A Bayesian-Based System to Assess Wave-Driven Flooding Hazards on Coral Reef-Lined Coasts

Pearson, Stuart; Storlazzi, C.D.; van Dongeren, A. R.; Tissier, Marion; Reniers, Ad

DOI
10.1002/2017JC013204

Publication date
2017

Document Version
Final published version

Published in
Journal Of Geophysical Research-Oceans

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.
A Bayesian-Based System to Assess Wave-Driven Flooding Hazards on Coral Reef-Lined Coasts

S. G. Pearson1,2, C. D. Storlazzi3, A. R. van Dongeren1, M. F. S. Tissier2, and A. J. H. M. Reniers2

1Department of Applied Morphodynamics, Unit of Marine and Coastal Systems, Deltares, Delft, the Netherlands, 2Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands, 3Pacific Coastal and Marine Science Center, U.S. Geological Survey, Santa Cruz, CA, USA

Abstract

Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, "XBNH") was used to create a large synthetic database for use in a "Bayesian Estimator for Wave Attack in Reef Environments" (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.

Plain Language Summary

Low-lying tropical coasts fronted by coral reefs are threatened by the effects of climate change, sea level rise, and flooding caused by waves. However, the reefs on these coasts differ widely in their shape, size, and physical characteristics; the wave and water level conditions affecting these coastlines also vary in space and time. These factors make it difficult to predict flooding caused by waves along coral reef-lined coasts. We created a system (“BEWARE”) that estimates how different wave, water level, and reef combinations can lead to flooding. This tool tells us what information is needed to make good predictions of flooding. We found that information on water levels and waves is most important, followed by the width of the reef. BEWARE can be used to make short-term predictions of flooding in early warning systems, or long-term predictions of how climate change will affect flooding caused by waves on coral reef-lined coasts.

1. Introduction

Thousands of reef-lined tropical islands are threatened by climate change, sea level rise, and coral degradation (Ferrario et al., 2014). Many of these islands, such as atolls, have low (<4 m above MSL) maximum elevations, making them particularly vulnerable to sea level rise and the impact of wave-driven flooding. For instance, on the Gilbert, Marshall, Caroline, and Marshall island chains, over 90% of the population and land area are located within 5 m of mean sea level (UN-Habitat, 2015). On many low-lying coral atolls, freshwater is constrained to a relatively thin (<15 m) freshwater lens. These aquifers are susceptible to wave-driven flooding that salinizes the freshwater lens, making the water unsuitable for human consumption (Gingerich et al., 2017; Terry & Falkland, 2010). For example, large storm-driven wave events occurring in 2008, 2009, and 2011 that coincided with high tides destroyed crops, demolished infrastructure, and contaminated freshwater drinking supplies on numerous atolls in the Pacific Ocean (Fletcher & Richmond, 2010; Hoeke...
et al., 2013; U.S. Fish and Wildlife Service, 2015), underscoring the evident vulnerability of these reef-lined island communities. Even on more mountainous tropical islands, the majority of housing, critical infrastructure, and agriculture are situated on narrow coastal plains close to sea level. The susceptibility of these tropical islands to changing oceanic and climatic conditions represents a severe threat to food and water security, public safety, and environmental health.

Wave-driven flooding hazards on coral reef-lined islands not only result from large tropical cyclones but more commonly are the result of remotely generated ("sunny-day") swell events (Hoeke et al., 2013). When these waves or those from tropical cyclones encounter a reef-lined coast, they usually undergo significant transformation due to the abrupt changes in bathymetry. Through wave breaking and bottom friction dissipation, incident wave heights are reduced on the order of 90–99%, depending on the tidal stage (Ferrario et al., 2014; Péquignet et al., 2011). However, not all of this incident sea-swell wave energy (“SS” >0.04 Hz) is dissipated, and some is transferred to infragravity (“IG,” 0.004–0.04 Hz) and very low frequencies (“VLF,” <0.004 Hz), generally via the breakpoint mechanism/dynamic setup on the steep fore reef slope (Pomeroy et al., 2012b; Symonds et al., 1982). As a result, low-frequency wave energy often dominates at the shoreline, which promotes higher runup and hence an increased chance of flooding (Beetham et al., 2015; Cheriton et al., 2016; Gawehn et al., 2016; Roeber & Bricker, 2015; Shimozono et al., 2015).

Resonant amplification occurs when the highly energetic IG and VLF wave frequencies on the reef flat coincide with the nth natural frequency of the reef (f_n):

$$f_n = \frac{(2n+1)\sqrt{gh_{\text{reef}}}}{4W_{\text{reef}}},$$

where n is mode number, g is gravitational acceleration, h_{reef} is the mean water depth on the reef flat, and W_{reef} is the width of the reef flat. This phenomenon is controlled by parameters characterizing the reef (e.g., morphology) and extrinsic hydrodynamic forcing (Cheriton et al., 2016; Gawehn et al., 2016; Péquignet et al., 2009). The consequences of resonant amplification are dire because higher water levels can be excited on the reef flat than might be expected for the incident wave conditions, resulting in flooding or damage to coastal infrastructure (Nakaza et al., 1990; Péquignet et al., 2009; Roeber & Bricker, 2015; Tajima et al., 2016).

