<]
TUDelft

Delft University of Technology

A Data Structure to Incorporate Versioning in 3D City Models

Vitalis, Stelios; Labetski, Anna; Arroyo Ohori, Ken; Ledoux, Hugo; Stoter, Jantien

DOI
10.5194/isprs-annals-1V-4-W8-123-2019

Publication date
2019

Document Version
Final published version

Published in
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences

Citation (APA)

Vitalis, S., Labetski, A., Arroyo Ohori, K., Ledoux, H., & Stoter, J. (2019). A Data Structure to Incorporate
Versioning in 3D City Models. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences, IV(4/W8), 123-130. https://doi.org/10.5194/isprs-annals-I1V-4-W8-123-2019

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.5194/isprs-annals-IV-4-W8-123-2019
https://doi.org/10.5194/isprs-annals-IV-4-W8-123-2019

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

A DATA STRUCTURE TO INCORPORATE VERSIONING IN 3D CITY MODELS

S. Vitalish* A. Labetski', K. Arroyo Ohori!, H. Ledoux!, J. Stoter!

!'3D Geoinformation Group, Delft University of Technology, the Netherlands -
(s.vitalis, a.labetski, g.a.k.arroyoohori, h.ledoux, j.e.stoter) @tudelft.nl

KEY WORDS: Versioning, 3D City Models, CityJSON, CityGML, Git

ABSTRACT:

A 3D city model should be constantly updated with new versions, either to reflect the changes in its real-world counterpart, or to
improve and correct parts of the model. However, the current standards for 3D city models do not support versioning, and existing
version control systems do not work well with 3D city models. In this paper, we propose an approach to support versioning of
3D city models based on CityJSON and the concepts behind the Git version control system, including distributed and non-linear
workflows. We demonstrate the benefits of our approach in two examples and in our software prototype, which is able to extract a

given version of a 3D city model and to display its history.

1. INTRODUCTION

3D city models are increasingly being used to represent the
complexity of today’s urban areas, as they aid in understanding
how different aspects of a city can function, such as emergency
response, noise propagation and solar power potential (Biljecki
et al., 2015). When a 3D city model is created, it represents its
real-world counterpart at a snapshot in time. However, as time
passes, its model needs to be updated and to evolve, much like
its real-world counterpart.

In order to keep a 3D city model up to date, new versions of
it should be regularly created due to three main causes. First,
cities themselves are constantly changing (e.g. a new building
is built, a road is closed, etc.). Second, the modelling aspect
of a project may change, such as when new information be-
comes available for existing city objects through the acquisi-
tion of a new dataset or the output of a new simulation. Last,
certain maintenance processes may cause changes to a dataset
(e.g. geometric errors are fixed, or the classification used in an
attribute is changed).

A commonly used standard for storing 3D city models is
CityGML (Open Geospatial Consortium, 2012). While a num-
ber of CityGML models for different cities exist, these repres-
ent only static snapshots in time and most often do not evolve
alongside their real-world counterparts. Of the openly available
3D city model datasets, the vast majority have not been updated
since their creation'. For the cities that have had multiple ver-
sions, we have observed that municipalities and governments
tend to completely recreate the 3D city models, rather than up-
date them (e.g. the city of Helsinki (Airaksinen et al., 2019)).
There are, in our opinion, two factors that make CityGML data-
sets difficult to update. First, CityGML files are notoriously
complex and difficult to edit, and thus the number of software
packages supporting their editing is very low; Ledoux et al.
(2019) explain this issue in detail. Second, the current version
of CityGML (2.0) does not have any mechanism for the ver-
sioning of files. While there is a proposal to remedy this situ-
ation (Chaturvedi et al., 2017), as we explain in Section 2.2.3,
we believe this proposal has some shortcomings, especially

*Corresponding author
Lhttps://3d.bk.tudelft.nl/opendata/opencities/

because it jumbles versioning with the semantic modelling of
changes in time.

In a more general context, generic solutions to the problem of
versioning data are widely available in the form of version con-
trol systems (VCS). These systems provide a robust mechanism
for storing different versions of files and for tracking changes
(and their associated metadata) in a structured and meaningful
way. VCS are often the key aspect of a project for two reasons.
First, they provide enough information so that contributors can
track and review changes. For instance, when a bug is identi-
fied in a software project, its source can be tracked. Second,
they enable easier collaboration between multiple authors. This
is due to the fact that authors can keep track of who changed
what and when through metadata.

