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We discuss the formation of TiO2 thin films via DC reactive magnetron sputtering.
The oxygen concentration during sputtering proved to be a crucial parameter with
respect to the final film structure and properties. The initial deposition provided
amorphous films that crystallise upon annealing to anatase or rutile, depending
on the initial sputtering conditions. Substoichiometric films (TiOx<2), obtained by
sputtering at relatively low oxygen concentration, formed rutile upon annealing in
air, whereas stoichiometric films formed anatase. This route therefore presents a
formation route for rutile films via lower (< 500 ◦C) temperature pathways. The
dynamics of the annealing process were followed by in situ ellipsometry, showing the
optical properties transformation. The final crystal structures were identified by XRD.
The anatase film obtained by this deposition method displayed high carriers mobility
as measured by time-resolved microwave conductance. This also confirms the high
photocatalytic activity of the anatase films. C 2015 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4931925]

Titanium dioxide (TiO2) has been commercially produced from the early twentieth century and
has traditionally been utilised as additives to polymeric binders,1 toothpaste,2 and sunscreens.3 In
recent years, there has been an increasing interest in applications of TiO2 related to environmental
remediation4, energy generation5 and biomedicine.6

TiO2 has three well-known polymorphs at atmospheric pressure: rutile, anatase and brookite.
Brookite is hardly studied due to its metastable crystal structure and according difficulty in synthe-
sis. The research to date has focused on anatase and rutile polymorphs instead. The properties of
TiO2 significantly depend on the microstructure and crystallographic phase. For instance anatase
finds application in photovoltaics,7 electrodes for Li-ion batteries8 and photocatalysis9 for water
and air purification. Rutile, due to its higher refractive index, is mostly studied for optoelectronics,
semicondoctor electronics10 and optical coatings.11 Hence controlling the crystalline structure of
TiO2 is of paramount importance.

Titanium dioxide thin films can be synthesized by techniques including sol-gel,12 suspension
coating,13 electron beam evaporation,14 electrochemical deposition,15 sputtering,16,17 pulsed laser
deposition (PLD)18 and many other methods.19,20 Among these, reactive sputtering provides accu-
rate control regarding composition and morphology. The resulting TiO2 thin films present high
uniformity over large areas which makes them attractive for both industrial applications and funda-
mental studies.
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Regardless the synthesis route, the initial crystalline TiO2 phase is usually the metastable
anatase due to the faster recrystallization caused by its lower surface free energy compared to rutile.
Generally, it is only possible to synthesize rutile at low temperatures by hydrothermal methods
and precipitation of crystalline TiO2.21–23 Besides, rutile can be obtained through high-temperature
treatment, above 600 ◦C, by the non-reversible transformation of anatase to rutile (ART).24–28

Besides ART, the rutile phase of TiO2 was obtained by applying a negative bias on the substrate
during reactive sputtering29 or by modifying the RF power.30 In addition, there are some attempts to
modify the crystalline phase after deposition, e.g. by N+ ion implantation.31

Here, we study the formation of rutile and anatase polymorphs of titanium dioxide by controll-
ing the oxygen flow rate during DC reactive magnetron sputtering followed by annealing in air. The
annealing process is analyzed through in-situ monitoring the ellipsometric parameter (ψ) for both
sub-stoichiometric and stoichiometric TiO2 using spectroscopic ellipsometry (SE). The optoelec-
tronic properties of the films were studied using time resolved microwave conductance (TRMC) and
were related to the photocatalytic characteristics.9

