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ABSTRACT

Heavily utilized urban networks remain a challerfigetravel time prediction, as traffic flow is rdye
homogeneous and is also subject to a wide varifetiyjsturbances. Various models, both based onidraff
flow theory and data-driven, have been developgaredict traffic flow and travel times. Many of ge
perform well under set conditions. However few parf well under all or even most urban traffic
conditions. As part of the Amsterdam Practicabllra comprehensive FOT for traffic management, a
real time travel time prediction framework has beeneloped that makes use of an ensemble of traffic
modelling techniques to be able to predict traveés with great accuracy for arterial roads as wddban
roads. The various models in the framework compufsieoth traffic theoretical models as well as data
driven approaches, making use of some of the lamged-time traffic datasets currently available to
traffic engineers to limit errors to less than 2086 any time of day or week. The impending pradtica
implementation of the framework sets it at the fianet of practical real-time implementation of urba
travel time prediction.
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1. INTRODUCTION

It is commonplace for road networks in urbanizesharto be heavily utilized throughout the worldisTh
obviously allows travel and therefore enables nikybdf inhabitants, however overuse of the urbasdro
networks also leads to wide spread congestion,séonipopulation and noise problems. The focusisf th
paper is on pre-trip and en-route dynamic travBdrmation and advice. Moreover, the focus is on the
travel time predictions that are required to givagh quality advice. Currently most internet seed and
applications base their mode, departure time aanterohoice information and advice on historical and
instantaneous travel times. However, improved tradeice can be given if travel time predictions ar
taken into accour(tL, 2)

Various models, both based on traffic flow theond adata-driven, have been developed to
predict traffic flow and travel times. They can bkssified into static and dynamic models, into
microscopic, mesoscopic and macroscopic models offline and real-time models, into data-driverl an
model-driven models and into deterministic and fsastic models. Also, within these classes different
methods may be distinguished. As each of these Isibds its strengths and weaknesses there is rot on
method that outperforms the others under all candit Different forecast horizons, different locais,
different road types, different times of day antfedent situational variables like incidents, eweand
road works demand different prediction models gogt@aches. Therefore, this paper aims to introduce
dynamic real time travel time prediction framewankwhich an ensemble of data-driven and simulation
based traffic models are run in parallel and thet Ipeediction is selected depending on the conitio
Furthermore, a new short term prediction modehtioduced for incident situations on the motorways.

The proposed framework is applied in the AmsterdRrarctical Trial which aims to test in-car
information services on a large scale in the Andister region in the Netherlands. The aim is to bring
dynamic and personalized traffic information inb@ tvehicle, thereby improving the reliability oavel
times in and the accessibility of the AmsterdamaegThese dynamic travel times further improve on
many current approaches as forecasted predictiatisgr than giving instantaneous travel times as a
prediction.

In section 2 of this paper a general overview i&giof model types that can be used for short
term predictions. Section 3 presents the modeldvaonk, with the prediction models that are applied
the Amsterdam Practical Trial presented in seciolbection 5 describes how the framework and the
prediction models are applied in the Amsterdam tRxacTrial. A quality indication of the prediction
models is also presented in this section. In tls¢ $&ction the main conclusion and future research
directions are presented.

2. EXISTING METHODS

There are many types of traffic prediction modalgxistence. This paper focusses on methods fezltra
time prediction, which can be performed by trafficediction based on traffic properties (such as
simulation models), or by numerical — mainly dateweh — techniques to predict travel times. Thege t
methods will be discussed in the sections below.

Simulation methods

A first approach for describing traffic operatioase microscopic simulation models. These models
describe individual vehicles and the behavior afais. Commercial packages are available, of which
Vissim (3), Aimsun (4) and Paramics 5f are among the most used packages. In this pagewill not

go into detail regarding differences in these pgekabut comment on the category of the description
instead.

