces and passive forces like ligament strain working on the shoulder 

joint, rendering it into a natural candidate for the indication of mechanical 

loading. 

Under laboratory conditions shoulder joint moments and reaction forces have 

been estimated with a large scale musculoskeletal model for a variety of tasks 

[Delft Shoulder and Elbow Model, DSEM, (van der Helm, 1994b), (van der 

Helm, 1994a)], using upper extremity 3D kinematics and external force as input. 

If load profiles are to be recorded in daily conditions, these input variables have to 

be measured ambulatory.  

It has been shown that Inertial Magnetic Measurement Systems (IMU’s) are an 

adequate candidate for the ambulatory measurement of upper extremity 

kinematics [(Cutti et al., 2008), (de Vries et al., 2010)]. Although external force 

can be measured under laboratory conditions, long term ambulatory recordings 

should preferably be independent of the complex measurements of external force.  

Several alternative methods in the determination of the mechanical loading of the 

shoulder joint in daily conditions exist. Westerhoff et al (Westerhoff et al., 

2009a)used instrumented endoprostheses, enabling the direct measurement of 

JRF-GH in daily conditions. Despite interesting results, this method is rather 

invasive, limited to a small group of patients who opt for a shoulder joint 

replacement, and therefore will render only a small sample size for research. 

Besides that, for a more detailed load profile, additional measurement of 

movements or actions resulting in higher loads at the endoprosthesis is required. 
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As in EMG driven models, EMG signals reflect the musculoskeletal response and 

can easily be measured in daily conditions. Several studies have used EMG 

combined with other variables as input for Neural Networks in the prediction of 

kinematics or kinetics, like muscle force prediction from EMG [(Liu et al., 

1999)], the mapping of EMG to joint angles [(Cheron et al., 2003; Shrirao et al., 

2009)], and the prediction of net moments around the elbow joint based on EMG 

[(Song and Tong, 2005)]. Kingma et al [(Kingma et al., 2001)] compared a linked 

segment model, an EMG driven model, and a neural network approach in the 

prediction of spinal loading. Isokinetic knee torque as predicted by a Neural 

Network using EMG, joint kinematics and several other variables showed higher 

accuracy than a forward stepwise regression model [(Hahn, 2007)]. Luh  et al 

[(Luh et al., 1999)] showed that moments around a single joint axis can be 

estimated by a Neural Network (NN), using segment kinematics and surface EMG 

as inputs. 

These results inspired us to investigate a NN approach in the direct prediction of 

the glenohumeral joint reaction force under unconstrained daily conditions, based 

on ambulatory obtainable variables like body segment kinematics and EMG. 

Inertial Magnetic Measurement Systems (IMU’s) enable the long term 

ambulatory measurement of 3D upper extremity kinematics in an almost 

unlimited measurement volume. Developments in the past decade resulted in truly 

wearable EMG measurement equipment. With these two systems available all the 

necessary information can be collected ambulatory, as needed for the chosen 

approach, with a relative simplicity.  

One major question remains open: Are Neural Networks indeed able to learn the 

complex relationship between upper extremity kinematics and muscle activity 

patterns to predict glenohumeral joint reaction force, for the irregular, 

unconstrained humeral motion in daily conditions? 
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Methods 

One healthy subject (age 29 years, stature 180 cm, weight 78 kg), with no history 

of shoulder dysfunction, was invited to participate in this pilot study, after 

consulting a local ethical committee. After explanation of the goal and procedures 

of the study, informed consent was signed.  

Training data for the NN method were generated by performing several series of 

pre-described upper extremity movements while holding a variety of known 

masses in the hand. Upper extremity 3D kinematics and EMG were measured, 

external force on the hand were calculated by multiplying the known mass by 

measured acceleration. The glenohumeral joint reaction force was calculated 

using a musculoskeletal model (DSEM), and used as target for the training of the 

NN. This approach produced input for the musculoskeletal model (3D upper 

extremity kinematics and external force), as well as data to train the NN method 

(3D upper extremity kinematics and EMG), all measured simultaneously, not 

limited to laboratory conditions. After sufficient training, the NN should be able 

to predict glenohumeral joint reaction forces using only 3D kinematics and EMG. 

 

To examine a NN method being successful in the prediction of the joint reaction 

forces in daily conditions, the influence of the following factors has been studied:  

1. The type of movements that should be performed; Activities of Daily 

Living (ADL) or Random Movements; 

2. The type of input needed for the NN;  

a. 3D kinematics and surface EMG of 13 muscles of the upper 

extremity; 

b. Upper extremity 3D kinematics and the EMG of the medial 

Deltoid, which was considered to be most active during 

mentioned tasks; 
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3. Variation of external weights, should the range of weights used for 

training cover the external force exerted during ADL movements; or 

stated differently, how good is a trained NN in intra- and extrapolating? 

 

Kinematics 

Four IMU’s were attached to a bus 

master (MT-X sensors and a XM-B-3 

bus master, Xsens Technologies, 

Netherlands), operating at 50 Hz. The 

XSens MT-manager software (v1.5.0, 

SDK v3.1) was used for logging; the 

implemented Kalman filtering 

[(Roetenberg et al., 2005)] was set at 

the “human scenario”. As depicted in 

figure 1, IMU’s were attached by 

means of dedicated neoprene cuffs to 

guarantee a comfortable, long term 

fixation on sternum, humerus, forearm and hand.  

 

Sensor to segment calibration was performed following [(de Vries et al., 2010)]. 

Orientation estimations of clavicle and scapula were based on the regression 

equations by De Groot & Brand [(de Groot and Brand, 2001)]. The required 

initial orientation of clavicle and scapula were measured using an additional 

sensor unit on a scapula locator [(van Andel et al., 2009)]. Kinematic data were 

expressed in the reference frame of the DSEM model, with the positive X-axis 

from left to right, positive Y-axis vertical upwards, and positive Z-axis pointing 

backwards. 

 

 

Figure 1, a fully equipped subject, with four 

sensor modules on sternum, humerus, forearm 

and hand, and 13 channels of surface EMG. 
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EMG 

Thirteen muscles around the shoulder 

joint were selected for the recording 

of surface EMG, see table 1. Bi-polar 

Ag/AgCl electrodes were placed 

following the guidelines proposed by 

[(Hermens and Freriks, 1997)]. EMG 

data were sampled at 1000 Hz, 

digitally filtered with a first order 

high pass filter at 16 Hz and recorded 

(Biotel 99, Glonner, Planegg, 

Germany). Offline, EMG signals 

were rectified and smoothed 

(unidirectional low pass 2
nd

 order 

Butterworth filter at 3 Hz) to obtain 

smooth rectified EMG envelopes 

(srEMG) in an attempt to have a 

resemblance in envelope shape close to muscle force output [(Olney and Winter, 

1985)]. 

 

External force 

To obtain different levels of external force during motion, subjects were holding 

different (known) masses ranging from 0.5 to 2.5 kg in the right hand. External 

force was calculated by multiplying the mass with measured acceleration of the 

hand. 

 

Experimental protocol 

Two types of datasets were generated. During the first series of measurements, 

labeled as RND (random), the subject performed random upper extremity 

1 M. Trapezius ascendens 

2 M. Trapezius transversa 

3 M. Trapezius descendens 

4 M. Deltoideus anterior 

5 M. Deltoideus medial 

6 M. Deltoideus posterior 

7 M. Latissimus dorsi 

8 M. Infraspinatus 

9 M. Serratus anterior 

10 M. Pectoralis major, pars Sternalis 

11 M. Pectoralis major, pars clavicularis 

12 M. Triceps, caput longum 

13 M. Biceps, caput longum 

Table 1, Muscles selected for the recording of 

surface EMG. 
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movements for one minute each, holding a known mass (0, 0.5, 1.0, 1.5, 2.0, or 

2.5 kg). The subject was instructed to cover the complete range of motion over all 

degrees of freedom, and to vary movement speed from slow to moderately fast. 

In the second series of measurements the subject was asked to mimic Active 

Daily Living (ADL) tasks with a mass (0, 0.2, 0.5, 1.0) in the right hand for ten 

seconds each. These tasks consisted of brushing teeth, combing hair, perineal 

care, washing the axils and eating.  

 

Data analysis 

The joint reaction force as calculated with the DSEM was used as target for 

training of the NN and as the standard in validating NN predictions for 

independent trials not used in training. 

 

Inspired by the overview of [(Schollhorn, 2004)], for the type of data in this 

experiment a three layer feedforward network was constructed. From input to 

hidden layer a tangent sigmoid transfer function was used, from hidden to output 

layer a linear transfer function [(Schollhorn, 2004)]. The number of inputs 

depended on the stage of analysis: 

Stage 1:  36 input cells were used using segment 3D kinematics (orientation for 

all segments; forearm acceleration and angular velocity as measured 

with the IMU’s) and 13 channels of upper extremity muscle srEMG;.  

Stage 2:  24 input cells were used based on kinematics and EMG of the medial 

Deltoid. 

Based on results indicated by [(Schollhorn, 2004) a number of 20 cells was 

chosen for the hidden layer. The output layer consisted of three cells to predict the 

joint reaction force at the glenohumeral joint in 3D. Neural networks were trained 

using Matlab’s Neural Network Toolbox (Matlab R2012a, NN toolbox V7.0.3). 

Network training was epoch based for a maximum of 500. A  Levenberg-

Marquard backpropagation algorithm with a momentum of 0.8 at a learning rate 
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of 0.05 was applied. To prevent overfitting, training was stopped when internal 

validation failed to decrease for ten successive iterations. The training procedure 

is schematized in figure 2. 

