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Abstract

Distributed formation control has received increasing attention in mul-
tiagent systems. Maintaining certain geometry in space is advanta-
geous in many applications such as space interferometry and under-
water sensing. At present, there is a variety of distributed solutions
for agents to converge to desired formations and track a series of pre-
scribed maneuvers. They typically rely on the relative kinematics e.g.,
relative positions of the neighboring agents as state observations for
the local controller. In harsh working environments, the acquisition
of the relative kinematics is challenged and observation losses might
occur, which can be detrimental to the optimality of formation.

In this work, observation losses in noisy environments are ad-
dressed under a distributed formation control framework. Three types
of solutions are proposed to enhance the robustness which is evalu-
ated through the improvements of tracking error, convergence speed,
and smoothness of trajectories in both random and permanent loss
settings. Firstly, a relative localization technique is proposed using
formation itself as a spatial constraint. Secondly, a dynamic model is
established for the agents entailed by a Kalman filter-based solution.
Finally, a fusion of the previous two types is inspired and it exhibits
superior performance than both aforementioned types individually.

This work not only provides means of relative localization without
additional sensor data but also shares insights into coping with ran-
dom or permanent graph changes for stress-based formation control
systems. This could potentially lead to the exploration of formation
control with subgraphs or energy-efficient sensing as future directions.
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Abstract

Distributed formation control has received increasing attention in multiagent systems.
Maintaining certain geometry in space is advantageous in many applications such as
space interferometry and underwater sensing. At present, there is a variety of dis-
tributed solutions for agents to converge to desired formations and track a series of
prescribed maneuvers. They typically rely on the relative kinematics e.g., relative po-
sitions of the neighboring agents as state observations for the local controller. In harsh
working environments, the acquisition of the relative kinematics is challenged and ob-
servation losses might occur, which can be detrimental to the optimality of formation.

In this work, observation losses in noisy environments are addressed under a dis-
tributed formation control framework. Three types of solutions are proposed to en-
hance the robustness which is evaluated through the improvements of tracking error,
convergence speed, and smoothness of trajectories in both random and permanent loss
settings. Firstly, a relative localization technique is proposed using formation itself as a
spatial constraint. Secondly, a dynamic model is established for the agents entailed by
a Kalman filter-based solution. Finally, a fusion of the previous two types is inspired
and it exhibits superior performance than both aforementioned types individually.

This work not only provides means of relative localization without additional sensor
data but also shares insights into coping with random or permanent graph changes for
stress-based formation control systems. This could potentially lead to the exploration
of formation control with subgraphs or energy-efficient sensing as future directions.
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Introduction 1
1.1 Distributed Autonomous Systems

Autonomous systems are receiving increasing attention with emerging technologies such
as self-driving vehicles, space rovers, self-piloting drones, etc. An autonomous system
is usually one that can accomplish a set of tasks prescribed by the human in complex
and changing environments, but without human inputs and interventions. The typical
workow of such systems includes sensing and interpretation (decision making) fol-
lowed by actuation, which brings several communities together, e.g., signal processing,
control, machine learning, and robotics. Recently, as the need and complexity of tasks
rise rapidly, ideas of mobilizing multiple autonomous agents to cooperatively achieve
a collective goal have been extensively researched and implemented in the industry.
For instance, in energy management [1], sensing networks [2] in geology, reinforcement
learning [3], satellite interferometry [4], cooperative localization [5], etc. These systems
are often referred to as multiagent systems (MAS) where the autonomous agents can be
either physical such as robots or virtual such as computation nodes in distributed op-
timization [6]. Because of the pursuit of scalability, computation and power e�ciency,
and robustness against single node failure, multiagent systems have a distributed na-
ture, which also �ts the philosophy of distributed autonomous systems (DAS). Among
all the applications of MAS or DAS, some rely on a stable geometric pattern in space
from the agents, i.e., formation, which naturally leads to the problem of formation
control.