Microscopic modelgienerally have a longitudinal module and a latenatlule describing the
vehicle movements. The longitudinal module deserilsar-following behavior in case a driver is
following another vehicle and a free flow speedichan case it is not. The lateral module descries
lane choice, for instance for overtaking, mergimgar drivers which want to pre-select a lane beeau
they need to take a turn or exit. These types afetsoare adapted to suit all kinds of environmeTiey
can be applied on the freeway and highway, but alsarban environments. Some models include
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cyclists and pedestrians as well. The output frleenmhodels can be very detailed, up to the posifaail

road users for all moments in time. Visually, thpproach is very appealing, since the output caallys

be visualized in a way which is very attractive ks realistic. There are also disadvantagest,Rhe
behavioral models are usually not calibrated fer shuation where the model needs to be appliedt Th
could be considered a task for the model user; tilekyé&n some cases this is impossible because #nere
unknown measures or the infrastructure is not yelt.bMoreover, it is not clear whether realistic
individual behavior will lead to realistic collee& behavior, and the properties of this collectiedavior

will in the end lead to congestion, and hence dater the travel times. Furthermore these models are
computationally demanding, especially for largezasr Note that for larger network areas it is often
required to predict a longer time ahd@&dl A larger area means also a larger number of usads, and
therefore also larger computation times, which #re core units of the microscopic simulation
approaches. The computation speed might becomé¢hi@sseal time, which hampers such models as an
option to use for travel time prediction.

Travel time prediction can also be performed withcroscopic modeldn this case the traffic
flow is described at an aggregated level usinditrdiow theory. This uses the relationship between
average speed and density in case first order m@delused. For higher order models there is a ffrm
hysteresis built in(7). The Cell Transmission Mode(8, 9) is a well-known model describing traffic
dynamics for road split into cells. The Link Transsion Model {0) does not need the separation into
cells, and can therefore run quicker. The advantdgbese models is that all knowledge of collestiv
patterns can be brought into the model, but fornomkn situations the collective patterns are more
difficult to predict than the reaction of individuaad users. Moreover, the models work very well f
uninterrupted flow facilities (freeways) but in théban area their use is limited. A good node m@tE)
is essential to apply the model in an urban area.

An area of macroscopic modelling that has showarrepromise for fast and efficient calculation
is that of marginal traffic modelling. By only sihating the marginal difference in traffic flow in
comparison to a base run, repetitive network logdiith a full dynamic macroscopic model is not
required. This approach has been shown to espebialeffective when a large number of predictiamrs a
to be made in which the traffic characteristicsyothange by a small amourt2-14. For real-time
traffic prediction, such models are effective dog¢hte short calculation times and the relativelygmeal
changes in the traffic states from one minute nex.

Data driven methods for travel time predictions
Another category for predicting travel times isntmt get into the theory of driving, but instead dsea
and computer learning to derive patterns fromicdfbw to produce a travel time prediction. In geal,
different models can be used to predict travel siméhere are set situations which are used to the&n
models. Then, measurements are taken for speaifis dnd the model is used to predict the traved.tim
The more complex the models are, the more comptenms they can capture, but there is also aofisk
over fitting, which means that a model has moreapaters than needed and the model adapts to the
stochastic fluctuations of the learning set, ingtebonly capturing the underlying patterns. Thepdest
models are regression models. These can be combhimédor different cases the best model can be
chosen(15). The principle of having several models to choosm is increasingly used, and is called an
ensemble. The idea behind an ensemble is thatadewedels are run, and that the user continuesavith
combination of the outcomes of these models. Ity the model which is chosen to continue with might
depend on the outcome. A very simple scheme foaneelt time prediction would, for instance, be tketa
the average travel time of all model outcomes, pixéar the two most extreme values. More advanced
systems would rate the reliability of the outcornghe outcome itself: for instance, if the bandwidt
travel times is high, the quality of the predictimght be low, hence none of the models are salecte

Also neural networks are a possibility to prediawvel times(16). The combination between the
inputs and the outputs is given by one or moraiimggliate calculation steps in a hidden layer. Ters
to which the inputs activate a hidden layer anavibich these hidden layers process their valuebéo t
output is determined in the learning process.
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Real-time prediction methods

