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Summary

This paper addresses the problem of asymptotic tracking for switched linear
systems with parametric uncertainties and dwell-time switching, when input
measurements are quantized due to the presence of a communication network
closing the control loop. The problem is solved via a dynamic quantizer with
dynamic offset that, embedded in a model reference adaptive control framework,
allows the design of the adaptive adjustments for the control parameters and
for the dynamic range and dynamic offset of the quantizer. The overall design
is carried out via a Lyapunov-based zooming procedure, whose main feature
is overcoming the need for zooming out at every switching instant, in order to
compensate for the possible increment of the Lyapunov function at the switch-
ing instants. It is proven analytically that the resulting adjustments guarantee
asymptotic state tracking. The proposed quantized adaptive control is applied
to the piecewise linear model of the NASA Generic Transport Model aircraft
linearized at multiple operating points.

KEYWORDS

asymptotic tracking, hybrid dynamic quantization, input quantization, model reference adaptive
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1 INTRODUCTION

Switched systems are used to model many systems, commonly referred to as hybrid systems, exhibiting an interaction
between continuous and discrete dynamics. Such systems include multiagent systems,1 automobile power trains,2 traf-
fic light controls,3 power converters,4 fault-tolerant systems,5,6 and many more. In the recent decades, much effort has
been increasingly devoted to studying stability and stabilization problems in switched systems.7,8 Most recently, advanced
robust and adaptive control methodologies have been developed for uncertain switched systems, cf the works of Allerhand
and Shaked,9,10 Zhang et al,11 and Yuan et al12 for robust control and other works13-18 for adaptive control. This work
is devoted to pushing forward the state-of-the-art in adaptive control of uncertain switched systems. The most evi-
dent engineering consequence of this research effort is the capability of designing reconfigurable controllers for net-
worked control systems (NCSs), wherein the control loops are closed through a communication network. In fact, many
networked-induced phenomena in NCSs like packet losses and denial of service can be described in a switched sys-
tem framework.19-22 Since control and feedback signals are exchanged among the system's components in the form of
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information packages through a network, they have to be quantized. Quantization might degrade the control performance
due to finite precision of the quantizer; however, in several networked engineering applications, high precision is required
despite the presence of quantization. Cooperative control of vehicles,22 power control systems,23 and teleoperation24 are
just some examples where the quantizer and the controller must be carefully designed in order to achieve high precision.

Much attention has been devoted by the control community to stability in nonadaptive NCSs in the presence of quanti-
zation. An established approach for achieving asymptotic regulation relies on dynamic quantization mechanisms such as
the one referred to as “zooming”.25,26 In this mechanism, precision is increased by “zooming in”, ie, by reducing the size of
the range so that the quantization resolution becomes finer while the state becomes smaller. Starting from this idea, several
extensions to (nonadaptive) switched systems have been studied: Wakaiki and Yamamoto27 designed a dynamic quantizer
and a switching law with average dwell time to stabilize switched linear systems using quantized output-feedback mea-
surements; in the work of Wang et al,28 a switching law was proposed based on average dwell time and a dynamic quantizer
to stabilize a sampled-data switched linear system considering asynchronous switching between system modes and con-
troller modes; Zhu et al29 considered the passivity preservation problem for switched systems with quantization effects;
Wakaiki and Yamamoto30 studied the problem of stabilizing switched linear systems with output feedback controllers
based on a common Lyapunov function considering switching delays between system modes and controller modes.

From the adaptive control point of view, most results on NCSs in the presence of quantization focus on uncertain non-
switched systems: in the work of Selivanov et al,31 a passification-based adaptive controller with quantized measurements
and disturbances is considered, where ultimate boundedness can be obtained; an adaptive optimal regulator design for
unknown quantized linear discrete-time systems is proposed in the work of Zhao et al32; in the work of Lai et al,33 the
control design is carried out by assuming the control input is wrapped in the coupling of quantization effect and a back-
lash nonlinearity; adaptive backstepping quantized control is carried out in the work of Zhou et al,34 and in the work of
Yu and Lin,35 some assumptions are relaxed; sliding mode approaches with input quantization have been proposed in the
works of Li and Yang36 and Lai et al37; a direct adaptive controller for linear uncertain systems with a communication
channel is developed in the work of Hayakawa et al38 and extended to nonlinear uncertain systems in their other work.39

For most adaptive approaches, only bounded tracking error is guaranteed,40 whereas from an engineering point of view,
it is clear that asymptotic tracking would be preferred because it guarantees higher precision.

Nevertheless, for switched systems, achieving asymptotic tracking in the presence of large uncertainty is a nontrivial
problem, as it has been solved only recently for switched linear systems without quantization.14 Therefore, a relevant
question arises, which motivates this work: is it possible to find an adaptive design that guarantees asymptotic tracking
for uncertain switched linear systems even in the presence of quantization? In this work, we present a novel zooming
approach for solving this problem. The first contribution of this work comes from the class of systems we consider, namely,
uncertain switched linear systems under dwell-time switching for which the asymptotic adaptive quantized problem had
not been solved. The second contribution comes from a novel dynamic quantizer with dynamic offset, which does not
require the quantizer to be antisymmetric with respect to the origin and allows high precision even in the tracking case. By
embedding this quantizer in a model reference quantized adaptive control framework, a Lyapunov-based analysis is used
to derive the adjustment laws for the control gains and for the dynamic range and dynamic offset of the quantizer. It is
worth underlining that, differently from the classic quadratic Lyapunov function with a constant positive definite matrix,
eg, in the works of Wakaiki and Yamamoto,27,30 the proposed zooming mechanism does not require to zoom out at each
switching instant because we use a Lyapunov function that is nonincreasing at the switching instants. This mechanism
greatly simplifies zooming procedure and makes it consistent with the zooming procedure in nonswitched systems. Via
a Lyapunov-based analysis, we prove that the proposed adaptive mechanism guarantees boundedness of the closed-loop
signals and asymptotic convergence of the tracking error.

