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Abstract

Wheat is among the most important grains world-
wide. For the assessment of wheat fields, image de-
tection of spikes atop the plant containing grain is
used. Previous work in deep learning for precision
agriculture employs the already established ob-
ject detectors, Faster R-CNN and YOLO, adapted
for the given context. However, these models
suffer from the necessary duplicate-removal post-
processing and from the low performance on over-
lapping objects. On the other hand, the novel De-
tection Transformer (DETR) object detection ap-
proach manages to overcome such limitations, be-
ing an end-to-end anchor-free set predictor based
on the transformer architecture, using the atten-
tion mechanism for modelling long-range depen-
dencies. Consequently, the general sensitivity of
this technique for small size objects in the wheat
head domain is reduced. Nonetheless, previous
research reflects the potential of frequency analy-
sis techniques to increase the accuracy of a CNN.
This paper aims to study the feasibility of adding
frequency information as a pre-processing step to
improve the performance of the DETR model for
wheat head detection. Two variants of the origi-
nal DETR with a mask based on the Fast Fourier
Transform (FFT) of the power spectra of wheat
heads and background patches are proposed and ex-
plored for improvements in prediction quality. Al-
though promising, the best FFT-based DETR ap-
proach manages to deliver an average score of only
0.42, a slightly sub-optimal performance compared
to DETR’s one of 0.47. Additionally, as to grasp
a sense of their capability among well-established
detectors, YOLO-V3 and Faster R-CNN manage to
achieve around 0.7 on the same wheat data set. Ul-
timately, a configurable automated overview of the
development of wheat fields leads to a more effi-
cient administration of the production process. To
such end, this research explores the possible appli-
cation of this new object detector in precision agri-
culture and provides insight into its limitations and
potential ways of overcoming them.

1 Introduction
The significant importance of wheat worldwide, based on
grain acreage and the total production volume [16], makes
it widely studied. To gather large and accurate data about
wheat fields, image detection of wheat heads 1 is utilized to
estimate their density and size in different varieties. The data
is used by farmers to assess health and maturity when mak-
ing management decisions in their fields. In order to identify
the wheat heads for further assessment, deep learning detec-
tors are used on the images. An improvement in the quality
of these estimations could enhance the wheat production, by
having a more comprehensive and scalable overview of the
development of wheat fields and therefore a more efficient
administration of the production process.

A novel technique for object detection, the DETR approach
[4], could prove as an interesting tool for accomplishing the
wheat head object identification. It is an end-to-end, anchor-
free, set prediction model based on a Convolutional Neural
Network (CNN), a transformer encoder/decoder and a pre-
dictive Feed-Forward Network (FFN). Being end-to-end, it
avoids the need of further conditioning the learning process
on additional hand-crafted intermediate parameters. Here, the
ability for anchor-free detection provides great flexibility for
the identification of a variable group of objects that is not
dependent on a predefined number of chosen anchors. Com-
bined with the incorporation of the transformer logic, which
presents itself particularly well suited for the bounding box
detection task 2, the result is that more overlapping objects
can be accurately identified. Additionally, DETR manages to
bypass the post-processing step, employed by many state-of-
the-art detectors, by using a direct set prediction approach. It
relies on a minimum bipartite matching loss between the set
of output predictions and the set of ground truth labels. This
loss is a total function that is also permutation invariant, map-
ping elements of those two sets (predicted VS actual) in such
a way that the sum of pairwise losses is minimized. As such,
no duplicate predictions will be present in the final output and

1spikes atop the plant containing grain
2Since the attention mechanism is able to extract and aggregate

the image features in a many-to-many relationship, certain distant
elements which reveal the presence of a specific object or class can
be identified by the attention layers, even though most of the object
is occluded.
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the need for the duplicate removal extra step is eliminated,
leading to a simplified faster algorithm. Thus, the presented
robustness of this network justifies its choice as the underly-
ing model on top of which this study will focus.

On the other hand, two issues arise from placing the DETR
model in the context of wheat detection. First, the traditional
pipeline approach enabled some prior information, extracted
by different intermediate steps, to be injected into the algo-
rithm in order to improve its performance. Since the end-to-
end philosophy no longer has this prior information available,
it usually comes at a cost of requiring a much larger train-
ing dataset in order to achieve comparable results. Unfor-
tunately, the available wheat head data set provided for this
research is small, risking to be an insufficient supply for a
complete learning process. Another crucial aspect pertains
to the model’s sensitivity for the size of the detected objects.
More specifically, its average precision on small objects is
proportionally lower than the one for medium and large size
objects. Additional optimizations like ”adding a dilation to
the last stage of the backbone and removing a stride from the
first convolution of this stage” [4] also involve an increased
computational cost. Therefore, those two problems counter-
balance the model’s strong features of anchor-free detection
with set prediction and attention mechanisms. As such, the
premise of this research relies on addressing these expected
limitations in performance.