1.2 Formation Control

1.2.1 Applications of Formation Control

The application of formation control abounds with di�erent types of agents. Depending
on the goal of maintaining formation, we categorize and list a few applications in the
following.
Spatial Sensing
Most of the applications of formation control are in line with sensing an unknown �eld
by placing mobile nodes in space. Unmanned aerial vehicles (UAVs) are typically the
choice as mobile platforms for their exibility and coverage. For example, drone swarms
in formation are used for 3D scene reconstruction [7] and aerial �lming [8]. In under-
water applications [9], autonomous underwater vehicles (AUVs) are often employed to
take hydrographical measurements in the ocean in formation. There is also a need for
formation control in space applications [10]. For instance, space-based interferometry
is used to detect and unveil the origins of the cosmos and is favored over ground-based
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setup due to its immunity to atmospheric disturbance and exible recon�guration [11].
Object Transport
Another major type of formation control application is cooperatively transporting ob-
jects. For instance, the possibility of drone delivery is being discussed and tested nowa-
days, and the deliveries with drone swarms in formation are also becoming a future
potential [12]. Other than drones, multiple robots could also carry and transport large
or heavy objects [13, 14], and recently the potential of transportation with autonomous
vessels is being explored [15].
Economic Travel
One of the bene�ts of traveling in formation is fuel e�ciency. It has been discovered
that ying in the wake vortex �eld of an aircraft is aerodynamically e�cient and thus
can reduce the fuel consumption [16]. As such, for a group of aircraft, formation ying
in a long-haul traveling is favored. Similar ideas are also realized for land transportation
e.g., truck platooning [17].

Other purposes of formation control include showcase and entertainment. For in-
stance, drone swarms can be used as a mobile display and the formation of the drones
is important and needs to be recon�gurable [18].

1.2.2 State-of-the-Art Controllers

The majority of research makes e�orts to design controllers targeting di�erent types of
agents based on di�erent principles. There have been lots of surveys summarizing the
merits and challenges of state-of-art controllers [9, 19, 20, 21]. The strategies behind
controllers are versatile, e.g.,virtual structure [22, 23], potential �eld [24], leader-follower
[25], etc., and there are often more than one applied in controller designs. But based
on the variables that agents sense and control or how the formation is de�ned, the
controller can roughly be categorized as follows [21, 26].

� Position-constrained controller [23], where the formation is de�ned by the indi-
vidual positions of agents and capabilities of sensing absolute positions under a
global reference frame are required. The inter-agent interaction is not necessary
and the controller can track almost any formation.

� Displacement-constrained controller [27], where inter-agent relative positions are
actively and locally sensed with the same orientation. This requires some inter-
actions among agents and inter-agent communication might be needed. Since the
constraints are on the relative position, it can track formation with translation
changes.

� Distance-constrained controller [28], where inter-agent distances are maintained.
This allows the controller to track formation with rotation and translation changes
without compromising the inter-agent distances. More interactions among agents
are needed for this type of controller.

� Bearing-constrained controller [29], where inter-agent bearings are sensed and
maintained. Since bearings are invariant to scaling and translation, this type
of controller can track formation with di�erent translations and scaling without
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changing the constraints on the bearings. However, the rigidity of formation can
not be guaranteed.

These controllers have been modi�ed in trending research to be capable to track
more variations of formations regardless of the sensing variable. For instance, by intro-
ducing complex Laplacians, [30] can track scaling with relative position measurements
since complex Laplacians are invariant to translation, rotation, and scaling. A more
powerful tool that has been brought to the spotlight recently is the stress matrix which
can be considered as a generalized graph Laplacian. It is invariant to any a�ne trans-
formation. As such, stress-based controllers can track formations up to any a�ne
transformation once the stress is settled. For instance, [31] gives the graphical condi-
tions of stabilizable formations using stress matrices and provides means of calculation.
It is also able to achieve a�ne formations with relative position measurements. More-
over, [26] extends the scope of [31] and achieves a�ne formation maneuver control using
a leader-follower strategy. This thesis will be established in this formation maneuver
control framework and further address the problem of observation losses.

1.3 Observation Losses in Formation Control

In feedback control systems, the output states need to be observed using sensors. For
formation control systems, the states are usually positions, relative positions, distances,
or bearings as reviewed in Section 1.2.2. To understand the reason for observation
losses, it is necessary to review the principle and typical setups for the acquisitions of
the observations. In the case of a�ne formation control, they are relative positions.

1.3.1 Relative Localization Methods

Global navigation satellite systems (GNSS) such as Beidou and Galileo are usually the
go-to solution for positioning, and relative positions could be simply acquired up to
a translation. But GNSS is limited in some environments, and equipment for high-
precision localization can be expensive. As such, relative positioning is more suitable
for formation control of UAV or robot swarms. It mainly involves measuring the dis-
tance/bearing between agents and calculating the relative locations.

The algorithms of relative localization are generally based on radio frequency (RF)
or optical signal according to [32]. The RF-based positioning algorithms include the
following.