Vulnerability to wave-induced flooding is spatially heterogeneous due to the highly variable morphology of reef-lined coasts. Quataert et al. (2015) found that relatively smooth, deep, narrow reef flats fronted by steep fore reefs are prone to higher runup and therefore increased flood risk than other coral reef morphologies. Furthermore, Owen et al. (2016) noted that small variations in island topography and land use also influence wave-driven flooding and associated impacts. Therefore, the timing and severity of wave-induced impacts depend, in part, on island characteristics, but the uncertainty regarding the spatially variable shoreline morphology contributes considerable uncertainty to the prediction of these impacts. The vulnerability of Small Island Developing States to natural hazards is further enhanced by their small physical size, relative isolation, often limited resources (Meheux et al., 2007), and existing socioeconomic vulnerabilities (Ferrario et al., 2014). These vulnerabilities will likely increase in years to come due to population growth and climate-change effects such as sea level rise (Hinkel et al., 2014; Nicholls & Cazenave, 2010). All these factors may affect the habitability of these islands in the next century, displacing their people and causing internal migration or emigration. Indeed, Storlazzi et al. (2015) project that many atolls may become uninhabitable within the next few decades, when the recurrence interval of catastrophic floods becomes shorter than the recovery period for freshwater lenses, vegetation, wildlife populations, and repair of critical infrastructure. To combat threats like these, United Nations-endorsed Sendai Framework for Disaster Risk Reduction calls for improved access to early warning systems and disaster risk assessments by 2030 (UNISDR, 2015).

To answer this call and plan suitable adaptations, there is a need to improve how we evaluate and predict wave-driven flooding threats to these regions, which constitute a large, diverse set of islands and reef morphologies, all subject to a range of offshore oceanographic conditions. Bayesian networks are probabilistic models that have been successfully used to make predictions of hydrodynamics and morphology in numerous coastal applications (Gutierrez et al., 2011, 2015; Plant & Holland, 2011; Poelhekke et al.,
They do not require a detailed description of the physical processes, as they only investigate the correlations between each variable. Hirschberg et al. (2011) call for a probabilistic approach for hydrometeorological forecasts, making Bayesian networks fit-for-purpose, since they handle the uncertainty inherent to climate change and short-term meteorologic-oceanographic processes. While process-based model simulations can be time consuming, Bayesian networks compile and provide probabilities nearly instantly once supplied with data and trained. This speed makes Bayesian networks an ideal tool for early warning systems, which require rapid decision making under uncertainty. Furthermore, they have the potential to lower barriers to entry for end users by presenting scientific output in a more accessible and interactive way.

The main disadvantage of Bayesian networks is that they are data-intensive, requiring sufficient input in order to derive the probabilistic relationships used in their predictions. This may make their application in data-poor environments (e.g., low-lying tropical islands) challenging. To overcome this limitation, we used a process-based numerical wave and water level model to generate a synthetic database of model results that captures a wide range of intrinsic coral reef properties and extrinsic hydrodynamic conditions. The network then acts as an emulator or surrogate for the process-based model, as also applied by Poelhekke et al. (2016). Given the numerous combinations of island morphologies and physical forcing, Bayesian networks are a powerful tool for improving our prediction strategies for wave-driven flooding threats.

This paper aims to demonstrate the use of a physics-based, deterministic numerical wave and water level model (XBeach Non-Hydrostatic) and probabilistic Bayesian network (Netica) for estimating wave-induced flooding of reef-fronted coastlines. First, the methodology used to construct the synthetic database of model results that captures a wide range of intrinsic coral reef properties and extrinsic hydrodynamic conditions. The network then acts as an emulator or surrogate for the process-based model, as also applied by Poelhekke et al. (2016). Given the numerous combinations of island morphologies and physical forcing, Bayesian networks are a powerful tool for improving our prediction strategies for wave-driven flooding threats.

To construct BEWARE, the results of a validated process-based numerical wave model were combined with a probabilistic Bayesian network. There are five steps in the methodology:

1. Schematize the reef and forcing conditions, and formulate a range of input parameters based on field measurements and typical values from the literature, as per Quataert et al. (2015).
2. Simulate nearshore hydrodynamics for the full range of parameters using the validated process-based wave and water level XBeach Non-Hydrostatic (XBHN) model to create a synthetic database of hydrodynamic responses to extrinsic forcing and intrinsic coral reef geomorphology.
3. Develop a Bayesian network and train with model results.
4. Validate the Bayesian network by comparing predictions to field observations.
5. Assess the performance of the Bayesian network using techniques such as log likelihood ratios and confusion matrices.
2.1. Model Reef and Forcing Schematization

Key parameters were chosen based on findings of previous studies, following the methodology outlined by Quataert et al. (2015). Multiple extrinsic and intrinsic parameters were covaried. The extrinsic hydrodynamic parameters were offshore water level (g_0), wave height (H_0), and wave steepness (H_0/L_0), while the intrinsic reef morphologic parameters examined were fore reef slope (b_f), reef flat width (W_{reef}), beach slope (b_b), and bed roughness (c_f), as shown in Figure 1. Values were chosen to represent typical conditions reported in the literature and observed at field sites (Table 1). Beach crest elevation, or island height (z_{beach}), was fixed at a height of 30 m to focus on runup as a proxy for overtopping, as per (Matias et al., 2012). However, the method can easily be extended to include lower values of z_{beach} for direct computation of overtopping.

2.2. Simulation of Nearshore Hydrodynamics

To generate the synthetic database, the process-based XBeach Non-Hydrostatic (XBNH) model (version 1.22.4867) was used with varying reef morphology and hydrodynamic forcing based on the schematization of section 2.1. XBNH is a depth-averaged, wave-resolving model that solves the shallow water equations including nonhydrostatic pressure (McCall et al., 2014; Smit et al., 2014; Roelvink et al., 2015). The model was first validated using data from a fringing reef hydrodynamics laboratory experiment (Demirbilek et al., 2007) (see supporting information S1).

An idealized 1-D reef profile was created in XBNH and varied for a range of parameter values (Table 1). This study extends the 57 XBNH simulations of Quataert et al. (2015) to 174,372 (seven parameters, 3–12 variations per parameter, and four 30 min simulation periods with random realizations of the surface elevation time series at the offshore boundary). A variable spin-up time was implemented to account for the differences in the time to achieve stationary conditions.