Figure 2, Schematic of the procedure used to train a Neural Network with back propagation in 

predicting joint reaction forces at the glenohumeral joint. During the training phase, known external 
force are required as one of the inputs for the musculoskeletal model (Exerted Force = [known mass 

in the hand] times [measured acceleration of the hand]). The comparison of neural network output 

and its target (calculated by the musculoskeletal model), and the update of internal parameters of the 
neural network is implemented in the Matlab Neural Network toolbox which was used for the 

construction and training of this procedure. Validation was performed by simulating an independent 

dataset with the network, and compare its prediction with results as calculated with the 
musculoskeletal model. 
 

Since the initialization of a NN comprises random weight assignment to all 

internal connections, followed by training; when repeated this might lead to 

different behavior and performance of the individually trained NN. Therefore, for 

each test condition 10 individual networks were initialized, trained and externally 

validated by simulating the trained NN with an independent dataset, not used for 

training. Intra Class Correlation (ICC) between prediction and corresponding 

output by the DSEM (joint reaction force) were calculated using custom written 

Matlab-routines. From these ICC’s, the Standard Error of Measurement (SEM) 

was derived following (Weir, 2005). To compare test conditions with different 

external loads, SEM values were expressed as a percentage of the range of the 

signal (SEM_rel). Finally, from the 10 neural networks individually trained for 

each test condition, the neural network producing the lowest SEM_rel was 

considered the best performing network. 
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Several combinations of input type, movement type, and weight ranges were 

examined during this validation, as depicted in table 2. The trials with the label 

“lower weight” were excluded from training and subsequently used for simulation 

with the trained NN for the external validation procedure as described above. 

These “lower weight” trials were within the range of weights used for training, 

serving as a test case for the performance of the NN while interpolating. The trials 

with the label “heavy weight” served in a similar way as a test case for 

extrapolation of neural network predictions. 

 

Results 

The neural networks showed good convergence during training, meaning that the 

neural networks were able to learn the relationship between input and target 

(preferred output for the training dataset). Over all conditions, for the best 

performing network the ICC values ranged from 0.98 to 0.83, whereas the 

SEM_rel varied from 3% to 21%, between NN-predictions and corresponding 

output from the musculoskeletal model. For the best performing NN of each 

conditions these ICC and the SEM_rel, are depicted in table 2. 

 

Results from stage 1, (3D kinematics and 13 channels of EMG) for ADL type 

movements indicate that performance was best when NN were trained with ADL 

type movement trials and external load within the training range, resulting in a 

SEM_rel of 11, 5 and 6%, for the x, y and z dimensions respectively. Initially it 

was assumed that RND type movements would cover the complete range of 

motion of the upper extremity, and thus would deliver a generally trained NN, for 

‘any’ type of motion. However, the combination of ADL and RND type 

movements as training dataset for the network did not improve performance in 

predicting joint reaction forces for ADL type movements, raising the SEM_rel to 
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10, 7 and 7%. When using only RND type movements as training data, the 

performance of NN in predicting joint reaction forces for ADL type movements 

decreased further to SEM_rel values of respectively 19, 14 and 12%.  On the 

contrary, when predicting joint reaction forces for RND type movements using 

RND, or a combination of RND and ADL type movements as training data sets 

for the NN, SEM_rel values ranged between 6% to 11%, strengthening the notion 

that NN should be trained with task specific data. 

NN predictions for ADL type movements performed with higher weights than 

those used for the training of the NN resulted in SEM_rel values ranging from 4 

to 9% for ADL type motion, and 4% to 11% for RND type motion. These results 

indicate that even in extrapolation, the Neural Network approach remains 

consistent in its predictive power. 
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Results from the second stage, in which segment kinematics and just one 

single channel of EMG served as input for the NN, show similar results as 

stage one, where 13 channels of EMG were used. These results show the 

potential of the NN approach with an appealing simplicity in equipment 

needed: The ambulatory measurement of shoulder joint reaction forces, 

with one sensor per segment, and only one channel of EMG. 

Kinematics, 13 channels EMG

Simulation ADL Simulation ADL Simulation RND Simulation RND

Training Light Weights Heavy Weights Light Weights Heavy Weights

ADL X Y Z X Y Z X Y Z X Y Z

ICC 0,91 0,97 0,97 0,86 0,96 0,93

SEM_rel 11 5 6 8 4 6

ADL&RND

ICC 0,93 0,95 0,95 0,85 0,94 0,94 0,93 0,94 0,96 0,89 0,91 0,88

SEM_rel 10 7 7 9 5 7 8 6 6 7 5 9

RND

ICC 0,83 0,86 0,91 0,91 0,93 0,94 0,90 0,92 0,86

SEM_rel 19 14 12 11 7 7 7 4 9

Kinematics, 1 channel EMG

Simulation ADL Simulation ADL Simulation RND Simulation RND

Training Light Weights Heavy Weights Light Weights Heavy Weights

ADL X Y Z X Y Z X Y Z X Y Z

ICC 0,88 0,98 0,95 0,88 0,95 0,93

SEM_rel 13 4 7 7 5 6

ADL&RND

ICC 0,94 0,98 0,96 0,88 0,95 0,95 0,92 0,94 0,93 0,86 0,94 0,84

SEM_rel 9 3 6 7 5 6 10 6 7 8 4 10

RND

ICC 0,84 0,88 0,90 0,90 0,96 0,95 0,89 0,93 0,88

SEM_rel 21 13 13 11 5 7 7 4 9  

Table 2, Results of simulation with a trained NN in predicting JRF-GH, Relative SEM (3D average) 

for the several conditions tested. Each cell contains Relative SEM values of the best performing NN 

of 10 individually trained. Left column depicts which set of EMG (13 channels, or just one), and 
what type of motion trials were used for NN training; ADL type, ADL and RND, or only RND. 

Each row depicts what type of motion trial was simulated (ADL type, or RND), with a low 

(interpolation) or heavy weight (extrapolation). Simulation took place with measurement trials not 
used in the training of the NN. 
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Figure 3A 
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Figure 3B 
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Figures 3 depict time series, and distributions of glenohumeral joint reaction forces, from both NN 

predictions (black lines) and the musculoskeletal model (gray lines), the latter being the reference 
signal. Figure 3A shows results from a NN with kinematics, sensor data and 13 channels of EMG as 

input, trained on ADL type movement, predicting Low Weight ADL type movement. Figure 3B 

shows results from a NN with kinematics, sensor data and only one channel of EMG as input, 
trained on RND type movement, predicting a Heavy Weight RND type movement. 
 

Figure 3A shows data of a NN, trained with ADL type movements, and 

simulating an independent ADL type movement while holding a light weight (0.2 

kg) in the hand. Movements performed were brushing teeth, combing hair, 

perineal care, washing axils and eating (bringing hand to mouth). NN prediction 

overshoot can be observed at the peaks in the references signal, and a certain 

offset for some parts of the trial. In figure 3B, showing results for NN trained with 

kinematics and one channel of EMG, predicting joint reaction forces for Heavy 

Weight trials of RND movement, deviations can be observed at the peaks in the 

signal, where NN do predict lower values than the joint reaction force as 

calculated by the musculoskeletal model. However, the distribution of the joint 

reaction force over time, as predicted with the neural network method, shows 

good correspondence with the reference signal, and allows for an initial 

estimation of shoulder joint loading over time. 

 

Discussion 

The intention of the current experiment was to evaluate the neural network 

approach as a reliable and practical method, to enable a reasonable long-term 

estimation of joint reaction forces in daily conditions using ambulatory obtained 

data. A practical method should have an appealing simplicity concerning the 

amount of equipment used and preparation time needed. Aiming at such 

simplicity, neural networks were trained for several conditions. Two types of 

movements were used, mimicking Activities of Daily Living, and Random 

Movements. Furthermore two groups of input parameters were examined; 
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kinematics and 13 channels of EMG; kinematics and one channel of relevant 

EMG. NN predictions of glenohumeral joint reaction forces were referenced 

against a musculoskeletal model. Although there is room for improvement, results 

were promising and relevant influences to the predictive power of the method 

have been identified. Current results do at least allow for a modest application of 

the described neural network method in this estimation. 

 

Figure 3A indicates the performance for conditions where neural networks were 

trained using ADL type kinematics and full EMG as input, predicting ADL type 

movements with a light load. Almost same results were obtained for the Heavy 

Weight condition. When trials with RND type movement were added to the 

training data set, predictive power decreased a little. When using only RND type 

movement in training, and predicting ADL type movement, predictive power 

decreased further, as can be noticed from table 2. This was unexpected, since it 

was initially assumed that the addition of more variation to the training data set of 

the NN should result in a ‘better’ prediction of the NN. This suggests that training 

data for the NN should be focused to the type of movement of interest. This can 

be seen as a drawback for the general applicability of the method. On the other 

hand, taking this phenomenon into account might improve the predictive power of 

the method when examining more specific movements.  

 

The use of 13 channels of upper extremity EMG is not a convenient setup for 

ambulatory measurements. For the sake of a practical setup stage 2, with only one 

channel of EMG, was introduced and examined. The fact that results from stage 2 

simulations corresponded well with results from Stage 1, this suggests that this 

setup is favorable for ambulatory measurements. 

 



  Chapter 5: Neural networks estimating joint reactions forces 93 

 

No preprocessing of data took place to enhance uniformity. Movements at the 

extremes of the range of segment motion (ROM) were potentially less represented 

in the data sets used, thereby of less influence in the training process of the NN. 

This might account for the effect of the under- and overestimation of the neural 

networks prediction seen at the peaks of joint reaction forces. More sophisticated 

modeling of EMG signals into a measure of external force might also contribute 

to a better prediction at peak forces. Both topics, data preprocessing and EMG 

force modeling, deserve to be examined in future research. 

 

Glenohumeral joint reaction force as estimated by the musculoskeletal model was 

used as target signal in the training of NN, and as reference for comparison. 

