An enhanced high-resolution EMCCD-based gamma camera using SiPM side detection

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/0031-9155/55/22/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 131.180.130.114
The article was downloaded on 21/12/2010 at 12:29

Please note that terms and conditions apply.
An enhanced high-resolution EMCCD-based gamma camera using SiPM side detection

J W T Heemskerk1,2, M A N Korevaar1,2, J Huizenga2, R Kreuger2, D R Schaart2, M C Goorden1,2 and F J Beekman1,2,3

1 Department of Nuclear Medicine, Image Sciences Institute, University Medical Center Utrecht, Room STR 5.153, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
2 Section Radiation Detection and Medical Imaging, Department Radiation, Radionuclides, Reactors, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
3 MILabs Molecular Imaging Laboratories, Universiteitsweg 100, STR 5.203, 3584 CX Utrecht, The Netherlands

E-mail: freek@isi.uu.nl

Received 3 May 2010, in final form 13 September 2010
Published 28 October 2010
Online at stacks.iop.org/PMB/55/6773

Abstract
Electron-multiplying charge-coupled devices (EMCCDs) coupled to scintillation crystals can be used for high-resolution imaging of gamma rays in scintillation counting mode. However, the detection of false events as a result of EMCCD noise deteriorates the spatial and energy resolution of these gamma cameras and creates a detrimental background in the reconstructed image. In order to improve the performance of an EMCCD-based gamma camera with a monolithic scintillation crystal, arrays of silicon photon-multipliers (SiPMs) can be mounted on the sides of the crystal to detect escaping scintillation photons, which are otherwise neglected. This will provide a priori knowledge about the correct number and energies of gamma interactions that are to be detected in each CCD frame. This information can be used as an additional detection criterion, e.g. for the rejection of otherwise falsely detected events. The method was tested using a gamma camera based on a back-illuminated EMCCD, coupled to a 3 mm thick continuous CsI:Tl crystal. Twelve SiPMs have been mounted on the sides of the CsI:Tl crystal. When the information of the SiPMs is used to select scintillation events in the EMCCD image, the background level for 99mTc is reduced by a factor of 2. Furthermore, the SiPMs enable detection of 125I scintillations. A hybrid SiPM-/EMCCD-based gamma camera thus offers great potential for applications such as in vivo imaging of gamma emitters.
1. Introduction

Single-photon emission computed tomography (SPECT) is a prominent molecular imaging modality, both in clinical and in pre-clinical (e.g. small-animal) research. The application of pinhole geometries leads to unsurpassed imaging capabilities in small-animal SPECT (Schramm et al., 2003, Beekman et al., 2005, Van der Have et al., 2009) and is also applied for human SPECT imaging of specific regions-of-interest, e.g. brain, chest and extremities (Rowe et al., 1993, Funk et al., 2006, Ostendorf et al., 2006, respectively). For introductions to pinhole and small-animal SPECT imaging see e.g. King et al. (2002), Meikle et al. (2005) and Beekman and Van der Have (2007).

Gamma detectors with high intrinsic spatial resolutions in combination with energy discrimination capabilities may be essential for the improvement of future multi-pinhole SPECT devices, as has been shown by simulations and modeling in (e.g.) Rogulski et al. (1993), Beekman and Vastenhouw (2004), Meng et al. (2006), Rentmeester et al. (2007), Shokouhi et al. (2009) and Goorden et al. (2009); recent work by Meng et al. (2009a) validates the efficacy of high-resolution detectors in small-animal SPECT applications. High-resolution gamma-ray detectors have been developed for applications ranging from astronomy and particle physics to biomedical imaging. These detectors have either been based on direct detection of gamma rays in semiconductor material (e.g. Matteson et al. (1997), Barber (1999), He et al. (1999), Wagenaar et al. (2003), Kataoka et al. (2005), Ponchut et al. (2005), Accorsi et al. (2008), Meng et al. (2009b), Peterson et al. (2009) and Russo et al. (2009)), scintillation detection employing high-resolution position-sensitive light sensors (e.g. Menard et al. (1998), Fiorini et al. (2003), Lees et al. (2003), Beekman and De Vree (2005), Nagarkar et al. (2006), Miller et al. (2006), Soesbe et al. (2007) and Meng and Fu (2008)) or even a combination of both (Miyata et al. 2004).

