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Preface 
 

This report contains a summary of the work performed at GMV Space and Defence during the Master Thesis 

Project, part of the Master of Science (MSc) in Aerospace Engineering at the Technische Universiteit Delft, track 

of Spaceflight, profile Space Exploration. The preparation of the thesis project took place at GMV’s headquarters 

in Tres Cantos, Madrid, from the 26th of April 2019 to the 26th of December 2019.  

The work contained in this report is preceded by a detailed Literature Study aimed at laying the foundations of the 

research presented hereafter. The literature study delves into the motivation by which the work of this thesis is 

endorsed as well as the potential benefits of the conceptualized approach. In addition, a brief introduction to the 

Space Situational Awareness framework and particularly to the Space Surveillance and Tracking is given in an 

effort to get the reader started at the main topics and challenges that both fields of study pose. The research 

contained in this report represents the continuation of the work done during the Literature Study, hence readers 

seeking a conceptual insight and an introduction to the topic are encouraged to read the aforementioned document. 

In addition, potential readers might require a basic knowledge in astrodynamics, orbital mechanics, statistics, linear 

and differential algebra as well as optimization theory. 

This project represents a collaboration between the author, GMV and TU Delft. GMV belongs to the top-tier space 

engineering technology groups that lead in orbital mechanics, astrodynamics, mission planning and satellite 

navigation, producing high quality/fidelity software products and being recognized as a worldwide entity on space 

engineering. TU Delft stands out as one of the most renowned universities around the world by the quality of the 

education, the passion and competency with which its academic staff educate and inspire students as well as the 

extensive research output produced.   

This project would not have been possible without the close cooperation between these entities, whose shared 

philosophy of fostering creativity and striving for excellence produces such remarkable and inspiring research 

projects.  
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Abstract 
 

The future space environment is predicted to grow in number of both operational and inactive man-made objects 

and the era of constellations is expected to arrive during the following years, with many telecom companies 

launching constellations of up to 12000 satellites. This situation will inevitably lead to over-population of the most 

demanded orbits making its exploitation a challenge to the scientific community as well as spacecraft operators.  

To allow for a sustainable and efficient exploitation of the orbital resources available, the assessment of the quality 

of a predicted or estimated orbit state becomes a core aim of modern astrodynamics. It enables the proper 

functioning of multiple space applications, from Global Navigation Satellite System (GNSS) constellations, 

optimization of manoeuvres, development of accurate gravitational models, space debris cataloguing build-up and 

maintenance, etc. A proper definition of state uncertainty entails the characterisation of the probability density 

function of an object’s state, thus defining a region in space within which an orbiting object will be most likely found.  

Regular products within the field of Space Surveillance and Tracking (SST) and Space Traffic Management (STM), 

such as high-risk collisions, upcoming re-entries or fragmentations, rely both on the estimated state and associated 

uncertainty of detectable Resident Space Objects (RSOs). Orbit Determination (OD) algorithms provide the 

required estimations, assuming that the uncertainty in the state of the object is properly characterized by its state 

vector covariance and assuming Gaussian processes. 

However, a common problem of OD processes is the misrepresentation of the RSOs uncertainty through the 

estimated and predicted covariance. Ultimately, this causes a great impact in the quality and accuracy of SST 

products as the covariance is overly optimistic (too small) and the true uncertainty of the object is not properly 

captured. One of the causes for the unrealism of the covariance is found in typical OD algorithms, as they fail to 

consider, or properly characterize, the uncertainty of the dynamical models used to describe the motion of the 

objects. Representative examples of uncertain dynamic models are the atmospheric drag force or the solar 

radiation pressure acting on the orbiting RSOs. Because these models provide a deterministic solution to a 

stochastic phenomenon, an inherent associated uncertainty should be considered when used during an orbit 

determination and posterior orbit prediction. 

The aim of this work is to devise a novel methodology to improve the covariance realism of OD and orbit 

propagation processes through the classical theory of consider parameters of batch least-squares estimators. The 

devised methodology uses the theory of consider parameters to add the uncertainty of certain assumed parameters 

(i.e. consider parameters) to the estimated covariance. When predicting future states and associated uncertainties, 

the uncertainty of the modelled consider parameters will increase the realism of the predicted covariance through 

propagation of the corrected estimated covariance. The variances of the consider parameters are estimated using 

a least-squares process with which the propagated covariance best fits a given observed covariance, previously 

derived. This original process receives the name of Covariance Determination and is presented throughout this 

project. The conceived methodology is suitable for any type of measurement or object, although its primary goal is 

to correct covariance unrealism of non-cooperative targets, i.e. space debris. 

Among the wide variety of uncertainty sources affecting covariance realism, the influence and effect of two relevant 

modelling uncertainties, the atmospheric drag force and the range bias, is discussed during this project. The 

proposed methodology is applied to a simulated realistic scenario of tracking measurements targeting a simulated 

RSO to evaluate the consistency of the corrected covariance via Monte Carlo analysis. The impact that 

perturbations in the aforementioned models trigger to the state estimation and prediction problem is discussed. 

Furthermore, thorough analyses are presented to illustrate the effect of dynamic and measurement model errors 

on covariance realism. A practical case with real tracking data is discussed, to assess the uncertainty unrealism in 

the orbit determination and propagation process of the Sentinel 3A satellite and to demonstrate the capabilities of 

this novel methodology.  

The outcome of this project is a software application integrated as part of the GMV’s SST software suite that can 

deliver efficient and effective covariance realism improvement for a more accurate provision of SST products. 
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1  
INTRODUCTION 

 

The upcoming section will detail the concepts that will be discussed during the completion of this research project. 

The first part of this introductory section will explore the motivation behind this research, giving sound arguments 

to demonstrate the main current challenges that this research project desires to tackle. In addition, a thorough 

introduction to the main topics that will be covered during this report is given, having a look at the heritage of the 

techniques and methods implemented and reviewing state-of-the-art methodologies that seek to accomplish similar 

results.  

1.1 Motivation of the research 

ESA’s Space Situational Awareness (SSA) program was launched in 2009 with the purpose to guarantee Europe’s 

independent access and exploitation of space, either for scientific or commercial purposes. The ultimate aim of 

ESA’s SSA programme is to detect potential hazards, predict and asses the risk to Earth’s  population due to space 

debris from re-entries, in-orbit explosions, in-orbit collisions, potential impacts of NEO (Near Earth Objects) and 

effects of space weather to the space environment (from [ESA-SSA, 2011]). Europe’s access to SSA information 

has depended on external sources (mainly United States of America defence dept.) until the creation of this 

programme which will provide Europe with the independence it requires, as detailed in [European-Comission, 

2018]. 

The motivation for the creation of the SSA programme stems from the fact that space services have become 

essential in modern society. A wide variety of sectors nowadays, ranging from broadcasting to aviation and 

navigation, greatly depend on space weather. In addition, human life on Earth is at risk due to the existence of 

NEO objects threatening to impact Earth’s surface. But what is more relevant nowadays is the increasing hazard 

that the Space Debris population poses to the operational satellites orbiting the Earth (see [ESA, Space Situational 

Awareness - Detecting Space Hazards (brochure), 2017] for further reference). The growth of the space debris 

population coupled with an easier and cheaper access to space have led to a situation in which Earth orbits are 

becoming overpopulated.  

Nowadays, most of the satellites and orbiting bodies are located at Low Earth Orbits (LEO). Scientific and 

communications satellites are preferably placed at low-altitude orbits for a wide variety of reasons: limited sensing 

and power capabilities, less bulky satellites with an easier injection into orbit, use of less powerful/costly launchers, 

etc (from [Oliver Montenbruck, 2000]). This can be appreciated by looking at Figure 2, where an exponential growth 

of the number of catalogued objects has been experienced during the past years, being the LEO regime the one 

that has experienced the most notorious increase. 

Not only has the number of objects residing LEO increased but another peculiarity makes this orbital regime the 

most problematic. More than often, LEO objects (either operational or space debris) happen to share a set of 

specific orbital parameters. As listed in [Vallado D. A., Fundamentals of astrodynamics and applications, 1997], 

LEO orbits are used to fulfil many purposes such as communications, weather surveillance, military, earth and 

ocean resources and scientific research. In order to carry out these missions, a satellite requires a particular set of 

orbital parameters and, as shown in Figure 1, there are three bands of main relevance: Sun-synchronous orbits ( 

𝑖 = 95 − 105 𝑑𝑒𝑔), polar (𝑖 = 80 − 90 𝑑𝑒𝑔) and zero apsidal precession (𝑖 ≈ 63,43 𝑑𝑒𝑔). High-inclination orbits will 



2 

 

2 

 

1.Introduction 

eventually lead to a considerable spatial density of orbiting bodies at high latitudes (i.e. Polar Regions), decreasing 

the number of available slots and posing potential threats to actual and future missions.  

Human activity in space has caused the growth of a very large population of resident space objects. More than 

20,000 objects are currently catalogued by SST networks with sizes starting around 10 centimetres in LEO and 

around 1 metre in Geostationary Earth Orbit (GEO), as detailed in [Rossi, 2005]. RSOs comprise fragmentation 

debris, spacecraft (both operational and not functional), mission-related debris and rocket bodies. Undoubtedly, 

with such dimensions and depending on the collision conditions, the consequences may be fatal for any operational 

satellite. 

The scope of this research project is within the SST and STM framework and deals with the provision of realistic 

and accurate products. 2008 became a landmark for SST activities as it marked the first collision between an 

operational satellite, the Iridium-33 (a telecommunications satellite) and Cosmos 2251, an inactive Russian satellite 

(see [Kelso, 2019] for further reference), both orbiting the LEO region. The collision took place without STM 

systems and Satellite Operators to notice the close approach, as the accuracy of the SST products delivered was 

not sufficient to compute a realistic probability of collision, leading operators to disregard the collision warning (see 

[Peterson, Sorgeb, McVeyc, Gegenheimerd, & Henninge, 2018] for further reference). Further collisions will take 

place if the capabilities of SST products are not enhanced, as the future near Earth environment is predicted to 

grow both in number of space debris and operational satellites. Besides, if the commercial and scientific exploitation 

of the most sought-after orbital configurations (i.e. LEO Sun-Synchronous, LEO polar) wants to continue being 

plausible, an upgrade on the current accuracies of SST products should be attained, together with a compliance 

on space debris mitigation guidelines during mission design. 

 

Figure 2 Evolution of number of objects per orbit type, from (ESOC-(ESA), 2019) 

 

 

Figure 1 Distribution of objects residing in the LEO regime and distribution of objects crossing the LEO 

regime, from (ESOC-(ESA), 2019). 
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The central topic of this project becomes the research and validation of a novel methodology to improve the 

accuracy of SST products, enabling an enhanced provision of services to satellite operators and STM operators. 

Special emphasis is given to the LEO orbital regime, as it has been shown to be the most troublesome (see 

[Klinkard, 2006] for further reference). SST services comprise conjunction analysis, sensor tasking and scheduling, 

catalogue build-up and maintenance and manoeuvre/anomaly characterisation. Unlike orbit estimation with 

cooperative targets, SST campaigns suffer from data starvation, as the target only reflects incoming radiation or 

sunlight. Measurements are obtained by SST sensors (optical telescopes, radars, laser ranging stations or space 

based sensors), whose availability, accuracy and coverage is more limited, resulting in a worse orbit solution when 

compared to regular OD products (as detailed in [Poore, et al., 2016]). 

 

SST products use the object’s covariance as an approximation of the uncertainty of the object’s state, since 

Gaussian statistics deliver a feasible preliminary approximation to the real probability density function under linear 

regime, i.e. for small uncertainties and short propagation times (see [Yanez, Gupta, Morand, & Dolado, 2019]).  

The provision of SST services greatly depends on how well modelled is the uncertainty on catalogued objects, in 

other words the uncertainty realism. Assuming Gaussian processes, the uncertainty of the object’s state can be 

represented by the covariance matrix obtained from a classical OD.  

 

Usually, classical orbit determination processes fail to properly consider all relevant sources of uncertainty, or do 

not consider them at all. As a result, state vector covariance is not properly determined, leading to an optimistic 

estimation. A requirement for the correct computation of the covariance matrix relies on the proper knowledge of 

the measurement standard deviation and in the absence of systematic errors (either in the force or measurement 

models), as detailed in [Oliver Montenbruck, 2000]. Unlike measurement errors, systematic errors’ contribution 

cannot be removed in orbit determination processes by processing large sets of measurements, as their uncertainty 

affects the confidence of the used dynamic models. Instead, they affect the estimation and, most importantly, the 

prediction of a realistic state and associated uncertainty. 

 

The most relevant and unconsidered dynamical model uncertainty is found in the modelling of the atmospheric 

drag force, affecting the OD processes of LEO objects. In the Literature Study ( [Lopez-Jimenez, Literature Study 

for MSc Thesis - TU Delft, 2019]), a detailed analysis on the uncertainty sources of the atmospheric drag force 

model is given, where the force model is presented together with the uncertainty that each one of its parameters 

introduces. The main contributions to the uncertainty of the model are the definition of the atmospheric density, 

followed by the modelling of the ballistic coefficient of the object (see [Wilkins & Alfriend, 2000] and [Vallado D. A., 

Fundamentals of astrodynamics and applications, 1997] for further reference).  

 

In addition to dynamical model uncertainties, measurement model uncertainties may play an important role when 

defining a realistic covariance matrix. Range bias uncertainty greatly depends on the radar system used, therefore 

a modelling uncertainty should be accounted for each considered radar station. However, during the preceding 

work of this project, typical station bias standard deviations were found to be below 5% (when compared to their 

mean). There is no doubt that dynamic model uncertainties are the main influence to the covariance unrealism 

problem, however uncertainties in the measurement models, for instance those related to measurement correction, 

might be relevant to the covariance realism problem. 

 

Finally, once the sources for covariance unrealism have been defined, the impact on the aforementioned SST 

products must be quantified, in order to understand the true dimension of the covariance realism problem. In the 

Literature Study, a thorough analysis on the effect of an unrealistic covariance to the different services was provided 

and several conclusions were derived: 

 For the conjunction analysis and computation of the collision probability, a common technique is to employ 

the position covariance to define a Gaussian ellipsoid (i.e. 3D region of confidence) to compute the 

probability of collision (as explained in [Chan, 2008]). Size, orientation and shape of the true uncertainty 

region have a great influence over the realistic computation of the collision probability. A deviation in any 

of the previous parameters can trigger differences in the computation of the probability of collision of 

several orders of magnitude, being the most important factors the dimension and orientation of the 

Gaussian ellipsoid.  

 For catalogue build-up and maintenance, the use of covariance is key to the processing of large sets of 

tracks. The most used metric is the Mahalanobis distance (see [Poore, et al., 2016]) which makes direct 

use of the covariance matrix as a means to establish the statistical distance between two estimated states. 

Clearly, an unrealistic covariance can lead to the miscorrelation of tracks by generating false positives or 

false negatives or missing classifiable objects. 
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 For manoeuvre analysis, a similar analysis applies as for the correlation of tracks. The covariance plays 

a key role by being the central element of the metrics employed to characterize a manoeuvre or an orbital 

anomaly (see [Lopez-Jimenez, Literature Study for MSc Thesis - TU Delft, 2019]). 

  

The previous section has defined the framework of the coming research, more concretely, SST and STM activities 

targeted to the urging problem of space debris, has motivated, using numerous references, the need for an 

improvement of the accuracy of SST products, has outlined the main causes for covariance unrealism and has 

summarized the effects that covariance unrealism has in the accuracy of SST products. 

Next section will address the central topic of the Master Thesis, covariance unrealism, together with the heritage 

that previous research has produced. A relevant exposition of state-of-the-art methods to correct covariance 

unrealism is provided, emphasising concepts or techniques that will be used in the development of the methodology 

to be presented in this Master Thesis.  

1.2 Covariance realism heritage 

The present section will explore the field of covariance realism, providing the reader with a clear introduction into 

the different areas of this particular field of study and reviewing the heritage that previous research has developed. 

The section is organized so as to first provide an introduction to covariance theory, define the conditions under 

which the covariance can be considered a feasible approximation of the orbital uncertainty. Last, this section 

explores the different metrics developed to measure the realism of covariance matrices and give an overview of 

the different techniques employed by the scientific community to correct for covariance unrealism (either in the 

orbit determination or propagation of the object’s state). 

1.2.1 Covariance as an approximation of orbital uncertainty 

Batch Least-Squares (BLS) orbit determination algorithms base their mathematical formulation in the estimation of 

certain parameters, typically a state and additional dynamic parameters, which minimize the weighted squared 

sum of the residuals between the observations and the estimated trajectory. The estimation assumes that 

measurements are uncorrelated, unbiased and normally distributed, i.e. affected by Gaussian white noise. In 

addition, a weighting matrix must be defined, according to typical measurement standard deviation, to allow for 

data fusion and proper processing of different types of measurement.  Considering all of the above, the variance 

of the estimation coincides with the covariance matrix of the estimated parameters (state and dynamic variables), 

defined from [Oliver Montenbruck, 2000]) as follows: 

 

𝑷𝒙 = (𝑯𝑥
𝑇𝑾𝑯𝑥)

−𝟏 
(1 .1) 

 

Where 𝑯𝑥 is the matrix of partials of the measurements with respect the state vector and 𝑾 is the weighting matrix 

containing the standard deviation of the measurements. The classical formulation of the covariance matrix is 

affected by the tracking geometry, the number and type of the measurements, its distribution and the quality (i.e. 

measurement noise). For the present work, the estimated parameter space will comprise state (position and 

velocity) and additional dynamic parameters (drag coefficient and/or solar radiation pressure coefficient) leading to 

a squared 7x7 or 8x8 covariance matrix. 

A statistical interpretation of the covariance matrix can be found in many relevant literature references (for instance 

in [Vallado D. A., Fundamentals of astrodynamics and applications, 1997]). The diagonal elements of the 

covariance matrix (i.e. variances or squared standard deviations) provide a statistical measure of the confidence 

of the estimation, in other words the closeness of the fit to the processed observations. Covariance is also indicative 

of the observability of the estimated parameters given the processed observations, as some parameters are 

estimated more accurately if certain observations are processed (for instance, range measurements are more 

sensitive to variations in the radial and along-track component, range-rate to variations in the along-track direction). 

The off-diagonal terms contain the correlation between estimated parameters and express the variability of one 

parameter with respect another.  

Since the previous formulation only accounts for the expected measurement standard deviation, the covariance 

becomes a good representation of the uncertainty of the state vector if measurement weights are properly defined 

and if errors, either in the dynamics or measurement models, are not present. However, real OD and propagation 

processes are affected by such errors as the knowledge of the measurement model and the dynamics of the object 
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is limited. Hence, covariance is unrealistic and does not represent the uncertainty of the object’s state estimation 

and prediction. The motivation for achieving a covariance realism improvement is further elaborated in [Lopez-

Jimenez, Literature Study for MSc Thesis - TU Delft, 2019] and the previous section, however a formal definition 

of the field of study of covariance realism is sought in this section. 

In modern literature, both covariance consistency and covariance realism may be used to describe the same field 

of study: the proper characterization of the uncertainty in the estimation of an object’s state (i.e. an OD process). 

This is usually done by measuring how well the covariance represents orbital differences between an estimated 

and reference/truth orbit. During the previous section, it has been made clear that covariance is being relied upon 

more and more as SST activities develop but it serves no purpose if its representation of the orbital uncertainty is 

not accurate or if it requires considering very restrictive assumptions.  

Before deepening into covariance realism, a careful consideration must be noted. Covariance realism and 

uncertainty realism are different concepts. The latter implies the first, however uncertainty realism describes the 

proper characterisation of the probability density function of the state estimation even when the phenomena 

governing the distribution are not Gaussian. Assuming linear regime and processes affected by Gaussian noise, 

both concepts coincide. It is common practice to represent the uncertainty of the orbital state with the covariance 

matrix derived from an OD process (from [Oliver Montenbruck, 2000], [Vallado D. A., Fundamentals of 

astrodynamics and applications, 1997] and [Tapley, Schutz, & Born, 2004]), provided that measurement residuals 

are zero mean normally distributed random variables and that the aforementioned assumptions hold.  

However, when the previous assumptions fail, either due to a long propagation period of the satellite state or due 

to large orbital uncertainties, linear regime and Gaussianity cannot be assumed (from [Hill, Alfriend, & Sabol, 2008], 

[Chris Sabol, 2010] and [Akella, Junkins, & Alfriend, 1996]). Studies show that there are two causes for the error 

distribution of the orbit state to become non-normal: state representation and linearization of dynamics. In [Folcik, 

Lue, & Vatsky, 2011], it is shown that degradation of Gaussianity in the representation of orbital uncertainty during 

propagation is achieved quicker when using a linear geometric reference frame (i.e. Cartesian space) rather than 

element-based (osculating or averaged orbital elements). This is confirmed by [Aristoff & Poore, Non-linear 

uncertainty propagation in orbital elements and transformation to Cartesian space without loss of realism, 2014], 

yet an important remark is made: linearized dynamics and Cartesian frame are adequate if orbital differences are 

up to the order of hundreds of meters.  

On the other hand, when a Gaussian distribution is not feasible by any means, other studies explore the possibility 

to characterize non-gaussian orbital state uncertainty with different Probability Density Functions (PDF) such as 

Gaussian Mixtures or Gauss von Mises distributions among others (from [Horwood & Poore, 2012] and [Poore, et 

al., 2016]). For the sake of simplicity, and because the ranges of orbital uncertainties that will be treated during this 

research are comprised between meter to kilometre magnitudes, linear propagation and Cartesian representation 

are assumed. This strong hypothesis is justified by means of normality tests. 

1.2.2 Metrics for covariance realism 

During the past, unrealistic covariance have aroused little concern, as the focus was directed to perfecting state 

estimation, but, as more SST products rely on covariance and due to the urgent need of a provision of accurate 

solutions, numerous studies have been developed (from [Poore, et al., 2016]). For a covariance to be considered 

consistent or realistic, a series of conditions must be fulfilled (from [Vallado & Seago, Covariance realism, 2009]):  

 The mean error of the orbital state prediction should be close to 0, i.e. unbiased from the true state. 

 The distribution of the predicted orbital state should tend be normal, i.e. follow a Gaussian distribution 

 The dispersion or spread of the error in the predicted state should be consistent with the predicted 

covariance. 

The first conditions are relatively easy to test and can be achieved by inspecting the mean value of the orbital 

differences distribution. The second condition becomes harsher to test, as multivariate analysis of normality is a 

complex process. A common assumption is to test for univariate normality for all the components of the covariance 

matrix and assume multivariate normality of the whole function (from [Thode, 2011]). From [Vallado & Seago, 

Covariance realism, 2009], normality tests for the orbital differences are proposed and assessed but two tests 

stand out among others for their power and proven robustness: Shapiro-Wilk normality test ( [Shapiro & Wilk, 

1965]) and Michael’s Dsp test ( [Royston, 1993] and [Michael, 1983]). Especially, Michael’s Dsp normality test 

allows for the definition of bound regions to test for the normality of the sample.  

Finally, a commonly accepted metric for testing the dispersion of the resulting orbital differences is the Mahalanobis 

distance, and assuming a normal distribution covariance its definition is the nominal one (a generalized 
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Mahalanobis distance is also available to test for different probability density functions rather than normal, from 

[Horwood, Aristoff, Singh, Poore, & Hejduk, 2014]). The Mahalanobis distance (see [Mahalanobis, 1936]) 

represents a measure of the statistical distance between a given orbital perturbation and the resulting distribution 

of orbital states, standing out as one of the most common metrics for covariance and uncertainty unrealism, widely 

employed in numerous references ( [Drummond, Jr., & Waugh, 2006], [Folcik, Lue, & Vatsky, 2011] and 

[Drummond, Ogle, & Waugh, 2007]). The Mahalanobis test for covariance realism can also be interpreted in the 

literature as a test for covariance containment and represents the ultimate metric to test for covariance realism.  

Further elaboration on the mathematical description and implementation of the described covariance realism 

metrics is provided in section 2.6. 

1.2.3 Covariance realism techniques 

Nowadays, a set of different techniques have been developed with the aim to correct for covariance unrealism. In 

[Poore, et al., 2016], a broad and more detailed review of the different methods can be found, however, for the 

sake of simplicity, only three categories addressed for well-known estimators such as the sequential Kalman filter 

or the Batch Least Squares method will be dealt in this section. These methodologies fall into three different 

categories:  scaling methods, process noise methods and consider analysis methods. 

1.2.3.1 Scaling techniques 

In [Laurens, Seimandi, Couetdic, & Dolado, 2017], an example of the simplest methods for covariance realism 

improvement is presented, where an improvement of covariance realism is sought with a scale factor and artificial 

augmentation techniques of the covariance. Many organisms such as CSpOC (Combined Space Operations 

Center) use this technique (from [Schiemenz, Utzmann, & Kayal, 2019]) in which a scaling factor is normally used 

to increase the volume of a Gaussian ellipsoid based on a series of statistical measures (i.e. Mahalanobis distance 

among others). The method is suitable both for Kalman and batch least-squares estimators. 

1.2.3.2 Process noise 

Process noise methods are based in the addition of a process noise covariance matrix in the propagation of the 

covariance as a means of taking into account uncertainties in the modelling of the system’s dynamics. The process 

noise matrix is a covariance matrix composed by the acceleration errors characterised as white noise. Process 

noise is commonly applied to sequential estimators (i.e. Kalman Filters) to avoid filter saturation and to increase 

the realism of the propagated covariance matrix. Recent applications have been developed aiming to derive a 

realistic process noise matrix to include in batch estimators. From [Vallado D. A., Fundamentals of astrodynamics 

and applications, 1997], the derivation and posterior tuning of a physically representative acceleration error model 

for the process noise is a complex procedure but allows to characterise and quantify the impact of different 

uncertainties in the modelling of the dynamics.  

From [Duncan & Long, 2006], a method for performing a more accurate propagation of the estimated covariance 

is devised, based on the derivation of a process noise matrix and posterior tuning. The methodology incorporates 

a process noise matrix to the propagation of the covariance and, provided that the process noise is accurately 

modelled and calibrated, its propagation will resemble that of an observed “true” covariance evolution. The 

modelled process noise covariance matrix becomes a 7x7 matrix, with a 6x6 element covariance expressed in a 

local frame plus an extra element that accounts for the uncertainty in the estimation of dynamic parameters (such 

as 𝐶𝐷). From [Duncan & Long, 2006], a method for building an observed covariance from the aggregation of orbital 

differences among different OD with respect to a “true” state is presented. The presented methodology is 

reproduced in later sections as will be considered for the calibration of the Covariance Determination methodology.  

In [Schiemenz, Utzmann, & Kayal, 2019], a more complex mathematical process is exposed for the definition of a 

process noise matrix that considers the propagation error due to uncertainty in the density model. The process 

noise matrix is then implemented as part of the estimation problem of a batch least-squares or for a covariance 

propagation. Again, the modelling of the process noise becomes a critical design step in which a dynamical noise 

is expected to be modelled. The derived process noise covariance accounts for the propagation of density 

uncertainties to state vector uncertainties, detailing an analytical procedure to derive the different correlations 

included in the process noise matrix. A similar approach to that of the consider parameters is followed in which a 

classical Weighted Batch Least-Squares (WBLS) formulation is extended to incorporate extra parameters in the 

estimation process. Although the similarities of the methodology with a consider analysis, the method does not 

implement a differentiation between a consider space and an estimation space. The novelty of the paper is based 

in the continuation of the paper presented by [Emmert, Warren, Segerman, Byers, & Picone, 2017] and the 

extension of the uncertainty coefficients developed, not only for the correlation of atmospheric uncertainties in the 

along-track position but other position components. 
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1.2.3.3 Consider parameters techniques 

There are numerous references that highlight the extended use of consider parameters (i.e. consider analysis) 

among SST industry stakeholders for improving the realism of the covariance derived from an OD ( [Poore, et al., 

2016], [Duncan & Long, 2006], [Schiemenz, Utzmann, & Kayal, 2019] or [Wiegel & Patyuchenko, 2011]). From the 

references, organisations such as the CSpOC, Numerica Corp. or DLR make use of consider parameters or 

pseudo-consider parameters to increase covariance realism, mainly modelling the uncertainty of the atmospheric 

model by considering a ballistic coefficient parameter variance, coupled with the estimation of empirical 

accelerations. Other parameters that are normally modelled comprise uncertainties in measurement biases and 

noise, uncertainties in tropospheric corrections, uncertainties in tracking station locations or uncertainties in the 

definition of Earth and Sun gravitational parameters, among others. 

In [Wiegel & Patyuchenko, 2011], the implementation of the consider parameters theory on a batch least-squares 

estimator is detailed, giving the Modular Orbit Determination Error Analysis Software (MODEAS), analogous to the 

implementation presented in this work based in [Oliver Montenbruck, 2000] and [Tapley, Schutz, & Born, 2004]. In 

[Yang, Yue, & Dempster, 2016], the formulation of a Consider Kalman Filter (CKF) is provided, where the estimation 

space is reduced considering some non-estimated parameters that have an impact in the computed covariance 

through the process noise and initial covariance matrix. Despite all the references available and the application of 

consider analysis for both batch and sequential estimators, no information is provided on the how the assumed 

weights of the consider parameters are computed, which is of the utmost relevance as the corrections to the 

covariance matrix depend on them. 

1.2.3.4 Conclusions on existing techniques 

Three different categories have been discussed because of the relevant techniques described to tackle the problem 

of covariance realism. The Covariance Determination methodology presented in the following report lies its 

foundations in the theoretical background of the consider parameters technique presented by [Oliver Montenbruck, 

2000] and [Tapley, Schutz, & Born, 2004]. Different consider parameters will be modelled, as a means of defining 

a process noise matrix in the consider space that will impact both the estimation and propagation of the covariance 

matrix.  

From the methods presented above, some features will be adapted to the concept of Covariance Determination 

while others remain common: 

 All covariance realism techniques make use of empirical data to calibrate the process noise matrix or 

scaling factors, as a means of achieving a realistic correction of the covariance realism. 

 The derivation of the observed covariance is done similar to the description included in [Duncan & Long, 

2006]. The observed covariance will be ingested by the algorithm to perform the calibration of the consider 

parameters. 

The use of the consider analysis theory allows for an alternative formulation of the process noise matrix, which has 

inherent benefits compared to the techniques presented above: 

 Scaling techniques lack physical insight and only rely on statistical analysis of empirical data to provide 

corrections. It is difficult to generalize or extrapolate any result since the scaling factors are not linked to 

any physical process (i.e. the dynamics of the problem are not characterized). 

 Process noise techniques require extensive analytical derivations of the acceleration error terms that 

affect the uncertainty of each component of the covariance matrix. Modelling a single contribution leads 

to a complex matrix formulation. 

Finally, the benefits of the Covariance Determination methodology are summarized as follows: 

 Modelled consider parameters are tightly correlated to uncertain physical processes affecting the motion 

of the object. Therefore, empirical insight in the uncertainty of such models is easily derived with 

applications to future orbit predictions and covariance realism upgrades. 

 The consider analysis presents advantages with respect other techniques. Although relevant references 

mention its extended use, no methodology has been found that defines a process to empirically determine 

the contributions of consider parameters. The purpose of the conceived methodology is to propose a 

robust solution to the aforementioned problem. 

 The consider parameters uncertainty matrix will have a simple and solid approach, without requiring 

extensive analytical derivations as shown in [Schiemenz, Utzmann, & Kayal, 2019], allowing for the 
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modelling of several uncertainty contributions through different parameters within a single consider 

covariance matrix. 

 The covariance realism improvement introduced by the consider parameters is relevant not only during 

orbit propagation (like process noise techniques) but also during the orbit estimation process. 

For the present study, uncertainty in the dynamic models has been assumed as white noise, however as pointed 

by [Siminski J. , 2016] and [Schiemenz, Utzmann, & Kayal, 2019], other noise models such as random walk or 

Brownian motion could be considered.  