Model estimations of muscle activity have been qualitatively validated against 

EMG patterns [(van der Helm, 1994b);(van der Helm, 1994a)]; estimations of 

glenohumeral joint reaction force have been quantitatively validated recently 

against in vivo measured joint reaction forces [(Nikooyan et al., 2010)]. For 

dynamic tasks up to 90° of humeral elevation values were comparable, although 

peak forces were underestimated by the model; for higher angles a deviation in 

force direction was observed, and for force exerting tasks an underestimation of 

the models JRF was found. Possibly this behavior of the musculoskeletal model 

results in an inconsistent training set, thereby disturbing the learning process of 

the NN method, resulting in the observed differences. Potentially the application 

of a NN method to in vivo measured JRF might show better correspondence, 

thereby expanding opportunities in obtaining a general load profile of the 

shoulder.  

 

When applying the neural network method to obtain shoulder joint loading in 

patients, several topics deserve special attention. First of all, the used 

musculoskeletal model should be adapted to mimic the subjects abilities, for 
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instance, if present, rotator cuff tears should be simulated in the model as well. 

Secondly, if any pathological adaptation is present in upper extremity muscle 

activity, a redundant number of channels of EMG as input for the neural network 

should be considered. And thirdly, the type of motion used for training neural 

networks should be within the subjects ability. 

 

From a mechanical point of view, joint reaction force is suspected to be related 

with joint damage. Although the glenohumeral joint reaction force, as a single 

resultant of all forces acting upon the joint, is a natural candidate for the 

indication of joint loading over time, the prediction of other variables like net 

moments can have meaning in the assembly of a load profile of the shoulder. 

However, theoretically, a zero net moment can occur while compressive forces 

are high, adding uncertainty to the predictive value of net moments as indicator 

for joint load. To obtain a complete load profile, at least joint reaction forces 

should be measured, and additionally other measures of joint load like net 

moments. 

 

To enable the discrimination between the damaging effects of peak forces versus 

sustained duration of raised levels of JRF, for a broad range of movements as 

encountered in daily conditions, both levels should be estimated for a longer 

period of time. Current results do at least allow for a initial application of the 

described NN method in this estimation.  

Conclusions 

Shoulder joint loading in terms of JRF-GH can be estimated by a NN trained on 

ambulatory obtainable variables like srEMG and IMU’s data of the upper 

extremity. The dataset should comprise sufficient “task specific” training trials. A 

convenient setup with IMU’s on upper extremity segments and only one channel 
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of relevant EMG showed comparable results to a setup with IMU’s and 13 

channels of EMG. 
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General Discussion 

This thesis describes a method with which a mechanical load profile of the human 

shoulder can be obtained in daily conditions, using ambulatory measurable 

variables like 3D kinematics, and surface EMG of relevant muscles of the upper 

extremity. With these variables a neural network can be trained to estimate net 

moments which can serve as input for a detailed musculoskeletal model. Another 

option is to train neural networks to predict joint reaction forces directly. 

 

Results described in Chapter 4 show that neural networks could be trained to 

predict net moments around the glenohumeral joint. These net moments were 

subsequently used as input for a detailed musculoskeletal model, to compute full 

model output including individual muscle length and force, joint reaction force, 

and many other variables. When joint reaction force at the Sterno-Clavicular, 

Acromio-Clavicular, Gleno-Humeral and Humero-Ulnar joints, as estimated with 

the combination of neural network and musculoskeletal model were compared to 

corresponding output from the reference method (the laboratory based 

musculoskeletal model, using kinematics and external force) differences of  7% to 

17% relative RMS were observed. When comparing the direct prediction of joint 

reaction force by neural networks to corresponding output from the reference (a 

laboratory based musculoskeletal model), differences of less than 10% relative 

Standard Error of Measurement were observed (Chapter 5). 

 

Intra Class Correlation (ICC) between prediction and corresponding output by the 

DSEM (joint reaction force)were calculated. From these ICC’s, the Standard Error of 

Measurement (SEM) was derived following (Weir, 2005; Weir, 2005). To compare test 

conditions with different external loads, SEM values were expressed as a percentage of 

the range of the signal (relative SEM). 
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Although the two distinct approaches (1: neural network prediction of net 

moments subsequently used as input for a musculoskeletal model and 2: direct 

prediction of joint reaction forces by neural networks) were not directly compared 

to each other, both approaches show promising results and enable the estimation 

of a load profile of the human shoulder in daily conditions. Further research with 

a larger group of subjects is advised to clarify which approach is more accurate 

and reliable. For now it can be stated that the first approach (using the neural 

network prediction of net moments as input for a musculoskeletal model) is more 

prone to error. When neural network predictions deviate from “true net moments” 

these deviations can have an enlarged effect by the calculations and optimization 

of the musculoskeletal model. In some occasions the neural network produced 

input which was incompatible with the musculoskeletal model, which couldn’t 

find a solution in it’s optimization. Besides that, using a musculoskeletal model 

can be very time consuming when processing large datasets When for a given 

research questions the estimation of a single variable like joint reaction force is 

sufficient, the direct prediction of such a variable with a neural network has its 

advantages in terms of processing capacity and time needed. 

 

In short the method works as follows: 

Equipment used: 

1. A subject is equipped with inertial sensors (Inertial Magnetic 

Measurement Systems, IMU’s) and EMG of shoulder and upper 

extremity muscles. 

 

Sensor to segment calibration: 

2. Sensor to segment calibration is performed by the execution of a set of 

well defined single axis movements by the subject, to measure the 

functional axes of movement of the upper extremity segments. 



100  Chapter 6: General Discussion  

 

3. These functional axes of movement are used to define frames of reference 

for the segments of the upper extremity, and when related to sensor 

orientation, deliver segmental 3D kinematics over time. 

 

Generating training data for the Neural Network 

4. The subject is asked to perform another series of well defined 

movements, while holding a variety of known masses in the hand. 

5. Upper extremity EMG is measured simultaneously. 

6. For this relatively small set of movements, measured acceleration of the 

hand multiplied by the known masses in the hand deliver external force. 

7. Upper extremity kinematics and calculated external force are used as 

input for a detailed musculoskeletal model, which  

a. calculates net moments around the various joints of the shoulder 

b. estimates joint reaction forces at the glenohumeral joint. 

8. Using upper extremity kinematics and EMG as input and one of the 

described outputs from the musculoskeletal model as target, a neural 

network can be trained to predict: 

a. net moments which can be used as input for the musculoskeletal 

model; 

b. joint reaction forces directly. 

 

When the neural network is trained adequately,  

9. Only ambulatory measurements of kinematics and EMG are needed to: 

a. predict net moments that can be used as input for the 

musculoskeletal model, to calculate full model output; 

b. estimate joint reaction forces directly with the neural network. 

10.  Long term measurement of 3D kinematics and EMG in daily conditions 

can then be converted into a mechanical load profile of the shoulder. 
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Described as such, the method appears to be straightforward and easy to apply. 

However, several assumptions were made which require further articulation, to 

explicate the scope of the method. 

As one of the required inputs for the described method, upper extremity 

kinematics can be measured ambulatory for longer duration by means of Inertial 

Magnetic Measurement Systems (IMU’s). IMU’s use three types of sensors and a 

dedicated algorithm to estimate sensor orientation in 3 dimensions. 

Accelerometers measure sensor acceleration including gravity, gyroscopes 

measure the sensor’s angular velocity, and magnetometers the earth magnetic 

field vector, all in three dimensions. A Kalman filter (Roetenberg et al., 2005) 

fuses the IMU’s signals into a sensor orientation, correcting for specific 

characteristics like signal noise or sensor drift, under the assumptions of zero 

acceleration when averaged over 10 seconds (apart from gravity) and a 

homogenous earth magnetic field.  

However, the orientation of the earth magnetic field vector can be altered by the 

presence of ferro-containing materials. Due to the widespread use of such material 

(constructive steel in buildings, furniture etc.), the “in-door” earth magnetic field 

is usually far from homogenous, which can be observed in measurement data by a 

changed norm of the vector. Despite considerable effort in the development of 

algorithms that estimate sensor orientation while correcting for any distortion in 

the earth magnetic field (Roetenberg et al., 2005), in long term measurements 

distortion of the earth magnetic field can and will have its disorienting effects. 

It is advised that for every experiment the measurement volume is verified to be 

within operation limits; a detailed method to define these operations limits in 

terms of measurement volume and time is described in chapter 2. If such is not 

possible, operation limits in terms of exposure time to distorted magnetic field 

should be obtained for the setup used, and long term measurements should be 

screened for exceeding values of the magnetic norm. Portions of the 
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measurements with exceeding values of the magnetic norm, for longer duration 

than these temporal limits should be labeled as suspect, and not be used for 

analysis. It is upon the decision of the experimenters to decide if the resulting loss 

of measurement data is acceptable. In extreme conditions, when upon 

experimenters decision, a too large part of the complete measurement is beyond 

described limits, it is advised to find another measurement volume to perform the 

measurements, or use an alternative measurement method like video based motion 

capture. 

 

When measurement assumptions for IMU’s measurements are met, they deliver 

sensor orientation in three dimensions. However, the required input for 

biomechanical analysis is the orientation of body segments, or joint kinematics. 

