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1. INTRODUCTION

The topic of shelf circulation has been treated in the
preceding chapter (Huyer(l)). Nearshore circulation, the
topic of the present chapter, differs essentially from shelf
circulation in scale and in the relevant driving forces, and

therefore deserves a separate treatment.

Shelf circulation is driven primarily by wind- and
tide-induced forces. It is laterally only weakly constrained
so that the geostrophic (Coriolis) acceleration is manifest in
the response. Nearshore circulation on the other hand is
dominated by wave—indqped forces associated with shallow-water
wave Dbreaking and is confined to a relatively narrow
shore-bounded area. For brevity and for clarity of presenta-
tion, only wave-induced nearshore circulation is considered in

this chapter, with zero mean flow far offshore.

The purpose of this chapter is to give a state-of-the-art
review of the subject, rather than a presentation of recent
research results. Emphasis 1is placed on the physics.
Mathematical formulationS;o%'the most important relations are
given, but solution techniques are only briefly referred to
without analytical derivations or numerical algorithms.
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The outline is as follows. Section 2 gives a brief,
qualitative indication of different types of motion in the
nearshore zone. The nearshore wave field is dealt with in
section 3. Section 4 focuses on the internal, vertical
structure of the mean circulation in the reduced case of
shore-normal motions. The more general circulation in two
horizontal dimensions is described in a vertically-integrated
sense in section 5. The chapter closes with a discussion of
recent developments towards a three-dimensional modeling of
the nearshore circulation.

2. TYPES AND SCALES OF MOTION

The flow pattern in the nearshore zone is dominated by
wind-generated waves that evolve from deep water to the beach
in processes of refraction, shoaling and breaking. As the
waves propagate into shallow water, an increasing profile
distortion occurs as a result of bound higher harmonics, whose
relative intensity reaches a maximum in the vicinity of the
location of initial » breaking.. In the breaker zone, a
considerable part of the high-frequency kinetic energy is
associated with breaking-induced turbulence.

Incident wave frequencies at exposed sea coasts are
typically of +the order of 0.1 Hz. However, spectral
measurements through the surf zone identify a significant role
for low-frequency motions or surf‘beat, frequencies less than
about 0.05 Hz. Their relatiyg importance is enhanced through
the surf zone as a consequence of shpaling and breaking; they
are arguably dominant ~ during rough conditions (Guza and
Thornton (2)). Both cross-shore . and longshore propagation
modes have been identified. Cross shore modes may derive from
forced 1long waves thaﬁ are bound to short wave groups
(Longuet-Higgins and Stewart (3), Huntley and Kim (4)) or to
long period variations in the break 1locations induced by
incident short wave groups (Symonds et al (5)). Long wave

motions radiate both seaward and shoreward from the breaker




line as a consequence of this second mechanism. ILongshore
modes may be progressive or standing edge waves (Huntley et al
(6), Holman and Bowen (7)).

The low-frequency motions in the nearshore zone referred
to above are manifestations at difference frequencies of
nonlinear interactions within a narrow-banded incident wave
field. Such interactions also give rise to steady perturba-
tions (spatial variations of the mean water level (MWL) and
mean flows).

Spatial variations in the local MWL are most notable in
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the shore-normal direction where there is a close relationship
between the shoaling-breaking evolution of the wave height and
the setup of the MWL from the global still water level (SWL).
The shoaling increase in wave height prior to breaking is
accompanied by a set down of the local MWL and the subsequent
decrease in wave height throughout the surf =zone is
accompanied (after some lag) by a rise in the MWL which
evolves into a rather larger setup. 1In addition, there is a
significant vertical ﬁéan—flow circulation in the on-offshore
direction and a two layer structure can be identified.
Incident progressive waves carry a small forward mass flux
towards the beach in the trough-crest region, balanced by a
small offshore flow or undertow beneath the trough.

Longshore currents of similar magnitude may be identified
in the mean flow within the surf zone. Longshore nonuniformi-
ties together with the requirements of mass conservation may
lead to nearshore cel;S“of horizontal circulation.- Return
~flows through the surf are narrow and intense (rip currents),
as a result of vortex stretching (Arthur (8)), but the
balance of the gyres beyond the surf zone and returning
through the surf zone are broad and weak. Rip currents are
regular features of most beaches and identify the existence of
one or more circulation cells. The rips may be located by

topographic constraints of the flow field such as groynes or




headlands but are nonetheless observed on long straight
beaches at near-normal incidence, suggesting an alternative
origin in the nearshore hydrodynamics or perhaps morphology.

The dynamics of the vertical and horizontal nearshore
circulation (mean flow) are governed primarily by the breaking
incident waves; turbulence and low-frequency motions play a
secondary role. Present-day nearshore circulation models do
include turbulent momentum transfer, albeit in crude
approximations, but the influence of low-frequency motions on
the steady circulation is generally ignored. This is not
correct because of the non-zero correlation between the
low-frequency motions and the short-wave groups (see e.g. Goda
(9), Dally and Dean (10)). However, there is presently no
real alternative as a reliable prediction of the low-frequency
nearshore motion is not yet available.

Although the fluctuating motions dominate in the nearshcre
‘zone, it is nonetheless convenient to adopt a Reynolds-style
decomposition of the instantaneous flow variables into mean
flow and fluctuating pérts. We adopt a cartesian coordinate
system located in the horizontal plane of the global SWI. with
horizontal axes x and vy (or x,=(x,,x,)=(x,y) in tensor notation or
x=(x,y) 1in vector notation) and vertical axis z directed
upwards. The o components of the horizontal velocity, for
example, are written

Ue(x, 2, ) =uo(x,2)+U,(x,2,t) (2.1)

where i, is the flow velqcitf averaged over a duration much
longer than the wave gréups, but still significantly shorter
than any time scale associated with incident sea conditions.
Such an averaging period will average over both the waves and
the turbulence. Measured time scales in surf zone turbulence
are significantly shorter than typical wave periods and it is
further convenient to separate the fluctuating velocity 2, into
turbulent (single prime superscript) and wave (double prime

superscript) components, for example

a%&a

44?6&




prime

Ta(x,z, ) =us(x,z,0)+ul(x,2,t) (2.2)
doukle peime
The value of this separation is enhanced by the common lack of

correlation between the wave and turbulent components.