1.1 Contribution of this research
The potential solution to the aforementioned obstacles, small
dataset and small sized target objects, lies in manipulating ad-
ditional frequency information before the detection process.
Transforming every input image based on a frequency filter
that specifically targets the wheat head properties has the po-
tential of facilitating the learning process. It could improve
performance by having less insignificant background infor-
mation channeled into the model’s internal state. Neverthe-
less, delivering more relevant data could compensate for the
reduced training amount of it, overcoming one of DETR’s
limitations.

The previously mentioned aspects as well as the related
work described in Background Section 2 reflect the poten-
tial of frequency analysis techniques to filter the input dataset
in order to increase the percentage of relevant information
that is being fed into the CNN machinery and therefore,
the CNN’s accuracy. Combined with the DETR framework,
which builds upon an initial CNN feature extractor, it presents
an interesting assumption: Filtering the input images based
on wheat head FFT mask improves the performance of DETR
for wheat head detection. Ultimately, the contribution of
this research is to explore and assess the validity of this as-
sumption. Meanwhile, investigating this supposition natu-
rally leads to the following sub-questions, all placed in the
context of wheat head prediction:

• Is DETR a suitable model for predictions in this domain?
• Does a filtering of the input based on frequency analysis

improve the performance of the DETR predictor?
• How significant is the performance difference between

the simple DETR and the FFT-based one? Why?

• What does the DETR performance mean when com-
pared to the results achieved by other models that were
used in the competition (YOLO, Faster R-CNN)?
Taking into consideration that the models participating
in the competition have been specifically tuned for bet-
ter accuracy.

2 Background
2.1 Object detectors in precision agriculture
Part of the associated research performed in the domain of
precision agriculture with deep learning is offered by the
Global Wheat Detection [1] Kaggle competition, which is
also the starting point of this study. Here, special emphasis
is put on developing a model capable of a strong generaliza-
tion, given the difficult characteristics of the presented im-
ages: overlap of wheat plants, wind blurring the photographs,
different appearances of wheat plants (due to genotype) and
wheat fields (due to growing environment). Just as observed
in Kaggle, current detection methods involve one and two-
stage detectors, Yolo-V3 and Faster R-CNN, despite for them
incurring a bias to the training region, even when trained
with a large dataset. Another work in the field of preci-
sion agriculture involves a transfer learning ConvNet for crop
growth stage estimation [15]. Additionally, [14] presents a
deep learning approach to detect flowers in soybean fields,
by comparing the behavior of three well-established object
detection methods: RetinaNet, Faster R-CNN, and Cascade
R-CNN. However, most of these models suffer from the nec-
essary multi-stage processing and from the low performance
exhibited on overlapping objects. The post-processing of
near-duplicate predictions, most often with Non-Maximum
Supression, is a crucial step for their accuracy and the de-
pendency on its manually set threshold value makes those
methods struggle to generalize. Since the DETR approach
manages to surpass this heuristic constraint, it has a better
generalization capability across domains, encouraging trans-
fer learning with faster training times for achieving reason-
able results. In our case, this means that DETR pretrained
models are a viable option on the Wheat Dataset.

2.2 DETR
The DETR’s transformer network was originally introduced
for the Natural Language Processing (NLP) tasks, build-
ing on top of the artificial attention schema pioneered by
Vaswani et al. [19]. This attention mechanism enabled
whole synchronous processing of the sequential data, im-
proving the ability to model long range dependencies be-
tween input elements, focusing on correlations between pos-
sibly distant words in a sentence or pixels in an image. Fur-
thermore, DETR has already been successfully employed,
although slightly modified from the first version, in some
object detection tasks, like identifying crowd pedestrians
[10] and road accidents [17]. These methods highlight the
state-of-the-art capability of the network either when cou-
pled in a multi-stage Machine Learning (ML) pipeline or
once some improvements in the set prediction loss compo-
nent and the transformer layer are exposed and addressed.