For scintillation detectors, very high spatial accuracy (below 60 μm) can be obtained with a detector consisting of an EMCCD operating at high frame rates that detects individual gamma photons in an optically coupled micro-columnar CsI:Tl scintillation crystal with the use of scintillation detection algorithms (e.g. De Vree et al. (2005), Miller et al. (2006), Nagarkar et al. (2006), Heemskerk et al. (2007), Meng and Fu (2008), Westra et al. (2009)). To improve the applicability for medical imaging, the application of continuous (or monolithic) crystals can improve the sensitivity for incoming 99mTc gamma photons (140 keV) at some cost in spatial and energy resolution (Korevaar et al. 2009a, Heemskerk 2010).

The spatial and energy resolution obtained with continuous crystals is, in principle, reduced because of the increased width of the light spread distribution compared to micro-columnar crystals. This can partly be overcome by the use of detection algorithms that take into account the depth-dependent light spread distribution (Korevaar et al. 2009a)4. With such a depth-sensitive algorithm, EMCCD-based gamma cameras equipped with monolithic, 2.6 mm thick CsI:Tl crystals (corresponding to 60% 99mTc absorption) have achieved a spatial resolution of ~150 μm, (intrinsic) depth-of-interaction correction and an energy resolution of 48% for 99mTc imaging (Korevaar et al. 2009a, 2009b); the application of micro-retroreflectors even improves the energy resolution to 34% (Heemskerk et al. 2009).

However, noise in the EMCCD complicates the detection of scintillation events occurring at some distance from the EMCCD surface (i.e. in the top of the scintillation crystal). In particular, the detection of ~30 keV 125I gamma photons (and characteristic x-rays) is significantly compromised, as these photons are absorbed at a greater distance from the detector surface (over 50% of 125I gamma photons are absorbed in the top 200 μm of the

4 The multi-scale algorithm actually uses information from the light spread to deduce the depth at which the scintillation occurred (the depth of interaction or DOI).
An enhanced high-resolution EMCCD-based gamma camera using SiPM side detection

Figure 1. Experimental EMCCD-based gamma camera set-up with SiPM side detectors. A Peltier element cools the EMCCD chip to reduce its dark current. Silicon photon-multipliers (SiPMs) are coupled to the sides of the scintillation crystal. The crystal and SiPMs are also cooled through thermal contact with the EMCCD.

CsI:Tl crystal) and generate far less scintillation photons than 99mTc (approx. 25%). As a result, true scintillation events can hardly be distinguished from the background, which may lead to a background of falsely detected events in the reconstructed image or loss of sensitivity when thresholding is applied. Additional information on the true number of scintillation events therefore could assist the detection algorithm in separating true- from false-positive detections.

Since most light detectors (including EMCCDs) read out only a single surface of the scintillation crystal, a considerable amount of scintillation photons is lost because they escape from the sides (see e.g. Gruner et al (2002)); taking into account internal reflections within the crystal this could amount to 40–60% of the total number of scintillation photons. The information that these photons contain about the position and energy of the scintillation events has thus far not been exploited in CCD-based gamma imaging.

In this paper, we introduce a novel method (Beekman 2007) to use the information from these photons; silicon photomultipliers (SiPMs, Bondarenko et al 2000, Buzhan et al 2003, Yamamoto et al 2007) attached to the sides of the crystal (see figure 1) are used to detect the previously neglected photons. The information that is extracted from the SiPM signals consists of the number of scintillation events in each measured frame; this number will serve as a priori information for the detection algorithm. To investigate the efficacy of our hybrid SiPM-enhanced EMCCD-based gamma camera, we compare its performance in terms of signal-to-background ratio (SBR), spatial and energy resolution for 99mTc and 125I imaging to the same setup without SiPMs.

2. Materials and methods

2.1. EMCCD gamma camera

The scintillation gamma camera that is used in this research consists of a scintillation crystal coupled to an EMCCD and is operated in gamma photon-counting mode, see figure 1. Gamma photons are converted in the crystal and the individual scintillation flashes are detected by the
EMCCD. A comprehensive description of this gamma camera is provided elsewhere (de Vree et al 2005, Heemskerk et al 2007).