For on-line traffic control, real time traffic moldeare required. This means that the models apylyti
from traffic sensors and use that to make a predicT hat prediction, in turn, is used as inputtfaffic
control. It is therefore essential that the timguieed to make a traffic prediction is quicker thaal-
time. If this is not the case, a prediction wiltezldy be outdated by the time it is made and et
useless. In that case a naive prediction, takiegcthrent instantaneous travel time, would be é&ebet
prediction. Moreover, this information is not udefor controlling traffic. On-line means that theffic
model is fed with real world data and the traffiodsl is hence connected, this opposed to modelshwhi
are only fed for instance with predetermined ODriues. It is therefore essential for these modeds t
they are fast. Moreover, they should be robustfdding, or erroneous input. Detectors give errareo
data, and although many systems are developed pgoou® the data (e.d17)), still the traffic state
estimation might be incorrect. A good model is abl@void output which very strongly fluctuates dxhs
on single missing or erroneous measurements. Fasngprehensive overview of existing short-term
prediction models, we recommend the recent workllajogianni, Karlaftis 18).

3. FRAMEWORK

In this contribution we present a model framewdrkt tcomprises of multiple sub-models to predictredoo
to-door travel-times for an entire network in réate. The architecture that is used to give thacadis
shown in Figure 1. On the left side of the figune different data sources that have been usedavens
The data sources contain historical and real-tiat@.d A map matching algorithm is used to match the
data to a map. Based on this fused data the pi@titiodels are run. The results of the predicti@uats

are combined by the Hypothesis Manager (HM). In ftiilowing section it is explained how the HM
combines the results of the different local, aaleend incident predictors. For the main arterittg,
results of the an Arterial Network Predictor (AN&® always used unless this predictor is overrbled
the Marginal Model for Incidents, which is appli@d case of unexpected incidents. The combined
predictions for the Local Network Predictor, whishapplied on lower level roads, are used for tthermn
road types. The before mentioned steps can onpeldermed for the roads for which data is availabie
order to be able to give a smart routing advicg) atalistic travel times and travel time predictimeed

to be available for the other roads. Thereforepmbgnation of gap filling algorithms is implemented
which is described in the following section. Theuk is that each 5 minutes new short term pregfisti
(three hours ahead) for all roads in the networdobee available for a smart routing algorithm whish
used to give different advices. The map matchirgja dusion, different advice strategies and smart
routing are not subject of this paper. In the feiloy section, each of the prediction models ardaxed

in greater detail.

Departure time
advice

| Network ____|
—_—
Loop detectors

Arterial network
predictor

Route advice and
navigation

Map
matching,
filtering and
fusion

Marginal model
incidents

Event parking

Smart routing

—_—
Traffic signal data
—

Bluetooth

Local network
predictors:
1.Naive model
2.Best fit model
3.Historic mean
4.Historic median

y
Hypothesis manager
Gap filling algorithms

Post-trip feedback

Floating device data
—_—

Situational variables

Figure 1 Architecture Practical Trial Amsterdam



coONOO UL WN B

S.C. Calvert, M. Snelder & V.L. Knoop 6

4. APPLIED METHODS

The model framework is developed initially for usea large scale field-operation-test (FOT) known a
the Amsterdam Practical Trail. The various sub-nedethe framework interconnect to give the overal
predictive framework. For non-incident situationg€@mbination of data driven models is chosen. An
important reason is that the computation time ettpained data driven models is generally lowentha
simulation based methods, which is imperative éal-time application. In case of incidents, dataedr
models are less suited because by definition imtédare exceptional situations for which historidata
does not offer a good prediction basis. Here beet developed methods which are applied as sub-
models in the framework are expanded on. Firsttyphediction methods applied as a base for all road
types and the specific local network predictor described. Thereafter the Arterial Network Predicto
and then the method for predicting under incidemiditions are given.