However, this model has not yet been studied in a preci-
sion agriculture task. Its previously described versatility pro-
poses the challenge of testing this framework on the Global
Wheat Head dataset. Some basic DETR models have al-
ready been applied on the Kaggle dataset as part of the
competition, but their performance remains relatively mod-
est compared to YOLO and Faster R-CNN. Apart from [10;
17], this study does not pursue changes in the underlying ar-
chitecture of the DETR in order to improve its behaviour and
mostly relies on the proposed frequency domain prior.

2.3 Fourier analysis in deep learning
Current work in the area of enhancing a deep network with
domain knowledge explores various ways to use frequency
information in order to achieve better results. In [5] it is
shown that by using a CNN pre-processing layer based on the
unsharp masking algorithm, the end-to-end paradigm is kept
while prior high-frequency information is also added to the
input and injected in the network, resulting in an improved
accuracy. Also, [7] and [12] both propose a similar CNN
based on the Fast Fourier Transform (FFT), with a reduced
complexity and faster training times. It relies on the appli-
cation of FFT, which allows the convolution operation to be
converted into multiplication, therefore having all the com-
putation performed in the Fourier domain. Conversely, [6]
highlights a variant of a CNN architecture with better pre-
cision and learning time, ”which exploits the inherent redun-
dancy in both convolutional layers and fully-connected layers
of a deep learning model”. Inspired by the proposed meth-
ods, this study also seeks a functional integration between an
additional convolutional layer and the extracted frequency in-
formation. However, the end-to-end training that is preserved
in [12; 6] is now dropped in favor of the extra FFT-based fil-
tering step.

3 Methodology
In order to provide a concrete analysis of the proposed hy-
pothesis, the methodological approach has been split accord-
ing to the basic building elements. Conceptually, one part of
the subject involves the DETR model and a brief exploration
of its configuration for the Wheat dataset. The other part tar-
gets the frequency filtering prior enhancement that is added
to the configured network and its effects on it.

3.1 The model
This study is built upon the DETR framework as it was orig-
inally presented in [4]. As a first challenge, the proper con-
figuration of the network has to be found, such as to allow a
learning process in the Wheat Head domain. The goal does
not seek a competitive performance compared to other mod-
els used in the Kaggle challenge. It only targets a reason-
able enough performance that allows solid conclusions to be
drawn, so that proper examination of the network’s behavior
is facilitated.

Pertaining to its architecture, the model starts with a CNN
backbone, as it can be observed in Figure 1. This is an Im-
ageNet pre-trained ResNet50 or Resnet101 [9] network, that
acts as an image features extractor. Next, the spatial dimen-
sions of the resulting feature map are collapsed, resulting in a

Figure 1: The DETR model.
Carion et al (2020). End-to-End Object Detection with Transformer.
Source: https://arxiv.org/abs/2005.12872

sequential flattening of those features ready to be injected into
the transformer stage. Next, an encoder and a decoder focus
on transforming N embeddings of size d using multi-headed
self-attention (both) and encoder-decoder attention mecha-
nisms (only decoder). Since the transformer architecture is
permutation-invariant, positional encodings are added to the
input of each attention layer in order to keep spatial informa-
tion otherwise lost. This way, each feature extracted by the
CNN is mapped to its corresponding region of the input im-
age and plugged into the encoder. Then the decoder takes as
input the encoder’s output and also a small fixed number of
learned positional embeddings, referred to as object queries.
Those object queries are similar to the encoder’s positional
representations, only that they now dynamically map the out-
put instead of input, by localizing the attention mechanisms.
They are independently interpreted by a predictive feed for-
ward network into either box coordinates and class labels or a
”no object” class. This setup promotes attention mechanisms
to focus on different regions of the input, as ”the model glob-
ally reasons about all objects together using pair-wise rela-
tions between them, while being able to use the whole image
as the context” [4].

The original DETR network has been trained on the COCO
dataset [11], which provides a robust source of training im-
ages with different properties, classes and inter- as well as
intra-class differences. By comparison, the Wheat Head
Dataset only contains 1% of the COCO’s size, with some of
the images even presenting inaccurate bounding box anno-
tations. Therefore, all the models used in this research use
transfer learning built on top of the COCO [11] pre-trained
DETR weights. Considering the diversity of the COCO
dataset, the DETR’s CNN pre-trained backbone that was ex-
posed to it must have learnt effective kernels for image struc-
ture discrimination. Since the wheat head features have no
similar analogue in COCO, most of those pre-trained ker-
nels have been retained and generalized on the Wheat Head
domain. Additionally, the already trained positional embed-
dings have managed to effectively assign attention maps that
cover the entire image, regardless of its exact content. Those
arguments already provide a higher starting ground for the
pre-trained network’s performance in our wheat detection
context. Based on the aforementioned judgement and limi-
tations in available time and computational resources, a full
training routine of a DETR network from scratch will not be
addressed in this study.

