
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2015

MSc THESIS

An Incremental VON-Based Debug System for
Commercial FPGA Architecture

Roshan Kumar Gupta

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

Electronic companies are increasingly using field-programmable gate arrays in various domains
such as application acceleration, complex digital designs or ASIC prototyping. The Verification
phase holds a significant place in the FPGA design development process. A key challenge dur-
ing verification is observability. This is defined as the ability to view all internal states of a
circuit. Due to poor observability, a significant portion of designer’s effort is spent in this phase,
specifically performing the debugging task. A common solution to improve observability is us-
ing embedded logic analyzers (ELA) that inserts trace-buffers into the design to record on-chip
signal values. When on-chip memory is used for observation it is termed as trace-buffers. This
approach has limitations such as slow debug cycles, pre-determining the signals to be traced or
using logic resources on FPGA.
This work proposes a new debug system for improving the observability while overcoming
the limitations of ELAs. The proposed debug system extends a recent technique referred as
virtual overlay network (VON) for commercial FPGA device. This network can be perceived
as built on top of initial circuit mapping and multiplexes all circuit signals to the on-chip
memory for observation. It overcomes the limitation of commercial debug tools based on ELAs.
We investigate the factors that influence the performance of VON for Xilinx Virtex, as it
constitutes the core of debug system. We demonstrate that a new bit-stream to program the
FPGA connecting hundreds of signals to the on-chip memory can be generated in less than 630
seconds, during debug cycle, for a fairly large circuit having normal re-compilation time of more
than 5 hours. The proposed system proves to be a promising way of improving observability
and potentially reducing the debug turn time with zero area overhead. Currently, the system is
limited to work with Xilinx Virtex family of devices.

CE-MS-2015-09

An Incremental VON-Based Debug System for
Commercial FPGA Architecture

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Roshan Kumar Gupta
born in Patna, India

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

An Incremental VON-Based Debug System for
Commercial FPGA Architecture

by Roshan Kumar Gupta

Abstract

Electronic companies are increasingly using field-programmable gate arrays in various do-
mains such as application acceleration, complex digital designs or ASIC prototyping. The Verifi-
cation phase holds a significant place in the FPGA design development process. A key challenge
during verification is observability. This is defined as the ability to view all internal states of a
circuit. Due to poor observability, a significant portion of designer’s effort is spent in this phase,
specifically performing the debugging task. A common solution to improve observability is using
embedded logic analyzers (ELA) that inserts trace-buffers into the design to record on-chip signal
values. When on-chip memory is used for observation it is termed as trace-buffers. This approach
has limitations such as slow debug cycles, pre-determining the signals to be traced or using logic
resources on FPGA.

This work proposes a new debug system for improving the observability while overcoming the
limitations of ELAs. The proposed debug system extends a recent technique referred as virtual
overlay network (VON) for commercial FPGA device. This network can be perceived as built
on top of initial circuit mapping and multiplexes all circuit signals to the on-chip memory for
observation. It overcomes the limitation of commercial debug tools based on ELAs. We investigate
the factors that influence the performance of VON for Xilinx Virtex, as it constitutes the core of
debug system. We demonstrate that a new bit-stream to program the FPGA connecting hundreds
of signals to the on-chip memory can be generated in less than 630 seconds, during debug cycle,
for a fairly large circuit having normal re-compilation time of more than 5 hours. The proposed
system proves to be a promising way of improving observability and potentially reducing the
debug turn time with zero area overhead. Currently, the system is limited to work with Xilinx
Virtex family of devices.

Laboratory : Computer Engineering
Codenumber : CE-MS-2015-09

Committee Members :

Advisor: Stephan Wong, CE, TU Delft

Chairperson: Stephan Wong, CE, TU Delft

Member: Arjan van Genderen, CE, TU Delft

Member: Arjan Palm, EGD, ASML Netherlands B.V.

Member: Rene van Leuken, CAS, TU Delft

i

ii

Dedicated to my family and friends

iii

iv

Contents

List of Figures vii

List of Tables ix

List of Acronyms xi

Acknowledgement xiii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem statement and contribution . 3

1.4 Approach . 4

1.5 Thesis Overview . 6

2 Background and Related Work 7

2.1 Scan and Trace Based Technique . 7

2.2 Incremental CAD . 8

2.3 VTR CAD Flow . 9

2.3.1 Architecture Description Language 9

2.3.2 Verilog-To-Routing (VTR) . 10

2.4 VTB . 11

2.5 Virtual Overlay Network . 11

2.5.1 Network Matching . 13

2.6 Commercial Trace IPs . 14

2.7 Related Work . 15

2.8 Conclusions . 17

3 Architecture description of Virtex-6 19

3.1 Virtex-6 FPGA Overview . 19

3.2 CLB Tiles . 20

3.3 Interconnect Resources . 21

3.4 Block RAM . 23

3.5 Conclusions . 23

4 Implementation 25

4.1 Using RAM for trigger and trace . 26

4.2 QuickTrace . 27

4.2.1 Overlay . 28

4.2.2 Match . 30

v

4.2.3 Collapse . 30
4.3 Proposed debug system . 30
4.4 Conclusions . 32

5 Results 33
5.1 Methodology . 33

5.1.1 Metrics . 34
5.1.2 Test Platform and Benchmark circuits 35

5.2 Critical-Path Delay (CPD) . 36
5.3 Runtime Overhead . 38
5.4 Network Connectivity . 40
5.5 Trace and trigger Match . 43
5.6 Match Runtime . 47
5.7 Debug Turn Overhead . 48
5.8 Conclusions . 48

6 Conclusion 51
6.1 Summary . 51
6.2 Conclusion . 53
6.3 Future Work . 55

6.3.1 Implementation enhancements . 56
6.3.2 Research opportunities . 56

Bibliography 61

List of Definitions 63

vi

List of Figures

1.1 Normal VTR Flow . 5
1.2 Proposed VTR Debug flow . 6

2.1 Typical Xilinx ISE flow that can be used incrementally 9
2.2 Existing incremental flow . 12
2.3 Incremental Debug flow using Virtual overlay network 12
2.4 Virtual overlay network multiplexing circuit signals to all the available

trace-buffers . 13
2.5 Point-to-point network using dedicated multiplexers 14
2.6 Union of signal trees: each having a trace pin as root 15
2.7 Overlay network: signal tree for trace-input 3 is highlighted in red . . . 15

3.1 Internal structure of FPGA showing CLBs, CB, SB and routing resources 22
3.2 Internal structure of a connection box 22

4.1 Proposed debug system . 31

5.1 Runtime Overhead: total VPR Runtime for embedding the overlay Net-
work; C = 0 indicates baseline runtime 38

5.2 Runtime Overhead: For Bgm and LU32PEeng benchmark; C = 0 indi-
cates baseline runtime . 39

5.3 Runtime when extra routing slack is introduced: Stereovision0 40
5.4 Fraction of user signals reachable at varying C ; Circuit signals normal-

ized to their absoulute number for each benchmark 40
5.5 Fraction of user signals reachable for LU32PEEng at C; Green bar indi-

cates signal reachability with no change in critical-path delay 41
5.6 Trace match size for mkPktmerge . 43
5.7 Trace match size for Stereovision0 . 44
5.8 Trace match size for Stereovision2 . 45
5.9 Trace match size for Bgm . 45
5.10 Trace match size for LU32PEeng . 46
5.11 Trace match size for Mcml . 46
5.12 Runtime to select a different set of signal (match) and re-configuring the

overlay network . 47
5.13 Debug-cycle: cycle may be repeated multiple times 49

vii

viii

List of Tables

3.1 Architecture parameters used as per Xilinx Virtex-6 FPGA 21
3.2 Based on Xilinx Virtex-6 LXT-FF1156 Device-Package Combination . . 23

5.1 Benchmark resource usage . 33
5.2 Effect of overlay network on critical-path delay(ns) at different network

connectivity (C) as compared with base delay 37
5.3 Debug time overhead for one debug turn (In Seconds) 48

ix

x

List of Acronyms

ASIC Application Specific Integrated Circuit

ASML Advanced Semiconductor Materials Lithography

BLE Basic logic element

CAD Computer aided design

VON Virtual Overlay Network

FPGA Field Programmable Gate Array

IC Integrated Chips

ELA Embedded Logic Analyzers

VTR Verilog-to-routing

I/O Input/Output

RAM Random access memory

DSP Digital signal processing

VTB VTR-to-bitstream

MWBM Maximum Weighted Bipartite Matching

VPR Versatile Pack and Route

ECO Engineering Change Order

LUT Look Up Table

PIP Programmable Interconnect Points

TB Trace Buffer

ADL Architecture Description Language

xi

xii

Acknowledgement

This Master Thesis constitutes the final part of my study program required to obtain
a degree of Master of Science in Embedded Systems at Delft University of Technology,
The Netherlands. During the first year of my master’s program I learned that it is very
important to have industrial experience along-with theoretical expertise and hence, I
decided to pursue my master thesis at ASML while having a strong focus on academic
research.

In the beginning, I was presented with a raw idea and was asked to develop it. I
took the complete ownership of the initial idea, developed it further and worked towards
finding a solution for it. The topic involved working on the lower abstract layers of
the FPGA design aids & architecture technologies with complete focus on every related
aspect of it. I felt challenged and motivated by the amount of work, detailed knowledge
and complexity involved, and the fact that it have the potential to directly impact the
FPGA development process. During the entire duration of my master thesis I was exposed
to scientific fields that I had no previous experience, had the opportunity to remarkably
improve my scientific skills and gained the ability to independently pursue a research
work.

I would like to express deepest gratitude to my supervisor at university, Stephan
Wong, and at company, Arjan Palm for guiding me throughout the thesis project with
their expertise & experience. During my meetings with both of them, I was shown the
right path to do research, apply critical thinking and how to manage the complete work.
Next, I would like to thank Mr. Paul van der Heijde for believing in me and offering the
graduation project. I would also thank, Arjan van Genderen, for regularly discussing the
topic in detail and provide feedback throughout the project. I would also like to extend
my thanks to Rene van Leuken for being the external member in my thesis committee.

Many thanks goes to all my fellow colleagues Arnica Ajay Agarwal, Razvan Nane,
Anthony Brandon, Dan, Mike, Anupama, Komal and rest of the people from EGD group
at ASML and CE Dept. at TU Delft for their ideas, reviews & feedbacks.

Last but not least, I would like to thank my family and especially my brother who
provided the financial support for my master studies and their mental support throughout
my entire study period.

Roshan Kumar Gupta
Delft, The Netherlands
December 9, 2015

xiii

xiv

Introduction 1
This thesis describes the design and implementation of a debug system for FPGA verifi-
cation that reduces the debugging time and improves observability. This chapter provides
an introduction to the problem. It begins with the context in which the work originated
and afterwards, we discuss the motivation for an incremental trace-based debug system.
We refer to incremental compilation as the possibility to independently run individual
stages of a tool that compile circuit designs for FPGAs. Subsequently, we discuss the
problem statement that is researched in this thesis and the contributions made by this
work. The approach section discusses the methodology adopted to analyze the problem
statement. Finally, the overview of the rest of the work is given.

1.1 Context

Moore’s law is one of the important laws of digital electronics that have contributed
towards world economic growth during previous decades. IBM has recently shown a 7nm
prototype chips containing approximately 20 billion transistors with four times more
performance. With such an advancement in technology, today’s Application Specific In-
tegrated Circuit (ASIC) and Field Programmable Gate Arrays (FPGA) are bound to
become more complex. Recently, electronic companies have started to increasingly use
FPGAs in various domains such as application accelerators, implementing complex digi-
tal designs or for FPGA prototyping of ASIC designs. Since FPGAs are used extensively,
it is critical for the digital designs implemented on these devices to function properly oth-
erwise the consequences could be costly or even life-threatening. The previous statement
and the growing complexity of digital designs exemplifies the need for design verification.
Incidents like the Intel FDIV bug are evidence to the same.

Recently, FPGA prototyping is increasingly used for ASIC verification, that is, the
method to prototype the ASIC design on FPGA for hardware verification and early
software development. Verification is an important phase of the design development
since it drives the time, cost and quality of the complete FPGA product development. It
is equally important and follows the same procedure whether it is performed for specific
FPGA design methodology or during the use of FPGA as prototyping platform.

A worldwide study conducted by Wilson research group, commissioned by Mentor
Graphics in 2014 shows that 45% [1] of the industry used FPGA prototyping for IC
verification and this is expected to sharply increase with the newer FPGAs having larger
gate counts. FPGA platforms are a considerate choice for verification as they are faster
than logic simulation in terms of maximum design frequency with higher design coverage.
While still costing much less than an ASIC prototype fabrication with almost no lead time
compared to the waiting time for the tapeout. [2] shows that IBM engineers reported that
full chip-level testing using a multi-FPGA prototype is 100,000 times faster than software

1

2 CHAPTER 1. INTRODUCTION

simulation which emphasize the use of FPGAs for the mentioned purpose. Moreover,
todays FPGA designs have grown in complexity with 56% [1] of FPGAs containing one
or more embedded processors along with complex network-on-a-chip interconnect. Out
of the total FPGA project time, 46% [1] is spent on verification as of 2014. The average
mean time spent by an FPGA design engineer (in an FPGA project team composed of
development and verification engineers) doing just verification is 51% [1] and verification
engineers are spending 43% [1] of their time specifically on debugging tasks.

A key requirement during any verification procedure concerning FPGAs is observabil-
ity, that is, the ability to view all internal states of the circuit, analogous to the ability
of software debugger to view the values of variables. Observability is key to verifying
behavior and track down bugs in circuit design. However, limited or no observability of
internal signals is an inherent drawback of FPGAs. It causes the internal signals to be
brought out through the I/O pins of FPGA for observation. These I/O resources are
limited and depends on the physical size of the device. Unlike simulators that can pro-
vide full observability into all the circuit signals, FPGAs can provide only a small subset
to be observed through the I/O pins. During debugging it is imperative to observe any
signal instead of just observing handful of signals through the I/O pins.

A common solution for increasing observability is to use embedded logic analyzer
(ELA) tools based on the trace-based approach of inserting trace-buffers into the circuit
design and connecting signals to them for observation. Trace buffers are formed of on-chip
memory elements that record the history of the subset of internal signals connected to
them during circuit operation. This history is then used to analyze the state of the circuit
signals to perform debugging tasks and can further be extracted for offline analysis.
Although, ELAs provide more observability than a standard logic analyzer that can only
observe the I/O pins, they have several limitations. Providing new and efficient ways
of increasing the observability can be perceived as one of the key technologies required.
In the context of overcoming the limitations of ELAs thereby improving observability
within FPGAs, this work has been carried out.

1.2 Motivation

A number of commercially available standard debugging tools are offered by FPGA
vendors based on the concept of ELAs. These tools use the on-chip memory as trace-
buffers and add probes directly to the RTL design to make specific signal available for
observation via trace-buffers but suffers from following limitations.

1. ELAs require extensive LUT and memory resources on the FPGA to implement de-
bug instrumentation, this limits their performance in case enough FPGA resources
are not present. It can be termed as area overhead of using ELAs.

2. The signals that a designer wishes to observe must be pre-determined during the
insertion of debug instrumentation, that is, before the circuit is operational and
the nature of the bug known. This means that many debug cycles may be required
to observe different subsets of signals to track down the bug. A debug cycle is the
complete process of selecting a different combination of circuit signal, long place-
and-route times of changing probes to observe them and re-synthesize the design

1.3. PROBLEM STATEMENT AND CONTRIBUTION 3

to program the FPGA again. The time taken to perform one such cycle is termed
as debug turn time. With the increasing complexity of the designs, debug turn
times tends to be in hours that hugely affects the debug productivity. Incremental
routing can be used to connect these ELAs without a complete recompile but are
still slow and requires the entire design to be loaded into the memory [3] [4] [5].

3. The ELAs may influence the initial mapping and timing characteristics of the
circuit being instrumented thereby hiding potential bugs.

These limitations are also recognized by the FPGA designers at Advanced Semicon-
ductor Materials Lithography (ASML) where this work has been carried out. ASML is
a high-tech company that builds lithography machines for manufacturing chips being a
world leader in its domain. FPGAs are solely used in their machines to implement vari-
ous functionality. Since designers at ASML use standard debugging tools, they also felt
limited by their drawbacks during FPGA design development. Hence, a debug system
is wished for that can reduce the debug turn time, have no area overhead and improves
observability of internal signals by connecting hundreds of them to debug instrumen-
tation with-in FPGA. Such a system will be able to address the more general problem
of overcoming the limitations of ELAs thereby improving the observability as well as
serving the need of such a system specific to designer’s at ASML.

The purpose of this work is to propose and demonstrate a debug system that over-
comes the existing limitations of ELAs by using a technique called virtual overlay net-
work (VON). This network is incrementally built on top of existing physical mapping
of a placed-and-routed FPGA design, multiplexing all the circuit signals to trace-buffers
and can be merged together with the physical mapping of circuit during debugging. It
can be perceived as a virtual mesh layer on top of existing design and hence is referred
as virtual overlay network and is further explained in Section 2.5 of next chapter. The
next section describes the problem statement that will be researched in this work and
highlights the contributions.