As part of a practically applicable method, the calibration procedure from sensor 

to body segment should be repeatable, deliver functionally interpretable local 

reference frames for the segments, and preferably correspond to the reference 

frames as used in standard methods. Besides that, the sensor to segment 

calibration should preferably be conducted ambulatory, independent of  laboratory 

based equipment. Chapter 3 described a detailed method in obtaining these 

functional interpretable local frames of reference for the upper extremity and 

thorax. The method appeared to be highly repeatable, enabling ambulatory 

calibration. A dissimilar orientation of reference frames was obtained for 

humerus, forearm and hand, when compared to standard methods following ISB 

recommendations (Wu et al., 2005). This is due to the fact that following the ISB 

framework Bony Landmarks (BLM) are used to define anatomical frames of 

reference, which concurrently are used to describe segment kinematics. The axes 

of such BLM based anatomical frames of reference are often not fully aligned 

with the actual  joint axes. When using these segment frames of reference for the 

description of joint kinematics, so-called kinematic crosstalk can be observed. 
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This is a matter of interpretation. Describing segment kinematics is a distinct goal 

from describing joint kinematics and the use of functional axes of movement is 

more appropriate in the latter. When using functional axes to build up a local 

reference frame, one of the joint axis is used in the definition of the local 

reference frame, which will minimize the so-called kinematics crosstalk. For the 

local reference frame of the hand this distinction and its effects on obtained 

kinematics are described in full detail in (de Monsabert et al., 2014). For a more 

general approach Kontaxis et al (Kontaxis et al., 2009) proposed a framework for 

the definition of standardized protocols for measuring upper extremity kinematics, 

in which a clear distinction is made between anatomical frames of reference and 

segment kinematics versus functional frames of reference and joint kinematics. It 

is expected that, by following the proposal of Kontaxis et al. in future research, a 

reduction in kinematic crosstalk can be achieved. Less kinematic crosstalk will 

lead to more congruency in measurement data, as muscle activity measured as 

EMG and the resulting joint kinematics will show more coherence. More 

congruency in the input data for the neural networks method is likely to improve 

its performance. 

 

For the experiments conducted to build up this thesis the Delft Shoulder and 

Elbow Model (DSEM) was used as reference (van der Helm, 1994b; Nikooyan et 

al., 2010). This model is based on extensive and detailed measurements of one 

cadaver and, using kinematics and external force as input, describes the 

musculoskeletal response of the shoulder and upper extremity mathematically. It 

is a geometrical rigid body model, representing all relevant bones and joints. The 

31 muscles crossing the various joints are divided in 139 muscle elements, from 

which fiber attachment sides, fiber course, wrapping surfaces and via points were 

measured; estimates of physiological parameters like force-length relation and 

optimal fiber length were also included in the model. The model balances the 
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measured joint moments by optimizing the load sharing of muscles using an 

energy based cost-function, while preserving a stability constraint; the joint 

reaction force should point into the scapular glenoid surface, to avoid shoulder 

luxation. With a model like this, individual muscle force contributions, and the 

resulting joint reaction forces can be estimated. Originally it was intended as a 

general model, and in the experiments of this thesis used as such. When using a 

general model, it should be kept in mind that a possible mismatch exists in 

morphology between model and the subject that is analyzed, which can lead to 

under- or overestimations of parameters of interest. Although several other 

musculoskeletal models have been developed, focusing on minimizing this 

potential mismatch, little evidence was found of their superiority over current 

models (Bolsterlee et al., 2013). This justifies the use of a general model for now, 

in this phase of exploring the potential use of a neural network method in the 

ambulatory assessment of shoulder joint load.   

When the more complex, individualized models prove to deliver more accurate 

estimations of joint load, it is expected that more consistent input data is likely to 

improve neural network performance in predicting joint load.  

 

Neural networks as a computational technique is one of the instruments used in 

this work, but it’s fundamental working mechanisms have not been explained in 

detail. For a general introduction, and an overview of current applications of 

neural networks in the area of clinical biomechanics see (Schollhorn, 2004). 

To obtain sufficient information for the neural network to learn the desired 

relation, the type of inputs used for a neural network should cover the variables of 

influence on the target variable. For instance, when predicting joint reaction 

forces at the gleno-humeral joint, inputs used should comprise kinematics like 

posture, but also segment dynamics like angular velocity, or acceleration, and 

muscle activity. Expansion of the types of input used, increases the number of 
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inputs for the neural network, which amplify the number of connections between 

layers of the network, which in turn will slow down the training rate of the neural 

networks rapidly. The expansion to more variables to be measured and used as 

inputs for the training of the networks will also increase measurement complexity. 

For a practical applicable method this is not desirable. As shown in chapter 5, 

neural networks using only one channel of relevant EMG were performing as 

good as networks using 13 channels of EMG, but both conditions performed 

better than conditions without EMG used as input. This might illustrate the added 

value of EMG and simultaneously the unneeded redundancy of multiple channels 

of EMG. This phenomenon also raises further questions to be answered. Perhaps 

the multiple channels of EMG delivered too complex information to be handled 

by the relative simple neural network architecture used? Or are the features 

extracted from the EMG (smooth rectified EMG resembling an envelope shape 

close to muscle force output according to (Olney and Winter, 1985)) not accurate 

enough in terms of electromechanical delay? A further structured analysis of 

neural network architectures, types of input used, and effects of pre-processing 

and feature extracting might result in a more optimal configuration for the neural 

networks used in this approach, resulting in even better predictions of mechanical 

loading than obtained with the relative simple setup as described in this thesis. On 

the other hand, when starting with a simple setup, and neural network 

performance does not satisfy, the addition of an extra type of input might increase 

network performance. 

 

As stated in the description of the method, upper extremity kinematics and EMG 

serve as inputs for a neural network, which is trained to predict net moments or 

joint reaction forces, using the corresponding output from the musculoskeletal 

model as target. When trained adequately, these net moments or joint reaction 

forces can be estimated by the neural network using only the ambulatory 
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measurements of kinematics and EMG. The following aspect of working with 

neural networks deserves special attention: A neural network is initialized by 

assigning random weights to the connections between input and output layers. By 

means of a back propagation algorithm, the relation between input and target is 

learned from examples, the training data set, and stored across the networks 

weights. Since the initialization of networks contains a random factor, multiple 

networks individual trained on the same dataset, can show different performance 

in prediction of the desired output. The neural network training can be trapped in 

a so called local minimum, and no further improvement will be achieved. 

Although several training methods exist in the avoidance of local minima, and 

were applied in the analysis, when training only one network for a specific 

condition, the mentioned uncertainty remains. To overcome this uncertainty, it is 

advised to train several networks for a certain condition, validate with an 

independent data set, and choose the best performing neural network. This advice 

prompts three important questions; 1) how many individual networks should be 

trained, 2) how to validate a trained neural network, and 3) how to choose the best 

performing network.  

To answer these questions a pilot experiment (not published) was conducted for 

the neural network configuration and dataset of the experiments described in 

chapter 5. For a given condition, 100 neural networks were individually initialized 

and trained. Every trained neural network was simulated with the same, 

independent dataset, not used in training. Predictions of these 100 simulations 

were compared to corresponding output of the musculoskeletal model, in terms of 

relative standard error of measurement (SEM related to the amplitude of the 

signal, relative SEM).  
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Figure 1, Distribution of SEM rel for 100 individually initialized and trained neural networks; all 

networks trained on the same training data set; all networks simulated the same independent 

validation data set, not used in the training of the networks. This figure shows the variable effect of 
random weight assignment in the initialization of neural networks, on the performance of networks 

when compared with the reference method. 

 

From these 100 individual trained networks, the 10 best performing neural 

networks (the first ten neural networks with the lowest relative SEM) showed 

relative SEM values of less than 12% for the joint reaction force in X-direction, 

less than 5% in Y-direction, and less than 6% in Z-direction.  

 

From these results it was deducted that when 100 individually trained networks 

result in 10  networks performing adequately (relative SEM less than 12%), a 

minimum of 10 individually trained neural networks will result in at least one 

network performing adequately, for the given configuration. For different 

architectures, configurations or inputs used, the described procedure should be 

repeated to reveal the minimum number of networks to be initialized and trained. 
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Doing so will give more guarantee to find the ‘best performing network’ with a 

minimum relative SEM when validated against the reference.  

 

Based on the results described in chapter 5, the type of motions used for training 

the neural networks should encompass the type of motion for which joint reaction 

forces are to be predicted. When considering the performance of neural networks 

trained on “Random type Movement” while simulating Activities of Daily Life, 

this performance was less accurate than neural networks which were trained on a 

combination of “Random Type Movements” and “ADL type movements”. Best 

performance for the simulation of ADL type movements was found when neural 

networks were trained on ADL type movements only. This last condition 

recognizes a drawback when applied to long term measurements in daily 

conditions. When in long term measurements the variety in types of motion is 

larger than in the subset used as training data for the neural networks, prediction 

might become less accurate. 

However, a training set for the neural networks consisting of a general set of 

movements from which ‘any’ type of motion can be predicted has not been found. 

It can be stated that the generalization of the neural network predictions is limited 

to the scope of the tasks trained. This means that the data set used for the training 

of the neural network should be customized to the specific situation of interest, 

which is in fact a limitation of the method. Some a-priori knowledge is needed of 

the daily conditions in which measurements will take place.  This enables the 

proper customization and formation of the training data sets. This hampers a 

general application of the neural network method. A theoretical option is to 

execute the measurements in daily conditions first. Concurrently the most 

common movements performed can be extracted from the measured dataset. 

When the subject performs these extracted stereotype movements in a ‘last 
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measurement trial’, this data can be used as training set for the neural network. 

Future research should point out if this approach is feasible. 

 

In contrast to the use of a detailed musculoskeletal model, when using a neural 

network to predict a single variable like joint reaction forces at the gleno-humeral 

joint, neither other details of joint load can be examined, nor can the working 

mechanism of joint loading like muscle activation easily be recovered from neural 

network connection weights.  

To enable the application of a detailed musculoskeletal model to ambulatory 

measurements in daily conditions the experiment described in Chapter 4 was 

conducted. A neural network was trained to predict net moments around the 

glenohumeral joint, which was then used as input for the aforementioned 

musculoskeletal model, to estimate full model output, like individual muscle force 

contributions and joint reaction forces. Although results were quite satisfactory, 

the ‘processing chain’ is growing longer and longer, including more assumptions 

along its way, and differences between standard method and the newly developed 

method are even more difficult to deduce. 