This paper is organized as follows. Section 2 introduces the quantized control problem. The adaptive control design is
established in Section 3, and Section 4 presents the stability and tracking results. In Section 5, the proposed quantized
adaptive control scheme is evaluated on the NASA Generic Transport Model (GTM) linearized at multiple operating
points.

Notation. The notation used in this work is standard:
R: the set of real numbers;
R+: the set of positive real numbers;
N+: the set of positive integers;
𝜆max(X ), (𝜆min(X )): the largest (smallest) eigenvalue of matrix X;||X|| =√𝜆max(XXT): the induced 2-norm of matrix X (the superscript T denotes the transpose of matrix X );
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||x|| =√∑n
i=1 |xi|2: the Euclidean norm of a vector x = (x1, x2, … , xn)T;

tr [X ]: the trace of a square matrix X;
ℒ∞ class: a vector signal x(·) ∈ [0,∞) → Rn is said to belong to ℒ∞ class (x ∈ ℒ∞), if maxt≥0||x(t)|| < ∞, ∀t ≥ 0;
In: the identity matrix of size n × n.

2 PROBLEM STATEMENT

Let us consider the uncertain time-driven switched linear system

ẋ(t) = A𝜎(t)x(t) + B𝜎(t)g𝜂𝜇(u(t)), 𝜎(t) ∈ 𝒩 = {1, … ,N}, (1)

where x ∈ Rn is the state, u ∈ Rq is the control input, g𝜂𝜇(u) ∶ Rq → Q, with Q ⊂ Rq, is the input quantizer (to be defined
later), and 𝜎(·) is a piecewise switching law taking values in 𝒩 , where N denotes the number of subsystems. The system
is uncertain because the matrices A𝑝 ∈ Rn×n and B𝑝 ∈ Rn×q are unknown constant matrices for all 𝑝 ∈ 𝒩 .

The switching law 𝜎(·) satisfies the following slowly switching constraint.

Definition 1. (Dwell-time switching41)
A switching law defining a switching sequence  ∶= {t1, t2, …} is admissible with dwell time if there exists a number
𝜏d > 0 such that ti+1 − ti ≥ 𝜏d, ∀i ∈ N+. Any 𝜏d that satisfies these constraints is called dwell time, and the set of
admissible with dwell-time switching laws is denoted by 𝒟 (𝜏d).

2.1 Switched linear reference model system and controller
Let us consider the following switched linear reference model:

ẋm(t) = Am𝜎(t)xm(t) + Bm𝜎(t)r(t), 𝜎(t) ∈ 𝒩 , (2)

where xm ∈ Rn is the desired state vector to be asymptotically tracked and r ∈ Rq is a bounded continuous reference
input signal. The matrices Am𝑝 ∈ Rn×n and Bm𝑝 ∈ Rn×q are constant known matrices with Am𝑝 ∈ Rn×n Hurwitz matrices
for 𝑝 ∈ 𝒩 .

The following assumptions are made in order to have a well-posed adaptive problem.

Assumption 1. There exist constant matrices K ∗
x𝑝 ∈ Rn×q and invertible constant matrices K ∗

r𝑝 ∈ Rq×q such that

Am𝑝 = A𝑝 + B𝑝K∗T
x𝑝 , Bm𝑝 = B𝑝K∗

r𝑝. (3)

Assumption 2. There exist known matrices S𝑝 ∈ Rq×q such that

Γ𝑝 = K ∗
r𝑝S𝑝 (4)

are symmetric and positive definite.

Assumption 3. For each subsystem in (1), the matrices Ap and Bp belong to a known and bounded uncertainty setΘp.

Remark 1. Assumption 1 is required for the existence of a closed-loop that matches (1) to the reference model (2)
(well-posedness). Assumption 2 generalizes the classical condition of knowing the sign of the input vector field in
the multivariable case. Both assumptions are, up to now, the most relaxed conditions for ensuring closed-loop signal
boundedness in multivariable adaptive control42,43 and will be adopted also in our quantization setting. Assumption 3
is required to obtain a bound on the increasing rate of the tracking error during the zooming out phase, as it will be
illustrated in Section 4.

Since Ap and Bp are unknown in (1), the control gains K ∗
x𝑝 ∈ Rn×q and K ∗

r𝑝 ∈ Rn×q in (3) must be estimated. Therefore,
the following switched adaptive controller is applied:

u(t) = K T
x𝜎(t)(t)x(t) + Kr𝜎(t)(t)r(t), 𝜎(t) ∈ 𝒩 , (5)

where Kxp and Krp, (𝑝 ∈ 𝒩 ), are the estimates of K ∗
x𝑝 and K ∗

r𝑝, respectively, that are updated by an appropriate adaptive
law, which will be introduced in the next section.
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FIGURE 1 Original and quantized signals (the black line corresponds to the original signal u, the red line corresponds to quantized signal
g(u), and the blue line corresponds to quantized signal g𝜂𝜇(u)) [Colour figure can be viewed at wileyonlinelibrary.com]

Remark 2. We consider a networked control setup with the controller on the sensor side, in which only the control
input given by (5) must be quantized and sent to the actuator via a communication channel (cf Figure 2). This is a
common setting in NCS literature.20 Indeed, it is possible to consider the case in which also the system state/output
is quantized. This has been addressed, eg, by Liberzon for non-uncertain systems26: similar methods, not explained
here for lack of space, can be used also in our case of uncertain switched systems.

The next Section introduces a quantizer appropriate to our control goals.

2.2 Dynamic quantizer design
A quantizer is a device that converts a real-valued signal into a piecewise constant one taking values in a finite set Q. The
uniform static quantizer illustrated on the left side of Figure 1, with fixed quantization range M and quantization error
Δ, with M, Δ positive real numbers, is represented by the function g ∶ Rq → Q. The finite set of values is defined as
{z ∈ Rq ∶ g(z) = i}, i ∈ Q. A common quantization choice that increases precision without sacrificing the bandwidth
is adopted in the work of Liberzon,26 where a uniform dynamic quantizer is used whose quantization range 𝜇M and
quantization error 𝜇Δ, with 𝜇 > 0, can be adjusted by using a hybrid control policy.