When looking at the network’s structure, two main aspects
have been targeted in order to provide a proper calibration of
its behavior and generate a reasonable performance. Firstly,



the relevant hyperparameters had to be extracted from the
model’s full list of configurations. Since the focus was on
a pre-trained model, any hyperparameter controlling the un-
derlying network architecture has been excluded from the op-
timization schema. This schema only consisted of values de-
scribing the training strategy. Secondly, the image transfor-
mations used as a pre-processing step have been closely an-
alyzed. Since the Wheat Head Dataset is known for having
inconsistent images and bounding boxes 3, the suite of em-
ployed transformations has been reported to have a great in-
fluence on the behavior of a network used in this competition
[1], regardless of the underlying model being YOLO, Faster-
RCNN or DETR.

3.2 Prior frequency information
The strategy that this study will follow is based on adding
prior frequency information about the target domain into the
DETR network. More precisely, a Fast Fourier Transform
(FFT) mask will be applied on the training images in order
to extract additional domain knowledge and use it for further
prediction. This filter is created by firstly applying FFT on
the bounding box regions present in each image and averag-
ing this decomposition over the entire dataset. Next, FFT is
also applied on the entire image, again being averaged over
the entire image set. The difference between these two fre-
quency heat maps will be used for the final filter construc-
tion, while a specific threshold parameter will control how
strong the difference needs to be between those two repre-
sentations in order to have a specific frequency discarded or
not. Lastly, a smoothing low-pass filter meant to curate high
frequency noise left in the subtracted decomposition will be
applied. Presented in Figure 2 is the conceptual process of
mask creation.

Figure 2: Creation of the Fourier mask. The interesting frequencies
are the ones associated with the wheat heads inside the bounding
boxes. The Fourier decomposition characterizing those bounding
boxes is compared to the one applied on the entire image set. By
subtracting the whole image Fourier average from the bounding box
one, the particular bounding box frequencies are revealed. Lastly,
frequencies lower than a certain value and higher than another are
excluded, effectively applying a band-pass filter on the FFT differ-
ence representation.

3Some images in the training set have no annotated bounding
boxes, while others have overlapping ones with extreme sizes - too
small or too big for the contained element

Ultimately, two approaches have been explored for deliv-
ering the result of this additional FFT-mask filtering stage to
the network. One of them is based on replacing the previous
image with its filtered version, maintaining the RGB 3 chan-
nel DETR input type. The other one concatenates the original
image with its filtered version and adds an extra convolutional
layer for projecting from the resulting 6 channel input to the
desired 3 channel one.

3.3 Evaluation process
The performance analyses executed for the two detection sys-
tems (original DETR vs FFT-based DETR) include a suite of
various metrics 4 5:

• Kaggle score: S = 1
|T |

∑
t∈T

TP (t)
TP (t)+FP (t)+FN(t)

• Average precision: AP = 1
|T |

∑
t∈T

TP (t)
TP (t)+FP (t)

• Average recall: AR = 1
|T |

∑
t∈T

TP (t)
TP (t)+FN(t)

Training time (frames per second) and respective DETR
losses have also been recorded. Additionally, a schema
for visualizing encoder’s self attention weights and encoder-
decoder multi-headed attention fields for predicted objects is
provided. It allows for capturing a part of the network’s in-
ternal behavior, leading to a way of reasoning about the algo-
rithm’s ability for inference. Ultimately, for studying the de-
pendent variable between the two DETR models, the previous
performance metrics will be put into perspective in order to
test the hypothesis. As to grasp a sense of their detection ca-
pability, both models will be briefly compared to YOLO-V3
and Faster R-CNN on the same wheat data set.

4 Experimental Setup and Results
In order to provide a valid experimental setup, the network
had to be properly configured as to allow a relevant inves-
tigation of any changes resulted from adding FFT filtering.
The overall calibration process targeted the image transfor-
mations pre-processing routine, the non-structural hyperpa-
rameter fixation, the Fourier mask creation parameters and
the convolutional kernel for the channel projection layer.