Magnetron reactive sputtering deposition was conducted at constant target DC power of 500 W
and constant process pressure of 6 × 10−3 mbar. The target was pre-sputtered for 2 minutes with
a closed shutter. The substrate-target distance was set at 4.4 cm and the substrate was rotated at
5 rpm during the whole deposition process for enhanced uniformity. Thin films were sputtered on
silicon p-type (100) substrates in Ar/O2 atmosphere with additional controlled oxygen flow rate.
The thickness of the deposited thin films were ∼ 200 nm. All of the depositions were performed
at room temperature without substrate heating. Following this, selected samples were annealed in
an atmospheric environment for 1.5 - 8 h at 500 ◦C with heating and cooling rates of 2 ◦C min−1.
X-ray photoelectron spectroscopic (XPS) measurements were performed using Quantera SXM with
monochromatic Al Kα at 1486.6 eV X-ray source. All spectra were shifted to the binding energy
of the adventitious C 1s peak at 284.8eV. The crystal structure of the thin films was investigated by
XRD (Bruker D2) using CuK-α radiation at 40 kV and 40 mA working in the θ-2θ mode. Elec-
trodeless time-resolved microwave conductance (TRMC) using X-band (8.2-12.4 GHz) microwaves
(> 100 mW), generated by a voltage controlled oscillator (Sivers IMA-Sweden) were carried out
at ca 8.4 GHz, i.e. the resonant frequency of the loaded cavity. For this measurement the depo-
sitions were carried out on quartz substrates due to their excellent transmission properties. A full
description of the set-up is given elsewhere.32 The photocatalytic performance and intrinsic surface
reaction rate constant were analyzed following the method described in our previous study.9

As seen in figure 1 two different sputtering modes; metallic and oxidized appeared as the oxy-
gen flow rate increased. Up to oxygen flow rate of 4 sccm represents the metallic mode resulting in a
sub-stoichiometric film. At higher flowrates, a stoichiometic film is obtained. The abrupt increase in

FIG. 1. Discharge voltage as a function of the oxygen flow rate during reactive magnetron sputtering.
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FIG. 2. Extinction coefficient spectra measured by ellipsometry on a metallic Ti film, as deposited film (A) sputtered at 4
sccm and as deposited film (B) sputtered at 5 sccm oxygen.

discharge voltage between these two regimes is due to the formation of TiO2 on the target, requiring
a higher discharge voltage.33,34

Two samples, from here on named A and B, which were sputtered at 4 and 5 sccm oxygen flow
rate respectively (figure 1), were selected and further analysed. The extinction coefficient spectra of
A, B and Titanium (Ti), which was sputtered in absence of oxygen, are shown in figure 2.

The extinction coefficient of the metallic Ti film is evidently the largest. Film A (4 sccm oxygen
flow rate) displays some reminiscence of extinction, while film B (5 sccm oxygen flow rate) is
completely transparent in the visible region of the light spectrum. The visible light absorption in
film A is due to the presence of oxygen vacancies.35,36 No further differences in terms of extinction
coefficient were observed at oxygen flow rates higher than 5 sccm. Figure 3 presents high resolution
XPS scans of the Ti 2p for sample A before and after annealing in air. Sample B, which was sput-
tered in the oxidized region, matches with Ti 2p scan of stoichiometric TiO2 both before and after
annealing.37 The presence of the shoulder peaks in Ti 2p (Ti3+) of the unannealed sample A indicate
oxygen deficiencies.37 The shoulder peaks disappeared following the annealing and matched to
sample B suggesting the formation of stoichiometric TiO2.37

In addition to the XPS scans of the Ti 2p and O 1s core level, the compositional measurement
following 4 nm removal of surface by an Ar gun on sample A reveals TiO1.8 and TiO2 before and
after annealing, respectively. It is observed that the extinction coefficient of sample (A) strongly
reduces in the visible range after annealing. The film becomes stoichiometric TiO2 with absorption
in the UV region of the light spectrum.34

The in-situ extraction of the refractive index and extinction coefficient changes during an-
nealing of the sub-stoichiometric sample (A) has proven challenging. This is probably due to
strong alterations of the sample’s optical properties during the process. In particular, a compo-
sition gradient in the normal direction as a result of the oxidation reaction develops. To capture
this adequately, such a gradient would require grading the B-spline optical model by, for instance,
segmenting the sample in several layers with distinct optical properties. This however would intro-
duce a large number of fitting parameters making the procedure less reliable. For similar reasons,
attempts to elucidate morphological or structural changes within the sample in the in-situ process
proved unreliable. Therefore, in figure 4 the dynamic evolution of raw ellipsometry data (ψ param-
eter, the amplitude component of the complex reflectance ratio) at 3 different wavelengths is shown
during annealing in air (from 25 ◦C to 500 ◦C with 5 ◦C/min ramp rate). The different wavelengths
are chosen to represent 3 distinct regions of the sample optical response. At 230 nm both the
as-deposited and annealed samples are absorbing, 365 nm represents the approximate position of
the band gap of the annealed sample, and 800 nm represents the far visible light. The examination
of the ψ dynamics shows that the oxidation onsets at around 150 ◦C and proceeds to full conversion
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FIG. 3. High resolution XPS scan of the Ti 2p core level and their de-convolutions of the as-deposited and annealed thin film
(A) sputtered at 4 sccm oxygen flow rate.