It has to be noted that the quantizers commonly adopted in the literature are antisymmetric with respect to zero: as
such, they can increase precision only around zero, and thus, they are appropriate mostly for regulation problems. If we
adopted standard uniform quantizers for the tracking case, we would get

g(u) = g
(

KT
x𝑝x + Kr𝑝r

)
= g
(

KT
x𝑝(x − xm) + KT

x𝑝xm + Kr𝑝r
)
, (6)

where the time index t has been (and will be) omitted for compactness. From (6), we notice that, if we define the state
tracking error

e = x − xm, (7)
then, for e → 0, the quantized input converges to g(KT

x𝑝xm+Kr𝑝r) and asymptotic tracking would be, in general, impossible
due to finite precision of the quantizer around KT

x𝑝xm +Kr𝑝r. With this problem in mind, we introduce an adjustable offset
𝜂(t) = KT

x𝑝(t)xm(t) + Kr𝑝(t)r(t) in the quantizer so as to achieve quantization antisymmetry with respect to 𝜂.
We define the following dynamic quantizer:

g𝜂𝜇(u) = 𝜇g
(

u − 𝜂

𝜇

)
(8)

with 𝜇 > 0. For this quantizer, we have

𝜇g
‖‖‖‖‖
(

u − 𝜂

𝜇

)‖‖‖‖‖ ≤ 𝜇M, (9)

where 𝜇M denotes the dynamic quantization range. In case of no saturation,* the dynamic quantizer (8) must satisfy the
additional requirement ‖‖‖‖‖𝜇g

(
u − 𝜂

𝜇

)
− u
‖‖‖‖‖ = 𝜇

‖‖‖‖‖g
(

u − 𝜂

𝜇

)
− u

𝜇

‖‖‖‖‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟||Δu||

≤ 𝜇Δ, (10)

where 𝜇Δ represents the largest quantization error of the dynamic quantizer. Differences between the proposed quantizer
(8) and the static uniform quantizer g(u) are depicted in Figure 1. We are now ready to formulate our control objective.

*Saturation occurs when the input exceeds the maximum quantized level. In case of no saturation (||u−𝜂|| ≤ 𝜇M), it holds ||g𝜂𝜇(u)−u|| = 𝜇||Δu|| ≤ 𝜇Δ.

http://wileyonlinelibrary.com
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FIGURE 2 Adaptive networked control system in the model reference adaptive control framework

Problem 1. (Input-quantized model reference adaptive control [MRAC]). Design an adaptive control law for the con-
trol gains in (5) and adjustment strategies for the dynamic parameter 𝜇 and dynamic offset 𝜂 in (8) such that,
without requiring the knowledge of Ap and Bp in (1), the state trajectories of the uncertain switched system (1) track
asymptotically the trajectories generated by the switched reference model (2).

A schematic representation of the proposed adaptive NCS is shown in Figure 2.

3 ADAPTIVE LAW CONTROLLER DESIGN

In order to guarantee that the states x in (1) track x m in (2) asymptotically, we need first to guarantee global asymptotic
stability of the homogeneous part of the reference switched system (2) (ie, with r = 0) under a dwell-time admissible
switching law 𝜎(·) ∈ 𝒟 (𝜏d). Inspired by the works of Allerhand and Shaked9 and Yuan et al,14 the following lemma is
stated.

Lemma 1. The homogeneous part of the reference switched system (2) is globally asymptotically stable for any switching
law 𝜎(·) ∈ 𝒟 (𝜏d) if there exist a collection of symmetric matrices P𝑝,c ∈ Rn×n, 𝑝 ∈ 𝒩 , c = 0, 1, … ,C and a sequence
{𝛿c}C

c=1 > 0 with
∑C

c=1 𝛿c = 𝜏d such that the following inequalities hold:

P𝑝,c > 0 (11a)

P𝑝,c+1 − P𝑝,c

𝛿c+1
+ P𝑝,cAm𝑝 + AT

m𝑝P𝑝,c < 0 (11b)

P𝑝,c+1 − P𝑝,c

𝛿c+1
+ P𝑝,c+1Am𝑝 + AT

m𝑝P𝑝,c+1 < 0 (11c)

c = 0, … ,C − 1
P𝑝,CAm𝑝 + AT

m𝑝P𝑝,C < 0 (11d)

P𝑝,C − Pl,0 ≥ 0 (11e)
∀l = 1, … , 𝑝 − 1, 𝑝 + 1,…N,

where C is a positive integer that determines the number of positive definite matrices to be interpolated.

By solving the linear matrix inequalities (LMIs) in (11), we obtain a collection of symmetric matrices Pp,c. This collec-
tion of matrices is used to obtain a time-varying matrix Pp(t) via interpolation. The time-varying matrix Pp(t), 𝑝 ∈ 𝒩 is
defined as

P𝑝(t) =

{
P𝑝,c +

P𝑝,c+1−P𝑝,c

𝛿c+1
(t − ti,c), for ti,c ≤ t < ti,c+1

P𝑝,C , for ti,C ≤ t < ti+1
(12)

and it will be used later to define an appropriate Lyapunov function. Assume that 𝜎(ti) = p and 𝜎(ti+1) = l, with i ∈ N+

and 𝑝, l ∈ 𝒩 . By defining a time sequence {ti,0, … , ti,C} with ti,c+1 − ti,c = 𝛿c+1, c = 0, … ,C − 1 and assuming ti,0 = ti,
ti,C − ti = 𝜏d, the time sequence between 2 switching instants ti, ti+1 (and corresponding matrices Pp,c) can be seen in
Figure 3. The dashed vertical lines denote the value of Pp(t) at each corresponding time instant.



670 MOUSTAKIS ET AL.

FIGURE 3 Time sequence and values of Pp(t) between 2 switching instants ti and ti+1

Remark 3. The integer C in Lemma 1 can be selected a priori, depending on the allowed computational complexity.
In general, C ≥ 1 because, for C = 0, one has the classical quadratic Lyapunov function for which asymptotic tracking
can be attained only in the presence of a common Lyapunov function.16 For C ≥ 1 one can create a time-varying
Lyapunov function by interpolating among C+ 1 positive definite matrices. Typically, the larger the C the smaller the
dwell time 𝜏d for which the LMIs in (11) are feasible: at the same time, the larger the C the more the decision variables
in (11) (cf the work of Xiang44 for more details).