We use a 3 mm thick continuous CsI:Tl crystal, which is proximity-coupled to the EMCCD via a fiber-optic plate using optical grease. The crystal has an interaction probability of $\sim 66\%$ for 141 keV 99mTc gamma photons and $\sim 100\%$ for ~ 30 keV 125I gamma photons and x-rays. The emission spectrum of the scintillation photons of the crystal has a maximum at 550 nm.

The EMCCD used here is a back-illuminated CCD97 from E2V technologies. The quantum efficiency of the CCD97 surpasses 90% in the range of visible light between 500 and 650 nm, which matches nicely with the spectral emission of the crystal. It has an active area of 512 lines of 512 pixels, each $16 \times 16\ \mu m^2$ in size. To reduce the dark current to a level below 0.1 e$^-$ pixel$^{-1}$ s$^{-1}$, the EMCCD is cooled to a temperature of -50°C using a Peltier element backed by a liquid cooler. The readout of the EMCCD is performed by an in-house developed electronics board; by reading out the EMCCD lines in pairs of two, we achieve a frame rate of 50 Hz (De Vree et al 2004).

The frames are transferred to a Matrox Meteor-II framegrabber. The camera is operated in gamma photon-counting mode by off-line processing with an analytical scintillation detection algorithm (Korevaar et al 2009a). This algorithm analyzes each separate frame for the presence of (possibly multiple) scintillations and determines the spatial coordinates and the intensity of each individually detected event, presenting the data in list mode (indicating x, y, z-coordinates, intensity and frame number).

2.2. Silicon photo-multipliers

SiPMs are photon detectors that consist of a large number of avalanche photo-diodes (APDs) connected in parallel and operated in Geiger mode (Bondarenko et al 2000, Buzhan et al 2003). When a single APD (or: micro-cell) detects an optical photon, it will discharge, resulting in an output signal with fixed charge content. The presence of a large number of these APDs in a single SiPM basically presents a proportional photon counter, provided that the photon density is sufficiently low (i.e. when no more than a single photon is detected within the recovery time of the microcell, see, e.g., Van Dam et al (2010)). The accumulated signal of the cells in an SiPM is proportional to the number of cells discharging (i.e. increasing with the number of photons that is detected). SiPM readout of scintillator crystals currently enjoys increasing interest for medium energy gamma detectors, in particular for (time-of-flight) positron emission tomography (PET) (Kim et al 2008, Schaart et al 2009, 2010), combined PET-MRI (España et al 2008) and small-animal PET (Llosà et al 2008).

We have selected Hamamatsu S10931-100P(X)-type SiPMs, which are 3×3 mm2 in size and consist of 900 $100 \times 100\ \mu m^2$ cells. On all four sides of the crystal, three SiPMs have been mounted using Bicron BC-630 optical grease. Through thermal contact with the EMCCD, the SiPMs are cooled to a temperature of $-27.4\ (\pm 0.2)\ ^\circ$C and they are operated at a bias voltage of approx. 67.4 V. For each SiPM, the bias voltage can be adjusted separately, to ensure relatively equal gain and noise levels. The spectral response of the SiPMs peaks at 400 nm, which lies somewhat lower than the peak emission of the CsI:Tl crystal; nevertheless, the photon-detection efficiency should be around 20–25% (Yamamoto et al 2007).

In this first proof-of-principle setup, the SiPMs are applied as gamma photon counters. The signals of the 12 SiPMs are first preamplified by a 16-channel read out board (the design of which is described and characterized in Seifert et al (2008)) and subsequently summed. The summed signal is shaped and amplified by an Ortec 572 spectroscopy amplifier. Spectra of the amplitudes of the sum pulses are recorded by an Ortec AD114 peak-sensitive ADC and these spectra are used to set an appropriate threshold on a Canberra SCA 2035 constant fraction.
Figure 2. Simplified electronics scheme of the SiPM-enhanced EMCCD-based gamma camera. The gamma photon count of the SiPMs can be applied as a priori knowledge for the analytic scintillation detection algorithm. A timing circuit ensures synchronization between the EMCCD frames and the counter for the SiPM pulses.

discriminator (CFD). The CFD logic output pulses are counted with a National Instruments PCI-6034E card. A simplified electronics scheme for the SiPM-enhanced EMCCD-based gamma camera is shown in figure 2.