1.3 Problem statement and contribution

The virtual overlay network (VON) technique is only known to be demonstrated on a
hypothetical FPGA architecture with simplifying assumptions. Therefore, it is impera-
tive to implement it for a realistic architecture, evaluate its performance and to know
its feasibility towards using it as a core technique in an debug system. A realistic FPGA
architecture can be best represented by a commercially available device. Xilinx Virtex
family of FPGA devices represent a comprehensive generation of FPGA architecture and
is used for the purpose of this work. The insights gathered from this work then can serve
as a prototype to design and build a complete system that overcomes the limitation of
embedded logic analyzer thereby improving observability. The problem statement of this
thesis is:

For a commercial FPGA architecture (like Xilinx Virtex family), what will be the
performance of a virtual overlay network based debug system?

4 CHAPTER 1. INTRODUCTION

To answer this question, we first need to extend this technique for such an FPGA
architecture and build a debug system using a CAD flow that allows open access to
its different stages such as packing, placing or routing. Afterward, we need to identify
and measure the factors that influence the performance of debug system. Such a debug
system will consists of various stages. It will take a circuit’s HDL description and will
generate bit-stream to program the device. It will be realized using a open-source CAD
flow known as VTR [6]. Performance of this tool for a commercial architecture and
generation of a valid bit-stream after the insertion of this instrumentation that can be
used to program the device is demonstrated.

The work described in this thesis has the following unique characteristics:

1. It extends the recently proposed virtual overlay network for a commercial archi-
tecture.

2. A new debug flow that can generate bit-stream for a commercial architecture along-
with debug instrumentation.

Consequently, the contribution of this work is to extend and demonstrate the feasi-
bility of a recently proposed (Overlay network) trace-based approach on a commercial
architecture and implement a debug system based on it. These unique characteristics are
not found in any other approach. It also overcomes the limitations of ELAs mentioned in
previous section that are based on trace-based approaches by using incremental compila-
tion method (described in Section 2.2). Implementation details and associated challenges
of realizing this work for Xilinx Virtex-6 FPGA are described in the implementation sec-
tion. The new debug flow developed to do this work are the first to demonstrate the
capability on a realistic device and suggest ways to improve on the limitations of ELAs.
Along with the unique characteristics, it contributes towards answering the following
questions:

1. What is the impact of an overlay network on the critical path delay?

2. Is the overlay network approach suitable enough for a commercial architecture?

3. How much runtime saving can be made during debug cycle?

The methodology adopted to achieve the contributions and to carry out the research
on problem statement, mentioned above is discussed in the next section.

1.4 Approach

In order to realize such a debug system, we reviewed existing and recently proposed tech-
niques to ascertain the possibility of coming up with a solution that is feasible and meets
the requirements. The virtual overlay network [7] is identified as having the potential to
address above mentioned problems. Similar to commercial trace-based ELAs, this tech-
nique utilizes trace-based approach to incrementally embed a network on top of existing
circuit mapping while reclaiming on-chip memory as trace-buffers. It is demonstrated as
a tool known as QuickTrace [7].

1.4. APPROACH 5

The proposed debug system extends this tool for a commercial architecture. It en-
able the designers to run the design live on FPGA, record the history and extract the
information from the trace buffers with techniques like device read-back [8] for offline
analysis. Logic on the chip can be used as a trigger to control the trace buffers. This
system only makes use of the resources that are left after the initial placement and rout-
ing of the user circuit, virtually having zero area overhead. The selection of signals can
be deferred till the actual time of debugging and does not require the designer to make
a pre-selection during the initial circuit compilation. It significantly reduces the debug
turn time required to change the set of signals that are connected to the trigger and
trace unit. This is accomplished by embedding the overlay network over the initially
placed-and-routed design. Whenever a new set of signals need to be observed, only the
embedded network needs to re-configured.

The Quicktrace is promising enough to be one of the key technologies in its domain
but is only demonstrated on a theoretical architecture with simplifying assumptions.
That makes it important to demonstrate its working on a commercial architecture. This
work evaluates the performance of this approach on a Xilinx Virtex-6 commercial FPGA
[9] found on ML605 evaluation kit. The Virtex 6 FPGA is a realistic, commercial and
complex FPGA architecture as compared with the hypothetical architecture.

The VTR CAD flow [6] is used for the realization of the proposed debug system.
This CAD flow is distributed over multiple intermediate stage to synthesize, pack, place
and route the verilog user circuit with respect to the FPGA architecture and is shown
in Figure 1.1. It is an open source CAD flow that provides independent access to its
individual stages for easy modification of its core algorithms to facilitate CAD and FPGA
research whilst it does not have the capability to generate a bit-stream for actual FPGA
devices. This CAD flow is modified to implement the debug system as shown in Figure 1.2
by adding two more intermediate stages making it possible to generate bit-stream with
debugging instrumentation for commercial architecture.

Figure 1.1: Normal VTR Flow

The output from the VPR stage is used to incrementally insert the debug instru-
mentation, that is, embedding the overlay network that adds new routing to the ini-
tial route solution connecting circuit signals with trace buffers while preserving initial
un-instrumented routing during the QuickTrace stage. Then this debug instrumented
routing is subjected to physical design rules via Xilinx DRC, and upon successful pass,
bit-stream is created that can be programmed on a physical device (in this case Virtex-6
FPGA) during the bit-generation stage. The new tool flow, proposed in Figure 1.2 lever-

6 CHAPTER 1. INTRODUCTION

ages the functionality of different tools used to realize it. We further explain these tools
in the background section.

Figure 1.2: Proposed VTR Debug flow

The results, challenges and involved work of using this approach and proposed flow
may differ between FPGA architectures, especially in contrast with theoretical architec-
tures. Currently, the debug system only supports the Xilinx Virtex-6 family of devices,
but it is possible to extend it for other family/generation of devices with minimal effort.
Nevertheless, this could be used on any FPGA where it is possible to augment the debug
instrumentation along with existing circuitry.

1.5 Thesis Overview

The remainder of the thesis is structured as follows: Chapter 2 describes the background
and related work, explaining the different concepts required to understand this work such
as VTR or trace-based approach, as well as related work that highlights the difference
between this work and similar work. Chapter 3 explain the modeling of Virtex-6 via
Architecture description language. Chapter 4 describes the implementation, explaining
the complexities involved while using a commercial architecture in conjunction with VTR
that limits exploration of different features present on them, an extension of VON and
the proposed debug system. Further, Chapter 5 elaborates about the methodology and
metrics used to perform the experiments and reports the obtained results. Chapter 6
contains the conclusion of thesis and also suggests future work with which this work can
be extended and/or refined.

Background and Related Work 2
The sections below state the topics in detail that will help the reader to understand
better, the work presented in this thesis. Section 2.1 describes the scan and trace-based
approach of FPGA debug and advantages of the latter over former. Section 2.2 explains
about the incremental compilation for FPGA CAD tools. Sections 2.3, 2.4, and 2.5
explains about the VTR and VTB tools respectively. Section 2.3 also describes the
architecture description language used within the VTR CAD flow in order to model the
Xilinx Virtex-6 FPGA. Rest of the sections describes about virtual overlay network and
commercially available debugging tools. Section 2.7 highlights the differences between
this work and other similar works. Finally, Section 2.8 concludes the chapter.

2.1 Scan and Trace Based Technique

Observability of the internal signals in a FPGA can be improved by using scan or trace-
based techniques. Scan-based approach captures the state of memory elements of FPGA
for observation by serially shifting it out via scan chains over an I/O pin or an interface
such as JTAG. All the memory elements on the chip, that is, flip-flops and embedded
memory blocks contains the values which represent the state of the FPGA. This technique
relies on architectural features like device read back in FPGAs or by connecting internal
flip-flops sequentially so that their data can be serially shifted out when triggered by a
control signal. This can be implemented using general purpose soft logic [10], although
it can provide complete visibility into the state of flip-flops in the design, it requires the
circuit to be halted before scan-out with prohibitive area and delay costs. Reference [10]
showed that average overhead for full scan is 84% additional area and Reference [11]
reported that viewing each flip-flop using device read back can take 2 to 8 seconds. For
using this technique, the circuit needs to halt for every clock cycle if we want to observe
values of memory elements for every clock cycle, which immensely increases the debug
time.

The trace-based technique is another method that functions by leveraging the pres-
ence of embedded memory blocks on an FPGA. It utilizes a portion of the embedded
memory resources, using it as trace buffers to record a small subset of the internal cir-
cuit values during normal device operation. These trace buffers controlled by a trigger,
connected to the signals to be traced are pre-inserted into the circuit before compilation.
They record a window of the history as circuit operates in real-time. In FPGAs with
readback capability, the data in trace-buffers can be extracted for offline analysis. This
approach does not require the circuit to halt, has very less area and delay cost, provides
capability to test the system with real-time stimulus over the former approach. Xilinx
Chipscope Pro, Altera SignalTap II and Synopsys identify [5] [12] [13] as examples of
such trace based debugging tools, also referred as trace-based IPs. These tools also have

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

disadvantages such as time-consuming re-compilation if the designer wishes to change
the set of signals being observed, limited by the on-chip memory resources, may influence
the initial placement and routing of the circuit.

This work focuses on the trace-based approach and tries to improve on the draw-
backs of commercial trace IP offerings by extending the virtual overlay network for a
commercial architecture.

2.2 Incremental CAD

To program a circuit onto a FPGA, different types of CAD tools are used depending
on the designer’s preference. Examples of such CAD tools are Xilinx ISE tool flow,
Altera Quartus tool which are commercial offerings or VTR project being an open source
project. The entire CAD process to implement a circuit onto a FPGA consists of the
following steps [?]:

1. Synthesis/Logic Optimization - Performs multilevel minimization of the boolean
equations to optimize area, delay or both.

2. Technology mapping - Transforms the boolean equations into a circuit of FPGA
logic blocks as well as performs area or delay optimizations.

3. Packing and Placement - Packs the related logic blocks together and selecting the
specific location for each logic block onto the FPGA while optimizing for the wire
length.

4. Routing - Physically connecting the placed logic blocks with the routing resources
such as wires, connection or switch box etc., distributed inside an FPGA to form
the interconnect fabric.

On an abstract-level all these tools have synthesis, technology mapping, pack and
place and routing as intermediate stages within the tool flow and are implemented by
stage-specific tool-sets. Each tool is unaware of the complexity or implementation of the
other and the mechanism for linking them together, but they have a cyclic dependency
and there is a strong interaction between them. For the sake of simplicity, only the idea
of incremental CAD flow is mentioned and not explained since it is not the focus of this
work. Often a design under goes many iterations even after being implemented on the
FPGA. To eliminate the need for full design recompilation, that is, end-to-end from the
synthesis stage to the routing stage in case of any change, the tool needs to perform
incremental design modifications instead of starting from scratch. Local changes to the
design can be encapsulated as changes for a specific stage and a re-run of only that stage
is needed to implement the change. This independent re-running of only specific stages
is known as incremental flow, although they still need to be feed with same input file
as used in default case. For example, if only the synthesis stage is required to run for
modification then it will be called incremental synthesis, likewise incremental routing
and/or placement. The benefit of this idea is that it lets the designer save significant
amount of development time. Reference [15] explains about the challenge, benefits and

2.3. VTR CAD FLOW 9

ways of achieving this idea. For the present day, tools mentioned above do implement
incremental compilation at their own level of abstractions, varying from open source to
vendor-specific. Figure 2.1 shows the Xilinx ISE tool and outline the different parts of
the tool that can be independently used.

Figure 2.1: Typical Xilinx ISE flow that can be used incrementally

2.3 VTR CAD Flow

To understand the CAD flow, an initial introduction of the architecture description
language and BLIF netlist is presented in the next sections and then the CAD flow is
explained in the subsequent section.

2.3.1 Architecture Description Language

The FPGAs physically contain several resources on them such as I/O blocks, RAMs,
complex logical blocks consisting of LUTs or flip-flops and routing infrastructure. With
the increasing complexity, density and efficiency of the FPGAs, these blocks undergo
change as well with every new generation of devices. For example, complex logic blocks
may consist of more number of smaller components called primitives or they may have
different Look-up table (LUT) configurations. The Open source CAD tools lack the
ability to target complex commercial architectures. This limits the researchers, who do
not have the capability to explore new avenues relative to these new architectures because
of the proprietary nature of commercial CAD tools and FPGA architecture. Moreover it
is not always possible to physically realize a new FPGA architecture just for experimental
purposes. Hence, a language is developed that can model any type of hypothetical or
real FPGA architecture, purely for research purposes.

An Architecture Description language (ADL) [16] can precisely express different types
of blocks and interconnects present on a FPGA at different complexity/hierarchy level,
described in extensible markup language (XML) file format. The designer can describe
complex logic blocks with arbitrary internal routing structure using this language, it
permits arbitrary levels of hierarchy within the logic block, that is, a logical block can
be defined as a block within top level complex block and so on. It can define different
configurations of a block within the architecture which can represent different function-
ality and relevant portion of interconnects. It also models the timing specifications of

10 CHAPTER 2. BACKGROUND AND RELATED WORK

the primitives and interconnects. This language provide the means to forward the FPGA
research by letting the designer describe hypothetical architectures and experiment with
new ideas. The architecture file used as input to VTR along with Verilog circuit is writ-
ten using this language. More information about this language with examples can be
found in reference [17].

2.3.2 Verilog-To-Routing (VTR)

The VTR tool is an open source CAD flow for synthesizing verilog circuits onto hypo-
thetical FPGA architectures. It is a world-wide collaborative project involving multiple
research groups to provide a complete, flexible, robust and open-source framework for
conducting FPGA architecture & CAD research and development. The CAD flow takes
a verilog hardware description of digital circuits, and a xml file describing the target
architecture as it’s input in the beginning and then elaborates, synthesizes, packs, places
and routes the circuit as per the input architecture and performs timing & power anal-
ysis [18] . The VTR v7.0 CAD flow is the base tool upon which this work is built upon
and hence the description helps the reader better understand the context.

It comprises of three core tools as shown in Figure 1.1:

• ODIN II [19] responsible for Verilog elaboration and front-end hard-block synthesis,
it takes in the Verilog circuit, interprets and converts the Verilog syntax into logical
netlist targeting the soft-logic on the FPGA while other constructs into ’hard logic’
blocks on the FPGA and outputs a BLIF [20] netlist.

• ABC [21] is used for technology independent logic synthesis and technology map-
ping of logic onto LUTs and flip-flops. It takes the BLIF netlist from ODIN II as
input and performs on the soft-logic part of the BLIF.

• Third and last tool in the flow is VPR [22] that performs physical synthesis and
timing analysis. It takes in the BLIF netlist from the previous stage and the ar-
chitecture file (.xml) as input. Afterwards, packs, places and routes the circuit.
It generates three output file namely .net, .place and .route files. It performs all
the physical optimization of the logic primitives into the complex logic and other
blocks mentioned in the architecture file. Subsequently, it also performs the timing
analysis, area and power estimation [6]. The VPR implements a timing-driven pack-
ing and routing algorithm with lot of enhancements as compared to its previous
releases such as support for carry chains.

While using the VTR flow, it is possible to run individual stages and analyze the
output. For example, to only use the VPR tool, the user has to create the BLIF netlist
and describe logical block in the FPGA architecture description file. The user can even
run the individual stages within VPR i.e. only packing, placement or routing, but needs
to provide the appropriate input for that stage. The complete VTR CAD flow can be
treated as an important contribution towards advancing the FPGA architecture and
related CAD flow research and development.

2.4. VTB 11

2.4 VTB

VTR-to-Bitstream (VTB) [23] is an open source extension of the VTR CAD flow that
takes a Verilog input and architecture description file of a commercial FPGA and pro-
duces a routed netlist which is converted into a valid bit-stream after running Xilinx
Design rule check that can be programmed onto a Xilinx Device. The author’s intention
behind developing this tool was to present a unique comparison between the quality of
results generated by the academic and commercial CAD flows [23], but for the purpose
of this work, we will use it to generate the bit-stream for a physical Xilinx device, and
also to investigate that whether the routing of debug instrumented circuit confirms with
the physical design rules of Xilinx or not.

The VTR CAD flow is developed to target hypothetical FPGA architectures and
hence, the VPR is capable of only producing simple routing networks relative to com-
mercial CAD flows supporting only horizontal and vertical routing tracks symmetric
across both channels. For a commercial architecture this is different which also supports
diagonal and L-shaped wires. VTB bridges this gap by extracting the routing graph
from Xilinx device database and stitching it with the graph produced by VPR and it
is possible to do so because the VPR’s router can work with routing graphs generated
externally till it satisfies the graph requirements; xdlrc2vpr tool within VTB performs
the previous step. VPR then normally produces .net, .place and .route files using this
routing graph which is then processed by RapidSmith [24] to generate a single text-
based human-readable Xilinx Design File (XDL) which captures all LUT masks taken
from BLIF netlist, packing and all net connections from .net file and placement sites
on FPGA from .place file. Another internal tool called route2xdl is used to add routing
switches (PIPs) to the previously generated XDL. As a last step, the XDL is used to
generate the NCD file via the xdl2ncd tool (part of ISE tool flow [25] which is used as
input for generating the bit-stream using Bitgen tool (Again, part of ISE tool flow). The
complete flow is known as VTR-to-Bit-stream [23] as it provides a path from using the
packed, placed and routed circuit to generate valid bit-stream.