When the quantized adaptive state-feedback controller given by (8) is applied to (1), the closed-loop system reads as

ẋ(t) = A𝜎(t)x(t) + B𝜎(t)

(
K T

x𝜎(t)x(t) + Kr𝜎(t)r(t)
)

+ B𝜎(t)𝜇

[
g

(
KT

x𝜎(t)x(t) + Kr𝜎(t)r(t) − 𝜂(t)

𝜇

)
−

K T
x𝜎(t)x(t) + K r𝜎(t)r(t)

𝜇

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Δu

, (13)

where in case of no saturation, it holds ||Δu|| ≤ Δ. In view of (2) and (13), the evolution of the tracking error can be
written as

ė(t) = ẋ(t) − ẋm(t) = Am𝜎(t)e(t) + B𝜎(t)K̃ T
x𝜎(t)x(t) + B𝜎(t)K̃ r𝜎(t)r(t) + B𝜎(t)𝜇Δu, (14)

where K̃x𝑝 = Kx𝑝 −K ∗
x𝑝 and K̃r𝑝 = Kr𝑝 −K ∗

r𝑝, 𝑝 ∈ 𝒩 , are defined as the controller parameter errors. In order to analyze the
stability of the closed-loop system (14), the following Lyapunov-like function is considered:

V(t) = e(t)TP𝜎(t)(t)e(t) + tr
N∑
𝑝=1

[
K̃x𝑝(t)Γ−1

𝑝 K̃T
x𝑝(t)
]
+ tr

N∑
𝑝=1

[
K̃T

r𝑝(t)Γ−1
𝑝 K̃r𝑝(t)

]
(15)

with Γ𝑝 ∈ Rn×n > 0 coming from (4). It can be seen from (12) that P𝜎(·)(·) is continuous in the time interval between
2 consecutive switches and discontinuous at switching time instants. Therefore, V(t) in (15) is continuous during the
interval between 2 consecutive time instants and discontinuous at switching instants.

In view of Assumption 3, lower and upper bounds for the controller parameters Kxp and Krp can be found (this can be
done by testing the matching conditions (3) over the uncertainty set Θp, ∀𝑝 ∈ 𝒩 ). The parameter projection adaptive law
is derived as follows:

K̇T
x𝜎(t)(t) = −ST

𝜎(t)B
T
m𝜎(t)P𝜎(t)(t)e(t)x(t)T + FT

x𝜎(t)

K̇r𝜎(t)(t) = −ST
𝜎(t)B

T
m𝜎(t)P𝜎(t)(t)e(t)r(t)T + Fr𝜎(t),

(16)

where Fxp and Frp are the projection terms that keep the estimates inside the lower and upper bounds, as defined in the
work of Wu et al.45

Remark 4. The adaptive law (16) has to be implemented as follows. Let {t+𝑝1
, t+𝑝2

, …} represent the sequence of
switch-in time instants of subsystem p, 𝑝 ∈ 𝒩 , and let {t−𝑝1

, t−𝑝2
, …} represent the switch-out time instants of sub-

system p. The initial conditions of (16) at a switch-in time instant for subsystem p are taken from the estimates
at the previous switch-out time instant of the corresponding subsystem, thus it holds Kx𝑝(t+𝑝k+1

) = Kx𝑝(t−𝑝k
) and

Kr𝑝(t+𝑝k+1
) = Kr𝑝(t−𝑝k

), ∀k ∈ N+. Subsequently, Kxp and Krp evolve continuously in time.
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3.1 Preliminaries in stability with slow switching
Let us consider a time interval during 2 consecutive switching instants ti and ti+1, such that 𝜎(ti) = p and 𝜎(ti+1) = l, with
i ∈ N+ and 𝑝, l ∈ 𝒩 . For t ∈ [ti, ti+1), subsystem p is active, and consequently, Kx j, Kr j, ∀𝑗 ∈ 𝒩 ∕𝑝, are kept constant with
their values identified with the values at the last switch-out instant of subsystem j, before the switching instant ti.

Using (16) and the properties of the projection terms Fx p and Frp,45 the time derivative of (15) along (14), during the
interval [ti, ti+1), is

V̇ = eT(AT
m𝑝P𝑝 + P𝑝Am𝑝 + Ṗ𝑝

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−Q𝑝

e + 2tr
[
K̃x𝑝Γ−1

𝑝 FT
x𝑝 + K̃r𝑝Γ−1

𝑝 Fr𝑝
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Kv𝑝

+ 2eTP𝑝B𝑝𝜇Δu, (17)

and because Kvp ≤ 0,45 (17) becomes

V̇ ≤ −eTQ𝑝e + 2eTP𝑝B𝑝𝜇Δu. (18)

Because Kx p and Krp are bounded due to the projection terms in (16), we can define 𝜌 ∈ R ≥ 0 such that

𝜌 = max
t≥0

N∑
𝑝=1

{
tr
[
K̃x𝑝Γ−1

𝑝 K̃T
x𝑝
]
+ tr
[
K̃ T

r𝑝Γ−1
𝑝 K̃r𝑝

]}
, (19)

and because of (15), we have

eTP𝑝e ≤ V ≤ eTP𝑝e + 𝜌. (20)

Next, we analyze the properties of −Qp(t). For t ∈ [ti, ti+1), we consider t ∈ [ti,c, ti,c+1), c = 0, … ,C − 1. By looking at
the expression of Pp in (12), one can see that −Qp can be written, in the time interval under consideration, as follows:

−Q𝑝 = 𝜆1

[ (P𝑝,c+1 − P𝑝,c)
𝛿c+1

+ P𝑝,cAm𝑝 + AT
m𝑝P𝑝,c

]
+ 𝜆2

[ (P𝑝,c+1 − P𝑝,c)
𝛿c+1

+ P𝑝,c+1Am𝑝 + AT
m𝑝P𝑝,c+1

]
,

(21)

where 𝜆1 = 1 − (t−ti,c)
𝛿c+1

, 𝜆2 = (t−ti,c)
𝛿c+1

> 0. It can be seen by (11b), (11c) that

−Q𝑝(t) < 0, for t ∈ [ti,c, ti,c+1). (22)

Next, we consider the interval t ∈ [ti,C, ti+1) for the case ti+1 − ti > 𝜏d. In this case, it is true that Pp(t) = Pp,C because of
(12), and because of (11d), the following holds:

−Q𝑝(t) = AT
m𝑝P𝑝,C + P𝑝,CAm𝑝 < 0, t ∈ [ti,C, ti+1). (23)

Because of (22), (23), we have
−Q𝑝(t) < 0, for t ∈ [ti, ti+1). (24)

Let 𝜎(ti) = p and 𝜎(ti+1) = l, with i ∈ N+ and p, l ∈ 𝒩 . At the switching instant ti+1, the following holds:

V(ti+1) − V
(

t−i+1
)
= eT(ti+1)(P𝜎(ti+1) − P𝜎(t−i+1)) eT(ti+1) = eT(ti+1)(Pl,0 − P𝑝,C)e(ti+1)

=⇒ V(ti+1) − V
(

t−i+1
)
≤ 0. (25)

Because Kx p, Krp, and e evolve continuously with respect to the time, (25) states that V in (15) is strictly decreasing
in the time interval between consecutive switches and is nonincreasing at switching time instants. A situation with the
proposed Lyapunov-like function (15) is shown in Figure 4.

3.2 Preliminaries in hybrid control policy
The stable behavior of the Lyapunov function depicted in Figure 4 has now to be combined appropriately with the quanti-
zation effect. To this purpose, we have to define suitable regions where the quantizer saturates or does not saturate. Such
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FIGURE 4 Lyapunov function V(t)(15), for 𝜎 = {1, 2}

regions will be defined based on some norm of the tracking error, as explained in the following. Because of (24), it must
be true that

𝜆min(Q𝑝)||e||2 ≤ eTQ𝑝e ≤ 𝜆max(Q𝑝)||e||2, 𝑝 ∈ 𝒩 , t ∈ [ti, ti+1), (26)
where 𝜆max(Q𝑝) ≥ 𝜆min(Q𝑝) > 0. By referring to (18) and assuming no saturation in the quantizer (||Δu|| ≤ Δ), we are in a
position to state the following:

V̇ ≤ −𝜆min(Q𝑝)||e||2 + 2eTP𝑝B𝑝𝜇Δ

≤ −𝜆min(Q𝑝)||e||
⎛⎜⎜⎜⎜⎜⎝
||e|| − 2max

B𝑝∈Θ
||P𝑝B𝑝||

𝜆min(Q𝑝)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

R𝑝

𝜇Δ

⎞⎟⎟⎟⎟⎟⎠
⇒

V̇ ≤ −𝜙||e|| (||e|| − R𝜇Δ) (27)
with 𝜑 = min𝑝∈𝒩 [𝜆min(Q𝑝)], R = max𝑝∈𝒩 R𝑝, where R is bounded in view of Assumption 3. According to (9), the
requirement for no saturation can be equivalently expressed by

||u − 𝜂|| ≤ 𝜇M. (28)

In view of the projection law (16), let us consider the well-defined bounded scalar

Kx = max
𝑝∈𝒩 , t≥0

||Kx𝑝||. (29)

Because ||u − 𝜂|| = ||KT
x𝑝x + Kr𝑝r − KT

x𝑝xm − Kr𝑝r|| = ||KT
x𝑝e||, the condition for no saturation is satisfied if the following

condition is true: ||e|| ≤ 𝜇M
Kx

. (30)

Let us define
min

𝑝∈𝒩 ,t∈[0,𝜏𝑝)

[
𝜆min

(
P𝑝(t)

)]
= 𝜉min, max

𝑝∈𝒩 ,t∈[0,𝜏𝑝)

[
𝜆max

(
P𝑝(t)

)]
= 𝜉max, (31)

where the min and max are also taken over time, since the matrix Pp is interpolated in the interval [0, 𝜏p). Let us also
define the following regions:

ℬ1(𝜇) ∶=
{

e(t) ∶ ||e(t)|| ≤ 𝜇M
Kx

}
ℐ1(𝜇) ∶=

{
e(t) ∶ e(t)TP𝜎(t)(t)e(t) ≤ 𝜉min

𝜇2M2

Kx
2

}
ℬ2(𝜇) ∶= {e(t) ∶ ||e(t)|| ≤ 𝜇RΔ}
ℐ2(𝜇) ∶=

{
e(t) ∶ eT(t)P𝜎(t)(t)e(t) ≤ 𝜉max𝜇

2R2Δ2} .
(32)

One can see that, if √
𝜉minM

Kx
>
√
𝜉maxRΔ,

then it holds ∀P𝜎(t)(t), 𝜎(t) ∈ 𝒩 , t ≥ 0: ℬ2(𝜇)⊂ ℐ2(𝜇)⊂ ℐ1(𝜇)⊂ ℬ1(𝜇). This situation is depicted in Figure 5.
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FIGURE 5 Regions of interest

4 MAIN RESULT

Using the previously introduced concepts, the following stability and tracking result can be stated.

Theorem 1. Consider the input-quantized MRAC given by the switched uncertain system (1), the switched reference
model (2), the dynamic quantizer with adjustable offset (8), and the adaptive law (16). If the following condition holds√

𝜉minM

Kx
>
√
𝜉maxRΔ (33)

(with 𝜉min, 𝜉max defined in (31), Kx defined in (29), and R defined after (27)), then there exists an error-based hybrid quan-
tized feedback control policy that renders the closed-loop system (14) globally asymptotically stable with limt→∞e(t) = 0.