In this paper, we propose a new approach to deal with the ver-
sioning of 3D city models. Our approach is based on the most
used/popular VCS, which is called Git (Spinellis, 2012). Git
was chosen as the basis for our approach because it offers a
distributed architecture and offers several advantages in prac-
tice, e.g. authors can work locally and working with different
versions is handled elegantly; we further expand on Git in Sec-
tion 2.1.1. We have incorporated the successful characterist-
ics of Git’s data structure in our solution, which we described
in Section 3. Given the shortcomings of a GML implementa-
tion, as mentioned above (difficulties in editing and manipulat-
ing files), we have implemented our approach for CityJSON,
which is a JSON-based implementation of the CityGML data
model (v2.0) (Ledoux et al., 2019). We present in Section 4
two concrete examples of how our versioning approach could
be applied, and we demonstrate the benefits it would have by
showing the prototype software we have developed in Section 5.

2. RELATED WORK
2.1 Version control systems

Version control systems (VCS) are utilised for the manage-
ment of changes in information (Spinellis, 2005) this can be
documents, websites, computer code and even geospatial data.
Changes (also known as revisions) can be identified with a
unique id and contain information such as a time stamp and the

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-123-2019 | © Authors 2019. CC BY 4.0 License. 123

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

person responsible for the revision (Ball et al., 1997). Version-
ing is already well established in the realm of computer pro-
gramming where it is often used to track changes in program-
ming code (Spinellis, 2005; Ball et al., 1997). In large projects,
multiple programmers can work on different branches to de-
velop their portion of a particular project. Versioning is also
useful for dealing with errors and reverting a change in cases
where an update may have a bug.

VCS’s main component is a repository, which contains all in-
formations about all the save iterations of files as well as the
metadata information of every version (Loeliger, McCullough).
They utilise branches within a repository which make it easier
for users to work on different aspect of a project at the same
time (Tichy, 1985). That means, that users can have multiple
variations of the evolution of files and they can switch from one
to another (Pilato et al., 2008). For example, this can be used to
develop new experimental features before incorporating them
into the main project. Conceptually, the repository can be per-
ceived as a graph where nodes represent versions and branches
are leafs of the graph. Normally, one branch is considered the
main as it contains the stable version of the project. When a
user is satisfied with the state of a branch, it can be merged to
the trunk, or discarded if it is unsatisfactory. These merges can
also be tagged to identify milestones in a project.

Given the above description, VCS can be divided into two cat-
egories regarding their architecture: centralised and distributed.
Centralised VCS, such as Concurrent Versions System (CVS)
(Grune et al., 1986), Revision Control System (RCS) (Tichy,
1985), and Apache Subversion (SVN) (Pilato et al., 2008), use
a single repository where every author has to commit changes.
This means that in order to interact with the VCS, one has to
be online in order to access this single repository. In addi-
tion, this architecture discourages many small contributions to
the project, as normally a commit conflicts with other contribu-
tions that might have been done meanwhile by another author.
Distributed VCS, such as Git (Loeliger, McCullough), utilise
an non-centralised architecture where every contributor has its
own repository. This means that users commit in their own local
repository and they can share multiple versions with other re-
mote repositories. Such an approach allows users to work loc-
ally, without being destructed by other authors’ work. Then
changes can be shared at a later stage, through the process of
pushing or pulling versions between repositories.

2.1.1 Git. Git is one of the most popular VCS (Spinellis,
2012). Its success can be attributed to its distributed archi-
tecture and its internal structure. The distributed architecture
allows teams to be flexible on how to incorporate Git in their
workflows. This is due to the fact that authors can work locally
and share changes only when they are complete. In addition,
the minimal and versatile internal structure of Git makes it fast
and robust when executing VCS operations, such as merging or
checking out.

Git is composed of two components: the data structure, which
is used for the storage of all versions of a file and the metadata
related to these versions; and the software, which provides the
functionality related to tracking changes of a file and facilitating
the interaction between a user and the data structure.

In order to undertake the complicated operations required by
such an architecture, Git uses a flexible internal data structure.
Versions are organised in a directed acyclic graph (DAG) (Fig-
ure 1). In this graph, a version is a node which is called a com-
mit. Every commit derives from the previous one, therefore it

v
O @@

Figure 1. Example of a directed acyclic graph as defined by the
versioning mechanism. Every node knows it’s parent, therefore
the graph can be traversed from the leafs to the root. Branches,
which are only pointers to a version, act as starting points of a
traversal, therefore defining the actual line of nodes.

is responsible for knowing its parents. It is, also, identified by
the hash? of its content: the metadata information (author, date,
message), the id of its parents and the content of the files in
this commit. Thus, it is possible to populate the history of the
project by starting from the “last” version and traversing back
following its parents until the initial commit is reached.

In order to avoid ambiguity, Git does not denote one commit as
the last one. Instead, special pointer objects, called refs, can be
used as nodes to initiate the traversal of Git’s DAG, therefore
the project’s history is populated on-the-fly.