The present section has addressed the topic of covariance realism and the heritage that previous research on the 

topic has produced. The theoretical background and relevant metrics to test for covariance realism have been 

reviewed from different relevant references. In addition, from the spectrum of different techniques developed as of 

today, three categories have been exposed in more detail outlining the main characteristics and features that will 

be considered during the development of the novel methodology of Covariance Determination. The main strong 

points of this novel methodology are the use of both dynamics and statistics in the correction of covariance 

unrealism, where a model calibration is achieved by ingesting empirical data whereas an analytical derivation of 

the consider parameters matrix allows to obtain physical insights of the dynamics.  

1.3 Proposal of research 

During the previous sections, a detailed exposition of the motivation, state-of-the-art and relevant techniques for 

covariance realism improvement have been detailed. The present section establishes the proposal of research by 

clearly stating the aim and the research questions to be answered during the completion of this report. 

1.3.1 Aim 

The aim of the research to be conducted in the present Thesis can be summarized by the following statement: 

“Conceptualize, develop, implement and validate a novel methodology to achieve a covariance realism 

improvement during state estimation and orbit prediction using the theory of the consider parameters in batch least-

squares estimators”. 

1.3.2 Research questions 

The following section aims to establish solid research questions to define an investigation roadmap. The questions 

to be answered are the following: 

1. To what extent do dynamic and measurement modelling inaccuracies impact the state estimation and 

prediction problem, i.e. the provision of an accurate state and a realistic covariance? 

2. How can dynamic and measurement modelling uncertainties be characterized in the theory of the consider 

parameters using a Weighted Batch Least-Squares estimator? 

3. To what extent does the Covariance Determination methodology improve the covariance realism of 

regular orbit determination and propagation products? 

4. To what extent does the proposed validation methodology reflect the fitness and power of the Covariance 

Determination methodology? 

5. To what extent are the present results of the study on covariance realism improvement of a satellite 

tracking campaign of the Sentinel 3A satellite representative of the inaccuracies of real dynamic and 

measurement models? 

a) Can the results obtained be used for further covariance realism upgrades? 

b) Is the methodology robust and useful in a real working environment?  

1.4 Structure of report 

The present thesis report is structured in five different chapters: introduction, methodology, results, discussion and 

conclusions. The Introduction provides an extensive review of the motivation behind the present research project, 

the relevant scientific heritage of the central topic and the research questions to be answered. The Methodology 

chapter goes over the specific details to reproduce the Covariance Determination methodology and the validation 

methodology proposed. The Results chapter gives an objective exposition of the different test cases executed as 



9 

 

 

 

1. Introduction 

well as the result of the tracking campaign of the Sentinel 3A satellite together with the results on estimated consider 

parameters. The Discussion chapter provides insightful examination of the results presented in the previous 

chapter. Finally, the Conclusions and recommendations chapter summarizes the most relevant findings and 

features of the proposed methodology and provides a series of further recommendations to continue the research 

on the topic of covariance realism. Additional annexes are included in the end of the project report containing 

relevant information about the developed software, measurement and dynamic models used and the batch least-

squares algorithm. Next chapter will detail the complete methodology to reproduce the Covariance Determination 

algorithm.  
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The following chapter provides all the relevant details concerning the formulation and implementation of the novel 

methodology of Covariance Determination.  

The first part introduces some basic concepts that are used and implemented during the devised methodology, 

such as commonly employed reference frames and terminology. Next, the theory of the consider parameters is 

introduced and reviewed so as to give enough insight to the reader on the peculiarities of its formulation. Finally, 

the covariance determination algorithm is presented, illustrating the application of the consider parameters theory 

to a classical batch least-squares orbit determination, with the purpose to improve covariance realism. 

The second part details the consider parameters that are modelled in order to correct for covariance unrealism. In 

addition, a methodology for the generation of a covariance evolution over time is presented.  

The third part defines the validation chain devised to verify the implementation of the methodology giving extensive 

proof through the computation of several Monte Carlo (MC) analysis, of the covariance realism improvement 

achieved. In addition, covariance realism metrics are introduced and thoroughly revised. 

2.1 Introductory knowledge 

The purpose of this section is to clarify the relevant terminology that will be used hereafter as well as the definition 

of the reference frames, gravitational and dynamical models. 

2.1.1 Relevant Terminology 

The relevant terminology described in the following section applies to the whole report and will be used during the 

description of the covariance determination methodology as well as the discussion of the results. The relevant 

terms used are: 

 Measurement: Result of a physical process by which a sensor captures incoming radiation from a target 

(either emitted by the sensor itself, by the target or a reflection of a secondary emitter) obtaining a 

numerical value that represents a physical magnitude. Examples of different measurements are: range, 

range-range, azimuth and elevation, right ascension, declination. A definition of common SST 

measurement models can be found in [ESA, Mathematical Models and Algorithms, 2009]. 

 Observation: set of measurements related to a certain epoch, belonging to a particular object and obtained 

by a certain sensor.  

 Orbit Determination (OD) : process by which the orbital state (state vector as well as dynamical 

parameters such as drag or solar radiation pressure coefficient) is estimated at a certain epoch, named 

the estimation epoch, using observations obtained from sensors, typically telescopes and/or radars in 

SST.  
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 Estimated parameters (orbital state): set of orbital parameters, defined at a certain epoch, obtained 

through an orbit determination process providing a trajectory which represents the best fit to the available 

observations (minimum residuals). Orbital parameters comprise: position, velocity, dynamical parameters, 

etc. and are considered as Gaussian random variables. 

 Estimated/determined orbit: time evolving orbital state of an object obtained as a product of an orbit 

determination process over a time interval with available observations. 

 Predicted/propagated orbit: time evolving orbital state of an object obtained through a propagation 

process (either analytical, semi-analytical or numerical) over a time interval without available 

observations. 

 Covariance: Measure of the joint variability of N random Gaussian variables. Covariance is used to 

quantify uncertainty and provide an estimate of accuracy in orbit determination processes under normality 

assumptions. The covariance matrix is diagonal if all variable are independent, semi-definite positive and 

symmetric. For the upcoming research, covariance matrix is computed using the normal equations of an 

orbit determination process, as shown in Equation (1 .1). 

 A-posteriori covariance: covariance of the estimated orbital state resulting from an orbit determination 

process. Depending on whether the covariance matrix takes into account consider parameters or not: 

o Noise only Covariance: if no consider parameters have been included in the orbit determination, 

the covariance matrix only accounts for the measurement noise. 

o Consider covariance: if consider parameters are included in the orbit determination process, the 

consider covariance also accounts for the uncertainty of the aforementioned parameters in the 

computation of the final covariance, producing a larger covariance with respect to the noise-only 

one. 

 Propagated covariance:  time evolving characterization of the orbit uncertainty (position and velocity) 

obtained after propagation of the a-posteriori covariance. 

 Consider parameters: Non-estimated parameters that are added to the orbit determination process. Its 

contribution has no effect on the estimated orbital state but its uncertainty is added to the a-posteriori 

covariance (noise-only) in order to improve covariance realism. Likewise estimated parameters, consider 

parameters are considered Gaussian random variables. 

 Variance of consider parameters: Uncertainty of the consider parameters, characterized as a Gaussian 

distribution. 

 Observed covariance: Uncertainty characterization over time of the object’s orbital state generated from 

a statistical comparison of estimated and propagated orbits. 

 Covariance determination: process in which the variance of the consider parameters is estimated by 

obtaining a best fit of the propagated covariance to the observed covariance. The fitting process is 

analogous to an orbit determination process that uses a batch least-squares estimation method. 

 Mahalanobis distance: from [Mahalanobis, 1936], measure of the statistical distance between a certain 

orbital state with respect to a distribution of orbital states. 

2.1.2 Relevant reference frames 

The following section will define the relevant reference frames used for the representation of the covariance and 

to carry out orbital and covariance propagation. 

2.1.2.1 TNW reference frame 

The chosen reference frame to express the covariance evolution over time is a well-known local frame named 

TNW Local orbital frame ( [CCSDS, Navigation data: definitions and conventions (green book), 2010]). Local 

frames are defined using the object’s position and velocity at a certain epoch and are normally employed for attitude 

estimation and attitude control purposes. However, local frames are also helpful to characterize orbital uncertainty, 

since orbital differences are best expressed from a local centre of coordinates and axis aligned with the main orbital 

perturbations. Especially for LEO objects, the use of a local frame becomes highly useful as one of the greatest 

non-conservative perturbations is the atmospheric drag, which acts antiparallel to the object’s velocity (and is 

aligned with the local along-track direction). Looking at the Clohessy-Wiltshire equations (see [Wakker, 2015] 
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p.213), there is no doubt that a local frame can provide a better understanding on the evolution of orbital differences 

if linear dynamics apply. 

 

Local TNW reference frame is defined as Tangential, Normal and W denoting the orbital plane (i.e. direction of 

angular momentum). The origin of the reference frame is located in the centre of mass of the object. The tangential 

direction is defined as the normalized velocity vector, the W direction (omega)  is defined as the normalized angular 

momentum direction and N completes the trihedron by computing the cross-product over W and T. Equation (2 .1) 

and Figure 3 give the mathematical formulation as well as the graphical representation of the TNW frame. 

 

𝑸𝑻𝑵𝑾 = [𝒕 𝒏 𝒘] =  [
𝒗

||𝒗||
𝒘 × 𝒕

𝝎

||𝝎||
]  

 

(2 .1) 

 Finally, the following formula will be used when computing covariance frame changes from J2000 to TNW and 

vice-versa, from [Vallado D. A., Fundamentals of astrodynamics and applications, 1997]:  

 

𝑷𝑻𝑵𝑾 = 𝑸𝑻𝑵𝑾
𝑻 𝑷𝑱𝟐𝟎𝟎𝟎𝑸𝑻𝑵𝑾 

(2 .2) 

 

Since the frame transformation matrix 𝑸𝑻𝑵𝑾 is orthogonal, the counter transformation is achieved by inversing the 

previous matrix and, because of the inherent properties of the transformation, its transpose equals its inverse: 

 

𝑷𝑱𝟐𝟎𝟎𝟎 = 𝑸𝑻𝑵𝑾𝑷𝑻𝑵𝑾𝑸𝑻𝑵𝑾
𝑻  

(2 .3) 

 

2.1.2.2 J2000 reference frame 

J2000 reference frame, EME2000 or GCRF, is an Earth-centered quasi-inertial frame with its origin located at the 

centre of mass of the Earth. The 𝑥 axis is defined by the mean equinox at 12:00 terrestrial time on January the 1st 

2000, the 𝒛 axis is defined by the equatorial plane direction and the 𝒚 axis defined by the cross product of the 

aforementioned axis, completing the trihedron (from [Wakker, 2015]). 

Quasi-inertial reference frames are commonly used to express satellite state as the effect of apparent forces is 

removed and the modelling of satellite dynamics becomes easier and straightforward. For this reason, the 

propagation process as well as the orbit determination process are performed using the J-2000 reference frame. 

2.1.3 Relevant orbital perturbations 

In the following section, the relevant orbital perturbations that will affect the motion of any LEO space object and 

that introduce a considerable uncertainty in the computation of the orbit determination will be detailed. Aside from 

geopotential orbital perturbations, which have been measured precisely (and whose error may be chosen by the 

user due to the truncation of the geopotential model), non-conservative stochastic dynamic perturbations are of 

main relevance to the problem of covariance realism. Looking at [Oliver Montenbruck, 2000] p. 55, considering the 

 

Figure 3 Graphical representation of TNW local reference frame, from (CCSDS, Navigation data: definitions 

and conventions (green book), 2010). 
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LEO regime, atmospheric drag and solar radiation pressure are the most critical orbital perturbations to bear in 

mind. 

2.1.3.1 Atmospheric Drag  

Atmospheric drag plays a crucial role when modelling the dynamics of orbiting bodies interacting with the 

atmosphere, being the dominant non-conservative perturbation for satellites with a perigee altitude from 120 km 

up to 600 km (from [Lafontaine & Hughes, 1982], some studies show that the threshold could be set at 1000 km 

although other studies are more conservative setting the threshold at 600 km, as shown in [Heiner Klinkard, 1998]). 

The standard definition of the atmospheric drag acceleration can be found in many references, for instance 

[Wakker, 2015]: 

 

𝑫 = −

1
2
𝐶𝐷𝛼𝐴

𝑚
|𝒗|𝒗 

(2 .4) 

 

 

The parameters that define the atmospheric drag force are the following: 

 𝛼: Atmospheric density parameter.  

 𝐶𝐷: The coefficient of drag. 

 𝐴: The object’s cross-sectional area  

 𝑚: The mass of the body  

 𝒗: Relative velocity of the body with respect to the surrounding medium. 

It is common to collapse certain of the aforementioned parameters in a certain coefficient, also known as the 

ballistic parameter: 

 

𝐵 =
𝑚

𝐶𝐷𝐴
 

(2 .5) 

 

In [Lopez-Jimenez, Literature Study for MSc Thesis - TU Delft, 2019], a thorough explanation on the different 

sources of uncertainty that the modelling of each parameter introduces to the computation of the atmospheric drag 

acceleration is given. As introduced in section 1.1, the modelling of the atmospheric density is the source of error 

with the most substantial impact on the atmospheric drag force and hence on the uncertainty realism of the a-priori 

covariance (noise-only).  

Several atmospheric models exist nowadays and despite the quality and the large availability of measures used to 

derive them, like the Jacchia-Bowman 2006/2008 or the NRLMSISE-00, they cannot reproduce the stochastic nature 

of the atmosphere, providing fairly accurate predictions of the density. From [Vallado & Finkleman, A critical 

assessment of satellite drag and atmospheric density modeling, 2014] and [Bruinsma, Sanchez-Ortiz, Olmedo, & 

Guijarro, 2012], a careful review of the different atmospheric models available is done and several important 

conclusions are derived: there is not a single best atmospheric model but rather different models that are 

demonstrated to be more accurate than others depending on the orbital altitude, solar and geomagnetic conditions 

of the environment. For this reason, the selected model to be employed during the research of this project will be 

the NLRMSISE-00, as from [Bruinsma, Sanchez-Ortiz, Olmedo, & Guijarro, 2012], it provides a better performance 

for orbits above the 500 km attitude range. Below that range, the Jacchia-Bowman 2006/20008 stands out as the 

most accurate atmospheric model.  

Another remarkable conclusion from [Vallado & Finkleman, A critical assessment of satellite drag and atmospheric 

density modeling, 2014] is that the uncertainty in the modelling of the atmospheric density does not only depend 

on the chosen atmospheric model but rather correlates with the implementation of the model by the researcher or 

actual values for solar and geomagnetic activity, among others. In order to quantify such uncertainty, a review of 

typical values used or assumed in the industry is done. In [Bowman, et al., 2008], a review of the JB-2008 model 

is provided with some figures about the improvement of density standard deviation errors, however the conclusion 

is that typical density standard deviations in LEO orbits are of the order of 9-10%. Other studies suggest that typical 

assumed uncertainties values for atmospheric models range from 10% to 20% ( [Vallado & Finkleman, A critical 

assessment of satellite drag and atmospheric density modeling, 2014], [Kuang, Desai, Sibthorpe, & Pi, 2014]). In 

Appendix A, a careful review of the NLRMSISE-00 model is provided together with the most relevant proxies 

employed and the different sources of uncertainty concerning the definition of each parameter. 
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Errors in the modelling of the atmospheric density are paramount to the proper characterisation of typical errors in 

the atmospheric drag force model. However, the assumption of other relevant time-varying parameters may also 

yield important contributions to the uncertainty of the drag force model. The uncertainty of the ballistic coefficient 

modelling is the second main source of uncertainty as it depends on a wide variety of phenomena, basically 

stemming from the definition of a representative 𝐶𝐷 and cross-sectional area. Typical variability of the 𝐶𝐷 is found 

to be from 1.5 to 3 depending on the interaction of the satellite’s surfaces with the different flow regimes found in 

the atmosphere’s strata, from [Oliver Montenbruck, 2000]. In addition, spacecraft cross-sectional area can be 

known for attitude controlled satellites, however for space debris it can lead to changes of up to 10 times the initially 

estimated value (from [Poore, et al., 2016]). Therefore, the definition of a representative ballistic coefficient is 

difficult and subject to strong variations as the object moves through the atmosphere. 

Rather than modelling the ballistic coefficient, a common practice is to estimate it through an orbit determination 

as it may be a useful mitigation mechanism to capture errors in the definition of a correct area-to-mass ratio or 

average errors in the atmospheric density models. However, its estimation is not sufficient to determine the 

stochastic nature of the atmosphere or the unknown motion of the object as it orbits through the atmosphere (from 

[Wilkins & Alfriend, 2000], [Oliver Montenbruck, 2000] and [Kuang, Desai, Sibthorpe, & Pi, 2014]). Moreover, 

because the estimation of the drag coefficient only adjusts the dynamical model to the observed dynamics (through 

the measurements), the estimated variance of the drag coefficient provides a measure of the goodness of the fit 

but not a measure of the real uncertainty of the atmospheric drag model.  

There is no doubt that the process of modelling the atmospheric drag acceleration of an object entails a great 

uncertainty, with many different uncertainty sources stemming from the very definition of its key parameters: 

atmospheric density and ballistic coefficient. If unconsidered, the computed covariance of an orbit determination 

process may be a poor estimation of the true uncertainty of the object’s state. 

2.1.3.2 Solar radiation pressure 

Solar radiation pressure is the force exerted by the photons of the Sun impacting the satellite and being absorbed 

or reflected. Its most notorious effects have a direct impact in the change of eccentricity and longitude of the 

perigee. Its effect is bigger in bodies with a high area-to-mass ratio (for example satellites with low weight and big 

solar panels). 

Solar radiation pressure represents a nearly constant impact on the dynamics of Earth orbiting bodies. From the 

previous section, there is no doubt that the atmospheric drag acceleration plays a crucial role when modelling the 

dynamics of orbiting bodies at orbits below the 600 km of altitude. However, for satellites orbiting above 600 km of 

altitude (depending on solar activity) solar radiation becomes the predominant non-conservative perturbing force. 

For instance, from [Heiner Klinkard, 1998], the case of the ERS-1 is presented where radiation pressure is shown 

to deliver orbital perturbations 4 times bigger than atmospheric drag perturbations. In addition, direct solar radiation 

has been shown to deliver forces of at least one order of magnitude higher than other radiation pressure forces 

(like Earth’s albedo, Earth’s IR and the object’s IR emission). For this reason, only solar radiation pressure will be 

considered for its impact to uncertainty realism. From [Wakker, 2015], the analytical definition of the solar radiation 

pressure acceleration is: 

 

𝑺𝑹𝑷 = −
𝐶𝑅𝑊𝑆𝑈𝑁𝐴

𝑚𝑐
𝒆𝒔 

(2 .6) 

 

 

Each of the parameters of the solar radiation pressure definition are a source of uncertainty and are defined as 

follows: 

 𝑀: mass of the body 

 𝐴: cross-sectional area of the body affected by sunlight.  

 𝐶𝑅: satellite/body reflectivity.  

 𝑐: is the speed of light 

 𝒆𝒔 unit vector defined between the body and the Sun. 

 𝑊𝑆𝑈𝑁: energy flux of the Sun incident on the object. 

The sources of uncertainty that each of the previous parameters introduce to the modelling of the solar radiation 

pressure can be found in [Lopez-Jimenez, Literature Study for MSc Thesis - TU Delft, 2019]. The parameter with 

the highest impact on the variation of the solar radiation pressure model is found to be the cross-sectional area of 

the body exposed to the radiation. While the other parameters can be characterized and predicted with a sufficient 

level of accuracy (or do not exhibit large variations) the cross-sectional area of the object can change up to an 
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order of magnitude, depending on the object’s configuration and attitude (from [Vallado D. A., An analysis of state 

vector propagation using differing flight dynamics programs, 2005]). 

 

An important remark has to be made, and that is the relative impact on the orbit uncertainty coming from both 

orbital perturbation models (solar radiation pressure uncertainty and atmospheric drag uncertainty). A study on the 

sensitivity of orbital differences assuming variability for both models is carried out in [Vallado D. A., An analysis of 

state vector propagation using differing flight dynamics programs, 2005] showing that although the solar radiation 

pressure can be a more relevant orbital perturbation, its modelling uncertainty (or model variability) displays a 

lesser effect than that of the atmospheric drag modelling. This translates into the fact that for LEO objects, the 

uncertainty on the modelling of the atmospheric drag force has a greater impact on the overall covariance unrealism 

and therefore represents the critical modelling uncertainty to treat, on a first approximation to the improvement of 

covariance realism in LEO orbits (see also [Poore, et al., 2016], p.33 and [Siminski J. , 2016]).  

 

Next section is going to deal with the theoretical background of the consider parameters theory, giving a thorough 

definition of the main concepts and the important modifications that apply to a regular batch least-squares orbit 

determination algorithm. 

2.2 Consider parameters theory on Batch Least-Squares 

Classical orbit determination algorithms represent a compromise between dynamics and statistical estimation. The 

achievable accuracy depends on how well the dynamic models and measurement models describe the motion of 

the orbiting body. There are many different sources of error in the assumption or definition of the previous models 

that can be summarized in the following way (from [Tapley, Schutz, & Born, 2004]): 

 Errors in the mathematical description or modelling of the measurement  

 Errors in the definition of the numerical values assigned to non-estimated measurement and dynamic 

model parameters. 

The field of covariance analysis has the aim to study the sensitivity of the uncertainty representation (i.e. the 

covariance) to the unconsidered error sources. This translates into the realism of the achievable accuracy of the 

estimation or, in other words, into the covariance realism problem. In the end, the unconsidered error sources 

described before can be classified as non-estimated parameters (either from measurement of dynamical models) 

with a certain uncertainty that is normally not included when computing the covariance matrix of the estimation 

problem. 

The theory of the consider parameters assumes that the covariance computed in the estimation process of the 

object’s state is not representative of the true uncertainty of the object when model errors are present and not 

considered. In [Oliver Montenbruck, 2000] and [Tapley, Schutz, & Born, 2004], consider parameters are assumed 

as random variables with a Gaussian PDF. The consider parameters are assumed to have zero mean and certain 

variance: 

 𝑐~𝑁(0, 𝜎𝑐
2) (2 .7) 

Unlike measurement noise, uncertainties of measurement and dynamics models cannot be averaged out by 

processing large batches of information, as they affect the estimation process in a systematic fashion. Thus, by 

implementing certain consider parameters, the consider covariance becomes less sensitive to large batches of 

observations and turns out to be a more realistic representation of uncertainty (as seen in [Scheeres, 1993]).  

The classical weighted batch-least squares theory suffers some modification due to the inclusion of the consider 

parameters. Additional terms are added to a standard non-linear batch least squares algorithm to represent the 

consider parameters (from [Oliver Montenbruck, 2000] p.266):  

 

𝒛 = 𝒉(𝒚𝑜, 𝒄) + 𝝐 
(2 .8) 
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Where the observations 𝒛 are expressed as a function of the estimated parameters 𝒚𝑜 plus the consider parameters 

𝒄. The derivation process is similar to a regular BLS algorithm, where the cost function minimizes the residuals 

between the observed measurements and the modelled ones: 

 

𝐽 = 𝑚𝑖𝑛 |(𝒛 − 𝒉(𝒚𝑜, 𝒄))
𝑇
(𝒛 − 𝒉(𝒚𝑜, 𝒄))|  

(2 .9) 

A linearization of Equation (2 .8) is performed, as in any standard batch least-squares orbit determination algorithm: 

 

𝛥𝒛 = 𝑯𝑦(𝒚0 − 𝒚0
𝑟𝑒𝑓
) + 𝑯𝑐𝒄 + 𝝐 

(2 .10) 

Where Δ𝒛 is the difference between the observed and modelled measurements (linearizing at point 𝒚0
𝑟𝑒𝑓

), 𝑯𝑦 is the 

matrix of partials of the observations with respect to the estimated parameters correction 𝒚0 − 𝒚0
𝑟𝑒𝑓

, 𝑯𝑐 is the matrix 

of partials of the observations with respect the consider parameters. As a consequence of the assumption that 

consider parameters have a zero mean and that its variance are uncorrelated with measurement noise, the solution 

of the state estimation of the OD is identical to that of an original OD process, as its expectancy becomes null: 

 

𝐸(𝒚𝟎
𝑙𝑠𝑞
) = 𝒚0 + (𝑯𝑦

𝑇𝑾𝑯𝑦)
−1
𝑯𝑦
𝑇𝑾(𝑯𝑐𝐸(𝒄) + 𝐸(𝝐)) = 𝒚0 

(2 .11) 

However, the formulation of the covariance matrix of the estimated parameters differs by some amount due to the 

uncertainty introduced by the consider parameters’ variance, leading to the consider covariance: 

 

𝑷𝑐 = 𝑷 + (𝑷𝑯𝑦
𝑇𝑾)(𝑯𝑐𝑪𝑯𝑐

𝑇)(𝑷𝑯𝑦
𝑇𝑾)

𝑇
 (2 .12) 

 

Being P  the estimated a-posteriori covariance from a regular OD (also known as noise-only covariance), without 

consider parameters, 𝑾 the weighting matrix, and 𝑪 a diagonal matrix containing the variance of the estimated 

parameters. The dimensions of the involved matrices are gathered below for clarification: 

 𝑷,  𝑷𝒄 ∈ ℝ
𝑛𝑦 × ℝ𝑛𝑦 

 𝑯𝒚 ∈ ℝ
𝑛𝑧 × ℝ𝑛𝑦 

 𝑯𝒄 ∈ ℝ
𝑛𝑧 × ℝ𝑛𝑐 

 𝑾 ∈ ℝ𝑛𝑧 × ℝ𝑛𝑧 
 𝑪 ∈ ℝ𝑛𝑐 × ℝ𝑛𝑐 

Where ny is the number of estimated parameters, nz is the number of measurements and nc the number of consider 

parameters of the orbit determination process. Note that matrix 𝑾 has been considered as the inverse of the 

measurement covariance matrix. From Equation (2 .12), there is an additional contribution to the estimated 

covariance and this contribution depends directly on the value of the variance of the consider parameters. Note 

that consider parameters are assumed to be random variables with a certain variance, hence the 𝑪 matrix is defined 

as: 

 

𝑪 = [

𝜎𝑐,1
2 0 0

0 ⋱ 0
0 0 𝜎𝑐,𝑛

2
] 

(2 .13) 

As it will be assumed that the consider parameters are uncorrelated, the consider parameters matrix will be 

diagonal. A definition of the 𝑯𝑦 matrix is widely known whereas the definition of the 𝑯𝑐 matrix might be less known 

and is of the utmost relevance to the consider parameters theory. Both matrices define the partials of the 

measurements with respect to the estimated parameters and consider parameters respectively. The formulation of 

the 𝑯𝑐 is the following: 

 
𝑯𝑐 = (

𝜕𝒉(𝒚0, 𝒄)

𝜕𝒄
)
𝒚𝟎=𝒚𝟎

𝒓𝒆𝒇

= (
𝜕𝒛

𝜕𝒙

𝜕𝒙

𝜕𝒄
)
𝒚0=𝒚0

𝑟𝑒𝑓
 (2 .14) 
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It is important to note that depending on the nature of the consider parameters, the evaluation of the previous 

expression will be done via two separate methods. If the consider parameter has a direct influence in the 

observations (for instance, a station calibration bias affecting directly the measurement model) the computation of 

the partial derivatives is a straightforward procedure.  

However, if the consider parameter has indirect implications to the measures, through the dynamic models, its 

derivation is similar to computing the partials of the measurements with respected the estimated parameters. From 

Equation (2 .14), the first part of the partial derivatives, 𝜕𝒛/𝜕𝒙 , is commonly known from any BLS algorithm. 

However, the second partial derivate, i.e. the sensitivity matrix of the state vector with respect the consider 

parameters, needs to be defined. Analogous to the state sensitivity transition matrix, the sensitivity matrix is 

evaluated using the variational equations: 

 

𝑑

𝑑𝑡
(
𝜕𝒙

𝜕𝒄
) =

𝜕𝒇(𝑡, 𝒙(𝑡))

𝜕𝒙(𝑡)
·
𝜕𝒙(𝒕)

𝜕𝒄
+
𝜕𝒇(𝑡, 𝒙(𝑡))

𝜕𝒄
 

(2 .15) 

An equivalent expression for the equation would be: 

 

�̇�(𝑡) = 𝑭 · 𝑺(𝑡) +

(

 
 

03×𝑛𝑐
𝜕𝒂(𝒓, 𝒗, 𝑡, 𝒑)

𝜕𝒄
0𝑛𝑝×𝑛𝑐 )

 
 

 
(2 .16) 

Where 𝑺(𝑡) represents 𝜕𝒙/𝜕𝒄, 𝑭 represents the matrix of the partial derivatives of the first derivative of the state 

vector with respect the state vector, �̇�(𝑡) represents the derivate of 𝑺(𝑡)  and an additional term is added with the 

partial of the equations of motion with respect to the consider parameters. Since the consider parameters will affect 

the dynamic models that characterize the object’s motion, its contribution will be seen in the acceleration terms. 

Equation (2 .16) is solved by numerical integration via Runge-Kutta or multi-step methods (preferred).  

Finally, for an easier implementation of the aforementioned equations on the Covariance Determination algorithm, 

some modifications are introduced in the formulation of Equation (2 .12). The correction terms of the equation can 

be aggregated leading to a simpler formulation of the consider covariance, where a new matrix named 𝑲 matrix is 

defined (i.e. sensitivity matrix of the consider parameters with respect to the estimated state): 

 

𝑲𝑇 = 𝑷(𝑯𝑦
𝑇𝑾𝑯𝑐);   𝑲 ∈ ℝ

𝑛𝑐 ×ℝ𝑛𝑦   

𝑷𝑐 = 𝑷+𝑲
𝑇𝑪𝑲 

(2 .17) 

The 𝑲 matrix is performing a change from the consider parameters space to the state space by pre and post 

multiplying the variance of the consider parameters 𝑪. In [Scheeres, 1993], some properties of the sensitivity matrix 

(i.e. 𝑲 matrix) are provided: 

 The noise-only covariance matrix decreases as more measurement are considered. However, due to the 

formulation of the sensitivity matrix, the consider covariance does not decrease by adopting more 

measurements (and it may even increase).  

 The consider covariance is invariant to a scaling of the weighting matrix 𝑾, due to the formulation of the 

sensitivity matrix. If only one data type is being used, the consider parameters contribution will be 

independent of the measurement noise. However, for proper definition of the consider parameters 

contribution, measurement weights should be precisely tuned. 

 A measurement model consider parameter (range bias error, station coordinates error, etc.)  will have a 

constant impact on the consider covariance and generally has no terms that increase with time. 

 A dynamic model consider parameter (atmospheric drag model error, solar radiation pressure model 

error) will have a time-dependent impact on the consider covariance, normally increasing with time. 



18 

 

 

 

2.  Methodology 

Finally, it is worth mentioning that for the Covariance Determination algorithm, the  𝑲 matrix will represent an input 

to the method whereas the 𝑪  matrix will become the estimation parameters. 

This section has detailed the theoretical background of the theory of covariance analysis and consider covariance 

together with the extensive review of the mathematical procedure required to adapt a classical Batch least-squares 

algorithm to the theory of consider parameters.  An important remark can be made about the consider parameters 

theory: the formulation, as exposed previously, enables a covariance correction without a degradation on the orbital 

integrity. The relevance of this statement is of crucial importance to the problem. Next section is going to deal with 

the mathematical definition of the covariance determination algorithm and its implications on the covariance realism 

correction. 