Proof. The hybrid quantized feedback policy is designed in a constructive way along the proof. We distinguish 2
phases, namely, the zooming-out and zooming-in phases.26 In the zooming-out phase, the parameter 𝜇 increases in
such a way that e∈ ℬ1(𝜇), and thus, saturation is avoided. During the zooming-in phase, the objective is to shrink
the region ℐ2(𝜇) by reducing the hybrid parameter 𝜇 so that state-tracking properties can be concluded. The 2 phases
are examined thoroughly as follows.

Zooming-out phase: Let 𝜇(0) = 1. If ||e(0)|| > M
Kx

, we have saturation. In this case, we increase 𝜇(t) fast enough to

dominate the growth of e, which can be seen from (14) to be equal to |emaxA𝑝,B𝑝∈Θ||A𝑝+B𝑝KT
x𝑝|||with maxA𝑝,B𝑝∈Θ||A𝑝+B𝑝K T

x𝑝||
bounded in view of Assumption 3. There will be a time instant, call it t0 > 0, at which the following relation is true:

||e(t0)|| ≤√ 𝜉min

𝜉max

𝜇(t0)M
Kx

, (34)

and as a consequence of (20), (32), e(t0) ∈ I1(𝜇(t0)) ∩ℬ1(𝜇(t0)). Let us take 2 consecutive switching time instants ti
and ti+1, such that 𝜎(ti) = p, 𝜎(ti+1) = l, 𝑝, l ∈ 𝒩 . If t0 ∈ [ti, ti+1), then it is true that, due to e(t0)∈ ℬ1(𝜇(t0)),
ℬ2(𝜇)⊂ ℬ1(𝜇), it holds V̇ ≤ 0 from (27). As soon as e(t0)∈ ℬ1(𝜇(t0)) and V̇ ≤ 0, we have

V(t) ≤ V(t0) =⇒ ||e(t)|| ≤√𝜇2(t0)M2

Kx
2 + 𝜌

𝜉min
. (35)

Moreover, if t = ti+1, because e evolves continuously, (35) still holds, which implies that e(t) does not necessarily
decrease monotonically. Hence, for t > t0, there might be 2 cases: either the norm of the tracking error is decreasing
and we go to the zooming-in phase or the norm of the tracking error is increasing. For the second case, because 𝜇(t) is
increased at higher rate than the growth of e(t) to avoid saturation, we can assume that ∀t ≥ t0 =⇒ e(t)∈ ℬ1(𝜇(t)).
As soon as V is nonincreasing at time-switching instants in view of (25), if additionally in the time interval [ti, ti+1) it
holds e(t) ∉ ℬ2(𝜇(t)), then it is true that V̇(t) ≤ 0, ∀t ≥ t0. In this case, because of (35), it is true that e(t) ∈ ℒ∞, ∀t ≥ t0.

Zooming-in phase: Let t′ be a time instant such that t ≥ t′ ≥ t0 and e(t) ∈ ℬ1(𝜇(t′)). It is true, as it was shown in
the zooming-out phase, that V̇ ≤ 0 between time switching instants as long as e ∉ ℬ2(𝜇(t′)), and V is nonincreasing



674 MOUSTAKIS ET AL.

at switching time instants. Then, (35) holds, ie, V(t) is bounded. One can see from (32) that ℬ2(𝜇)⊂ ℐ2(𝜇). Thus, at
time t̃ with t̃ ≥ t′, such that e(t′)∈ ℐ2(𝜇(t′)), a zooming-in event occurs by updating 𝜇( t̃)

𝜇( t̃) =
Kx
√
𝜉maxRΔ√
𝜉minM

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Ω

𝜇(t′). (36)

In view of (33), it holds Ω < 1. By looking at (32), one can see that ℐ1(𝜇(t̃))= ℐ2(𝜇(t′)). After the zooming-in event,
one might have 2 cases: either the tracking error increases in which case, a new zooming-out phase is activated if e
violates e ∈ ℬ1(𝜇( t̃)) or the tracking error keeps decreasing in which case, a new zooming-in event will eventually
be triggered. In the second case, since 𝜇 is updated when e ∈ ℐ2(𝜇) and because ℬ2(𝜇)⊂ℐ2(𝜇), it is true that V̇ ≤ 0
during the time interval between 2 consecutive switchings, as it was proven in the zooming-out phase. The following
lemma will be useful to our stability analysis.

Lemma 2. (Generalized Barbalat's lemma46)
Let ti ∈ [0,+∞), i = 1, 2, … , satisfying ti+1 − ti ≤ 𝜏d. Suppose V(t) ∶ [0,+∞) → R satisfies

1. limt→∞V(t) exists;
2. V(t) is twice differentiable in each interval [ti, ti+1);
3. V̈(t) is bounded over [0,+∞) in the sense that

sup
ti≤t<ti+1,i=1,2, …

|V̈(t)| < +∞.

Then, it is true that limt→∞V̇(t) = 0.

Let us now look at the combined behavior of V during zooming-in and zooming-out phases. For t ≥ t0, at both
zooming-in and zooming-out phases, because V is not increasing and positive, it holds V(t) is upper bounded by V(t0)
and lower bounded by 0. Moreover, because V̇ < 0 (for ||e|| ≠ 0) between switching time instants if e ∉ ℬ2(𝜇) and
because V is nonincreasing at switching time instants, it is true that limt→∞V(t) exists. Because V is bounded, (35)
holds implying e(t) ∈ ℒ∞, ∀t ≥ t0. By looking at (17), we can conclude with similar argumentation that ė is bounded
because it consists of bounded terms. Additionally, because V in (15) consists of variables that evolve continuously in
time, it is true that V is twice differentiable in every interval between switching time instants. Finally, by looking at the
expression of V̇ in (17), one can see that V̈ is bounded because it consists of bounded terms, thus it is bounded in the
interval between switching time instants. As a result of the generalized Barbalat's lemma, it holds that limt→∞V̇(t) = 0.

Consequently, the following relation from (27) is true:

lim
t→∞

V̇(t) ≤ −𝜙
(
lim
t→∞
||e(t)|| (||e|| − R𝜇Δ)

)
=⇒

0 ≤ −𝜙
(
lim
t→∞
||e(t)|| (||e|| − R𝜇Δ)

)
.