3. NEARSHORE WAVE FIELD

Qualitative discusiion.

This section gives a qualitative discussion of some
aspects of wave models which are important for the calculation

of nearshore circulation, prior to a quantitative presenta-

Random or deterministic wave models. Randomness is an
essential property of wind-generated waves and should be
included if realistic results are to be obtained for the
circulation induced by wind waves. Calculated results for
monochromatic, unidirectional incident waves often contain
rapid and large spatial variations in energy density (e.g. in

refraction calculations) or energy dissipation-rate (e.g. near

" the so-called breaker line), which lead to spurious results in

the - calculated wave-induced circulation. This contrasts
strongly with the more realistic smooth and weak modulations
in the results of random-wave models, with a distribution of
the wave energy over a continuum (in theory) or a multitude

(in numerical models) of frequencies and directions.

Propagation. Nearshore waye propagation is characterized
>primarily by depth-induced sﬁoalingh refraction and breaking.
Effects of wave-induced . currents usually are of secondary
importance, which 1is not to say that they are always
negligible. They can be significant in regions of strong
~.velocity shear as in rip-current systems. A more fundamental
reason for their importance is the fact that with mutual
interactions, the nearshore wave-current system may Dbe

unstable against longshore perturbations (Dalrymple and Lozano




(11), Miller and Barcilon (12)). For these reasons, the
current influence on the waves is taken into account in the
quantitative formulations given below.

Diffraction smoothes amplitude variations such as may
arise as a result of shoaling and refraction, or in the
vicinity of obstacles such as breakwaters and headlands. In
the latter category, the amplitude gradients are strong
(significant variations within a wave-length) and diffraction
should be modeled. 1In situations without obstacles, the
influence of diffraction on the nearshore wave-field is
generally negligible. This is understandable in view of the
relatively smooth variations in the wave-field which result
from the finite spectral bandwidth of the incident-wave
spectrum.

Energy input and dissipation. The single most important
source/sink of wave energy in the nearshore =zone is the
dissipation due to shallow-water wave breaking. Other
processes such as local wind input or boundary-layer
dissipation are reigtively insignificant because of the
relatively short propagation distances involved. Weak
non-linear wave-wave interactions are conservative over the
entire spectrum, but not locally in the spectral domain. They
are an order of magnitude stronger in shallow water (triad
resonant interactions) than in de.p water (quadruplet resonant
interactions). In shallow water’ breaking waves, the interac-
tions are no longer weak. No theoretical formulation of these
interactions is available.

Quantitative formulation.

In this paragraph, a quantitative formulation is given of
the most relevant physical processes mentioned above;
diffraction is excluded here since that is dealt with in
detail in the chapter on "wave transformation" in the present
volume (Liu (13)).




In the following, the depth h and current velocity U in
the domain of computation are supposed to be known a priori.
The influence of the wave field on the mean depth and the
current velocity can be taken into account by simultaneous
(iterative) integration of the wave propagation equations with
the mass and momentum equations for the mean flow, which are

described in section 5 of this chapter.

Ray Kinematiecs. For waves on a variable current, the Doppler
shift between absolute frequency » and intrinsic frequency o

should be taken into account:

o=(gktanhkh)'’=w -k, U, (3.1)
where t is the magnitude of the wave number vector k.
The kinematics of the propagation are described by the ray
equations
e sy 3.2
= “+ R
‘ di ga ¢ ( )
in which C,,=90/9k,,
dk, Jk, dk,dx 00 oh oU
- %4 Pee g, —* (3.3)
di ot Jdx, dt ohox, 0X 4
and, for time-invariant depth and current,
du)_au)+aa)dxa_ (3.4)
dt , "ot dx, dt '
See Whitham (14), Phillips (15) or Mei (16) for a full
treatment.
Spectral Wave Action Balance. Neglecting diffraction, the

dynamics of waves in an area with non-uniform depth and
current velocity are conveniently described on the basis of
the principle of conservation of wave action, formulated in

terms of the spectral action density in wave number space,
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which (to lowest order) equals the spectral density of the
wave energy, divided by the intrinsic frequency (Bretherton
and Garrett (17), Hasselmann et al (18)). In a non-dissipa-
tive wave-current system, and neglecting nonlinear wave-wave
interactions, the spectral action density N(k:x.t) is conserved.
In a more general formulation, a source term S(k;x,t) accounts

for the net rate of transfer of wave action to the component
k(x,t):

ON ON dx, oN dk,
ON , BN LN =5 (3.5)
ot dx, dt dk, dt

This balance equation can be transformed from wave-number
space to the space of frequencies v and directions 6, using the
dispersion Equation 3.1, but these equations are not
reproduced here.

In the nearshore zone, the dominant contribution to the
source term S is due to wave breaking. Although the overall
energy dissipation rate associated with random-wave breaking
in shallow-water can be calculated realistically (Battjes and
Janssen (19), Thornton and Guza (20), Battjes and Stive (21)),
its spectral distribution is not known. Yamaguchi (22), who
utilizes a two-dimensional spectral action density balance in
(w,8) , approaches the problem of wave breaking through the use
a saturation level for the equilibrium range given by
Kitaigorodskii et al (23).

The results presented by Yamaguchi are realistic for the
wave field as well as for_thé induceg currents. Nevertheless,
some reservation is &appropriate. The spectral saturation
model given by Kitaigorodskii et al applies to an actively
wind-driven wave field where the high-frequency spectral tail
is in equilibrium between wind input, nonlinear transfer and
dissipation; this dissipation is mainly due to white capping.
The sea state is supposed to be spatially homogeneous, or at
most varying so slowly that it can be regarded as

gquasi-homogeneous. This contrasts strongly with the situation
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in the nearshore zone, where depth gradients dominate the wave
evolution. Also, shallow-water wave breaking on a sloping
~bottom is rather different from white capping in a
wind-driven, homogeneous sea state. Altogether, the relevance
of this approach to the nearshore zone is questionable at best
for wind-driven waves. For swell, this approach does not
apply at all.