The XBNH model complexity had to be balanced carefully with time constraints because computational demand increases exponentially with the number of parameters and variations. The scope of this study was thus limited to remotely generated swell with unimodal JONSWAP spectra and maximum significant wave height of 5 m, rather than more extreme cyclone conditions. The idealized setup used here has several other limitations, in that it was one-dimensional, had spatially uniform bed roughness, and greatly simplified the complex bathymetry characteristic of most coral reefs. The application of a one-dimensional model along a cross-shore profile neglects some of the dynamics that occur on natural reefs, such as lateral flow. It does, however, represent a conservative estimate for IG wave generation and runup, as the forcing is shore-normal.

2.3. Development and Training of the Bayesian Network

Bayesian networks such as Netica (Norsys, 2003), which was used here, are probabilistic graphical models that rely on Bayesian probability to make predictions. By examining the statistical relationships between each result in the database, the network develops conditional probabilistic relationships between each parameter, which are updated as more data (here: model results) are added (see supporting information S2).

The first step in developing a Bayesian network is to define key parameters as nodes, and then to create links between them based on their dependencies. The eight main parameters varied in XBNH served as the input nodes. Output nodes or “hazard indicators” were chosen from model variables (Table 2) that either indicate the potential for flooding (in this case the top 2% of runup, $R_{2\%}$) or provide insight into the
hydrodynamic processes acting on reefs, such as mean wave period ($T_{m-1.0}$). The main Bayesian network configuration used here (Figure 2) assumes that all input parameters influenced each of the output parameters.

In order to represent the model variables as probability distributions, the data set was divided into bins (Figure 2). Input parameters were discretized using the same parameter values as were tested in XBNH, resulting in uniform distributions. Discretization of output variables required more careful consideration, since they were continuously distributed. Furthermore, because of nonlinear processes, a uniform input may yield a nonuniform output distribution, which influences bin discretization. The chosen bins took into account both the distribution of data and the desired precision of the estimates. Care was taken to prevent overfitting by checking that increasing the number of bins per node did not increase validation error rates, as per Gutierrez et al. (2015). The last step in constructing the Bayesian network was to train it using the synthetic data set created with XBNH, resulting in the prior predictions (i.e., probability distributions of all model results in the absence of additional information or constraints). Simulations that did not achieve stationary conditions before the end of the spin-up period (30–120 min, depending on reef width) were excluded from the Bayesian network.

2.4. Bayesian Network Validation

The Bayesian network was constructed using a synthetic data set, so it needed to be validated using field data from case studies. However, there are limited suitable field measurements available, so at this time only a field data set from Roi-Namur in the Republic of the Marshall Islands (Qutaert et al., 2015; Cheriton et al., 2016; Gawehn et al., 2016) and numerical model results from Funafuti, Tuvalu (Beetham et al., 2015), were used for validation. The availability of additional runup time series recorded on fringing coral reef-fronted beaches would provide more opportunities to test the network, although this is hampered by the dearth of published $R_{2\%}$ field measurements in such locations.

To test the network, input nodes were constrained based on the prescribed hydrodynamic boundary conditions and given reef geomorphology. The posterior probability distributions of runup, wave height at the toe of the beach (SS, IG, and VLF frequencies), and wave setup were then compared with their observed values. An ideal prediction would show a narrower posterior distribution (indicative of precision) that is centered on the observed value (representative of accuracy).

2.5. Assessment of Bayesian Network Performance

The performance of the Bayesian network (how often estimates are correct) was assessed by comparing the predictive skill of different configurations, and by testing its accuracy in predicting a subset of the database parameters.
Figure 2. Layout of the "Bayesian Estimator for Wave Attack in Reef Environments" (BEWARE) system, illustrating key parameters and the links between them. Extrinsic hydrodynamic input parameters are shaded in blue, intrinsic reef morphologic input parameters in teal, and output variables (calculated at the inner reef flat/beach toe) in yellow. Within the nodes are a histogram indicating the prior probability distributions, mean, and standard deviation for each parameter \((n = 174,372)\). The key parameters are defined in Tables 1 and 2. Negative values of \(R^2\) can be explained by cases where \(g_0 < 0\) and runup on the fore reef does not exceed the reef crest. Negative values of \(n_{\text{setup}}\) can be explained by cases where \(W_{\text{reef}} = 0\) and set down is occurring at the observation point.
that had been excluded from the training. The first means of evaluating the predictive skill of the Bayesian network here was through the use of confusion matrices, which break down predictive error rates into over-prediction and underprediction. A confusion matrix thus provides a “hit rate” for the Bayesian network, identifying how often the network correctly predicts what was observed in reality, or, in this case, calculated by the XBNH model. To compute the error rates and confusion matrices, a k-fold cross validation was performed, as per Poelhekke et al. (2016) and Gutierrez et al. (2015). This entailed randomly dividing the database into k (in this case 10) folds or subsets, excluding them one at a time from the training, and comparing the network predictions of the excluded data with the actual values. Although there is no restriction on the size of confusion matrices, their complexity increases greatly with the number of bins for a given output node. Hence, only a binary confusion matrix (two bins) was considered here, such that a variable lying below a set threshold was considered negative, and positive above the threshold.

The second method for assessing the predictive capability of the network was using the log likelihood ratio (LLR). The LLR is an indicator of predictive skill and model uncertainty that compares the prior predictions of a network with the posterior predictions made using additional information (Plant & Holland, 2011). The concept is explained in more detail by, van Verseveld et al. (2015), Gutierrez et al (2015), and Poelhekke et al. (2016). When the LLR is calculated for key parameters, it makes it possible to consider which parameters should be included in the Bayesian network, which parameter uncertainty should be constrained, and, thus, which field measurements are most important to collect. By withholding parameters from the network one at a time and comparing the resulting predictions with those of the full network, the relative importance of each parameter was assessed. For this study, the LLR score for each withheld parameter was normalized by the LLR score of the full network.