The aforementioned relation is true when

lim
t→∞
||e(t)|| = 0 or lim

t→∞
||e(t)|| − 𝜇(t)RΔ ≤ 0. (37)

The second relation in (37) implies that e ∈ ℬ2(𝜇). However, when e ∈ ℐ2(𝜇), a zooming-in event occurs and
because ℬ2(𝜇) ⊂ ℐ2(𝜇), it is always true that e ∉ ℬ2(𝜇). As a consequence limt→∞𝜇(t) = 0 and from (37), we con-
clude that limt→∞||e(t)|| = 0. Because all signals are bounded and limt→∞e(t) = 0, we can conclude that (14) is globally
asymptotically stable.

A state flow diagram of the adaptive hybrid control strategy, with rules for zooming in/out, is shown in Figure 6.

Remark 5. Two main families of time-dependent switching that can be considered in stabilization of switched systems
are slow switching and arbitrarily fast switching. While arbitrarily fast switching can handle a larger class of switching
signals, it requires the existence of a common Lyapunov function that is quite conservative since a common Lyapunov
function may not exist.41 For this reason, we have considered slow switching (in particular, dwell-time switching) to
handle subsystems for which a common Lyapunov function may not exist. As shown in the work of Tong et al,16 when
the reference models (2) share a common Lyapunov function, the adaptive design is greatly simplified and asymptotic
stability for arbitrarily fast switching can be obtained.
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FIGURE 6 Error-dependent adaptive hybrid control strategy

Remark 6. Condition (33) relies on Assumption 3. The following guidelines are provided for checking the validity of
(33): by evaluating the matching conditions (3) in the bounded uncertainty set Θ, it is possible to find the upper bound
Kx to Kx p, 𝑝 ∈ 𝒩 . At this point, after computing 𝜆min(Q𝑝) from (23) and with R as in (27), there always exist a static
range M large enough and a number of quantization levels large enough, such that the quantization error Δ is small
enough to satisfy (33). The condition (33) will lead to the constant Ω < 1 in (36) to be used in the zooming-in phase.
Note that different uncertainty sets Θ might lead to different quantization design parameters.

Remark 7. In the work of Wakaiki and Yamamoto,30 a classic multiple quadratic Lyapunov function with a con-
stant positive definite matrix was adopted. This implied that at every switching instant, it was necessary to zoom out
(discontinuously), in order to compensate for the possible increment of the Lyapunov function at the switching
instants. Here, the time-varying Lyapunov function (15) we adopt is nonincreasing at the switching instants, which
does not require to zoom out at each switching instant to compensate possible discontinuous increments (ie, jumps).
Getting rid completely of any discontinuous zooming-out phase greatly simplifies the zooming procedure and makes
it consistent with the zooming procedure in nonswitched systems.26,47

Remark 8. It has to be underlined that, in the original nonadaptive design,26 one can have at most a single zooming-out
phase, followed by a permanent zooming-in phase due to the fact that 𝜇 decreases monotonically. However, the proof
of Theorem 1 shows that, in the adaptive setting, the convergence of 𝜇 may not be monotonic. This implies multiple
zooming-in and zooming-out phases, as illustrated by the following example.

5 SIMULATION RESULTS

In this section, we study the effectiveness of the proposed adaptive hybrid control policy using the NASA GTM.48 The
nonlinear system is linearized at steady-state, straight, wings-level flight condition at 75 and 85 kt, both at 800 ft, and the
resulting dynamics at each operating point are given, respectively, as follows:

A1 =
⎡⎢⎢⎢⎣
−0.0190 0.0825 −0.1005 −0.3206
−0.2154 −2.7859 1.2031 −0.0271
3.2527 −30.7871 −3.5418 0

0 0 1 0

⎤⎥⎥⎥⎦ , B1 =
⎡⎢⎢⎢⎣

0.0065 0.0534
−0.6103 0.0020
−74.6355 0.5431

0 0

⎤⎥⎥⎥⎦
A2 =

⎡⎢⎢⎢⎣
−0.0312 0.1095 −0.0938 −0.3210
−0.1057 −3.2245 1.3765 −0.0217
3.9602 −33.8308 −4.0756 0

0 0 1 0

⎤⎥⎥⎥⎦ , B2 =
⎡⎢⎢⎢⎣

0.0032 0.0534
−0.7821 0.0020
−96.0149 0.5431

0 0

⎤⎥⎥⎥⎦ .
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In line with the design in the work of Sang and Tao,48 the desired dynamics are selected as

Am1 =
⎡⎢⎢⎢⎣
−0.0215 0.0810 −0.0988 −0.3180
−0.0706 −2.6377 1.0345 −0.2636
20.9585 −12.6579 −24.1637 −28.9269

0 0 1 0

⎤⎥⎥⎥⎦
Am2 =

⎡⎢⎢⎢⎣
−0.0328 0.1088 −0.0930 −0.3196
0.0753 −3.0601 1.1577 −0.3276

26.1845 −13.6389 −30.9393 −37.5452
0 0 1 0

⎤⎥⎥⎥⎦
with Bm1 = B1 and Bm2 = B2 for the reference model. It is important to underline that the matrices A1, B1, A2, and B2
are given for simulation purposes, while the controller design does not use the knowledge of these matrices (only the
knowledge of the reference model is used). The matrices Sp, p = 1, 2, in (16) are chosen as S1 = S2 = 0.05 · I2, and the
reference signal is chosen as r(t) = [2 sin(0.02𝜋t), 0]T . For a dwell time 𝜏d = 5 seconds, we pick C = 1 in (11) and the
matrices obtained from solving the LMIs in (11) are

P1,0 =
⎡⎢⎢⎢⎣

1.8426 0.0495 −0.0142 −0.5113
0.0495 0.2034 −0.0064 −0.0372
−0.0142 −0.0064 0.0193 0.0208
−0.5113 −0.0372 0.0208 0.9662