In order to synchronize the frames of the EMCCD with the pulse count of the SiPMs, the PCI-6034E card (which counts the SiPM pulses) also records the EMCCD’s frame synchronization pulse. Furthermore, at the start of each data acquisition (of 2000 frames), a single pulse is sent in parallel to a LED and a third channel on the PCI-6034 card. A light flash appears in one of the first EMCCD frames in coincidence with a single pulse on the PCI-6034E card. These coincident start pulses are used to indicate which EMCCD frame corresponds to which interval on the counter.

2.3. Use of SiPM signals

To include almost all SiPM sum signals within the SiPM photopeak, the CFD threshold has been set at \(\text{photopeak position} - \text{FWHM} \) (of the SiPM pulse-height spectra) for both the \(^{99m}\text{Tc}\) and the \(^{125}\text{I}\) measurements. The number of events above the threshold is counted per EMCCD frame. The effect of the inclusion of this a priori SiPM information on the performance of the gamma camera is investigated for each source by either disregarding or including the SiPM count information in the post-processing scintillation detection algorithm.

Two methods for using the SiPM event count are compared, which will be denoted as the rejection and the counting method. In the rejection method, which is based on the notion that the number of incident gammas in a small-animal pinhole geometry is expected to be less than one per frame (Beekman and Vastenhouw 2004, Rentmeester et al 2007 and Van der Have et al 2009), those frames for which the SiPMs detect no events are simply discarded. In the more advanced counting method, the SiPM count is used to select the number of scintillation events that the scintillation detection algorithm detects in each frame.

In practice this means that for the rejection method, when the SiPMs indicate the presence of scintillation events (disregarding how many) in a certain EMCCD frame, all events detected by the EMCCD algorithm are included. For the counting method, the number of counts indicated by the SiPM is used explicitly in the analysis. In this case the corresponding number
of EMCCD events, in order of highest energy (as determined by the EMCCD), is selected. Therefore, the rejection method will include some counts (i.e. those detected by EMCCD, but not by the SiPMs) that will be excluded by the counting method. For both methods, should the EMCCD detect less counts than the SiPMs, some counts will be lost.

Both the rejection and the counting method are compared to the case where the SiPM information is ignored and all counts indicated by the EMCCD are included.

2.4. Measurements

In order to verify the performance of the SiPMs and to set the appropriate thresholds for the CFD, the hybrid gamma camera has been irradiated by both 99mTc and 125I flood and line sources. The line sources are created by collimation using a $30 \mu m$ wide slit in 4 mm thick tungsten plates.

For measurements of the spatial and energy resolution of the hybrid gamma camera the crystal is irradiated by 99mTc and 125I line sources only. Data were acquired for $\sim 25,000$ frames for each source. In order to determine the energy resolution for the camera without SiPMs, energy spectra are constructed as histograms of the intensities of the detected events, such as determined by the scintillation detection algorithm (Korevaar et al 2009a).

The energy spectra of the EMCCD are used to determine the energy windows for reconstruction of the image of the slit and determination of the spatial resolution. For a fair comparison of the efficacy of the SiPMs, for both the camera with and without SiPMs, the energy windows are set to range from 50% to 150% of the position of the full-energy peak of the EMCCD spectrum (cf Heemskerk et al (2009)). This is because in the current setup the SiPMs indicate how many events, detected by the scintillation detection algorithm, to be included in the listmode; the SiPMs’ information does not influence the location or energy of detected events.