Hypothesis Manager and Local Network Predictor

Many data-driven approaches have been developpdetiict travel times based on historical and real-
time data. Some of these exclusively use instanta&avel times and are limited for flexibilitypviany

of these approaches are deliberately keyed towaadain patterns in traffic and therefore performlw
under specific conditions, but rarely under alfficaconditions. Approaches that can predict unaearly

all conditions may demand a greater deal of coniylewhich negatively influences practical real-dm
application. It is obvious that an aggregation afitiple approaches which complement each other and
make use of each approaches strength should leadédter prediction result. For this reason, and f
easy and robust implementation, the Local NetwaddRtor (LNP) is developed in combination with a
Hypothesis Manager (HM). Within the LNP an unlinditeumber of prediction models may be plugged in
each with its own prediction strengths. The Hypsihid/lanager is developed to process the predictions
from the LNP and produce an overall aggregatecetri@wme prediction based on the best predictioosfr
each individual model in the LNP. Before lookingtla¢ HM in more detail, we will first expand on the
LNP and its initial models.

The Local Network Predictpor LNP, exists of four prediction models in itgri@nt form, but is
designed for any arbitrary number of models. Asapplication of the overall framework demands fast
and robust real-time prediction, the applied modeldhe LNP are deliberately kept simple. The agapli
models are: 1) Naive model; 2) Best fit modelH&toric mean; 4) Historic median

The naiveprediction model is the most basic model and retarprediction identical to the flow
and speeds recorded in the previous minute.bEs¢-fitmodel makes a comparison between the past T
minutes, set initially to 60 minutes and the pregi® days of traffic flow, set initially to 100 dsyand
selects the day which matches best as the predlifiiiothe coming period. Both théstoric meanand
historic medianpredictors consider a period of W weeks, withdeéult set to 7 weeks, in the past and
take the mean and median realizations respectiaglyhe prediction. For each of the predictors, a
distinction is made between four prediction vagablroad category, day of the week, time of dag,tha
prediction horizon.

The Hypothesis Manag€@HM) is developed to evaluate the quality of potidns from the individual
models from the LNP and concatenate the results filoe combinations of the various prediction
variables. The HM exists of three main parts, ngrttet evaluator, the HM predictor, and the gap-filler
(see Figure 2a). The predictions from each pradiatiethod are evaluated differentiating between:

1. Road category

Three categories (A, B or C) are defined basechenraximum speed limit: High, medium and

low level roads based on a nominal maximum speai 6f >=100 kph, 70-80 kph, and <=50

kph.

2. Day of the week

Each of the seven days of the week individually

3. Time of day

In aggregated blocks of 5-minutes

4. Prediction horizon
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From 0 minutes (current state) for 5 minutes irdbswp to 3 hours in advance.
For each combination of the prediction variableprediction is made by each prediction method & th
LNP. Each prediction is evaluated by the HM preamticigainst training data using the Mean Absolute
Error as error measure:

g _ ZialP =R (1)

=1Ry
HereP, is the predicted travel time on lihkR; is the realized travel time of the same linkndN is the
total number of links on the network. The modehisially trained for the year 2013 using extensdata
collected in the databases of the National DataéiWause for Traffic Information (NDW) in The
Netherlands. This database comprises (real-tinadjidrcounts from the majority of the Dutch road
network from double induction loops, floating catal camera system, ett9).