3. Results and Analysis
3.1. XBNH Validation on Reefs
In order to validate XBNH and the parameter settings for wave transformation and runup on a fringing reef, the model was tested against the Demirbilek et al. (2007) laboratory-derived experimental data set of cases without wind, similar to the data sets used by Nwogu & Demirbilek (2010), Zijlma (2012), and Shimozono et al. (2015) to validate their numerical models.

Modeled H_{m0} at the inner reef flat shows good agreement with the laboratory data across the 29 tested cases (Figure 3a), albeit with slight underestimation ($R^2 = 0.786$, bias = −0.098). The model shows greater skill at estimating wave setup at the inner reef flat, also with a slight negative bias ($R^2 = 0.946$, bias = −0.046), as shown in Figure 3b. The scatter in $R_{2%}$ predictions is wider but shows a positive correlation and slight overestimation ($R^2 = 0.642$, bias = +0.098), as shown in Figure 3c. The results of this validation suggest that XBNH can simulate reef hydrodynamics with reasonable accuracy, and give us the

![Figure 3. Scatterplots of observed (Demirbilek et al., 2007) and computed properties at the inner reef flat (a) wave height (H_{m0}), (b) setup, and (c) runup ($R_{2%}$) for all 15 tested cases.](image-url)
3.2. XBNH Results

The nearshore hydrodynamic results of all XBNH simulations were aggregated to enable an examination of general trends across the entire synthetic data set (Figure 4). Extreme water levels on the inner reef flat ($\eta_{2\%}$) and runup ($R_{2\%}$) were defined as the mean of the highest 2% of the water level time series for each simulation at the inner reef flat and waterline, respectively. We focus on η at the inner reef flat because it is commonly measured in reef hydrodynamics studies (i.e., Cheriton et al., 2016; Merrifield et al., 2014), and on $R_{2\%}$ because it can be used as a proxy for overtopping and potential flooding (Matias et al., 2012). These

![Figure 4](image-url)

Figure 4. For the full set of XBeach Non-Hydrostatic simulations, variations in (a–g) extreme water levels, $\eta_{2\%}$, and (h–n) runup, $R_{2\%}$, as a function of the seven primary input parameters (Table 1). The different colors represent the mean relative contribution of water level (η_0), setup, and each wave frequency band (VLF, very low frequency, 0.004–0.001 Hz; IG, infragravity, 0.04–0.004 Hz; SS, sea swell, >0.04 Hz) to the total water level and runup. Results have been filtered to show only cases with $\eta_0 \geq 0$ (n = 136,032).
values were then decomposed into separate components (i.e., g_0, g_{setup}, $g_{\text{2\%}}$, σ_{SS}, $g_{\text{2\%}}$, g_{IG}, $g_{\text{2\%}}$, VLF) to yield insight into the nature of wave transformation across the reef. This decomposition calculation is described in supporting information (S3).

Some trends confirm a priori expectations: the extreme water level parameters $g_{\text{2\%}}$ and $R_{\text{2\%}}$ both increase with increasing g_0 and H_0 (Figures 4a, 4b, 4h, and 4i), and both decrease for high H_0/L_0 (Figures 4c and 4j). In addition, the highest extreme water levels occur with low c_f (Figures 4d and 4k), small W_{reef} (Figures 4f and 4m), steep b_f (Figures 4e and 4l), and steep b_b (Figures 4g and 4n), which concurs with the findings of Quataert et al. (2015) and Shimozono et al. (2015). When runup ($R_{\text{2\%}}$) is evaluated as a function of reef width and friction (Figure 5), it increases with reduced width (consistent with Shimozono et al., 2015) and reduced friction (consistent with Quataert et al., 2015).

For a constant water level, as offshore wave heights increase, extreme water levels and runup at the shore-line become primarily driven by setup and reef flat waves. With increasing H_0, the combined contribution of R_{setup}, $R_{\text{2\%SS}}$, $R_{\text{2\%IG}}$, and $R_{\text{2\%VLF}}$ (i.e., excluding g_0) to total $R_{\text{2\%}}$ increases from 20% to 60% (Figure 4b), and similarly, the contribution of R_{setup}, $R_{\text{2\%SS}}$, $R_{\text{2\%IG}}$, and $R_{\text{2\%VLF}}$ to total runup ($R_{\text{2\%}}$) rises from 23% to 67% (Figure 4i). The large contribution of setup and reef flat waves to total extreme shoreline water levels and runup during the occurrence of large offshore waves reinforces the importance of including these parameters in predictions of flooding on reef-lined coasts, as opposed to simpler “bathtub” models that only account for offshore water levels. Variations in H_0/L_0 (Figures 4c and 4j) and b_f (Figures 4e and 4l) have little effect on the relative composition of $R_{\text{2\%}}$ and $R_{\text{2\%IG}}$, but there is a proportionally larger $R_{\text{2\%IG}}$ component at lower values of c_f (23% of $R_{\text{2\%}}$ at $c_f = 0.01$, up from 11% at $c_f = 0.1$; Figure 4k), indicating the importance of frictional dissipation to resulting infragravity wave dynamics over reef flats. This relationship has been indicated by field data (Cheriton et al., 2016) and physics-based models (Pomeroy et al., 2012a), particularly in relation to resonance.