2.5 Virtual Overlay Network

There are several concepts which have been proposed to improve the observability within
a FPGA and are mentioned in the related work. One such concept is virtual overlay
network proposed by Hung and Wilton [26] that holds the potential of providing software
simulator like observability for FPGA as hypothesized by the authors. The details of this
virtual overlay network is explained below as it forms the base of this work. As compared
with the incremental debug flow Figure 2.2, the authors have proposed a debug flow which
comprises of two stages as in Figure 2.3:

• Compile time - After the normal circuit compilation, i.e., packing, placement and
routing, the virtual overlay network is embedded into the un-instrumented circuit
that incurs a one time overhead of embedding the network. This runtime overhead
varies depending on the size of circuit.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: Existing incremental flow

• Debug time - For the purpose of debugging, the embedded network can be re-
configured to connect the designer’s choice of signals to the trace buffers for obser-
vation. The network can be re-configured several times and within minutes. The
concept behind this network is explained in the rest of the section.

Figure 2.3: Incremental Debug flow using Virtual overlay network

The virtual overlay network in Figure 2.4 depicts multiplexs all on-chip signals to
all trace-buffer pins via routing multiplexers, in contrast to a point-to-point network in
between a on-chip signal source and a specific trace-buffer pin using dedicated routing
multiplexers as shown in Figure 2.5. FPGAs are highly re-configurable given the presence
of abundant routing multiplexers; this network is built using these multiplexers left
after the initial circuit routing, at the same time reducing the area overhead of debug
instrumentation. Building this overlay network is treated as a routing problem which can
be represented as a routing resource graph G(V,E), where V = Vsignals∪Vrouting ∪Vtrace

and E = set of unused routing tracks between these vertices; Vsignals = set of all traceable

2.5. VIRTUAL OVERLAY NETWORK 13

circuit signals, Vrouting = set of unused routing multiplexer and Vtrace = set of trace-
buffer inputs. For better understanding, an example is depicted in Figure 2.6. Here all the
signals can be routed to either of two trace-buffer inputs for observation. Each routing
multiplexer can have a fan-in of more than one. This allow the multiplexing of signals,
where a designer can observe any single signal in circuit, and a limited selection of any
two signal, as defined by the Cartesian product of two signals sets. For example, {A,B} x
{C,D,E} = {AC, AD, AE, BC, BD, BE}. A routing solution like this can be treated as a
disjoint union of trees, where each tree is rooted at a trace-buffer input and leaves being
the circuit signals that it connects. Such an arrangement allow signal selections to be
made for each trace-buffer input irrespective of other trace-buffer input, differentiating
it from general routing resource graph and allowing more accessibility to circuit signals.

The network can be further modified as graph G
′
(V

′
, E

′
), where V

′
= Vsignals∪Vtrace,

and E
′

= set of edges showing the connectivity between a signal and trace pin. It is also
possible for a signal to be a leaf of multiple trees while occupying few more routing
multiplexers and increasing the flexibility of observing any combination of two signals,
as depicted in Figure 2.7. So, to summarize the virtual overlay network is built on top
of existing circuit connections, using routing multiplexers to create new connection in
order to forward the signals from their source to multiple trace-buffer input pins for
observation and can be configured during debug time merge with the existing routing.

2.5.1 Network Matching

During debug-time the designer’s choice of signal is routed to a trace-buffer input pin.
But it introduces an assignment problem, that is, which signal to connect to which trace-
buffer pin, to maximize the chances of observing different combinations of signals. This
assignment problem can be solved by further treating the virtual overlay network as a
bipartite graph G

′
(Ub, Vb, Eb). It is a graph whose vertices can be divided into two disjoint

sets independent of each other, every edge connects a vertex in one set with a vertex in

Figure 2.4: Virtual overlay network multiplexing circuit signals to all the available trace-
buffers

14 CHAPTER 2. BACKGROUND AND RELATED WORK

another set and edges must not exist between the vertexes of same set. Now, substituting
Ub = VSignals - set of all circuit signals, Vb = Vtrace - set of all trace buffer inputs and
Eb = E

′
- set of edges which represent the network connectivity between two vertices. A

matching of graph Gb represents a subgraph that has none of its edges sharing a common
vertex. A maximum matching is the largest such subgraph that can be formed. With this
property it is very convenient to decide which signal to forward to each trace pin: given
that each trace pin can only support one connection, hence each node in Vtrace must have
at most one edge. The maximum number of edges that can exist is the minimum number
of the cardinality of either vertex sets. Such maximum matching algorithm returns a best
effort partial assignment, but optimal where the maximum number of signals possible
are forwarded over the network for observation. In some scenarios, designer may wish
to specifically observe some signals or trigger signals, then these preferences can be
encoded by adding weights W to each edge of the bipartite graph and using a weighted
version of the maximum matching algorithm, which returns largest matched subgraph
possible having maximum sum of all weights on matched edges; This variant is termed
as maximum weighted match algorithm. By using the above explained algorithm, select
bits for each of routing multiplexers can be computed and programmed on the device
using either static or dynamic-partial reconfiguration. For further details, please refer to
[7].

2.6 Commercial Trace IPs

As mentioned earlier, trace based techniques utilize embedded memory on the FPGA as
trace buffers to record a small subset of internal signal state during normal device opera-
tion. Almost all the trace IPs in the commercial market uses this technique, examples of
them are Xilinx Chipscope Pro [12], Altera SignalTap II [5] and Synopsys Identify [13].
This section briefly explains these tools. Trace IP from Xilinx, Chipscope Pro requires
the designer to choose the signals as well as the debug core to be inserted before im-
plementation. Trigger & trace signals can be changed incrementally using FPGA editor.
Although Xilinx support partial re-configuration that allows to skip a full re-compile.
This feature has limitations while using the Chipscope Pro and may also require extra

Figure 2.5: Point-to-point network using dedicated multiplexers

2.7. RELATED WORK 15

Figure 2.6: Union of signal trees: each
having a trace pin as root

Figure 2.7: Overlay network: signal tree
for trace-input 3 is highlighted in red

design effort of running a separate program.

SignalTap II from Altera tries to exploit the incremental compilation by partitioning
the design and in case tries to re-compile only that partition instead of complete design.
It also requires the designer to make the signal selection and core insertion before imple-
mentation but is more integrated than ChipScope. Both the tool use partitioning, core
insertion and signal selection before compilation.

Synopsys Identify provides the observability in FPGA at RTL level and adds the de-
bug instrumentation into the circuit before compilation. It gives the flexibility of changing
the signal without a full re-compile. Since, the instrumentation is added before compila-
tion, it have certain area overhead and changes the initial pattern of circuit. This work
tries to demonstrate that how these limitations can be re-solved and is further explained
in related work section.

2.7 Related Work

As mentioned above, the challenge of improving observability while debugging in FPGA
can be overcome by using either scan or trace-based techniques. The trace-based ap-
proach has an advantage over scan-based while incremental CAD should be used that
helps in avoiding time critical compilation stages. This work proposes a new incremen-
tal debug flow based on virtual overlay network that enhances the observability within
FPGA. This debug flow is based on VTR CAD flow and has the ability of generat-
ing valid bit-stream for Virtex-6 devices. Incremental synthesis/routing techniques allow
faster re-compilation and preserve the placement and route of the design under test.
Adding debug instrumentation after the original circuit compilation avoids influence on
initial placement and routing thereby preserving as much of the original solution as
possible while adding debugging functionality. There is often unused logic and rout-
ing resources like embedded memory or routing multiplexer leftover after initial circuit
placement on a FPGA, which can be reclaimed incrementally and used for implementing
debug instrumentation. With incremental approach, full re-compilation can be avoided,
allowing faster debug cycles and changes in the debug instrumentation as depicted in
Figure 2.2.

Reference [4] proposes instrumenting FPGA bit-stream, with debugging hardware

16 CHAPTER 2. BACKGROUND AND RELATED WORK

to improve debugging productivity. They inserted unconnected embedded logic analyz-
ers prior to placing and routing, and afterwards modified the bit-stream at low level
to connect the ELA with trace signals. They also described that how this process can
be automated using JHDL, JBits or JRoute, however it may not scale up for observing
thousands of signals, requires design effort of changing bit-stream for every ELA and
significant area overhead due to pre-inserting trace-buffers. Poulos, et al. [27] also pro-
posed bit-stream modification to improve debug productivity. They connected signals of
interest to the routing muxes, modifying the design prior to synthesis, muxes forwarded
the signals to the FPGA I/O pins where it can be observed via external logic analyzer,
and if it is wished to observe different signal. Then bit-stream modification can change
what is forwarded through routing muxes. This approach does not use any trace buffer
but do influence the placement and routing of initial circuit, introduces area overhead,
and exposes the designer to error prone process of changing individual bits in bit-stream.

Incremental trace buffer insertion and its limitations by Hung and Wilton [3] [28]
proposed how trace-buffers can be inserted into design. The trace-buffers only observe
without modifying the functionality of the design under test and trace signals can be
routed to any trace buffer input for observation. Reference [29] described a method to
reclaim spare FPGA resources for debug instrumentation and used automated signal
selection techniques [30] [31] to connect influential signals with trace buffers. Although
they all differ from this work that no such concept of embedding a network was explored
here but it did identify these uniques features of trace-buffers and reclaiming left-over
resources. Most similar to this work is commercial tool Tektronix Certus [32], which
implements a non-blocking proprietary observation network built out of general purpose
logic to observe a large subset of signals, during initial circuit compilation. This network
can be collapsed to observe a small subset of signal during runtime. Another product
namely, Altera SignalProbe [33] uses ECO techniques to multiplex upto 256 signals to
each reserved I/O pin for external analysis. This work differs in that, it does not use
general purpose logic for inserting debug instrumentation and does not require pre-
selection of signal.

This work expands on and demonstrates an application of the work done by Hung,
et al. [7] that holds the potential of being a efficient trace IP. They implemented the
concept of virtual overlay network for a hypothetical architecture and encapsulated it
as a tool named Quicktrace using VTR CAD flow. It was a extension of their own work
[26]. It used a hypothetical architecture with simplified assumptions. They found that it
is possible to trace 80-90% signals while reclaiming left-over resources with debug turn
time within minutes. They hypothesized that there was no reason why their techniques
would not work on commercial FPGA devices but did not verify the same. Moreover,
the results presented in the paper were not obtained with practical cases. In this work,
the feasibility and performance of QuickTrace is demonstrated on a commercial Xilinx
Virtex-6 FPGA and expanded to generate a valid bit-stream, so that a complete debug
path using VTR CAD flow can be realized. The VTR CAD flow in conjunction with
VTB tool is used to map the circuit onto an FPGA, incrementally insert the debug
instrument and generate the bit-stream. With this work, it is being shown how the
limitations of ELAs and observability of the FPGAs can be improved and implemented
for other physical FPGAs. All the related projects were published after 2013, which

2.8. CONCLUSIONS 17

highlights that the present thesis deals with currently open research problems and recent
engineering work.

2.8 Conclusions

This chapter presents the different concepts and technologies necessary to understand the
rest of the thesis. It begins with a brief explanation of the scan and trace-based approach.
It highlights the fact that trace-based approaches are better than scan-based approaches
in terms of faster debugging time with less area overhead. Afterward, it details about the
incremental CAD flow that makes it possible to independently run individual stages of the
tool thereby saving compilation time. Subsequently, the VTR CAD flow and architecture
description language is explained that forms the base of the debug system proposed in
this thesis. VTR only understands the architecture description written in XML format of
an FPGA in order to know the properties of FPGA device being and then perform tool
execution. Subsequently, the concept of virtual overlay network explains that how we can
embed a flexible network on top of existing place-and-routed circuit design, multiplexing
circuit signals to trace buffers that can be merged together onto the existing mapping
when debugging is required. The network connectivity describes about the flexibility of
such a overlay network. We have used this particular concept to build the debug system.

Finally, this chapter also outlines the differences between this thesis and re-
lated/similar works. It briefly describes the commercial trace IPs as well. The commercial
trace IPs requires the designer’s to pre-select the trace signals, extensively uses FPGA
resources and have long debug cycles. We can follow from the earlier discussion on related
work that the use of overlay network for commercial architecture is unique and the debug
system based on it overcomes the limitations of commercial trace IPs like Chipscope or
SignalTap.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

Architecture description of
Virtex-6 3
This chapter describes the architectural parameters of Xilinx Virtex-6 family of devices
that are translated into a XML format using architecture description file. The VTR tool
is not capable of generating a bit-stream for any FPGA architecture because it does not
have a device database of supported FPGA architecture (unlike other proprietary FPGA
CAD tools like Quartus or Vivado) that contains detailed information about different
properties and associated parameters of devices used to implement the circuit. The rea-
son for this lack in functionality of VTR is that, its a open source tool that is mainly used
for FPGA architecture and CAD research, and there is no such device database for hy-
pothetical architectures that are used for experiments. Hence, a architecture description
language is used instead to model and describe the FPGA architecture being used. The
VTR takes in this description as an input, extract information about the FPGA device
and perform all the operations to compile the circuit. Section 3.1 presents an overview
of the Virtex-6 FPGA and the reasons for using this particular device. Sections 3.2, 3.3,
and 3.4 explains the modeling of configurable logic blocks, interconnect resources and
Block RAMs using this language respectively. Subsequently, Section 3.5 concludes the
chapter.

3.1 Virtex-6 FPGA Overview

The Virtex-6 architecture is the preferred choice for this work because it is the only
architecture supported by the VTB tool as well as the newest architecture fully supported
by the RapidSmith [24] CAD tools used within VTB tool. No other tool exists that can
be used as an alternative to these tools for Xilinx devices. Closed proprietary device
databases and unsupported interfaces are responsible for constraining the open source
tools to use these architectures. Moreover, in recent times Xilinx has stopped the support
for Xilinx design language (XDL) and Native circuit description (NCD proprietary netlist
format while migrating to their new tool flow called Vivado, blocking the use of their new
FPGA devices for architecture or CAD research. The XDL and NCD support related
to the Xilinx FPGA devices are vital if we wish to use them in academic research. We
can intuitively assume that the results will not change significantly within the Virtex
family devices given the architecture remain the same concerning LUTs, Block RAMs or
routing infrastructure. It is worth noting that, replicating the work for latest architectures
using newer tools would involve exponential amount of work given closed-source nature of
involved tools, architecture databases and no support related to them by their respective
vendors.

The key enabling component is a detailed architecture description file that models
as many features present on the physical device as possible, the VTR takes in this file
and then performs synthesis, technology mapping, packing, placement and routing in

19

20 CHAPTER 3. ARCHITECTURE DESCRIPTION OF VIRTEX-6

correlation to it. It is important to understand the Virtex-6 architecture to describe
it in (.xml) format using the architecture description language mentioned in section
2.3.1. VTR does not support all the features available on the physical device and hence
constrains the functionality that can be derived from them. The sections below explain
the design choices made for structure of different Virtex-6 tiles in conjunction with VTR
constrains. It also highlights how various architectural parameters were determined.

Virtex-6 is an array or island style FPGA, consisting of an array of logic blocks
and routing channels arranged in two dimensional grid of tiles. It is termed so because
configurable logic blocks look like islands in a sea of routing interconnects. There are
different types of tiles present on-chip such as CLB, BRAM or interconnect and tiles
of the same type are typically identical. The tiles relevant to this work are presented
below. Like other FPGAs, Virtex-6 devices are also configured by loading application-
specific configuration data known as Bit-stream into internal memory and is generated
by the BitGen [25] program, part of Xilinx ISE tool flow. Some important features
supported by Virtex-6 that highlights the adaptability of this work are dynamic and
partial reconfiguration and device read-back support. The reconfiguration features allows
the designer to access and modify block specific configuration bits, status and control
registers, even providing the flexibility to reconfigure a portion of FPGA while the rest of
the logic is active, that is, live reconfiguration. Device read-back [34] enables the designer
to extract and dump the configuration memory via SelectMAP, ICAP or JTAG interfaces
of memory elements (LUTs, BRAMs, SRL16), internal CLB and IOB registers. There are
two flavors of this feature: Readback Verify which only reads the memory elements and
Readback Capture which behaves as superset of readback verify and captures internal
CLB and IOB registers alongwith configuration memories. Both of the features can be
used to adapt this work for live debugging.

3.2 CLB Tiles

Configurable logic blocks is the fundamental building block of a Xilinx FPGA, being the
main logic resources for implementing combinational and sequential logic and consists of
LUTs, flip-flops and multiplexers. Their internal structure varies with different vendors
or product families. Virtex-6 CLB [35] spans over one tile and is divided into two entities
called SLICEL and SLICEM (commonly referred as Slices). Each slice contains 4 LUTs,
8 flip-flops, 1 arithmetic and cary chain for SLICEL. For SLICEM - 256-bit DRAM and
128bit shift register in addition to SLICEL. Each slice implements a 6-input LUT with 1-
output, fracturable into two 5-input LUT with separate output but with common inputs.
The storage elements can be used as D flip-flops or latches. The output of each flip-flop
(4 in case of 6-input LUT or 8 in case of 5-input LUT when the first 4 storage elements
are not used as latches) is directly connected to an output pin of the slice. Each CLB
is connected to a switch matrix for routing to other FPGA resources and carry chains
connects vertically in a column from one slice to the one above. The output and input
pin of the slices connect to the adjacent interconnect tiles. For this work, only SLICEL
is modeled, as distributed RAM option implemented by SLICEM is not supported by
VTR.