The spatial resolution is determined by measuring the full-width-at-half-maximum (FWHM) of the projection of the slit, corrected for the width of the slit itself by deconvolution (Beekman and De Vree 2005). For 99mTc, we have determined the uncertainty of the spatial resolution by using the jackknife method (Miller 1974). The SBR is defined as the net number of counts within the area irradiated by the slit (taken to be 50 lines for 99mTc and 200 lines for 125I) divided by the number of false positives in an equally sized area of the EMCCD covered by the tungsten plate (i.e. a non-irradiated area). The number of net signal counts is obtained by correcting the total signal for the false positives (cf Korevaar et al (2009a), Heemskerk et al (2009)); the background is counted for the entire EMCCD and scaled to the irradiated area.

3. Results

3.1. Characterization of SiPMs

In figure 3, we show the 125I and 99mTc pulse-height spectra of the SiPMs measured for both line and flood sources. The good agreement between the spectra of the line sources and those of the flood sources indicates that the overall summed signal of the SiPMs (i.e. the total number of detected scintillation photons) is relatively independent of the location of the scintillation events in the crystal. The difference in peak positions of the 99mTc and 125I spectra indicates a decent separability of the SiPMs’ response with the deposited gamma energy, in the range of energies investigated.
3.2. **EMCCD energy spectra**

Figure 4 shows the energy spectra that have been acquired with the EMCCD. Values for the energy resolution are included in table 1. It is clear that by including the SiPM information the energy spectra are improved dramatically by the rejection of false-positive events. For 99mTc, the background of low-energy counts (below the full-energy peak) is significantly suppressed. In the case of 125I, it is not even possible to separate true positives from the background without applying the SiPMs. Compared to the rejection method, the counting method clearly leads to further reduction of the background level.

3.3. **Spatial resolution and SBR**

Figure 5 shows the profiles of the images of the line sources, from which we have measured the FWHM spatial resolution values, for the camera employing the rejection and counting.
Table 1. Energy resolution (in FWHM (%)) measured from the EMCCD energy spectra (figure 4) and spatial resolution values (FWHM and FWTM (μm)) and signal-to-background ratio (SBR) as measured from the slit image profiles (figure 5). For 125I the resolution has been determined after subtraction of a background level. The SBR is defined as the net number of counts within the image of the slit, divided by those in an equally sized area that is not irradiated.

<table>
<thead>
<tr>
<th></th>
<th>125I</th>
<th>99mTc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With SiPMs</td>
<td>With SiPMs</td>
</tr>
<tr>
<td></td>
<td>Rejection</td>
<td>Counting</td>
</tr>
<tr>
<td>EMCCD energy resolution FWHM</td>
<td>No photopeak</td>
<td>~30 keV (~100%)</td>
</tr>
<tr>
<td>Spatial resolution FWHM</td>
<td>~1900 μm</td>
<td>~1700 μm</td>
</tr>
<tr>
<td>Spatial resolution FWTM</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Signal/false-positive counts (SBR)</td>
<td>2092/18465 (0.11)</td>
<td>4029/4396 (0.92)</td>
</tr>
</tbody>
</table>

Figure 5. Profiles of the images of the 125I (a) and 99mTc (b) line sources for the gamma camera for the rejection and counting methods and without the application of the SiPMs. The insert (for 99mTc (b)) zooms in on part of the profile to illustrate the reduction of the background.

Methods and without including the information of the SiPMs. Spatial resolution and SBR derived from figure 5 are included in table 1.

For 99mTc, one can see that the application of the SiPMs reduces the background without significantly reducing the signal itself. For 125I, the improvement of the profile of the slit (i.e. the spatial resolution) and the reduction of the background are striking. In particular, the counting method allows the 125I scintillations to be distinguished from the background, although significant blurring occurs due to the relatively low number of scintillation photons generated at ~30 keV. However, without the information from the SiPMs, applying only the energy window, it is only barely possible to distinguish any 125I signal from the background.

For the 125I measurements, the background across the detector is, unfortunately, not uniform. We believe this background is due either to noise in the EMCCD itself or to noise in the readout electronics. However, this lack of uniformity should not affect our conclusions.
regarding the SBR because the SBR comparison includes the false positives for the entire area of the EMCCD and is furthermore performed on the same data set (i.e. EMCCD frames) for all methods.