Besides that, the initial advantage of a computational fast method like neural 

networks is counteracted by the computational heavy optimization of the 

musculoskeletal model, when larger datasets are to be processed. It might be an 

interesting option to train neural networks to predict multiple relevant variables of 

joint load directly, or train several distinct neural networks for those distinct 

variables, instead of forcing such a relatively unknown method to estimate all 

potentially relevant variables in one processing chain. 

 

The variable used as indicator for the mechanical loading of the gleno-humeral 

joint is joint reaction force at the humeral head, which is the mathematical 

resultant of all forces acting on that joint. It comprises external force, active and 
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passive muscle forces, ligament forces constraining the joint excursions and 

stabilizing forces from rotator cuff muscles. Therefore it is a natural single 

variable to describe the mechanical loading of the joint over time. Other 

mechanical variables like net moments around a joint are easier to obtain and, as 

(Praagman et al., 2000) showed, do correlate quite well with joint reaction forces, 

for healthy subjects and static postures. However, (Nikooyan et al., 2010) showed 

that joint reaction forces at the glenohumeral joint, as measured with an 

instrumented shoulder endoprostheses, varied significantly between patients for a 

standard movement like humeral abduction. Such a difference couldn’t be seen in 

net moments around the glenohumeral joint. When considering the option of co-

contraction, or the activation of the rotator cuff muscles during weight relief 

lifting, the different effect on net moments and joint reaction force becomes even 

more clear; while for net moments that are about the same, joint reaction forces 

(including the sum of all muscle force delivered) can vary with the level of co-

contraction. Another phenomena can be seen in spinal cord injury patients. 

Depending on lesion level different muscle groups are available for the execution 

of weight relief lifting. A simulation study from (van Drongelen et al., 2011) 

showed a difference in joint reaction force of 7% depending on lesion level, 

although statistically not significant in the cited experiment. But a different effect 

exists on net moments and joint reaction forces; when mechanical loading of 

joints is the topic of interest, joint reaction forces are the key variables to be 

obtained. 

 

The subjects invited for the experiments building up this thesis were healthy 

subjects. When the method is to be applied to estimate the joint loading of 

patients, several adaptations are needed. The musculoskeletal model used for 

calculation of net moments or joint reaction force (which serve as target for the 

training of the neural networks) should be adapted to mimic the patient 
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characteristics in terms of available muscle groups (for SCI patients, depending 

on lesion level), or amount of available muscle force in the case of rotator cuff 

tears (Steenbrink et al., 2009; van Drongelen et al., 2013; Parsons et al., 2002). 

Since the effect of such adaptations to a musculoskeletal model have not been 

examined in current research, it is advised to repeat the protocols described in 

chapter 4 and 5 on such adapted models to verify if the neural network approach 

is still accurate and valid for those altered conditions.  

 

Integrating the findings of the preceding chapters the method has proven to be a 

useful tool in the estimation of long term joint loading of the shoulder, in daily 

conditions. The observed differences of 10 % relative SEM or less, when 

compared to a laboratory based reference method, allow for further 

implementation of the method. When applied to larger groups of subjects, the 

collected joint load profiles can be used to gain more insight into the mechanical 

loading of the shoulder joints in daily conditions, and potentially be connected to 

the development of joint wear, or the gradual degradation of the shoulder and 

shoulder endoprostheses over time. The method is applicable to ambulatory 

settings, outside the laboratory, considering the required variables to be measured, 

the equipment to be used, as well as the required initial measurements to be 

performed to collect training data for the neural networks. For the current setup, 

the needed equipment is minimal, four IMU’s and one channel of EMG, and a 

suitable data logger for these signals, although further research is advised to find 

an optimal configuration for the neural networks approach in terms of neural 

network architecture, and type and number of inputs needed for optimal predictive 

power. Initial measurements consist of sensor to segment calibration movements 

which can be performed in several minutes. The training data set for the neural 

networks can be collected within 10 minutes, the only extra’s needed are a variety 

of known weights that can be held in the hand. The calculation of joint reaction 
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forces by the musculoskeletal model, which serve as target for the training of the 

neural networks, is the slowest part of the procedure, and can take several hours. 

However, smart distribution of this task over several computers seriously speeds 

up calculation. The training of neural networks can be accomplished in a couple 

of hours on a standard PC.  

Finally, using ambulatory measurements of kinematics and EMG as input, the 

simulations and predictions of joint reaction forces by the neural networks, as 

described in chapter 5, were completed at 15000 samples per second. This means 

that for instance measurements at 50Hz with a duration of 5 hours (about the 

battery life of the used IMU’s system) can be simulated by the neural network in 

one minute, demonstrating the high computational performance of trained neural 

networks. For long term measurements the approach in which joint reaction force 

are predicted directly by neural networks could serve as a first stage in selecting 

relevant  time frames with high joint load. These selected timeframes can 

subsequently be analysed in much more detail by applying the approach in which 

neural networks predict net moments as input for the musculoskeletal model, to 

calculate full model output. 

 

When comparing the described neural network approach to other means of 

estimating shoulder joint load in daily conditions, two distinct candidate methods 

show up; EMG driven models (Langenderfer et al., 2005; Laursen et al., 1998; 

Nikooyan et al., 2012), and the direct measurement of shoulder joint reaction 

forces by means of instrumented shoulder joint prostheses (Bergmann et al., 2007; 

Westerhoff et al., 2009a; Westerhoff et al., 2009b).  

Since EMG driven models make use of the same sources of input as the neural 

network method, namely kinematics and EMG, at first sight they seem capable of 

estimating joint load in daily conditions. EMG driven models have the advantage 

of incorporating muscle co-contraction, a feature that most optimization-based 
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inverse-dynamics musculoskeletal models neglect, or which requires more 

advanced load sharing cost functions (Nikooyan et al., 2012). Keeping the 

concept of muscle co-contraction in mind, EMG driven models are developed 

with the aim of a better prediction of actual joint reaction forces, using the actual 

muscle activations as guidance for the optimization of the cost function. Also 

EMG driven models still require external force as input, which cannot be 

measured in daily conditions, or only with great difficulty, rendering the EMG 

driven models to a less suitable candidate for the long term estimation of joint 

loading in daily conditions. 

 

Instrumented shoulder endo-prosthesis are a relatively new kind of measurement 

devices in the field of shoulder joint load. The actual joint forces and moments are 

measured within the body, which can aid to serious progress in gaining more 

insight in “true joint load” during motion. However, this is the case in subjects 

wearing such a device, people who’s shoulder joint is damaged due to severe wear 

or degeneration, and where joint replacement using an endo-prosthesis is 

indicated. It is unknown whether these subjects had different joint loading 

patterns leading to such a degeneration that joint replacement was advised, nor if 

the joint loading patterns after surgery are comparable to healthy subjects. Besides 

that, for larger studies, up till now the population of subjects with an instrumented 

endo-prosthesis is quite limited (6 former osteoarthritis patients). 

 

Resume 

When resuming the above, the answer is yes; the attractive idea of measuring the 

musculoskeletal response with wearable equipment like IMU’s and EMG for 

longer duration, in daily conditions and predicting a complex variable like joint 

reaction force, is possible with the developed method, within certain constraints. 

With such a method, the collection of a long-term joint load profile comes closer 
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at hand. By determining a load-profile over time, over subjects, more insight can 

be gained in the nature, magnitude and variation of the forces acting on the joints 

of the shoulder girdle, and possibly shed more light on the damaging effects of 

these forces. Increased insight in the ‘play of forces’ around the shoulder can also 

aid in the development of future endo-prostheses; such prostheses can than be 

designed to better withstand the forces they will be exposed to in the body, in 

daily conditions. 

 

Future directions 

Although successful, several future directions can be given which are expected to 

improve the predictive power of the neural network method. As a first step the 

procedure should incorporate an individualized musculoskeletal model, to ensure, 

from a biomechanical perspective, that the model output will be more coherent 

with signals measured from the subject. For instance, net moments around the 

shoulder as calculated by the model are directly influenced by segments length 

used. Also muscle properties like attachment sites (Bolsterlee and Zadpoo, 2013), 

and moment arms might result in deviating results for muscle activation in the 

optimization procedures used in the model, when subject characteristics are 

different from the geometry as used by the model. The measured musculoskeletal 

response is prone to be less coherent with the resulting estimated joint reaction 

force of the model if there is a mismatch between model and subject geometry. 

From that point of view an evident improvement can be expected with the use of 

individualized musculoskeletal models. However, individualization of 

musculoskeletal models isn’t as straightforward as it might seem, since “only 

subsets of the parameters that describe model geometry and musculotendon 

properties can be obtained in vivo. Because most parameters are somehow 

interrelated the others should be scaled to prevent inconsistencies in the model’s 
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structure, but it is not known exactly how.” (Literally cited from (Bolsterlee et al., 

2013)). 

 

Besides that, it is expected that the parameters needed for individualization of 

such a model cannot be collected ambulatory, rendering the procedure more 

complex and time consuming. Future research will prove if individualization of 

the model has added value in the estimation of joint load profile in daily 

conditions. 

 

As described above, in the version of the DSEM used in the experiments co-

contraction was not incorporated. Joint reaction forces from this model are used 

as target for neural network training, and in fact the neural network is at best 

mimicking the musculoskeletal model used, and will therefore lack the effect of 

muscle co-contraction on joint reaction forces. This is illustrated by the fact that a 

neural network with only one channel of EMG as input performed as good as a 

network with 13 channels of EMG. When EMG driven models are used as target 

for neural network training, it is expected that the concept of co-contraction can 

be learned by the neural networks, and incorporated in the prediction of joint 

loading. Probably the number of EMG channels needed as input for the neural 

networks has to increase above one, to represent the different combinations of co-

contraction that can occur in human upper extremity motion. 