⎤⎥⎥⎥⎦
P1,1 =

⎡⎢⎢⎢⎣
2.5588 0.0174 −0.0155 −0.7376
0.0174 0.4338 −0.0181 −0.0097
−0.0155 −0.0181 0.0444 0.0251
−0.7376 −0.0097 0.0251 1.7162

⎤⎥⎥⎥⎦
P2,0 =

⎡⎢⎢⎢⎣
1.8612 0.0455 −0.0108 −0.5542
0.0455 0.2016 −0.0062 −0.0251
−0.0108 −0.0062 0.0182 0.0166
−0.5542 −0.0251 0.0166 1.0178

⎤⎥⎥⎥⎦
P2,1 =

⎡⎢⎢⎢⎣
2.5366 0.0283 −0.0115 −0.7328
0.0283 0.3913 −0.0147 −0.0110
−0.0115 −0.0147 0.0361 0.0197
−0.7328 −0.0110 0.0197 1.7429

⎤⎥⎥⎥⎦ .
Relation (31) gives for the aforementioned Lyapunov matrices 𝜉min = 0.0177 and 𝜉max = 2.9873. In addition, we assume

that the controller parameters reside between lower and upper bounds as follows: K (1,2)
r𝑝 ,K (2,1)

r𝑝 ∈ [−1, 1], K (1,1)
r𝑝 ,K (2,2)

r𝑝 ∈
[0.5, 1.2] and K (i,𝑗)

x𝑝 ∈ [−1, 1], i ∈ [1, 4], j ∈ [1, 2], p = 1, 2 (the notation K (i, j) represents the (i, j)th entry of matrix K).
This leads to have R = 26.71. Therefore, if we take the parameters of the input quantizer g𝜂𝜇(u) in (8) to be M = 10 and
Δ = 0.01, (36) is satisfied, and Ω in (36) to be used during the zooming-in phase is computed to be Ω = 0.49. Finally,
by evaluating the lower and upper bounds of the controller parameters Kx p,Krp, p = {1, 2} in (3), the exponential rate of
growth maxA𝑝,B𝑝∈Θ||A𝑝+B𝑝KT

x𝑝|| of𝜇, to be used during the zooming-out phase is computed to be 56.91. For the simulations,
𝜇 initially is equal to 1, the initial tracking error is e(0) = [2,−1, 1, 0.5]T, and the initial parameter estimates are chosen as

Kx1(0) =
[
−0.1899 −0.1943 0.2210 0.3101
−0.0142 0.0007 −0.0014 0.0009

]T

, Kr1(0) = 0.75 · I2

Kx2(0) =
[
−0.1853 −0.1682 0.2238 0.3128
−0.0138 0.0002 −0.0012 0.0016]

]T

, Kr2(0) = 0.75 · I2

(different initial conditions might affect the transient performance, but not the asymptotic tracking result). The simulation
has been conducted in MATLAB-SimulinkⓇ, and the simulation results are shown in Figures 7 to 10.

The switching sequence admissible with dwell time is shown in Figure 7, whereas Figure 8 shows the dynamic range 𝜇.
Figure 9 shows that the tracking performance of the dynamic quantizer with adjustable offset is clearly satisfactory. From
Figure 8, it can be seen that the quantizer parameter 𝜇 retains its initial value for the initial 7 seconds indicating that the
signal is not saturated; then, it decreases abruptly in a piecewise manner indicating that the condition e ∈ ℐ2(𝜇) triggers
(36) consecutively. Thereafter, because 𝜇 stays close to zero, we have from (10) that the quantized measurement of the
input value g𝜂𝜇(u) is almost identical to the actual input value u. Thus, it holds g𝜂𝜇(u) ≈ 𝜂 = KT

x𝑝xm + Kr𝑝, 𝑝 ∈ 𝒩 , which
identifies with the desired input to achieve asymptotic tracking in the nonquantized switched systems MRAC case.
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FIGURE 7 The switching signal 𝜎(t) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Hybrid control parameter 𝜇(t) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 State tracking error (dynamic quantization with adaptive offset) [Colour figure can be viewed at wileyonlinelibrary.com]

It can be seen in Figure 8 that 𝜇 is not monotonically decreasing: zooming-out events occur in between zooming-in
time intervals, which complies with our theoretical result in (35). In fact, zooming-out phases might occur whenever the
decrease of V in (15) is caused mostly by the decrease of the parametric estimation error term: this leaves room for e to
possibly increase while still having V̇ ≤ 0. When e increases, e ∈ ℬ1(𝜇) might be violated, in which case, 𝜇 increases at a
faster rate than the growth of ||e|| to avoid saturation.
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FIGURE 10 Quantized input (dynamic quantization with adaptive offset) [Colour figure can be viewed at wileyonlinelibrary.com]

6 CONCLUSION

This work has established a novel adaptive control approach that attains asymptotic tracking for switched linear systems
with parametric uncertainties and dwell-time switching, with quantized control input. In addition to enlarging the class
of systems for which the adaptive quantized control can be solved, we have introduced a novel dynamic quantizer with
dynamic offset to address the tracking problem. We have also used a time scheduled Lyapunov approach in an adap-
tive framework to avoid zooming out at every switching instant to compensate the possible increment of the Lyapunov
function at the switching instants. A Lyapunov-based approach has been used to derive the adaptive adjustments for the
control parameters and for the dynamic range and dynamic offset of the quantizer: the resulting (error-dependent) hybrid
control policy has been given in a constructive manner, and asymptotic state tracking was shown. A practical example of
the NASA GTM has been used in order to demonstrate the effectiveness of the proposed hybrid adaptive control scheme.
Future work will include the extension of this approach to classes of nonlinear systems. In fact, since dynamic input quan-
tization can be seen as a sector-bounded nonlinearity, where the sectors are defined in an adaptive way by the control
gains and by the dynamic range, it is natural to explore the extension to other sector-bounded nonlinearities like satura-
tion and dead zones.49,50 Another relevant and challenging problem includes the study of adaptive quantized control in
networked environments with asynchronous switching between the subsystems and the controllers.8
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