2.3 Covariance determination algorithm 

The following section will define the novel methodology introduced in this research Thesis named Covariance 

Determination. The chosen terminology arises from the fact that the method devised follows a similar approach to 

that of an OD process, being conceptualized with great parallelism to it. The initial solution, namely the noise-only 

covariance (obtained as a product of an OD), is corrected using the consider parameter variances. These variances 

are estimated in a statistical process using a weighted BLS estimator algorithm.  

To introduce the reader to the many parallelisms of the Covariance Determination methodology with an OD 

process,the following table is included: 

Table 1 Orbit determination vs Covariance Determination comparison 

 Covariance Determination Orbit Determination 

Observations Observed covariance SST sensor measurements 

Estimated parameters Consider parameter variance State vector and/or dynamic parameters 

State vector Consider covariance independent terms Position and velocity terms 

 

The observations comprise batches of observed covariance matrices that capture the evolution of the uncertainty 

as it evolves far from the initial state. The parameters to estimate become the variances of the consider parameters, 

through the consider covariance formulation. The process is structured in two main steps which will be detailed in 

the coming section, but for a general overview of the processing chain of the Covariance Determination algorithm, 

see the following figure: 

 

In Figure 5, a conceptual representation of the evolution of a covariance element in the in-track direction of both 

observed, consider and noise-only matrix is provided. Note that all the represented sigma tend to grow rapidly due 

to the propagation effect as uncertainty grows when no measurements are available. The base concept of the 

covariance algorithm is to provide a fitting to the evolution of the observed covariance by starting from the noise-

only a-priori covariance, which evidently is not able to capture the real uncertainty of the orbit’s state as time 

 

Figure 4 Algorithm of the Covariance Determination methodology  
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evolves. The algorithm will provide, through the estimation of the consider parameters’ variance, a correct 

representation of the orbital state uncertainty.  

There is no doubt that within the propagation region two different behaviours can be appreciated, the first being a 

periodical fluctuation of the covariance over its means value (osculating covariance) whereas a secular effect is 

also observed (due to the propagation of the uncertainty). During the first part of the propagation period, the 

osculating terms prevail over the secular terms, as not enough time has elapsed for the propagation to produce a 

sufficient impact on the propagation of the uncertainty. In the end, as covariance is propagated further from the 

estimated state (OD region) the secular component prevails over the osculating. 

The Covariance Determination methodology has an effect on the covariance matrix during the orbit estimation and 

prediction, however its most important contribution in improving the realism of covariance is during the propagation 

of the orbit. Therefore, this technique is better suited for improving covariance realism of orbit propagation 

processes. 

The complete workflow consists of two different parts (see Figure 4), the first one being a pre-processing and the 

second one involving the estimation of the consider parameters variance through an iterative batch least-squares 

process. In the next sections, a detailed explanation on the processes involved in each step will be given, shedding 

light on the peculiarities of the Covariance Determination algorithm. 

2.3.1 Pre-processing 

The pre-processing step of the Covariance Determination algorithm entails the generation of the a-priori unrealistic 

noise-only covariance, the generation of the observations, namely the observed covariance, and the generation of 

the so-called 𝑲 matrix, whose definition is found in Equation (2 .16).  

The pre-processing of the Covariance Determination algorithm cannot be accomplished without the previous 

computation of an OD over a time span with available SST measurements as the methodology not only requires 

the a-priori covariance but also the required partial derivatives to define the 𝑲 matrix. 

2.3.1.1 Generation of the noise-only covariance matrix 

The generation of the noise-only covariance follows from the orbital state estimation performed using an OD 

algorithm.  In order to produce a consistent solution, a careful definition of the environmental conditions for the 

proper processing of the observations must be performed, which includes: 

 Proper definition of the measurement and dynamic models at use during the OD process or a-posteriori 

propagation. It is of the utmost relevance that both models represent with a high degree of fidelity the 

dynamics of the tracked object in order to provide a consistent estimation and orbit prediction. 

 Measurement availability will condition the attainable orbit accuracy. If not enough orbital tracks are 

available at separated epochs, the orbital estimation becomes highly sensitive to variations of other 

parameters, measurement noise, or errors in the dynamic models. By considering a sufficient amount of 

orbital tracks, the robustness of the solution is ensured (more observations can be considered to construct 

the normal equations matrix and leave an ill-conditioned situation). From [Pastor, 2017], it is concluded 

that the condition number of the normal equations matrix decreases as more observations are considered 

during an OD process (which gives a measure of the sensitivity of the estimation). In addition, other factors 

play an important role in the achievable accuracy like the observations geometry. 

 

Figure 5 Visual representation of a covariance fitting 
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 Measurement weighting defines the confidence or quality of the processed measurements.  Proper 

measurement weighting ensures that more accurate measurements (i.e. range for radar station) have a 

greater impact on the final solution than low quality observations. Variations in the weighting will affect 

the computation of the orbital state and the noise-only covariance. 

Finally, the geopotential, dynamical and tidal models implemented in the orbit determination process of GMV’s 

software are listed in Table 2. Furthermore, the measurement models employed in GMV’s SST software suite can 

be found in [ESA, Mathematical Models and Algorithms, 2009]. 

 Table 2 Processing strategy of GMV’s SST software used at GMV 

Full dynamical model 

Gravity field (Static) EIGEN.GRGS.RL03.v2 (up to 120x120) 

Gravity field (time-
varying) 

Drift/ annual /semi-annual piece wise linear terms up to 50x50 

Third body perturbations Sun & Moon 

Polar motion and UT1 IERS C04 08 

Pole Model IERS 2010 conventions 

Precession/ Nutation IERS 2010 conventions 

Solid Tides Applicable (IERS 2010 conventions) 

Atmospheric Model MSISe-90; Fit performed for ballistic coefficient 

Solar Radiation Pressure Box-wing (S1) Constant area (S2); Fit performed for coefficient of 
reflectivity 

Ocean Tide model EOT11a (up to 50x50) 

Earth Pole Tide IERS 2010 

Ocean Pole Tide IERS 2010 

Geodetic surface ERS-1  

Reference frame J2000 ECI 

 

2.3.1.2 Generation of K matrix 

From the orbit determination process that provides the estimated state and the noise-only covariance, the required 

partial derivatives necessary to compute the 𝑲 matrix are obtained as well. Looking at Equation (2 .16), there are 

several terms that need to be computed: 

 𝑷: noise-only covariance computed after the orbit determination process. 

 𝑯𝒚: partial derivatives of the measurements with respect to estimated parameters of the orbit 

determination process, also known as Jacobian matrix. 

 𝑯𝒄: partial derivatives of the measurements with respect to consider parameters of the orbit 
determination process, as defined in Equation (2 .14) (2 .15) and (2 .16). 

 𝑾: weighting matrix of the measurement of the orbit determination process. 
 
There is no doubt that once the final solution of the orbit determination process is attained, the aforementioned 
terms remain constant and can be properly defined. During the pre-processing of the Covariance Determination 
algorithm, the 𝑲 matrix is computed being a constant value through the whole process, as the partial derivatives 
mentioned above are referred to the estimation epoch. 
 
Once all the required inputs are defined, the application of the central algorithm of the Covariance Determination 
algorithm will follow. Next section will provide an insightful explanation on the devised novel methodology. 
 

2.3.2 Iterative Batch Least-Squares for the Covariance Determination algorithm 

The central iterative part of the Covariance Determination algorithm will be explained in detail during the following 

section, once the different inputs of the method have been defined. 

The basic idea of applying a least-squares estimation to the Covariance Determination algorithm is to determine 

the variances of the consider parameters for which the square root of the residuals between the modelled and 

empirical observed covariance matrices is minimized (i.e. define the values of the variances of the consider 

parameters that provide the best fit of the consider covariance to the observed covariance). Let the estimated 

vector of the consider parameters be: 



     21 

 

 

 

2. Methodology 

 

𝒚0 ← 𝒅𝒊𝒂𝒈(𝑪) 
(2 .18) 

As presented in Equation (2 .13), the covariance matrix of the consider parameters that produces the correction 

(Equation (2 .12)) is diagonal as the consider parameters are considered to be uncorrelated. Let the measurement 

vector be defined as: 

 

𝒛 ← (
𝑷𝒐𝒃𝒔
𝟎

⋮
𝑷𝒐𝒃𝒔
𝒏
) 

(2 .19) 

 

Where 𝑷𝒐𝒃𝒔
𝒊   are the components of an observed covariance measured at a time 𝑡𝑖. The components of the 

observed covariance are ordered following a lower triangular line-by-line sequence, as shown in the following 

equation: 

 

𝑷𝑜𝑏𝑠
𝑖   =

(

 
 
 
 
 

𝑃𝑟𝑇𝑇
𝑖

𝑃𝑟𝑇𝑁
𝑖

𝑃𝑟𝑁𝑁
𝑖

⋮

𝑃𝑣𝑊𝑁
𝑖

𝑃𝑣𝑊𝑊
𝑖
)

 
 
 
 
 

𝑜𝑏𝑠

∈ ℝ21  
(2 .20) 

  

The observed covariance components comprise the position and velocity terms of a covariance matrix, i.e. a vector 

of 21 terms is defined. The rest of the terms of a covariance matrix are not relevant to the fitting of the consider 

parameters as they are expected to be small if compared to position and velocity terms. Recall from Section 2.1.2.1, 

that expressing covariance in the TNW frame entails several benefits and for this reason the definition of the 

observed covariance is done in a local frame. 

For the Covariance Determination algorithm, the assumed stated vector (as an analogy to the orbit determination 

algorithm) is defined as the lower triangular consider covariance terms ordered following a line-by-line sequence, 

as shown in the following equation: 

 

𝒙 ← 𝑷𝑐(𝑡0, 𝒚0)   =

(

 
 
 
 
 

𝑃𝑟𝑇𝑇
0

𝑃𝑟𝑇𝑁
0

𝑃𝑟𝑁𝑁
0

⋮
𝑃𝑣𝑊𝑁
0

𝑃𝑣𝑊𝑊
0
)

 
 
 
 
 

𝑐

∈ ℝ21  
(2 .21) 

 

For the sake of simplicity, the state vector has been defined as the consider covariance at reference epoch 𝑡0. Note 

that the state vector (i.e. independent elements of the consider covariance) is also defined in the TNW frame. For 

the model, a linear covariance propagation is sufficient to obtain the modelled observations (i.e. modelled observed 

covariance matrices) at the epoch of the measurements: 

 

𝑷𝑐(𝑡, 𝒚0) = 𝜱(𝑡, 𝑡0)𝑷𝑐(𝑡0, 𝒚0)𝜱
𝑇(𝑡, 𝑡0) 

(2 .22) 

  

The observations are described by: 

 

𝒛𝑖(𝑡𝑖) = 𝑷𝑐(𝑡𝑖, 𝒚0) + 𝝐𝑖 
(2 .23) 
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Or in a more compact formulation: 

 

𝒛 = 𝒉(𝒚0, 𝑡𝑖) + 𝝐 
(2 .24) 

 

The 𝒉  vector denotes the model value as a function of time and the consider parameters variance 𝐲0. The solution 

of the previous system of equations is difficult as the 𝒉 function is affected by non-linear effects and a linearization 

at a reference point 𝐲0
𝑟𝑒𝑓

  is applied to allow for the resolution of the system (analogous to the resolution of an OD). 

Skipping the derivations of the linearization, the resulting system is the following: 

 

𝛥𝒛 = 𝑯𝑦
∗ (𝒚0 − 𝒚0

𝑟𝑒𝑓
) + 𝝐 

(2 .25) 

 

The Jacobian matrix is defined as in a regular least-squares OD process: 

 

𝑯𝑦
∗ = (

𝜕𝒉

𝜕𝒚0
)
𝒚0
𝑟𝑒𝑓
=
𝜕𝒛

𝜕𝒚0
=
𝜕𝒛

𝜕𝒙

𝜕𝒙

𝜕𝒚𝟎
 

(2 .26) 

 

The first term of the Jacobian matrix becomes the identity matrix, due to the choice of formulation of the Covariance 

Determination state vector, as the state vector at 𝑡𝑖 is directly mapped to the observed covariance: 

 

𝜕𝒛

𝜕𝒙
= 𝑰 

(2 .27) 

 

The second term of the Jacobian matrix is a compound of the correction due to the consider parameters variance 

to the noise only covariance, giving the consider covariance at reference epoch, and the propagation of the 

consider covariance from the reference epoch to the epoch 𝑡𝑖: 

 

𝒙 = 𝒇(𝑡𝑖, 𝑪) = 𝜱(𝑡, 𝑡0)𝑷𝑐(𝑡0, 𝒚0
𝑟𝑒𝑓
)𝜱𝑇(𝑡, 𝑡0) 

= 𝜱(𝑡𝑖, 𝑡0)(𝑷 + 𝑲
𝑇𝑪𝑲)𝜱𝑇(𝑡𝑖, 𝑡0) 

(2 .28) 

 

As detailed in [Lopez-Jimenez, Pastor, Escobar, Setty, & Agueda, 2019], the consider covariance matrix is 

propagated via the complete transition matrix, 𝜱(𝑡𝑖 , 𝑡0) ∈ ℝ
𝑛𝑦 × ℝ𝑛𝑦.The complete transition matrix is a square 

matrix of dimensions equal to the dimensions of the noise-only covariance matrix. Not only position and velocity 

covariance terms are propagated but also dynamical covariance terms (such as drag coefficient or solar radiation 

pressure coefficient terms) as they affect the orbital state covariance terms increasing their uncertainty. Finally, the 

cost function defined entails a minimization of the difference between the observed and modelled covariance in a 

least-squares fashion : 

 

𝐽 = 𝑚𝑖𝑛 |(𝛥𝒛 − 𝑯𝑦
∗𝛥𝒚0)

𝑻
(𝛥𝒛 − 𝑯𝑦

∗𝛥𝒚0)| → 

(𝑯𝑦
∗ 𝑇𝑾∗𝑯𝑦

∗ )𝛥𝒚0
𝑙𝑠𝑞
= (𝑯𝑦

∗ 𝑇𝛥𝒛)  

(2 .29) 

 

Due to the non-linearity of 𝒉, the described process becomes iterative with the continuous substitution of the 𝒚0
𝑟𝑒𝑓

 

by the most recently computed 𝒚0
𝑙𝑠𝑞

. Proper care should be given to the weighting of the different observations, 

implemented through the 𝑾∗ matrix. As they are part of the same covariance matrix and obtained using a common 

methodology, there is not a clear distinction between the quality of the terms. A first approximation can be assumed 

by giving a bigger relevance to diagonal terms of the position covariance on the first place, on the second place 
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the cross-coupled terms of the position covariance, on the third place the diagonal velocity components and lastly 

the cross-coupled velocity components. The effect on the solution of this approximation will ensure that position 

diagonal terms of the observed covariance are properly fitted by the consider covariance, as they represent the 

most important terms when treating covariance realism. 

Another important remark should be made on the convergence criteria defined for the Covariance Determination 

algorithm. Different convergence criteria are employed in order to study the convergence rate and the quality of 

the solution: 

 Maximum number of iterations: to avoid infinite loops, a maximum number of iterations is defined. 

 Maximum number of divergent iterations: to avoid continuous divergence once a local minima has been 

approximated, the algorithm will monitor the continuous divergences to decide whether an improvement 

on the final solution is achieved or not. If a certain number of consecutive divergences is met, the algorithm 

will stop as no further improvement on the solution may be achieved. 

 Decrement of the WRMS: to monitor the improvement on the quality of the solution, the algorithm will 

determine the rate of decrement of the WRMS, the weighted sum of standardized residuals, as a measure 

of the convergence rate. Below a certain threshold, the solution quality will stagnate or produce little 

improvement with consecutive iterations. 

 Absolute value of WRMS: to monitor the overall quality of the solution, if a certain threshold condition is 

met the algorithm will stop as an accurate solution will have been computed.  

Finally, a workflow of the iterative process of the Covariance Determination algorithm is presented illustrating the 

previously defined algorithm in a more graphical and compact fashion: 

As mentioned previously, both observations and state vector of the Covariance Determination problem are 

expressed in a local reference frame (TNW). However, the propagation of the covariance matrices is done in an 

inertial reference (J2000). Initially, the consider covariance is obtained at 𝑡0 in a TNW frame. A frame 

transformation, using Equation (2 .3), is performed from TNW to J2000 frame. Then, a propagation of the consider 

covariance from 𝑡0 to 𝑡𝑖 is performed, obtaining the consider covariance at the epoch of the measurements. Finally, 

a frame transformation is applied to express the consider covariance in the TNW frame using Equation (2 .2). This 

procedure is required for the evaluation of the residual in the BLS algorithm. 

The present section has defined the Covariance Determination algorithm, together with the assumptions and 

processes that it entails. Next section will deal with the methodology employed for the computation of the observed 

covariance, the key input to the Covariance Determination algorithm. 

 

Figure 6 Iterative Covariance Determination algorithm 
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2.4 Observed covariance generation 

The generation of the observed covariance entails the processing of orbital differences, thus orbital uncertainty 

evolution, during the orbit prediction process. The presented method is not within the scope of this Thesis as it is 

integrated In GMV’s SST software suite and already verified. However, to motivate the use of the aforementioned 

method, the present section is included. The covariance matrix is mathematically defined as: 

 

1

𝑁
∑[𝒙𝑖 − 𝐸(𝒙)][𝒙𝑖 − 𝐸(𝒙)]

𝑻

𝑁

𝑖=0

 
(2 .30) 

 

The previous formulation processes orbital differences of a complete set of orbit estimations and predictions with 

respect to a reference state to derive a covariance matrix that is representative of the state uncertainty. However, 

the formal definition of the covariance matrix is only feasible during simulations, as an infinite number of 

independent measurements and independent ODs can be processed, leading to a representative sampling of 

orbital differences. However, in real operational environments this is not attainable, hence a different processing 

strategy is chosen. 

In the observed covariance method, the observed covariance is obtained by comparing high-quality determined 

orbits against predicted ones. The method is based on a purely statistical consistency analysis of orbital differences 

between predicted and determined orbits from independent and uncorrelated ODs. A graphical scheme of the 

method is provided in Figure 7. Each orbital comparison is assembled in the corresponding prediction time bin, 

where orbits with equal ephemeris (describing the same state at the same epoch) are compared. What 

distinguishes them is the time elapsed between the epoch of comparison and the time when the propagation 

started. To illustrate this, looking at Figure 7, take for instance the first orbital comparison: the first OD has delivered 

an estimated state (i.e. Determined orbit (i)) plus a predicted state (i.e. Predicted orbit (i)) that spans over time; a 

subsequent OD (i.e. Determined orbit (ii)) delivers another estimated orbit but in a different period from the first OD 

and a different propagated orbit (i.e. Predicted orbit (ii)); the difference between the Predicted orbit (i) and 

Determined orbit (ii) over the ephemeris that both share will define the orbital differences tagged at Prediction time 

𝑡0 𝑡𝑜 𝑡1. 

Therefore, by aggregating orbital differences between pairs of predicted and determined orbits from independent 

and uncorrelated ODs, it is possible to obtain the evolution of the covariance matrix along the prediction time. To 

do so, each pair is evaluated and statistics along certain prediction time window obtained. The prediction time is 

referred to as the relative time with respect to the epoch of the last observation. 

 

 

Figure 7 Sketch of the orbital differences aggregation process for the generation of observed covariance. The 

different colours describe the relative orbital differences with different ODs between a determined orbit and a 

predicted one. This differences are time-tagged taking into account the relative time elapsed between the start 

of the prediction period and the determined orbit. 
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2. Methodology 

The final aggregation of orbital differences leads to Figure 8. By considering a sufficient amount of independent 

orbits, a statistical representation of the evolution of uncertainty over time can be derived. Assuming that our 

uncertainty can be approximated as a Gaussian distribution, the statistical trend can be fitted and represented by 

a covariance matrix, the so-called observed covariance. This method has been successfully applied to derive 

covariance for operational orbits [Díez, et al., 2019], and therefore it represents a validated and independent tool 

to be used during the completion of this Thesis. 

The previous section has detailed the methodology to effectively produce an observed covariance, a statistical 

evolution of the orbit uncertainty during the propagation period. Next section will deal with the consider parameters 

to be contemplated in the Covariance Determination algorithm, based on the relevant orbital perturbations that 

affect the most the uncertainty realism of the a-priori covariance. 

2.5 Consider parameters 

The consider parameters modelled in the Covariance Determination algorithm represent the non-modelled sources 

of uncertainty that affect the provision of a realistic covariance during the orbit estimation and prediction process. 

In section 2.1.3, a definition of the non-conservative orbital perturbations models that have a greater impact in the 

covariance realism problem is given. Thus, the consider parameters to model will tackle the aforementioned orbital 

perturbations and another special case related to a measurement modelling error. 

The modelled consider parameters will be defined following the assumptions and considerations detailed in section 

2.2. As commented previously, two types of consider parameters are considered: those acting directly to the 

reconstruction of the observations through the measurement models and those acting indirectly to the observations 

as part of the dynamic models. 

2.5.1 Atmospheric Drag force model error 

As seen in section 2.1.3.1, the most important contribution in the covariance unrealism when performing orbit 

determination and prediction processes in the LEO regime is the modelling of atmospheric forces. These forces 

act upon orbiting bodies and are modelled in the Drag acceleration (as shown in Equation (2 .4)). Especially for 

low Earth orbits, the Drag acceleration and the error incurred in the modelling of this non-conservative force 

supposes the largest position uncertainty growth in the along-track direction. Recalling the formulation of the Drag 

acceleration, a new formulation is proposed where a consider parameter c 𝐴𝐸  is included: 

 

𝑫 = −
𝛼

2𝐵
(1 + 𝑐 𝐴𝐸)|𝒗|𝒗 

(2 .31) 

 

Where 𝐵 is the ballistic coefficient (that is derived from the computation of the mass, drag coefficient and cross-

sectional area). The rest of the parameters have been explained in Equation (2 .4). 𝐵 will be a dynamical parameter 

estimated during the orbit determination process. 𝛼 is the density of the atmosphere, dependent on several factors 

as explained in Section A, whose value will be derived from the implemented models on GMV’s orbit determination 

software (using the MSISe-90 atmospheric model). Finally, 𝑐𝐴𝐸 will be the consider parameter implemented and 

 

Figure 8 Aggregation of the orbital differences along the prediction time for the generation of an observed 

covariance. 
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will represent the error incurred when modelling the atmospheric drag force. The consider parameter can be best 

regarded by the following equation: 

 

𝑐𝐴𝐸~𝑁(0, 𝜎𝐴𝐸) 
(2 .32) 

 

In order to compute the partial derivative matrix 𝑯𝒄, Equation (2 .15) applies. 

2.5.2 Solar Radiation Pressure model error 

In section 2.1.3.2, the relevance of the uncertainty in the modelling of the solar radiation pressure force is detailed. 

The classical formulation of the solar radiation pressure force is changed so as to account for errors in the 

modelling. Recalling the formulation for the SRP acceleration from Equation (2 .6) and adding a consider parameter 

to model the inaccuracy in the model: 

 

𝑺𝑹𝑷 =  −
𝐶𝑅𝑊𝐴 (1 + 𝑐𝑆𝑅𝑃)

𝑚𝑐
𝒆𝒔 

 

(2 .33) 

𝑐𝑆𝑅𝑃 represents the consider parameter and hence the errors in the modelling of the solar radiation pressure force. 

The consider parameter formulation can be best perceived by inspecting the following equation: 

 

𝑐𝑆𝑅𝑃~𝑁(0, 𝜎𝑆𝑅𝑃) 
(2 .34) 

 

In order to compute the partial derivative matrix 𝑯𝒄, Equation (2 .15) applies. 

2.5.3 Sensor calibration parameters error 

A special case contemplated in the Covariance Determination algorithm is the effect of the uncertainty when 

defining the measurement models employed to compute the simulated measurements. Measurement models 

employed for classical orbit determination processes are well-known and defined (see [ESA, Mathematical Models 

and Algorithms, 2009]). However, an uncertainty in the definition of several quantities, like measurement biases, 

translates into an uncertainty of the measurement model which, in the end, affect the computation of a realistic 

covariance. 

Considering that a typical SST sensor obtains range, range-rate and angular measurements (either azimuth and 

elevation or right ascension and declination), measurement biases are defined as follow: 

 

𝑧∗ = 𝑧 + 𝑐𝑧 
(2 .35) 

 

Where 𝑧 refers to any type of SST sensor measurement (i.e. range, range-rate, azimuth, elevation, etc.) as 

measured by the sensor, z∗refers to the corrected measurement and 𝑐𝑧 refers to the added consider parameter. 

Note that in the defined station calibration consider parameters, a direct impact on the measurement models is 

observed. The derivatives that will form the 𝑯𝒄 matrix can be computed directly, due to the simplicity of the consider 

parameter model defined: 

 

𝑯𝑐 =
𝜕𝒛𝒌
𝜕𝒄𝒌

= 𝑰𝑛𝑏×𝑛𝑏 
(2 .36) 

 

Where 𝑛𝑏 is the number of consider parameters implemented as biases in the measurement model. The partials 

of the matrix are computed per measurement and consider parameter, as the subscript 𝑘 denotes. The consider 

parameter formulation of the sensor calibration parameters can be best perceived by inspecting the following 

equation: 
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𝑐𝑧~𝑁(0, 𝜎𝑧) 
(2 .37) 

 

During this section, all relevant sources of uncertainty have been addressed by carefully defining several consider 

parameters. After the definition of the different implemented consider parameters, it is time to present the validation 

chain that will help verify the devised methodology. 

2.6 Covariance realism metrics 

The present section proposes a series of consistent and robust metrics to test the realism of any covariance matrix 

given an experimental distribution of orbital states. As introduced in section 1.2, different conditions must be fulfilled 

for a covariance matrix to be considered realistic. Each condition yields to the definition of a unique metric that 

should be fulfilled to ensure covariance realism: 

 

 Unbiased average orbital state: the average value for the orbital differences of the complete distribution 
should lie close to the true state. Biases ten times smaller than the typical standard deviation are 
considered as acceptable. 

 

 Study of the normality of the orbital differences: to ensure that the orbital differences of the complete 
distribution of estimated and propagated states are normal and can be approximated by a multivariate 
Gaussian distribution (i.e. a covariance matrix) normality tests are employed.  
From [Vallado & Seago, Covariance realism, 2009] the formulation of a statistical test of hypothesis is 
presented, where a typical significance value for normality tests is established at 5% (indicating that there 
is a 5% chance to reject the null hypothesis when true, that is, to reject a normal distribution when it is 
actually normal). Any normality test computes a test statistic and a p-value, being the most relevant the 
latter as it is indicative of the probability of obtaining a test statistic at least as extreme as the computed 
when the hypothesis holds true. Summarizing, if the p-value is lower than the significance level established 
then the null hypothesis is rejected whereas if larger, the hypothesis cannot be rejected (which does not 
indicate that is necessarily true).  
From [Vallado & Seago, Covariance realism, 2009] an analysis on different normality tests on empirical 
distributions is done. Michael’s test is considered more robust and powerful than the regular Kolmogorov 
test when testing normality on orbital propagation processes. Hence, for testing normality in orbit 
propagation processes, Michael’s test is selected for this project. From [Michael, 1983] and [Royston, 
1993], the required theoretical background is retrieved, where a graphical methodology to perform the test 
is described. The test defines the procedure to plot the standardized empirical Cumulative Distribution 
Function (CDF) versus the theoretical CDF, defining some bounds as confidence regions. These bound 
are defined by the following formulation: 
 

 

𝑦𝑖 = 𝑠𝑖𝑛
2(𝑎𝑟𝑐𝑠𝑖𝑛 (𝑡𝑖

1
2) ±

1

2
𝜋𝑑𝑆𝑃)   

(2 .38) 

 
 

𝑡𝑖 =
𝑖 −

1
2

𝑛
  

(2 .39) 

 
Where 𝑦 represents the ordinate of the P-P graph and 𝑡 represents the abscissa. From the previous 

formulation, 𝑖 represents the sample index (within the complete ordered distribution), i.e. considering a 

distribution of 𝑛 samples 𝑖 ranges from 1 to 𝑛. The 𝑑𝑆𝑃 value represents the test statistics which in turn is 
dependent on the significance level desired and which defines the boundaries of the acceptance region. 
Finally, the CDF function of the empirical distribution is plotted against the confidence boundary regions 
defined in Equation (2 .38) and the null hypothesis is rejected if any point of the empirical CDF infringes 
the bounds. The empirical CDF is standardized and the abscissa is defined as: 
 

 

𝑓𝑖 = 𝛷 (
𝑦𝑖 − �̅�

𝜎
) 

(2 .40) 
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Where 𝑓𝑖 is the transformed ordinate of the empirical data point, Φ is the standard cumulative distribution 

function, �̅� the mean of the sample to test and 𝜎 the standard deviation. The interpretation of PP plots is 
that each sample of the distribution is analyzed to check what percentage of data lies at or below the 
analyzed sample, thus comparing the spread of the empirical distribution against a theoretical one (and for 
this it is important that the empirical distribution is standardized). 

 

 Covariance containment: to ensure the covariance is able to capture the state uncertainty (position) of 

the cloud of MC points, which represents a sampling of the true probability density function. To do so, a 

similar approach to [Folcik, Lue, & Vatsky, 2011] is followed by defining the containment metrics through 

the computation of the Mahalanobis distance (see [Mahalanobis, 1936] for further reference) to estimate 

the percentage of MC points lying inside a k-sigma ellipsoid at different epochs. The Mahalanobis distance 

is a measure of the statistical distance between an orbital state with respect to a certain normal distribution 

(characterized by a mean and a covariance). The aim of the test is to characterize the Mahalanobis 

distance of each and every point of a given distribution to check if the supposed dispersion (expressed 

as the covariance matrix) is able to represent the true uncertainty (distribution of orbital differences). The 

formulation of the Mahalanobis distance is as follows: 

 

𝑀 = √(𝒙 − �̅�)𝑻𝑷−𝟏(𝒙 − �̅�) 
(2 .41) 

  

Where 𝒙  is the state vector of the distribution to be tested, �̅� the mean of the average distribution and 𝑷 

the covariance matric associated with the distribution. 

2.7 Validation 

The present section will define a thorough validation chain within a simulated realistic environment to provide solid 

evidence that the Covariance Determination methodology can deliver a sound covariance realism improvement. 

Although the ultimate objective of the Covariance Determination algorithm is to be used with real operational orbits, 

the validation chain will demonstrate the performance of the methodology in a simulated environment and the effect 

of several uncertainty sources in the degradation of the covariance realism. 

The simulation environment has been set up with the capability to simulate realistic orbits, SST sensor 

measurements and ultimately process a representative population of solutions to generate the so-called observed 

covariance. The different effects of the dynamical and measurement model errors have been implemented as 

systematic errors over orbital arcs, as these are the non-modelled errors that the Covariance Determination 

methodology aims to capture. 

The environmental conditions of the validation cases have been carefully chosen so as to be representative of the 

real operational case that will be treated afterwards. Finally the generation of the observed covariance is reviewed 

briefly using the theory introduced in section 2.4. 

2.7.1 Validation chain workflow 

To validate the Covariance Determination algorithm and its implementation, it is mandatory to test if the modelled 

consider parameters and the methodology described during sections 2.2, 2.3 and 2.4 can capture the different 

sources of uncertainty that affect the provision and propagation of the noise-only covariance. 

The validation chain aims at providing a sufficiently representative population of samples so that a proper observed 

covariance can be built. The observed covariance matrix is to be fed to the Covariance Determination algorithm 

with the purpose of estimating the variance of the consider parameter and providing a realistic consider covariance 

by fitting it to the observed one. 