Branches are the main refs in Git, as they only store a key-value
pair where key is a name and value is a commit id (i.e. its
hash). A branch can, therefore, be denoted as the last of a chain
of commits.

2.2 3D city models

There are many documented usages of 3D city models across
a diverse array of applications ranging from disaster manage-
ment, urban planning, navigation and noise emission, to name
a few (Baig, Rahman; Biljecki et al., 2016). This is further re-
flected in the number of national mapping agencies producing
3D city models (Stoter et al., 2015). The OGC (Open Geospa-
tial Consortium) open standard for the storage and exchange
of 3D city models is CityGML (Open Geospatial Consortium,
2012), and includes geometry, semantics, and graphical appear-
ance. It is both the name of the model and the XML encoding.
CityGML is modular with modules representing elements of a
city including buildings, transportation, water bodies, vegeta-
tion, etc.

2.2.1 CityJSON. CityJSON is a JSON-based exchange
format for the CityGML data model (version 2.0.0). Its current
version (v1.0) implements most of the CityGML data model,
and all of the CityGML modules have been mapped. This
means that in practice, one can convert automatically CityJSON
to CityGML, and vice-versa.

CityJSON was designed with programmers in mind, and it was
also designed to be compact and friendly for web and mobile
development. This means a simpler structure is used to repres-
ent a city: the data model of CityGML has been “flattened out”.
A CityJSON file simply contains all the city objects (such as
buildings, roads, or trees) indexed under one point of entry, and
hierarchical nature of CityGML is removed.

A simple file contains a few JSON properties:

2Hashes, a concept borrowed from mathematics, are unique identifiers
composed of a series of letters and numbers.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-123-2019 | © Authors 2019. CC BY 4.0 License. 124

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

{
"type": "CityJSON",
"version": "1.0",
| "CityObjects": {},
5 "vertices": [],
6 "appearance": {}
}

and the property "CityObjects" would contain the city ob-
jects, for instance:

1 "CityObjects": {

"id-1": {
"type": "Building",

4 "attributes": {...},
5 "children": ["id-2", "id-3"],
6 "geometry": [{...}]

Yo
8 "id-2": {
9 "type": "Road",
10 "geometry": [{...}]
0
12 3

The core structure of CityJSON can be extended by adding new
properties (to the city model and to each city objects), and in
Section 3 we exploit this in our approach to add the versioning
capabilities.

2.2.2 Versioning of 3D city models. There have been vari-
ous attempts at better integrating versioning with GIS data.
For example, GeoGig® aims to enable versioning for multiple
data formats, including Shapefile, GeoJSON, PostgreSQL and
Oracle Database, following Git’s distributed architecture and
workflow. Another approach to the problem is through provid-
ing versioning in GIS applications, such as the QGIS version-
ing plugin® and FastVersion® for QGIS®. While these tools
could potentially work with 3D city model datasets, mapping
CityGML and CityJSON can be particularly challenging. This
is due to the fact that the CityGML data model is not easily
mapped to relational models, such as the ones used in the data
formats that GeoGig or QGIS uses.

One potential solution to the problem of 3D city models’ ver-
sioning could be to simply store CityGML or CityJSON files in
a Git repository. While Git is a powerful and robust VCS, there
are several elements that make VCSs inefficient for versioning
3D city model files. First, the order of elements is insignificant
for 3D city models, i.e. a model can change the order or city
objects or their bounding surfaces and this would be tracked as
a change from Git. Given that with traditional Git versioning
systems, it is easy for changes to be detected that are actually
simply due to the reordering of data or elements, or the intro-
duction of new lines, this approach makes comparisons between
different versions more difficult. Additionally, in order to inter-
act with this tool you would need to interact with Git which in-
creases the complexity of usage. Using this application would
mean that versioning information is not stored with the file and
the versioning repository would need to be shared separately.

2.2.3 Proposed CityGML versioning module. While the
current version of CityGML (2.0) does not have support for

Shttp://geogig.org/
4https://github.com/Oslandia/qgis- versioning
Shttp://www.fastversion.org/
Shttps://qgis.org

storing versions of objects, there is a proposed versioning mod-
ule for CityGML 3.0, which is based on Chaturvedi et al.
(2017). As Figure 2 shows, the proposal aims at storing the
‘creation’ and ‘termination’ date and time for a feature as well
as the ‘valid from’ and ‘valid to’ date and time. Then, versions
are aggregations of these timestamped features, and they can
also have a VersionTransition property which records the
reason for the transition and the type (this is borrowed from the
INSPIRE standard). These transitions are composed of a num-
ber of transactions, which represent individual changes linking
old and new features.