While offshore wave forcing is important, mean offshore water level (η_0) was found to have the strongest effect on the relative proportions of setup and reef flat waves to overall extreme shoreline water levels and runup. Wave-driven setup makes up the largest proportion of $R_{\text{2\%}}$ at lower values of η_0 (61% at 0 m; Figure 4a), but its influence decreases with increasing water depth on the reef flat (6% at 3 m); this inverse relationship between water level setup and offshore water levels is well established (Becker et al., 2014; Beetham et al., 2015; Vetter et al., 2010). Infragravity and VLF waves make a fairly constant contribution across the full range of modeled water levels ($R_{\text{2\%SS}} : \mu = 0.14 \text{ m}, \sigma = 0.02 \text{ m}; R_{\text{2\%VLF}} : \mu = 0.25 \text{ m}, \sigma = 0.02 \text{ m}$); this relative insensitivity of low-frequency waves to offshore water level was also observed in the field (Beetham et al., 2015; Merrifield et al., 2014). However, for the short-period waves, since they are depth-limited, as the mean water level over the reef flat increases, the contribution of $R_{\text{2\%SS}}$ to the total $R_{\text{2\%}}$ increases (from 0.15 m [11%] at 0 to 0.72 m [17%] at 3 m). However, while the magnitude of the contribution of SS waves to runup, $R_{\text{2\%SS}}$, increases with increasing η_0, the relative proportion does not (from 0.16 m [10%] at 0 to

![Figure 5. Runup ($R_{\text{2\%}}$) as a function of reef width (W_{reef}) and friction coefficient (c_f), averaged across all tested XBeach cases ($n = 174,372$).](image-url)
0.36 m (8%) at 3 m). This modulation of SS waves by offshore water level is consistent with previous findings (Beetham et al., 2015; Merrifield et al., 2014; Storlazzi et al., 2011). Because increases in g_0 can be considered a proxy for sea level rise, these findings imply that sea level rise may result in a greater contribution to extreme shoreline water levels and runup from SS-band reef flat waves.

Although the composition of $g_{2\%}$ is relatively insensitive to different beach slopes, β_b (Figure 4g), $R_{2\%}$ shows some variation (Figure 4n), with the contribution of $R_{2\%}$;SS increasing with steeper β_b (from 2% to 15% of total). This trend was also noted by Shimozono et al. (2015), as runup is inversely proportional to dissipation in the surf zone. Furthermore, higher-frequency waves break more readily on milder beach slopes where they are depth limited (Brocchini & Baldock, 2008).

The overall trends for $g_{2\%}$ and $R_{2\%}$ are similar, although $R_{2\%}$ is consistently ~27% higher than $g_{2\%}$ for the same forcing conditions (Figure 6). This may have important implications for inferring $R_{2\%}$ and flooding characteristics from measurements on the reef flat in the absence of direct $R_{2\%}$ measurements. Although directly correlated ($R^2 = 0.916$), $g_{2\%}$ by itself does not fully translate to $R_{2\%}$, as a result of continued wave transformation on the beach slope.

In this section, we examined the average of all conditions in the data set, but there is considerable variation around the mean. These variations can be attributed, in part, to particular combinations of parameters that yield anomalously high runup, such as those that result in resonant amplification, which is explored in the next section.

3.3. Reef Flat Resonance

As reef flat resonance may account for anomalously high runup (Gawehn et al., 2016; Nakaza et al., 1990; Nwogu & Demirbilek, 2010; Shimozono et al., 2015), the model results were analyzed to determine if resonant conditions were present. A peak in $H_{m0;VLF}$ wave height at the inner reef flat was identified for narrower (~50 to 250 m) reefs (Figure 7a). In order to verify whether this peak was related to resonance, cases of relatively high (top 30%) IG and VLF waves, defined as $(H_{m0;IG}/H_0)^2 > 0.3$ and $(H_{m0;VLF}/H_0)^2 > 0.1$, respectively, were isolated for additional analyses. The data from these cases reveal a distinct peak (Figure 7b) at the resonant frequency $(f_m - f_0 = 1 \pm 0.1)$, indicating that resonance is likely occurring. Frictional and geometrical effects can explain deviations from the theoretical resonant frequency (van Rijn, 2011). Furthermore, not all high-energy VLF waves are necessarily resonant: some may also be standing or progressive waves (Gawehn et al., 2016).
To quantify the differences between mean conditions and resonant cases, the full set of model results was filtered, selecting only those cases meeting the aforementioned resonance criteria, and the same analyses of comparing the contributions to extreme shoreline water levels and runup were carried out for only these resonance cases (Figure 8). In general, \(g^2 \) and \(R^2 \) were slightly higher for the resonant cases in Figure 8 when compared to the full set of simulations shown in Figure 4. The starkest difference between the resonance-only and full set of simulations is found with the \(g^2 \) and \(R^2 \) trends as a function of reef width: as \(W_{\text{reef}} \) increases, \(\frac{g^2}{R^2} \) and \(\frac{R^2}{g^2} \) values from the full set of model results gradually decline (Figures 4f and 4m), while the \(\frac{g^2}{R^2} \) and \(\frac{R^2}{g^2} \) values for the resonance cases increase sharply (Figures 8f and 8m). The discontinuity at 500 m is due to the fact that none of the simulations with \(W_{\text{reef}} > 500 \text{ m} \) met the aforementioned resonance criteria. Furthermore, the percent contribution of \(g^2 \); \(IG \) to \(g^2 \) is larger than that of \(g^2 \); \(VLF \) for \(W_{\text{reef}} < 300 \text{ m} \), whereas the percent contribution of \(g^2 \); \(VLF \) to \(g^2 \) is larger at \(W_{\text{reef}} > 300 \text{ m} \) (Figure 8f), likely due to resonance. When theoretical resonant frequencies are calculated for a mean reef flat depth (\(h_{\text{reef}} \)) of approximately 1.5 m across all simulations using Equation (1), \(W_{\text{reef}} < 240 \text{ m} \) should be resonant at IG frequencies, and resonant at VLF frequencies when \(W_{\text{reef}} > 240 \text{ m} \). A similar shift from IG to VLF energy on wider reefs was also demonstrated by Shimozono et al. (2015).