To produce the population of samples, perturbations are added to the dynamic models of the different 

measurements and forces at stake during the OD and propagation processes. The nature of the perturbation 

considered is systematic during an orbital arc, this means that a fixed value for the perturbation is considered 

during the whole computation of a sample. Its value will be determined as sample of a zero-mean Gaussian 

distribution. The purpose of the validation is for the Covariance Determination algorithm to recover the standard 

deviation of the input consider parameter error, given a proper sampling of the PDF associated to the state 

estimation and prediction problem. 
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Careful consideration should be given to the pertubartion introduced in the models as it affects each sample of the 

population in a constant fashion during the whole orbital arc, hence it becomes a systematic error during the 

generation of measurements and estimation of the state vector. However, as each sample  is affected by a unique 

value, leading to a different orbital estimation. By aggregation of a representative sample of orbit ephemeris, a 

sampling of PDF of the orbit estimation and propagation process is achieved. 

The validation chain has been conceptualized as a simulation environment representative of the reality. To do so, 

a single radar has been considered as a representative SST sensor to take observations of a simulated RSO. In 

addition, to validate the implementation of the Covariance Determination algorithm, only the atmospheric drag force 

and range bias consider parameters have been tested, delivering a validation of a dynamical and measurement 

model consider parameter. The next figure introduces the workflow of the validation chain: 

Figure 9 represents the workflow defined to compute the population of samples and build the observed covariance 

matrix. All the validation cases use a MC based approach where each sample is unique and represents a different 

perturbation of the parameters being modelled (atmospheric force, solar radiation pressure or sensor calibration 

error). Note from Figure 9 that dynamic model perturbations and measurement model perturbations affect different 

processes within the validation chain, leading to different effects to the processed states (a detailed explanation is 

given in the following paragraphs). The steps required for the computation of a population of 𝑁 samples are: 

1. Generation of a reference RSO: The definition of the resident space object will be done entails the 

definition of the orbital and physical properties of the object summarized in an OPM format (see [CCSDS, 

Orbit data messages (blue book), 2009]). The OPM contains information about the state of the object 

(position and velocity), osculating Keplerian elements, the covariance matrix describing the uncertainty of 

the object as well as relevant physical parameters, like drag coefficient, cross-sectional area, solar 

radiation coefficient, etc. The reference RSO as well as its ephemeris will be named hereafter as reference 

state. 

2. MC chain: The MC chain becomes the iterative part of the validation procedure that will deliver a unique 

MC point per trial. The steps required to produce a single solution comprise: 

a. Propagation of simulated orbit: The propagation of the reference RSO with a high-fidelity 

propagator leads to a series of ephemeris for a user defined time period, which will be named 

hereafter the simulated orbits. The atmospheric force model error is introduced in the 

computation of the simulated orbits leading to different orbit ephemeris which share one point in 

common: the initial state. If no dynamical model error is introduced, the simulated orbits will have 

no difference with respect to the original reference state. Because a perturbation of the dynamics 

is sought, the atmospheric drag model error has to be introduced in this step as later on these 

simulated orbits will be used to generate simulated radar measurements. Figure 11 provides a 

graphical representation of the population of simulated orbits produced. 

 

Figure 9 Validation chain workflow 
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b. Generation of radar measurements: The generation of radar measurements uses the previously 

computed simulated orbits to generate realistic simulated radar measurements to be processed 

by an OD algorithm afterwards. During the measurement computation, two sources of noise can 

be considered: typical measurement white noise of a radar station (defined as a Gaussian noise 

with zero mean and random seed) that perturbs each computed measurement in a unique way 

during an orbital arc, and sensor calibration biases, which produce a constant perturbation to the 

computation of measurements during the same orbital arc. Measurement white noise is 

introduced in the measurement computation scheme although it does not have any effect in the 

validation of the Covariance Determination algorithm other than proving that with real 

measurement conditions the methodology can work efficiently.  

c. Orbit determination: Using the simulated measurements, ODs are performed, leading to a cloud 

of orbital states, named hereafter estimated states. A careful measurement weighting is done 

(by weighting the different measurements with the same dispersions as the ones introduced in 

the previous step) and using the same high-fidelity orbit propagator employed in the propagation 

of the simulated state (without considering the perturbations in the atmospheric force models). 

Due to the addition of 3 possible sources of error, that is measurement white noise, range bias 

perturbation and atmospheric drag force perturbation, the estimated orbits lead to a population 

of 𝑁 unique samples. The cloud of solutions obtained is intended to sample the PDF 

characterizing the uncertainty of the OD process when unconsidered model errors are present. 

Figure 10 gives a graphical representation of the estimated orbits obtained, where faint blue dots 

represent different radar measurement and several orbits are fitted to them through an OD. 

Afterwards, estimated states are propagated using the same dynamical model implemented 

during the OD process, which results in a set of determined and predicted orbits, ready to be 

processed to derive the observed covariance. 

 

A definition of the different perturbations considered in the generation of the MC points will be given next. From the 

previous validation chain, several perturbations, assumed as random variables following a normal distribution, 

affect the generation of the population of MC points. Each MC trial can be affected by: 

 White noise in the measurement generation process: to simulate real working conditions and with the aim 

to compute realistic radar measurements, a certain random Gaussian noise is considered in the 

 

Figure 11 Graphical representation of the simulated orbits vs. the reference state, for a case with a 

perturbation on the atmospheric drag force. Dashed curves represent simulated states whereas the solid 

curve represents the reference state. 

 

 

Figure 10 Estimated states obtained after the processing of the MC validation chain. Faint blue dots 

represents measurements while dashed curves represent the set of estimated state. In solid blue, the 

reference state. 
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generation of a single measurement (range, range-rate, azimuth and elevation) equivalent to the noise 

that a real radar sensor would experience when sensing a real orbiting body. This perturbation affects 

each measurement of an observation in a unique way, deviating the estimated orbit from the simulated 

one. 

 Noise in the generation of a MC point: as the aim of the Covariance Determination algorithm is to recover 

the variance of a consider parameter (which affects an orbital arc in a systematic fashion, as detailed 

previously), a constant perturbation of a consider parameter is introduced during a whole orbital arc, 

leading to a unique MC point. By computing 𝑁 samples affected by a set of normally distributed consider 

parameter perturbations, with a zero mean and certain standard deviation, a representative sampling of 

the uncertainty of an orbit determination process affected by unconsidered model uncertainties can be 

done. 

The validation chain defines a clear and straightforward procedure to study the effect of the different perturbations 

in the orbital state estimation problem. Next section will deal with the processing of the cloud of estimated orbits to 

obtain the observed covariance matrix. 

2.7.2 Generation of simulated observed covariance 

The generation of the simulated observed covariance entails the computation of a covariance matrix statistically 

representative of the uncertainty of the orbit estimation and prediction problem. The previous section has dealt with 

the generation of a cloud of MC solutions, which will provide some insights in the effects of the different 

perturbations to the state estimation and propagation. However, the ultimate aim of the validation chain is to deliver 

an observed covariance matrix to serve as the input of the Covariance Determination algorithm. 

The covariance of the estimated state vector is identical to the covariance of the orbital differences computed 

between 𝑁 random state estimation trials if the position and velocity differences are assumed as identically 

distributed Gaussian random variables (i.e. unbiased and normally distributed), from [Zhang, Wu, & Cheng, 2012]. 

Thus, both at the estimation epoch and propagation of the state, the covariance matrix becomes of the orbital 

differences is assumed as a proper characterisation of the state estimation and propagation uncertainty. 

For the validation of the Covariance Determination algorithm, Equation (2 .30) will be used in the derivation of a 

representative covariance matrix using the previously generated MC ephemeris. Ultimately, the observed 

covariance matrix will be obtained at different epochs providing an evolution of the covariance matrix from the 

estimation epoch to the prediction epochs. The observed covariance matrix will be transformed to the local TNW 

reference frame for posterior ingestion in the Covariance Determination algorithm. The observed covariance 

obtained through this process will be called hereafter simulated observed covariance. 

A final remark is to be made considering the validation chain presented previously. The validation chain as 

presented produces a cloud of MC points and ephemeris for a specific time period, where the generation of radar 

measurements takes place at the same epochs (hence the generation of the estimated states) and where the 

propagation and generation of the predicted orbits spans over the same time period. Each MC point ephemeris is 

used to derive orbital differences for the same epochs, reason for which Equation (2 .30) holds. A graphical 

representation of the generation of the orbital differences can be found in the following figure: 

As explained during section 2.4, there are two different strategies to compute an observed covariance matrix. For 

the validation of the consider parameters when using observed covariance derived from operational–like orbits 

(using the observed covariance methodology) a different simulation strategy is required . The validation chain 

introduced in the previous section still holds whereas the simulated epochs where the OD processes take place 

vary. A graphical representation of the generation of orbital differences can be found in Figure 13. 

 

Figure 12 Graphical representation of the time scheme followed to compute the orbital differences, where all 

the N determined and predicted orbits span over the same period of time 
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From Figure 13, there is no doubt that the period of time in which the ODs take place varies, creating a cloud of 

solutions  representative of a real operational case, where non-correlated orbit determinations would be processed 

to derive an observed covariance. This simulated covariance method will be named hereafter operational simulated 

observed covariance. 

This chapter has provided the foundations upon which the novel methodology of the Covariance Determination 

algorithm is built, giving extensive insight into the relevant sources of uncertainty to implement and the theoretical 

background of the consider parameters. In addition, a thorough mathematical derivation of the Covariance 

Determination algorithm is provided, highlighting the most relevant assumptions considered during the definition of 

the methodology.  The method to generate an observed covariance, either for validation or operational purposes, 

has been presented together with the different modelled consider parameters. Finally, extensive insight is provided 

into the definition of the validation chain to be processed in the validation and verification of the software. Next 

chapter will present the validation and verification results, product of the validation chain described in the present 

chapter as well as the results obtained from the application of the Covariance Determination algorithm to a real 

operational case, a tracking campaign of the Sentinel 3A satellite.

 

Figure 13 Graphical representation of the time scheme followed to compute the orbital differences, where all 

the N determined orbits are computed without overlaps, leading to different predicted orbits. 
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3  
RESULTS 

 

This chapter presents the results of the validation and real operational cases processed with the Covariance 

Determination algorithm. The first part of this chapter introduces the validation of the Covariance Determination 

algorithm applied to two different uncertainty sources, the first one being a source in the dynamic models and the 

second one being in the measurement models. A validation is done using both observed covariance generation 

approaches documented in section 2.4. 

After due documentation of the verification and validation processes carried out, a real operational tracking 

campaign is presented using real radar measurements made publicly available by Leolabs for the Sentinel 3A 

satellite. The results of applying the Covariance Determination algorithm to the tracking campaign of the Sentinel 

3A satellite are analysed in a similar fashion as the validation cases presented before. 

3.1 Validation of the Covariance Determination algorithm 

The present section intends to proof with strong evidence not only the fact that the implementation of the 

Covariance Determination algorithm is a success but that it contributes towards the covariance realism 

improvement in batch least-squares OD and propagation processes. 

First, a detailed description of the boundary conditions defined for the validation and verification test cases is 

provided, where special emphasis is given to the definition of a realistic simulation scenario. Second, a thorough 

extensive analysis is performed on the output of the different test cases tried, where remarkable insight is derived 

from the computation of each case. Third, a validation of the Covariance Determination algorithm, the modelling 

and implementation of different consider parameters is given, demonstrating the powerful capabilities of the novel 

methodology. 

Four different cases are presented were different features of the Covariance Determination algorithm are tested. 

In the following table, the different test cases are listed: 

Table 3 Test cases used in the verification and validation of the Covariance Determination algorithm 

Test case Consider parameter Observed covariance 

Case A Measurement noise only Simulated observed covariance 

Case B AE (Atmospheric Drag Model Error) Simulated observed covariance  

Case C RBE (Range Bias Model Error) Simulated observed covariance 

Case D AE (Atmospheric Drag Model Error) Operational simulated observed covariance (observed 

covariance method) 
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3. Results 

3.1.1 Simulation scenario 

The simulation scenario has been conceived as a realistic representation of a tracking campaign of an object similar 

to the Sentinel 3A satellite, as this represents the real operational case that will be dealt with after the verification 

and validation of the algorithm. 

To define the simulation scenario, some boundary conditions have to be fixed in order to ensure the repeatability 

of the simulated results: reference orbital state and physical characteristics of the reference RSO, dynamic model 

employed in the computation of the solutions and measurement model employed. 

3.1.1.1 Reference RSO  

The orbit and physical properties of the reference RSO are listed in Table 4. The orbit has been taken from a public 

TLE of Sentinel -3A satellite (41335) from [JSpOC, 2019]:  

 

Table 4 Simulated RSO orbit and physical properties 

Reference RSO 

Semi-major axis 7186.877 km 

Eccentricity 0.001113 

Inclination 98.72 deg 

RAAN 77.03 deg 

Mass 100 kg 

Area 10 m2 

 

The physical properties have been assumed by considering a typical space debris object located in a LEO region, 

using the work developed by [Sáez-Bo, Pastor-Rodríguez, & Ayuga-García, 2018].  

3.1.1.2 Dynamic model 

The dynamic model employed in the simulation of the different test cases is listed in the following table: 

Table 5 Dynamic model employed for the validation and verification 

Full dynamical model 

Gravity field (Static) EIGEN.GRGS.RL03.v2 16x16 

Third body perturbations Sun & Moon 

Polar motion and UT1 IERS C04 08 

Pole Model IERS 2010 conventions 

Precession/ Nutation IERS 2010 conventions 

Atmospheric Model NLRMSISe-90;  

Solar Radiation Pressure Constant area (S2 

Geodetic surface ERS-1  

Reference frame J2000 ECI 

 

A simpler dynamic model than the one presented in Table 2 is used in the validation of the code. Note that by 

implementing the same model in the definition of the reference state ephemeris, the simulated orbits and the 

estimated orbits, its orbital differences will only depend on the different perturbations introduced. 
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3. Results 

3.1.1.3 Measurement model  

The measurement model employed for the generation of the radar measurements can be found in [ESA, 

Mathematical Models and Algorithms, 2009]. The radar used in the validation methodology has the following 

geodetic coordinates: 

Table 6 Geodetic coordinates of simulated radar station 

Geodetic coordinates of SST radar 

Longitude (deg) -5.5911  

Latitude  (deg) 37.16643  

Height (km) 0.1423  

 

The simulated radar station is located in the northern hemisphere and is defined to have a broad FOV and sufficient 

power to ensure observability of the defined reference RSO: 

Table 7 SST radar simulated properties 

SST radar physical properties 

Radar FOV Pyramidal Asymmetric 

Radar Pointing direction (azimuth) 180 deg 

Radar Pointing direction (elevation) 75 deg 

Radar Aperture Semi-Angle (+X)  43.20 deg 

Radar Aperture Semi-Angle (-X)  43.20 deg 

Radar Aperture Semi-Angle (+Y)  30 deg 

Radar Aperture Semi-Angle (-Y)  30 deg 

Reference RCS 0.01 𝑚2 

 

Finally, typical SST radar noise is assumed during the generation of measurement. The typical zero-mean 

Gaussian noises assumed are listed in the following table: 

Table 8 Typical SST radar noises assumed for the generation of measurement in the validation cases. 

Measurement Sigma 

Two-way range 10 m 

Azimuth and elevation 300 mdeg 

Two-way range-rate 1000 mm/s 

 

The simulation environment has been carefully exposed by detailing all the design choices assumed during the 

definition of the realistic scenario. Next section will go through the relevant outputs produced during the validation 

and verification cases described in Table 3. 

3.1.2 Validation and Verification test cases 

The verification and validation cases defined in the present section study the effect of the different consider 

parameters in the state estimation and prediction problem, both in the definition of the orbital state and the definition 

of its associated uncertainty, yielding an observed covariance to be ingested by the Covariance Determination 

algorithm. The result of the different test cases is the validation and verification of the implementation of the 

methodology as well as the consider parameters modelled. 
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3. Results 

Regarding the generation of the observed covariance, different methodologies apply for the different test cases. 

Thus, for the different test cases the following dates are used in the simulation of measurements and in the 

propagation of the predicted orbits: 

Table 9 Summary of the features for each of the different cases devised 

Test 

case 
Observed covariance 

Reference 

orbit 

Estimation epoch for 

OD 
Predicted orbit 

Case A 
Simulated observed 

covariance 

01-01-2019 to 

08-01-2019 
01-08-2019 

08-01-2019 to 

16-01-2019 

Case B 
Simulated observed 

covariance 

01-01-2019 to 

08-01-2019 
01-08-2019 

08-01-2019 to 

16-01-2019 

Case C 
Simulated observed 

covariance 

01-01-2019 to 

08-01-2019 
01-08-2019 

08-01-2019 to 

16-01-2019 

Case D 
Operational simulated 

observed covariance 

01-01-2018 to 

01-07-2018 
* * 

 

Case D stands out as the odd test case since to simulate different operational realistic orbits, the process carried 

out to perform the generation of the MC solutions was different (described in section 2.7.2) yielding to a more 

complex orbital processing. Analogous to a real tracking campaign, simulated measurements were generated 

considering batches of 5 days yielding to an OD (i.e. estimated orbit) within the considered period. The estimated 

state is then propagated 8 days ahead using a high-fidelity propagator. The generation of determined and predicted 

solution takes the following scheme: a first batch would span from the 01-01-2018 to 06-01-2018 and the 

propagation period would take place from 06-01-2018 to 14-01-2018; the next batch of measurements would take 

place from 02-01-2018 to 07-01-2018, with a propagation from 07-01-2018 to 15-01-2018. 

For case A, B and C a sample of 10,000 MC solutions have been processed, using the MC chain introduced in 

section 2.7. The choosen number of samples has been found to describe with sufficient accuracy the state 

uncertainty of the OD process (from [Flegel & Bennett, 2018]). The different analysis included ensure the quality 

of the solutions obtained through the OD process as well as the degree to which the uncertainty of the orbit can be 

characterized by the different covariance matrices. Each test case is evaluated using the covariance realism 

metrics presented in section 2.6, giving a consistent and common approach for each test.  The author deemed 

irrelevant to include normality test results for the first 3 test cases, as the sufficient population sample and the 

generation of normally distributed perturbations ensure the normality of the final distributions. However, the last 

test case does not hold on the same assumptions, reason for which testing for normality becomes an important 

part of the validation process. 

3.1.2.1 Case A 

The first test case devised aims at addressing the covariance consistency of the validation methodology. It is key 

to the verification and validation of the Covariance Determination algorithm to ensure the quality of the observed 

covariance and to validate the hypothesis posed during Section 2.4 on the similarity between state uncertainty and 

observed covariance. The present case formulation can be summarized in the following table: 

Table 10 Features of Case A 

Test case A 

Consider parameter Measurement noise only 

Observed covariance Simulated observed covariance 

Number of simulated points 10000 

Reference orbit 01-01-2019 to 08-01-2019 

Estimation epoch for OD 01-08-2019 

Predicted orbit 08-01-2019 to 16-01-2019 

 



37 

 

 

 

3. Results 

The present case does not consider the addition of any perturbation to the orbit determination process through the 

consider parameters yet typical measurement noise in the measurement computation step is considered as 

described in section 2.7.1. For the complete sample of MC points, an observed covariance is derived at different 

epochs describing the uncertainty on the state estimation problem at different epochs. 

Before proceeding, a validation on the consistency of the different ODs is carried out. As mentioned, the generation 

of measurements is only affected by the addition of a random Gaussian noise, however it is expected to be well 

captured since the input noise is defined beforehand. The following histogram depicts the weighted RMS of the 

residuals of the resulting OD: 

From the previous figure, the processed ODs have been properly weighted and the measurement model generation 

yields a Gaussian distribution of the residuals (due to the addition of white noise during measurement generation). 

The quality of the ODs has been verified by checking the rejection rates of the processed measurements (around 

0%) and the availability of enough tracks for the correct estimation of the parameters (minimum two per day). The 

simulated observed covariance, computed using the resulting cloud of MC points, is compared component by 

component to the 10000 noise-only covariance matrices. The following figure represents the histograms of the 

relative differences between the observed covariance and the 𝑁 estimated covariance matrices:  

 

 

Figure 14 WRMS of the OD processes for test Case A 

 

Number of ODs 

WRMS 

 

Figure 15 . Histogram of the relative differences between noise-only covariance matrices. TNW position 

elements are compared against an average value for the complete set of noise-only covariance matrices for 

test Case A 
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3. Results 

Note that the relative differences of the observed covariance versus the 𝑁 estimated covariance matrices are below 

0.01% for all the position elements. A final validation is provided to evaluate the containment of the noise-only 

covariance matrices through time, as the state is propagated from the estimation epoch. The analysis developed 

in [Folcik, Lue, & Vatsky, 2011] is reproduced computing the Mahalanobis distance of the MC points with respect 

to its mean state and its average noise-only covariance matrix. The results are listed in the following table: 

Table 11 Covariance containment test for Case A for the noise-only covariance (left) and the consider covariance 

(right). Colour scale is applied to each column to compare the theoretical value against the measured, where a 

similar colour denotes proximity of both values. 𝑡0 stands for estimation epoch and subsequent prediction times 

are expressed relative to it. 

Time 
 Noise-only covariance  Consider covariance 

 1-σ 2-σ 3-σ 4-σ  1-σ 2-σ 3-σ 4-σ 

t0  19.72% 73.68% 97.26% 99.87%  19.64% 73.97% 97.05% 99.88% 

t0 + 1 day  20.20% 74.04% 97.23% 99.89%  19.84% 73.64% 97.28% 99.91% 

t0 + 2 days  19.62% 74.06% 97.07% 99.86%  19.88% 74.00% 97.11% 99.91% 

t0 + 3 day  19.91% 73.79% 97.08% 99.87%  19.71% 73.87% 97.16% 99.91% 

t0 + 4 days  19.42% 73.87% 97.13% 99.87%  19.37% 74.44% 97.20% 99.89% 

t0 + 5 days  19.79% 73.94% 97.24% 99.86%  19.49% 73.86% 97.18% 99.89% 

t0 + 6 days  19.35% 74.05% 97.05% 99.87%  19.51% 74.11% 97.28% 99.89% 

Theoretical  19.90% 73.90% 97.10% 99.87%  19.90% 73.90% 97.10% 99.87% 

 

Special detail will be given in the interpretation of the previous results. From [Folcik, Lue, & Vatsky, 2011], position 

covariance defines the ellipsoidal volume that represents the position uncertainty region, centred at the estimated 

state, provided that uncertainties are Gaussian and orbital differences small. A computation of the Mahalanobis 

distance between a MC point and its average state (i.e. the expectancy of the distribution) can be understood as 

determining whether the MC point will lie inside or outside a 𝑘𝜎 ellipsoid. In the previous table, for a 3-dof (degrees-

of-freedom) multivariate normal distribution the theoretical statistics are shown in the last row.  

For an increasing 𝑘𝜎 region of confidence, the percentage of points of the whole distribution lying inside the different 

ellipsoidal volumes is defined. The Mahalanobis distance of each of the MC points has been computed using 

Equation (2 .41), where orbital differences are expressed in a local TNW frame, taking the average state as the 

reference state to express the local frame, and the average noise—only covariance as the covariance matrix of 

the distribution. A colour scale has been defined to ease the understanding of the metrics provided, where the 

closer the colour of the cell to the theoretical value the closer is the containment statistic to the theoretical one. 

Inspecting Table 11 strong similarities are found in the results presented for both containment tests. This eventually 

yields to the conclusion that both covariance matrices are representative of the uncertainty of the orbital state 

estimation. 

3.1.2.2 Case B 

The second test case devised addresses the impact of the atmospheric drag force model consider parameter, once 

the generation of the observed covariance is validated through Case A.  

Case B is key to understand the role of dynamic model errors when performing ODs and subsequent orbit 

propagations, more concretely the effect of errors in the modelling of the atmospheric drag force. As seen in section 

2.1.3.1, this non-conservative orbital perturbation represents the major contribution to covariance unrealism in the 

LEO orbital regime. An extensive analysis is made on the impact of un-modelled uncertainties in the definition of a 

realistic covariance as well as the degradation of the consistency and containment of the noise-only covariance 

with time.  
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3. Results 

In the following table, the relevant features of Test Case B are listed: 

Table 12 Features of Case B 

Test case B 

Consider parameter AE (Atmospheric Drag Model Error) 

Observed covariance Simulated observed covariance 

Number of simulated points 10000 

Reference orbit 01-01-2019 to 08-01-2019 

Estimation epoch for OD 01-08-2019 

Predicted orbit 08-01-2019 to 16-01-2019 

 

The present case introduces a certain perturbation in the atmospheric drag force model by means of a non-null 

consider parameter. Recalling the equation for the drag force model (Equation (2 .31)) a gaussian atmospheric 

drag force model perturbation is introduced, following: 

 

𝑐𝐴𝐸~𝑁(0, 𝜎𝐴𝐸 = 5% ) 
(3 .1) 

 

Recalling section 2.7, the consider parameter value is constant during an orbital arc but varies from MC trial to MC 

trial, leading to a cloud of solutions sampling the PDF of the state estimation. In terms of covariance consistency, 

the weighted RMS and the differences among the estimated (MC) covariance matrices have been analysed, 

obtaining similar results as those presented for Case A.  

Figure 16 represents a histogram of the WRMS of the different ODs. The quality of the ODs has been verified by 

checking the rejection rates of the processed measurements (around 0%), the availability of enough tracks for the 

correct estimation of the parameters (minimum two per day).  

Figure 17 displays the histograms of the relative differences between the average noise-only covariance and the 

𝑁 estimated covariance matrices. One may expect to obtain worse solutions for the processed ODs, as a 

perturbations to the atmospheric drag force model are introduced. However both WRMS and relative differences 

of the noise-only covariance matrices are similar to Case A. Thus, consistency among the computed ODs seems 

to be demonstrated although a real covariance consistency and containment is not achieved (as results will show 

later).  

Figure 18 shows the correlation of the error in the estimated CD with the atmospheric model perturbation introduced. 

The population of estimated CD describes almost a 1:1 correlation with the perturbation of the model introduced, 

where the drag coefficient error is computed having as a reference the CD = 0.4 defined in section 3.1.1.1. A certain 

noise is appreciated due to the measurement model noise present in the generation of each MC sample.  

The propagation of both the estimated state and the covariance matrix yield to divergences between the reference 

orbit and the N MC samples. In Figure 19, Figure 20 and Figure 21, the effect of perturbations in the atmospheric 

drag force model is analysed by plotting the orbital differences of the MC points and its propagated states with 

respect to the reference orbit (expressed in the local TNW frame). 

Note that in Figure 20 and Figure 21 the label has been eliminated to allow readability of the plot. Inspecting the 

previous figures, there is no doubt that the contribution of the atmospheric drag force perturbation yields a drift of 

the object’s position in the along-track direction. No observable drift is found in the other two directions, as orbital 

differences are almost constant through the propagation period (small differences are observed with respect to the 

reference state as well as a dispersion of the points for equal model perturbation due to the measurement noise 

introduced).  

From inspection of Figure 19, Figure 20 and Figure 21, there is a clear correlation between perturbations in the 

atmospheric model and orbital differences in the along-track direction. Not only that but, with propagation, the effect 

of a perturbation in the atmospheric model increases. Inspecting Figure 22, the RMS of the along-track direction 

increases quadratically with propagation time as denoted by the perfect fit achieved with a parabola function (where 

the r-squared parameter denotes the error between the fit and the data, being 1 a perfect fit). 
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3. Results 

 
 
 

Figure 16 WRMS of the ODs for test Case B 

 

 
Figure 17 Histogram of the relative differences between noise-only covariance matrices. TNW position 

elements are compared against an average value for the complete set of noise-only covariance matrices for 
test Case B 

 

 
Figure 18 Drag coefficient error vs. atmospheric drag force model perturbation. In red a trend-line is plotted 

denoting a 1:1 correlation between the plotted variables. 

 

WRMS 

Number of ODs 
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3. Results 

 
Figure 19 Atmospheric drag force model error vs. T-position RMS error for different propagation epochs 

 
Figure 20 Atmospheric drag force model error vs. N-
position RMS error for different propagation epochs. . 

Legend is removed for readability (same legend as 
Figure 19 applies) 

 

 
Figure 21 Atmospheric drag force model error vs. W-
position RMS error for different propagation epochs. . 

Legend is removed for readability (same legend as 
Figure 19 applies) 

 

 
Figure 22 Evolution of along-track (T) average position RMS error with propagation time. A quadratic trend-line is 

adjusted to the data points providing a perfect fit. 
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3. Results 

The following table displays the results for the containment analysis on the noise-only and consider covariance at 

different propagation times: 

Table 13 Covariance containment test for Case B for the noise-only covariance (left) and the consider covariance 

(right). Colour scale is applied to each column to compare the theoretical value against the measured, where a 

similar colour denotes proximity of both values. 𝑡0 stands for estimation epoch and subsequent prediction times 

are expressed relative to it. 

Time 
 Noise-only covariance  Consider covariance 

 1-σ 2-σ 3-σ 4-σ  
1-σ 2-σ 3-σ 4-σ 

t0  19.61% 74.03% 97.06% 99.89%  
19.64% 73.97% 97.05% 99.88% 

t0 + 1 day  18.56% 70.66% 96.48% 99.83%  
19.84% 73.64% 97.28% 99.91% 

t0 + 2 days  12.54% 55.92% 86.31% 97.17%  
19.88% 74.00% 97.11% 99.91% 

t0 + 3 day  9.28% 42.58% 72.89% 88.93%  
19.71% 73.87% 97.16% 99.91% 

t0 + 4 days  7.20% 34.77% 62.24% 79.96%  
19.37% 74.44% 97.20% 99.89% 

t0 + 5 days  5.47% 26.70% 49.64% 66.14%  
19.49% 73.86% 97.18% 99.89% 

t0 + 6 days  4.66% 21.98% 42.08% 57.49%  
19.51% 74.11% 97.28% 99.89% 

Theoretical  19.90% 73.90% 97.10% 99.87%  
19.90% 73.90% 97.10% 99.87% 

 

In the previous analysis, the average noise-only covariance matrix is used to run the covariance containment tests 

and to compute the Mahalanobis distance of the distribution of points. Inspecting the previous table (left), a 

degradation of covariance containment for the noise-only covariance is observed, as the metrics obtained at 

different propagation epochs worsen with the propagation time. 

Using the distribution of orbital states, an observed covariance matrix is processed. Because noise-only covariance 

matrices display little differences between them, an averaged noise-only covariance matrix is computed and used 

in the fitting process of the Covariance Determination algorithm. The results of the fitting are listed in the following 

table: 

Table 14 Results of Case B applying the Covariance Determination algorithm 

Test case B 

Atmospheric model error 24.27 %2 

Variance of estimated parameter 5.427𝐸 − 03 (%4) 

LSQ solver Gauss-Newton 

Number of iterations 3 

CPU time 0.0207 min 

 

The solution provided by the Covariance Determination algorithm has estimated a variance of the atmospheric 

drag force model error of 24.27445 %2, i.e. a standard deviation of 4.93%, almost the 5% of the input noise model. 

The sigma of the estimated parameter as well as the residuals are found to be several orders of magnitude smaller 

than the computed value. Furthermore, a containment test is provided in Table 13 (right). It is clear that the consider 

covariance computed with the estimated consider parameter variance complies with the theoretical metrics of the 

covariance containment test. For this test, the consider covariance was employed and a Mahalanobis distance was 

computed for each of the MC ephemeris yielding the previous results.  

To provide a conceptual approach to the covariance realism improvement provided by the Covariance 

Determination algorithm, Figure 23 displays the evolution of the T, N and W position sigma of the noise-only, 

observed and consider covariance matrices along time. The first insight is that the noise-only covariance diverges 

from the observed covariance, being the most notorious the degradation of the covariance realism in the along-

track direction, while the other principal direction, N and W, seem to correctly represent the uncertainty of the orbital 

state in their respective directions.  
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3. Results 

 
Figure 23 Evolution of the T, N and W position sigma of the noise-only, observed and consider covariance for 

test Case B 

 

 
Figure 24 Position covariance containment considering a 4-𝜎 ellipsoid for Case B. In green, the MC points 

whose computed Mahalanobis distance does not exceed the 4𝜎 ellipsoid and in red the points whose distance 
exceeds the ellipsoid. 