The proposed CityGML versioning module does achieve some
support for versioning, but it is a problematic solution because
it conflates versioning with life-cycle modelling. This can
be most easily seen in the TransactionValue enumeration,
which contains both versioning operations (fork and merge)
and life-cycle stages (planned and realized). Modern VCS (e.g.
Git) support powerful automatic operations based on how they
can track changes in data in a time-independently way (i.e. the
nodes in the DAG represent changes in the data and can be re-
arranged by operations). By contrast, life-cycle modelling is a
lot more restrictive since the operations have a semantic mean-
ing and their order matters. These two aspects are thus incom-
patible and should not be implemented in the same mechanism.

In addition, the proposed CityGML versioning module appears
to store the results obtained from using VCS explicitly, as op-
posed to just storing the much simpler internal structure used in
VCS, from which the rest can be obtain using simple operations
in software. This introduces both unnecessary complexity (e.g.
modelling of versions, transitions and transactions) and unne-
cessary redundancy (e.g. linking features from both versions
and transactions). The resulting model thus makes software im-
plementation needlessly difficult and discourages practitioners
from using it.

3. METHODOLOGY

This section describes our approach to store multiple versions
of a 3D city model in a CityJSON file. It has to be clarified that
although in Section 3.1 we do investigate how this can poten-
tially interact with software, our solution only focuses on the
description of the architecture and the data structure. In Sec-
tion 5 we show the prototype software implementation which
we developed in order to validate the proposed data structure,
but this is not intended to be part of the proposed solution.

3.1 System design and architecture

We propose a method where all versions of all CityJSON ob-
jects are stored in a single file. In other words, a CityJSON
file acts as a repository, which we here refer to as “versioned
CityJSON” (vCityJSON). Users can interact with a vCityJSON
in two ways. First, they can directly add new city object ver-
sions manually (e.g. by duplicating an existing city object, re-
naming it and making the necessary changes). In this approach,
they would need to add a new version and define it accordingly
(as defined in Section 3.2). Second, it is possible to develop a
tool that extracts a “simple” city model based on the description
of one version in a vCityJSON file. Then, changes can be made
to this file, after which the tool can incorporate the changes in
the versioned CityJSON by adding all of the necessary new ob-
jects (Figure 3).

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-123-2019 | © Authors 2019. CC BY 4.0 License. 125

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

Versioning module

The stereotype «Version» is adopted from INSPIRE.
The stereotype is used for association roles to express
that the association refers to a specific version of
the target object and not to the object in general.

AbstractFeature
+oldFeature
«FeatureType» «Version»
«FeatureType» Core:: -
Core::CityModel B AbstractFeatureWithLifespan «enumeration»
TransactionValue
«Property» +newFeature insert
+ersionMember |+ CreationDate: DateTime [0.1] 0.1 wersions o
«Version» * |* teminationDate: DateTime [0..1] |
+ validFrom: DateTime [0..1] repace
+ validTo: DateTime [0..1]
Z% «enumeration»
TransitionValue
+versionMember +rom +Hransaction mg
«Property» FeatureTyper 01 (property» (FeatureTyper | Popertyy DataTyper historcalSucoession
0 Version VersionTransition hd Transaction fork
- +o 0. merge
«Property» 0.1 «Property» «Property» «Property»
+ tag: CharacterString [0.."] + reason: CharacterString [0..1] + type: TransactionValue
+ clonePredecessor: Boolean
+versionTransitionMember | + type: TransitionValue [0..1]
«Property»

0.*

Figure 2. Proposed versioning for CityGML version 3, from OGC (2019).

CityJSON
of version x
with changes

CityJSON
of version x

A
Checkout C{)mlmit
wvarsion x version

v
Versioned Versioned
CityJSON ~ ----------mmmmmme] > CityJSON

with n versions with n+1 versions

Figure 3. A suggested workflow indicating how a new version
can be added by using an intermediate software. The user can
extract (checkout) a version from the versioned CityJSON file,
apply changes to the object and then commit a new version
based on the changes. We need to clarify that in this article we
do not propose how to implement such an operation.