4. Discussion

In the present investigation, we have shown that the use of a priori knowledge of the SiPMs can improve the performance of our EMCCD-based gamma camera. Two specific improvements can be noted: first, it is now possible to detect 125I scintillations, which could barely be distinguished from the background before; the SBR for 125I has improved by a factor of almost 20. Secondly, for 99mTc, the SBR has been improved by a factor of almost 2.

From the profiles of the line sources, we can see that the rejection of frames without SiPM counts (i.e. most likely dark frames) already leads to reduction of the background level (false-positive counts), namely an improvement of 33% in the case of 99mTc. Using the SiPM gamma photon count as an estimator of the number of most likely events from the scintillation detection algorithm leads to a further improvement (an additional 50%). Furthermore, the energy spectra show that applying the SiPMs’ information also significantly reduces the number of false counts in the EMCCD images.

Even with the application of SiPMs, the spatial resolution for 125I is lower than with micro-columnar crystals (Heemskerk et al 2007, Meng and Fu 2008). Due to the monolithic nature of the scintillator and its thickness, low-energy 125I gammas and x-rays give rise to spotsizes of several mm2 on the EMCCD. These are hard to localize the same spatial accuracy as is possible with columnar crystals. However, with the help of the SiPMs, these events can much better be distinguished from the background.

In this work, we have used the SiPMs only to indicate the number of scintillation events in each frame. In principle, more information can be extracted from the SiPMs, the use of which might further improve gamma camera performance. In particular, the energy resolution of the SiPMs for 125I and 99mTc (53% and 29%, respectively) is significantly better than that of the EMCCD. In future work, we hope to use the signal of the SiPMs to further improve the energy resolution of the EMCCD-based gamma camera by combining pulse-height information from the SiPMs with the energy estimation from the scintillation detection algorithm. Other near-future investigations will include the extraction of spatial information from the pulse-heights of the individual SiPMs. This spatial information will allow us to exclude areas of the EMCCD from the scintillation detection algorithm for further improvements of the noise performance of our gamma camera as well an acceleration of the algorithm (Beekman 2007). Ultimately, for a very large area EMCCD, a high frame rate could be maintained by a partial read out, based on the information provided by the SiPM side detectors. Also, the SiPMs might improve the detection of (partially) overlapping scintillation flashes, which can cause problems with the analytical multi-scale algorithm used here. Finally, the method shown here could be combined with other methods such as micro-retroreflectors or optimized scintillation crystal materials (Heemskerk et al 2009, Heemskerk 2010) for further improvement of the energy resolution.

5. Conclusion

In this paper, we have combined the benefits of the good signal-to-noise ratio of SiPMs with the good spatial resolution of EMCCD-based gamma cameras. It has been shown that for 99mTc, SiPM side detectors improve the gamma camera signal-to-background ratio, while the good detection efficiency and excellent spatial resolution are maintained. Moreover, the application
of SiPMs allows detection of 125I scintillations with thick continuous scintillators necessary for higher energy photons, which could previously hardly be achieved. For future investigations, we hope to include energy and spatial information from the SiPMs in the detection algorithm to further improve the accuracy of this hybrid gamma camera.

We conclude that both SiPMs and EMCCD are suitable devices for scintillation gamma detection, and that a hybrid SiPM/EMCCD gamma camera can combine the advantages of both types of light sensor: high spatial resolution and excellent SBR. Thus, hybrid SiPM/EMCCD gamma cameras show promise for enhancing future SPECT and gamma autoradiography devices.

Acknowledgments

This work has been sponsored in part by the Netherlands Ministry of Economic Affairs, IOP photonics grant IPD067766. The authors would like to thank S Seifert for valuable discussions and technical assistance.

References

Barber H B 1999 Applications of semiconductor detectors to nuclear medicine Nucl. Instrum. Methods A 436 102–10
Gruner S M, Tate M W and Eikenberry E F 2002 Charge-coupled device area x-ray detectors Rev. Sci. Instrum. 73 2815–42
Heemskerk J W T 2010 Ultra-high resolution CCD-based gamma detection PhD Thesis Delft University of Technology, The Netherlands
Matteson J L et al 1997 CdZnTe arrays for astrophysics applications Proc. SPIE 3115 160–75
Miller R G 1974 The jackknife—a review Biometrika 61 1–15