(a)
LOCAL NETWORK PREDICTOR HYPOTHESIS MANAGER
INPUT Maive For each: Road category (4), Day of the week (7), GAP-FILLER
- Network predictor Time of day (288), Prediction Horizon (30) Travel time for each
- ) - r05d zegment for th
- Traffic data > : - Evaluate prediction strength of predictors o e
filtered: speed, Bestfit - Select best scoring predictor
flow & travel time) predictor - ‘
Historic mean
predictor PREDICTIONS
Travel time for each
Historic median road segment for the
predic‘tor next 5-180 minutes
(b) ARTERIAL NETWORK PREDICTOR
INPUT - Intraday prediction (>3 hours in advance)
- Network Based on historical profiling
- Raw traffic data - Short-term predictions {up to 30 mins in advance)
(speed, flow & Heterogeneous traffic state data fusion w
travel time) — based on past 60 mins —-| Travel time for sxch

road segment for the
next 5-180 minutes
- Historical database

(speed, flow &

travel time)
(<) MARGINAL MODEL FOR INCIDENTS
INCIDENT DETECTION

INPUT - Nominal lane calculation MARGINAL TRAFFIC MODEL

- Network mp- - Lane closure detection  mie - Basedata travel-times

- Traffic data - Capacity reduction - Capacity reductions

(filtered: speed, calculation - Network activation for marginal calculation PREDICTIONS

flow & travel time) - Congestion calculation > Travel time for each

- Lane availability - Incident travel-time calculation road segment for the
' next 5-180 minutes

Figure 2: (a) Local Network Predictor and Hypothess Manager (b) Arterial Network Predictor (c) Marginal
Model for Incidents
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Although a vast area on both the local and artexdvorks is covered in the NDW data, gaps
remain on the routes and roads where no travel piredictions or other data are available. Thislss a
the case for locations with data of a low qualitfich is filtered out in advance. To bridge the géur
these network locations,gap-filler is applied for the regions in which precise travmle predictions are
made. It is necessary to fill these gaps, as oikereorrect prediction cannot be made along theaé r
segments. The gap-filler is based on the prin@pleropagation and interpolation of speed pattatosg
a large set of predefined routes through the censetinetwork. Some 1000 partially overlapping reute
are defined in the considered network area (grefatesterdam) (see Figure 3) making use of Dijkstra’s
algorithm for the shortest travel time. Multiple igleted interpolation of traffic speeds through the
unknown parts of the network is performed making asthe known speeds on links of the routes that
cross the links which are unmeasured. The weigimiipolation considers up to 10 links along each
overlapping route for a distance of 1.5 kilometeksweight is assigned to each speed observation
depending on the road type and the distance frenttimsidered road section. This approach allows the
predominant traffic sates from the same corridorbe translated to the considered road sectiom$, su
that a good prediction can be made. Additional hgtlredictions are made based on the network speed
within a 1.5 kilometer radius of the link in casesufficient routes or insufficient speed observaiare
available.

Arterial Network Predictor
The Arterial Network PredictofANP) is applied for travel time predictions onimarterial routes for
which a good quality of traffic data is consistgntlvailable in both time and space (Figure 2b).
Motorways in The greater Amsterdam Area are neamlyrely fitted with double induction loops as part
of the Monitoring Casco (MONICA) system and aredifiere available for predictions using the ANP. As
part of a personalized route advice, the ANP ptedi@vel times on two levels: those with a longne
horizon (interday) and those with a short term zwmi(intraday up to 30 minutes to 3 hours in adeanc
The Long term predictioris applied for predictions made one or more dayadvance to a trip
being made. For this reason the prediction doesaketthe current traffic states into account,aathe
expected states based on historic traffic pattdmis. is performed by taking the median value effibur
previous days matching the same day-of-the-weekydimg filtering for irregular days such as holida
The Short term predictions performed in real-time usidgeterogeneous traffic state data fusion
as originally described bf20-22) and later adapted for fast and efficient applmatoy Schreiter et al
(23, 24) The method makes use of spatiotemporal pattartraffic flow combined with kinematic waves
defined in traffic flow theory. Predictions are meatihrough propagation of these spatiotemporalitraff
patterns into the future to give a future traffiats (speeds and flows) from which travel times easily
be derived. The past 60 minutes of traffic datapiglied as input for the method, which makes ptaxtis
for the following 30 minutes on each road segmBnedictions more than 30 minutes in advance up to a
prediction horizon of 3 hours are made throughralioation of the long and short term predictorse Th
reason behind this is that the traffic propagatedistemporal traffic patterns in the short terradiction
are subject to change in time, which cannot berately predicted with certainty beyond the inital
minute period. The method is applied as of thefshmdl therefore we refer to the relevant papers for
details and equation23).