3.2 Data structure

As described in 3.1, a vCityJSON acts like a repository for
the city model. That means that the file contains all versions
of city objects, as well as the versions’ information with their
metadata. The structure vCityJSON is similar to a regular
CityJSON, with the addition of a "versioning" property at
the root of the CityJSON object:

1 1

> "type": "CityJSON",
3 "version": "1.0",
4 "CityObjects": {},
5 "versioning": {3},

6 "vertices": []

7}

All versions of city objects are listed under the "CityObjects"
property, as is the case in a regular CityJSON file. For example,
if one vCityJSON file contains two versions of a building, then
two city objects will be in the file as follows:

1 A{

// Start of CityJSON
"CityObjects": {
4 "buildingl": {
5 "type": "building",
6 "geometry": [...]
7 },
8 "buildingl -renovated": {
0 "type": "building",
10 "geometry": [...]
11 3,

13 ... // Rest of CityJSON
14}

Every version of a city object has to have a different id
in the file (in this example, they ids are "buildingl" and
"buildingl-renovated"). Identifiers do not need, and are in
fact not intended, to have a semantic or functional meaning in
order for the versioning to work. In Section 6 we discuss poten-
tial candidates for generating identifiers, but different applica-
tions may have different requirements. Authors of city models
may desire to implement their own strategy in relation to iden-
tifiers.

All versions of the city model are defined in the "versioning"
property. This contains three properties: "versions", which
defines the versions of a city model; "tags", which defines tag
names for specific versions of a city model; and "branches",
which defines the branches of the repository.

Under the "versions" property, all versions are listed with
their metadata. A typical example of two versions, related to
the building described earlier, would be:

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-1V-4-W8-123-2019 | © Authors 2019. CC BY 4.0 License.

126

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

1 {
"CityObjects": {
// Here we define "buildingl" and

5 "buildingl -renovated"
6 T
7 "versioning": {
8 "versions": {
9 "versionO1": {
10 "author": "John Doe",
1 "date": "2019-03-04T18:34:12.2427Z",
12 "message": "First version of the city

model with the building",
13 "objects": [
14 "buildingl"
15]
16 },
17 "version02": {
18 "author": "John Doe",
19 "date": "2019-03-05T18:34:12.2427Z",
20 "message": "Buildingl was renovated",
21 "parents": ["versionO1" 1,
2 "objects": [
2 "buildingl -renovated"
2]
25 }
¢ }
7 }
29 }

In this example, two versions are defined: "versionO1i" and
"version02". Every version has the "author", "date" (act-
ing as a timestamp) and "message" property. Additionally, the
ids of the city objects that exist in every version are defined in
the "objects" array. Finally, every version defines the previ-
ous one (the one that it derives from) through the "parents"

property.

It is important to emphasise that, similarly to city objects, the
names of versions do not have a semantic or functional mean-
ing. A city model’s lineage is not defined by the name or date,
but instead through the "parents". Normally, every version
is expected to have one parent from which it derives. There
are only two exceptions: the initial version of a city model,
which has no parents; and a “merged” version which occurs
when changes between two branches are merged and result in
two parents (one for each branch).

The above description defines a DAG structure, similar to that
of Git’s internal structure (Section 2.1.1), to store a city model’s
versions. A traversal of versions in such a structure can only oc-
cur in a last-to-first order. Therefore, a version has to be denoted
as the last one in order to populate the history of a city model
by following its parents. For this reasons, branches or tags can
be used.

Branches are effectively names that point to the last version
of a specific chain of versions. This is defined through the
"branches" property. Every branch is a key-value pair where
the key is the name of the branch and the value is the name of
the last version of this branch.

Tags can be used in order to signify versions that correspond to
milestones or may have a significant meaning. For example, if a
municipality is working on a city model for an extended period
of time and chooses to release a version of it to the public, the
version that was released can be named according (e.g. “Version
2019” or “First public release”). Tags are defined under the
"tags" property as key-value pairs, similar to branches.

4. VERSIONING EXAMPLES

In this section we describe two examples of real-world changes
and how they can be tracked by utilising versioning in
CityJSON, as described above. The first example demonstrates
the usage of versions in tracking the lineage of a building and
its ownership. This demonstrates how a city object can be ad-
ded, changed and then removed from the 3D city model. The
second example illustrates the usage of versioning in order to
describe temporal changes to the state of city objects. This ex-
ample shows how a city object can change to one state and then
revert back to a previous one.

4.1 Building lineage example

In this example we describe three major events that occur re-
garding a building and how they can be stored using version-
ing. We assume that this city model already contains 27 ver-
sions (named "v27", "v26", etc.) and they are all in a single
branch named "master". For simplicity, no tags are used in
this example.