 
In Figure 24, a representation of the covariance containment analysis is provided for the noise-only and consider 

covariance. Note that each covariance matrix (consider and noise-only) leads to a different Mahalanobis distance 

for each MC point, so a graphic representation of the covariance realism degradation is appreciated in the previous 

figure. In addition, the main direction of uncertainty (the principal axis of the ellipsoid) coincides with the along-

track direction, due to the effect of the uncertainty in the atmospheric drag model during the propagation. 

Finally, the correction of the atmospheric drag consider parameter to the noise-only covariance matrix is studied. 

Recall that, from Equation (2 .12), the consider parameter yields a correction to the noise-only covariance matrix 

by means of a space transformation from the consider space to the covariance space (i.e. 𝑲𝑇𝑪𝑲 ). The contribution 

matrix computed assuming a unitary atmospheric model consider parameter is the following: 
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3. Results 

 

Figure 25 Colour map of the contribution of a unitary atmospheric drag consider parameter to the noise-only 

covariance matrix (in J2000 reference frame). 

In the previous figure, the different components of the correction matrix are plotted, from 1 to 6 the different terms 

of the state vector (i.e. position and velocity) and in the (7,7) position the term for the variance of the drag coefficient. 

The atmospheric drag consider parameter contributes almost exclusively adding uncertainty in the covariance term 

of the drag coefficient.  

3.1.2.3 Case C 

The third test case devised addresses the impact of the range bias consider parameter, i.e. the effects of errors in 

the modelling of measurements to the covariance realism problem. The features of test Case C are listed in the 

following table: 

Table 15 Features of Case C 

Test case C 

Consider parameter RB (Range Bias Model Error) 

Observed covariance Simulated observed covariance 

Number of simulated points 10000 

Reference orbit 01-01-2019 to 08-01-2019 

Estimation epoch for OD 01-08-2019 

Predicted orbit 08-01-2019 to 16-01-2019 

 

The present case introduces a certain perturbation in the range bias modelling by means of a non-null consider 

parameter. Recalling the equation for the range measurement model (Equation (2 .35)) a gaussian range bias 

model perturbation is introduced, following: 

 

𝑐𝑅𝐵~𝑁(0, 𝜎𝑅𝐵 = 20 𝑚) 
(3 .2) 

 

The same extensive analysis provided for test Case B is reproduced with the computed set of ODs and propagated 

states. A consistency check among the different noise-only covariance matrices is provided in Figure 26. The 

quality of the ODs has been verified by checking the rejection rates of the processed measurements (around 0%), 

the availability of enough tracks for the correct estimation of the parameters (minimum two per day).  



45 

 

 

 

3. Results 

 
Figure 26 WRMS of the ODs for test Case C 

 

 
Figure 27 Histogram of the relative differences between noise-only covariance matrices. TNW position 

elements are compared against an average value for the complete set of noise-only covariance matrices for 
test Case C. 

 
Figure 27 displays the histograms of the relative differences between the average noise-only covariance and the 

𝑁 estimated covariance matrices. A difference is appreciated with respect to the results obtained for test Case B. 

Through careful comparison of the solution obtained for both cases, in terms of noise-only covariance consistency, 

the estimated covariance matrices have greater differences between them (although relatively small compared to 

the actual values of the covariance matrix). Looking at Figure 26, the WRMS of the population of ODs does not 

follow a Gaussian distribution centred at a mean value 1, it is not symmetric and the ODs appear to be not properly 

weighted due to the addition of measurement biases, which increase the expected residuals of the OD.  

Figure 28, Figure 29 and Figure 30 represent the evolution of the orbital differences as a consequence of the 

introduced perturbation for different propagation epochs. There is no doubt that a perturbation in the range bias 

yields increasing orbital differences with propagation time. This is observed mainly in the along-track direction, 

where the orbital differences grow with propagation time and range bias error. Contrary to that, orbital differences 
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3. Results 

in the N and W direction remain constant through propagation although they do depend on the introduced range 

bias perturbation. 

To further study the effect of perturbations in the range bias to state estimation and prediction and its correlation 

with propagation time, the variation of the average RMS in the along-track directions at different propagation 

epochs is presented in Figure 31. Note that a quadratic polynomial is selected, despite the component of the range 

bias perturbation is almost negligible (a linear fitting would provide an almost perfect fit). The evolution of the orbital 

uncertainty due to errors in the modelling of the range bias produces a quasi-linear error growth compared to the 

clearly quadratic progression observed in Figure 22.  

A covariance containment analysis is carried out to check the performance of the average noise-only covariance: 

Table 16 Covariance containment test for Case C for the noise-only covariance (left) and the consider covariance 

(right). Colour scale is applied to each column to compare the theoretical value against the measured, where a 

similar colour denotes proximity of both values. 𝑡0 stands for estimation epoch and subsequent prediction times 

are expressed relative to it. 

Time 
 Noise-only covariance  Consider covariance 

 1-σ 2-σ 3-σ 4-σ  1-σ 2-σ 3-σ 4-σ 

t0  2.94% 14.12% 26.81% 37.24%  20.36% 73.84% 96.98% 99.92% 

t0 + 1 day  2.49% 12.33% 23.30% 33.19%  19.84% 73.61% 97.23% 99.90% 

t0 + 2 days  2.83% 15.41% 29.04% 40.89%  20.53% 73.88% 96.85% 99.91% 

t0 + 3 day  1.96% 10.17% 20.24% 29.37%  19.19% 74.02% 97.10% 99.88% 

t0 + 4 days  2.07% 11.14% 21.51% 30.29%  19.85% 74.14% 96.95% 99.89% 

t0 + 5 days  1.76% 8.78% 18.16% 26.53%  19.33% 74.20% 97.09% 99.90% 

t0 + 6 days  1.82% 10.34% 19.40% 27.75%  19.85% 74.07% 96.97% 99.92% 

Theoretical  19.90% 73.90% 97.10% 99.87%  19.90% 73.90% 97.10% 99.87% 

 

Inspecting the previous table, there is no doubt that the noise-only covariance (left) fails to properly characterize 

the real uncertainty of the state estimation and prediction problem. The observed covariance is ingested by the 

Covariance Determination algorithm together with the rest of the required inputs (derived from a previously 

computed OD). The results of the fitting are listed in the following table: 

Table 17 Results of Case C applying the Covariance Determination algorithm 

Test case C 

Range bias  model error 424.89 𝑚2 

Variance of estimated parameter 1.439 𝐸 − 02 𝑚4 

LSQ solver Gauss-Newton  

Number of iterations 3 

CPU time 0.0225 min 

 

The solution provided by the Covariance Determination algorithm has estimated a variance of the range bias model 

error of 424.89 𝑚2, i.e. a standard deviation of 20.61 m, almost the 20 m of the input noise model. The sigma of 

the estimated parameter as well as the residuals are found to be several orders of magnitude smaller than the 

computed value. Furthermore, a containment test is provided in the following table: 

Inspecting Table 16, it is clear that the consider covariance (right) computed with the estimated consider parameter 

variance complies with the theoretical metrics of the covariance containment test. For this test, the consider 

covariance was employed and a Mahalanobis distance was computed for each of the MC points yielding the 

previous results.  

To provide a conceptual approach to the covariance realism improvement provided by the Covariance 

Determination algorithm, Figure 32 displays the evolution of the T, N and W position sigma of the noise-only, 

observed and consider covariance matrices along time. 
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3. Results 

 
Figure 28 Range bias model error vs. T-position RMS error for different propagation epochs for Case C 

 

 
Figure 29 Range bias model error vs. N-position RMS 

error for different propagation epochs. Legend is 
removed for readability (same legend as Figure 28 

applies) 

 
Figure 30 Range bias model error vs. W-position RMS 

error for different propagation epochs. Legend is 
removed for readability (same legend as Figure 28 

applies) 

 

 
Figure 31 Evolution of along-track (T) average position RMS error with propagation time. A quadratic trend-line is 

adjusted to the data points providing a perfect fit. 
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3. Results 

 
Figure 32 Evolution of the T, N and W position sigma of the noise-only (dotted), observed (dashed) and consider 

covariance (solid) for test Case C. Due to bad readability of the plot, the legend is summarized: In red, the 
evolution of the along-track uncertainty, in green the evolution of the normal uncertainty and in blue the evolution 

of the radial uncertainty. 

 
Figure 33 Position covariance containment considering a 4-σ ellipsoid for Case C. In green, the MC points whose 
computed Mahalanobis distance does not exceed the 4𝜎 ellipsoid and in red the points whose distance exceeds 

that of the 4𝜎 ellipsoid. 

 

 
Figure 34 Colour mapping of the correction introduced by a unitary range-bias consider parameter to the noise-

only covariance matrix (in J2000 reference frame). 
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3. Results 

Figure 32 shows the evolution of the T, N and W position sigma of the noise-only, observed and consider 

covariance matrices along time. Note that the noise-only covariance diverges from the observed covariance, being 

the most notorious the degeneration of the covariance realism in the along-track direction, while the other principal 

direction, N and W, also display non-negligible divergences.  

A representative plot of the uncertainty realism degradation of the noise-only covariance is displayed in Figure 33. 

In the figure, a representation of the covariance containment analysis is provided for the noise-only. From the 

results listed in Table 16 and Figure 33, there is no doubt that the noise-only covariance is unable to represent the 

true uncertainty of the state estimation. To avoid redundancy, the consider covariance is not included in the 

previous figure, as a similar evolution is observed in Figure 24 (and because the aim of the figure is to graphically 

represent the unrealism of the noise-only covariance). 

Analogous to the previous test case, the contribution of the range bias consider parameter to the correction of the 

noise-only covariance matrix is analysed. Assuming a unitary range bias consider parameter, the contribution 

matrix results in Figure 34. The different components of the correction matrix are plotted, from 1 to 6 the state 

vector components and in the 7th row and column the components related to the drag coefficient (considering a 

state vector of position and velocity plus an estimated drag coefficient). The range bias consider parameter 

contributes to the uncertainty realism of the position components of the covariance matrix and the uncertainty of 

the drag coefficient and correlations between the drag coefficient and the position components. This is also 

noticeable from Figure 32 since the noise-only covariance matrix and the observed covariance matrix display 

divergences at estimation epoch (while in test Case B this was not observed). 

3.1.2.4 Case D 

The fourth and last test case devised addresses the impact of the atmospheric drag force model consider 

parameter when processing realistic orbits to compute an observed covariance using the observed covariance 

methodology. Test case D is key to demonstrate that the developed methodology not only works within an 

unrealistic environment but a rather realistic simulated one.  

As mentioned in the introduction of this section, test case D will employ realistic orbits, by simulating batches of 

measurements spanning through different periods of time. Hence, the population sample for the whole 

development of the observed covariance is scarcer, yielding to an insufficient sampling of the state uncertainty. In 

the following table, the relevant features of Test Case D are listed: 

Table 18 Features of Case D 

Test case D 

Consider parameter AE (Atmospheric Drag Model Error) 

Observed covariance Realistic simulated observed covariance 

Number of simulated points 181 

Reference orbit 01-01-2018 to 01-07-2018 

Measurement generation 5 days batch 

Estimation epoch for OD End of measurement period 

Predicted orbit Estimation epoch + 7 days 

 

The estimation epoch and the epoch of the last measurement of the batch do not coincide. The present case 

introduces a certain perturbation in the atmospheric drag force model by means of a non-null consider parameter. 

Recalling the equation for the drag force model (Equation (2 .4)) a gaussian atmospheric drag force model 

perturbation is introduced, following: 

 

𝑐𝐴𝐸~𝑁(0, 𝜎𝐴𝐸 = 5% ) 
(3 .3) 

 

In terms of covariance consistency, the weighted RMS and the differences among the estimated (MC) covariance 

matrices have been analysed. The following figure represents a histogram of the WRMS of the different ODs: 
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3. Results 

 
Figure 35 WRMS of the ODs for test Case D 

 
Figure 36 Drag coefficient error vs. atmospheric drag force model perturbation for test Case D 

The resulting histogram of the WRMS of the different ODs resembles that of test Case B, although the distribution 

is computed with a much smaller population. The author deemed unnecessary to include a figure displaying the 

results of the analysis for the differences among computed covariance matrices, since the differences with respect 

to test Case B results are minimum and to avoid redundancy. Analogous to test case B, the perturbation of the 

atmospheric model is absorbed in the estimation of the drag coefficient (see Figure 36). At estimation epoch, it 

does not yield to orbital differences with respect the reference state, however, when propagated, a similar 

behaviour is appreciated when computing the orbital differences of the MC points with respect the reference state 

(see Figure 37, Figure 38 and Figure 39). 

A test for normality is included as the population considered for this case is more subject to infringe with the 

normality requirements established for a realistic covariance. Due to a lower number of samples, the population is 

more sensitive to outliers in the distribution, thus a statistical test should be carried out to ensure Gaussianty of the 

distribution. The first covariance realism metric proposed in Section 2.6 is the test for an unbiased mean orbital 

state considering the aggregation of the complete orbital distribution. The averaged error of the distribution is listed 

in Table 19 together with its relative magnitude with respect the standard deviation of the distribution. Inspecting 

Table 19, the bias of the distribution is not found significant as in most of the cases, even during propagation, the 

relative value of the bias when compared with the standard deviation of the distribution is found to be 10 times 

smaller. 

As exposed in section 2.6, the tests employed for testing the normality hypothesis are the graphical P-P plot using 

Michael’s confidence boundary regions, with a significance level of 5%. The results of the normality tests can be 

found in Figure 37, Figure 38 and Figure 39. From inspection of the tests, the distributions are found to be normal. 

As none of the distributions is found to infringe the boundaries of the defined confidence regions, the univariate 

distribution are assumed normal since the null hypothesis of normality cannot be rejected. Note that in Figure 39 

few points infringe the confidence regions, this is only indicative that at estimation epoch the normality of the W 

direction is rejected but as propagation occurs a normal distribution can be safely assumed.  
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3. Results 

Table 19 Averaged and relative error of the distribution in the T, N and W directions, where 𝑡0 stands for 

estimation epoch and subsequent prediction times are expressed relative to it  

𝑬𝒑𝒐𝒄𝒉 Δ𝑇 (𝑚) Δ𝑁 (𝑚) Δ𝑊 (𝑚) Δ𝑇/𝜎𝑇(%) Δ𝑁/𝜎𝑁(%) Δ𝑊/𝜎𝑊(%) 

𝒕𝟎 0.326 0.132 0.188 7.06 8.48 11.24 

𝒕𝟎 + 𝟏 0.505 -0.054 -0.184 6.94 -7.27 -11.15 

𝒕𝟎 + 𝟐 0.047 -0.120 -0.209 0.37 -7.22 -11.78 

𝒕𝟎 + 𝟑 -0.192 0.076 0.183 -0.90 10.08 10.31 

𝒕𝟎 + 𝟒 -0.023 0.099 0.233 -0.07 13.94 12.19 

𝒕𝟎 + 𝟓 -0.341 -0.101 -0.190 -0.67 -13.10 -9.82 

𝒕𝟎 + 𝟔 -1.152 -0.083 -0.258 -1.63 -12.04 -12.40 

 

Table 20 Covariance containment test for Case D for the noise-only covariance (left) and the consider covariance 

(right). Colour scale is applied to each column to compare the theoretical value against the measured, where a 

similar colour denotes proximity of both values. 𝑡0 stands for estimation epoch and subsequent prediction times 

are expressed relative to it. 

Time 
Noise-only covariance  Consider covariance 

1-σ 2-σ 3-σ 4-σ  1-σ 2-σ 3-σ 4-σ 

t0 2.94% 14.12% 26.81% 37.24%  9.88% 44.77% 75.00% 88.95% 

t0 + 1 day 2.49% 12.33% 23.30% 33.19%  20.93% 64.53% 87.79% 97.67% 

t0 + 2 days 2.83% 15.41% 29.04% 40.89%  19.77% 71.51% 96.51% 99.42% 

t0 + 3 day 1.96% 10.17% 20.24% 29.37%  24.42% 72.67% 94.77% 99.42% 

t0 + 4 days 2.07% 11.14% 21.51% 30.29%  19.77% 68.02% 96.51% 100.00% 

t0 + 5 days 1.76% 8.78% 18.16% 26.53%  23.84% 72.67% 94.77% 99.42% 

t0 + 6 days 1.82% 10.34% 19.40% 27.75%  20.35% 70.93% 96.51% 100.00% 

Theoretical 19.90% 73.90% 97.10% 99.87%  19.90% 73.90% 97.10% 99.87% 

 

Finally, the containment metrics are presented in Table 20 leading to the same conclusion deduced from Case B: 

the noise-only covariance (left) fails to properly characterize the uncertainty of the state vector. The observed 

covariance is generated using the observed covariance method for operational orbits described in section 2.4 and 

2.7.2. Once processed, the observed covariance is ingested by the Covariance Determination algorithm together 

with the rest of the required inputs (derived from a previously computed OD). The results of the fitting are listed in 

the following table: 

Table 21 Results of Case D applying the Covariance Determination algorithm 

Test case D 

Atmospheric model error 26.49 %2 

Variance of estimated parameter 2.566 𝐸 − 03 

LSQ solver Gauss-Newton 

Number of iterations 3 

CPU time 0.0251 min 

The solution provided by the Covariance Determination algorithm has estimated a variance of the atmospheric 

drag force model error of 26.49  %2, i.e. a standard deviation of 5.147%, almost the 5% of the input noise model. 

The sigma of the estimated parameter as well as the residuals are found to be several orders of magnitude smaller 

than the computed value. Inspecting Table 20, it is clear that the consider covariance computed with the estimated 

consider parameter variance complies with the theoretical metrics of the covariance containment test. For this test, 

the consider covariance was employed and a Mahalanobis distance was computed for each of the MC points 

yielding the previous results.  
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3. Results 

 

 
Figure 37 Normality test on the orbital differences of T direction at different propagation periods 

 

 
Figure 38 Normality test on the orbital differences of N direction at different propagation periods 

 

 
Figure 39 Normality test on the orbital differences of W direction at different propagation periods 
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3. Results 

 
Figure 40 Atmospheric drag force model error vs. T-position RMS error 

 
Figure 41 Atmospheric drag force model error vs. N-

position RMS error. Legend is removed for readability 
(same legend as Figure 40applies) 

 
Figure 42 Atmospheric drag force model error vs. W-
position RMS error. Legend is removed for readability 

(same legend as Figure 40 applies) 

 
Figure 43 Evolution of the T, N and W position sigma of the noise-only, observed and consider covariance for 

test Case D. 
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3. Results 

To provide a more conceptual view on the goodness of the fit made by the Covariance Determination algorithm 

and the poor state uncertainty representation that the noise-only covariance defines, Figure 43 shows the evolution 

of the T, N and W position sigma of the noise-only, observed and consider covariance matrices along time. Similar 

to test Case B, the noise-only covariance diverges, as it is propagated, from the observed covariance. The consider 

covariance, implementing the corrections introduced with the consider parameters, is capable to provide a best-fit 

of the observed covariance. Note that compared to case B, some differences are appreciated at estimation epoch 

between the consider and noise-only covariance. Because the estimation epoch and the epoch of the last 

measurement of the processed batch do not coincide, from batch to batch a certain variability of the orbital 

differences is appreciated, reason for which at estimation epoch the observed and consider covariance do not 

coincide. 

During the present section, a thorough series of incremental validation tests have been proposed and analysed to 

demonstrate the relevance, performance and possible applications of the Covariance Determination methodology. 

From the simplest case, validating the generation of an observed covariance, to the most critical, employing 

operational orbits, the methodology to improve covariance realism has proved to deliver remarkable results. In the 

following section, the results of applying the aforementioned methodology to a real case, the Sentinel 3A tracking 

campaign, will be detailed. 

3.2 Covariance Determination applied to Sentinel 3A 

tracking campaign 

During the previous section, a thorough validation campaign is exposed, proving insightful analysis in a wide variety 

of cases and model perturbations. Once validated, the software application is ready for its use in a real operational 

environment, fulfilling its ultimate purpose of correcting covariance unrealism in orbit determination and propagation 

processes. 

In this section, a brief introduction on the Sentinel 3-A mission main facts and figures is provided, the main data 

sources to be processed during the analysis and a station residuals and biases characterization. Next, the analysis 

on the processed ODs, the typical residuals and orbital differences with respect to a precise orbit solution are 

provided. The estimation of several consider parameters is detailed and normality and containment metrics are 

used to evaluate the performance of the methodology. 

3.2.1 Scenario definition 

The scenario definition represents the introduction to the real operational tracking campaign of the Sentinel 3A 

satellite. In the following section key information is provided to better comprehend the results obtained during the 

sequential ODs, the posterior observed covariance generation and the Covariance Determination. 

3.2.1.1 Main figures of the Sentinel 3A mission 

In [Lopez-Jimenez, Literature Study for MSc Thesis - TU Delft, 2019], a detailed exposition of the Sentinel 3A 

mission can be found. In this section, a brief exposition of the relevant figures of the Sentinel 3A satellite are listed 

in the following table: 

Table 22 Figures of Sentinel 3A mission 

Sentinel 3A 

Semi-major axis 7186.877 𝑘𝑚 

Eccentricity 0.001113 

Inclination 98.72 deg 

RAAN 77.03 deg 

Altitude 814.5 km 

Wet mass 1150 kg 

Dimensions 2.2x2.2x3.7 𝑚  

Cross-sectional area 4.5 to 8.5 𝑚2 
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3. Results 

3.2.1.2 Data sources of the study case 

In [Lopez-Jimenez, Literature Study for MSc Thesis - TU Delft, 2019], a detailed exposition of the data sources that 

will be employed in the processing of the Sentinel 3A orbits is provided. The following table summarizes the 

information displayed in the Literature Study: 

Table 23 Data sources for the Sentinel 3A tracking campaign 

Sentinel 3A 

POD orbits TU Delft POD orbits for Sentinel 3A 

Manoeuvres  Publicly available at [ESA-Sentinel, 2019] 

Radar measurements Leolabs PFISR & MSR radar stations 

 

A brief summary of each radar station can be found in the following table: 

Table 24 Radar station features 

 PFISR MSR 

Latitude (deg.) 65.12992 31.9643 

Longitude (deg.) -147.471 -103.233 

Height (m) 213 855 

FOV shape Conical Barrier 

 

More information on the radar stations can be found in [O. Rodriguez Fernandez, F. Bonaventure, & M. Nicolls, 

2018] and [Griffith, Nicolls, Lu, & Park, 2017]. Note that from Leolabs webpage, range, range-rate and angular 

measurements are available and distributed with ionospheric and bias corrections. In addition, measurements are 

retrieved for a specific target, in this case the Sentinel 3A satellite. Accounting for the orbital parameters of the 

satellite, listed in Table 23, and the radar station geodetic coordinates, pointing and Field of View (FOV) two satellite 

tracks can be captured at least per day per station, ensuring a proper amount of tracks to determine the orbit of 

the object. POD orbit metrics, typical quality and residuals information is reported in [Marc Fernandez, 2018]. 

Finally, a complete year of measurements will be considered for the analysis to be developed in this section, 

ranging from May 2018 to June 2019, hence Leolabs measurements will be retrieved for the considered period as 

well as POD orbit solutions. 

3.2.1.3 Station calibration and typical measurement uncertainty 

Prior to processing the retrieved measurements from Leolabs, a previous study aimed to characterise the typical 

residuals of both radar station was carried out, in order to properly weight the retrieved measurement and obtain 

accurate ODs. In the Leolabs webpage, statistics for the typical station biases and residuals can be obtained. 

Considering a 30 day period of data, the Figure 44, Figure 45, Figure 46 and Figure 47 show the evolution of 

measurement bias corrections as wells as residuals per day, obtained by processing their own OD. 

From Figure 44 and Figure 45, the MSR radar displays variable values for the range measurement residuals, 

always contained within 10 to 20 m, and for the range bias within 0 and 13 m. Although having a considerable 

variability, its values are always found within certain thresholds. For the case of the range-rate measurements, bias 

and residuals have a more stable behaviour. From Figure 46 and Figure 47, the PFISR radar displays almost 

constant values for the residuals and for the bias of both range and range-rate observations.  

From Table 25, the characterisation of typical noise and biases of observations taken with LeoLabs radars is done. 

However, LeoLabs does not provide values for angle measurement biases and residuals and a station calibration 

process was required to verify the supposed values displayed in Table 25 and define typical values for angle 

measurements. Internal documents of the SST department of GMV (disclosure not permitted) considered irrelevant 

the use of angular measurements in the computation of ODs using LeoLabs measurements, as typical RMS are in 

the order of 0.2 to 10 degrees while having a great variability of angle biases. Thus, considering typical values of 

angles RMS, the supposed weight that these measurements would have on an OD is negligible, hence the 

document recommends avoiding the processing of elevation and azimuth angle measurements.  
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3. Results 

 
Figure 44 Range bias and residuals for the MSR radar from 23/02/2019 to 24/03/2019 

 

Figure 45 Range-rate bias and residuals for the MSR radar from 23/02/2019 to 24/03/2019 

 
Figure 46 Range bias and residuals for the PFISR radar from 23/02/2019 to 24/03/2019 

 
Figure 47 Range-rate bias and residuals for the PFISR radar from 23/02/2019 to 24/03/2019 
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3. Results 

Table 25 Statistics for bias and residual of MSR and PFSIR radar from 23/02/2019 to 24/03/2019 from LeoLabs  

 MSR PFSIR 

 Bias Residuals RMS Bias 
Residuals 

RMS 

Range(m) 7.653 14.902 -4.427 13.674 

Range-rate (m/s) -0.257 0.222 -14.070 3.130 

 

Avoiding the processing of angular measurement will have an impact in the orbit determination and propagation 

error. From [Wiegel & Patyuchenko, 2011], radar and range-rate (i.e. Doppler) measurements are sensitive to 

variations in the radial and along-track component, however they lack sensitivity in the out-of-plane component 

and depend on the geometry of the case. For instance, an unfavourable geometry would occur when the station 

lies close to the orbital plane of the object as range and range-rate measurements would not capture enough 

information of the out-of-plane component. Thus, it is expected that the processed ODs display significant errors 

in the normal component when compared with POD solutions. 

A preliminary process intended to determine which radar station or combination of radar stations was best suited 

to provide the best orbit determination solution, comparing the estimated state with the POD solution. For this 

analysis, a random OD batch of 7 days of measurements was considered using three different station 

configurations, only accounting for range and range-rate measurements. The analysis compare the estimated 

orbital ephemeris against the precise orbit solution to obtain a mean value of the differences, an RMS and 

maximum error value. From the different cases, the most promising is the case where only the MSR station is 

considered, although numerous references encourage using all the measurements available as the OD quality is 

supposed to improve (as in [Oliver Montenbruck, 2000]). The MSR station alone seems to deliver the best orbit 

solution as its yields the smallest mean and RMS differences. Finally, in the following table the results for the 

different configurations are listed: 

Table 26 Comparison of the whole estimation interval between an OD with different configurations and the 

reference POD orbit 

Comparison of OD solution vs. POD orbit 

MSR 

 Radial Transverse Cross 

Mean(m)  0.0241 -18.1448 0.1328 

Rms (m) 8.4271 26.0703 46.1651 

Max (m) 21.1092 61.3259 76.2945 
 

MSR+PFSIR 
Mean (m) 0.0464 -33.0023 0.1105 

Rms (m) 9.3114 45.0368 35.5446 

Max (m) 26.1362 95.7725 58.6109 
 

PFSIR 
Mean (m) 0.0402 -39.6703 0.0934 

Rms (m) 10.7694 53.3207 26.1794 

Max (m) 28.7661 104.5348 41.747 
 

 

Finally, the station calibration intended to define range and range-rate measurement biases and typical RMS for 

the selected station. Residuals should exhibit a Gaussian distribution with 0 mean and a typical standard deviation 

equal to the RMS displayed in Table 25. The results of the station calibration analysis for the MSR station, 

considering a whole year of measurements (from 01-05-2018 to 01-06-2019) and taking into account satellite 

manoeuvres, are listed in the following table: 

Table 27 Station calibration of the MSR radar station 

 Bias (m; m/s) RMS (m; m/s) 

Range -7.46961 24.677 

Range-rate -0.08408 0.288347 
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3. Results 

The study carried out to calibrate the MSR station yields important results to be considered during the OD process 

and to obtain best-quality orbit solutions. The biases listed in Table 27 will be considered during OD processes and 

the measurement weights will be defined as the RMS values computed during the calibration, giving us some 

insights regarding the maximum attainable accuracy of the ODs. 

3.2.2 Covariance determination: practical application 

The practical case of the research project represents the culmination of the work conducted during the Master 

Thesis and the application of the Covariance Determination methodology to a real tracking campaign of an 

operational satellite. The following table summarizes the most relevant features of the Sentinel 3A case: 

Table 28 Features of Sentinel 3A case 

Case of Sentinel 3A satellite 

Consider parameter AE (Atmospheric Drag Model Error) 

Observed covariance Operational observed covariance 

Number of simulated points 356 

Reference orbit 01-05-2018 to 01-06-2019 

OD period  7 days batch 

Shift between ODs 1 day 

Estimation epoch for OD End of measurement period 

Predicted orbit Estimation epoch + 8 days 

 

The dynamic model employed to perform the different ODs is summarized in the following table, where a more 

complete dynamic model is employed to successfully perform the orbit determination of the Sentinel 3A satellite: 

Table 29 Dynamic model employed for the Sentinel 3A tracking campaign 

Full dynamical model 

Gravity field (Static) GRACE 04c 32x32 

Third body perturbations Sun & Moon 

Polar motion and UT1 IERS C04 08 

Pole Model IERS 2010 conventions 

Precession/ Nutation IERS 2010 conventions 

Atmospheric Model MSISe-90; Fit performed for ballistic coefficient 

Solar Radiation Pressure Constant area (S2); Fit performed for coefficient of reflectivity 

Consider relativistic gravity Yes 

Integration step 60s 

Geodetic surface ERS-1  

Reference frame J2000 ECI 

 

It is worth mentioning that the processing method for the different batches of ODs spans over 7 days of possible 

measurements, each batch shifting 1 day ahead in time during a period of 1 year. This leads to a considerable 

amount of ODs, a total of 356 orbit estimation and subsequent propagations. After running the first analysis on the 

complete set of estimations and computing the orbital differences of the predicted states versus the reference POD 

orbits Figure 49 is obtained. 
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3. Results 

Despite rejecting ODs (Figure 49) where either during the estimation or prediction period a maneuver took place, 

there are some solutions describing important drifts that can be considered as spurious (probably due to problems 

with sensors, miscorrelations, geometry or number of available tracks, among others). The orbital differences of 

these estimations may pollute the processing of the operational observed covariance yielding  a non-realistic and 

too pessimistic observed covariance. Two solutions have been implemented to surpass these difficulties, the first 

being the consideration of a smaller period of estimated orbits and the second beign the definition of an outlier 

rejection methodology. 

The selected period (Figure 48) has been chosen inspecting Figure 49, in which more stable orbits are estimated 

from november 2018. In addition, a rejection criteria has been established to dismiss those orbits that represent 

outliers to the normal distribution of orbital differences. The rejection criteria will employ a proportionality factor to 

reject all the orbital differences whose absolute value exceeds that of the augmented median of the whole 

distribution: 

 

𝛥𝒚𝒊 < 𝑘 · 𝑀𝑒𝑑𝑖𝑎𝑛(𝛥𝒚) 
(3 .4) 

 

 

Figure 49 Orbital differences in the T direction between predicted ODs and the reference orbit for the whole 

year. Note that blue lines mark the epochs at which a maneuver took place, hence the OD solution is 

discarded due to low quality and non-negligible errors in the processing. 