The CLB model in this work is made up of two logic slices, each logic slice contain

3.3. INTERCONNECT RESOURCES 21

four basic logic elements where each BLE contains a 6-input LUT (fracturable into 5-
input LUT), followed by two flip-flops. A bypass input (AX) used to reach either flip-flop,
or to feed XADDER carry-in directly byspassing the LUT. A combinational output (A)
as output O6, a sequential output (AQ) and output (AMUX) shared between secondary
flip-flop, LUT outputs O6 and O5 and the COUT or sum from adder. Each slice contains
one CIN and COUT connected as chain through all four BLEs. Logic slice clock enable,
set/reset and wide multiplexers representing MUXF7/F8 hardened resources are not
modeled because of being constrained by VTR which does not support them although
architecture description language do support complex hierarchy and it is approximately
possible to model the complete Virtex-6.

3.3 Interconnect Resources

The interconnect tiles such as switch or connection boxes are the primary location of the
programmable routing resources that are spread throughout the FPGA. Each intercon-
nect tile is paired with a non-interconnect tile such as CLB or IO blocks. The routing
network consists of pre-fabricated wiring segments and programmable switches that are
organized in horizontal and vertical routing channels and generally is a proprietary infor-
mation from the FPGA vendors including other information like no. of physical tracks
in routing channels, directionality of wires, type of switch and connection block etc.
In Xilinx FPGAs, wire segments can be connected with each other in either channels
via programmable interconnect points(PIPs). The interconnect wire segments span fixed
distances known as Manhattan distances (L) ranging from L = 1,2,4 and 16(bi-dir) con-
necting logic blocks. The non-interconnect tiles uses the adjacent interconnect tiles to
connect with resources of other tiles. For example, the output of a flip-flop can be routed
to a CLB tile four blocks away using wire length of L= 2 or 4 depending upon the re-
quirement and congestion constraints. Since, VPR is not capable of modeling L-shaped
or diagonal wires used by XilinX FPGAs, a pre-processed routing graph with this feature
is directly imported into VPR stage.

Architecture Parameters Value

Logic Cluster Size N 8
Lookup Table Size (Fracturable) K 6
Inputs Per Cluster I 56
Channel segment Length L 1,2,4 & 16
Cluster Input flexibility Fcin 1
Cluster Output flexibility Fcout 1
BRAM data width (used) 32 bits
BRAM address width (used) 11 bits

Table 3.1: Architecture parameters used as per Xilinx Virtex-6 FPGA

The architecture parameters based on the target device are presented in Table 3.1
, where few parameters are experimentally determined. The internal structure of an

22 CHAPTER 3. ARCHITECTURE DESCRIPTION OF VIRTEX-6

island style FPGA containing the configurable logic blocks, connection box, switch box
and other routing resources is depicted in Figure 3.1. Figure 3.2 shows the internal of a
connection box highlighting the cluster input/output flexibility.

Figure 3.1: Internal structure of FPGA showing CLBs, CB, SB and routing resources

Figure 3.2: Internal structure of a connection box

3.4. BLOCK RAM 23

3.4 Block RAM

The Virtex-6 FPGA contains Block RAM tiles that can store upto 36K bits of data and
can be configured as either two independently controlled 18Kb RAMs, or one 36Kb RAM
[36]. The BRAMs support different aspect ratios ranging from 1bit X 32K - to - 72bit
X 512, offering different combinations of data width and depth and can be cascaded to
enable a deeper and wider implementation. A wider configuration (for example: 72bits X
512) will store just 512 entries while comparatively narrow configuration will have more
entries. The BRAMs can operate with simple or true dual port requiring just one clock
edge for read and write operations. Simple dual port means, one port is used for read-only
operation and another for write-only while both port can be used simultaneously while
true dual port means using both the ports for read and write operation. The BRAMs
have built-in FIFO support, this dedicated logic can be used to track read and write
address and status of FIFO. The FIFO has full, almost full, empty and almost empty
status signals and can be configured for different widths.

Xilinx Virtex-6 Resources Value

Input/Output Blocks I/O 600
Configurable Logic Blocks (Slices) SLICEL 37680
Digital Signal Processing Slices DSP48E1 768
Block RAMs (36 Kb) BRAM 416
Minimum Route Channel Width Wmin 18
FPGA Array Size 102 x 240

Table 3.2: Based on Xilinx Virtex-6 LXT-FF1156 Device-Package Combination

Again, the BRAM modeled for this work via architecture description language con-
tains both 36K or 18K configuration, simple and true dual port memory and complete
aspect ratio. BRAMs as hardened FIFO is not modeled for this work, as VTR do not
support this configuration. The logical and routing resources present on the Virtex-6
FPGA are listed in Table 3.2.

3.5 Conclusions

This chapter describes the modeling of Virtex-6 FPGA using architecture description
language for use with the VTR CAD tool. Since, VTR itself is not capable of generating
bit-stream for realistic architectures, it is extended with the VTB tool to generate bit-
stream for Xilinx Virtex devices. The VTB tool leverages the Rapidsmith tool that is
based on XDL and provides a framework to use modern Xilinx Devices in academic
research related to low-level FPGA CAD tools like the debug system presented in this
thesis. The architecture description language is capable of describing any hypothetical
or realistic architecture in XML format. Although, the architecture description language
can describe most of the complex resources present on the Virtex-6 device, the VTR is
not capable of using them. Hence, the debug system is constrained to use only those
blocks on the FPGA that VTR can operate with. We experimentally determine the

24 CHAPTER 3. ARCHITECTURE DESCRIPTION OF VIRTEX-6

architectural parameters of Virtex-6 as this information is proprietary while modeling
the Virtex-6 for this work. The next chapter describes the extension of overlay network
for this architecture and implementation of the proposed debug system.

Implementation 4
This chapter describes the various intricacies of the implementation and design choices
that lead to the realization of this work. It starts with Section 4.1 that describes how a
BRAM can be used to implement both trigger and trace functionality. Afterward, Section
4.2 explains about the extension of the QuickTrace tool for the Virtex-6 architecture and
VTR 7. Subsequently, in Section 4.3 we explain the proposed debug system that will
facilitate the generation of bit-stream for Virtex-6 with debugging functionality. Finally,
Section 4.4 concludes the chapter. In next paragraph, we will discuss the considerations
and design choices made to proceed with the implementation.

As initial step towards realizing this work, we proposed few hardware designs that
tries to address the topic of improving observability while overcoming the limitations
of ELAs. These hardware designs had limitations such as additional cost of hardware
components, area overhead of placing them over printed circuit board while also occu-
pying the I/O resources of the FPGA that can be used for other important purposes.
So, instead of hardware alternatives, we considered an approach that do not have these
limitations. The requirements for such an approach are: No hardware components to
eliminate area overhead and component cost, incrementally inserting the debug instru-
mentation for faster-debugging cycles, possibility to extract the content of trace buffers to
off-chip memory for later analysis and to remove the instrumentation when not needed.

The proposed debug system in Section 4.3 do meets these requirements and serves
as a prototype that demonstrate the feasibility of such an approach. Given the closed
source nature of commercial trace IPs, it was not possible to use them and hence open
source VTR tool is used to realize the debug system. We chose overlay network as the
core debug instrument in the proposed system because of its features like use of only
spare FPGA resources left after initial circuit mapping, the ability to reconfigure the
network during debug and to connect trace signals to trace-buffers with varying level of
flexibility. The debug system uses the overlay network as its core debugging technique
by incrementally inserting it into the design under consideration and is based on the
VTR CAD tool. Since, the overlay network was only demonstrated for a hypothetical
architecture, it is important to know its performance for commercial architecture. We
now explain the different aspects of implementation, that is, how a block RAM can
be used for both tracing the signals and triggering on the circuit logic to control the
trace-buffers, extension of QuickTrace to implement overlay network for Virtex-6 and an
end-to-end description of proposed debug system that encapsulates the Quicktrace to
provide debugging functionality. The debug system exhibits the approach mentioned in
Section 1.4 of this thesis.

25

26 CHAPTER 4. IMPLEMENTATION

4.1 Using RAM for trigger and trace

For the purpose of this work, the circuit signals routed to trace buffers are termed as
trace signals and circuit signals used for trigger purposes are referred as trigger signals.
As Virtex-6 FPGA contain dual-ported RAM, which allow independent read or write
operation to be performed on each memory location, using separate address and data
lines. A unused BRAM can be reclaimed as trace buffer and then circuit signals can be
connected to its data-input lines, to store history of the signal values. In-order to have
the trace buffers continuously sample the state of its input signals at every clock edge,
the write-enable input of the BRAM is fixed to high. Now, the tracing can be stopped by
gating the global signal for the entire design or by gating just the debug instrumentation
specific clock. The latter option was not explored because the VTR does not support
multi-clock designs as of know, but promises to do so in future. In this way, the trace
buffers contain the history till the last clock cycle before the trigger and upto available
RAM depth. For the trigger functionality, a restricted model of trigger unit that can
only implement a 2 input function and can be used to check a user-defined set of signals
for a specific pattern is used. The advantage offered by this trigger unit is the flexibility
with which it can be implemented. Using simple dual port mode of the BRAM, the read-
only port can implement trigger operations while the write-only port implements trace
operations. Since, both ports share the same memory, there is a risk that trace data can
overwrite read-only the trigger lookup mask and can be avoided using write-masking.
Although, write masking in commercial FPGAs is only available at byte-level granularity
instead of proposed bit-level masking.

The trace unit can be more efficiently implemented by using the dedicated FIFO
functionality present in Virtex-6 devices, but as mentioned previously VTR does not
yet support BRAM as hardened FIFO. It will be straight-forward to use it, once VTR
adds support for the it. There exist different ways to implement the trigger unit as well,
such as using a centrally located BRAM as a multi-output lookup table where different
combinations of user signals at the address lines will cause a unique memory cell to be
read and the value stored at this location can be used for starting or stopping the tracing
of signals. Or a centralized trigger unit made up logic slices that implement a control
signal connected to trace buffers [37].

For this work, we simulate the impact of a trigger unit and signal by reserving 32 bits
in every trace-buffer during debug time. These memory locations will not be available for
the tracing while the trigger signals will be assigned highest priority. This will constrain
the embedded network to account for trigger functionality. Realizing a trigger unit that
would fit all situations and designs is out of scope for this work and it also holds no
significance for the unit to be functional or not. The essential point is that the effect
of trigger signals can be accounted for overlay network in terms of its flexibility and
debug-time matching of trace and trigger signals, this is illustrated more in the results
chapter.

4.2. QUICKTRACE 27

4.2 QuickTrace

The virtual overlay network concept was implemented for a hypothetical architecture and
was made available as a tool called Quicktrace [7] for an initial version of VTR (VTR
1.0). This implementation used an architecture which is simplistic in nature in-terms of
logic cluster, memory and interconnect resources, together representing a FPGA fabric
but does not exist as a physical device and hence referred as hypothetical architecture.
This architecture has a connection box flexibility of Fcin = 0.15 and Fcout = 0.10,
where Fc means the number of wires in the routing channel that each logic pin connect
to, termed as cluster flexibility. Fcin and Fcout stands for cluster input and output
flexibility of the logic cluster’s input and output pins respectively. Since it is not a physical
FPGA, the VPR router determines the minimum FPGA array size and routing channel
width to successfully route a circuit on this hypothetical architecture. These parameters
are critical for a successful routing of the circuit as they represent the flexibility of
interconnect resources. The number of physical wires/tracks in a routing channel is
termed as the routing channel width of the architecture. Equal value of channel width
is used for both horizontal and vertical channels. Generally, the interconnect delays are
greater than the logic delays of the designed circuit. An efficient routing algorithm tries
to reduce the total wiring area and critical-path timing to improve the performance of the
circuit. To achieve this, the router needs interconnect information, this makes problem
of routing dependent on target architecture, which varies from vendor to vendor. This
kind of simplified architecture with flexible interconnect resource does not represent a
realistic commercial architecture, where these flexibilities are restricted.

For this work, the Xilinx Virtex-6 xc6vlx240t-ffg1156 FPGA device, which is present
on the ML605 evaluation kit is used. While targeting an existing device there is no
flexibility to change the concerned parameters as it have prefabricated resources on
it. Since, its a physical/real device, it is not possible to change its FPGA array size
and routing channel width. The FPGA array size for this device is 102 X 240, the
minimum routing channel width (experimentally determined) to successfully route a
circuit is 18, Cluster Input flexibility Fcin = 1 (i.e connects to just one wire on the
routing channel) and Cluster output flexibility Fcout = 1. The interconnect information
such as: routing channel width, cluster input/output flexibility, or switch box flexibility
(Fs) are proprietary information that is not available for public and is treated as a secret
recipe for commercial FPGAs by their vendors. So, it is only possible to determine it
experimentally or via educated guess. For channel width determination, VPR was made
to route a circuit with a manually set channel width on the target architecture, the width
was reduced untill the VPR failed to route the circuit. For a channel width of 18 VPR
was able to route the circuit but failed when we further reduced the number and therefore
we identified 18 as the minimum channel width. To save silicon area, commercial FPGAs
implement connection box via multiplexers, therefore only one track can be connected
to the input pin, hence Fcin = 1 and Fcout = 1. In Xilinx Virtex-6 architecture, wire
segments in the routing fabric spans multiple length [38] [39] to provide inter-cluster
connections, channel segment length (L) = 1, 2, 4, 16 is used in the Xilinx routing
fabric, where wire segment having L = 1 spans through one CLB only, L= 2 spans two
CLBs and so on. The tool is extended for this physical device and made to work within

28 CHAPTER 4. IMPLEMENTATION

the ambit of architecture’s resource to determine the performance of such a network for
a practical case.

A new debug system based on VTR is realized to implement the tool for Virtex-6
and generate a valid bit-stream that can be programmed on the device, this new flow is
explained in Section 4.3. Quicktrace was implemented using the FPGA CAD tool VPR
6.0, that forms part of VTR 1.0. The latest version of this tool is VTR 7.0, that offers
improved capabilities and support for new logic blocks but implements a new internal
code structure. So, it made sense to make the tool compatible with the new version
and leverage on these improvements. Therefore, we re-factored the tool and re-wrote few
modules as per the new structure to first make it compatible with the latest VTR 7.0,
and then use it onwards. The tool is divided into three intermediate stages: overlay,
match and collapse , together they form the debug instrumentation and integrated
into the proposed debug system. The highlighted green part in Figure 4.1 shows the
extended Quicktrace. This new These stages are briefly explained in the sections below.

4.2.1 Overlay

In this stage, the overlay network is incrementally inserted over the already packed,
placed and routed circuit using the reclaimed resources not used in the initial mapping.
To achieve this, the VPR [40] (part of VTR CAD flow) needs to be modified, specifically
for the routing stage. Routing of a circuit on a given architecture is an NP Complete
problem, which can be separated in two phases based on divide and Conquer paradigm:
a global routing which divides the routing fabric into smaller regions and decides region-
to-region paths for all nets while optimizing some given function and then: a detailed
routing builds the actual connections using specific wiring segments for each net by
searching within the fragmented regions. Detailed routing algorithms construct a directed
graph representing the physical connections from the available routing resources, several
algorithms for this exists such as maze router, A* Search routing or pathfinder.

VPR’s router is based on a modified version of pathfinder algorithm [41], which tries
to find the shortest path while allowing overuse of routing resource based on a cost
function applied to all the nodes. In first iteration, all nets are routed once and costs
are calculated for all nodes in the graph, in subsequent iterations nets are re-routed
or ripped up until no overused resources exist. By default, VPR uses this algorithm in
two different flavors to route the circuits: rout-ability driven router which optimizes the
routing tracks, and Timing-driven router that optimizes the circuit speed. For this work,
the latter version of router is used as the routing channel width of the architecture is
fixed. To insert the overlay network, the VPR router was modified [7] to allow over-
use of routing resources connecting a single trace signal to multiple RAM pins and to
maintain the assumptions - that no existing circuit blocks or routes will be moved or
ripped from the initial mapping. This custom version of VPR [7] is used here as well,
to better preserve the original behavior of network but with modifications as per target
architecture.