 

Can the method be applied to patients? As stated above, the neural network is at 

best mimicking the musculoskeletal model that is used as target for training. So if 

the musculoskeletal model is adequately adapted to represent the musculoskeletal 

response of the subject / patient, for instance by introducing the force reducing 

effect of rotator cuff tears, or tendon transfers into the model (Magermans et al., 

2004), it is expected that the neural network can be trained using output from the 
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adapted model as target. Simulation studies can be performed to explore this 

potential, by using existing datasets, adapting the musculoskeletal model and train 

neural networks on this adapted output, to see if the method is capable of learning 

these altered relations between kinematics, EMG and joint reaction forces. If the 

results from such simulation studies are successful, the method can be applied to 

predict joint loading in daily conditions for patients as well. 

 

Although the initial preparations for the ambulatory measurements are not time 

consuming and neural network simulations have proven to be faster than real 

time, the calculation of musculoskeletal model output, and the concurrent training 

of neural networks takes several hours of processing. As soon as, in the near 

future, these last two procedures can be performed in a much shorter time frame, 

due to the continuous increase of processing power of computers, smart parallel 

processing, or the development of faster optimization procedures for the 

musculoskeletal model and the neural network training, the neural network 

method as a whole can be used as a real time feedback instrument. The 

instantaneous prediction of joint loading can than be used to instruct subjects or 

patients how they load their joints, and potentially aid in the avoidance of 

overloading behavior.  
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Summary 

To gain more insight in the development of joint wear and the gradual 

degradation of  the shoulder and shoulder endo-prostheses over time, it is 

desirable to obtain an overview of the exposure to forces of these joints in the 

body, in daily conditions. A method to estimate such a mechanical load profile of 

the shoulder joint in daily conditions has not been established yet. Existing 

laboratory based methods for the estimation of shoulder joint reaction forces 

require upper extremity kinematics and external force as input. These existing 

methods cannot be applied directly to daily conditions, since one of the variables 

needed as input for these methods, external force by the hand,  cannot be 

measured continuously outside the laboratory, or only with great difficulty. 

 

Inertial Magnetic Measurement Systems (IMU’s) have shown to enable the 

ambulatory measurement of upper extremity kinematics. IMU’s use 

accelerometers, gyroscopes and magnetometers to estimate sensor orientation by a 

fusion algorithm which integrates angular velocity (gyroscopes), within the frame 

of reference composed by gravity (accelerometers) and magnetic north 

(magnetometers). Using such measurements as input for a long term detailed 

biomechanical analysis requires additional insight in two topics. First, the 

assumptions in, and threats to the minimization of integration drift in long term 

estimation of sensor orientation should be very clear. Second, an adequate sensor 

to segment calibration should be available, to obtain segment orientations which 

can be used to drive detailed musculoskeletal biomechanical models. 

 

IMU’s and associated orientation estimating algorithms make use of the earth 

magnetic field to minimize integration drift of gyroscope, under the assumption of 

a homogeneous field. Ferro magnetic materials cause a distortion of the earth 
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magnetic field, is a widespread building material (construction steel), and holds a 

potential threat for indoor measurements with IMU’s. As shown in chapter 2, 

distortion of the earth magnetic field is depending on construction materials used 

in the building, and should be taken into account for calibration, alignment to a 

reference system, and further measurements. The behavior of the used orientation 

estimating algorithm is examined in the laboratory used for the measurements of 

this thesis, in terms of temporal and spatial sensitivity for the magnetic distortion. 

Mapping the measurement volume to define safe and unsafe areas in advance of 

planned experiments can aid in the collection of a usable data set. If such a pre-

measurement-mapping is not possible before long term measurements take place, 

close inspection of the collected dataset in general, and especially the norm of the 

earth magnetic field can reveal distortion of the magnetic field. These 

measurement stages should be labeled as unsafe, and discarded from the collected 

data. If a too large portion of the collected dataset is labeled as unsafe, another 

measurement method should be considered. 

 

Taking into account the potential threats to a stable orientation estimation, IMU’s 

enable long term, accurate measurement of sensor orientation. With a proper 

calibration procedure these sensor orientations can be converted into segment 

motion in terms of joint angles. The standard procedure for the definition of 

segmental orientation in the laboratory is based on the measurement of positions 

of bony landmarks (BLM). However, IMU’s do not deliver position information. 

An alternative method to establish IMU’s based, anatomically understandable 

segment orientations is proposed in chapter 3. For five subjects, IMU’s recordings 

were collected in a standard anatomical position for definition of static axes, and 

during a series of standardized motions for the estimation of kinematic axes of 

rotation. For all axes, the intra- and inter individual dispersion was estimated. 

Subsequently, local coordinate systems (LCS) were constructed on the basis of 
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the combination of IMU’s axes with the lowest dispersion and compared with 

BLM based LCS. The repeatability of the method appeared to be high; for every 

segment at least two axes could be determined with a dispersion of at most 3.8º. 

Comparison of IMU’s based with BLM based LCS yielded compatible results for 

the thorax, but less compatible results for the humerus, forearm and hand, where 

differences in orientation rose to 17.2º. Although different from the ‘gold 

standard’ BLM based LCS, IMU’s based LCS can be constructed repeatable, 

enabling the estimation of segment orientations outside the laboratory. The 

procedure for the definition of local reference frames using IMU’s is described. 

 

Standard musculoskeletal models estimate joint load using upper extremity 

kinematics and external force. Although kinematics can be measured ambulatory 

for longer duration by means of IMU’s, external force by the hands cannot be 

measured continuously in ambulatory settings, hampering the use of these 

standard biomechanical models. An alternative method has been sought for. When 

exerting force by the hands, the musculoskeletal response of upper extremity 

muscles is reflected in EMG, which can easily be measured ambulatory for longer 

duration. Besides that, Neural Networks (NN) have been shown to be capable of 

learning complex relationships in general, and more specifically, the fusion of 

distinct variables like kinematics and EMG into measures of joint loading for 

repetitive and closed chain movements. Chapter 4 describes a  method for the 

estimation of joint reaction forces at the glenohumeral joint, in daily conditions, 

by training a Neural Network (NN) using kinematics and EMG as inputs. A 

relatively small data set of specified movements with known external force is 

used in two ways. First, a standard musculoskeletal model calculates several 

variables of joint load, and a set of Generalized Forces and Net Moments 

(GFNM) around the models degrees of freedom, using kinematics and known 

external force as input. Second, using kinematics and EMG, a NN is trained to 
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predict these GFNM from corresponding trials. These GFNM can concurrently be 

used as input for the model, resulting in full model output independent of external 

force. The method is validated with an independent trial not used in the training of 

the NN. The NN could predict GFNM within 10% relative RMS, compared to 

output of the model. The NN–model combination estimated joint reaction forces 

with relative RMS values of 7 to 17 % when compared to original 

musculoskeletal model output, enabling the estimation of a detailed load profile 

of the shoulder in daily conditions.  

 

In chapter 5 a study is presented in which a neural network is trained for the direct 

prediction of glenohumeral joint reaction forces, based upon arm kinematics and 

shoulder muscle EMG. In this study several setups for NN training were 

examined in more detail, with varying combinations of type of input, type of 

motion, and handled range of weights. When joint reaction forces are predicted 

directly by a trained NN, for motion data independent of the training data, results 

show a high intraclass correlation (ICC between 0.83 and 0.98) and relative SEM 

ranging from 3% to 21% for the different setups, when compared to similar 

output of a musculoskeletal model. A convenient setup in which kinematics and 

only one channel of EMG were used as input for the NN’s showed comparable 

predictive power as more complex setups. These results are promising and enable 

long term estimation of shoulder joint reaction forces outside the motion lab, 

based on ambulatory obtainable variables like upper extremity kinematics and 

EMG.  

 

Is this the way to go? Within certain constraints it is possible to measure the 

musculoskeletal response with wearable equipment like IMU’s and EMG for 

longer duration, and predict a complex variable like joint reaction force in daily 

conditions. With the developed method, the collection of a long-term joint load 
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profile comes closer at hand. By determining such a load-profile over time, over 

subjects, more insight can be gained in the nature, magnitude and variation of the 

forces acting on the joints of the shoulder girdle, and possibly shed more light on 

the damaging effects of these forces. Increased insight in the ‘play of forces’ 

around the shoulder can also aid in the development of future endo-prostheses; 

such prostheses can than be designed to better withstand the forces they will be 

exposed to in the body, in daily conditions. 
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Samenvatting  

Om meer zicht te krijgen op de ontwikkeling van gewrichtsslijtage en de 

degeneratie van de schouder en schouder endoprothesen is het wenselijk om een 

overzicht te krijgen van het krachtenspel waaraan deze gewrichten dagelijks in het 

lichaam worden blootgesteld. Bestaande methoden voor de schatting van 

gewrichtreactiekracht in de schouder zijn gebaseerd op laboratorium onderzoek 

en apparatuur, en gebruiken kinematica van de romp en bovenste extremiteit, en 

uitgeoefende handkracht als input voor rekenmodellen. Deze bestaande methoden 

kunnen niet zonder meer worden toegepast op metingen in de dagelijkse praktijk 

omdat het tot nog toe onmogelijk is om de uitgeoefende handkracht onder 

dagelijkse omstandigheden continue te meten. Een methode om het beoogde  

mechanisch belastingprofiel van de schouder onder dagelijkse omstandigheden te 

schatten is nog niet ontwikkeld. 