 

 

Figure 48 Orbital differences in the T direction between predicted ODs and the reference orbit for a selected 

period. Note that blue lines mark the epochs at which a maneuver took place, hence the OD solution is 

discarded due to low quality and non-negligible errors in the processing. 
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3. Results 

The aim is that the obtained distribution can be assumed as Gaussian and a realistic covariance can be derived 

from it, complying with the first requirement posed during section 1.2. Different proportionality factors will be tested 

to decide which is the most suitable factor to reject for outliers, based on the numerical and graphical results of 

Michael’s statistical test. Analogous to the validation section, the same metrics are employed when testing for 

covariance realism (defined in section 2.6). In the following table, the results for the Michael’s  test are listed: 

Table 30 Results for Michael’s test of normality at different epochs, for different rejection factors (along-track 

direction). 

p-value 

Factor 𝒕𝟎 𝒕𝟎 + 𝟏 𝒕𝟎 + 𝟐 𝒕𝟎 + 𝟑 𝒕𝟎 + 𝟒 𝒕𝟎 + 𝟓 𝒕𝟎 + 𝟔 

𝒌 = 𝟐 0.116542 0.662587 0.219245 0.078354 0.19673 0.478724 0.141111 

𝒌 = 𝟐. 𝟓 0.015344 0.45968 0.436546 0.16243 0.371372 0.414509 0.273086 

𝒌 = 𝟑 0.05533 0.073414 0.467747 0.154961 0.380622 0.451783 0.652842 

𝒌 = 𝟑. 𝟓 7.90279E-05 0.073414 0.430101 0.047774 0.623179 0.577852 0.680931 

 

The author deemed unnecessary to include all the P-P graphics for the Michael’s statistical test for different scaling 

factors, however from the previous table it is clear that the rejection criteria which complies with the normality 

condition (assuming a significance level of 5 %) at all epochs is the 𝒌 = 𝟑 and lower value. 𝒌 = 𝟑 is finally selected 

as it yields to the less restrictive rejection criteria (leading to a 5% rejection of samples) whereas lower values 

displayed higher rejection rates (about 10% and higher). A P-P plot of Michael’s test is included for the definitive 

rejection factor in Figure 50, Figure 51 and Figure 52. 

After all ODs were processed, the covariance realism metrics are used to analyze the complete distribution of 

orbital differences. The following table lists the results of the average orbital error: 

Table 31 Averaged and relative error of the distribution in the T, N and W directions, where 𝑡0 stands for 

estimation epoch and subsequent prediction times are expressed relative to it 

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝒆𝒑𝒐𝒄𝒉 Δ𝑇 (𝑚) Δ𝑁 (𝑚) Δ𝑊 (𝑚) Δ𝑇/𝜎𝑇(%) Δ𝑁/𝜎𝑁(%) Δ𝑊/𝜎𝑊(%) 

𝒕𝟎 -11.71 -0.20 2.12 -45.27 -16.98 21.43 

𝒕𝟎 + 𝟏 -10.84 0.69 3.14 -22.67 49.34 34.03 

𝒕𝟎 + 𝟐 -9.69 -0.25 -6.37 -12.55 -14.75 -70.64 

𝒕𝟎 + 𝟑 -14.17 -0.55 -2.77 -12.32 -25.15 -25.49 

𝒕𝟎 + 𝟒 -21.58 0.22 7.88 -13.07 9.69 77.87 

𝒕𝟎 + 𝟓 -20.69 0.56 2.46 -9.07 18.61 19.21 

𝒕𝟎 + 𝟔 -30.97 -0.36 -9.14 -10.16 -10.35 -82.84 

𝒕𝟎 + 𝟕 -41.66 -0.45 -1.43 -10.96 -12.44 -9.71 

𝒕𝟎 + 𝟖 -50.43 0.20 10.71 -11.00 4.41 88.49 

 

Inspecting Figure 50, there is no doubt that the distribution of orbital differences in the along-track direction does 

not invalidate the null hypothesis of normality. From test Case B and D and from the section 2.1.3.1, the major 

impact to covariance realism of LEO objects is the uncertainty in the modelling of the atmospheric drag force, 

affecting almost exclusively the uncertainty realism in the along-track direction. However, further inspection of 

normality for the remaining directions does not lead to the same conclusion. Orbital differences in the N and W 

directions invalidate the null hypothesis of normality, as it can be concluded from looking at Figure 51 and Figure 

52. 

From the normality tests displayed in Figure 50, Figure 51, Figure 52 and Table 31, the distribution of orbital 

differences at estimation epoch and during propagation cannot be assumed Gaussian and unbiased.  The only 

direction in which orbital differences can be approximated as a Gaussian distribution are in the along-track 

direction. To further reinforce the rejection of normality for the N and W direction, Figure 53 provides a histogram 

of the orbital differences. Clearly, the orbital differences computed are far from being normally distributed. 

Especially, the orbital differences of the W direction display a bi-normal tendency where the distribution seems to 

be centred at two different mean values. The rest of the distributions are centred around 0 yet normality can only 

be assumed in the along-track direction (as demonstrated by the different tests). 
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Figure 50 Michael's test of normality for the distribution of orbital differences in the T direction at different 

prediction times 

 
Figure 51 Michael's test of normality for the distribution of orbital differences in the N direction at different 

prediction times 

 
Figure 52 Michael's test of normality for the distribution of orbital differences in the W direction at different 

prediction times 
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Figure 53 Orbital differences at estimation epoch for the different directions in the TNW local frame. 

 

 
Figure 54 Aggregated orbital differences displaying the rejection criterion. A colour criteria has been defined 
so as to represent orbital differences: in red the rejected points, in blue the accepted points and in black the 

rejection criteria of each epoch (i.e. absolute median). 

 
Figure 55 WRMS of the ODs for the tracking campaign of the Sentinel 3A 
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3. Results 

 
Figure 56 Relative differences of the estimated noise-only covariance matrices with respect to the  average 

covariance matrix of the population for the Sentinel 3A tracking campaign 

 
Figure 57 Histogram of the dynamic consider parameter estimations for the Sentinel 3A campaign 

Table 32 Covariance containment test for the Sentinel 3A case for the noise-only covariance (left) and the 

consider covariance (right). Colour scale is applied to each column to compare the theoretical value against the 

measured, where a similar colour denotes proximity of both values. 𝑡0 stands for estimation epoch and 

subsequent prediction times are expressed relative to it. 

Time 
Noise-only covariance  Consider covariance 

1-σ 2-σ 3-σ  1-σ 2-σ 3-σ 

t0 20.00% 42.61% 56.52%  20.00% 42.61% 56.52% 

t0 + 1 day 13.91% 31.30% 42.61%  23.48% 36.52% 51.30% 

t0 + 2 days 9.57% 24.35% 36.52%  29.57% 58.26% 73.91% 

t0 + 3 day 12.17% 23.48% 34.78%  40.87% 68.70% 83.48% 

t0 + 4 days 10.43% 22.61% 31.30%  48.70% 79.13% 88.70% 

t0 + 5 days 8.70% 21.74% 26.09%  53.91% 79.13% 86.96% 

t0 + 6 days 11.30% 20.87% 26.09%  63.48% 88.70% 94.78% 

t0 + 7 days 8.70% 18.26% 25.22%  66.09% 85.22% 91.30% 

t0 + 8 days 5.22% 15.65% 23.48%  69.57% 89.57% 94.78% 

Theoretical 66.70% 95.00% 99.70%  66.70% 95.00% 99.70% 
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Note that the orbital differences have been computed without considering an orbital averaging and this explains 

the two separate mean value observed in the out-of-plane direction. A slight divergence in the orbital plane will 

trigger orbital differences to appear negative or positive depending on the true anomaly of evaluation. Despite this 

fact, the author would have expected the distribution to be unbiased with 0 mean, displaying two peaks with a 

smaller variance of the overall distribution. Therefore, it has been thoroughly verified that only the along-track orbital 

differences can be assumed as normally distributed.  

Figure 54 displays the evolution of the orbital differences for the T direction. As observed in the figure, all orbital 

differences are aggregated and time-tagged following the principles established in section 2.4, where the time of 

the last processed measurement of the OD batch is used as the estimation epoch and the reference start time for 

the prediction period of the orbit. This is especially important since the orbital batches were considered with fixed 

time spans, however batch periods do not coincide with the epoch of the last measurement. If unconsidered, the 

time tagging principle defined turn out to be useless as orbital differences from different relative prediction epochs 

are wrongly aggregated. Figure 54 allows for the analysis of the evolution of orbital differences with respect the 

prediction time, providing remarkable insight of the shape and magnitude of the observed covariance. 

Finally, the analysis considered for the different test cases to check for covariance consistency will be reproduced, 

once that normality of the along-track distribution is ensured. The resulting WRMS of the different ODs is depicted 

Figure 55 and in Figure 56 the differences between the different estimated noise-only covariance matrices can be 

regarded. The differences among the different ODs and noise-only covariance matrices are remarkable due to the 

different conditions that influence the estimation process of an OD (i.e. measurement availability, number of 

measurements, geometry, etc.).  

In order to provide a meaningful solution to the problem, a consider parameter estimation is processed per OD and 

propagation batch in which an atmospheric drag consider parameter is estimated. The final distribution of solutions 

leads to Figure 57 and a histogram has been used to represent the population of different estimated consider 

parameters. The results obtained depict a mean value of the consider parameter of 45.47 % error in the 

atmospheric drag model error with a standard deviation of 11.41%.  

The results of the containment test (i.e. Mahalanobis distance computation as seen during the validation test cases) 

have no meaning when testing for a non-normal probability density function, as they are only representative when 

a multivariate normal distribution is tested. Thus, containment tests would yield to misleading results if used as 

orbital differences in the N and W direction are obviously not normal (as seen in Figure 54 and Figure 55). To 

express the performance of the Covariance Determination methodology, as the along-track direction is the single 

direction to have demonstrated a certain normality, a modified containment test with a similar statistical basis as 

that of the Mahalanobis test is listed in Table 32. 

Note that the test reproduced in Table 32 is reduced to a simple univariate containment test, i.e. checking the 

percentage of orbital differences that lie within different sigma envelopes and compare with the theoretical values. 

From inspection of Table 32, it is clear that the Covariance Determination methodology provides a realism upgrade 

in the along-track direction, where the correction of the atmospheric drag consider parameter is more relevant.  

In addition, Figure 58 is presented to graphically verify the realism upgrade introduced by the consider covariance. 

Looking at Figure 58 and Table 32 there is no doubt that the Covariance Determination methodology provides a 

remarkable upgrade in the covariance realism of the noise-only covariance, exclusive to the along-track direction. 

Inspecting Figure 58, there are clearly other effects playing non-negligible contributions to the covariance realism 

degradation as in the N and W directions the observed sigma diverges by an order of magnitude approximately 

from the noise-only sigma. The atmospheric drag consider parameter has only improved the covariance realism of 

the along-track, however correcting the remaining directions would lose a physical meaning since the distributions 

are far from normality.  

An additional test is presented as the author deemed appropriate to correct for covariance unrealism estimating 

the uncertainty of the atmospheric drag force model and the uncertainty in the assumption of a range bias, as the 

results displayed in section 3.2.1.3 were indicative that radar measurements were inadequately corrected by the 

provider, hence probable covariance degradation might be caused by additional uncertainties in the measurement 

model. The results for the estimation of the dynamic and measurement model consider parameter are presented 

in Figure 59 and Figure 60. The graphical interpretation of the results is provided in Figure 61. 
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3. Results 

 

Figure 58 Evolution of the T, N and W position sigma of the noise-only, observed and consider covariance for the 

Sentinel 3A tracking campaign, fitting for a dynamic consider parameter 

From Test Case C Figure 28, Figure 29, Figure 30 and Figure 32 it is observed that the uncertainty in the range 

bias affects both the along-track direction, cross-track and normal directions. For this reason and because there 

are non-modelled effects in the cross-track and normal direction, the present case is presented. The results 

represent an improvement in the containment metrics (comparing Table 32 and Table 33) as the along-track 

uncertainty is better characterized with the addition of a measurement model consider parameter. For the remaining 

directions, a certain improvement is observed as the range bias consider parameter also contributes scaling the 

uncertainty in all the directions. 

The results for the atmospheric drag consider parameter (Figure 59) display slight changes when compared with 

Figure 57, as the estimation distribution gives a similar mean value and standard distribution. The results of the 

range bias consider parameter are far from normal (Figure 60), displaying a central tendency around the 35 m of 

range bias uncertainty although affected by heavy outliers. The covariance containment test for the same OD batch 

presented before is as follows: 

Table 33 Covariance containment results using the consider covariance for the Sentinel 3A tracking campaign, 

correcting for a dynamic and measurement model consider parameter 

Time 1-σ 2-σ 3-σ 

t0 49.57% 74.78% 80.87% 

t0 + 1 day 60.00% 79.13% 85.22% 

t0 + 2 days 67.83% 87.83% 89.57% 

t0 + 3 day 57.39% 82.61% 87.83% 

t0 + 4 days 54.78% 84.35% 90.43% 

t0 + 5 days 59.13% 84.35% 89.57% 

t0 + 6 days 66.09% 88.70% 94.78% 

t0 + 7 days 66.09% 85.22% 91.30% 

t0 + 8 days 67.83% 88.70% 94.78% 

Theoretical 66.70% 95.50% 99.70% 
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Figure 59 Histogram of the dynamic consider parameter estimations for the Sentinel 3A tracking campaign (2) 

 
Figure 60 Histogram of the measurement consider parameter estimations for the Sentinel 3A tracking 

campaign 

 
Figure 61 Evolution of the T, N and W position sigma of the noise-only, observed and consider covariance for 

the Sentinel 3A tracking campaign, fitting for a dynamic and measurement model consider parameter 
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3. Results 

This chapter represents the summary of the different test cases and the results obtained which are used to verify 

and validate the Covariance Determination methodology and the different consider parameters implemented. In 

addition, the different tests provided remarkable insights in the degradation of state prediction and covariance 

realism when dynamic and measurement model uncertainties are present and unconsidered in orbit determination 

processes. Finally, this chapter also presented the results of applying the Covariance Determination methodology 

to a real tracking campaign, processing measurements from LeoLabs radar network during an entire year. 

Important results concerning the improvement on covariance realism were obtained and next chapter will provide 

a thorough analysis on them. 
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4  
DISCUSSION  

 

 

The previous chapter gave a clear and factual exposition of the different results obtained from several validation 

test cases, aimed at verifying the fitness and performance of the novel Covariance Determination methodology. 

The present chapter provides the insights derived from the point of view of the author, aimed at answering the 

different question posed for the research from a scientific and engineering perspective. The discussion of the 

results will be subdivided into the validation cases and the real case of the Sentinel 3A satellite. 

4.1 Discussion on validation and verification results 

The present section has the aim to answer several of the research question posed during the development of this 

research project and analyse the different outcomes that the test cases have provided. 

4.1.1 Test Case A 

Test Case A is the first test case presented and has the aim to verify that in the absence of model errors, either in 

the dynamics or measurements, a regular orbit determination and propagation process provides an estimated 

covariance matrix (noise-only) that represents realistically the uncertainty of the state vector, provided that 

measurements are correctly weighted and the residuals are unbiased. 

From Figure 15, an important conclusion can be drawn: that all covariance matrices are practically the same, as 

the relative differences among them come from the randomly generated measurements. From the containment 

tests, Table 11, the average noise-only covariance complies with the covariance containment metrics almost 

perfectly at different epochs even when propagated far from the estimation epoch. This is reinforced by the 

containment test of the observed covariance matrix, which indicates the same compliance with the theoretical 

results. The conclusions derived from the previous analysis suggest that the noise-only covariance matrix, obtained 

as product of an OD, represents to a high degree of accuracy the uncertainty of the state when only measurement 

noise is present (and properly weighted). Moreover, that the observed covariance and the noise-only covariance 

are statistically equal covariance matrices. 

4.1.2 Test Case B 

Test case B addressed the effect of errors in the modelling of the atmospheric drag force and its impact in the 

degradation of covariance realism. A similar analysis to test case A is presented with initial similar conclusions. 

Noise-only estimated covariance matrices show little differences between them (as seen in Figure 17) and it might 

lead to the wrong conclusion that the different orbit determinations are consistent among them and that the 

covariance matrix is a good measure of the orbital state uncertainty. 
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4. Discussion 

Although having introduced a perturbation in the models, a good fit of the orbit determinations is observed 

(inspecting Figure 16). The rationale is simple and described in section 2.1.3.1, as the estimation of the drag 

coefficient averages out dynamic model errors. This is clearly observed by looking at Figure 18, where a perfect 

correlation between the introduced perturbation and the error incurred in the estimation the drag coefficient is 

appreciated. At first, the introduction of a model error does not seem to modify the orbital state or the computed 

covariance, however the uncertainty realism degradation will come with the propagation of the noise-only 

covariance. 

From Figure 19, Figure 20 and Figure 21 the effect of the perturbation in the atmospheric force model is observed 

to produce a strong drift in the along-track direction, observed to be quadratic with time as the orbital differences 

rapidly grow with propagation (see Figure 22). A perturbation in the atmospheric model of the drag force yields a 

divergence in the orbital differences with a strong dependence on the propagation time. 

The analysis of containment for the noise-only covariance matrix (see Table 13) demonstrates that noise-only 

covariance is a poor representation of the state uncertainty when dynamic model errors are present, as its 

consistency and realism degrade with the propagation time. Note that only in the estimation epoch does the noise-

only covariance comply with the containment theoretical metrics and as it is propagated further from the estimation 

epoch its metrics worsen. The very reason of the Covariance Determination methodology is to provide a correction 

to the unrealistic noise-only covariance, through the consider parameters, so that a consider covariance adjusts to 

a more realistic representation of the state uncertainty. 

The results of the Covariance Determination for the estimation atmospheric drag consider parameter perfectly 

recovered the input model error uncertainty, as shown in Table 14. The containment metrics (Table 13) as well as 

Figure 23 and Figure 24 verify that the consider covariance is able to capture the true state uncertainty by means 

of the estimation of the consider parameter, while the noise-only matrix becomes a poor representation of the state 

vector uncertainty. Mainly, the uncertainty degradation is observed in the along-track direction where the consider 

parameter provided a remarkable improvement of covariance realism.  

A relevant conclusion is obtained from inspection of Figure 25, where the contribution of a unitary consider 

parameter to the correction of the noise-only covariance matrix is represented. The effect of such consider 

parameter is to add uncertainty in the variance of the 𝐶𝐷 component, as an error in the atmospheric model will yield 

perturbations in the estimation of the drag coefficient. The growth in the variance of the along-track position term 

comes as a result of the propagation mechanism of the covariance matrix, which translates the uncertainties of the 

drag coefficient to uncertainties in the along-track position. Hence, the atmospheric drag consider parameter will 

only have an impact in the covariance realism degradation of the along-track position. 

The key conclusions of test Case B are: 

 A successful validation of the atmospheric drag force model consider parameter and its effect on 

covariance unrealism, through extensive analysis of the results at display, is provided. 

 The successful validation of the Covariance Determination methodology in its aim to correct for covariance 

unrealism when model errors are present, but unconsidered, in an orbit determination process. 

 The study of the effect of atmospheric drag model errors in the computation and propagation of an orbital 

state and the derived consequences to the correct representation of state uncertainty. The effect of a 

perturbation in the atmospheric drag force model is appreciated in the along-track direction, degrading 

the realism of the noise-only covariance matrix, through an increased uncertainty of the estimated drag 

coefficient. 

4.1.3 Test Case C 

Test case C addressed the effect of errors in the modelling of the range bias and its impact in the degradation of 

covariance realism. Consistency between the different ODs is not observed anymore (Figure 26 and Figure 27) 

since the perturbation introduced in the range bias yields to an irregular measurement residual distribution, as the 

weights defined for the processed ODs only account for Gaussian modelled measurements with 0 mean. Hence, 

the first important conclusion is that distribution of WRMS of the different ODs is not unitary and normally spread 

around 1. The second important conclusion is that the differences among the different covariance matrices, 

although being small, are comparatively higher than those showed for the previous cases given the varied quality 

of the fittings obtained. 

From Figure 28, Figure 29 and Figure 30 it can be appreciated that range bias model error translates into orbital 

differences for all principal directions (along-track, cross-track and radial) being the most noticeable effect observed 

in the along-track direction (with almost a 1:1 correlation, as at estimation epoch a range bias of 40 m leads to 
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almost 40 m drift in the along-track direction). Furthermore, for the along-track, normal and cross-track directions 

its effect in the orbital differences increases with time (Figure 28 to Figure 30). In addition, contrary to test Case B, 

the influence of the range bias perturbation is not entirely absorbed by any dynamical estimated parameter (i.e. 

CD or Cr) of the OD, hence orbital differences among the computed distributions are appreciated at estimation 

epoch. Finally, from Figure 31 the effect of a perturbation in the range bias with respect propagation time is 

assessed yielding the following conclusion: analogous to Case B, a perturbation in the range bias leads to a 

quadratic increase of the along-track position error with respect propagation time. However, for the present case, 

the range bias introduces a constant and linear effect that are not negligible when compared to the quadratic term. 

Orbital differences suggest that the noise-only covariance matrix will fail to capture the true state vector uncertainty, 

as verified in Table 17, where the containment metrics for the noise-only covariance are provided.  To correct for 

covariance unrealism, the Covariance Determination methodology is applied giving an estimated range bias 

uncertainty nearly identical to the input perturbation. The containment metrics of the consider covariance are listed 

in Table 16, where the improvement of covariance realism is demonstrated comparing the obtained values for the 

different propagations periods to the theoretical values. Moreover, further verification is obtained from inspecting 

Figure 32, as the degradation of covariance realism for the noise-only covariance is appreciated whereas the 

consider covariance is found to perfectly fit the observed covariance. Note that not only the along-track direction is 

corrected estimating the range bias model uncertainty but noticeable contributions are observed in the cross-track 

and normal directions.  

Analogous to the previous test case, the contribution of the range bias consider parameter has been analysed in 

Figure 34. The main conclusions derived are that its effects are mostly noticeable in the position components of 

the covariance matrix and in the variance of the estimated drag coefficient. Thus, at estimation epoch, inspecting 

Figure 32, the noise-only and consider covariance diverge in the variances of the position components. Since the 

range bias consider parameter also has a considerable effect in the correction of the variance of the drag 

coefficient, its contribution will be translated to an increased uncertainty of the along-track direction through 

propagation, similar to that shown for the atmospheric drag consider parameter although comparatively smaller. 

The key conclusions of the present case are: 

 A successful validation of measurement model consider parameters and its effect on covariance 

unrealism, through extensive proofing and analysis of the results at display, is provided. 

 The study of the effect of range bias model errors in the computation and propagation of an orbital state 

and the derived consequences to the correct representation of state uncertainty. An uncertainty in the 

range bias is appreciated to act almost entirely in the along-track direction, with small contributions to the 

normal and cross-track directions as well. In addition, the variance of the drag coefficient is also affected 

by it. 

 Further validation of the Covariance Determination methodology is provided. 

4.1.4 Test Case D 

Test Case D addressed the impact of the atmospheric drag force model consider parameter when processing 

operational orbits to compute an observed covariance using the observed covariance methodology. The difficulties 

of processing operational-like orbits lie in the scarce number of samples to process and the sensibility of the 

generated observed covariance to possible outliers. 

Similar conclusions to case B are obtained in the processing of the different ODs, in the absorption of the model 

perturbation by the estimated drag coefficient and in the effect of the perturbation introduced to the propagated 

orbital differences. Also, covariance containment tests for the noise-only covariance lead to the same conclusion: 

in the presence of model errors, the noise-only covariance is unable to properly represent the uncertainty of the 

state estimation problem. 

The most noticeable difference for the present test is the addition of normality tests. Normality is critical to ensure 

that a covariance matrix is realistic, as discussed in 1.2. Two normality tests are provided in which the null 

hypothesis of normality cannot be rejected, considering a significance level of 5%. 

By ensuring that the distribution of orbital differences is normal, the fitting of the consider covariance to the 

observed covariance complies with the first two requirements of a realistic covariance matrix. The final requirement 

is verified inspecting the results displayed in Table 20 and Figure 43, where the containment metrics as well as the 

figure show the improvement in covariance realism of the consider covariance. 
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Note that comparing both case B and D, some differences are observed at estimation epoch between the observed 

covariance and the consider covariance. For case B, both covariance matrices appear with the same sigma values 

at estimation epoch (see Figure 23) whereas in case D, although having identical set up, some divergence is 

observed between the observed and consider covariance matrices. This is due to the fact that in case D, the 

estimation epoch does not coincide with the epoch of the last measurement and orbital differences appear to be 

somewhat bigger than they should be.  

The key conclusions of the present case are: 

 The Covariance Determination algorithm has been validated together with its use with operational like 

orbits in a close-to-reality simulation environment. 

 The relevance of modelling atmospheric drag model errors in operational orbits is proved with the 

conclusions extracted from this test case, as containment and consistency metrics have demonstrated 

that the consider covariance provides a realistic representation of the true state uncertainty. 

A meticulous validation methodology was presented in section 2.7 together with consistent metrics to test for 

covariance realism and asses the performance of the Covariance Determination methodology. The methodology 

has been systematically validated through different test case and important insights in the effect of model 

perturbations were derived. Next section will comment on the solutions obtained after the processing of the Sentinel 

3A tracking campaign. 

4.2 Discussion on Sentinel 3A results 

The present section will provide the author analysis to the results obtained for the processing of the Sentinel 3A 

orbit determination and posterior Covariance Determination campaign. 

First of all, to obtain accurate solutions for the different processed ODs, a high-fidelity dynamic model considering 

several relevant perturbations was employed. Because the Sentinel 3A satellite mission requires a specific set of 

orbital parameters, station-keeping manoeuvres are executed on a regular basis, approximately once per month. 

The orbit determination and subsequent propagated states affected by station-keeping manoeuvres were filtered 

and discarded as the state estimation and prediction they provided was poor. 

Once filtered, inspecting Figure 49, a noticeable drift of some of the orbit estimations considered is appreciated. In 

order to perform a realistic aggregation of orbital differences a more stable period was finally selected (see Figure 

48). Despite having carefully removed orbits affected by manoeuvres and unstable periods of radar measurement, 

the processing required further filtering as the aggregated population of orbital differences was found to be far from 

normal and affected by few outliers. The author considered a last filter by establishing a rejection criteria looking 

for the normality of the aggregated orbital differences, where the median of the distribution is used with a certain 

scaling factor to reject for outliers. The author deemed appropriate to select the median as a more robust metric to 

define the rejection intervals due to the increased performance in the presence of strong outliers and skewed data 

(from [Manikandan, 2011]). Several scaling factors were tried giving different results, however the most promising 

result turned out to be 𝑘 = 3 (see Table 30). Any scaling factor below 3 would provide a normal distribution in the 

along-track direction although rejection rates would increase substantially, thus not providing a realistic 

representation of the distribution of orbital differences. 

Normality is ensured in the along-track direction, however for the normal and cross-track direction the hypothesis 

of normality does not hold true. The first condition for covariance realism is violated as seen in Table 31, where the 

average of the orbital differences at different propagation epochs is seen to experience non-negligible biases. The 

second condition for covariance realism is not fulfilled as the multivariate PDF sampling of the state estimation 

displays a behaviour far from Gaussian. Normality is rejected for the N and W directions from inspection of Figure 

51 and Figure 52 and from [Vallado & Seago, Covariance realism, 2009], multivariate normality cannot be 

assumed. Thus covariance realism cannot be achieved since the observed orbital differences cannot be 

approximated as a multivariate Gaussian distribution. From this point forward, only the covariance realism of the 

along-track direction is discussed as it has been demonstrated to be the single direction displaying unbiased 

normally distributed orbital differences. 

The aggregation of the orbital differences in the along-track direction for the filtered orbits is displayed in Figure 

54. The figure provides a first measure of the typical standard deviation of the orbital differences which are in the 

order of 30 metres. For the remaining two directions the standard deviation is around 70 metres for the W direction 

(out-of-plane) and 7 metres for the N direction Typical standard deviations for the noise-only covariance matrices 

estimated from the ODs are in the order of 10 m for the along-track direction, 10 m for the out-of-plane direction 
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and 3 m for the cross-track direction. Comparing both covariance matrices, it is clear that the noise-only covariance 

matrix fails to properly represent the real uncertainty of the state vector at estimation epoch and during propagation. 

Huge differences are appreciated and the author considers that the following phenomena might be the cause for 

them: 

 Covariance matrix fails to represent the real uncertainty of the state vector if measurement or dynamic 

models errors are unconsidered, as seen during the validation and verification.  

 Such huge differences were not appreciated during the verification and validation test cases, as a single 

fixed systematic error for the whole orbital arc was assumed. In reality, the error of the dynamic and 

measurement continuously varies. Moreover, real measurements and satellite dynamics are affected by 

numerous perturbations at the same time.  

 The relevant non-normal orbital differences appreciated in the out-of-plane direction are a consequence 

of the poor performance exhibited by the radar station in terms of angular measurements. Due to highly 

variable and extremely large angle measurement biases and residuals of the LeoLabs MSR radar (see 

section 3.2.1.3), the use of range and range-rate measurements only is advised yielding a state estimation 

that lacks sensitivity in the out-of-plane component and is highly dependent on the problem geometry, as 

suggested by [Wiegel & Patyuchenko, 2011].  

At this point, two conclusions are clear: that the distribution of orbital differences is not normally distributed, thus 

covariance realism is not achievable, and that different aspects influence the huge differences observed between 

noise-only and observed covariance that yield an unrealistic representation of uncertainty. As of this point, the 

Sentinel 3A case is analysed using the same methodology introduced during the validation cases. Inspecting the 

quality of the different ODs (from Figure 55) one may think that the processed measurements have been given a 

too pessimistic weight, due to the low average value of WRMS. However, the calibration process results (see Table 

27) provided the true weights that the processed measurement should exhibit. Normally, OD processes fail to 

realistically represent measurement residuals, giving fairly optimistic values and averaging out measurement noise 

(regarding it as Gaussian) while unsuccessfully removing other effects such as biases.  

In addition, the different processed ODs have delivered different covariance matrices, as the different epochs of 

estimation, number, quality and geometry of the measurements processed varies all over the year and influence 

the solution provided by the estimation process (see Figure 56). The Covariance Determination methodology is 

highly sensitive to variations in the assumed a-priori noise-only covariance and the OD batch selected to perform 

the fitting. Therefore to provide a feasible analysis of the estimated variance of the consider parameter, each 

covariance matrix is fitted to the observed covariance and a study of the distribution of consider parameters is 

done. As one may expect, none of the noise-only covariance matrices are able to capture the true uncertainty of 

the orbit estimation problem as demonstrated in test Case B, C and D. 

Furthermore, it is no secret that the atmosphere is a highly variable stochastic environment and that the different 

parameters that are used in the modelling of the atmospheric drag force also exhibit a remarkable variation from 

OD solution to OD solution (i.e. atmospheric density, attitude of the satellite, drag coefficient, etc.). In the 

atmospheric drag consider parameter, the effect of the uncertainty of the different parameters is absorbed, however 

from OD to OD the uncertainty of the modelled parameters will vary. For this reason, it is more sensible to estimate 

a consider parameter per batch and study the behaviour of the whole distribution of values rather than assuming 

a fixed value for the complete year of predicted and estimated orbits. 