A normal CAD tool builds a circuit mapping where each routing resources can be used
at most once, to connect one net source to one (or more) net sinks. While this network
requires multiple net sources to feed a single RAM sink in multiplexed manner, so that all

4.2. QUICKTRACE 29

the circuit signals can be multiplexed to a requested number of RAM input pins creating
a flexible network. Therefore, we can ascertain the select bits of the routing multiplexers
during debug and observe a particular signal. This is made possible, by modifying the
pathfinder algorithm to iteratively resolve routing resources that become overused, by
slowly increasing their costs so that only the most critical nets can afford them through a
technique termed as negotiated congestion [41] and modifying the routing cost function
that allows overuse of resources. This algorithm attempts to connect all circuit signals to
the reclaimed RAM inputs, allowing routing multiplexers to be overused and terminates
whenever a RAM input pin is found via a timing driven directed search strategy. During
this network creation, the circuit signals have two options: either they can establish a
new connection to RAM input or use an existing path. The order in which the nets are
routed affects the network topology: those processed first will consume the resources that
suited them most, causing other nets to work around those connections. This net ordering
effect is neutralized by the modified routing cost function, allowing existing connections
(of overlay network) to be ripped up or re-routed for a globally better solution. The
default timing driven routing cost function used by VPR for all nodes is,

node cost=back cost + (1.0 x Criticality) x this node cost+a fac x expected cost,

where back cost is the congestion cost upto the current node, this node cost - cost of
this node under consideration weighted by net’s criticality and the expected cost to the
target scaled by an aggressiveness factor - this represents that how aggressive directed
search used by the timing-driven router is [40]. To make the nodes representing routing
multiplexers overused in the routing resources graph that are already being used by
other connections, expected cost was discarded and this node cost was discounted by
node occupancy that indicates how many overlay nets it already belongs to,

node cost = back cost + (1.0× Criticality)× this node cost÷ node occupancy.

The more nets that already passes through such a node, more the chances of it not
being moved in subsequent routing iterations while a lower cost will cause the node to
be removed from the heap sooner than it would have been otherwise, making the routing
algorithm to follow an established connection to the RAM input. Using this modified
router, first all the spare resources are determined and then a virtual overlay network on
top of existing mapping is incrementally constructed once per circuit with a parameter
called network connectivity(C). The term ’C’ represents the target number of indepen-
dent RAM inputs for each signal. Towards the end of routing phase, those connections
that get congested and hence un-routable due to this parameter are discarded from the
network. While in the original tool, the value of C is adaptively reduced for congested
connections and if the congestion is unresolved then it is discarded from network, this
was not explored here because of the complexity involved. This does not affect the re-
sult because network still have appreciably high number of connection. Once a feasible
overlay network is constructed, the signals connected to each trace-pin is extracted on
a text file (overlay.route) which is used in the next stage to build bipartite graph. The
routes added to the circuit via this network may become the new critical path. Effect
of overlay network on the critical path as well as the runtime overhead of incrementally
inserting this network are discussed in the results chapter.

30 CHAPTER 4. IMPLEMENTATION

4.2.2 Match

Given the overlay network, that connects circuit signals to RAM pins, henceforth re-
ferred as trace pins and circuit signals as trace signals, there exist a decision making
problem that which trace signal to forward to a trace pin (mentioned in section network
matching). As input, this stage takes the overlay.route file which contains the informa-
tion of the overlay network and a set of signals Strig and Strace : subset of Vsignals that
represents designer’s choice for trigger and trace signals. With these information, a bi-
partite subgraph with non-zero weight on the edges applied to only those signals that
have been selected is created. A maximum weighted bipartite matching algorithm from
the LEMON C++ library [42] is used to find an optimal network configuration as per
the custom bipartite subgraph. The library provides efficient implementation of this al-
gorithm, in terms of the runtime and complexity, and requires a bipartite graph with
a weighted edge map as input. Once the matching is done, it is written into a text file
(overlay.match) that will be used in the next stage.

4.2.3 Collapse

As a final stage, it reads the matchings from previous stage and connects the specified
trace signals with the trace pins. Match file contains the information about which trace
signal connects to which trace pin on a particular trace-buffer. With this information,
the routing resources graph is parsed, starting at leaf node of the desired Vsignal, moving
through all Vrouting multiplexers belonging to this signal tree towards its root, Vtrace,
simultaneously setting each Vrouting multiplexer to forward the output from previous
node, thus determining the select bits for routing multiplexers. The overlay network is
merged onto the existing placed-and-routed mapping of the circuit with these connections
and a valid VPR routing is created. The select bits of the multiplexers can be used to
program the FPGA using static or dynamic configuration. We use the VPR routing to
generate bit-stream and statically configure the FPGA. The next section briefly explains
about the new proposed flow and how it can be utilized for faster debugging.

4.3 Proposed debug system

The VTR CAD flow is a widely used open source academic CAD flow that is used to
conduct FPGA CAD and architecture research. Although this CAD flow does not route
any real FPGAs, if core algorithms are modified, it can be effectively used to route
real/commercial FPGA. The proposed debug system (see Figure 4.1) takes a circuit file
(.v) and an architecture description file (.xml) as input, inserts debug instrumentation
to observe internal FPGA signals and generates a valid bit-stream. The extended VTR
flow is realized for the first time and it is possible to independently use it for any verilog
design although only for Virtex devices. The system is divided into five intermediate
stages, first and second stage are responsible for the synthesis and technology mapping,
third performs the packing, placement and initial routing of the circuit. In the fourth
stage, debug instrumentation is added, that is, embedding a virtual overlay network
on top of existing placed-and-routed design that can be used for connecting the set of

4.3. PROPOSED DEBUG SYSTEM 31

signals to trace-buffers that a designer wishes to observe. In the last stage, VTB tool is
used to convert the VPR routing into NCD format, typical to Xilinx, which is used as
input to invoke BitGen tool from Xilinx. Output of the last stage is the bit-stream that
configure/re-configures the FPGA.

Figure 4.1: Proposed debug system

As we depict in Figure 4.1, a Ver-
ilog HDL (.v) circuit and a architecture
description (.xml) of Virtex-6 is the ini-
tial input to the flow. The ODIN II syn-
thesizes the circuit and generates a .blif
file (Berkeley Logic Interchange Format,
an academic format for electronic netlist
[20]) and ABC takes this .blif file and per-
forms technology mapping i.e. transform-
ing the boolean equations into a netlist of
logic blocks present on the FPGA. These
steps perform area and delay optimiza-
tion of the circuit on FPGA and, there-
fore, do affect the quality of result for on-
ward stages.

Commercial tools employ a high level
of optimization at these initial stages to
reduce area and delay requirements of the
circuit [23] [43]. The VPR stage takes
in the processed netlist from previous
stage and packs, place and routes the cir-
cuit as per the Xilinx Virtex-6 architec-
ture. The VPR generates a .route file (a
text based file describing the interconnec-
tion between different resources on the
FPGA). The flexibility of the VTR lies
in the fact that the intermediate stages
are not tied to work only with the files
generated internally; hence the inputs
to intermediate stages can be imported
from other tools given they meet the re-
quirements needed for that stage. After-
ward, the quicktrace stage based on VPR,
have three intermediate stages and in-
serts the debug instrumentation when re-
quired. The latter two stages of the quick-
trace are used to change rapidly the set
of signals to be observed and re-configure
the overlay network. Collapse stage gen-
erates a ”.inc route” file that contains the
new routing connections capturing the signals of interest. Since, it is possible to run in-

32 CHAPTER 4. IMPLEMENTATION

dividual stages of the VPR, only the route stage is invoked after choosing the new set of
signals making it possible to have faster debug cycles. The incremental routing informa-
tion (.inc route file) is then passed on to the VTB tool that generates the proprietary
NCD file for Xilinx Devices. As the last step, the TRCE tool from Xilinx ISE is invoked
to perform Design rule checks on the VPR routing to comply with design integrity and
to perform static timing analysis of the design under test. If it passes the check, then
bit-stream is generated via BitGen tool to program the FPGA. It is possible to run the
last two stage of the debug system as many times as required to perform the debugging
task.

The uniqueness of this system is that, it have the capability to generate bit-stream
with debug instrumentation that can be used to debug user designs by connecting hun-
dred of signals to the trace-buffers while having faster debug-turn time for a commercial
FPGA for the first time. Insertion of overlay network adds new routes in the circuit (that
is path from a signal source to a trace buffer or trigger signals) that may increase the
critical path of the circuit. The system also has a runtime overhead of inserting such a
network although it is a one-time overhead. Once this network is embedded it can be
re-configured as many times as necessary with out going through costly re-compilation
time and hence, significantly improving the debug turn time. The performance of overlay
network outline the overall efficiency of the debug system and is explained in detail in
the next chapter.

4.4 Conclusions

This chapter presents the implementation of an incremental VON based debug system
that tries to overcome the limitations of commercially available debug tools and improves
the observability. It begins with the brief explanation about the requirements concerning
the debug system, and the design choices made to ascertain its structure. The overlay
network and open source VTR tool forms the core technique for the debug instrumenta-
tion and base incremental CAD flow respectively, to realize the debug flow. Afterward,
we extend QuickTrace tool for Virtex-6 architecture. It is re-factored first to be com-
patible with the latest version of VTR and then extended for the current scenario. We
also modified the core routing algorithm of the VPR tool within the VTR CAD tool
to incrementally insert such a network into the design. We directly import the routing
resources graph of Virtex-6 into VPR and stitch it with the internally generated routing
graph, to make the VPR capable of generating valid routing for Xilinx devices with the
help of VTB tool. Subsequently, we briefly explain the different stage of QuickTrace tool.
Finally, we realize the proposed debug system by synchronizing the different components
together to exhibit the performnce of overlay network and demonstrate the feasibility
of the approach. This debug system has the potential of overcoming the limitations of
ELAs while improving the observability in FPGAs.

In the next chapter we describe the methodology, test platform and metrics that will
be used to measure the performance of overlay network while sketching the efficiency of
debug system with detailed analysis of the associated results.

Results 5
The chapter present the findings of this work. The methodology and metrics for mea-
suring the performance of a virtual overlay network on a real commercial architecture
are described in Section 5.1. It also explains the test platform and benchmark circuits.
Flexibility of the network for observing the trace signals and time taken to perform one
debug cycle is the primary concern, as it is the focal point of this work. The results of
the experiments are presented in Section 5.2 onwards and demonstrate the feasibility
of such an instrumentation as well as its potential of being an independent trace IP.
Subsequently, Section 5.8 concludes the chapter. The debug system does overcome some
of the limitations of commercial tools . The runtime overhead of inserting the network,
critical path, fraction of user signals that can be traced, match-stage runtime, et cetera
related to incremental insertion of network and generating bit-stream are reported.

5.1 Methodology

To evaluate the performance and feasibility of the proposed debug system, six benchmark
circuits are used for the experiments. The experiments investigate the different parame-
ters related to embedding the overlay network and configuring it to trace upto all circuit
signals (when there is enough trace buffer capacity) for the benchmarks. Using VTR 7.0,
these six benchmarks are packed, placed and routed un-instrumented as normal onto the
Virtex-6 architecture (As described in Table 3.2 and Table 3.1) to generate the baseline
statistics. Table 5.1 shows the number of user signals (sequential and combinational sig-
nals) in each of the circuit available for trigger and trace input, resource usage on the
target architecture and total RAM blocks that can be reclaimed as trace buffers. It also
shows the number of spare RAM pin = number of trace-buffer blocks x data-width of a
trace-buffer block.

Benchmark Circuit I/Os SLICEL DSP48E1 BRAM
User

Signals
Spare

RAM Pins

MkPktMerge 467 58 0 14 1,002 12,864
Stereovision0 354 2,940 0 0 18,492 13,312
Stereovision1 331 7,783 564 0 46,913 13,312
BGM 289 11,459 22 0 42,485 13,312
LU32PEEng 216 24,661 64 152 115,959 8,448
Mcml 69 25,175 177 159 136,431 8,224

Table 5.1: Benchmark resource usage

There are different factors related to setting up of the experiment that are considered

33

34 CHAPTER 5. RESULTS

since they might lead to deviation in measured parameters and are briefly discussed here.
In the flow, packing algorithm is not constrained to group un-related logic elements
together into the same logic cluster to minimize area. The reason being a fixed FPGA
size in contrast to a minimum-sized FPGA, where densely packing is not important
unless the final implementation does not fit on the device. Moreover, [44] observed that
fully packing may leave the circuit un-routable because of higher peak routing demand
in congested regions, given fixed channel width mitigating the same is not possible.

Placement of the circuit is performed onto the fixed array size with the objective of
optimizing wire-length and timing of the circuit. During the routing of the circuit, timing
driven router algorithm is used to route the circuit that focuses on optimizing the timing
characteristic. Uni-directional routing tracks and Wilton switch box are employed for the
routing interconnects. [?] shows that improvement in area and delay can be achieved if
such a configuration is utilized during routing. The normally compiled un-instrumented
circuits are then used to embed the overlay network using modified VPR. Once it is
inserted in the circuit, match and collapse stages can be used to quickly re-configure
the network with new signal selections. Same assumptions as in [7] are made: any free
BRAM block can be reclaimed as trace buffers, only spare resources being used to insert
the network and no existing circuit mapping will be re-routed or moved.

Since we insert the debug instrumentation incrementally after the initial circuit com-
pilation, only gate-level signals are observable. These signals may not have a direct
resemblance to the RTL or HDL level signals with which designers are mostly familiar.
Using attributes related to synthesis/technology mapping tools that preserve the names
of the combinational signals, it is possible to circumvent this problem (For example: A
designer can specify ’-Keep’ for ABC tool or ’s’ in Xilinx ISE to preserve names of the
signals). If register re-timing of the design is avoided, then both commercial and academic
tools preserve the name of sequential signals. Another way of preserving signal name is
using less aggressive optimization of the circuit. With sufficient information about the
sequential signals, related combinational signals can be computed. Table 5.1 shows the
user signals (both sequential and combinational signals) that can be used for trigger and
trace inputs, resource usage on the target architecture and BRAM that can be reclaimed
as trace-buffers.

5.1.1 Metrics

Parameters that will be used to report the results are Runtime overhead, critical path
delay, Fraction of trace signals that can be observed, match runtime, network connectivity
and debug turn overhead. VPR runtime is the time it takes to pack, place and route the
circuit on a given architecture with no-instrumentation. Since, the overlay network is
inserted into the circuit after initial compilation, it incurs a one-time overhead of re-
routing the circuit with the added connections of the network. So, Runtime overhead
is equal to the sum of initial VPR runtime and the time taken to just run the overlay
stage.

Critical path delay represents the longest delay that a circuit path have thereby
limiting the circuit’s operational speed (Maximum Frequency). It is a measure of the
timing characteristic of the circuit and is important here because the network insertion

5.1. METHODOLOGY 35

potentially affects this parameter.

An interesting feature of the overlay network is that it can be realized by connecting
each signal to more than one trace pin. This feature determines the flexibility of inserted
debug instrumentation and is denoted by Network Connectivity (C) parameter, that
represents the target number of unique trace pins for each user signals. The connection
between each signal with different trace pins in this way can be perceived as one-to-
many relationship. This feature increases the probability of observing the signal at a
trace pin, even when the most preferred pins are taken by other signals due the random
net ordering.

Number of signals that can be forwarded simultaneously by the overlay network given
a set of signal selections to a trace buffer, that is, BRAM either for triggering or tracing
is represented by the fraction of trigger and trace signals reachable out of total signals.
Every time a new signal selection is made, it is used to re-configure the overlay network
and forward the selections to a trace-buffer pin. The time taken to match these onto the
network is referred as match runtime.

Once the network is re-configured, it is subjected to Design Rule Checks that make
sure no physical design rule violation occurs, this is essential for bit generation, afterward
it is used to generate a valid bit-stream in order to statically reconfigure the FPGA device
to observe the new signals. The time taken to generate a new bit-stream is referred as
debug turn overhead. It includes the time taken to select a new set of trigger and
trace signal, re-configuring the overlay network as per this selection and entering the ISE
tool flow in order to invoke and run the TRCE and BitGen tool.

These parameters and their effects on the debug system are further explained in the
next sections.

5.1.2 Test Platform and Benchmark circuits

For implementing the approach and to run the experiments, a platform running on
Intel(R) Core(TM) i5-4690 @ 3.5GHz with 16Gb of memory and Ubuntu operating
system was used. For the results in this chapter, the data and address width of the trace
buffers are kept constant at 32-bits and 11-bits respectively. Data-width of 32 signifies
that 32 trace signals can be connected to each trace buffer for observation, each trace
buffer having a depth of 1152. The trigger signals have higher priority than trace signals,
so that the former always get routed first claiming potential pins on trace buffers for
triggering. This is done in this way, because we assume that a useful trace is one, that
is, captured after a triggering event. The trace signals are routed in random order. A
single overlay network delivers the signals for both triggering and tracing.

The benchmarks circuits used to generate the baseline data are available as part
of the VTR project [6], and represents realistic, heterogeneous and varying size circuits
written in verilog HDL. It includes applications like: a Monte Carlo simulation of photons
(MCML), Linear system solver using LU Decomposition method (LU32PEeng), another
application using Monte Carlo simulation for financial purposes (BGM) and research
projects like (stereovisionX and mkPktMerge).

As shown in Table 5.1, mkPktMerge contains the minimum number of user signals,
while the MCML contains maximum number of user signals that are available for trac-

36 CHAPTER 5. RESULTS

ing. Spare RAM pins represents the maximum number of pins that can be used to
trigger/trace given the number of trace-buffers. In this work trace buffer width of 32 is
being used, hence spare RAM pins is calculated by multiplying the number of unused
BRAMs by 32 (Data-width) . StereovisionX and BGM does not use any BRAM on the
FPGA unlike others and thus 100% of the available BRAMs can be reclaimed as trace-
buffers. Except one, in all the benchmarks trace capacity is not enough to trace all the
signals. For cases when there is not enough trace capacity, and when it is not intended
to trace 100% of the signals, a random subset is chosen. Automated signal selection
techniques as in [31] [29] [46] can be used to make signal selection, but taking multiple
random samples as suggested in [7] will give a better understanding of the debugging
technique while capturing a designer’s intent to choose any desired signal. For a total of
600 data-points, i.e. using 10 random signal sets for each trace-fraction in 0.1 increments,
at C = 3 and for LU32PEeng at C = 5, for a total of six benchmarks is used to report
the results related to trace signals.