For preparing the training environment, the given dataset
has been first split into a test-train partition of 90/10. Param-
eter search has been performed with a stratified 5-fold cross-
validation approach on the training set. The k-fold approach
is well suited for the current context, since the dataset is quite
scarce, with only 3.4k images. The stratified version ensures
the same percentage of wheat head samples in both splits as
in the complete set, accounting for the high variance in the
numbers of targets across different images (from none to 72
maximum observed).

4.1 DETR
The image pre-processing stage starts with the visual transfor-
mations that have been used in the original DETR approach:

4T is the set of different IOU thresholds = [0.5-0.75— step =
0.005]

5TP - # true positives; FP - # false positives; FN - # false nega-
tives



flip, resize, crop and normalization. Those original transfor-
mations were self-implemented, with only a few imported
from corresponding standard libraries 6. A crucial observa-
tion here is that the network could not run properly with the
original implementation of the image transformations. This is
due to the quality difference between the two datasets: COCO
has a strict and well prepared training dataset, whereas Wheat
Head Dataset also contains training images with no associ-
ated bounding boxes and even some bounding boxes with
degenerate annotations. The manual functions used for ini-
tial image manipulation were trapped in undefined computa-
tions (nan and inf). Therefore, those low-level transforma-
tions have been substituted with a library-based equivalent of
them, having the initial manual functions reproduced in a less
verbose fashion 7.

Two models with different configurations were used for
exploring DETR’s performance on the Wheat Head Dataset.
One of them is a baseline pre-trained adaptation of the origi-
nal DETR code, called base-DETR. In order to grasp a sense
of the native network’s performance and set a starting point
for its further optimization, minimal changes were brought to
the model’s logic. These involve the necessary modifications
associated with the conversion from one dataset to another,
including the number of target classes and the image adjust-
ments 8. Furthermore, the only hyper-parameter optimiza-
tion performed for this model was for the learning schedule,
which was applied with a batch step criterion, considering the
expected small number of epochs required for convergence
due to the pre-trained bonus. Fixing the training schedule in-
creased the performance of this model by 11 S, due to moving
the learning saturation point at a later epoch.

Parameter base-DETR ext-DETR
LR 1e-4 5e-5
LR bb 1e-5 3e-5
Lr drop 350 500
Lr gamma 0.7 0.7

Table 1: Table presenting the hyper-parameter configurations for the
baseline DETR (base-DETR) and for DETR with extended search
on parameters (ext-DETR). All other parameters were kept the same
as in the original model.
LR - learning rate for the transformer; LR bb - learning rate for the
CNN backbone; LR drop - learning rate drop counter; LR gamma -
learning rate gamma for the decrease ratio

The second model, called ext-DETR, has been generated
such as to make no presumptions on the proper calibration of
the entire learning process. Therefore, the learning rates for
the model’s main components, the transformer and the CNN
backbone, have also been included in the grid search opti-
mization schema, along with the previously mentioned learn-

6The initial visual augmentation routine was based on PIL[8] im-
age format and Torchvision[13] processing functions.

7New visual augmentation stage relied on OpenCV[3] image for-
mat and Albumentations[2] functions

8Provided images have been adjusted to have the same properties
as the ones used for the initial network training: scale, color channel,
annotations

ing schedule. Finally, the two models’ setup is presented in
Table 1 and their results in Figure 3 and Table 2. The com-
plete network configuration is available in the associated code
repository.

Figure 3: Performance comparison between base-DETR and
ext-DETR over 15 epochs. It can be observed that the learning sat-
urates around epoch 10 and therefore the final versions are stopped
before this point for both models. Ext-DETR manages to achieve 4
S improvement over the baseline variant. Also, base-DETR initially
grows and then flattens out faster than the extended version, corre-
lating its higher learning rate with overshooting the global optimum
and getting stuck in a local one.

Model S AP AR
base-DETR 0.433 0.565 0.588
ext-DETR 0.477 0.606 0.634

Table 2: Results achieved by the two models (base-DETR and
ext-DETR) on the test set. Ext-DETR manage to outperform base-
DETR by 4 S points while having the overall AP/AR ratio kept the
same.

The CNN backbone used was the ResNet50 non-dilated
network for both models. The associated costs with the loss
functions were kept unchanged. One significant aspect that
was influencing the network’s behavior for ext-DETR, mak-
ing it generate too many bounding box class predictions, was
the number of queries. Changing it from the original meant
changing the dimensions of the positional embeddings and
losing all their pre-learned weights. This was causing sig-
nificant performance degradation of more than 15 AP and
relatively low AR variations, showing an increased number
of FPs correlated with the detector that was generating way
more predictions than it was required.