Because bigger orbital differences are observed in the along-track direction and because this direction is the single 

one experiencing a normally distributed evolution of the orbital error (either in estimation and propagation) the 

covariance realism upgrade is sought in the along-track direction by means of estimating an atmospheric drag 

consider parameter. Processing the different batches using the Covariance Determination methodology gave a 

distribution of estimated consider parameter with a mean value of 45.47 % error in the atmospheric drag model 

error with a standard deviation of 11.41% (see Figure 57). The relevance of the computed value of 45.47% of error 

in the drag force model comprises the contribution of the different sources of uncertainty in the definition of the 

main relevant parameters, i.e. the ballistic coefficient and the atmospheric density. Recall that atmospheric density 

uncertainty is in the order of 15-20% (considering low to medium solar activity) and that the ballistic coefficient can 

vary up to an order of magnitude from its nominal value. Assuming that the computed value of the consider 

parameter is not only absorbing uncertainties of the atmospheric drag force model but other non-modelled effects, 

the computed value is considered by the author to be a representative approximate measure of the uncertainty of 

the drag force model.  
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Like a station calibration process, the Covariance Determination methodology averages out the differences 

between the consider covariance and the noise-only covariance estimating the variance of the consider parameter. 

However, as depicted in Figure 58, there are other relevant phenomena that are not modelled in the atmospheric 

drag consider parameter that affect the covariance realism in the along-track, cross-track and normal direction. It 

is highly possible that some of this phenomena are partially absorbed in the estimation of the atmospheric drag 

consider parameter. For this reason, the distribution of estimated values represents an approximate measure of 

the atmospheric model uncertainty but not a definitive value. 

The selected containment metrics employed in the validation of this case intend to mimic the Mahalanobis distance 

metric used in the validation and verification cases. In this case, as only the orbital differences in the along-track 

direction can be considered Gaussian, a containment test is performed by considering the percentage of points of 

the distribution that fall inside of 𝑘 − 𝜎  envelopes and compared with theoretical value of a normal univariate 

Gaussian distribution. The containment metrics listed in Table 32 (right) display a solid improvement of covariance 

realism when compared with the metrics obtained for the noise-only covariance (see Table 32, left). A graphical 

interpretation of the result is found in Figure 58, where the consider covariance achieves a covariance realism 

improvement in the along-track direction with respect to the noise-only covariance. 

A second case is provided where both a dynamic and measurement model consider parameter are estimated. The 

resulting distribution of values are presented in Figure 59 and Figure 60, where the mean value of the atmospheric 

model uncertainty has slightly decreased when compared to the previous case (as the range bias uncertainty also 

impacts the along-track direction) and the range bias uncertainty displays a central tendency around the 35 m and 

a far from normal distribution affected by heavy outliers.  

The containment metrics for the second case are listed in Table 33, where an improvement on covariance realism 

is achieved, as the range bias uncertainty is able to reduce the differences between the consider covariance and 

the observed in the along-track direction, especially at epochs close to the estimation epoch. This is also 

appreciated by looking at Figure 61. The conclusion is that the atmospheric drag consider parameter affects the 

uncertainty in the along-track direction showing a stronger correlation with propagation (as expected) while the 

range bias consider parameter provides a scaling of the covariance matrix in the along-track direction already 

noticeable at estimation epoch (compare between Figure 61 and Figure 58, or Table 33 and Table 32). 

Furthermore, comparing Figure 61 and Figure 58 a clear covariance realism upgrade of the normal and cross-track 

directions is achieved, yielding to the conclusions that there are other relevant contributions to the covariance 

realism problem that are not modelled through the atmospheric drag consider parameter. 

The author considers this case to be relevant as it indicates the need for a better understanding on the additional 

driving uncertainties affecting the realism of covariance for LEO objects, which may be modelled through the 

consideration of other dynamic and measurement model consider parameters. In addition, the author considers 

the computed value of the range bias to lack realism, due to the great dispersion of the solutions and because the 

estimated parameter is correcting the covariance of a non-Gaussian uncertainty.  

4.3 Discussion on research questions 

During the following section, the different research questions posed in this report will be answered with the results 

presented during Section 3 and the discussion presented in Section 4. 

To the question “To what extent do dynamic and measurement modelling inaccuracies impact the state estimation 

and prediction problem, i.e. the provision of an accurate state and a realistic covariance?” 

 

During the validation cases B and C, the effect of different dynamic and measurement model uncertainties has 

been assessed, more concretely inaccuracies in the modelling of the atmospheric drag force and the range bias.  

From Case B, the effect of a perturbation in the drag force is found to affect the estimation of an accurate drag 

coefficient. In the estimation process, any perturbation of the dynamics can be averaged out by estimating the drag 

coefficient. This does not affect the provision of an accurate position and velocity in the estimation of the orbit but 

it does affect the prediction of the future state, as the inaccurate drag coefficient has a direct impact in the state 

during the propagation. In the end, an increasing along-track error is observed that depends quadratically on the 

propagation time. In the covariance field, all the aforementioned conclusions lead to a covariance realism 

degradation of the noise-only covariance dependent on the propagation time and exclusive to the along-track 

direction. 

From Case C, the effect of a perturbation in the range bias is found to affect the estimation of an accurate state 

(being the most important contribution in the position components). Thus, contrary to the case presented before, 
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position and velocity errors are observed at estimation epoch and increase during the propagation in a quadratic 

fashion for the along-track direction (as it is the direction that is observed to be more affected by a perturbation of 

the range bias). This is also observed in the covariance, where the uncertainty is found unrealistic in all directions 

at estimation epoch and the covariance realism degradation grows with propagation.  

 

To the question: “How can dynamic and measurement modelling uncertainties be characterized in the theory of 

the consider parameters using a Weighted Batch Least-Squares estimator?” 

 

Dynamic and measurement model uncertainties need to be characterized by means of a zero mean and normally 

distributed random variable. The definition of an atmospheric drag and range bias consider parameter is described 

thoroughly in this report, together with the added formulation required for the adaptation of Weighted BLS algorithm 

to include these parameters and the consider parameter theory. An analogous process can be followed to define 

further consider parameters trying to model the uncertainties of different dynamic and measurement model 

uncertain parameters. 

Consider parameters are included in a different space, namely the consider space, different from the estimation 

space, where state vector and desired dynamic parameters are to be determined by the least-squares algorithm. 

As detailed during the methodology section of this report, consider parameters do not affect the results of the 

estimation problem due to its formulation yet affect the covariance provided by the least-squares problem, adding 

the uncertainty of consider parameters to the noise-only covariance matrix. 

 

To the question: “To what extent does the Covariance Determination methodology improve the covariance realism 

of regular orbit determination and propagation products?” 

 

During the validation cases, the Covariance Determination algorithm has been tested displaying the performance 

to correct covariance unrealism of orbit determination and propagation products. During the validation cases, the 

covariance realism improvement is such that the resulting consider covariance is found to be identical to the 

empirical uncertainty of the state estimation and prediction problem. On the contrary, it is also demonstrated that 

the noise-only covariance, product of the OD, fails to properly represent the real uncertainty of the estimation and 

propagation process and that the unrealism depends on the magnitude of the unconsidered uncertainty. 

Thus, through the different validation cases, the need for a covariance realism improvement methodology turned 

out to become essential in the presence of unconsidered uncertainty sources. In addition, the proposed 

methodology proved to be sufficiently powerful to treat for a sample of such unconsidered sources. For this reason, 

the author consider that the validation of the devised methodology is completed successfully and that its power 

and utility are broadly demonstrated. 

However, when it came to dealing with real orbit determination and propagation processes, the methodology 

proved unfeasible. The processed orbits displayed inconsistent errors when compared to POD solutions yielding 

a non-Gaussian behaviour of the orbit estimation and propagation processes. Orbital errors and residuals were 

expected to behave as white noise (Gaussian) considering the lapses of propagation times, the accuracy of the 

used SST sensors and the scale of the treated uncertainties. However, this was not true for the considered orbits, 

reason for which the methodology could not be applied to its full extent. Normality is proved in the along-track 

direction, reason for which a variance realism improvement is carried out successfully leading to the estimation of 

a representative distribution of atmospheric drag consider parameters. The results show that the methodology 

achieves remarkable results as long as the hypothesis posed during its development are fulfilled.  

 

To the question: “To what extent does the proposed validation methodology reflect the fitness and power of the 

Covariance Determination methodology?” 

 

The proposed validation methodology tackles the different cases devised both from the orbit determination and 

covariance realism perspective. Because the validation of the methodology requires the processing of perturbed 

ODs it is mandatory to check the quality of the state estimation problem and verify that the numerical results comply 

with the theory.  

First of all, from the OD perspective the simulated radar measurements and processed ODs are analysed 

qualitatively to ensure that enough tracks and low measurement rejection rates are achieved. By measuring the 

WRMS of the processed ODs it is ensured that the residuals are properly modelled considering and by measuring 
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the different noise-only covariance matrices of the ODs it is verified that the uncertainty for the complete set of 

estimation processes is nearly identical. 

From the covariance realism perspective, several metrics are defined as suggested by numerous relevant 

references to test for uncertainty realism. First of all, normality of the orbit errors in both estimation and prediction 

is verified by inspecting the average value of the distribution and the shape of the spread through the use of the 

Michael’s normality test. When normality of the different univariate distributions of position is ensured, containment 

of the whole multivariate distribution is checked using the Mahalanobis distance. The aforementioned metric 

determines the degree to which the uncertainty, characterized by means of a covariance matrix, represents the 

real uncertainty of the state estimation and prediction problem comparing the statistics obtained with the numerical 

results versus the theoretical statistics of containment. 

Thus, the validation methodology is able to check the quality of the processed ODs and analyse the covariance 

realism of any covariance matrix allowing to obtain remarkable insight. 

 

To the question: “To what extent are the present results of the study on covariance realism improvement of a 

satellite tracking campaign of the Sentinel 3A satellite representative of the inaccuracies of real dynamic and 

measurement models?” 

The results obtained for the Sentinel 3A case in terms of covariance realism need a careful consideration. First of 

all, recall that the resulting orbital differences obtained between estimated/propagated orbits and POD solutions 

cannot be regarded as Gaussian distributions. Thus the Covariance Determination methodology could not be 

applied in its full extent. 

The author considers the results obtained, i.e. the atmospheric drag consider parameter, to be an approximate 

representation of the real uncertainty of the atmospheric drag model. Given the different uncertainty sources to be 

regarded (atmospheric density defined from atmospheric models, cross-sectional area variation, drag coefficient 

definition, varying mass and velocity) the computed result provides a feasible approximation of the true uncertainty 

of the atmospheric drag force model. However, there are more contributions to the uncertainty unrealism rather 

than just the modelling of the atmospheric drag force and for this reason the author considers that the computed 

value is somehow compensating for them as well. 

For future covariance realism corrections, the computed results can be used as a first approximation of the 

uncertainty of the atmospheric drag force model (taking into account that the value has a certain variability, 

expressed through the standard deviation of the distribution). 

The author proposes a series of recommendations in the next chapter that seek to improve the usefulness of the 

devised methodology based on further developing of the research presented in this project or the study of the 

inconsistencies encountered during the processing of the real orbits of the Sentinel 3A satellite. 

The novelty and uniqueness of the devised methodology is properly addressed and discussed during Section 1.2.3. 

The author considered that the reader would acquire a better interpretation of the differences of the conceived 

methodology with respect similar to techniques when these are presented.  

This chapter concludes the discussion of the presented results and provides the point of view of the researcher in 

the matter and the conclusions at which the author arrived through careful examination of the data and literature 

available.  Finally, next chapter will provide the main conclusions of this research project and the recommendations 

to continue the work presented here. 
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5  
CONCLUSIONS AND 

RECOMMENDATIONS 
 

This research project has presented a novel methodology, named Covariance Determination, to fulfill the scientific 

aim expressed in the following statement: 

 

“Conceptualize, develop, implement and validate a novel methodology to achieve a covariance realism 

improvement during state estimation and orbit prediction using the theory of the consider parameters in batch least-

squares estimators”. 

The Covariance Determination methodology intends to become an alternative technique for covariance unrealism 

mitigation, suitable for any type of object and SST sensor measurement considered during a regular OD and orbit 

propagation process.  The very motivation for the development of this technique is the major relevance of the 

covariance in the provision of accurate SST and STM services. Covariance is key to many SST products that will 

become essential if a sustainable and feasible space exploitation is to be achieved and maintained in the near 

future. 

The methodology presented in this work lays its foundations in the theory of the consider parameters and modifies 

a Batch Least-Squares OD algorithm to introduce physically meaningful corrections in the computation of the 

covariance matrix. The consider parameters theory corrects a noise-only covariance matrix by adding the 

uncertainty of several modelled consider parameters, accounting for measurement  and dynamic model 

uncertainties. During the introduction and methodology section, the most relevant sources of uncertainty have been 

defined and discussed through an extensive review of existing literature. In a later section, several consider 

parameters are defined in order to account for the driving uncertainties of the covariance unrealism problem of a 

LEO object. 

Several metrics of covariance realism are investigated and implemented, from relevant literature in the matter, to 

test for the fitness and performance of the Covariance Determination methodology.  Namely, three main features 

of a distribution of orbital differences are tested: whether the average of the distribution lies near to the true value 

(i.e. unbiased estimation), whether the distribution of each element of the state vector can be considered as a 

univariate normal distribution and whether the dispersion of the distribution complies with the tested covariance 

matrix. A MC chain is presented to generate the required input for the validation of the methodology, in which a set 

of different orbit determinations are performed, affected by a systematic perturbation in either a dynamic or 

measurement model parameter. The aim of the methodology is to capture the underlying uncertainty of the models 

(expressed by means of the aforementioned perturbation) estimating the contribution of a physically meaningful 

consider parameter through the Covariance Determination methodology. 

The results are of paramount relevance as they establish a clear conclusion that is common to different validation 

cases:  the estimated covariance matrix of an orbit determination (i.e. a noise-only covariance matrix) is unable to 

provide a realistic characterisation of the state uncertainty when model errors are present but unconsidered, as 

usual in classical orbit determination, and its realism degrades with orbit propagation. Thus, the need for estimating 

certain consider parameters to characterise the uncertainty of the models involved becomes critical.  
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Inspecting the first three test cases many relevant insights can be derived: 

 Considering unbiased measurements perturbed by Gaussian white noise, Case A showed that the 

covariance matrix derived from an orbit determination provides a proper definition of the state uncertainty, 

in the absence of model errors and provided that measurements are properly weighted.  

 Case B reveals that the effect of a perturbation in the atmospheric drag model yields a drift on the along-

track direction of the predicted state, whereas the perturbation at estimation epoch is absorbed on the 

estimated drag coefficient. The drift experienced in the along-track direction during the prediction of the 

orbit is quadratically related to the perturbation introduced, as one may expect from the acceleration of 

the atmospheric drag, as it acts through the tangential direction and is related to the along-track position 

by a double integration. The consider covariance, fitted to the observed covariance through the use of a 

dynamic consider parameter, has shown to provide a realistic representation of the state uncertainty. 

Hence the modelling of a dynamic consider parameter is validated from this test case. Note that the 

atmospheric drag force model consider parameter is only correcting for uncertainty unrealism in the 

along-track direction, as any perturbation of the model will be expressed in this direction through 

propagation. 

 Case C reveals the effect of an error in the definition of the range measurement model, which yields a 

drift in all directions having a most noticeable effect in the along-track direction. An error in the range 

measurement model is shown at estimation epoch, having almost a 1:1 correlation with respect to the 

drift observed in the along-track direction. The consider covariance, fitted to the observed covariance 

through the estimation of a measurement model consider parameter has been proven to provide a 

realistic representation of the state uncertainty, hence the modelling of a measurement model consider 

parameter is validated from this test case. The range measurement model consider parameter will correct 

for uncertainty realism mainly in the along-track direction as well as having a minor impact in the cross-

track and normal directions. 

 Case D aimed to test the methodology in a realistic environment with simulated operational orbits. The 

results are analogous to test case B, successfully ending the validation process of the Covariance 

Determination methodology. 

The practical application of the Covariance Methodology results in the processing of the Sentinel 3A satellite 

measurements provided by LeoLabs. SST radar measurements covering one year of measurements were 

processed, providing a set of estimated orbital states and predicted orbits. To characterize the evolution of the 

uncertainty during propagation, predicted orbits were compared against the true state of the satellite, assumed to 

be the state estimated via POD. The previous analysis yielded a set of orbital differences that, aggregated through 

prediction time, represent a sampling of the probability density function of the orbital state estimation and prediction. 

The first conclusion derived from the analysis of orbital differences is that the noise-only covariance matrix, as 

already verified in the validation cases, does not provide a trustworthy representation of the orbital state uncertainty. 

The quality of the estimated ODs is observed to be highly time-varying due to the availability of the measurements, 

the geometry of the problem, the manoeuvres performed by the satellite and the quality of the measures for the 

batch considered. A priori, after filtering out batches affected by satellite manoeuvres, some estimated orbits 

displayed large dispersions with respect to the true state.  To further remove outliers two different criteria were 

established: a certain period within the complete year of measurements is selected as orbital differences appear 

to be consistent and a rejection criteria for possible outliers is established to discard spurious states through the 

scaled median of the distribution. The resulting orbital differences are tested for normality and the following 

conclusions are drawn: only orbital differences in the along-track direction can be assumed as normal while cross-

track and normal differences do not pass the normality test.  

Covariance realism is no longer feasible in the orbit estimation and prediction of the Sentinel 3A tracking campaign 

using only LeoLabs measurements. In light of the events, the author showed the performance of the methodology 

by displaying univariate containment metrics of the along-track direction, where a covariance realism upgrade of 

the estimated consider parameter can be observed. The results yield unequivocal conclusions: a covariance 

realism improvement is achieved as containment metrics improve when a dynamic consider parameter is 

estimated, correcting for the uncertainty of the atmospheric drag model.  

Not only does the methodology provide a covariance realism improvement but also a significant value for the 

uncertainty of the atmospheric drag model is obtained. Typical values for the uncertainty of the drag force model 

are found to be distributed around 45% of relative error with a standard deviation of 11 %. Note that these values 

are representative of the joint uncertainty of the different parameters that define the atmospheric drag, namely the 

atmospheric density model, the attitude of the spacecraft, solar and geomagnetic activity. Therefore, a variability 
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of the uncertainty of the atmospheric drag model from OD to OD is expected as the aforementioned parameters 

vary with time and space. 

To conclude to work presented in this Master Thesis, the author presents several recommendation which intend to 

be the guideline for future research on covariance realism improvement of SST tracking campaigns: 

 Further research is required to understand the cause of the non-Gaussian orbital differences obtained. 

The author advises collecting measurements from different well-characterized SST sensors (i.e. radar 

and optical telescope). In particular, the author suggests employing radar measurements with better 

angular accuracy and better characterised biases or additional optical telescope measurements, as the 

observability of the problem would improve. In particular, the author strongly advises to use angle 

measurements obtained from optical telescopes as the typical noise for right ascension and declination 

measurements of SST optical telescopes is of 0.7 arc-seconds (from [Siminski, Weigel, & Fiedler, 2014]), 

compared to the 0.2 to 10 degrees typical noise from LeoLabs angular measurements. The author 

considers that these implementations would yield to a normally distributed aggregation of orbital 

differences, and a covariance realism analysis would be feasible. 

 The author considers that computing orbital differences averaged through an entire orbital period would 

increase the quality of the observed covariance matrices obtained, as a more stable evolution of the 

covariance matrix could be derived. Additionally, the author expects the resulting distributions of orbital 

differences to be more prone to normality, provided that other underlying causes for non-Gaussianty are 

treated and corrected. 

 Objects orbiting in the LEO regime are exposed to a wide variety of orbital perturbations. From the 

literature review, the author deemed the uncertainty of the atmospheric drag force model to be the most 

relevant uncertainty contribution. However, other orbital perturbation uncertainties may play an important 

role depending on the circumstances of the case, hence these should be modelled by means of additional 

consider parameters in order to correct other relevant contributions that affect the uncertainty realism of 

the estimated and predicted state. 

 From relevant literature, the uncertainty concerning the drag force model and particularly that of the 

atmospheric density model are considered to be highly correlated with time and space. During the present 

work, this uncertainty has been considered as a Gaussian white noise not correlated with time or space. 

Several studies suggest the characterisation of the atmospheric drag force model uncertainty by means 

of a Gaussian noise model dependent on time. Different models can be considered and are available 

such as the random walk model, the Brownian motion model or the Ornstein-Uhlenbeck process (see 

[Schiemenz, Utzmann, & Kayal, 2019], [Siminski J. , 2016] and [Sagnieres & Sharf, 2017]).  For future 

work, the author considers that the definition of a Gaussian time dependent atmospheric drag consider 

parameter would improve the results displayed so far. 

 The implementation and the cases discussed consider objects orbiting in the LEO regime, where the 

atmospheric force is usually the most relevant contribution to the uncertainty realism problem. As 

mentioned, the methodology is devised to work for all types of objects and measurements, thus for future 

work the author suggests the implementation of the modelled solar radiation pressure consider parameter, 

as well as the validation and verification of the implementation through a test case considering a simulated 

GEO orbiting object. Ultimately, a covariance realism improvement could also be achieved for GEO or 

even Geostationary Transfer Orbit (GTO) objects, where the solar radiation pressure is the main 

perturbing force. 

The results of this research project have led to the publication and presentation of a peer-reviewed conference 

paper in the 70th International Astronautical Congress (IAC) held in Washington, on October 2019, and a 

conference paper to be defended in the 2nd IAA Conference on Space Situational Awareness (ICSSA), to be held 

in Washington on January 2020. Both papers are attached to this document as an Appendix. 
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A  
NLRMSISE-00 ATMOSPHERIC 

MODEL  
 

In the following section the dynamic models used in the orbit determination process and in the propagation will be 

detailed. It is important to define such models as they represent the source of error and uncertainty that is not 

considered, most of the times, in an orbit determination process. Particularly, the solution of an OD will depend on 

the models implemented, as models for the atmospheric density and prediction of geomagnetic indices are 

constantly updated and improved, derived from different data sources and using different techniques. Some of 

them will be better at describing low atmospheric density variations while others will prove more valuable at high 

altitudes, where density variations are driven by other physical phenomena. Hence, to understand the solutions 

and the values of the consider parameters variances obtained, the models employed to generate predictions for 

the geomagnetic index, the solar flux and the density will be explained. 

The density model implemented in the orbit propagator employed by GMV’s software is the MSISE-90 model (Mass 

Spectometer and Incoherent Scatter). This model gives predictions of the neutral temperature and density in 

Earth’s atmosphere, from ground to thermospheric altitudes. From 72.5 km upwards, the MSISe-90 model is based 

on the MSISE-86 model with some corrections applied thanks to the information produced by the Space Shuttle 

flights and updated incoherent scatter results. As the orbits considered during this work are at LEO regions, the 

model to be considered does not differ much from the MSISe-86 model. A good reference of the termospheric 

models employed in the space industry can be found in [Klinkard, 2006] section B. 

MSIS models were first derived from Earth and atmospheric monitoring mission in the early stages of space 

exploration. Some of the mission which took part in the retrieval of significant data for the creation of such models 

are AE-B, OGO 6, San Marco 3, Aeros and AE-C. The MSIS models differ from drag-based models as they rely 

on mass-spectometer data to characterize the atmospheric behaviour. They implement a specific species analytical 

method based on temperature and concentration profiles to compute total densities. In contrast, drag-based 

models integrate diffusion equations using empirical temperature profiles. The parameters that have the greatest 

impact on the state of the termosphere and that are relevant to the MSISE-86/90 model are: 

 𝑧 or geodetic altitude of the satellite 

 𝑡𝐿𝑆𝑇 local solar time 

 𝑡𝑑 day of the year 

 𝜙 geodetic latitude 

 𝑡𝑈𝑇 universal time 

 �̅�10.7 mean solar activity  

 𝐹10.7 current solar activity  

 𝐴𝑝 geomagnetic activity index or six-hourly 𝑘𝑝 index. 
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Hence, MSISE-90 model tries to capture diurnal, seasonal and annual variations of the density of the atmosphere 

and its compositions (because of its species-wise approach). Its main contributions are the altitude and solar and 

magnetosphere activity, modelled as a function of the satellite with respect to Earth’s surface. 

From [Klinkard, 2006] p. 335, model’s accuracy is expected to be Δ𝜌1𝜎 ≈ 15% although using exact and updated 

input parameters. The situation worsens when extreme solar and geomagnetic phenomena occur, as the variation 

of these contributions can lead to density errors of more than 100%. Because of the nature of the measures, the 

MSISE models provide a good fit for high termospheric regions, where vast amounts of data could be retrieved. 

However, the fit is worse at low altitudes as available data is scarcer. It is advisable to use drag-based models for 

low altitudes as their accuracy is far better than mass-spectometer based models. 

Variations in atmospheric conditions (temperature, density and composition) are driven by solar activity. The 

energy emitted by the Sun in the form of photons and solar wind reaches the Earth atmosphere in the form of 

extreme ultraviolet and X-ray frequency bands. Such energy bands are absorbed by the atmosphere, mainly the 

termosphere, leading to heavy changes of temperature and density. There are 3 main effects of Sun’s radiation to 

Earth’s atmosphere, first the diurnal effect due to the Sun’s ultraviolet radiation heating of the atmosphere, having 

its impact on a 24 h base and that produces also spatial variations with respect to time. The second effect is related 

to Sun’s extreme ultraviolet radiation, which shows dependencies on the Sun rotation cycle (27 days) and Sun’s 

solar activity (11 years). The last effect is due to solar wind, which has an effect on atmospheric density as it 

interacts with Earth’s magnetosphere. 

As commented on this section, a proxy to measure the solar activity is the 𝐹10.7. However, all models use an 

averaged solar activity index �̅�10.7 formed by the average of the preceding 𝐹10.7 values from the last 3 solar rotations 

(or 81 days). It is important to remark that the atmosphere does not react instantly to solar activity but the models 

use 𝐹10.7 from the past day to model density changes. For long term forecasts, actual prediction models can 

compute accurately up to 2 solar cycles (22 years) of averaged solar activity data.  

As commented above, solar wind and ejected charged particles of the Sun do have an impact on our atmosphere, 

as they react with the magnetosphere and change the value of the magnetic field in those regions. Because of the 

random behavior of the geomagnetic activity, no long term forecast can be produced (only up to 27 days). 

It is clear that orbit determination processes and orbit forecasts will have to rely on predictions and available 

information retrieved from different sources. The degree of accuracy of the density is difficult to assess and for this 

reason its uncertainty has a great impact in the overall uncertainty of the drag acceleration (as shown in section 

2.1.3.1). There are several sources from which solar radiation parameters and geomagnetic indices can be 

obtained, some of them are: 

 National Oceanic and Atmosphere Administration (NOAA): This organism delivers a daily report with the 

values for the past day, once processed, and a prediction for the coming two days, together with the mean 

solar flux index.  

 Celestrack: The following webpage publishes relevant information about Space Weather data every 3 

hours, giving updates on observed solar flux indexes and predictions for the next 44 days. 

 GMV software (RSGAconv): Software tool developed by GMV to compute predictions for the solar flux 

index using historical data. The software is able to ingest historic data (from NOAA) from large periods, 

up to several solar cycles, to compute estimations of the indexes ranging from 1 day to several years. 

The sole fact of using proxies as a representation of the interactions between solar radiation, magnetosphere and 

the atmosphere in the definition of our models is introducing a certain uncertainty. Moreover, if this indexes are not 

observed but predicted the uncertainty is greater. It is clear that the modelling of the drag acceleration is difficult 

and continuous research is being done. The scope of this work will not focus on computing the dependencies of 

drag model uncertainties, however, it is important to understand where they come from. 
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Abstract 

Regular products within the field of Space Surveillance and Tracking (SST) and Space Traffic Management (STM), 

such as high-risk collisions, upcoming re-entries or fragmentations, rely both on the estimated state and associated 

uncertainty of detectable resident space objects (RSOs). Classical orbit determination (OD) algorithms provide the 

required estimations, assuming that the uncertainty in the state of the object is properly characterized by its state vector 

covariance and assuming Gaussian processes. 

However, a common problem of classical orbit determination processes is the misrepresentation of the RSOs 

uncertainty through the estimated covariance. Ultimately, this causes a great impact in the quality and accuracy of SST 

products as the estimated covariance is overly optimistic (too small) and the true uncertainty of the object is not 

captured. One of the causes for the unrealism of the estimated covariance is found in the classical OD approaches, 

as they fail to consider, or properly characterize, the uncertainty of the dynamical models used to describe the motion 

of the objects, such as the atmospheric drag force or the solar radiation pressure acting on the orbiting RSOs. Because 

these models provide a deterministic solution to a stochastic phenomenon, an inherent associated uncertainty should 

be regarded when used during an orbit determination. 

The aim of this work is to devise a methodology to improve the covariance realism of common OD processes 

through the classical theory of consider parameters of batch least squares methods. The methodology uses the 

classical theory of consider parameter to add to the estimated covariance the contribution coming from the uncertainty 

of the consider parameters. To do so, the variances of the consider parameters are estimated through another least 

squares process, with which the propagated covariance best fits a so-called observed covariance, previously derived, 

in a process named covariance determination. The influence of the main sources of dynamic model uncertainty can 

be evaluated by examining the resulting covariance correction for each uncertainty source (e.g. atmospheric drag force 

modelling, sensor calibration parameters or solar radiation prediction). 

This publication focus on studying the effect of the atmospheric drag force and range bias modelling uncertainty 

in the correction of an estimated covariance. The proposed methodology has been applied to a simulated realistic 

scenario of measurements and objects to evaluate the consistency of the corrected covariance via Monte Carlo analysis. 

Thorough analyses are presented to illustrate the effect of dynamic model errors on covariance realism. 

 

Keywords: space surveillance and tracking, space traffic management, uncertainty realism, covariance realism, orbit 

determination 

 

1. Introduction 

The provision of most of the Space Surveillance and 

Tracking (SST) services depends on how well modelled 

is the uncertainty on the resident space objects (RSOs), 

i.e. uncertainty realism. Assuming Gaussian processes, 

the uncertainty in the state of the objects can be 

represented by their covariance, which can be directly 

obtained via classical orbit determination (OD) given that 

the measurements are available. 

These services comprise conjunction analysis, sensor 

tasking and scheduling, catalogue build-up and 

maintenance or manoeuvre and anomaly analysis among 

others. All of them rely on covariance as a means of 

approximating the orbit uncertainty of RSOs, as Gaussian 

statistics provide a feasible and preliminary 

approximation of the probability density function of the 

state estimation problem (considering small orbital errors 

and linear dynamics). Covariance unrealism not only 

depends on the dimension of the main directions of 

uncertainty but also on the orientation of these directions 

with respect to the true uncertainty of the orbit [1]. For 

instance, covariance misrepresentation (either in 
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orientation or dimension) can lead to differences of more 

than an order of magnitude in the computation of the 

probability of collision [2]. It is clear that covariance 

realism is desired in conjunction analysis but proper 

representation of orbit uncertainty is of the utmost 

importance to all the aforementioned services (see [3] 

and [2] for further examples on the relevance of 

covariance in SST products).   

It is an extended practice among SST service 

providers to artificially increase the covariance using 

non-physical scaling factors, acting as a safety margin in 

order to compensate for uncertainty misrepresentation [1].  

However, most of them do not rely on a physical 

approach but an statistical approach is used to generate 

these correction coefficients. 

Forecasts predict that the increasing number of RSOs 

may require better state uncertainty characterisation. For 

future Space Traffic Management (STM) systems, it is 

desirable to identify high probability collisions and avoid 

false alarms [4]. The need of a robust technique to correct 

covariance, considering both statistics and dynamics, to 

include a complete set of uncertainty sources,  becomes 

the central motivation of this work.  

This paper presents a new methodology to improve 

covariance realism in OD processes, within the field of 

SST and STM. The main goal is to properly account for 

the uncertainty of the main dynamical models to improve 

covariance unrealism.  

This methodology is based on the consider 

parameters theory [5] [6]. The classical theory is revisited 

and an estimation of the variances of these consider 

parameters proposed. 

Such additional estimation process relies on a least-

squares problem in the covariance space, where a 

parallelism is established with a classical OD algorithm. 