In most cases, average of multiple runs are presented as result. There is variation
between runs due to several factors like placement of circuit blocks, selection of trigger
and trace inputs, order of nets in which they are routed, platforms memory usage, number
of routing iterations to resolve congestions and behavior of routing legalization heuristics
involved. Iteration of router while inserting the overlay network to resolve the congestion
also had effects on the critical path and number of observable user signals. To achieve
consistency in results, number of routing iteration is kept constant through out all the
experiments. It can be said with confidence that result presented here can be reproduced
if necessary while using the same random seeds that control the randomization. Results
pertaining to each parameter and their related factors are described in the next sections.

5.2 Critical-Path Delay (CPD)

The longest logic path in the circuit is considered to be the critical path as it dictates
the operational frequency of the circuit, delay on this path is known as critical path
delay. As stated earlier, the benchmark circuit were compiled initially with no debug
instrumentation, and then the virtual overlay network is built over it, to multiplex circuit
signals to the trace buffer inputs while reclaiming the spare RAM blocks. With higher
values of ’C’, the routing congestion increases because the network tries to connect each
signal with target no. of trace pins and may not be possible to find a valid routing
solution. In such scenarios, the tool employs heuristic methods to iteratively discards
invalid connections for which congestion is not resolved. For the results, CPD is recorded
after ten such overlay iterations to resolve the congestion for target values of C.

Table 5.2 shows the critical-path delay (in nano-seconds) before and after the inser-
tion of overlay network for each benchmark circuits. The column titled Base refers to
CPD of un-instrumented circuit, i.e. at C = 0, while rest of the columns shows CPD at
other values of network connectivity (C). Since, we add the overlay network incremen-
tally, the critical path is entirely due to the new routes added by this network.

As compared to the CPD reported in [7] that shows a maximum increase of 72% for
a benchmark at C= 50 and noticeably just a 2% increase for largest benchmark, here
results show a different trend. The CPD slightly increase for all benchmarks except two,

5.2. CRITICAL-PATH DELAY (CPD) 37

for (C <5) while sharply increasing for higher values of C, worse at C = 50, rising upto
70.94 ns from 5.28 ns for Stereovision0 benchmark. The reason for such a trend is the fact
that real FPGAs contain only a limited number of routing tracks (Refer to Table 3.2)
in contrast to the hypothetical architecture where the number of routing tracks can be
increased arbitrarily, as used in the referenced paper. Hence, these results present the
parameter in realistic scenario and shows the actual affects on the same.

Circuit Network Connectivity (C)

Base 1 2 3 5 10 20 30 50

MkPktMerge 6.99 8.63 12.10 6.99 18.84 21.03 43.10 48.41 73.70
Stereovision0 5.28 5.28 8.38 12.76 21.10 26.14 37.65 59.05 70.94
Stereovision2 20.49 20.49 20.49 20.49 26.85 47.36 59.84 91.12 93.82
BGM 29.27 29.27 31.23 29.27 38.12 37.73 73.76 83.45 100.93
LU32PEEng 91.68 91.68 99.15 98.59 91.68 110.89 134.89 152.58 152.64
Mcml 95.40 95.40 95.40 95.40 96.17 135.44 149.31 165.02 NA

Table 5.2: Effect of overlay network on critical-path delay(ns) at different network con-
nectivity (C) as compared with base delay

Interestingly, this delay remains constant at lower values of C suggesting that com-
mercial architectures are more suited for less flexible overlay network. For all circuits,
except MkPktMerge (smallest benchmark), at C = 1 there is no change in critical path
delay. The MkPktMerge and Stereovision have the lowest base critical path, that remains
constant at network connectivity C = 3 and 1 respectively, but increases at other values
of C. For MCML (largest benchmark), this delay almost remains constant till C = 5
relative to the base value. In case of other circuits, the delay remains constant for C =
3, except LU32PEEng, for which C = 5. In rest of the cases, benchmarks suffered with a
significant increase in there critical-path delay. For smallest benchmark i.e. mkPktMerge,
at C = 50, an increase over 1200% while, for the biggest benchmarks (LU32PEEnf and
MCML) an increase of approx 60% at C = 50. One valid reason to explain this significant
increase is the fact that all the benchmarks were constrained to a fixed minimum channel
width as opposed to [7] which used arbitrary routing channel width.

In scenarios where no change in the delay is observed shows that it was possible to
add the overlay network without affecting the base critical path but with reduced con-
nectivity, which is realistic given the architecture have abundant routing resources and
less/no congestion in the regions that have BRAM tiles. Since, some of the benchmarks
did not use any BRAMs, there was no congestion in the nearby routing regions. Bench-
marks with higher base CPD are less likely to experience any increase because the new
paths may afford to be longer without becoming a critical path. Hence, significantly high
change is observed in circuits having low critical path and vice-versa.

A trade-off exist between the critical-path and flexibility of the overlay network, that
should be considered. Basically, lower connectivity improves the circuit speed but that
means less flexible network and vice-versa. One point worth consideration is that, the
nature of benchmarks and CAD tools involved also affects this factor, because critical-
path delay comprises of both logic and routing delay. These CAD tools are known to

38 CHAPTER 5. RESULTS

produce slower circuits as compared to their commercial counterparts due to poor design
synthesis and technology mapping [23] [43].

The debug instrumentation is added to improve the visibility within the FPGA to
track and find design bugs. It is unlikely that the circuit will be run at its maximum
operating frequency during debugging, maybe already limited by off-chip communication
and hence, increase in delay may not be a critical issue at all. To improve this further,
pipelining techniques can be used to reduce the effect of routing delay, as signal latency
does not affect its observability. Utilizing this technique will cost very less or no silicon
area on the commercial FPGAs given their high gate counts or they can be implemented
with reclaimed resources as well.

5.3 Runtime Overhead

Figure 5.1: Runtime Overhead: total VPR Runtime for embedding the overlay Network;
C = 0 indicates baseline runtime

The overlay network is embedded once per circuit using the spare resources during
the overlay stage after the initial compilation of the circuit. This incurs an one time
overhead of embedding the network in the circuit. Values greater than zero for Network
connectivity C represent the total VPR runtime for default VPR stages used for circuit
compilation (packing, placement and routing) plus an additional runtime of overlay stage
for embedding the network while C = 0 signifies the base VPR runtime for compiling
the benchmark circuit without debug system. Different values of C represents the target
flexibility used to construct the network. The difference in runtime between C = 0 (base)
and other values of C shows the additional overhead. It is considered as a one-time
overhead because after this, the network will only be re-configured if a different set of
signal needs to be traced.

Figure 5.1 shows the total VPR runtime for compiling each benchmark circuit and
constructing overlay network at each C with fixed channel width, averaged over five runs.

5.3. RUNTIME OVERHEAD 39

Figure 5.2: Runtime Overhead: For Bgm and LU32PEeng benchmark; C = 0 indicates
baseline runtime

This factor can not be co-related to the runtime overhead reported in [7] because of the
difference in FPGA architecture used. The same tool takes 5.81 and 3.02 hours (base)
in this case as compared to 11.38 and 9.44 hours in case of hypothetical architecture, for
Mcml and LU32PEeng respectively.

The runtime increases almost linearly with increase in the network connectivity value,
interestingly the gradient rising more sharply when approaching higher values of C. The
reason being increased routing search space that tool have to process in order to find the
target number of connections to a trace pin for a circuit signal. It reflects the breaking
point where it is no longer beneficial to stress the tool to achieve a higher network
connectivity for observing the signals, as the cost of constructing such a network increases
prohibitively.

On an average for C = 3, there is 17% increase in the runtime compared to baseline
with no/or little change in critical path delay while rising to 54% at C=10. For the
smallest benchmark (mkPktMerge), it was worse at C = 50, when it took 312.16 seconds
to construct the network as compared to just 59.17 for base runtime. In case of the two
largest benchmarks (LU32PEEng and Mcml), there is a moderate overhead of just 1% -
21% for C = 1 to 10 compared to base but increases sharply afterward. Figure 5.2 depicts
the runtime for a moderate size and a largest size benchmark (BGM and LU32PEEeng)
at different values of C. As expected, runtime increases with network connectivity due
to increased stress on the tool, but both the benchmark follows the same trend, that is,
increasing moderately with 13% rise at C = 5, while sharply rising towards the end.

One intuition worth consideration is that the benchmarks are compiled with fixed
routing channel width given the nature of commercial architecture, if it would be pos-
sible to increase this channel width to provide positive routing slack then it might be
possible to reduce the runtime overhead. Figure 5.3 shows the runtime for StereovisionO
benchmark at channel width 18 and 26 (44% extra tracks) respectively. As expected,

40 CHAPTER 5. RESULTS

Figure 5.3: Runtime when extra routing slack is introduced: Stereovision0

there is a slight improvement in the runtime at C = 10, 20, and 30 when positive routing
slack is introduced, but interestingly gets worse at C = 50 , due to extra stress on the
router to find optimal routes. It is not possible to get more insight in this intuition given
the closed nature of commercial tools. It also contradicts with the related work [7] that
have reported about improvement in this parameter with the same intuition.

5.4 Network Connectivity

Figure 5.4: Fraction of user signals reachable at varying C ; Circuit signals normalized
to their absoulute number for each benchmark

5.4. NETWORK CONNECTIVITY 41

The overlay network multiplexes the circuit signals to the trace-buffer inputs, in-
stead of creating point-to-point connection in between a signal and trace input. Network
connectivity specifically means the number of independent trace-buffer inputs that each
signal belongs to, given the number of trace buffer inputs and circuit signal that exist in
a circuit (for example, C = 5 represents that each incrementally connected circuit signal
can be routed to 5 different trace inputs thereby increasing the chance of observing it
even when another signal captures the preferential trace pin). Figure 5.4 illustrates the
fraction of signals reachable through the overlay network at varying C values for different
benchmarks, when averaged over five runs. C = 0 indicates no instrumentation.

For the smallest benchmark it was possible to connect 100% of circuit signals at
lower values of C and remained negligibly changed for other, because of abundant spare
resources left after initial circuit compilation. In all other cases, increase in the number
of connectivity C have little effect on the signal reachability whilst degrading. With
increase in C value, the signal density at individual trace-buffer pins increases which
causes routing congestion and hence the drop in signal reachability. Mcml being the
largest benchmark that uses 159/416 BRAM, it was possible to reach approximately
95% of the signals, although the decline with C remains.

Figure 5.5: Fraction of user signals reachable for LU32PEEng at C; Green bar indicates
signal reachability with no change in critical-path delay

Figure 5.5 exhibits the data for LU32PEEng benchmark, that specifically shows signal
reachability at Connectivity C = 5 (green bar) where it was possible to construct an
overlay network without any penalty on critical-path delay and with only 8% runtime
overhead. This demonstrates the feasibility of applying this technique on commercial
architectures, while compromising on the flexibility of overlay network (that is, restricting
C at no more than 10) gives a solution that have fair increase in the runtime with no/little
change in critical-path delay for a decent size circuit. Although, other factors also affect
these results, it will be safe to assume that, implementing this technique in commercial
CAD tools with full integration will be more efficient given the highly optimized nature

42 CHAPTER 5. RESULTS

of the tool for there associated architectures and complete knowledge of the involved
parameters.

5.5. TRACE AND TRIGGER MATCH 43

5.5 Trace and trigger Match

Trace and trigger match represents the number of signals that can be traced or used for
triggering given the trace capacity and forwarded to the trace buffers for observation via
overlay network. The maximum number of signals that can be traced is directly propor-
tional to the amount of available trace capacity. The match stage runs the maximum
matching algorithm to find a primal solution on the associated weighted bipartite graph
to return the number of signals that can be traced and used for triggering.

Figure 5.6: Trace match size for mkPktmerge

In all the cases, it was possible to obtain a full trigger match, that is, all the 32
signals are connected to the RAM pins. This simulates the effect of having a trigger unit
as these pins are no longer available for tracing. For the trace signal, only partial match
was possible. Figure 5.6 to Figure 5.11 illustrates the maximum size of trace signals that
was matched compared to expected size of trace signals for a requested trace fraction.
A trace fraction of 0.2 represents 20% of the available trace pins after discounting the
number of pins blocked by trigger signals, that is, for example 2579 pins out of 12896 trace
pins for stereovision0 benchmark. Maximum trace capacity denotes the total available
spare RAM pins in a circuit. A match at different trace fraction (normalized to the
available trace capacity) for every benchmark is requested and the obtained match are
plotted in the referenced figures. The dotted line represent the number of signals that a
designer expects at a given trace-fraction for a complete trace match while the solid lines
shows number of trace signals returned by the matching algorithm that will be forwarded
over the overlay network for observation. It can be observed in the figures that for all
the cases, both the lines do not overlap meaning that a full match was not possible and
only a partial match was returned. In Figure 5.6 (For the benchmark mkPktmerge),
more than 90%, 72% and 61% of the requested trace signal can be matched at trace
fraction 0.1, 0.2 and 0.3 respectively, declining to just 34% at trace fraction of 1, while
for other benchmarks these number are more worse, significantly affecting the efficiency

44 CHAPTER 5. RESULTS

of involved debugging technique. The reason for this behavior is explained in the next
paragraph. The overlay network is re-configured with this partial match to observe the
signals.

Figure 5.7: Trace match size for Stereovision0

There is a significant gap between the expected and obtained number of trace signals
that can be observed for all the benchmarks in Figure 5.6 to Figure 5.11. This gap shows
the limitation of the proposed debug flow. Lower the gap between expected and obtained
number of trace signal matches, the more efficient proposed debug flow will be as it will
be possible to observe more trace signals. Following are the reasons that tries to explain
this gap:

• First, in case of all benchmark circuits, it was not possible to incrementally connect
all the internal signals to the overlay network due to the routing congestion that
may leave the circuit un-routable on the device and hence, these signals were
discarded from the overlay network configuration.

• Second, during the packing stage local nets are absorbed within the logic cluster and
these nets are unable to exit the cluster due to lack of free resources in there vicinity
unlike global nets. It was also not possible to make global routes for these nets, so
that they can exit the cluster via these routes towards the trace-buffers because
of constraints imposed by VPR while using Virtex-6 architecture. This particular
reason significantly limits the number of signals being traced. More information
about the routing infrastructure in Virtex-6 may help improve it.

• Third reason being the signal density at each trace-buffer pin. It can be assumed
that each pin on an average will be connected to the number of signals w.r.t network
connectivity C. For example, in LU32PEeng circuit with an overlay network of
C = 5, means that a trace pin will be connected to (111667 * 5) / 8184 = 68
(approx.) different signals. So, if 1 signal is forwarded to a trace-buffer input, the

5.5. TRACE AND TRIGGER MATCH 45

Figure 5.8: Trace match size for Stereovision2

Figure 5.9: Trace match size for Bgm

rest 61 signals are blocked from reaching this preferred pin and hence either barred
from being observed or routed to a comparatively less preferred trace pin. The
fixed channel width and low cluster output flexibility (Fc out) of the Virtex-6
architecture further intensifies the effect of this behavior.

Figures 5.6 to 5.11 depicts the maximum number of trace matches obtained when
requested at different trace fractions for all the six benchmarks.

46 CHAPTER 5. RESULTS

Figure 5.10: Trace match size for LU32PEeng

Figure 5.11: Trace match size for Mcml

5.6. MATCH RUNTIME 47

5.6 Match Runtime

Figure 5.12 represents the average match runtime to select a new set of signals to be
traced and to find a network configuration for the pre-embedded overlay network as per
this selection for all the six benchmarks. During the match stage a blocking bipartite
graph is built having trace signals and pins as vertices and connections between them as
edges in order to apply network flow technique to find the new network configuration, that
is, which signal will be routed to a particular trace pin. The runtime includes building
such a graph and finding a maximum weighted bipartite sub-graph from this graph using
Lemon C++ framework library [47] that defines the new network configuration. For all
the benchmark circuits except LU32PEeng, it was possible to return a match solution in
less than a second, while for LU32PEeng it was 1.13 seconds. Since, the number of trace
signal slightly varies across various data-points, it can be observed in the Figure 5.12
that the runtime is constant within a range of trace fraction for different benchmarks
and then shows a slight increase. The runtime and number of signals being traced seems
to have a linear relation and is expected to increase with availability of more signals that
can be traced.

Figure 5.12: Runtime to select a different set of signal (match) and re-configuring the
overlay network

48 CHAPTER 5. RESULTS

5.7 Debug Turn Overhead

In the proposed debug flow, first the circuit is normally compiled, afterward overlay net-
work is incrementally inserted onto the original mapping to trace the signals and then
this network is re-configured as per the designers intent to observe an arbitrary set of
circuit signal. Once a new network configuration is obtained, the circuit is incrementally
routed to generate a new bit-stream that can be used to program the device and is re-
ferred as a debug turn . The debug turn overhead represents the time consumed during
one such debug turn. It includes the time taken by the match and Collapse stage, conver-
sion of VPR routing to Xilinx proprietary XDL netlist and the time taken by the TRCE
and BitGen tool: to run design rule checks and perform timing analysis and generate the
bit-stream respectively. Figure 5.13 depicts the flow of debug cycle.