Many of these resonant cases are associated with greater mean reef flat water depths (\(h_{\text{reef}} \)), whether due to higher \(g_0 \) or setup (Figure 8a). This coincides with the expected response, since greater water depth over the reef increases the resonant frequency and reduces the effects of frictional dissipation (Péquignet et al., 2009; Pomeroy et al., 2012a). Shimozono et al. (2015) also posited that the increase from extreme water levels at the inner reef flat to runup on the shoreline can be partly attributed to resonant runup amplification along the beach slope. However, this effect was found to be minor for the steep range of \(h_0 \) tested here. The trends in percent contribution of setup and the different wave frequency components to total extreme water levels and runup are relatively similar between the resonant cases (Figure 8) and the full set of simulations (Figure 4).

Though large \(\frac{R^2}{g^2} \) values are seen for \(W_{\text{reef}} \sim 250–500 \text{ m} \) in resonance cases (Figure 8m), a similar increase in runup as a function of reef width is not seen for the full suite of cases (Figure 4m) because resonant cases are rare (\(n = 7,608 \)) relative to all others in the data set (\(n = 136,032 \)). However, given that the synthetic data set is based on uniform input distributions, and \(T_p \) values that are a function of \(H_0 \) (via the steepness parameter), it is possible that resonant cases are underrepresented here compared to what might be expected in the field.

3.4 Bayesian Network Validation

In the next step, the Bayesian network was trained using the results from XBNH, and validated against field data from the 18 November 2013 runup event on Roi-Namur in the Republic of the Marshall Islands (Cheriton et al., 2016; Quataert et al., 2015), and model simulations of the 23 June 2013 runup event on Funafuti.
Tuvalu (Beetham et al., 2015). The prior distributions in Figure 2 (also presented in Figure 9 in a different format) indicate the default prediction for each hazard indicator without any additional information (dark blue bars in Figure 9). When the observed hydrodynamic forcing and reef characteristics are introduced to the Bayesian network, the hazard predictions are constrained, yielding the posterior distributions. The network’s predictive skill is judged based on whether the peak of the posterior prediction matches the observed value for each hazard variable. In the Funafuti cases, results are presented as maximum runup (R_{max}) and contributions to R_{max} ($R_{\text{max,SS}}$ and $R_{\text{max,LF}}$), so we used $R_{2\%}^{\text{SS}}$, $R_{2\%}^{\text{LF}}$, and $R_{2\%}^{\text{VLF}}$ to make comparisons rather than $R_{2\%}$, $H_{\text{max,SS}}$, and $H_{\text{max,LF}}$ as with Roi Namur.

Figure 8. For the XBeach Non-Hydrostatic (XBNH) model resonance cases, variations in (a–g) extreme water level, $\eta_{2\%}$, and (h–n) runup, $R_{2\%}$, as a function of the seven primary input parameters (Table 1). The different colors represent the mean relative contribution of water level (η_0), setup, and each wave frequency band (VLF, very low frequency, 0.004–0.001 Hz; IG, infragravity, 0.04–0.004 Hz; SS, sea swell, >0.04 Hz) to the total water level. Resonant cases were filtered from the full set of XBNH simulations presented in Figure 4 by selecting only simulations where $f_m - f_n < 0.1$ ($n = 7,608$).
The network underestimates $R_{2\%}$ for Roi-Namur (Figure 9a), and overestimates $R_{2\%,SS}$ for the Funafuti high tide case (Figure 9m), albeit by a single bin (20 cm elevation difference). However, it correctly predicts runup for the low and mid tide Funafuti cases (Figures 9e and 9i). Although the network overpredicts $H_{m0,SS}$, $H_{m0,LF}$, and $R_{2\%,LF}$ $f < 0.04$ Hz (0.04 Hz) on Roi-Namur (Figure 9b), it successfully estimates $R_{2\%,SS}$ for the Funafuti cases (Figures 8f, 8j, and 8n). $H_{m0,LF}$ and $R_{2\%,LF}$ are confidently and correctly predicted by the network in three of the tested cases (Figures 9c, 9g, and 9k), although the bimodal posterior probability distribution for Funafuti at high tide (Figure 9o) suggests lower confidence in that prediction. Setup is overestimated for the Funafuti cases (Figures 9h, 9l, and 9p) but correctly predicted for Roi-Namur and Funafuti at high tide (Figure 9d).

Figure 9. The "Bayesian Estimator for Wave Attack in Reef Environments" (BEWARE) system validation against case studies. Figures 9a–9d correspond to the runup event on 18 November 2013 in Roi Namur, Republic of the Marshall Islands (Cheriton et al., 2016; Quataert et al., 2015). Figures 9e–9p correspond to a runup event on Funafuti, Tuvalu modeled by Beetham et al. (2015). Please see Table 2 for parameter definitions. Note that for these test cases, $H_{m0,LF}$ and $R_{2\%,LF}$ encompass the full range of low-frequency waves from 0.001 to 0.04 Hz (i.e., including infragravity waves), as per the convention used in the data sources. The dark blue bars represent the prior probability distribution for all cases in the network, and the lighter blue bars represent the posterior probability distributions, based on the hydrodynamic forcing and reef characteristics of each test case. The yellow triangles indicate the observed values of each variable from the case study.
These results suggest that the Bayesian network is capable of predicting wave transformation processes across the reef for the majority of the limited cases that were accessible, but that it is less able to capture the final transformation from the inner reef flat across the beach. Discrepancies could be explained in part by the schematized nature of the XBNH model when compared to the real conditions of the reefs, or to differences in the runup/wave height decomposition calculation used by the validation cases. Underestimation of the Roi-Namur case may also be explained by the available measurements—the observed runup value is a single wave event that was captured on camera and may not correspond well with a statistical value like $R^2\%$.