Narrow Band Approximations. A practical drawback of a fully
two-dimensional spectral formulation is the considerable
computational effort required. An approximation, which in
many cases 1is capable of yielding realistic results, is to
assume a narrow spectral distribution of wave action over the
frequencies, so that the frequency-variation of parameters in
the wave propagation model such as wave number and group
velocity can be neglected. The effects of a small but nonzero
frequency bandwidth are then taken into account analytically
through the theoretical statistical properties of the wave
field in time (to lowest order Gaussian instantaneous values
and Rayleigh amplitudes and wave heights). This lumping in
frequency therefore reduces tﬁe computation effort without
oversimplifying to a monochromatic formulation. However, a
similar reduction in the directions (to a wunidirectional
system) is not feasible in general because, in contrast with
the 1lumping in frequency, results of a computation for a
single incident direction cannot be generalized analytically
so as to represent the effects 6f a small but finite angular
bandwidth, since these depend on the depth (and current) field
in the problem at hand. “Moréover, in case of irregular bottom
topography, unidirectional wave results soon lead to spatial
distributions with unrealistically rapid variations, at least
within the refraction approximation (neglecting diffraction).
This is because the lateral amplitude gradient in a wave field
propagating over irregular bottom topography is much stronger
than the longitudinal one. A slight variation in angle of
incidence can then lead to significant 1local amplitude

variations.




A spectral wave action formulation for waves in shallow
water, which is lumped in frequency but not in the directions,
is given by Holthuijsen and Booij (24) (see Holthuijsen et al
(25) for a more detailed description). The breaking-wave
energy dissipation of Battjes and Janssen (19) has been
incorporated in the model, using some ad hoc hypotheses about
its spectral distribution. The model has been verified using
laboratory data (Dingemans et al (26)) with good results as
far as the prediction of the wave energy is concerned; - the
wave frequencies are not as well predicted. The model is in
operational use for studies of nearshore circulation and
coastal morphology (de Vriend and Ribberink (27)).

A further simplification is obtained if the narrow-banded
incident wave action and energy are not only lumped into a
single frequency (e.g. the peak frequency w,) but also into a
single direction. This approach is feasible provided the
bottom topography in the study area is not too irreqular (see
the discussion above). It is consistent with the use of a
lumped, non-spectral representation of the dissipation due to
random-wave breaking.’ The action balance equation for this

case, assuming stationary conditions, reduces to

/4
° ((CQG+UG)§—>=—§ (3.6)

0X 4 o

in which £ is the wave energy and D is the average rate of
wave energy dissipation, both per unit horizontal area.
Battjes and Janssen (19) present the following expression for
D, based on a bore mode}'fbr a shallow-water breaking wave:

a ) 2
D=§;I—prg0pHm (3'7)

The coefficient o is of order one; o, is the peak intrinsic
frequency; Qp is the local fraction of breaking waves, which
is calculated in the model as a function of the ratio of the

(unknown) rms wave height to Hy, which represents a local
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depth-limited maximum wave height for non-breaking waves. In
this formulation, the dissipation rate depends on the 1local
rms wave height through Q.

The dissipation model represented by Equation 3.7 has been
extensively <calibrated (with respect to an empirical
coefficient in Hp, assuming « = 1) and verified with
laboratory data and field data by Battjes and Stive (21). It
appears to give realistic predictions of the rms wave height
decay in random breaking waves, with relative errors typically
less than 10%. The same applies to the formulation presented
by Thornton and Guza (20), which is based on the same
principles. These verifications were for conditions of
essentially one-dimensional prcpagation. However, the formu-
lation is not vrestricted thereto. Its implementation in
. two-dimensional models has likewise given good prediction of

the rms wave heights, as noted above (Dingemans et al (26)).

Amplitude Domain Models. Goda (9) and Dally and Dean (10)
present models for the calculation of random-wave transforma-
tion in the coastal ‘zone utilizing the probability density
function (pdf) of individual ("zero-crossing") wave heights
p(H) (Goda) or the joint pdf of wave height and period p(H,T)

(Dally and Dean). In these models, the incident-wave pdf is
discretized and each element 1is transformed, including
shoaling, breaking and post-breaking decay, as if it

represented a periodic wave train. The results are recombined
at each point of prediction so as to obtain a transformed pdf.
These individual-wave app}éaches allow 1in principle the
inclusion of certain nonlinear effects, e.g. in the shoaling
(Goda), which are not includad in the spectral fc .mulations
presented above. The formulations as originally presented are
for one-dimensional (shore-normal) propagation only. It seems
possible in principle to generalize them to two-dimensional
propagation. This will require application of the pdf of
directions ¢ of individual waves. Isobe(28) gives results for

p(H,0), the 7joint distribution of height and direction; no

11




theoretical results seem to be available for p(H,T,8), the
joint distribution of height, period and directions of
individual waves.

The individual-wave methods allow the estimation of the
local wave height probability distribution, rather than merely
the rms height or the mean wave energy. However, for the
calculation of the wave-induced nearshore circulation, the
mean wave energy dissipation rate is the primary wave-field
property which is required (see section 5). It appears that
this information can be obtained with sufficient accuracy from
the semi-lumped spectral models or even the fully lumped
models such as described above, which require far less
computational effort.

4. VERTICAL CIRCULATION

Progressive waves carry a small mass transport of order
£”/c towards the beach, where C=¢/k is the phase speed of the
wave. From an Eulerian viewpoint, this mass transport is
concentrated between the trough'and crest elevations. There
can be no net mass flux through the beach and the wave-induced
mass transport above the trough is largely balanced by a
reverse flow or undertow below the trough. A similar vertical
structure is present in the 1local on-offshore momentum
balance, where the dominant terms are the vertically uniform
hydrostatic pressure gradient arising from the setup 7 of the
MWL from the global SWL., and the vertically nonuniform
wave-induced momentum flux, the major part of which is
concentrated in the trough-crest region.