Benchmark Match Collapse TRCE BitGen Total

mkPktMerge 0.03 17.06 11 38.15 66.24
Stereovision0 0.16 19.38 17 48.85 85.39
Stereovision2 0.33 28.88 42 75 146.21
Bgm 0.3 33.59 36 92 161.89
LU32PEeng 1.13 282.47 88 232 603.6
Mcml 0.89 126.4 289 212 628.29

Table 5.3: Debug time overhead for one debug turn (In Seconds)

Table 5.3 shows average debug turn overhead (in seconds) for every benchmark circuit
using the proposed debug flow. The column titled ’Total’ represents time taken across all
the stages together and rest of the columns correspond to individual timings of different
stages. In all the cases, it is possible to generate a valid bit-stream along-with debug
instrumentation in less than 630 seconds for LU32PEeng and Mcml benchmark, and
for all circuits, in less than 162 seconds. For the smallest benchmark, mkPktMerge,
this shows a saving of 39% in runtime over a full recompilation and 97% in case of
largest benchmark, Mcml, thereby significantly improving a designer’s productivity while
debugging.

5.8 Conclusions

This chapter describes measurements done to determine the performance of overlay net-
work and the implemented debug system. It highlights the shift in performance when a
commercial architecture is used and the contribution of different factors to this perfor-
mance when we use such an architecture. First, the methodology is explained. Afterwards,
different performance metrics and test platform are identified. A set of six benchmark
circuit that covers a wide range of FPGA designs are used to run the experiments. Subse-
quently, the metrics related to the performance of overlay network and the debug system
are measured independently. Using the measurements, debug turn overhead parameter
of the debug system is formulated and measured. Finally, we try to compare the per-

5.8. CONCLUSIONS 49

Figure 5.13: Debug-cycle: cycle may be repeated multiple times

formance of overlay network in case of both commercial and hypothetical architecture,
wherever possible.

The following metrics are used to gather the results and demonstrates the perfor-
mance of VON for commercial architecture: Critical path delay (CPD) of the circuit
after inserting the debug instrumentation. There is no or very less change in the CPD
at C ≤ 5 for larger benchmarks but significantly increases for C > 5.

The runtime overhead also follows the same trend, that is, on an average 54% increase
in base runtime for C ≤ 10, but prohibitively increasing afterward.

For network connectivity, we found that it is possible to reach more that 95% of circuit
signals for tracing at all network connectivity levels via overlay network. Although, it
was only possible to observe few hundreds of circuit signals via trace-buffers because of
constraints imposed by commercial architecture. Whilst the selection of a different set of
signal and mapping them to trace-buffers is found to take less than 2 seconds as depicted
by match runtime.

The debug turn overhead of the proposed system for the largest benchmark evaluated
was found to be 630 seconds with major portion of this time being consumed by the ISE
tool flow.

To summarize the performance of VON, it is efficient to implement the VON at
lower network connectivity levels of upto C ≤ 5, afterward the cost of using such a
debug instrumentation rises prohibitively in terms of runtime overhead and CPD. We
emphasize the fact that it will be beneficial, if we implement this technique with less
flexibility (that is, at C ≤ 10). The reason being, at higher connectivity levels, there is
slight difference in signal reachability and fraction of signals that can be traced and we
can safely assume that it will not affect the achieved observability.

These results show the capability of proposed system to generate the bit-stream for
a commercial device along-with debug instrumentation, that is, a pre-embedded overlay
network that can be reconfigured as many times as required, in less than 630 seconds

50 CHAPTER 5. RESULTS

during each debug turn, instead of requiring a complete recompilation of the circuit
during debug cycle that would normally be in hours (For example, the Mcml benchmark
would take approximately 5.5 hours).

Conclusion 6
6.1 Summary

Chapter 2 presents the different concepts and technologies necessary to understand the
rest of the thesis. It begins with a brief explanation of scan and trace-based approach.
It highlights the fact that trace-based approaches are better than scan-based approach
in terms of faster debugging with less area overhead. Afterwards, it details about the
incremental CAD flow that makes it possible to independently run individual stages of
the tool thereby saving compilation time. Next, the VTR CAD flow and architecture
description language is explained that forms the base of the debug system proposed in
this thesis. VTR only understands the architecture description written in XML format of
an FPGA in order to know the properties of FPGA device being and then perform tool
execution. Subsequently, the concept of virtual overlay network explains that how we can
embed a flexible network on top of existing place-and-routed circuit design, multiplexing
circuit signals to trace buffers that can be merged together onto the existing mapping
when debugging is required. The network connectivity describes about the flexibility of
such a overlay network. We have used this particular concept to build the debug system.

Finally, chapter 2 also outlines the differences between this thesis and related/similar
works. It briefly describes the commercial trace IPs as well. The commercial trace IPs
requires the designer’s to pre-select the trace signals, extensively uses FPGA resources
and have long debug cycles. We can follow from the earlier discussion on related work
that the use of overlay network for commercial architecture is unique and the debug
system based on it overcomes the limitations of commercial trace IPs like Chipscope or
SignalTap.

Chapter 3 describes the modeling of Virtex-6 FPGA using architecture description
language for use with the VTR CAD tool. Since, VTR itself is not capable of generating
bit-stream for realistic architectures, it is extended with the VTB tool to generate bit-
stream for Xilinx Virtex devices. The VTB tool leverages the Rapidsmith tool that is
based on XDL and provides a framework to use modern Xilinx Devices in academic
research related to low-level FPGA CAD tools like the debug system presented in this
thesis. The architecture description language is capable of describing any hypothetical
or realistic architecture in XML format. Although, the architecture description language
can describe most of the complex resources present on the Virtex-6 device, the VTR is
not capable of using them. Hence, the debug system is constrained to use only those
blocks on the FPGA that VTR can operate with. We experimentally determine the
architectural parameters of Virtex-6 as this information is proprietary while modeling
the Virtex-6 for this work.

Chapter 4 presents the implementation of an incremental VON based debug sys-
tem that tries to overcome the limitations of commercially available debug tools and

51

52 CHAPTER 6. CONCLUSION

improves the observability. It begins with the brief explanation about the requirements
concerning the debug system, and the design choices made to ascertain its structure.
The overlay network and open source VTR tool forms the core technique for the debug
instrumentation and base incremental CAD flow respectively, to realize the debug flow.
Afterward, we extend QuickTrace tool for Virtex-6 architecture. It is re-factored first to
be compatible with the latest version of VTR and then extended for the current scenario.
We also modified the core routing algorithm of the VPR tool within the VTR CAD tool
to incrementally insert such a network into the design. We directly import the routing
resources graph of Virtex-6 into VPR and stitch it with the internally generated routing
graph, to make the VPR capable of generating valid routing for Xilinx devices with the
help of VTB tool. Subsequently, we briefly explain the different stage of QuickTrace tool.
Finally, we realize the proposed debug system by synchronizing the different components
together to exhibit the performnce of overlay network and demonstrate the feasibility
of the approach. This debug system has the potential of overcoming the limitations of
ELAs while improving the observability in FPGAs.

Chapter 5 describes measurements done to determine the performance of overlay
network and the implemented debug system. It highlights the shift in performance when
a commercial architecture is used and the contribution of different factors to this perfor-
mance when we use such an architecture. First, the methodology is explained. Afterwards,
different performance metrics and test platform are identified. A set of six benchmark
circuit that covers a wide range of FPGA designs are used to run the experiments. Subse-
quently, the metrics related to the performance of overlay network and the debug system
are measured independently. Using the measurements, debug turn overhead parameter
of the debug system is formulated and measured. Finally, we try to compare the per-
formance of overlay network in case of both commercial and hypothetical architecture,
wherever possible.

The following metrics are used to gather the results and demonstrates the perfor-
mance of VON for commercial architecture: Critical path delay (CPD) of the circuit
after inserting the debug instrumentation. There is no or very less change in the CPD
at C ≤ 5 for larger benchmarks but significantly increases for C > 5.

The runtime overhead also follows the same trend, that is, on an average 54% increase
in base runtime for C ≤ 10, but prohibitively increasing afterwards.

For network connectivity, we found that it is possible to reach more that 95% of circuit
signals for tracing at all network connectivity levels via overlay network. Although, it
was only possible to observe few hundreds of circuit signals via trace-buffers because of
constraints imposed by commercial architecture. Whilst the selection of a different set of
signal and mapping them to trace-buffers is found to take less than 2 seconds as depicted
by match runtime.

The debug turn overhead of the proposed system for the largest benchmark evaluated
was found to be 630 seconds with major portion of this time being consumed by the ISE
tool flow.

To summarize the performance of VON, it is efficient to implement the VON at
lower network connectivity levels of upto C ≤ 5, afterward the cost of using such a
debug instrumentation rises prohibitively in terms of runtime overhead and CPD. We
emphasize the fact that it will be beneficial, if we implement this technique with less

6.2. CONCLUSION 53

flexibility (that is, at C ≤ 10). The reason being, at higher connectivity levels, there is
slight difference in signal reachability and fraction of signals that can be traced and we
can safely assume that it will not affect the achieved observability.

These results show the capability of proposed system to generate the bit-stream for
a commercial device along-with debug instrumentation, that is, a pre-embedded overlay
network that can be reconfigured as many times as required, in less than 630 seconds
during each debug turn, instead of requiring a complete recompilation of the circuit
during debug cycle that would normally be in hours (For example, the Mcml benchmark
would take approximately 5.5 hours).

6.2 Conclusion

During design verification phase, designers begin a debugging procedure to ascertain the
root cause of erroneous and unexpected circuit behavior. The embedded logic analyzer
utilizing trace-based approach is a common technique to implement this debug procedure
where trace-buffers are inserted into the circuit and a small pre-determined subset of
signals is recorded in these buffers at the event of interest. Existing academic work
and commercial trace IPs that follows the concept of ELAs, requires a designer to pre-
select the signals that they wish to observe in the beginning of circuit compilation, after
that point-to-point connections are made in between the trace buffer and chosen circuit
signal. If the designer wishes to observe another subset of signals, he/she again needs to
go through lengthy compilation process prohibiting faster debug cycles. Further, these
tools also uses the on-chip resources to implement debug instrumentation. Hence, we
proposed a incremental VON based debug system that overcomes the limitations of
ELAs and improves the observability within FPGAs.

The problem statement of this thesis was:

For a commercial FPGA architecture (like Xilinx Virtex devices), what will be the
performance of a virtual overlay network (VON) based debug system?

To answer this question, the thesis had the following main goals:

• Extending and implementing the virtual overlay network concept for a commercial
architecture.

• Realizing a debug system that uses the extended VON as its debugging instrument
and is based on a incremental CAD tool.

• Determining the performance of the different factors related to virtual overlay
network in order to demonstrate the feasibility of proposed debug system.

To achieve the goals mentioned above, a debug system for a commercial architecture
is realized with the objective of improving on the limitations of commercial trace IPs by
extending a promising trace-based technique [7] for a commercial architecture. It intends
to incrementally insert a overlay network into the user circuit after initial placement and
routing, that can be reconfigured during debug cycle as many times as the designer

54 CHAPTER 6. CONCLUSION

needs to determine the root cause of the bug. This system employs overlay network that
multiplexes all circuit signals to the trace buffers instead of point-to-point connections,
uses left-over routing multiplexers rather than soft logic on FPGA unlike [32] and reclaims
the remnant on-chip memory as trace-buffers. It is based on the open source VTR CAD
flow and leverages the functionality of VTB tool: to take verilog HDL circuit and a
architecture description file as input and generate bit-stream for the Virtex-6 device
along-with debug instrumentation.

To answer the research question, we perform the experiments with a set of six bench-
mark circuits that evaluate the different factors related to overlay network and to deter-
mine the debug turn time of the proposed system. Since, the VON technique is used as
the core of the debug system, its efficacy lies in the performance of overlay network.

The experiments have shown that for all the benchmark circuits that were inves-
tigated, it was possible to reclaim 100% of the left-over memories as trace buffers, in-
crementally insert the overlay network and pass the Xilinx DRC check to generate the
bit-stream except one (DRC reports two design warnings for Mcml benchmark). For the
overlay network, it was possible to connect 95% - 100% (for largest and smallest bench-
mark respectively) circuit signals to the embedded network while increasing the CAD
runtime by 17% for optimal cases.

The increase in cirtical path delay is entirely due to the connections added by the
embedded network. For all the benchmarks, the CPD on an average increased by 25%
up till network connectivity (C) = 3 while rising on an average by 83% at C = 5. It only
gets worse at increasing values of C. The ratio of increase over the base CPD is high
for benchmarks that have short un-instrumented critical path delay comparative to the
ones that have long delay, and hence significantly differs for every benchmark. It was
also possible to embed the network without affecting the CPD at specific values of C. It
also answers Question-1 presented in Section 1.3 (see Table 5.2).

In contrast to the result presented in [7], the insertion of an overlay network at higher
values (>5) of network connectivity C, to build a more flexible network, significantly
increases the critical path delay of instrumented circuit and runtime overhead of the
system. This indicates that a trade-off exist between the flexibility of network and other
equally important metrics like CPD or runtime, in case of commercial architecture.

Interestingly at lower values of C ≤5, for all except one benchmark, there is a slight
increase of 0 - 17% in critical path delay and a maximum of 36% increase in runtime,
while having a signal reachability of approximately 97.7%. This signifies the suitability
of network as debug instrumentation at lower connectivity levels, that is, a less flexi-
ble network. It is worthwhile to note that using a less flexible network does not affect
the debugging capability much in terms of signal reachability. There is a slight differ-
ence of 0.1% in signal reachability at different values of C. This outlines the answer for
Question-2. It also shows that how commercial architecture constrains the network with
fixed channel width and cluster input/output flexibility. Due to the reasons described in
Section 4.5, the proposed debug system is limited by the number of signals that can be
traced simultaneously, however it is possible to improve this parameter if more informa-
tion about the architecture involved is made available and/or VTR tool is extended to
support the complex routing resources of commercial devices.

While there is substantial compile time overhead of inserting the overlay network

6.3. FUTURE WORK 55

once for every circuit. The embedded network can be re-configured to connect designer’s
choice of trace signals and generate new bit-stream to re-program the device in less
than 630 seconds, as investigated for largest benchmark (Mcml), throughly improving
the debug time overhead. The proposed system improves the debug time overhead on an
average by 90% for all benchmarks except mkPktmerge that shows an improvement of
37%, required to perform a debug cycle as compared with full re-compilation to observe
a new set of signal. This runtime saving during the debug cycle addresses Question-3.

The proposed debug system overcomes the limitations of commercial trace IPs in
following ways:

• Deferring the signal selection process to debug time.

• Only utilizing routing multiplexers left after initial place-and-routed design, that
is, virtually no area overhead.

• Faster debug cycle time thereby improving designer’s productivity and providing
more time to extensively test the design.

Like other commercial tarce IPs, this system is also limited by the on-chip memory
and basically depends on the actual memory resources of FPGA device used. If there
is no free memory block then it will not be possible to use them as trace-buffers. So,
it can be concluded that the on-chip memory is not a limitation to ELAs, and should
be interpreted as normal resources on the FPGA having no influence on the design of
debugging system.

As compared with existing approaches: The approach presented in this work tries to
provide a concise end-to-end solution for enhancing observability in FPGAs. It reduces
the debug turn time to 630 seconds compared to a full re-compile time of 5.5 hours for
the largest benchmark and 66 seconds from 1.8 minutes for the smallest benchmark,
without affecting maximum operating frequency (in optimal cases). This work can be
encapsulated as a tool and made available for direct use. While other academic work
required the user to interact with underlying complexity making it difficult to follow
their technique and only demonstrated part of the process.

The contribution of this work is that, it demonstrates the performance of overlay
network for a realistic architecture and proposes a debug system based on VTR CAD
tool that overcomes the drawbacks of ELAs providing faster debug cycles. This approach
serves as a prototype to exhibit the potential of such a concept that can be further
developed into a full-suite debugging tool.

There are several ways in which the proposed debug system and overlay network
itself can be used or extended to further improve the observability inside FPGA’s and
are discussed in the next section.

6.3 Future Work

The following suggestions for the future work are categorized in implementation enhance-
ments and research opportunities.

56 CHAPTER 6. CONCLUSION

6.3.1 Implementation enhancements

• The proposed debug system and overlay network should be investigated from the
perspective of making them more adaptable to the commercial devices, so that they
can be used generically with least effort and works with different architectures from
several vendors.

• The system is restricted by the number of signals that can be traced simultaneously,
it will be interesting to further explore that how it can be improved while having
the same constraints. In future, if more insights are available into the routing
infrastructure of physical devices and support for them in VTR CAD flow, then it
will be straightforward to improve this functionality.