First, the building is constructed with one storey above ground
in 1973 and the ownership is assigned to “Bilbo Baggins:

1 {
"CityObjects": {
4 00
5 "building01-01": {
6 "type": "Building",
"attributes": {
8 "storeysAboveGround": 1,
9 "storeysBelowGround": O,
10 "yearOfConstruction": 1973,
11 "owner": "Bilbo Baggins",
12 T,
13 "address": {
14 "CountryName": "Eriador",
15 "LocalityName": "The Shire",
16 "ThoroughfareNumber": "1",
17 "ThoroughfareName": "Bag End",
18 "PostalCode": "4DV3N TUR3"
19 }
0 i
21
22 ¥
24 "versioning": {
25 "versions": {
26 "v28": {
27 "author": "J.R.R. Tolkien",
28 "date": "1954-07-29",
29 "message": "Add Baggins’ new building",
30 "parents": ["v27" 1,
31 "objects": [
32 "building01-01",
// all other city object ids from
v27
34]
35 },
36 ... // all other 27 versions here
37 },
38 "branches": {
39 "master": "v28"
10 }
4 }
42 }

The building is introduced to the city model and a new version,
named "v28", is added. This version has "v27" as its parent

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-123-2019 | © Authors 2019. CC BY 4.0 License. 127

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

and it has the same objects as before, plus the newly introduced
building. Finally, the "master" branch is changed to now point
to "v27".

Next, there is a change in ownership, as well as a change to
the building structure. To represent these changes in the city
model, we first introduce the city object with the new state un-
der "CityObjects":

I "building01-02": {

2 "type": "Building",

3 "attributes": {

4 "storeysAboveGround": 2,
5 "storeysBelowGround": 1,

6 "yearOfConstruction": 1973,

"owner": "Frodo Baggins",
8 3,
9 "address": {
10 "CountryName": "Eriador",
11 "LocalityName": "The Shire",
12 "ThoroughfareNumber": "1",
13 "ThoroughfareName": "Bag End",
14 "PostalCode": "4DV3N TUR3"
15 3
16 X
Then, the new version, named "v29", is added to the
"versioning" property:
| "versions": {
2 "v29": {
3 "author": "J.R.R. Tolkien",
4 "date": "1954-11-11",
5 "message": "Change ownership and structure of

buildingO1",

6 "parents": ["v28" 1,

7 "objects": [

8 "building0O1-02",

9 ... // all other city object ids from v28
except "buildingO1-01"

10]

11 Fo

12 ... // all other 28 versions here
133},

14 "branches": {

15 "master": "v29"

Similar to the previous step, a new version object is added
which is derived from the previous version, which was "v28".
Additionally, the "master" branch now moves to the newly
created version.

Finally, the building is demolished and we wish to stop tracking
it. Therefore we simply add a new version without the building
in it at all:

I "versions": {

2 "v30": {

3 "author": "J.R.R. Tolkien",
"date": "1955-10-20",

5 "message": "Remove buildingO1",

6 "parents": ["v29" 1,

7 "objects": [

8 ... // all other city object ids from v29
except "buildingO1-02"

0]

10 },

1 ... // all other 28 versions here
12},

13 "branches": {

14 "master": "v30"

4.2 Temporary close of road example

In this example, we demonstrate the use of versioning in or-
der to describe a road that closes temporarily. We assume
that this city model already contains one single version, named
"20180505", in the single branch "master". Initially, the
model contains the road with its specification:

1 {

2 // Beginning of CityJSON
"CityObjects": {

4 "road01-01": {

5 "type": "Road",

6 "attributes": {

7 "speed": 50

8 "unit": "km"

9 "access": true

10 }

1 }

12 Fo

13 "versioning": {

14 "versions": {

15 "20180505": {

16 "author": "John Doe",

1 "date": "2018-05-05T00:00:00.00Z",

18 "message": "Initial version with open

road",

19 "objects": [

20 "roadO1"

21]

2 }

23 To

24 "branches": {

25 "master": "20180505"

26 }

27 ¥

28 ... // Rest of CityJSON

29 }

When the road closes, a new version of the city object is intro-
duced in "CityObjects"

I ... // Inside "CityObjects"
> road0l-closed": {

"type": "Road",
"attributes": {

5 "speed": 50,

6 "unit": "km",

7 "access": false

8 }

9 3}

10

Then a new version that replaces "roadO1" with

"roadOl-closed" is added and the "master" branch is
pointing to this one:

I ... // Inside "versioning"

> "versions": {
"20190123": {
4 "author": "John Doe",
5 "date": "2019-01-23T11:11:11.112",
6 "message": "Change roadOl to closed access",
"objects": [
8 "roadOl-closed"
9]
10 },
11 "20180505": {
12 "author": "John Doe",
13 "date": "2018-05-05T00:00:00.00Z",
14 "message": "Initial version with open road",
15 "objects": [
16 "roadO1"

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-123-2019 | © Authors 2019. CC BY 4.0 License. 128

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1V-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

19 3},
20 "branches": {

21 "master": "20190123"

2}

Finally, the road re-opens. As there is already a version of
"road01" with the same attributes, we don’t have to introduce
it again. Instead, we just add a new version where we replace
"road0l-closed" with "roadO1":