Marginal Model for Incidents
While data-driven models can boast success inrpatéeognition and prediction, predicting randord an
spontaneous events remains out of their scope. Buehts, such as incidents, therefore require an
alternative approach. Thdarginal Model for Incidents (MMI)s a real-time marginal model, which is
fed with live traffic data and includes an incidetgtection algorithm. The flow diagram in Figure 2c
shows each part of the model.

Marginal traffic models are models that generallgkenuse of the outcome of a base model run
and only update areas of a network which have Isggrificantly altered due to changes either in the
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traffic flow or in the network characteristics. Shinakes such models extremely fast and efficientiew
remaining sufficiently accuratd4). More information on marginal traffic models iargeral can be found

in (12-14).The parts of the network deemed necessary to @datknown as the activated network. The
MMI is a hybrid marginal model in the sense thatiboth data-driven and theory-driven. Data of the
current traffic states and the characteristicshef mnetwork are applied as the ‘base model’, whike t
modelled prediction for the activated parts of mleéwork is performed using traffic theory. Activatiof

the network is based on the presence of congestibith negatively influences speed and therefore
travel time. From the live traffic data an estim&emade of the traffic state and available unused
capacity. Road sections with congestion as a comeseg of an incident are added to the activated
network. Upon occurrence of an incident, the abél@apacity is reduced and a calculation is peréat
how quickly the remaining capacity is filled. Thapacity reduction is determined by the number of
closed and available lanes, together with empirdath from previous incidents of similar types on
similar road sections. If capacity is exceededtreps links are activated and congestion is praeaga
time using kinematic wave theory to calculate theesl of the shock wave. The upstream distance that
the shockwave lasts is calculated using the difieeebetween the inflow at the end of the queue and
outflow after the incident, and the available cafyaof upstream links. This process continues uihid
upstream end of congestion is reached. Using tiee ¢tongestion takes to reach upstream links amdj usi
knowledge of the severity of congestion allows aoemake a prediction of future travel times for
different prediction horizons. This process is edpd every minute using the flow data from the tjos
before the start of the incident and updated ferlive traffic conditions. This updating is perfathby
applying a feedback loop that compares the estimsitof the MMI with the real travel times from data
and applies a correction factor to the capacitycédn in the following minute. This feedback catien

is continuously applied to allow an increasinglgw@ate prediction of the travel times due to tredent.

It also allows for indirect correction of the presed capacity reduction as the actual capacity teauc
can only be initially estimated based on the nunabefosed lanes.

The detection of incidents is performed using twairses: primarily through automatic lane
closure detection from the Dutch highways agencijkgiRaterstaat). Secondly through the incident
registration system. The lane availability datavailable along with the live traffic speed and modata
and gives the lane availability with a delay ofslésan one minute. Detection of closed lanes howeve
does not necessarily mean an incident has occuresduse overflow, peak-period, and tidal lanes are
often closed during the day when traffic is quietEnerefore a lane availability detection algoritiisn
applied, which filters the number of available lsrier a specific day and is compared to the nurober
open at any given time. This process is updately tiaiavoid the detection of roadworks as incidents
presuming that roadworks are present for an edtise which is reasonable for The Netherlands. Using
an empirical database of incident types, includimg number of closed lanes and the type of road, an
estimate is made of the initial reduction in capacihe capacity reduction is later adjusted in the
feedback loop as previously described. The secgridaident detection through the registration syste
is applied to give further information on the tygred extent of an incident. It is applied as a hazland
supplementary system as there is often a delaggistration of at least five minutes and alwayseexis
the time required for the lane closure detectiotatip.
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5. CASE STUDY: AMSTERDAM PRACTICAL TRIAL

This section describes how a mixture of the aboeationed short term prediction models have been
applied in the Amsterdam Practical Trial the Ne#mets. The aim of the field trial is to bring dyriam
and personalized traffic information and advice itite vehicle, thereby improving the reliabilitytoedvel
times in and the accessibility of the AmsterdaniaegOver 10.000 participants will be given a déyear
time advice, route and navigation advice, parkidgi@e for major events and post trip feedback ey th
end of 2014 and in 2015 by means of an internetseelice and a smartphone application.