in about 1 hour after reaching 500 ◦C, after which it slightly change during the cooling ramp. In
particular the large variation in 800 nm data signify the rapid development of transparency as the
oxidation reaction proceeds. The inset shows the resulting extinction coefficients before and after
annealing.

FIG. 4. Psi (ψ) for film (A) at three different wavelengths during annealing in air with indicated temperature ramp. The inset
shows the extinction coefficient before (black) and after (red) annealing in air.
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FIG. 5. X-ray diffraction patterns of the sputtered thin films as-deposited, (A) deposited at 4 and (B) 5 sccm oxygen flow
rate after annealing in air.

Figure 5 presents the XRD patterns of the as-deposited film, film (A) and film (B) after anneal-
ing. What is interesting in this figure is that although the both films are similar in terms extinction
coefficient and composition after annealing, film A and B display diffraction peaks that correspond
to rutile (110) and anatase (101), respectively.38 The extracted refractive index of film A and B after
annealing is 2.75 and 2.54, respectively, being in close agreement with reported refractive indices
for rutile and anatase phases.39,40 The extracted band gaps after annealing are 3.08 and 3.2 ev which
also corresponds to the value for the rutile and anatase polymorphs respectively.41,42

Figure 6 shows the intensity normalized photoconductance transients obtained on pulsed op-
tical excitation at λ=300 nm for sample A (insert) and B, both after annealing corresponding to
rutile and anatase respectively. Since the photon energy used is well above the bandgap of both
polymorphs, optical excitation leads to the formation of mobile carriers resulting in a fast rise of the
microwave signal. The decay of the signals is due to immobilization of mobile carriers in trap states
or electron hole recombination. The incident laser intensity was varied from 4 × 1012 photons/cm2

to 167 × 1012 photons/cm2 per pulse. It is important to note that although normalized photoconduc-
tance transients are shown, the maximum signal size increases first from about 2 × 10−3 cm2/Vs to

FIG. 6. Intensity normalised photoconductance transients after excitation by laser pulse at different intensities on sample A
(insert) and B after annealing.
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about 25 × 10−3 cm2/Vs with increasing intensity. This has been observed previously for various
anatase nanostructured TiO2 and is attributed to trap filling.43–46 When using even higher laser
intensities, the signal decreases again due to the fact that multiple charge carrier pairs are generated
per particle leading to rapid sub-nanosecond charge carrier recombination. With higher intensities
also the lifetime of the charge carriers reduces. Interestingly, the TRMC signals recorded for sample
A (rutile) display a very different photophysical behavior. The maximum signal sizes are more than
an order of magnitude smaller which can well be explained by the fact that for rutile the charge
carrier mobilities are lower. More importantly, the lifetimes are much smaller (<100 ns) limiting
the period the photo-induced carriers are available for consecutive reactions. All is in full agreement
with reduced photocatalytic activity found previously for rutile thin films.47 The anatase thin film
demonstrated significantly high photocatalytic activity as reported in our previous study.9

To conclude, our findings provide a methodology for deposition of thin films of TiO2 with
selective crystal phase based on the oxygen concentration during reactive magnetron sputtering.
Thin films of TiO2 were deposited at low (A) and high (B) oxygen flow rates, resulting in sub-
stoichiometric and stoichiometric films respectively. During annealing in air these films corre-
spondingly turn into anatase and rutile, as confirmed by XRD and spectroscopic ellipsometry. The
anatase film furthermore displayed high photoconductance with long lifetime charge carriers and
consequently strong photocatalytic activity.
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