� Received signal strength (RSS) [33], where the signal attenuation can be mod-
eled and measured, and then the distance can be estimated. The typical sensors
used for this application are Bluetooth, Wi-Fi, and radio frequency identi�cation
(RFID).

� Time of arrival (TOA) [34], where the propagation speed of electromagnetic waves
is known and the distance can be estimated by measuring the time of ight.
Typical sensors used for TOA include ultra-wideband (UWB).
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� Angle of arrival (AOA) [35], where the radio signals are received by an array of
antennas, and the incidence angle of the signal can be estimated by the small
phase di�erences of the received signal on each antenna. Bluetooth and Wi-Fi are
typically used in this case.

� Time di�erence of arrival (TDOA) [36], where synchronized anchors at known lo-
cations (�xed ground points) receive the same signal up to a small time di�erence,
based on which the position can be calculated. The sensors of this application
also include UWB.

The optical signal-based positioning algorithm includes simultaneous localization and
mapping (SLAM) which often uses LIDAR and cameras, and multi-camera target recog-
nition and localization algorithms with motion capture systems.

As such, according to the elements involved in relative localization, the causes of
observation losses can be as follows.

� Sensor-induced, which includes all kinds of sensor malfunctioning or calibration
issues. They can be either random or permanent losses depending on the nature
of the failure.

� Environment-induced, which includes interference of RF signals, communication
delays or packet losses, and intrusion in line-of-sight based localization. These
mostly cause random observation losses.

� System-induced, which includes scheduling issues of the sensors or computation
overload. These also usually cause random losses.

� Target-induced, in which there are no target objects to localize. The targets can
be o�ine due to e.g., maintenance and critical failure, and these issues usually
cause permanent observation losses.

1.3.2 Frameworks against Observation Losses

The problem of observation losses is eventually converted to state estimation. In con-
trol theory literature, observation losses are referred to as intermittent observations
and the arrival or availability of observation is usually modeled by a binary random
variable. A paradigm of linear-quadratic-Gaussian (LQG) control under intermittent
observations has been established, and Kalman �lter-based state estimation solutions
are well-studied [37, 38, 39] and they can optimally give state estimates and make par-
tial observations full. For nonstandard LQG systems, there have also been solutions
like interactive multiple models (IMM) [40], Gaussian sum �lter [41], and deep learning
�lters [42] for state estimates.

Recently, with more interest focused on distributed sensor networks, distributed
frameworks with intermittent observations are also established. But most literature
still relies on the Kalman �lter [43, 44] or variants of the Kalman �lter [45]. How-
ever, the observation losses in formation control receive less attention. Since there are
di�erent strategies used in formation control techniques, observations are not limited
to (relative) positions and are typically modeled as communication delays and packet
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losses. But they all cause the missing of key elements in the controller and can generally
be considered loss of observation. There have been a few strategies developed for the
observation losses for formation control systems. Learning the behavior of the subject
of observation is considered in e.g., [46] where iterative learning control (ILC) methods
are applied when the same task is repeatedly performed and the previous experience
can be of contribution, or [47] where a long short-term memory (LSTM) method is
used to predict the lost packets. Controllers with enhanced robustness to packet losses
are designed in e.g., [48] where model predictive control (MPC) is used, and [49] where
sliding mode control is implemented. However, most of the techniques work for under
30% random losses and the robust system designs for heavier random losses and even
permanent losses generally remain unexplored. As such, we identify that the limitations
in current research are mainly

� robust system design for a�ne formation control regime,

� coping mechanism for heavily lossy conditions, and

� solutions to permanent observation losses,

which serve as the objectives for this thesis.

1.4 Overview and Notation

This thesis is organized as follows as shown in Figure 1.1. Chapter 2 introduces the
building blocks of distributed a�ne formation control. Chapter 3 describes the dis-
tributed control laws to achieve formation maneuvering and establishes the simulation
setup on which the later chapters are built. Chapter 4 formulates the problem of obser-
vation losses and gives the �rst type of state estimator that uses formation itself as a
spatial constraint. Chapter 5 extends the results in Chapter 4 with noisy observations
and evaluates the performance statistically. Also, to address the noises, a smoothing
technique is introduced on top of this estimator. Chapter 6 establishes a framework for
the second type of state estimator and further proposes a fusion technique of both types
of estimators. Chapter 7 pools all the proposed techniques and evaluates them in both
random observation loss and permanent observation loss settings. The �nal chapter
evaluates all proposed methods and reaches some conclusions. The future work of this
thesis is also discussed in this chapter.

The notations used in this thesis are as follows.
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