Data sources

The network that is used is shown on the right sidéigure 3. The network contains about 116 thodsa
links and 68 thousand nodes. The network includlebemotorways in the Netherlands and has a highe
level of detail in Amsterdam and surroundings ashiswn on the left side. Especially the areas where
events held have a high level of detail. The nektwdwes not contain all the roads in the Netherlands
limit the computation time and, more importantly,focus the smart routing advice on the higherlleve
roads. At most the first and last 1.5 kilometergha&f navigation advice is given by standard naidgat
software.

Figure 3 Road network Field Trial Amsterdam

For most of the motorway network historical andl téae (1 minute delay on processing and up to a
maximum of 3 minutes in the live feed) loop detectata is available. On average the distance legtwe
the loops is about 500 meter. For each minute ageevehicle speeds (km/h), flows (veh/min) and the
lane closure status (Mistica) are stored. The Mati®@ata Warehouse for Traffic Information (NDW)
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provides historical and actual minute data aboawetr times and traffic volumes on the motorways,
secondary roads and urban thoroughfares of thecipating authorities. The roads for which the NDW
provides data for Amsterdam and surroundings ase/ston the bottom left side of Figure 3 (the cotbre
links). These are the most important primary armbsdary roads of Amsterdam. Travel time information
is available on all colored links in Figure 3. Oretblue dotted links (mainly motorways) also teaffi
volumes are available. Since the NDW data on theomays is less detailed than the loop detectaa dat
with lane closures, the motorway prediction modad ghe marginal model for incidents use the loop
detector data and the data for lane closures. dt¢ed hetwork predictors use the NDW-data. In tharne
future additional data sources will be added ferltcal prediction models. Additional Bluetooth sers
will be installed in the event areas and floatimyide data from the application that is to be depetl
and from other applications will be used to makeriowed predictions. As stated above some gapdillin
algorithms have been developed to estimate trawelstfor roads where there is no data availabkbher
guality of the data is not sufficient. Since thevraata sources should improve the data qualityraddce
the gaps, the role of the gap filling algorithmeigpected to become less important in the futurelly,
situational data like rain data, road closures #retime of day and the day of the week is used to
improve the quality of the predictions.

Quiality of the prediction algorithms

In the previous sections it is explained how thiéedént prediction models and the hypothesis manage
work. In this section, a quality indication is givef the LNP. The other prediction models remaithia
initial implementation phase and have yet to bduatad. Figure 4a-c summarizes the quality of the f
lower level predictors for the most important setamy roads (category B roads) for different pradict
time horizons (y-axis) and different days of theeléx-axis). The shown quantity is the error whigh
the error measure as shown in Equation 1. Therigstnean and median were almost identical and
therefore only one is shown. Within each day, éachinute period of the entire day is plotted (isft
0.00 h and right is 23.55 h). The prediction resalie compared with the realizations of the tréinets.
The results are averaged for each day of the weglath the links to come to an average predictioare
The results show that the naive predictor perfammis for predictions horizons up to 30 minutes (kig
4a). This can be logically explained by the faettti is likely that in a few minutes the traffigusation

will not change much. For Saturdays and Sundays,ntiive predictor and the other predictors also
perform well because most of the time on SaturdagsSundays the network is in a free flow stateciwhi
is easy to predict. For the longer term predictithes historic median predictor is shown to perfdrast
(Figure 4c). In practice this predictor appearsalioost always outperform the historic mean predicto
The best fit predictor performs best at the tréamsiphase between peak and off-peak period andelestw
the off-peak and peak period (Figure 4b). Everyuathe Hypothesis Manager determines which
predictor is used on different days, different tiofelays, different prediction horizons and differeoad
category. The most accurate, and therefore apgiredjctor is shown in Figure 4d.