 

Inertiële Magnetische Meet Systemen (IMU’s, inertiele sensoren) hebben in de 

loop van de tijd hun waarde bewezen in het meten van 3D kinematica van de 

bovenste extremiteit. IMU’s maken gebruik van 3 typen sensoren, accelerometers, 

gyroscopen en magnetometers om de sensor oriëntatie te schatten. Hierbij wordt 

een Kalmanfilter gebruikt om de hoeksnelheid (gemeten met gyroscopen) te 

integreren binnen een referentie systeem gebaseerd op de zwaartekracht 

(accelerometers) en het magnetisch noorden (magnetometers). Wanneer een 

dergelijk meetsysteem wordt gebruikt om input te genereren voor een 

gedetailleerde biomechanische analyse dienen er twee belangrijke onderwerpen 

goed uitgewerkt te zijn.  

Ten eerste, bij de schatting van sensor oriëntatie uit langdurige metingen speelt de 

minimalisatie en compensatie van integratie drift een belangrijke rol. De 

aannames op basis waarvan deze minimalisatie en compensatie plaatsvinden, en 
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ook de bedreigingen voor een juiste sensor oriëntatie schatting moeten helder in 

kaart gebracht zijn. Ten tweede is er een goede en bruikbare calibratie methode 

nodig om de sensor oriëntatie te kunnen transformeren naar lichaamssegment 

oriëntatie, een van de benodigde typen input parameters voor de 

spierskeletmodellen waarmee gewrichtreactiekracht kan worden geschat. 

 

IMU’s en de bijbehorende Kalmanfilter waarmee de sensor oriëntatie geschat 

wordt maken gebruik van de magnetometer data om de integratiedrift van de 

gyroscoop data te minimaliseren, onder de aanname van een homogeen 

aardmagnetisch veld. Ferro-magnetische materialen veroorzaken een verstoring 

van dit aardmagnetisch veld, e.a. afhankelijk van de massa van en afstand tot het 

materiaal. Bekende ferro-magnetische materialen zoals ijzer en constructie staal 

worden wijdverbreid gebruikt als bouwmaterialen, en vormen daarmee een 

bedreiging voor de beoogde metingen met de IMU’s binnenshuis. Hoofdstuk 2 

beschrijft het verstorende effect van constructie staal op het aardmagnetisch veld 

in het door ons gebruikte bewegingslaboratorium, en laat zien dat hier terdege 

rekening mee gehouden moet worden bij de calibratie van het IMU’s systeem, de 

gebruikte referentie assenstelsels, en tijdens de verdere metingen. Het gedrag van 

het Kalmanfilter werd onderzocht in termen van spatiële en temporele 

gevoeligheid voor de magnetische verstoring. Het in kaart brengen van veilige 

(homogeen magneetveld) en onveilige (verstoord magneetveld) gebieden van het 

meetvolume vóór de uitvoering van de beoogde experimenten kan aanzienlijk 

bijdragen aan de collectie van een bruikbare dataset. Als een dergelijke 

verkenning niet mogelijk is, bijvoorbeeld bij lange termijn metingen onder 

dagelijkse omstandigheden, waarbij het meetvolume van te voren niet bekend is, 

dan dient de verkregen dataset nauwkeurig beoordeeld te worden op eventuele 

verstoringen van het magneet veld, bijvoorbeeld op basis van de norm van het 

gemeten magneetveld. De meetperiodes die als ernstig verstoord aangemerkt 
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worden kunnen beter niet gebruikt worden. Is een te groot deel van de verzamelde 

dataset als verstoord aangemerkt, dan moet er wellicht aan een andere 

meetmethode gedacht worden. 

 

Mits de potentiële bedreigingen van een stabiele oriëntatie schatting in acht 

genomen worden, kunnen IMU’s in principe langdurig en nauwkeurig de sensor 

oriëntatie meten. Met de juiste calibratie procedure kunnen deze sensor oriëntaties 

vertaald worden naar segment oriëntaties en gewrichtshoeken. De standaard 

methode voor de bepaling van segment assenstelsels en oriëntatie is gebaseerd op 

het meten van posities van Bony Land Marks (BLM). IMU’s meten geen posities 

in 3D, alleen oriëntaties. In hoofdstuk 3 wordt een alternatieve methode 

beschreven om met behulp van IMU’s anatomisch interpreteerbare segment 

oriëntaties te bepalen. Bij 5 gezonde proefpersonen werden metingen verricht met 

IMU’s in een aantal standaard houdingen voor de bepaling van statische assen, en 

tijdens een aantal gestandaardiseerde bewegingen om functionele bewegingsassen 

te kunnen bepalen. Voor alle individueel te bepalen assen werden de intra- en 

inter individuele dispersie (variatie) berekend. Vervolgens werden per segment 

lokale assenstelsels bepaald op basis van de statische en functionele 

bewegingsassen met de laagste dispersie. Deze IMU’s lokale segment 

assenstelsels werden vervolgens weer vergeleken met de standaard BLM 

assenstelsels. De IMU’s methode bleek zeer herhaalbaar; voor elk segment 

konden minstens twee assen bepaald worden met een dispersie van maximaal 

3.8º. Vergelijking van IMU’s en BLM gebaseerde segment assenstelsels leverde 

vrijwel geen verschil op voor het thorax assenstelsel, maar wel oplopende 

verschillen voor humerus, onderarm en hand, waarbij deze laatste een oriëntatie 

verschil van 17.2º liet zien. Ondanks dit verschil met de “gouden standaard” 

methode op basis van BLM gebaseerde assenstelsels, kunnen IMU’s gebaseerde 

assenstelsels zeer herhaalbaar bepaald worden, waarmee het meten van segment 
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oriëntaties buiten het laboratorium mogelijk wordt. De gehele procedure voor de 

definitie van IMU’s gebaseerde lokale assenstelsels wordt beschreven in een 

appendix van het hoofdstuk. 

 

Met standaard spierskeletmodellen wordt gewrichtsreactiekracht in de schouder 

geschat met behulp van kinematica van de bovenste extremiteit en uitgeoefende 

handkracht. Zoals hierboven beschreven kan de kinematica van de bovenste 

extremiteit met behulp van IMU’s langdurig gemeten worden onder dagelijkse 

omstandigheden. De uitgeoefende handkracht kan echter niet continu gemeten 

worden in de dagelijkse praktijk, waardoor de standaard spierskeletmodellen niet 

zonder meer gebruikt kunnen worden. Er zal een alternatieve methode gezocht 

moeten worden om de activiteit van het spierskelet systeem te vertalen naar 

gewrichtreactiekracht. Wanneer de handen kracht uitoefenen in het manipuleren 

van objecten, dan is de activiteit van het spierskelet systeem meetbaar in het EMG 

van de armspieren. Bovendien is EMG met de huidige generatie meetapparatuur 

goed langdurig en ambulant te meten. Daarnaast staan Neurale Netwerken al jaren 

in de belangstelling wat betreft het algemene vermogen om complexe relaties te 

leren, en meer in het bijzonder, de fusie van verschillende datatypen zoals 

kinematica en EMG in het voorspellen van gewrichtsbelasting bij repeterende en 

gesloten keten bewegingen. Hoofdstuk 4 beschrijft een methode om de 

gewrichtskrachten in het gleno-humerale gewricht te schatten, onder dagelijkse 

omstandigheden, door Neurale Netwerken te trainen met kinematica en EMG van 

de bovenste extremiteit als input. Hiervoor was slechts een relatief kleine initiële 

dataset van specifieke bewegingen en bekende krachten nodig. Voor deze initële 

dataset kon de uitgeoefende handkracht namelijk berekend worden door de 

proefpersoon bewegingen uit te laten voeren met een bekend gewicht in de hand. 

Met behulp van de gemeten kinematica kon de handkracht eenvoudig uitgerekend 

worden (F = m x a). De initiële dataset werd op twee manieren geanalyseerd. Ten 
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eerste werd op basis van gemeten kinematica en uitgeoefende handkracht met een 

spierskeletmodel verschillende variabelen van gewrichtsbelasting uitgerekend, en 

een set Generalized Forces and Net Moments (GFNM) rond de vrijheidsgraden 

van het model. Ten tweede werd op basis van gemeten kinematica en EMG een 

Neuraal Netwerk getraind om deze GFNM te voorspellen. De voorspelde GFNM 

van langdurige ambulante metingen werden vervolgens gebruikt als input voor het 

spierskeletmodel, zodat volledige model output berekend kon worden op basis 

van de ambulant gemeten variabelen kinematica en EMG. De methode werd 

gevalideerd met metingen die niet gebruikt werden voor de training van het 

Neuraal Netwerk. De Neurale Netwerken voorspelden de GFNM met een 

afwijking van 10% relatieve RMS, vergeleken met de GFNM die door het 

spierskeletmodel werden berekend. De combinatie van Neuraal Netwerk – 

spierskeletmodel voorspelden gewrichtsreactiekracht die 7 tot 17% relatieve RMS 

afweken van de originele model output. Met deze resultaten is de weg geopend 

naar het schatten van een mechanisch belastingprofiel van de schouder onder 

dagelijkse omstandigheden. 