Analysis of the vertical circuiation has been based on the
classical Reynolds equations, generalized to include separate
wave and turbulent fluctuations. Under stationary conditions

and longshore uniformity, the mass conservation equation is
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ou ow
—+—=0 4.1
0x 0z ( )

and the x-momentum equation is

O f—py O ,__ 1dp 10 ,_ oy —ry
oS B e — B e e ———— —_— —_ —_—
ax(“ ) az(“uo pox +pax(rxx pu - —pt )
la = _ 7 7T
+ ~—(sz puw' -pu”w ) (4.2)
poz

The z-momentum equation additionally includes the gravitation-
al acceleration.

The natural length scales in the horizontal and vertical
directions are 1/k and h respectively. As kh 1is dgenerally
small in the nearshore zone, boundary layer arguments are
commonly utilized. This involves an understanding that the
flow pattern 1is slowly varying in the horizontal but
potentially rapidly varying in the vertical. Further,
distinctly different physical processes are observed to be
active at the bed (an}pscillatory boundary layer over a mobile
bed) and at the free surface (wéve-induced mass transport and
wave breaking). It is accordingly convenient to envisage a
three layer structure in the vertical, a narrow bottom
boundary layer, a wider middle layer extending to the wave
trough level and an upper layer extending from the trough to
the cfest. These layers are coupled by mass and momentum
transfer across the interfaces, 'the elevations of which are
slowly-varying with horizontal position. In principle, each
of these layers can be qohsiﬁered independently provided that
the appropriate interfacial boundary conditions can be
specified.

Analyses of the middle and bottom layers in the nearshore
zone (Svendsen (29), Dally and Dean (30), Stive and Wind (31),
Stive and de Vriend (32), Svendsen et al (33)) have much in

13
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common with analyses of viscous effects on non-breaking wave
propagation (Longuet-Higgins (34), Craik (35)). The basis is
frequently a reduced form of the x-momentum equation, namely

100 10, —g gy [ 20\ 123, —p—p
O=-——+-——|-pu " —pu" ")+ —lv,— |+——|l-pu'w 4.3
(- pu) oz\ ‘oz paz( P ) (4.3)
The omission of the convective acceleration and viscous shear
terms follows from the turbulent boundary layer analogy; these
terms are generally small and are rarely significant. The

turbulent normal stress -pu”? is zero for non-breaking waves.

The major assumption in Equation 4.3 1s the Reynolds
stress closure hypothesis for the turbulent shear stress -pu'w’.
In common with other turbulent shear flows, the turbulent
shear stress is related directly to the mean flow through the
eddy viscosity approach. The nature of the present flow
however is rather different from classical turbulent shear
flows, where the turbulent eddy viscosity v, would be defined
by established zero, one or two equation turbulence models
(Rodi (36)). Firstly; the mean K flow is typically an order of
magnitude smaller than the amplitude of the fluctuating wave
motion. Secondly, turbulent vorticity is primarily generated
by gravitational instability at the free surface rather than
by viscous shear at the bed. Zero equation turbulence models,
in which the adopted velocity and 1length scales of the
turbulence are related to the {ane motion (Stive and Wind
(31), Svendsen et al (33)) have found most favor in the

present context. "

The time-averaged pressure p is available from integration
of the z-momentum equation from elevation z to the crest. 1In
a manner consistent with the boundary layer analogy, the

leading terms in the vertical pressure profile are

p(zix)=pgn-z)-pw’-pw’? (4.4)
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where x variation is implicit in all terms. The gravitational
term is hydrostatic, pg(7-2), below the trough, such that the

x-momentum equation for the middle and bottom layers becomes

O=—giz+ljlﬂyﬂ7[qﬂfv+b5n+pﬁwﬂ+il(még)+lj{—pﬂ”ﬁ")(45)
o0z oz) poz

Both terms involving horizontal gradients have 1little
significant vertical structure in the middle layer. The setup
term has none by definition and steady wave theory predicts a
uniform distribution for the total wave-induced apparent
normal stress term -p(u™-w™) below the trough. Measurements of
turbulent apparent (i.e. Reynolds) normal stresses 1in the
nearshore zone (e.g. Nadaoka and Kondoh (37)) do show some
variation with depth but they are an order of magnitude
smaller than the corresponding wave-induced apparent stresses
(Sobey and Thieke (38)). The final term in Equation 4.5, the
wave-induced analogue of the turbulent shear stress term, is
certainly significant in the bottom boundary layer but it is
assumed not to be influential in the middle layer. Steady
wave theory in fact ﬁredicts that -pu™w” is zero in the middle
layer. These assumptions reduce Equation 4.5 for the middle
layer to an equation of the form

O=F(x)+§%(v,§g) (4.6)
where there is z variation only in the turbulent shear stress
term. For fixed x, this is a second order ordinary
differential equation in u(z) which may be solved by classical
analytical or numerical means, depending on the z variation of
the eddy viscosity and the boundary conditions. Mathematical
solutions of the reduced equations for the middle 1layer
(Svendsen (29), Dally and Dean (30), Stive and Wind (31))
follow directly from specification of the boundary conditions
and the solution is seen to be crucially dependent on these

boundary conditions. There is a strong empirical element in
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presently available estimates of these boundary conditions and
the value of possible solutions for the middle layer must be
similarly judged.

It 1is appropriate at this stage to reflect on the
mathematical character of the problem as presently posed. It
is assumed that the local wave field is given, so that the
wave-induced apparent stresses and the trough elevation are
known. It is further assumed that the bottom boundary layer
is thin and that the lower interfacial elevation can be taken
as the bed elevation. Given an appropriaie turbulence closure
model to define the eddy viscosity, there remain three
unknowns, namely the horizontal velocity u(z;x), the wvertical
velocity w(zix) and the local MWL 7#(x). There are two
equations, Equations 4.1 and 4.5 (or 4.6), of which the
momentum equation is second order so that three boundary
conditions must be specified to uniquely define the solution.
A common implicit assumption (Svendsen (29), Dally and Dean
(30), Stive and Wind (31), Svendsen et al (33)) has been the
consideration of the setup gradient as a given quantity, prior
to the solution of the momentuﬁ equation. In fact the setup
gradient must be determined from the depth-averaged momentum
equation (Longuet-Higgins and Stewart (39)) or from simultane-
ous solution of coupled middle and upper layers. The three
necessary conditions, of which two are associated with the
momentum equation, must be drawn from mass and momentum
transfer across the lower and ﬁpper interfaces. Interfacial
boundary conditions in terms of the velocity component across
the interface g, together with the velocity component along the
interface g, and the shear stress along the interface 7, are
appropriate.