Figure 4e-g shows the results for relative errardach road type. The figures show that the
predictions for the motorways (category A) are itiest accurate and have on average a relative @rror
up to 20% depending on the prediction horizon ame ©f day. The largest errors can be found during
the morning peak on Tuesdays. The prediction quédit category B roads is a bit lower than for A
roads, but on average remains below 25%. For cateQoroads the errors are again slightly larger,
especially during the off peak analyses. A furthealysis indicated that this was caused by poa dat
guality on a number of roads. The quality of thasadis currently being improved.
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Figure 4: (a-c) Quality of the local predictors (@ive, best-fit & historic median) for cat B roads. (d) Applied
model for time-of-day and day-of-week. (e-g) Ovethprediction error for local predictors per road category.
The axes show: Horizontal: time during a week. Vertical: prediction horizon.
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6. CONCLUSIONS AND FUTURE WORK

In this contribution a framework for real time pidtdns has been introduced in which different
prediction models are run in parallel. It was adited that it is a good choice to combine different
models since different models perform well undéfedent forecast horizons and for different locatip
different road types, different times of day andfedent situational variables like incidents. Thss
demonstrated in the test case for the Amsterdaroti€ab Trial in which four data driven prediction
models were selected and applied: a naive prediatiodel, a best fit prediction model, a historicame
prediction model and a historic median predictiavdel. It was shown that for this specific caserthive
method, which assumes that the network state doeschmange, performs best for short prediction
horizons (up to 15 minutes) and for uncongesteffidrin the peak periods. For the longer term the
historic median prediction model is especially stiiatnd outperforms the historic mean predictionehod
For the period just before and after the peak pefie best fit prediction model performs best.

The initial results of the Amsterdam Practical Tshowed that these simple prediction models
already perform quite well since the average altsalelative error of the combined models is in most
cases below 20%. The advantage of the framewdHatst is very easy to add more advanced predictio
models to the framework due to the Hypothesis Managat was introduced as well in this paper, Whic
can combine the results of many different predictiwodels into a single prediction.

The predominant choice for data-driven models aimulation based models was made because
data-driven models avoid many calibration issuabGan operate with shorter calculation times in-rea
time application. Of course the parameters of datzen models need to be calibrated as well, howeve
this can be performed offline and is much easian tteal time OD-estimation or calibration of thado
capacities. Furthermore, if data driven modelsumex the actual traffic state is correct by definit(as
long as the data is correct), whereas simulationetsoalready deviate from the actual traffic state.
Furthermore, the computational complexity of dat&eh models is lower compared to simulation based
models. A prediction model for arterial roads amdidents on arterial roads was also introduced.
Opposed to the other prediction models the incidendel is not a fully data-driven model due to the
inability of data driven models to predict unknowgidents, but rather a hybrid marginal-data model.
The model does however use actual data and iga@i@ibin real time. Extensive results of these risde
in practice will be discussed in future work.

Finally, the application of the prediction modeistihe Amsterdam Practical Trial has shown that
the proposed framework allows predictions to be enad a large network (116 thousand links and 68
thousand nodes) within a short computation timeh an update frequency of 5 minutes and with large
data volumes.

Future work will focus on adding additional datais®s like floating car, floating device and
Bluetooth data to the framework. The frameworklieaaly designed in such a way that this can redtiv
easy be carried out as all the data is transfotmédk travel times. Of course this does requilditional
data fusion. Furthermore, the quality of the priedic models will further be analyzed especially floe
arterial network predictor and marginal model focidents. Finally, the Hypothesis Manager will be
improved in such a way that it becomes possiblswtiich between the model selection rules based on
local actual and recent traffic conditions.
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