The limited published data available for validation of flooding hazards on reefs underscores the great need for further field measurements.

3.5. Bayesian Network Predictive Skill

After validating the Bayesian network on field and model data, its prediction of the XBNH results was tested, making it possible to draw on a much larger pool of data for comparison. This provides some insight into how often the Bayesian network overpredict or underpredict certain hazard indicators. The confusion matrices in Table 3 indicate that the network has high positive prediction rates for large values of $R^2\%$, η_{setup}, $T_{m-1.0}$, $H_{m0,\text{SS}}$, and $H_{m0,\text{IG}}$ (>96% correct) but is slightly less skilled at predicting large $H_{m0,\text{VLF}}$ (~85%). The high predictive skill for most of the hazard indicators (particularly runup) suggests that the Bayesian network acts here as a suitable proxy for XBNH, similarly to the findings of Poelhekke et al. (2016) for the XBeach Surf Beat model.

3.6. Bayesian Network Log Likelihood Ratio

After establishing the validity and performance of the network, the LLR test was used to investigate the relative importance of each parameter within the Bayesian network. When the normalized LLR was calculated for $R^2\%$ by withholding each input parameter successively from the network, it scored much lower when H_0, η_0, and W_{reef} were not taken into account (Figure 10a). This indicates that those parameters are more important for making successful predictions of runup (and by extension flooding) than parameters such as H_0/L_0, c_t, β, or W_{reef}. Compared to the runup, setup is less sensitive to c_t (Figure 10b), as the setup is dominated by a balance between the radiation stress gradients and the pressure gradient with the friction force being a smaller component. The $T_{m-1.0}$ (Figure 10c) is sensitive mostly to W_{reef} and η_0 as these parameters control the degree to which the energy shifts to lower frequencies. $H_{m0,\text{SS}}$ (Figure 10d) shows similar behavior as the runup. Compared to the short waves, $H_{m0,\text{IG}}$ (Figure 10e) is less dependent on η_0 because it is not saturated and more determined by the breakpoint-generation and frictional dissipation processes as evidenced the sensitivity to H_0, H_0/L_0, and c_t, $H_{m0,\text{VLF}}$ (Figure 10f) shows poor predictive skill without H_0, H_0/L_0, β, and W_{reef}, indicating both offshore forcing and geometry are important to this response. This may reflect the highly nonlinear nature of processes controlling $H_{m0,\text{VLF}}$ (i.e., resonance), and may also explain the lower predictive accuracy observed for this variable in Table 3.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R^2%$ (m)</td>
<td></td>
</tr>
<tr>
<td>0 to 2</td>
<td>0 to 2 30</td>
</tr>
<tr>
<td>2 to 30</td>
<td>1.2 98.8</td>
</tr>
<tr>
<td>η_{runup} (m)</td>
<td></td>
</tr>
<tr>
<td>1 to 5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.1 97.9</td>
</tr>
<tr>
<td>$T_{m-1.0}$ (s)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>25 to 1000</td>
<td>1.0 99.0</td>
</tr>
<tr>
<td>$H_{m0,\text{IG}}$ (m)</td>
<td></td>
</tr>
<tr>
<td>0 to 0.5</td>
<td></td>
</tr>
<tr>
<td>0.5 to 5</td>
<td>3.5 96.5</td>
</tr>
</tbody>
</table>

Note. Values in the tables indicate the percentage of observed cases falling into a given prediction bin. Green values along the main diagonal indicate correct predictions, whereas the bottom left corner indicates the false negative rate (underpredictions) and the top left indicates the false positive rate (overpredictions).

Table 3: Confusion Matrices Depicting the Accuracy of the Bayesian Network in Predicting the XBeach Non-Hydrostatic (XBNH) Model Output Parameters (Table 2) for a Given Set of Input Conditions (i.e., Validation Error Rates)
4. Discussion

This study presents a proof-of-concept for the use of a process-based model and Bayesian network to estimate flood hazard indicators such as runup on low-lying coral reef-lined coasts. This section examines the sensitivity of key parameters and potential future applications in early warning systems and climate change impact assessments.

4.1. Relevance of Key Parameters

The results of the LLR tests (Figure 10) across the entire data set indicate that hydrodynamic forcing (e.g., H_0, η_0, and H_0/L_0) is most important to an accurate prediction of the hydrodynamic response on the reef, followed by morphological characteristics. Of these, reef geometry parameters (e.g., b_f and W_{reef}) are more influential than the frictional characteristics (c_f) and beach slope b_b. The LLR tests imply that reef properties that can be more easily obtained via remote sensing (e.g., W_{reef} and b_f) may provide (to first order) more useful information than detailed, labor-intensive field surveys to measure parameters such as bed roughness (c_f). Similarly, although measurements of beach slope b_b are unavailable for most low-lying tropical islands, the LLR tests suggest that it is not critical for effective prediction of flooding hazards.