The boundary conditions at the trough interface are
clearly crucial to the analysis as they represent the
influence of the trough-crest region that is predominantly
responsible for driving the vertical circulation. There is a

strong velocity shear across this trough 1level so that
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conditions in terms of interfacial shear stress and normal
velocity would seem most appropriate. These interfacial
conditions provide the coupling with the upper layer; they
appear as boundary conditions for the 1local conservation
equations and as explicit terms in the integral conservation
equations for the both layers. The integral mass conservation
equation for the upper layer is

Ne
d j‘ — -
dz - =0 4.7
s PLa* Pq., (4.7)

Ny

The integral mass flux in the upper layer for non-breaking
waves is of order £/c but this flux is enhanced in breaking
waves conditions (Svendsen (40)) by the '"surface roller", a
volume of water carried forward by the breaking wave at the
phase speed. This leads to an estimate of the mass flux
across the trough interface of the form

e

Svendsen gives an empirical estimate of 4,, the fractional
increase in the total mass flux in the trough-crest region

associated with the surface roller.

gimilar layer integration of the x-momentum equation
(Phillips (15)) leads to an estimate of the interfacial shear
stress of the form

’y

?s=(1+z]2)2€— (4.9)

where p 1is again the total energy dissipation rate in the
breaking wave and the 4, fractional increase or decrease
represents that part of the preaking wave dissipation that is
located below the trough, together with any contribution that

might be associated with +the enhanced mass flux in the
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trough-crest region (Stive and Wind (31)) and with viscous
attenuation (Craik (35)). For irrotational, non-breaking

waves, both g, and 7, at the trough interface are zero.

Shear is not strong by definition at the top of the bottom
boundary layer and a g, condition is appropriate there. In the
classical boundary layer manner, an outer irrotational flow in
the middle layer would be decoupled from the boundary layer
flow and the rotational flow in the bottom boundary layer
would in turn be driven by the outer flow. This is not
entirely the case in the present situation as the outer flow
is rotational and is not decoupled from the boundary layer
flow. Classical boundary layer solutions have nonetheless
been a popular basis for definition of the bottom boundary
condition, in particular the solution for the oscillatory
laminar boundary layer on a rigid horizontal bed wunder
progressive Airy waves (Longuet-Higgins (34), Hunt and Johns
(41)). This solution predicts that the thickness of the
bottom boundary layer is indeed narrow. At second order in
the Stokes expansion, it also predicts the existence of a
finite mean flow velébity at the edge of the boundary layer,
which is given by

_Sw (ka)?
4k (sinh?kh)

(4.10)

This is termed the Eulerian streaming or induced streaming
velocity. This mean flow velocity is directed in the
direction of wave propagatiqn; it is conveniently independent
of viscosity and proyides an equally convenient bottom
boundary condition for .the flow in the middle layer. The
convenience of this Eulerian streaming as a bottom boundary
condition has perhaps been an inducement to overlook the
reality of the flow in the bottom boundary layer under
progressive waves approaching a beach. For a turbulent
boundary layer under second order Stokes waves and Stokes

first definition of phase speed, the Eulerian streaming is
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generally smaller in magnitude than the above estimate and
follows the direction of wave propagation only in deep water;
it passes through zero and reverses in direction in shallower
water (Trowbridge et al (42)). When the additional complex-
ities of a mobile sloping bed and a return current are also
introduced, it is evident that both the magnitude and the
direction of the Eulerian streaming velocity is far from being
resolved, and that its use as a lower boundary condition on &
in the middle layer is not justified. Coupled layer models
(e.g. Svendsen et al (33)) provide a more rational basis for
definition of the interfacial velocity.

As a closing comment, it is noted that the flow in the
middle layer has received far more attention in the literature
than the flows in the upper and lower layers. This is perhaps
counterproductive in view of the fact that major physical
interest in the vertical circulation should center on the
surface layer (with regard to mass transport and wave
breaking) and on the bottom layer (with regard to sediment
transport and boundarxfshear).

5. HORIZONTAL CIRCULATION

Discussions of horizontal circulation patterns in the
classical context of the long wave equations (astronomical
tides, storm tides, fresh water flood waves) focus extensively
on depth-averaged flow velocities and this approach is again
useful for wave-induced hqgrizontal motions in the nearshore
zone. (Note however that 'there was little value in a
depth-averaged analysis of the vertical circulation where the
depth-averaged flow is zero.) The driving force for
depth-averaged motions in the nearshore zone is provided by
spatial gradients in the time- and depth-averaged excess
momentum flux associated with the fluctuating motion (waves +
turbulence). Cross-shore gradients are largely balanced by

pressure forces which result in set up (or set down) of the
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MWL and no current. Such is not the case in the longshore
direction where any excess momentum flux will potentially
drive a current.

Conservation Equations. The time and depth averaged station-
ary circulation 1is described by the time and depth averaged
conservation equations (Phillips (15)) for mass

s (Ua(r+m)=0 (5.1)
Xa
for momentum
F. on i 08 T
2 (v, U,)=-g=L- _ TZaF | “ba (5.2)
dxge “F 0x4 p(h+n)dxy p(h+7)
and for fluctuating energy
E) dU _
axﬁ(UuE+1~"(,)+3(,1,,—a—;‘:——e+U(,rM (5.3)

where the S5, are thg excess momentum fluxes or radiation
sctresses associated with the fluétuating motion, the F, are the
vector components of the fluctuating energy flux and ¢ is the
rate of energy dissipation per wunit area by molecular
viscosity.