 

In hoofdstuk 5 wordt een methode beschreven waarin Neurale Netwerken 

getraind werden om direct reactiekrachten in het glenohumerale gewricht te 

voorspellen op basis van kinematica en EMG gemeten aan de thorax, 

schoudergordel en bovenste extremiteit. In deze studie werden verschillende 

configuraties voor het vergaren van de initiële dataset en het trainen van Neurale 

Netwerken in meer detail bestudeerd, met diverse combinaties van type input, 

type beweging, en range van gebruikte gewichten. De door de Neurale Netwerken 

voorspelde gewrichtsreactiekracht lieten een hoge Intra Class Correlation zien 

(ICC van 0.83 tot 0.98) met de gewrichtsreactiekracht die berekend was met het 

spierskeletmodel, voor een onafhankelijke dataset (niet gebruikt in de training van 

NN). De gebruikte foutmaat, relatieve Standaard Error of Measurement (relSEM) 
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varieerde van 3% tot 21% voor de verschillende configuraties. De configuratie 

met de laagste relSEM werd beschouwd als de meest succesvolle; het best 

haalbare resultaat van de methode. Een zeer praktisch toepasbare configuratie 

waarbij kinematica en slechts één kanaal EMG gebruikt werd als input voor de 

Neurale Netwerken liet een gelijke voorspellende kracht zien als meer complexe 

configuraties. Deze veelbelovende resultaten tonen aan dat het mogelijk is om 

gewrichtskrachten in de schouder vast te stellen buiten het 

bewegingslaboratorium, op basis van langdurige ambulant te meten variabelen als 

segment kinematica en EMG. 

 

Is de ingeslagen weg de juiste? Binnen zekere randvoorwaarden is het mogelijk 

om de spierskelet respons langdurig te meten met draagbare meetapparatuur zoals 

IMU’s en EMG, en een complexe variabele zoals de gewrichtsreactiekracht van 

het glenohumerale gewricht te voorspellen onder dagelijkse omstandigheden. Met 

de ontwikkelde methode komt het  gewenste lange termijn mechanische 

belastingprofiel van de schouder binnen handbereik. Door het vaststellen van een 

dergelijk belastingprofiel over langere tijd, bij meerdere personen, kan er meer 

inzicht verkregen worden in de orde van grootte en variatie van deze krachten in 

de gewrichten van de schoudergordel, en hopelijk ook meer informatie opleveren 

over het beschadigende effect van deze krachten. Verhoogd inzicht in het 

krachtenspel rond de schouder kan ook bij dragen aan de ontwikkeling van 

toekomstige schouder endoprothesen; dergelijke prothesen kunnen dan ontworpen 

worden om het krachtenspel waaraan ze in het lichaam onder dagelijkse 

omstandigheden worden blootgesteld beter te weerstaan. 
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Dankwoord 

Het is zover! De definitieve versie van mijn proefschrift gaat naar de drukker. 

Ondanks de verwachtte vliegende start werd het een uitgebreid proces met vele 

vertakkingen, tegenslagen, opstoppingen, parallel trajecten, maar ook diverse 

successen, voldoende publicaties (en citaties!) en uiteindelijk de voldoening van 

de afronding. 

 

Een promotie traject doorloop je niet in je eentje, en er zijn vele mensen die op 

hun eigen manier een rol hebben gespeeld in dit proces. Ik wil jullie allemaal 

integraal bedanken voor jullie samenwerking, steun, vragen, discussie, kritiek, 

wandelgang gesprekken, lol en arbeidsvitaminen. 

 

Een aantal hoofdpersonen rondom het traject wil ik graag wat gerichter bedanken: 

 

Beste Frans, jou doelgerichtheid, gedrevenheid, kritisch en relativerend 

vermogen, zonder ook maar één detail uit het oog te verliezen, hebben mijn visie 

op het opzetten en uitvoeren van wetenschappelijk onderzoek enorm verruimd. 

Ondanks je overvolle agenda altijd de rust zelve, en aandacht voor de persoon. 

Ontzettend bedankt voor je inzet. 

 

Beste DirkJan, scherpzinnig, heerlijk direct in de communicatie en eventuele 

kritiek altijd in de opbouwende vorm. Tactisch, zakelijk en humor op het juiste 

moment. Op die punten dat ik door de bomen het bos niet meer zag, wist jij met 

een paar gerichte vragen het geheel tot overzichtelijke proporties terug te snoeien. 

Messcherpe inhoudelijke discussies voerden naar de kern van het probleem, en 

wanneer in de loop van de tijd mijn aandacht verslapte, wist je me op de een of 

andere manier toch te inspireren om weer door te gaan, en het verhaal af te 

ronden. Je weet niet half hoeveel ik van je heb geleerd. 

 

Anouk en Dineke, ook in tijden van tegenslag was er jullie luisterend oor, zodat ik 

een en ander weer in de juiste proporties kon zien. Dank.  

 

Daarnaast wil ik de diverse collega PhD’s en postdocs (Alfred, David, Erwin, 

Jasper, John, Otto, Sander) in Delft bedanken, ook al was ik maar één dag in de 

week in Delft, er was altijd genoeg aansluiting en ruimte voor inhoudelijke 

discussie en meer.  

 

Het promotie traject vond plaats binnen een samenwerkingsverband van onder 

andere TUDelft en Roessingh Research & Development. Aan RRD zijde wil ik 

Bart Freriks bedanken voor zijn inspanningen om deze dubbele aanstelling 
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mogelijk te maken en daarnaast ook Hans Rietman voor de geboden ruimte om 

het traject af te ronden.  

 

Beste Chris, als penvoerder van de projecten Freemotion en Fusion heb jij het 

framework opgezet waarbinnen dit promotie onderzoek plaats kon vinden. Je bent 

een echte initiator, creatief, altijd op zoek naar verbinding en verbetering, met de 

bijbehorende creatieve sprongen. Juist doordat we het lang niet altijd met elkaar 

eens waren over de te volgen route ben ik steeds zelfstandiger het overleg 

ingestapt en meer en meer mijn eigen afwegingen en keuzes gaan maken. Gezien 

de overlap in onze interesse en expertise op het gebied van de ambulante 

bewegingsanalyse komen wij elkaar ongetwijfeld weer tegen; ik kijk er naar uit! 

  

Aan diezelfde RRD zijde van het project waren Ruben en Jan Hindrik mijn 

“sparring partners” van het eerste uur. Al hadden we elkaar door diverse job-hops 

wat uit het oog verloren, ik ben blij dat we elkaar weer weten te vinden.  

 

In de 2e helft van het traject zat ik voornamelijk bij RRD te werken aan de 

analyses en artikelen. Mijn trouwe kamergenote Jacqueline, wat heb je me met je 

aardse benadering van zaken regelmatig weer met beide benen op de grond 

gekregen. Top. 

 

En dan al die andere collega’s bij RRD, ik zou jullie allemaal wel op willen 

noemen hier, maar die lijst wordt gewoon te lang. In de 12 jaar en de 

verschillende rollen bij RRD heb ik altijd met heel veel plezier met jullie 

samengewerkt, gediscussieerd en in een goede mix met de maandelijkse Laatste-

Donderdag-van-de-Maand-Borrel, voortgebouwd aan de brug tussen onderzoek 

en klinische praktijk. Ik kijk terug op een hecht team, en een zeer prettige 

werkomgeving. We houden contact. 

 

Wil, Jos en Leendert. Na afloop van mijn project aandeel in Fusion bleef er nog 

een stukje promotie werk over. Door in de rol van labbeheerder te mogen kruipen 

bleef ik verbonden met de wetenschappelijke omgeving van RRD en kon ik 

zodoende het proefschrift in eigen tijd afronden. Daarnaast voelde ik me bij jullie 

op de kamer al snel als een van de vier spinnen in het web van ICT & Labbeheer. 

Wat een diversiteit aan vaardigheden is er nodig om de ‘technische ruggengraat’ 

van wetenschappelijk onderzoek in stand te houden, aan te passen, te verbeteren 

of te vernieuwen, en ook weer inzichtelijk over te dragen aan de 

wetenschappelijke gebruiker. ’n Zeer dynamische en leerzame werkplek. 

Daarnaast was de werksfeer met jullie ongekend open, direct, stimulerend en 

intens. Dank!  
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XSense was als industriële partij betrokken in de project consortia en ik wil 

Daniel, Henk en ook Martin bedanken voor hun betrokkenheid, het delen van 

informatie en de nodige kritische vragen rondom mijn thema. 

 

Beste Sabine, feitelijk stond mijn traject bij jou los van het promotie traject, maar 

heeft het indirect wel degelijk fors bijgedragen aan de uiteindelijke afronding. 

Nogmaals dank. 

 

Beste Peke, de basis voor dit proefschrift is reeds lang geleden gelegd, door jou 

eigen nieuwsgierige aard als voorbeeld, maar ook in de opleidingsmogelijkheden 

waar jij als vader, en soms ook in de rol van projectmanager, de randvoorwaarden 

creëerde. Dank je wel voor deze levenslange steun en interesse. 

 

En dan tot slot, mijn eigen kleine kring, Marianne, Pepijn, en Floris. 

 

Mijn promotie traject was de afgelopen periode alom aanwezig, wat betreft 

afweging van tijdsbesteding (proefschrift versus bijwonen van honkbal 

wedstrijden of klussen), maar ook in de vorm van een stevige mentale 

achtergrondruis. Daarnaast hebben we als gezin diverse hobbels moeten 

overwinnen, en overwonnen. Ik ben nog steeds dagelijks blij met jullie steun, 

begrip, relativeringsvermogen, veerkracht, humor en eigenzinnigheid, en ik ben 

supertrots op jullie alle drie.  

 

Lieve Marianne, dank voor de diverse inhoudelijke bijdragen wat betreft 

statistiek, of juist die handige en logische alternatieve benadering die ik zelf niet 

zag. Daarnaast heb je een ongelooflijke portie geduld gehad, en me daarmee de 

ruimte gegeven om een en ander op mijn eigen eigenwijze wijze op te lossen. Met 

je nuchtere kijk op de wereld heb je me regelmatig uit een “closed loop” weten te 

halen, en daar waar nodig, je vertrouwen op een goede afloop op mij over kunnen 

brengen. Hiermee ben je een enorme ‘mentale steunpilaar’ geweest in het gehele 

proces. Super! Ik heb je lief. 

 

 

Wiebe 

 

 



 

 

 


