EUROPÄISCHE PATENTSCHRIFT

Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:
21.03.2001 Patentblatt 2001/12

(51) Int Cl. B60L 13/03, B61L 27/04

(45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung:
21.03.2001 Patentblatt 2001/12

(21) Anmeldenummer: 97203673.5

(22) Anmeldetag: 28.11.1997

(54) Spurgeführter selbstangetriebener Containertragwagen
Track guided self-driven container wagon
Wagon porte-container autopulsionné

(84) Benannte Vertragsstaaten:
AT CH DE DK ES FR GB IT LI

(43) Veröffentlichungstag der Anmeldung:
24.03.1999 Patentblatt 1999/12

(73) Patentinhaber: Technische Universität Delft
2628 BL Delft (NL)

(72) Erfinder: Hansen, I. A.
2611 EH Delft (NL)

(74) Vertreter: Prins, Adrianus Willem et al
Vereenigde,
Nieuwe Parklaan 97
2587 BN Den Haag (NL)

(56) Entgegennahmungen:
EP-A- 0 132 934
GB-A- 1 117 681
EP-A- 0 642 967

Beschreibung

[0010] Die Einsparungen beim Bau und Betrieb von Portalkränen über den landseitigen Ladegleisen sowie von Rangierlokomotiven und -personal, die Verminde- rung der Umschlagbewegungen im maritimen Terminal, die Verringerung der Containerlagerfläche und die Er-
höhung der Durchlaufgeschwindigkeit der Container im kombinierten Verkehr See-Schiene durch den Einsatz der selbstantriebenen Tragwagen wegen die Investi-
tionskosten in den Linearmotor bei den Tragwagen und
dem Wanderfeldstator in den Terminalgleisen bei wei-
tem auf.

[0011] Im folgenden wird die Erfindung anhand eines Beispiels und mit Bezug auf die beiliegenden Zeichnun-
näher erläutert, wobei

Abbildung 1 in Draufsicht und Querschnitt die erfindungsgemäße Anbringung der Reaktionsschiene des Linearmotors und Eisenbahn-
Containertragwagens darstellt und

Abbildung 2 in Draufsicht und Querschnitt die erfindungsgemäße Anordnung eines Wanderfeld-
stators im Gleisbett zeigt.

[0012] In Abbildung 1 ist die Reaktionsschiene, beste-
heind aus einem Stahlblech, das auf der Unterseite mit
Aluminium beschichtet ist, zu sehen. Dieses ist mittels
stählerner Profilstäbe und -träger mittig und biegestief
am Drehgestellrahmen aufgehängt. Die lichte Höhe zwi-
sehen Schienenoberkante und Unterkante der Reakti-
onschiene im beladenen Zustand des Tragwagens be-
trägt 130 mm, so daß die bei UIC-Bahnen geltende Be-
grenzungslinein für rangiertechische Einrichtungen im
Gleisbett von 125 mm über Schienenoberkante nicht
verletzt wird.

[0013] In Abbildung 2 ist die Anbringung des Wander-
feldstators im Gleisbett dargestellt. Dieser besteht aus
einer dreireihigen Wicklung von stromdurchflos-
nen Leitern, die in den Quermuten eines gebleichten Dy-
namoisens, welches mittig auf den Querschwellen des
Gleises befestigt ist, liegen. Die Oberkante des Lang-
stators wird auf 120 mm über Schienenoberkante nivelliert, so daß sich bei Überfahrt des Tragwagens der Norm-Luftspalt von 10 mm ergibt, bei dem die benötigte magnetische Antriebskraft erzeugt wird. In Weichenbe-
reichen und bei Überwegen wird der Wanderfeldstator
auf begrenzter Länge unterbrochen. Der Tragwagen
wird dann mittels Schwung und der Antriebskraft, die auf
die Reaktionsschiene des anderen Drehgestells ausge-
füllt wird, weiterbefördert.

[0014] Die Beschleunigung, das Bremsen und Anhal-
ten des Tragwagens auf beliebigen Abschnitten der Rangier-
- und Ladegleise erfolgt durch ein elektromagnetiches Wanderfeld, das durch den von einem ortsfes-
ten Pulsmrichter erzeugten Drehstrom in den Ka-
bewicklungen des Langstators erzeugt wird. Die Strom-
einspeisung in die einzelnen Wanderfeldabschnitte be-
gennt erst, sobald der Tragwagen in den betreffenden
Abschnitt einfährt und endet, wenn der Tragwagen still-
steht bzw. den Abschnitt verlassen hat.

[0015] Die Statorwicklung wird ortsfest in Abhängigkeit von der im jeweiligen Abschnitt benötigten Schubkraft, der geplanten Geschwindigkeit

und der Anzahl der Tragwagen in einem Abschnitt.

Patentansprüche

1. Schienengebundener Güterwagen mit Linearmo-
torantrieb bestehend aus Langstator (2) im Gleis
und Reaktionsschiene (3) am Wagen, dadurch ge-
kennzeichnet, daß die Reaktionsschiene (3) mittels
Profilstäbe und -träger mittig und biegestief unter
dem Drehgestellrahmen (4) des ausgestalteten Gü-
terwagens angeordnet ist.

2. Automatisches Rangieren eines Güterwagens
nach Anspruch 1 in Containerterminals, Rangier-
- und Umschlagbahnhöfen sowie Industriegleisen.

Claims

1. A linear motor-driven track-bound goods wagon
comprising a long stator (2) in the track and a reac-
tion rail (3) on the wagon, characterized in that the
reaction rail (3) is disposed by means of sectional
bars and beams under the bogie frame (4) of the
developed goods wagon at the center and with flex-
ural stiffness.

2. The automatic shunting of a goods wagon accord-
ing to claim 1 in container terminals, shunting and
transfer stations as well as industrial sidings.

Revendications

1. Wagon à marchandises ferroviaire commandé par
moteur linéaire, comprenant un stator long (2) dans
la voie et un rail de réaction (3) sur la voiture, ca-
ractérisé en ce que le rail de réaction (3) est disposé
au moyen de barres et poutres profilées sous le
châssis du bogie (4) du wagon à marchandises dé-
veloppé au centre et avec rigidité à la flexion.

2. Manoeuvres automatiques d'un wagon à marchan-
dises selon la revendication 1 dans les terminaux à
containers, gares de manœuvre et gares de trans-
bordement ainsi que sur les voies industrielles.
Abbildung 1: Draufsicht und Querschnitt des Containertragwagens

1 Dynamoeisen
2 Statorwicklung
3 Reaktionsschiene
4 Drehgestellrahmen

SOK Schienenoberkante

30 3 10
Abbildung 2: Draufsicht und Querschnitt des Wanderfeldstators