The relative simplicity of these conservation equations
and the similarity to the long. wave equations is achieved
through the definition of the depth-averaged velocity U, in
terms of the total mass flui}'such that

e

-
ph+mU,=p [uedz - [T,az (5.4)
-h

~-h

where n(t) is the instantaneous water level and 7. is the crest
level. Current, as distinct from the depth-averaged velocity
Us, is identified with the time-averaged flow velocity u. below
the trough level. Between the trough and the crest 1level p,,
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the current interacts with the mass flux associated with the
wave in a continuous manner to define a mean flow %.(z) profile
that peaks near the MWL. There may accordingly be potential
value in a two layer approach with an interface at the trough
level and layer-averaged rather than depth-averaged conserva-
tion equations (Thieke and Sobey (43)). The following
discussion will nonetheless focus on the depth-averaged
equations, although the general principles are equally
applicable to layer-averaged equations.

For the purposes of a detailed consideration of the
complete conservation equations, it is necessary to identify
the separate turbulent (single prime superscript) and wave
(double prime superscript) components of all terms associated
with the fluctuating motion. The mass conservation equation

(Equation 5.1) remains unchanged, the momentum equations

become
5 o7 ] S, 1 9SL, T
n a ap ba
(U Up)=-g - — - = - —  (5.5)
LR 0xq p(h+n)oxg p(h+n)dxs p(h+n)
and the fluctuating energy equation becomes
é 4 " Vg 14 ’ aUﬁ 70 aUB —_
TNUE +UE +F +F_ |+S ,—+S =-e+U,T 5.6
aXB( a a a a) aBaxa aBaxa € a' ba ( )

It is convenient further to separate the wave and turbulent
components of the fluctuating energy equation, which requires
the introduction of a wave-turbulent interaction term »
representing dissipation of ‘wave energy to turbulence in the
breaking process and simultaneously' (Battjes (44)) production
of turbulent energy from the same breaking process. The

turbulent energy equation becomes

E (U 5"+ F e s QU ,

dx aﬁa _D=_6+Ua?ba (5'7)

a

and the wave energy equation
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. oU
(UaE"+F;)+S;/Bg—B=—D (5.8)

a a

oXx

It is clear from the above conservation equations that
wave-current interactions, turbulence-current interactions and
wave-turbulence interactions all have potential relevance to
the prediction of the horizontal circulation. As a conse-
quence of these interactions, the wave and current fields must
in principle be computed simultaneously. For clarity of
presentation, the equations for the wave field including the
influence of a current have been dealt with separately in
section 3 of this chapter. (The wave action Equation 3.6 is
in fact equivalent to the wave energy Equation 5.8 if the

kinematic wave equations are also taken into account.)

Longshore Currents. The broad features of the longshore
current are particularly simple in the case of longshore
uniformity (Bowen (45), Longuet-Higgins (46)). The longshore
(x2 or y) momentum balance reduces to

O0=- — '_y__x_?b (5.9)

The onshore gradient of the excess onshore flux of longshore
momentum is significant only within the surf zone. This
forcing is balanced by the longshore component of the bed
shear. Simple models of the forcing in terms of breaking wave
dissipation and of the bed shear in terms of the longshore
velocity lead to predictive, equations for Uy(xj7) or V(x) that
increase from zero at thgfbeéch to a maximum value somewhere
shoreward of the breaker 1ine, decreasing back to zero further
seaward.

Two-Dimensional Circulation. While the long uniform beach
schematization is a useful artifice to introduce the broad
features of the longshore current, the general horizontal
circulation requires consideration of the complete conserva-

tion equations. All spatial gradients of the wave-induced
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excess momentum flux tensor s,, potentially contribute to
forcing. Headlands and coastal structures such as groynes and
jetties additionally impose no-flow constraints and locally
tangential flow along the structure, in either the on- or
offshore direction. 1In this general situation, the require-
ments of mass conservation will lead to nearshore cells of
horizontal circulation. Vortex stretching by increasing depth
(Arthur (8)) generally leads to a narrowing and intensifica-
tion of the offshore flow and the reverse pattern for the
onshore flow.

Circulation cells are also a common feature of the
nearshore flow pattern on apparently 1long straight beaches
under normal or near-normal weve incidence (Sonu (47)). The
broad features of rip current formation and the associated
counter-rotating gyres was initially demonstrated by Bowen
(48). For a normally-incident wave field with a small
spatially-periodic longshore variation in wave height,
longshore currents were generated within the surf zone from
each longshore maximum to each longshore minimum in the wave
height. An offéhore (rip) current was located at each wave
height minimum and each gyre was completed by a weak
counter-current outside the surf zone and a broad return flow
at each wave height maximum. Just what initiates the
longshore spatial periodicity is uncertain. Perhaps there is
some fundamental instability in the nearshore hydrodynamics or
even morphodynamics (Battjes (49f).

Wave Forcing. While all :éfadients of s;, contribute to the
forcing, it follows from Kelvin's' circulation theorem that
only the rotational part'will contribute to the ge. :ration of
currents (Longuet-Higgins (50)). The wave field beyond the
surf zone is well described by irrotational flow theory where
the circulation and hence the current is zero. Dissipation

from wave breaking and bottom friction will lead to vorticity
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generation, finite circulation and to the dgeneration of
currents. A useful distinction can accordingly be made

between the rotational and irrotational parts of the forcing:

087, 9SY, sy

rot

(5.10)

l irrot

éxp 6)63 8x,;

The irrotational part will not drive currents and must be
balanced by the set-up term (pressure gradients) in the
momentum equation, such that

7]
o1 1 95,
=-g 7 - — Blirrol (5'11)
0x, p(h+n)dxg
The residual momentum equation is then
¢ 144 —
a l aSaB l aSaB Tba
S (Ualp)= - ot == (5.12)
Xg p(h+n)oxg p(h+n)dxg p(h+mn)

The setup field would be predicted from the Equation 5.11 and
the horizontal circulation from Equation 5.12. The hydrostat-
ic balance involving the setup term is a significant part of
the complete momentum balance and its decoupling from the
overall momentum balance has considerable numerical advantage
for the computation of the current field. Under assumptions
of no current, no diffraction and Airy wave theory
(Longuet-Higgins (50), Dingemans et al (51)), the irrotational
and rotational parts of the forcing are respectively

’”
2S5 48 I 1 Cy 1 v
rro=(RFDY —| —-= |F S5.13
o, e C U)Axa(h+n(6? 2) ) (5.13)
N,
0S4
ﬁlrol=_2ka (514)
OX g o

Dingemans et al (51) show further that diffraction effects
have 1little influence on the validity of Equations 5.13 and
5.14 but that ambient currents may be influential. In a
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nonlinear approximation, a similar separation is possible in
principle but the appropriate quantitative expressions have
yet to be determined.