4.2 FFT + DETR
The main focus of this research relied on enhancing the
DETR network with an initial image processing step where
the FFT-based filtered version of the training images is gen-
erated. From the 2 models previously introduced, the bet-
ter performing one (ext-DETR) has been chosen for studying
further in depth the effect of FFT prior knowledge. In this re-
spect, the setup consisted of analyzing the influence that the



parameter controlling the Fourier mask creation has over the
image and ultimately over the network.

Figure 4: Effect of the threshold value on the amount of frequencies
that are kept from the wheat head Fourier decomposition. The higher
the threshold value, the stricter the mask becomes when applied on
a Fourier domain representation, discarding more constituting fre-
quencies from the image that is filtered.
Executed for the red channel on the 1e-8 threshold scale. Left:
threshold = 2e-8; Right: threshold = 8e-8

The frequency-based filter is constructed from the differ-
ence between predominant wheat frequencies and the ones
characterizing the whole image. The threshold value, which
controls the required strength of this difference in order to
mask a certain frequency, influences the amount of informa-
tion that is being removed from the entire image. The effect
of this threshold on the shape of the mask can be observed in
Figure 4.

Model configuration
FFT-DETR +
Proj-FF-DETR threshold = 2e-12 exclude = 120
Proj-FFT-DETR kernel size = (9, 9); stride = 1

Table 3: Additional configuration of the FFT-based models on top of
the ext-DETR one. Both FFT versions use the same mask and Proj-
FFT-DETR has an extra initial convolutional layer with a square ker-
nel of 9, which has been selected from the list of tested kernels with
shapes varying from 1 to 15.

For injecting the details extracted by the mask further into
the network, two approaches have been investigated: one in
which the filtered image simply replaces the original input
and another where the information from both is concatenated
into 6 channels and further aggregated by a new convolutional
layer into the 3 channel input that DETR is expecting. The
two models are called FFT-DETR and Proj-FFT-DETR re-
spectively. FFT-DETR limits the information that is provided
to the model, aiming to remove large part of the background
in order to concentrate the data around the wheat head par-
ticularities. On the other hand, Proj-FFT-DETR increases the
amount of information that is given to the model by com-
bining all the original image representation with the target
object details on top of it. The concatenated 6 channel in-
put is then projected by a convolutional kernel back into a
standard 3 channel one, effectively having both image rep-
resentations compressed into a single composite one. This
way, the network receives the supplementary frequency fea-
tures alongside with the rest of the original image, having an
increased flexibility for discovering an optimal internal state

from hidden patterns in the data. The proper configuration of
both models is presented in Table 3.

Figure 5: Comparison ext-DETR VS FFT-DETR vs Proj-FFT-
DETR.
Top: Learning curves based on validation S for ext-DETR vs FFT-
DETR vs Proj-FFT-DETR. Both FFT-DETR and Proj-FFT-DETR
achieve similar results, while ext-DETR outperforms them by 4 S.
Proj-FFT-DETR starts at the lowest initial value and has the greatest
slope for the first 2 epochs, flattening out at the 3rd epoch and satu-
rating around the 8th one.
Bottom: Results on final test set for S, AP, AR metrics. Largest gap
between the models is on the AR metric, showing that ext-DETR
reaches a better score due to a lower, more refined number of bound-
ing box predictions.

The correlation between the mask creation parameters and
the model’s performance has been explored based on the
simpler FFT-DETR over the stratified 5-fold cross-validation
schema. An interesting observation emerged regarding the
suitable threshold value of 2e-12. On further analysis of the
suppressed frequency space, this optimal value lies some-
where at the middle. This means that the mask generated still
allowed half of the auxiliary information to pass through the
filter, which ultimately indicated that some of the background
frequencies were important for the model’s inference capa-
bility, contributing to its final performance. Additionally, the
second parameter that describes a low-pass noise reduction
filter has been fixed at 120, without any significant impact on
the consequent performance.

Both FFT-based models along with ext-DETR have been
exposed to a performance comparison, which is highlighted



Model S AP AR
ext-DETR 0.477 0.606 0.634
FFT-DETR 0.422 0.55 0.57
Proj-FFT-DETR 0.434 0.565 0.592

Table 4: Final results achieved by the three models (ext-DETR, FFT-
DETR and Proj-FFT-DETR) on the test set. The top performer is
ext-DETR, with Proj-FFT-DETR following by a margin of 4 S and
lastly FFT-DETR with a 1 S difference from the Proj-FFT-DETR.
None of the models managed to break the 50 AP barrier and only
ext-DETR reaches over 60 AP.

in Figure 5 across 10 epochs. The final results achieved by
those predictors on the test set are underlined in Table 4, thus
setting the benchmark for every model.