6.3.2 Research opportunities

• An interesting research avenue is the application of this approach onto ZUMA ar-
chitecture [48] [49] in conjunction with the intricacies of virtual overlay network.
These architectures implement Virtual FPGAs, referred as FPGA overlays, that
is, an open source, cross-compatible embedded FPGA architecture which is super-
imposed on top of a physical FPGA, and termed as FPGA-on-an-FPGA. It’s a
trending technology and is gaining traction in the FPGA research community. It
will be fair to assume that application of proposed debug technique onto Virtual
FPGA’s will not be limited by the constraints imposed by the physical devices.
Hence it may prove to be cross-compatible across different architectures while still
preserving its very own performance. Upon further integration even new design
CAD flows can be developed.

• The application of this approach in combination to a data capture module may also
prove beneficial in scenarios where the designer’s intent is to extract the FPGA’s
internal state at different reference points in time, to have data dumps for further
analysis.

To conclude, it is possible to improve on the limitations of commercial trace IPs,
at the same time increasing the observability within FPGAs and it is shown that how
debug productivity can be improved during FPGA design and prototyping. Moreover,
these techniques can be extended for other applications to advance research in related
domains.

Bibliography

[1] H. Foster, “The 2014 Wilson Research Group Functional Verification Study.”
[Online]. Available: https://blogs.mentor.com/verificationhorizons/blog/2015/01/
21/prologue-the-2014-wilson-research-group-functional-verification-study/

[2] S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B. Parker, T. Roewer,
P. Saha, T. Takken, and J. Tierno, “A Cycle-accurate, Cycle-reproducible Multi-
FPGA System for Accelerating Multi-core Processor Simulation,” in Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
ser. FPGA ’12. New York, NY, USA: ACM, 2012, pp. 153–162. [Online].
Available: http://doi.acm.org/10.1145/2145694.2145720

[3] E. Hung and S. Wilton, “Incremental Trace-buffer Insertion for FPGA Debug,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 22, no. 4,
pp. 850–863, April 2014.

[4] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting Bitstreams for Debug-
ging FPGA Circuits,” in Field-Programmable Custom Computing Machines, 2001.
FCCM ’01. The 9th Annual IEEE Symposium on, March 2001, pp. 41–50.

[5] A. Corporation, “Quartus II Handbook Version 12.1 Volume 3.” [Online].
Available: https://www.altera.com/content/dam/altera-www/global/en US/pdfs/
literature/hb/qts/archives/quartusii handbook 121.pdf

[6] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr,
S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose, and V. Betz,
“VTR 7.0: Next Generation Architecture and CAD System for FPGAs,” ACM
Trans. Reconfigurable Technol. Syst., vol. 7, no. 2, pp. 6:1–6:30, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2617593

[7] E. Hung and S. J. E. Wilton, “Accelerating FPGA Debug: Increasing Visibility
Using A Runtime Reconfigurable Observation And Triggering Network,” ACM
Trans. Des. Autom. Electron. Syst., vol. 19, no. 2, pp. 14:1–14:23, Mar. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2566668

[8] Xilinx, “Configuration And Readback of Virtex FPGAs Using JTAG boundary-
scan.” [Online]. Available: http://www.xilinx.com/support/documentation/
application notes/xapp139.pdf

[9] “Virtex 6 FPGA Datasheet.” [Online]. Available: http://www.xilinx.com/support/
documentation/data sheets/ds152.pdf

[10] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using Design-
level Scan To Improve FPGA Design Observability And Controllability For
Functional Verification,” in Field-Programmable Logic and Applications, ser.
Lecture Notes in Computer Science, G. Brebner and R. Woods, Eds.

57

https://blogs.mentor.com/verificationhorizons/blog/2015/01/21/prologue-the-2014-wilson-research-group-functional-verification-study/
https://blogs.mentor.com/verificationhorizons/blog/2015/01/21/prologue-the-2014-wilson-research-group-functional-verification-study/
http://doi.acm.org/10.1145/2145694.2145720
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/archives/quartusii_handbook_121.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/archives/quartusii_handbook_121.pdf
http://doi.acm.org/10.1145/2617593
http://doi.acm.org/10.1145/2566668
http://www.xilinx.com/support/documentation/application_notes/xapp139.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp139.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds152.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds152.pdf

58 BIBLIOGRAPHY

Springer Berlin Heidelberg, 2001, vol. 2147, pp. 483–492. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44687-7 50

[11] Y. Iskander, C. Patterson, and S. Craven, “Improved Abstractions And Turnaround
Time For FPGA Design Validation And Debug,” in Field Programmable Logic and
Applications (FPL), 2011 International Conference on, Sept 2011, pp. 518–523.

[12] Xilinx, “Chipscope Pro Software And Cores, User Guide.” [On-
line]. Available: http://www.xilinx.com/support/documentation/sw manuals/
xilinx14 4/chipscope pro sw cores ug029.pdf

[13] Synopsys, “Identify, Simulator Like Visibility Into Hardware De-
bug.” [Online]. Available: http://www.synopsys.com/tools/implementation/
FPGAimplementation/capsulemodule/identify ds.pdf

[14] D. F. G. Prado, “Tutorial on FPGA Routing,” 2006. [Online]. Available: http://
sisbib.unmsm.edu.pe/BibVirtualdata/publicaciones/electronica/n17 2006/a04.pdf

[15] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, “Incremental CAD,” in Com-
puter Aided Design, 2000. ICCAD-2000. IEEE/ACM International Conference on,
Nov 2000, pp. 236–243.

[16] J. Luu, J. H. Anderson, and J. S. Rose, “Architecture Description And Packing For
Logic Blocks With Hierarchy, Modes And Complex Interconnect,” in Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 227–236. [Online].
Available: http://doi.acm.org/10.1145/1950413.1950457

[17] “VPR 6.0 Beta Architecture Description Language.” [Online]. Available:
http://www.eecg.utoronto.ca/vpr/arch language.html

[18] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville,
K. B. Kent, P. Jamieson, and J. Anderson, “The VTR Project: Architecture
And CAD For FPGAs From Verilog To Routing,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, ser.
FPGA ’12. New York, NY, USA: ACM, 2012, pp. 77–86. [Online]. Available:
http://doi.acm.org/10.1145/2145694.2145708

[19] P. Jamieson, K. Kent, F. Gharibian, and L. Shannon, “Odin II - An Open-source
Verilog HDL Synthesis Tool For CAD Research,” in Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual International Symposium
on, May 2010, pp. 149–156.

[20] “Berkeley Logic Interchange Format (BLIF).” [Online]. Available: https:
//www.ece.cmu.edu/∼ee760/760docs/blif.pdf

[21] A. M. et al, “ABC: A System For Sequential Synthesis And Verification.” [Online].
Available: http://www.eecs.berkeley.edu/∼alanmi/abc/

http://dx.doi.org/10.1007/3-540-44687-7_50
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/chipscope_pro_sw_cores_ug029.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/chipscope_pro_sw_cores_ug029.pdf
http://www.synopsys.com/tools/implementation/FPGAimplementation/capsulemodule/identify_ds.pdf
http://www.synopsys.com/tools/implementation/FPGAimplementation/capsulemodule/identify_ds.pdf
http://sisbib.unmsm.edu.pe/BibVirtualdata/publicaciones/electronica/n17_2006/a04.pdf
http://sisbib.unmsm.edu.pe/BibVirtualdata/publicaciones/electronica/n17_2006/a04.pdf
http://doi.acm.org/10.1145/1950413.1950457
http://www.eecg.utoronto.ca/vpr/arch_language.html
http://doi.acm.org/10.1145/2145694.2145708
https://www.ece.cmu.edu/~ee760/760docs/blif.pdf
https://www.ece.cmu.edu/~ee760/760docs/blif.pdf
http://www.eecs.berkeley.edu/~alanmi/abc/

BIBLIOGRAPHY 59

[22] J. Luu, J. H. Anderson, and J. S. Rose, “Architecture Description And Packing For
Logic Blocks With Hierarchy, Modes And Complex Interconnect,” in Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 227–236. [Online].
Available: http://doi.acm.org/10.1145/1950413.1950457

[23] E. Hung, “Mind The (Synthesis) Gap: Examining Where Academic FPGA Tools
Lag Behind Industry,” in Field Programmable Logic and Applications (FPL), 2015
25th International Conference on, Sept 2015, pp. 1–4.

[24] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapidsmith: Do-It-Yourself CAD Tools For Xilinx FPGAs,” in Field Programmable
Logic and Applications (FPL), 2011 International Conference on, Sept 2011, pp.
349–355.

[25] “Xilinx Command Line Tools User Guide.” [Online]. Available: http://www.xilinx.
com/support/documentation/sw manuals/xilinx11/devref.pdf

[26] E. Hung and S. J. Wilton, “Towards Simulator-Like Observability For FPGAs: A
Virtual Overlay Network For Trace-Buffers,” in Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, ser. FPGA
’13. New York, NY, USA: ACM, 2013, pp. 19–28. [Online]. Available:
http://doi.acm.org/10.1145/2435264.2435272

[27] Z. Poulos, Y.-S. Yang, J. Anderson, A. Veneris, and B. Le, “Leveraging Reconfigura-
bility To Raise Productivity In FPGA Functional Debug,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2012, March 2012, pp. 292–295.

[28] E. Hung and S. Wilton, “Limitations Of Incremental Signal-Tracing For FPGA
Debug,” in Field Programmable Logic and Applications (FPL), 2012 22nd Interna-
tional Conference on, Aug 2012, pp. 49–56.

[29] ——, “Speculative Debug Insertion For FPGAs,” in Field Programmable Logic and
Applications (FPL), 2011 International Conference on, Sept 2011, pp. 524–531.

[30] H. Ko and N. Nicolici, “Algorithms For State Restoration And Trace-Signal Selec-
tion For Data Acquisition In Silicon Debug,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 28, no. 2, pp. 285–297, Feb 2009.

[31] X. Liu and Q. Xu, “On Signal Selection For Visibility Enhancement In Trace-Based
Post-Silicon Validation,” Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, vol. 31, no. 8, pp. 1263–1274, Aug 2012.

[32] Tektronix, “Certus Debug Suite.” [Online]. Avail-
able: http://www.tek.com/sites/tek.com/files/media/media/resources/Certus
Debug Suite Datasheet 54W-28030-1 4.pdf

[33] Altera, “About Signalprobe.” [Online]. Available: http://quartushelp.altera.com/
14.0/mergedProjects/program/sipro/comp intro signalprobe.htm

http://doi.acm.org/10.1145/1950413.1950457
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/devref.pdf
http://doi.acm.org/10.1145/2435264.2435272
http://www.tek.com/sites/tek.com/files/media/media/resources/Certus_Debug_Suite_Datasheet_54W-28030-1_4.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/Certus_Debug_Suite_Datasheet_54W-28030-1_4.pdf
http://quartushelp.altera.com/14.0/mergedProjects/program/sipro/comp_intro_signalprobe.htm
http://quartushelp.altera.com/14.0/mergedProjects/program/sipro/comp_intro_signalprobe.htm

60 BIBLIOGRAPHY

[34] “Virtex-6 FPGA Configuration.” [Online]. Available: http://www.xilinx.com/
support/documentation/user guides/ug360.pdf

[35] “Virtex 6 FPGA CLB User Guide.” [Online]. Available: http://www.xilinx.com/
support/documentation/user guides/ug364.pdf

[36] “Virtex 6 FPGA Memory Resources User Guide.” [Online]. Available: http:
//www.xilinx.com/support/documentation/user guides/ug363.pdf

[37] B. Hutchings and J. Keeley, “Rapid Post-Map Insertion Of Embedded Logic An-
alyzers For Xilinx FPGAs,” in Field-Programmable Custom Computing Machines
(FCCM), 2014 IEEE 22nd Annual International Symposium on, May 2014, pp.
72–79.

[38] D. Gomez and M. Ciesielski, “A Tutorial On FPGA Routing.” Department of
Electrical and Computer Engineering, University of Massachusetts, Amherst, USA,
2008. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.84.9313&rep=rep1&type=pdf

[39] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards An Open-Source Tool Flow,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, ser.
FPGA ’11. New York, NY, USA: ACM, 2011, pp. 41–44. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950425

[40] “VPR User Manual 7.0.” [Online]. Available: https://github.com/
verilog-to-routing/vtr-verilog-to-routing/blob/master/vpr/VPR User Manual 7.0.
pdf

[41] L. McMurchie and C. Ebeling, “Pathfinder: A negotiation-based performance-driven
router for FPGAs,” in Proceedings of the 1995 ACM Third International Symposium
on Field-programmable Gate Arrays, ser. FPGA ’95. New York, NY, USA: ACM,
1995, pp. 111–117. [Online]. Available: http://doi.acm.org/10.1145/201310.201328

[42] “Lemon C++ Graph Library.” [Online]. Available: https://lemon.cs.elte.hu/trac/
lemon

[43] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-driven
titan: Enabling large benchmarks and exploring the gap between academic and
commercial cad,” ACM Trans. Reconfigurable Technol. Syst., vol. 8, no. 2, pp.
10:1–10:18, Mar. 2015. [Online]. Available: http://doi.acm.org/10.1145/2629579

[44] E. Hung, F. Eslami, and S. Wilton, “Escaping The Academic Sandbox: Realizing
VPR circuits On Xilinx Devices,” in Field-Programmable Custom Computing Ma-
chines (FCCM), 2013 IEEE 21st Annual International Symposium on, April 2013,
pp. 45–52.

[45] U. Farooq, Z. Marrakchi, and H. Mehrez, “FPGA Architectures: An Overview,”
in Tree-based Heterogeneous FPGA Architectures. Springer New York, 2012, pp.
7–48. [Online]. Available: http://dx.doi.org/10.1007/978-1-4614-3594-5 2

http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9313&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9313&rep=rep1&type=pdf
http://doi.acm.org/10.1145/1950413.1950425
https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vpr/VPR_User_Manual_7.0.pdf
https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vpr/VPR_User_Manual_7.0.pdf
https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vpr/VPR_User_Manual_7.0.pdf
http://doi.acm.org/10.1145/201310.201328
https://lemon.cs.elte.hu/trac/lemon
https://lemon.cs.elte.hu/trac/lemon
http://doi.acm.org/10.1145/2629579
http://dx.doi.org/10.1007/978-1-4614-3594-5_2

BIBLIOGRAPHY 61

[46] H. Ko and N. Nicolici, “Algorithms For State Restoration And Trace-Signal Selec-
tion For Data Acquisition In Silicon Debug,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 28, no. 2, pp. 285–297, Feb 2009.

[47] B. Dezs, A. Jüttner, and P. Kovács, “Lemon - An Open Source C++ Graph
Template Library,” Electron. Notes Theor. Comput. Sci., vol. 264, no. 5, pp. 23–45,
Jul. 2011. [Online]. Available: http://dx.doi.org/10.1016/j.entcs.2011.06.003

[48] A. Brant and G. Lemieux, “Zuma: An Open FPGA Overlay Architecture,” in Field-
Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual In-
ternational Symposium on, April 2012, pp. 93–96.

[49] T. Wiersema, A. Bockhorn, and M. Platzner, “Embedding FPGA Overlays Into
Configurable Systems-On-Chip: Reconos meets zuma,” in ReConFigurable Comput-
ing and FPGAs (ReConFig), 2014 International Conference on, Dec 2014, pp. 1–6.

http://dx.doi.org/10.1016/j.entcs.2011.06.003

62 BIBLIOGRAPHY

Biography

Roshan Kumar Gupta is a computer scientist with strong inter-
est in embedded software, computer architecture, hardware design,
and technology management. His hobbies are reading about world
economics and biking. He completed his Bachelor’s degree in Elec-
tronics and Communication track in the year 2011, from a reputed
institution in India. From 2010 to 2011, Roshan was the president of
IEEE student chapter at SIT, India. He also worked for an year in
the IT industry as a software engineer. Afterward, from 2013 he con-
tinued his studies at TU Delft, working towards a Master’s degree

in Embedded Systems. In 2014, Roshan performed an internship at ASML in Veldhoven,
working on diagnostics tool that aims to reduce the downtime of their lithography ma-
chine. He will return to ASML in full-time position in 2016.

63

64 BIBLIOGRAPHY

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgement
	Introduction
	Context
	Motivation
	Problem statement and contribution
	Approach
	Thesis Overview

	Background and Related Work
	Scan and Trace Based Technique
	Incremental CAD
	VTR CAD Flow
	Architecture Description Language
	Verilog-To-Routing (VTR)

	VTB
	Virtual Overlay Network
	Network Matching

	Commercial Trace IPs
	Related Work
	Conclusions

	Architecture description of Virtex-6
	Virtex-6 FPGA Overview
	CLB Tiles
	Interconnect Resources
	Block RAM
	Conclusions

	Implementation
	Using RAM for trigger and trace
	QuickTrace
	Overlay
	Match
	Collapse

	Proposed debug system
	Conclusions

	Results
	Methodology
	Metrics
	Test Platform and Benchmark circuits

	Critical-Path Delay (CPD)
	Runtime Overhead
	Network Connectivity
	Trace and trigger Match
	Match Runtime
	Debug Turn Overhead
	Conclusions

	Conclusion
	Summary
	Conclusion
	Future Work
	Implementation enhancements
	Research opportunities

	Bibliography
	List of Definitions