Simultaneous computation of both the setup and current
field of course remains a possibility but it requires some
care in discrete numerical models. The radiation stresses s7
and hence asﬁ/ax, may be determined from the computed wave
field. The discrete numerical differentiation may result in
spurious discontinuities in the forcing and hence in the
computed response. In its present form, Equation 5.14 avoids

the numerical differentiation and provides a direct estimate

of the rotational part of the wave-induced forcing.

Turbulence Modeling. The inevitable "Reynolds stress closure"
problem here relates specifically to the turbulent momentum
transport terms s., in the momentum and fluctuating energy
equations and to the bed shear stress 7,, in the momentum
equations. The relative success of turbulence modeling for
turbulent shear flows may eventually translate to the
nearshore circulation”and some progress has already been made.
Modeling f s5,, in the momentum equation and in {.1» turbulent
energy equation has generally adopted the depth-averaged eddy
viscosity approach (Rodi (36)) where

+52 -5, (5.15)

oU, oUg\ 2
0Xp O0Xgq

L4 —
‘S\aﬁ=pvl(h+n)(

together with zero, one or, two equation turbulence models for
the eddy viscosity v,. the’that eddy viscosity here relates
to the horizontal transfer of horizontal momentum rather than
the vertical transfer of horizontal momentum as it does in the

section on vertical circulation.

In zero equation models, v, is related to characteristic
velocity and 1length scales of the turbulence. Turbulence
generated in the bottom boundary layer is represented by the

Twa term. Here we focus on turbulence dgenerated in wave
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breaking, where an appropriate velocity scale (Battjes (44))
is (p/p)'*, leading to the following estimate of the turbulent
eddy viscosity:

D 1/3
v,=A4(—) L (5.16)
P
where M is a constant of order one. An appropriate length

scale L might be either the wave height H or the water depth h
(strictly h + 7). H and h are of the same order in the surf
zone, but H may be a more convenient choice to accommodate
conditions outside the surf zone. Alternative zero equation
models have been used by Bowen (48), Ebersole and Dalrymple
(52), Watanabe (53) and Wu and Liu (54).

In one equation models, the characteristic velocity scale
is defined as the square root of the depth-averaged turbulent
kinetic energy k=£7p(h+7i). E° is determined from the turbulent
energy equation, Equation 5.7, which nonetheless remains
dominated by the wave energy dissipation. Such one equation
models have been used by Visser (55) and O'Connor and Yoo
(56) .

In two equation or k-¢ models, the eddy viscosity is
related to k*/¢ where k is again determined from the turbulent
energy equation and ¢ from a separate flux equation for €. Two
equation models have been used oy Wind and Vreugdenhil (57)
and Yoo and O'Connor (58). Such models rely very heavily on
experience in turbulent shear flows, whereas 2zero and one
equation models are morgfclésely related to the wave breaking
process which so cledrly dominateé turbulent mixin¢ in the

nearshore zone.

Bed Shear 8tress. The final part of the Reynolds stress
closure problem is the representation of the bed shear stress
7... It 1is clear from Equation 5.5 that the bed shear is a
crucial element in the prediction of the horizontal

circulation, as it is principally through this term that the
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depth-averaged current appears in the momentum balance. The
turbulent boundary layer beneath combined wave and current
flow and the bed shear stress that is a consequence of this
flow has been the subject of considerable attention but
remains an unsolved problem. The reasons are abundantly clear
from the complexity of the flow pattern, especially the
contrasting time, length and velocity scales of the separate
components where they exist alone. The time scales are very
long (essentially steady) for currents and quite short (of
order 10 s) for waves. The length scales, represented by the
‘boundary layer thicknesses, are almost the full depth of water
for currents and quite thin (of order cms) for waves. The
velocity scales are small ( < C/10) for the currents and
somewhat larger (of order C) for the waves. Interaction of
such contrasting scales results in a complex flow. Additional
problems involve directional variations and especially a
mobile bed.

Consideration of this boundary layer structure and the
associated Reynolds sgress closure leads to the familiar zero,
one and two equation turoulence models which seek to determine
the turbulent eddy viscosity for vertical turbulent momentum
transfer, as briefly considered in the section on the vertical
circulation. The present focus on depth-integrated conserva-
tion equations however directs attention away from the
vertical structure towards a depth integrated closure model in
the manner of the Chezy model for boundary shear in steady
open channel flow or the Darcy-Weisbach model in steady
turbulent pipe flow. ,Such’ integral closure models are
typically written in ‘quadratic form for the instantaneous
shear stress as

plelo, (5.17)

Tba=

D0 |~
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where Q. is an integral measure of the instantaneous flow
velocity in the combined wave-current boundary layer and f is
the Darcy-Weisbach friction-factor. It is clear that the
friction factor must represent all influences not directly
represented by Q¢ and that a change in the definition of ¢ must
be reflected by a change in the friction factor. A common
definition of the integral measure of the combined flow is the
vector sum of the depth-averaged current and the wave velocity
predicted at the bed by the inviscid Airy wave theory, i.e.