4.2. Bayesian Network Improvements

The network’s validation could be improved by training it with additional XBNH simulations that include higher resolution of input parameters (e.g., $H_0 = 0.5, 1.5, 2.5, 3.5, 4.5$ m). Furthermore, the predictive skill of a Bayesian network improves when it has multiple cases from which to learn and gain experience (Poelhekke et al., 2016). At present, four cases were simulated with random wave forcing for each combination of input parameters; the network’s experience could be improved by increasing this number. Lastly, the

Figure 10. Log likelihood ratio (LLR) comparisons of key output variables (Table 2) for withheld parameters. The dashed line at $y = 1$ shows the normalized total LLR for the full network with all parameters included. Each of the circles represents the total LLR for a network where that parameter has been withheld from the prediction, normalized by the total LLR for the full network. A value of 1 would indicate that removing a given parameter does not affect the network’s predictive skill, whereas a value of 0 means that the parameter is essential to making predictions of a particular output variable.
discretization of the Bayesian network's output bins directly influences the accuracy and precision of its predictions, so sensitivity to alternate configurations could be carried out. For instance, if the observed value was 0.51 and the predicted bin was 0.00–0.50, it would still be regarded as an incorrect prediction, even though it was very close.

4.3. Early Warning Systems

The Bayesian network presented in this study can be used in an early warning system (EWS) to predict flooding. Currently, most operational EWSs are capable of predicting offshore wave heights, tides and surges, but not onshore hazards such as runup and flooding because these are computationally expensive to predict. Following Poelhekke et al. (2016), one solution is to precompute the range of offshore forcing and onshore hazards, compile the results in a Bayesian network, and then couple this network to an EWS. Predictions of offshore forcing can be then used to obtain constrained posterior probability distributions of the onshore hazard at negligible computational expense in operational mode. The alternative method of incorporating a wave transformation model such as XBNH directly into an EWS (as was done in Bosserelle et al., 2015) does not have these advantages of speed and capability to quantify the hazard uncertainty.

In the case of an EWS for low-elevation, reef-lined islands, the offshore forcing can be obtained as follows: tides can be computed from a deterministic prediction, surges may be predicted using a hydrodynamic model such as Delft3D (although they are usually less important on steep-sloped coasts like atolls), and offshore wave predictions can be obtained from existing operational models such as WAVEWATCH-III (Tolman, 2009).

If coupled with 2-D inundation models, the EWS can be extended to predict flooding occurrence, timing and extent, which can be used for land use planning and evacuation purposes. Furthermore, if building characteristics are known, damage to structures could also be estimated using simple stage-damage relationships or more sophisticated approaches where sufficient data is available. van Verseveld et al. (2015) and Jäger et al. (2015, 2017) have used Bayesian networks to predict direct economic damage to houses and infrastructure resulting from surge and wave-induced flooding on sandy, urbanized coastlines.

4.4. Climate Change Impact Assessments

In addition to EWS, the BEWARE system can be used to investigate hypothetical climate change scenarios, such as changes to sea level, wave climate, or reef roughness due to coral degradation or restoration. Shope et al. (2016) used the formulation of Stockdon et al. (2006) (developed on the basis of runup data obtained on sandy sloping beaches under nonextreme offshore forcing) to estimate Pacific island runup under future climate change scenarios. The BEWARE system developed for this study could provide a more comprehensive estimate than those based on the Stockdon et al. (2006) equations by accounting for input uncertainty and considering the full suite of processes involved in reef hydrodynamics (including resonance) and the resulting wave-driven flooding.

The reaction to climate change does not have to be passive—mitigating measures can be taken by affected island communities to improve resilience to flooding. The value of coral reefs as nature-based flood defenses can also be analyzed with this model and used to prioritize conservation or restoration efforts. Ferrario et al. (2014) demonstrated that reef restoration is a more cost-effective solution for coastal risk reduction on coral reef-lined islands than the construction of artificial breakwaters. Given the scarce resources available for such projects, the BEWARE system can be used to understand which coral reef-lined areas are most vulnerable and where coral restoration can provide the largest return in terms of coastal hazard risk reduction.

Since reef roughness is correlated to its coral health (Baldock et al., 2014), degradation of coral due to bleaching or ocean acidification may reduce its ability to effectively dissipate wave energy (Sheppard et al., 2005; Quataert et al., 2015). Conversely, restoration efforts that improve coral ecosystem quality (Fox et al., 2005; Haisfield et al., 2010) may increase roughness and thus provide more effective wave attenuation. The health of reef ecosystems under different climate change or restoration scenarios could be accounted for by examining a given location’s sensitivity to \(c_f \) in the model. It is thus possible that significant increases in roughness brought on by reef restoration could help offset some of the effects of sea level rise on wave-induced flooding.
Although the LLR analysis (Figure 10) suggests that c_f is a less important parameter than W_{reef} for determining wave transformation and the resulting water levels, it should be noted that it is easier to influence c_f by coral restoration than it is to change W_{reef}. Thus, restoration is a viable strategy for flood risk reduction on coral reef-lined islands.

5. Conclusions

The “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE) system for estimating flooding hazards on coral reef-lined coasts was developed by training a Bayesian network with a synthetic database generated by XBeach Non-Hydrostatic (XBNH) model simulations. The XBNH process-based numerical wave and water level model is shown to be capable of reproducing wave transformation processes on fringing reefs, including resonant reef flat amplification. BEWARE improves system understanding of reef hydrodynamics, building on previous work by examining the intrinsic and extrinsic factors controlling runup on reef-lined coasts.

BEWARE shows high predictive skill for flooding conditions from the XBNH model, and was validated for a limited number of case studies. Using the log likelihood ratio test, it was found that offshore wave conditions, water level, and reef width are the most important parameters required to estimate extreme water levels and runup on reef-fronted coasts using a Bayesian network, whereas having knowledge of the reef roughness or beach slope appears less important.

BEWARE has the potential to form the basis for early warning systems and scenario assessment applications on reef-lined coasts. The applicability of the BEWARE system can be further enhanced if supplemented by key parameters (e.g., reef flat width) obtained from remote sensing platforms as well as field measurements of reef hydrodynamics.

References