I ... // Inside "versioning"

2> "versioms": {
"20190124": {
4 "author": "John Doe",
5 "date": "2019-01-24T22:22:22.227Z",
6 "message": "Change road0l to open again',
7 "objects": [
8 "roadO1"
9 1
10 3,
11 "20190123": {
12 "author": "John Doe",
13 "date": "2019-01-23T11:11:11.112Z",
14 "message": "Change roadO0l to closed access",
15 "objects": [
16 "roadO0l-closed"
17 1
18 },
19 "20180505": {
20 "author": "John Doe",
21 "date": "2018-05-05T00:00:00.00Z",
22 "message": "Initial version with open road",
23 "objects": [
24 "roadO1"
25]
26 T
7 3,
28 "branches": {
29 "master": "20190123"
30 3}

This example highlights the ability of the proposed data struc-
ture to re-use versioned city objects when an object reverts back
to its original state.

5. PROTOTYPE IMPLEMENTATION

In order to validate the completeness of the proposed solution
we have developed a prototype Python 3 script’. The script
can interact with a vCityJSON and execute two operations:
log, which prints the history of versions of a vCityJSON; and
checkout, which extracts a regular CityJSON for a specific ver-
sion of a vCityJSON.

The log command shows the history of a branch in the
vCityJSON to the terminal output (Figure 4). The successful
execution of such an operation validates the completeness of
the proposed solution. Therefore, it is possible to build the his-
tory of a 3D city model by using the data structure described in
Section 3.2.

The checkout command extract a regular CityJSON file to re-
flect a specific version of the vCityJSON provided. For ex-
ample, by applying checkout for v30 to the first example (Sec-
tion 4.1) the output is:

7https://github.com/tudelft3d/cityjson-versioning-prototype

Opening buildingBeforeAndAfter.json...
Found 3 versions.

version v30 (master) (
Author: J.R.R. Tolkien

Date: 2019-03-04T18:34:12.247Z
Message:

Remove buildingd1

This is what changed in this version:
version v29

Author: J.R.R. Tolkien

Date: 2019-02-04T11:00:17.58Z
Message:

Change ownership and structure of building01

This is what changed in this version:
+ building01-02

version v28

Author: J.R.R. Tolkien

Date: 2019-01-02T13:20:21.50Z
Message:

Add Baggins' new building

This is what changed in this version:
+ building01-01

Figure 4. Output of the log operation of our script

1 {

2 "type": "CityJSON",

3 "version": "1.0",

4 "CityObjects": {

5 "building01-02": {

6 "type": "Building",

7 "attributes": {

8 "storeysAboveGround": 2,

9 "storeysBelowGround": 1,

10 "yearOfConstruction": 1973,

11 "owner": "Frodo Baggins",

12 },

13 "address": {

14 "CountryName": "Eriador",

15 "LocalityName": "The Shire",

16 "ThoroughfareNumber": "1",

17 "ThoroughfareName": "Bag End",

18 "PostalCode": "4DV3N TUR3"

19 T,

20 "bbox": [84710.1, 446846, -5.3,
84757.1, 446944, 40.9]

21 ¥

2 }

3 3}

This validates the completeness of a version’s internal repres-
entation of objects.

6. DISCUSSION

In this paper we propose a methodology for the representation
of 3D city model versions in a CityJSON file. Our approach
aims to incorporate the successful characteristics of Git’s data
structure in the context of CityJSON. Therefore, it focuses on
only solving the problem of storing the versions of multiple city
objects in CityJSON.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-123-2019 | © Authors 2019. CC BY 4.0 License. 129

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W8, 2019
14th 3D Geolnfo Conference 2019, 24-27 September 2019, Singapore

Beyond the two examples presented in Section 4 there are fur-
ther possible applications: building modifications (e.g. chan-
ging the shape of a roof), fixing erroneous information in the
model (e.g. misplaced boundary line), adding detail to a model,
adding a newly generalised version of the model. etc.

The proposed solution is semantic-agnostic, because there are
two aspects of tracking real-world changes that cannot be ad-
dressed with a general purpose approach: (i) the association
between city objects and their real-world counterparts (e.g. us-
ing a cadastral id); and (ii) temporal semantics (i.e. informa-
tion about why or when a real-world change occurred). Con-
versely, those problems are rather dependent on the applica-
tion for which a 3D city model is developed for. Attempting to
provide a complete model for all of these aspects could result in
an overcomplicated and verbose solution that would be difficult
to adapt by practitioners.