Figure 6: Visualization of encoder-decoder multi-head attention
weights for a set of 3 predicted objects on a validation image. The
model used is Proj-FFT-DETR with restoration of the initial unfil-
tered image after each prediction. The model learns to attend differ-
ently at the wheat head extremities then the way it does at the body
of the spike.

For investigating the learning process based on the inter-
nal representation of the domain objects, attention maps have
been generated for the encoder in Figure 7 and for the decoder
in Figure 6, both belonging to the Proj-FFT-DETR model.
The transformer behaviour visualization reveals that the net-
work captures the most relevant regions for wheat heads that
are in less crowded areas, while some background patches are
misinterpreted by the encoder’s attention layer as clusters of
target objects.

Figure 7: Visualization of encoder self-attention weights for a set of
reference points inside the image. The encoder is capable of identi-
fying some separate instances of wheat heads, while also struggling
with a more diffused view when multiple objects are gathered to-
gether. Representation extracted during the execution of Proj-FFT-
DETR on a validation image.

5 Discussion

The performance of the best FFT-based model, Proj-FFT-
DETR, still remains lower than the one of ext-DETR by a
small margin. Adding the mask filtering process slightly hin-
ders the inference process by reducing the performance with
4 S and 5 AP. Combined with the 1.6X increase in training
time, due to application of the mask for each input image,
this approach proves to not be well suited for improving the
prediction of the DETR network.

5.1 Model behaviour

A possible reason for the recorded behavior could lie in
the underlying capabilities of the network’s CNN backbone.
Since its responsibility is to extract different image features
by applying stacked convolutional kernels, it is possible that
in a segment of its multi-function layers the network already
learns to perform a procedure similar to FFT. This would
mean that our intention of providing additional domain con-
text is actually hurting the CNN’s potential by reducing the
amount of data delivered to just the frequency filtered one,
effectively removing most of the background information.

The moment when the FFT mask is applied has been ob-
served to have an effect on the results produced by the net-
work. More specifically, applying the filter after the image
transformations leads to a prediction quality decrease of 6 S
and 5 AP than doing it before those. This could be explained
by the non-commutativity of function composition between
Fourier transform and random image crop. Since the mask
has dimension (1024, 1024), cropping the image results in
a necessary padding in order to bring it to the same shape.
The padded regions, although carrying no actual information,
are treated as white pixels (0, 0, 0) and therefore interfere
with the Fourier decomposition, leading to a different result
than the one obtained had the mask been applied before the
crop. Since Proj-FFT-DETR needs post-transform frequency
filtering, in order to keep both the transformed original image
and the filtered version of it, the aforementioned observation
could justify part of its performance.

The potential of DETR has not yet reached the state in
which the baseline model can be used for accurate object de-
tection tasks in domains different than the one COCO is based
upon. The result of this study in the agricultural field, while
using the pretrained model with transfer learning, shows a
maximum of 60 AP on wheat head detection, with the FFT
enhancements proving to reduce the performance in the end
by a small amount. This result is relatively in line with the
one obtained by DETR on crowd pedestrian detection [10],
where the baseline model is applied on a similarly challeng-
ing dataset and achieves a maximum of 66 AP. Here, the
structural limitation of the current model is pinpointed as the
slow convergence of the attention modules, due to rectified
attention units. On top of this, [18] reinforces this idea and
highlights the redundancy in the transformer double layer. As
a result, a possibility is that regardless of the FFT approach
used, without addressing the structural limitation in any way,
the model would still struggle to achieve a better result.



5.2 Image augmentations
A suite of image augmentations successfully used on the
Wheat Head Dataset is provided by numerous Kaggle note-
books that participated in the Wheat Head competition.
Across different implementations and variations, some trans-
formations tend to be part of every accomplished detector
with score above 60 S. Those pre-processing image transfor-
mations are more complex and diverse than the ones present
in the original DETR code. Among them, special color filters
(Gaussian noise, Random blur and RGB shift) have a partic-
ular significance for improving the detection capability of a
model, due to the fact that images are taken at various light-
ning conditions. Additionally, cutouts are important for com-
pensating the occasional extreme dimensions of the bounding
boxes.