Qa=Ua+amp(u;’)acoswt (5.18)

where the amp() function is the amplitude of the oscillatory
velocity. Time averaging of Equation 5.17 leads to an
estimate of the time-averaged bed shear stress (Longuet-=F. ig--
gins (46), ©Liu and Dalrymple (59)). The computational
convenience of this model is deceptive however as it merely
transfers the closure problem to the estimation of f. There is
an expectation that the friction factor can be represented in
the manner of the Moody diagram for pipe flow, as attempted
initially by Jonsson” (60) for waves alone. The subsequent
literature is extensive, for example Bijker (61), Bakker anA
Van Doorn (62), Grant and Madsen (63), Christoffersen and
Jonsson (64), Visser (65), O'Connor and Yoo (66) and Davies et
al (67); see also Sleath (68). The general trends have been
established in that the influence of the wave motion on the
current has rough equivalence to the response of the current
to a significant increase in the bed roughness. The details
are far from complete ho&eVer, especially considering the
sensitivity of the longéhore current to the bed shear. This
would appear to be the &eakest link in predictive models of
the horizontal circulation. 4

6. THREE DIMENSIONAL CIRCULATION.

Separate consideration of the horizontal and vertical

circulation has demonstrated the existence of dynamically
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significant mean flows in all three spatial dimensions. While
the above separation is convenient for analysis purposes, it
filters potentially significant motions from detailed
consideration. Three-dimensional models of the nearshore
circulation are a recent development and the present
discussion attempts merely to hint at the direction of current
research.

Two approaches are possible, the first being a natural
extension of vertical <circulation analyses. This fully
three-dimensional approach seeks direct numerical solutions of
the Reynolds equations in three spatial dimensions, suitably
generalized to include wave-induced apparent stresses. The
second approach 1is a natural extension of the horizontal
circulation analyses and seeks to establish both the
depth—-averaged flow and the vertical structure that was
ignored in horizontal circulation analyses. This approach,
which can be classified as quasi-three-~dimensional, utilizes
the fact that the horizontal 1length scale in the nearshore
circulation is far greater than the vertical one. A brief
outline of the quasi—three—diﬁensional approach is given
below. The rather lengthy mathematical expressions which are
needed for a complete problem statement and analysis (see e.q.
de Vriend and Stive (69), Svendsen and Lorenz (70)) are not
reproduced here but are represented in highly schematic form.

The three-dimensional circulation is mathematically
described by the extension of the local conservation equations
for mass (Equation 4.1) and ‘momentum (Equation 4.2) to three
dimensions. In the quasi-three-dimensional approach, the
contribution of the vertical turbulent transfer of horizontal
momentum (pz'w’) is the dominant term in the mean horizontal
momentum balance. Modeling this with a turbulent eddy
viscosity model in terms of the vertical gradient of mean
horizontal velocity, the local balance of horizontal momentum
(e.g. Equation 4.2 generalized to two horizontal dimensions x)

can symbolically be written as
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dz( p V'az

——— 0 U,
)=5,

)==Ra(&,Z) (6.1)
R« represents the sum of the remaining terms; it can be
separated into a depth-averaged part, F.(x) say, and a
vertically varying part G.(x.z) whose depth-averaged part is
zero by definition. The same applies to the left hand side of

Equation 6.1. In this manner, a so-called primary velocity u,,
can be defined as the solution of

2 U pq F 6.0
—| v = X .
ryd R el VM ED (6.2)
supplemented with the mass balance and the vertical momentum
balance. Likewise, a so-called secondary velocity u, can be
defined as the solution of

2 U 44
;;(Vrszj)==Ga(£,Z) (6.3)
Equation 6.2 is a generalization to two horizontal dimensions
of Equation 4.6, which is restricted to circulations in a
shore-normal vertical plane. In this formulation, the primary
velocity 1is associated with the depth-averaged equations
(although it has a vertical structure) and the secondary
velocity is associated with the residual equations.

Major sources of secondary flow are the vertical
non-uniformities of wave-induced fluxes of mass and momentum
and of advection of mean flow momentum. In addition, wind
shear stress and Coriolis accelerations can have some
influence. The resultéﬁt secondary velocity vector will
generally vary with elevation both in magnitude and direction.
Swirling flows are expected and observed (de Vriend and Stive
(69), Svendsen and Lorenz (70)). Much of the detailed
analysis parallels the developments of horizontal and vertical

circulation models and does not need separate discussion here.
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LIST OF NOTATION

N(k)

Wave amplitude

Wave phase speed

Wave group speed

Rate of dissipation of wave energy

Energy per unit area of fluctuating motion
Energy flux of fluctuating motion

Friction factor

Gravitational acceleration

Wave height

Depth-limited maximum wave height

Water depth to SWL datum

Wave number, or

Depth-averaged turbulent kinetic energy
Length scale of turbulence

Spectral action density in wave number space
Pressure ’

Instantaneéué velocity scale

Local fraction of breaking waves

Velocity component at interface

Radiation stress, or

Source term in spectral action balance equation
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Wave period

Tine

Depth- and time~averaged velocity
Local horizontal velocity

Local vertical velocity
Horizontal coordinate

Horizontal coordinate

Vertical coordinate

Coefficient

Fraction

Symmetric unit tensor

Rate of energy dissipation by viscosity
Water surface elevation from global SWL
Crest elevation

Trough elevation

Direction

Turbulent edd& viscosity

Mass density of sea water

Wave angular frequency relative to

(Intrinsic frequency)

Shear stress

current
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Wave angular frequency (Absolute frequency)

Subseripts
b Bed
n Direction normal to interface
P Spectral peak, or
Primary flow
s Direction along interface, or
Secondary flow
X x direction
y y direction
z z direction
a Tensor subécript = 1'or 2
B Tensor subscript = 1 or 2
Superscripts
Turbulent fluctuation, e.g. u
Wave fluctuatign;.e.g. u”
Miscellaneous
tilde Fluctuation about time-averaged value, e.g. @
overbar Time-averaged value, e.qg. i
underline Vector quantity, e.g. x
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Nearshore circulation
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- forcing 3

- horizontal circulation 5

- primary and secondary flow 6

- three-dimensional circulation 6

- vertical circulation 4
Nearshore wave field
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- predictive models 3

- wave action g ‘ 3
Horizontal circulation in néarshore
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- descriptive equations ' 5

- dissipation 5
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=

radiation stress
rip currents

turbulence

Vertical circulation in nearshore

characteristics

descriptive equations

forcing

interfacial boundary conditions

layer analysis
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