Although we chose not to address the problem of associating
city objects with their real-world counterparts, certain best prac-
tices about how this can be done can be investigated in the fu-
ture. This is also related to the question of how to assign city ob-
jects and version identifiers in vCityJSON which, as was previ-
ously mentioned in Section 3.2, do not have a semantic or func-
tional meaning. In our examples (Section 4) we demonstrated
two simple solutions: both using a real-world name and ap-
pending it with either an iterator or a semantic meaning. There
is a plethora of other options that can be investigated by practi-
tioners based on the requirements of a specific application.

We would like to specifically emphasize one potential common
identifier that can be utilised for vCityJSON city objects and
versions: hashes. This is the same approach used by Git’s in-
ternal data structure for the representation of commits and ver-
sioned files. Hashes not only ensure that no duplicate identifiers
are present in the file, but can provide an additional benefit for
the validation of data.

We believe our proposed solution can be developed into a
CityJSON extension or incorporated in a future version of
the specification. Furthermore, it can open many possibilit-
ies for adding additional functionality in software that supports
CityJSON, such as azul®. It would be possible to allow users of
3D viewer to navigate through multiple versions of a city model
and identify differences between them. In addition, it makes it
possible to write software that tracks the lineage of a specific
city object throughout the history of the city model.

In the future, we would like to investigate the specification of
versioning operations in vCityJSON, such as forking, merging,
comparing versions and highlighting conflicts. Furthermore, a
best-practice list, for elements such as commit messages, will
be addressed in the future. A software that would interact with
the user to allow them to checkout from a vCityJSON to a reg-
ular CityJSON and commit back, as described in 3.1, would be
beneficial for practitioners.

ACKNOWLEDGEMENTS

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No 677312
UMnD).

Shttps://github.com/tudelft3d/azul

REFERENCES

Airaksinen, E., Bergstrom, M., Heinonen, H., Kaisla, K., Lahti,
K., Suomisto, J., 2019. The Kalasatama digital twins project—
The final report of the KIRA-digi pilot project. Technical report,
City of Helsinki.

Baig, S. U., Rahman, A. A., 2012. Generalization and Visual-
ization of 3D Building Models in CityGML. Lecture Notes in
Geoinformation and Cartography, 63-177.

Ball, T., Kim, J.-M., Porter, A. A., Siy, H. P., 1997. If your
version control system could talk. ICSE Workshop on Process
Modelling and Empirical Studies of Software Engineering, 11.

Biljecki, F., Ledoux, H., Stoter, J., 2016. An improved LOD
specification for 3D building models. Computers, Environment
and Urban Systems, 59, 25-37.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Coltekin, A.,
2015. Applications of 3D City Models: State of the Art Review.
ISPRS International Journal of Geo-Information, 4(4), 2842—
2889.

Chaturvedi, K., Smyth, C. S., Gesquiere, G., Kutzner, T., Kolbe,
T. H., 2017. Managing versions and history within semantic 3d
city models for the next generation of citygml. Advances in 3D
Geoinformation, Springer, 191-206.

Grune, D. et al., 1986. Concurrent versions systems, a method
for independent cooperation. VU Amsterdam. Subfaculteit
Wiskunde en Informatica.

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A.,
Vitalis, S., 2019. CityJSON: a compact and easy-to-use encod-
ing of the CityGML data model. Open Geospatial Data, Soft-
ware and Standards, 4(4).

Loeliger, J., McCullough, M., 2012. Version Control with Git:
Powerful tools and techniques for collaborative software devel-
opment. O’Reilly Media, Inc.

OGC, 2019. CityGML 3.0 Conceptual Model. https://github.
com/opengeospatial/CityGML-3.0CM.

Open Geospatial Consortium, 2012. OGC City Geography
Markup Language (CityGML) Encoding Standard 2.0.0.

Pilato, C. M., Collins-Sussman, B., Fitzpatrick, B. W., 2008.
Version Control with Subversion: Next Generation Open
Source Version Control.” O’Reilly Media, Inc.”.

Spinellis, D., 2005. Version control systems. IEEE Software,
22(5), 108-109.

Spinellis, D., 2012. Git. IEEE Software, 29(3), 100-101.

Stoter, J., Roensdorf, C., Home, R., Capstick, D., Streilein, A.,
Kellenberger, T., Bayers, E., Kane, P., Dorsch, J., WozZniak, P.,
Lysell, G., Lithen, T., Bucher, B., Paparoditis, N., Ilves, R.,
2015. 3D Modelling with National Coverage: Bridging the Gap
Between Research and Practice. Springer International Publish-
ing, Cham, 207-225.

Tichy, W. F,, 1985. RCS—a system for version control. Soft-
ware. Practice and Experience, 15(7), 637-654.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-1V-4-W8-123-2019 | © Authors 2019. CC BY 4.0 License. 130