Conversely, the image color processing functions would
not be compatible with the FFT paradigm. Since the Fourier
decomposition captures the variance of pixel values, chang-
ing these pixels would result in a divergent frequency map
that would not be able to capture the target object informa-
tion as accurately as before.

6 Responsible Research
From an ethical standpoint, no immediate severe issues seem
obvious while developing the current research study. The im-
portance of responsible Artificial Intelligence (AI) is reflected
in the current work, by placing the goal of this study not only
on the scientific curiosity fueled by it, but also on its actual
day-to-day application of a capable object detector in the field
of precision agriculture.

With respect to the norms of valid academic research, two
important aspects pertaining to reproducibility are to be men-
tioned. First, since the topic of this research lies in the domain
of AI, the output values recorded are generated by a stochas-
tic process and cannot be precisely simulated and reproduced.
During one run, a neural network might get stuck in a local
optimum and miss the rest of the parameter hyperspace, end-
ing with values that are different than those from the previous
identical run. The unpredictability of those results needs to be
acknowledged and addressed by focusing on reporting out-
puts averaged over multiple runs instead of singleton training
schedules. Therefore, aside from longer training sessions, the
rest of the reported values have been produced by averaging
over multiple cross-validation folds. Additionally, the exist-
ing randomness inside the algorithm is controlled by having a
specific seed for the generator, leaving the uncertainty only on
the inherent non-deterministic Machine Learning approach.

Second, most of the presented results rely on parts of code
extracted from various open sources. The Kaggle commu-
nity and the submissions made for Wheat Head Competition
have been of tremendous help for putting in place the proper
configuration of the dataset and the logistics behind different
parts of training a Machine Learning model (k-fold valida-
tions, train/valid splits, inference functions and performance
estimators). Additionally, the original DETR code has rep-
resented the main foundation on which various extra contri-
butions have been brought by this study. Also, the code on
which this research process has built contains all the neces-

sary annotations and highlights so that the flow of logic is un-
derstandable and proper credits are given to different sources.

Moreover, in order to provide a complete overview over the
environments in which the tested model has been run, the en-
tire configuration schema is made available in the repository
associated with this study. All the parameter optimization
processes have been thoroughly documented and full train-
ing routines have been recorded with intermediate outputs.
Regarding the associated dataset, a train-test split of 90/10
has been performed from the very beginning so that all the
training/optimization has always been executed on the train-
ing set.

7 Conclusions and Future Work
The novel DETR object detector has been introduced for the
task of precision agriculture, which was placed in the context
of a Kaggle competition for wheat head detection. This end-
to-end, anchor-free framework uses attention mechanisms for
focusing the internal inference operation on different regions
of the input, effectively managing to correlate neighbouring
pixels.

With a minimum extra configuration from the already pro-
vided pre-trained version, this model manages to achieve 0.47
S & 0.60 AP 9. Further incorporation of an FFT-based mask
oriented towards filtering out background information is ex-
plored with two variations. One model has the initial im-
ages replaced by the FFT-filtered version of them. Another
has the filtered information concatenated with the original
one, followed by a convolutional layer projection of the re-
sulting 6 channels back into the 3 channel input accepted by
DETR. The results obtained indicate that injecting prior fre-
quency knowledge into DETR does not improve its perfor-
mance on wheat head detection. Both FFT-based models per-
form slightly worse than the plain DETR. Adding frequency
information in the form of targeting the wheat heads with the
FFT mask reduces the performance of the model by 4 S & 5
AP, while increasing the training schedule by a factor of 1.6x.
The best results achieved by the Fourier DETR are 0.434 S &
0.565 AP.

Nevertheless, the full capabilities of those models have not
been entirely explored, leaving some space for further hyper-
parameter optimization and for a more suitable configuration
of a longer learning strategy. Putting the results into perspec-
tive, the best models in the Kaggle competition, adaptations
of Yolo-V3 and Faster R-CNN, accomplish a highest score of
0.74.

Two areas of further exploration present themselves as en-
couraging. The DETR framework could be run with an en-
tirely custom learning schedule, with no pre-trained weights
and all hyper-parameters carefully picked. This would im-
ply a compute-intensive task, which extrapolated from the
DETR’s original training, could take up to 4 days for run-
ning through 400 epochs. Lastly, the image augmentations
have proven to carry a significant influence on the behavior
of the network. They need to be reasonably applied on the
FFT-masked images in order to enhance the network’s infer-
ence ability.

9see Subsection 3.3 for detailed metrics explanation.
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