Starting from an initially estimated a-posteriori 

covariance, a least-squares process is performed through 

a complete batch of observations (observed covariances 

obtained from an statistical comparison of past orbital 

solution) so as to correct the initial state (estimated a 

posteriori covariance without consider parameters 

contribution) and obtain a best-fitting solution. In our 

case, the estimated parameters that will lead to the sought 

correction are the variances of the consider parameters 

contemplated, which will then be used to correct future 

orbit determination a posteriori covariance solutions. The 

method described allows for a physical solution of the 

scaling parameters that would be implemented otherwise 

using empirical safety factors. 

The application as well as the software used to 

generate the different solutions and run the simulations is 

within GMV’s SST software suite. 

 

2. Background 

Some of the terms that are used along this paper are now 

defined for clarification: 

- Observation: set of measurements related to a certain 

epoch, belonging to a given object and obtained by 

certain sensor, e.g. range, range-rate, azimuth, 

elevation, right ascension, declination. 

- Orbit determination (OD): process with which the 

orbital state (position and velocity at the estimation 

epoch, as well as dynamical parameters such as drag 

coefficient or solar radiation pressure coefficient) of 

an object are estimated based on observations 

obtained from sensors, typically telescopes and/or 

radars in SST. 

- Estimated parameters/orbital state: set of orbital 

parameters (position, velocity and dynamical 

parameters) obtained through an orbit determination 

process. 

- Estimated/determined orbit: evolution over time of 

an object’s state obtained through an orbit 

determination process over a time interval with 

available observations. 

- Predicted/propagated orbit: evolution over time of 

an object’s state obtained through an orbit 

propagation process of a previously estimated orbital 

state over a time interval without available 

observations 

- A-posteriori covariance: covariance of the estimated 

orbital state resulting from an orbit determination 

process. Depending on whether consider parameters 

have been consider or not: 

o Noise-only covariance, if no consider 

parameters have been included in the orbit 

determination. Therefore, it only accounts for 

measurement noise. 

o Consider covariance, if consider parameters 

have been included in the orbit determination. 

This covariance matrix is larger than the noise-

only one. 

- Propagated covariance: uncertainty characterization 

over time of the orbit (position and velocity) of the 

object obtained through propagation of the a-

posteriori covariance 

- Consider parameters: parameters that are not 

estimated in the orbit determination process but 

whose uncertainty is added to the a-posteriori 

covariance in order to improve covariance realism. 

- Variance of consider parameters: uncertainty of the 

consider parameters. 

- Observed covariance: uncertainty characterization 

over time of the object’s orbit generated from an 

statistical analysis of estimated and propagated orbits, 

covering the propagation time interval and relative to 

the start time of the propagation 

- Observed covariance generation: process in which 

different orbits, including estimated (obtained 

through orbit determination processes) and 
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propagated ones, are compared among them in order 

to derive the observed covariance. 

- Covariance determination: process in which the 

variance of consider parameters is estimated in order 

to fit the propagated covariance to the observed 

covariance. 

The theory used in this work lays its foundations on 

the classical theory of batch least-squares OD, with the 

addition of the so-called consider parameters directly into 

the residuals equation [5]: 

Δ𝒛 = 𝑯𝑦(𝒚0 − 𝒚0
𝑟𝑒𝑓

) + 𝑯𝑐𝒄 + 𝜺 (1) 

where Hy and Hc are partials of the measurements 

with respect to the state vector, y0 and consider 

parameters, c, respectively, while ε denotes the 

measurement errors. 

The consider parameters are assumed to be random 

Gaussian variables with zero mean and a certain standard 

deviation, i.e.: 

𝑐~Ν(0, 𝜎𝑐) (2) 

As a consequence of the previous assumption, the 

solution of the estimated parameters does not change 

with respect to a classical batch least-squares without 

consider parameters, as the expected value of the 

consider parameter is zero. However, the resulting a-

posteriori covariance of the estimated parameters now 

takes into account the consider parameters, leading to the 

following expression for the so-called consider 

covariance matrix [5]: 

𝑷𝑐 = 𝑷 + (𝑷𝑯𝒚
𝑇𝑾)(𝑯𝑐𝑪𝑯𝑐

𝑇)(𝑷𝑯𝑦
𝑇𝑾)

𝑇
 (3) 

being P  the estimated a-posteriori covariance from a 

regular OD (also known as noise-only covariance), 

without consider parameters, W the weighting matrix, 

and C a diagonal matrix containing the variance of the 

estimated parameters. The dimensions of the involved 

matrices are gathered below for clarification: 

 𝑷,  𝑷𝒄 ∈ ℝ𝑛𝑦 × ℝ𝑛𝑦 

 𝑯𝒚 ∈ ℝ𝑛𝑧 × ℝ𝑛𝑦 

 𝑯𝒄 ∈ ℝ𝑛𝑧 × ℝ𝑛𝑐 

 𝑾 ∈ ℝ𝑛𝑧 × ℝ𝑛𝑧 

 𝑪 ∈ ℝ𝑛𝑐 × ℝ𝑛𝑐 
Where ny is the number of estimated parameters, nz is 

the number of measurements and nc the number of 

consider parameters 

This theory enables a covariance correction 

(estimation uncertainty) without degrading the integrity 

of the orbit solution (estimation expectation). However, 

it is important to note that the variance of the consider 

parameters is not usually known and this explains why 

the contribution from consider parameters is not typically 

added to the a-posteriori covariance. 

 In our methodology, the variance of consider 

parameters is obtained through an additional estimation 

process in the covariance space. The variance of the 

consider parameters is estimated by minimizing the 

residuals between the observed and consider covariance. 

The latter is computed by adding the contribution of the 

consider parameters to the noise-only covariance using 

Equation (3). 

 

3. Error modelling 

The main sources of un-modelled uncertainties in 

typical OD processes in the SST and STM frameworks 

are: 

 Errors in atmospheric drag force model, 

coming either from errors in the estimation of 

atmospheric density, errors in the computation of 

the cross-section of the object, errors in the 

estimation or prediction of solar and 

geomagnetic proxies, etc. 

 Errors in measurement reconstruction 

models, coming from errors in the range biases 

estimated during the calibration of a given radar 

sensor 

 Errors in solar radiation force models, coming 

errors in the solar radiation pressure acting on the 

satellite or errors in the computation of the cross-

section of the object.  

The first two sources affect mainly Low Earth Orbit 

(LEO) objects, where the atmospheric drag is the main 

driver of uncertainty and observations are normal from 

radar sensors. The third source of uncertainty is more 

relevant in Geosynchronous Earth Orbit (GEO) regime, 

and not further analyzed in this paper. However, the 

methodology proposed in this work is intended to be 

applied in the future to this third case. 

 

3.1 Atmospheric drag force model error 

The modelling of atmospheric drag forces is one of 

the greatest contributions to an unrealistic uncertainty. 

The use of deterministic models to predict stochastic 

phenomena like atmospheric density, and ballistic 

parameters, among others, is not sufficient and an 

uncertainty correction should be applied to an estimated 

covariance to account for these random phenomena. 

The atmospheric drag force model error has been 

included in the typical model: 

𝑫 = −
𝛼

2𝐵
(1 + 𝑐 𝐴𝐸)|𝒗|𝒗 (4) 

where α is the atmospheric density, B the ballistic 

coefficient, v the orbital velocity and cAE the 

corresponding atmospheric drag force model error 

consider parameter. 

The consider parameter, cAE, intends to account for 

both spacecraft model and atmospheric density errors 

that do not depend on time. It is expected to have zero 

mean, as required by the consider parameters theory, and 

an associated standard deviation to account for errors in 

the modelling of the different atmospheric drag 

parameters. 
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3.2 Range bias model error 

Radar calibration errors are another contributor to the 

un-modelled uncertainty. Systematic errors in the 

calibration of a radar sensor and the inherent uncertainty 

in the calibration procedure may lead to an unconsidered 

source of noise. Therefore, to account for such effects the 

range bias consider parameter has been included into the 

range measurement equation as it follows: 

𝜌 = 𝜌∗ + 𝑐𝑅𝐵𝐸  (5) 

where ρ* is the former range and cRBE the consider 

parameter. 

 

4. Covariance determination 

The covariance determination algorithm has been 

conceptualized with great parallelism to a classical OD. 

The initially defined solution, or the estimated a-

posteriori covariance from an OD, is corrected through a 

fitting process using the variance of consider parameters 

as the parameters to fit.  

The observations are represented by batches of 

observed covariance matrices that characterize the 

evolution of the uncertainty as it is propagated far from 

the initial state. 

The estimated parameters are the variances of the 

consider parameters, c. The residuals, to be minimized, 

in this covariance determination problem are: 

𝑷𝑜𝑏𝑠(𝑡𝑖) − 𝑷𝑐(𝒄, 𝑡𝑖) 
 

(6) 

where Pobs is the observed covariance matrix 

(measurements in the covariance space and obtained as 

described below) and Pc is the consider covariance 

matrix, given by Equation (3). 

The consider matrix depends on the estimated 

variance of consider parameters. 

 

4.1 Covariance propagation 

The involved covariance matrices are propagated via 

the complete transition matrix, Φ(𝑡, 𝑡0) ∈ ℝ𝑛𝑦 × ℝ𝑛𝑦 , 

i.e.: 

𝑷𝑐(𝑡, 𝒚0) = 𝚽(𝑡, 𝑡0)𝑷𝑐(𝑡0, 𝒚0)𝚽T(𝑡, 𝑡0) (7) 

being 𝚽(𝑡𝑖 , 𝑡0) the state transition matrix that allows to 

propagate the covariance matrix from t0 to t. It is a square 

matrix of dimension 6 (position and velocity) plus the 

number of dynamical parameters (usually drag and solar 

radiation coefficients). Not only the position and velocity 

covariance are propagated but the complete covariance 

matrix is, as dynamical parameters covariance elements 

(such as the drag coefficient element) increase the 

covariance of the other covariance elements 

(position/velocity) thanks to the pre and post-

multiplication of the complete transition matrix. 

Alternative covariance propagation techniques could be 

considered instead, if required. 

 

 

4.2 Observed covariance generation 

The covariance matrix is mathematically defined as: 

𝒄𝒐𝒗(𝒙, 𝒙) =
1

𝑁
∑[𝒙𝑖 − 𝐸(𝒙)][𝒙𝑖 − 𝐸(𝒙)]𝑻

𝑁

𝑖=0

 (8) 

It can be shown that the covariance of the state vector 

is the same as the covariance of the difference between 

state vectors if Gaussian independent and identically 

distributed random variables are assumed [7]. These 

orbital differences are computed in the TNW local frame. 

The observed covariance is obtained by comparing the 

determined orbits against predicted ones, as shown in Fig. 

2. This is based on a purely statistical consistency 

analysis of orbital differences between predicted and 

determined orbits from independent and uncorrelated 

ODs. This procedure is depicted in Fig. 1, where both 

estimated/determined and propagated/predicted orbits 

from independent OD processes are represented as 

horizontal lines. Each orbital comparison is assembled in 

the corresponding prediction time bin. They are 

representative of the error of the propagated orbits and 

therefore, of the uncertainty evolution. This method has 

been successfully applied to covariance derivation from 

operational orbits [8]. 

Therefore, by aggregating orbital differences between 

pairs of predicted and determined orbits from 

independent and uncorrelated ODs, it is possible to 

obtain the evolution of the covariance matrix along the 

prediction time. To do so, each pair is evaluated and 

statistics along certain prediction time window obtained. 

The prediction time is referred to as the relative time with 

respect to the epoch of the last observation. 

 

 
Fig. 1. Aggregation of the orbital differences along 

the prediction time for the generation of observed 

covariance. 

 

By considering a sufficient amount of independent 

orbits, a statistical trend of the evolution of the 

differences along time arises and a covariance evolution 

can be generated. However, it is important to detect and 

filter outliers to avoid polluting the statistical analysis. 

They come from two different sources: manoeuvre 

modelling mismatch and correlated OD processes. The 
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first implies operational satellite manoeuvres not 

properly captured during one orbital update and can be 

tackled with an upper-bound threshold on the orbital 

differences, while the second is related to the fact that 

common measurements may have been considered on 

two orbital updates and entails lower-bound thresholds. 

After computing the orbital differences of each orbit 

pair, three additional steps are performed: 

 Outlier rejection, band pass filter to detect both 

manoeuvre modelling mismatch and correlated 

OD processes. 

 Root Mean Square (RMS) computation, 

corresponding to the different elements of the 

observed covariance matrices. 

 RMS fitting, to obtain the final continuous 

observed covariance evolution. 

 

5. Validation 

Although the ultimate objective is to use the 

presented covariance determination methodology with 

real data, a validation chain has been prepared to 

understand the role of the different model errors and 

prove the performance of the covariance determination 

algorithm. A simulation environment has been setup with 

the capability of simulating realistic orbits, radar 

measurements and ultimately enable the execution of 

different OD processes including the different effects at 

hand: impact of atmospheric drag force and range bias 

models errors. For this purpose, several cases have been 

defined. First, a case with only measurement noise. 

Second, a case where an atmospheric drag force error is 

simulated, together with measurement noise. And third, 

a case where a range bias is simulated, together with 

measurement noise. 

In all cases, a Monte-Carlo (MC) based approach is 

used, where each sample represents a different 

perturbation on the parameters being modelled (range 

bias and/or atmospheric drag force), and measurements 

are generated with representative noise matching typical 

accuracy of radar sensors. Each sample represents an 

estimated orbit affected by measurement noise, and the 

value of the consider parameter being simulated, which 

is constant in a particular sample. This sequence is 

depicted in Fig. 3. 

 
Fig. 3. Validation sequence schematic 

 
Fig. 2. Sketch of the orbital differences assembly for the generation of observed covariance 
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The test cases aim at producing a reasonable 

population of orbits so that an observed covariance 

matrix can be derived as a product. The observed 

covariance matrix is to be fed to the covariance 

determination algorithm, with the purpose of estimating 

the variance of the consider parameter so that consider 

covariance matrix is best fitted to the observed ones. 

In order to generate such populations, a processing 

scheme has been defined with the following steps for 

each MC point: 

 Propagation of the reference orbit of an RSO 

with a high-fidelity propagator. The resulting 

ephemeris are required for the simulated radar 

observations generation, as well as for further 

validation. Dynamical model errors, such as 

atmospheric drag force ones, can be included 

here, thus resulting in a cloud of simulated orbits. 

 Generation of radar measurements using the 

previously simulated orbits. During the 

measurement computation, typical measurement 

noise and range bias model error are considered. 

 Using the simulated measurements, ODs are 

performed, leading to a cloud of estimated orbits. 

This cloud is intended to sample the probability 

density function characterizing the uncertainty of 

the orbit determination. 

By definition, the consider parameter is a systematic 

error affecting a whole orbital arc, for this reason each 

MC trial will be affected by a different value of a consider 

parameter, either dynamic or sensor calibration. Its value 

will be determined as sample of a Gaussian distribution. 

The purpose of the validation is for the covariance 

determination algorithm to recover the standard deviation 

of the input consider parameter error, given a proper 

sampling of the probability density function associated to 

the state estimation problem. 

It is worth mentioning that the error in the model 

noise affecting each sample of the population is 

generated considering a certain value for the parameter, 

therefore it becomes a systematic error during the 

generation of measurements and estimation of the state 

vector. However, as each sample  is affected by a unique 

value, it will generate a different orbital estimation. 

For the results presented in this paper, the observed 

covariance is directly computed with Equation (8), 

considering the cloud of MC orbital estimations. 

However, on an operational environment this is not 

feasible and therefore the aforementioned methodology, 

presented in Section 4.2, is proposed to generate the so-

called observed covariance. 

 

6. Results 

In this section, results of several tests of the validation 

sequence are presented.  

The orbit and physical properties of the reference 

RSO are compiled in Table 1. The orbit has been taken 

from a public TLE of SENTINEL-3A (41335) [9]. 

 

Table 1. Simulated RSO orbit and physical properties 

Reference RSO 

Semi-major axis 7186.877 km 

Eccentricity 0.001113 

Inclination 98.72 deg 

RAAN 77.03 deg 

Mass 100 kg 

Area 10 m2 

Drag coefficient 0.4 

 

 
Fig. 4. Histogram of the relative differences between covariance TNW position elements (from the OD of each 

MC point) in Case 1 
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The dynamical model used is a complete one: 16x16 

gravity field, third body perturbation of the Moon and 

MSIS-90 atmospheric density model.  

The estimation time span of the involved ODs is of 1 

week and the estimation is propagated one week after the 

last observation available. 

Three cases are presented in this section: 

 Case 1: Measurement noise only 

 Case 2: Measurement noise and atmospheric 

drag force model error 

 Case 3: Measurement noise and range bias model 

error 

The considered period of time for measurement 

generation and orbit determination is of one week (from 

01-01-2019 to 01-08-2019). The estimation epoch, t0, is 

set at the end of this time interval (i.e. 01-08-2019). 

Finally, the estimated orbits and covariance matrices are 

propagated one week ahead. 

The results of the analyses performed can be grouped 

in three main categories: 

 Covariance consistency: to evaluate the quality 

of the ODs, as well as the differences between 

covariance matrices considering all estimated 

orbits. For instance, in the atmospheric drag 

force model error, the estimated drag coefficient 

during the MC ODs is compared against each 

MC perturbation to check if it captures the model 

error. 

 Covariance containment: to ensure the 

observed covariance is able to capture the 

position dispersion of the cloud of MC points. To 

do so, an approach similar to [10] is followed: 

computation of the Mahalanobis distance [11] to 

get the percentage of points lying inside a k-

sigma ellipsoid at different epochs. Additional 

results, supporting this containment are 

provided, such as position residuals distributions. 

 Covariance realism: to investigate the 

differences between the consider covariance 

(output from the proposed covariance 

determination procedure) and the noise-only 

covariance. By observing the evolution of the 

different covariance matrices, the use of consider 

parameters (as well as their estimated sigma 

values) can be justified. 

For each case a sample of 10,000 MC points have 

been processed following the MC chain introduced in 

section 5. 

 

6.1 Case 1: Measurement noise only 

This initial case is the simplest one, since the only 

noise inputted to the MC chain is the measurement noise. 

Therefore, the measurements used for each OD are 

different, but since a zero-mean Gaussian noise model is 

considered, it is expected to be well-captured during the 

estimation process. The considered sigmas are presented 

in Table 2. 

 

Table 2. Simulated measurement noise sigma 

Measurement Sigma 

Two-way range 10 m 

Azimuth and elevation 300 mdeg 

Two-way range-rate 1000 mm/s 

 t = t0 t = t0 + 3 days t = t0 + 6 days 
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Fig. 5. Position covariance containment considering a 4-σ ellipsoid for Case 2 
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Regarding covariance consistency, Fig. 4 shows the 

histogram of the relative differences between the 10,000 

covariance matrices estimated via classical OD (for each 

MC point). The differences are computed by using the 

average covariance as reference. The relative differences 

for all the position elements are below 0.01%, i.e. they 

are essencially the same. The quality of the ODs has also 

been assessed by checking the weighted RMS, whose 

histogram is shown in Fig. 7. The distribution is centered 

at 1.0 (meaning that the residuals match the expected 

values, i.e. measurement weights) with an standard 

deviation lower than 0.03. 

 

 
Fig. 7. Histogram of the weighted RMS of the OD for 

each MC point in Case 1 

In terms of covariance containment, Table 3 proves 

that the so-called noise-only covariance is able to 

properly capture the measurement noise as expected. 

Besides, the theoretical containment probabilities of k-σ 

shells given a 3-dimensional Gaussian distributions are 

also included at the bottom of each table [12]. 

 

Table 3. Covariance containment results for Case 0 

Time 1-σ 2-σ 3-σ 4-σ 

t0 19.72% 73.68% 97.26% 99.87% 

t0 + 1 day 20.20% 74.04% 97.23% 99.89% 

t0 + 2 days 19.62% 74.06% 97.07% 99.86% 

t0 + 3 day 19.91% 73.79% 97.08% 99.87% 

t0 + 4 days 19.42% 73.87% 97.13% 99.87% 

t0 + 5 days 19.79% 73.94% 97.24% 99.86% 

t0 + 6 days 19.35% 74.05% 97.05% 99.87% 

Theor. 19.90% 73.90% 97.10% 99.87% 

 

6.2 Case 2: Measurement noise and atmospheric 

drag force model error 

This case includes the previous measurement noise 

model and the following additional gaussian atmospheric 

drag force model error: 

𝑐𝐴𝐸~𝑁(0, 𝜎𝐴𝐸 = 5% 𝐶𝐷) (9) 

being CD the reference drag coefficient. 

In terms of covariance consistency, the weighted 

RMS and the differences among the estimated (MC) 

covariance matrices have been analysed, obtaining 

similar results as those presented for Case 1. 

As expected, the estimated drag coefficient absorbs 

the atmospheric drag force error. This is shown in Fig. 9, 

where the blue points, corresponding each to a MC point, 

stick to the red dotted line (1:1 slope, with certain 

dispersion due to measurement noise). 

 

 
Fig. 6. Evolution of the T, N and W position sigma of the noise-only, observed and consider covariance in Case 2 
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Fig. 9. Drag coefficient error as a function of the 

atmospheric drag force model perturbation in Case 2 

The main effect of the atmospheric drag force model 

error is observed in the T-position, as shown in Fig. 10. 

There is a strong dependence with time, as depicted by 

the increasing slope as time moves away from the 

estimation epoch. The reason why the RMS is not zero at 

t0 is the effect of the measurement error (recall range 

measurement noise sigma of 10m). 

 
Fig. 10. T-Position RMS as a function of the 

atmospheric drag force model error at different epochs 

in Case 2 

Regarding covariance containment, Table 4 and  

Table 5 gather the results in terms of percentage of 

MC points inside the k-σ position ellipsoid several days 

after the last measurement for the noise-only (average 

estimated covariance from all MC ODs) and consider 

covariance, respectively.  

 

Table 4. Noise-only covariance containment of Case 2 

Time 1-σ 2-σ 3-σ 4-σ 

t0 19.61% 74.03% 97.06% 99.89% 

t0 + 1 day 18.56% 70.66% 96.48% 99.83% 

t0 + 2 days 12.54% 55.92% 86.31% 97.17% 

t0 + 3 day 9.28% 42.58% 72.89% 88.93% 

t0 + 4 days 7.20% 34.77% 62.24% 79.96% 

t0 + 5 days 5.47% 26.70% 49.64% 66.14% 

t0 + 6 days 4.66% 21.98% 42.08% 57.49% 

Theor. 19.90% 73.90% 97.10% 99.87% 

 

Table 5. Consider covariance containment of Case 3 

Time 1-σ 2-σ 3-σ 4-σ 

t0 19.64% 73.97% 97.05% 99.88% 

t0 + 1 day 19.84% 73.64% 97.28% 99.91% 

t0 + 2 days 19.88% 74.00% 97.11% 99.91% 

t0 + 3 day 19.71% 73.87% 97.16% 99.91% 

t0 + 4 days 19.37% 74.44% 97.20% 99.89% 

t0 + 5 days 19.49% 73.86% 97.18% 99.89% 

t0 + 6 days 19.51% 74.11% 97.28% 99.89% 

Theor. 19.90% 73.90% 97.10% 99.87% 

 

 
Fig. 8. Evolution of the T, N and W position sigma of the noise-only, observed and consider covariance in Case 3 
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Moreover, Fig. 5 shows the TNW position of each 

MC point, taking as reference the average state of the 

whole population. Green points are those laying inside 

the 4-σ covariance ellipsoid and red points those laying 

outside. It is clear how the noise-only covariance fails 

containing the points, while the consider covariance is 

able to retain most of them. Looking both at Table 4 and  

Table 5 as well as Fig. 6, noise-only covariance 

degrades and becomes more unrealistic as time goes by 

while consider covariance is able to capture state 

uncertainty through time. 

Finally, Fig. 6 shows the evolution of the T, N and W 

position sigma of the noise-only, observed and consider 

covariance matrices along time. The first insight is that 

noise-only covariance is far from the observed one, and 

the second is that the consider covariance has been 

properly fitted to the observed covariance. The consider 

covariance matrix has been obtained after a covariance 

determination process that provided a value for the 

estimated variance of the atmospheric drag force model 

error of 24.27(%)2, i.e. a standard deviation of 4.93%, 

almost the 5% of the input noise model.  

The residuals after the fitting were found to be several 

orders of magnitude below the covariance correction and 

the covariance components itself.  

Hence, the covariance determination algorithm has 

been validated, together with the implementation of a 

dynamic consider parameter to account for atmospheric 

drag force modelling uncertainty. 

 

6.3 Case 3: Measurement noise and range bias model 

error 

This case includes the former measurement noise 

model and the following additional gaussian range bias 

model error: 

𝑐𝑅𝐵𝐸~𝑁(0, 𝜎𝑅𝐵𝐸 = 20𝑚) (10) 

This value has been chosen to be greater than the 

range measurement noise so that the impact is clear. 

The first impact of the range bias model error can be 

observed in the weighted RMS of the ODs, as presented 

in Fig. 11. The shape is not similar to the Case 1 (Fig. 7) 

since now the measurement noise does not match the 

measurement weight, leading always to a weighted RMS 

greater than the unity. 

Furthermore, differences between the estimated 

covariance matrices from the MC ODs have been 

inspected and, as in Case 2, no significant differences are 

observed, i.e. all MC ODs are consistent. 

Regarding covariance containment, Table 6 and 

Table 7 gather the results in terms of percentage of MC 

points inside the k-σ position ellipsoid after several days 

after the end of the measurement time interval for the 

noise-only and consider covariance, respectively.  

 

 
Fig. 11. Histogram of the weighted RMS of the OD for 

each MC point in Case 3 

Table 6. Noise-only covariance containment of Case 3 

Time 1-σ 2-σ 3-σ 4-σ 

t0 2.94% 14.12% 26.81% 37.24% 

t0 + 1 day 2.49% 12.33% 23.30% 33.19% 

t0 + 2 days 2.83% 15.41% 29.04% 40.89% 

t0 + 3 day 1.96% 10.17% 20.24% 29.37% 

t0 + 4 days 2.07% 11.14% 21.51% 30.29% 

t0 + 5 days 1.76% 8.78% 18.16% 26.53% 

t0 + 6 days 1.82% 10.34% 19.40% 27.75% 

Theor. 19.90% 73.90% 97.10% 99.87% 

 

Table 7. Consider covariance containment of Case 3 

Time 1-σ 2-σ 3-σ 4-σ 

t0 20.36% 73.84% 96.98% 99.92% 

t0 + 1 day 19.84% 73.61% 97.23% 99.90% 

t0 + 2 days 20.53% 73.88% 96.85% 99.91% 

t0 + 3 day 19.19% 74.02% 97.10% 99.88% 

t0 + 4 days 19.85% 74.14% 96.95% 99.89% 

t0 + 5 days 19.33% 74.20% 97.09% 99.90% 

t0 + 6 days 19.85% 74.07% 96.97% 99.92% 

Theor. 19.90% 73.90% 97.10% 99.87% 

 

It can be seen by inspecting Table 6 that covariance 

degrades as time goes by, having an unrealistic 

covariance yet at the initial estimation epoch. Again, this 

leads to the conclusion that the estimated covariance is 

unable to account for systematic errors and that the 

consider covariance complies with the covariance 

containment all along the orbital evolution. 

The main effect of the range bias model error is 

observed in the T-position, as shown in Fig. 12. The t0 

lines approximately sticks to a 1:1 slope straight line, 

meaning that this position RMS is mainly due to the 

range bias model error. 
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Fig. 12. T-Position RMS as a function of the range bias 

model error at different epochs in Case 3 

Fig. 8 shows the evolution of the T, N and W position 

sigma of the noise-only, observed and consider 

covariance matrices along time. The same conclusions 

pointed out for Case 2, apply to this Case 3: noise-only 

is far from the observed one and again the consider 

covariance has been properly fitted to the observed 

covariance. The estimated variance of the range bias 

model error of 399.85m2, i.e. a standard deviation of 

19.996m, very close to the 20m of the noise model. 

Again, the residuals after the fitting were found to be 

several orders of magnitude below the covariance 

correction and the covariance components itself. Thus, 

the implementation of a dynamic consider parameter to 

account for measurement modelling uncertainty is 

justified. 

 

7. Conclusions 

The paper has presented the foundations of a 

methodology to improve covariance realism. The 

motivation is endorsed by the main conflicts that arise as 

a consequence of an unrealistic covariance. Future SST 

and STM products are intended to rely on robust 

techniques for uncertainty characterization to face the 

challenges of the next generation of space constellations 

and the increasing number of RSOs. 

A review of the OD and consider parameters theory 

has been presented together with an algorithm to estimate 

the variance of the consider parameters so that an 

estimated covariance can be best fitted to an observed 

covariance. Different consider parameters have been 

included, concerning the errors incurred when modelling 

the motion of RSOs and when performing sensing 

campaigns with ground based radar stations. 

Furthermore, a validation scheme has been detailed to 

assess the benefits of this novel technique, defining 

different test cases. It has been shown that the estimated 

state covariance, product of an OD, cannot characterize 

the uncertainty of the state estimation when model errors 

are present over an arc. These errors play a crucial role in 

the uncertainty characterization, as seen in the covariance 

containment analysis made during the previous section. 

Interesting results regarding the effect of the model 

errors on the covariance realism and on the OD related 

products, such as state vector estimation and covariance 

have been discussed. The proposed validation chain has 

provided powerful and exhaustive results in terms of 

covariance consistency, containment and realism. 

The work presented in this paper is preliminary, as 

only simulated data has been considered. The covariance 

determination methodology has been partially validated, 

achieving a remarkable covariance realism improvement 

and properly weighting the effect of model uncertainties. 

Further studies will consider the estimation of several 

consider parameters at once, together with the validation 

of the methodology in other orbital regimes and with 

different environmental conditions. 

In addition, the methodology is going to be applied to 

a real operational environment, starting with 

SENTINEL-3A satellite, since GPS measurements, 

required to generated POD orbits are publicly available, 

and for which there are radar measurements available 

from LeoLabs. The covariance determination algorithm 

is the same as presented in this paper, being the only 

change the use of the observed covariance methodology 

for operational purposes, introduced in section 4.2. 
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ABSTRACT 

The problem of characterizing the uncertainty in the estimated state of resident space 
objects (RSOs) is of major importance in the framework of Space Surveillance and 
Tracking (SST) and Space Traffic Management (STM) activities and particularly for 
product provision (e.g. high-risk collisions, upcoming re-entries, fragmentations). Most 
of these products rely not only on the estimated orbits but also on their associated 
uncertainty, which are estimated during the catalogue build-up and updated through 
maintenance as more measurements are available.  

The proposed methodology extends the classical batch least squares estimation with 
the consider analysis. The goal of the methodology is to estimate the consider 
parameters variance with which a consider covariance is best fitted to a so-called 
observed covariance. The influence of the main sources of dynamic model uncertainty 
(atmospheric modelling, object geometry, geomagnetic and solar radiation indexes 
prediction, sensor calibration parameters, among others) can be investigated by 
evaluating their contribution to the covariance realism improvement. 

The methodology has been applied to a simulated realistic scenario of measurements 
to evaluate the consistency of the corrected covariance via Monte Carlo analysis. 
Furthermore, an interesting case involving real measurements from radars is analyzed 
and investigated through comparisons against precise orbit determination solutions 
for the Sentinel 3A satellite. 

 INTRODUCTION 

The uncertainty of the object’s state is usually represented by the covariance obtained 
from the estimation process, provided that the assumptions of Gaussianity and 
linearity hold true. The covariance matrix is a feasible approximation of the true 
uncertainty of the Resident Space Object (RSOs) if Gaussian statistics deliver a proper 
characterization of the true Probability Density Function (PDF) of the object (i.e. small 
orbital differences, linear regime and short propagation times). Covariance is obtained 
via orbit determination (OD) algorithms given that measurements are available.  

However, the quality of final Space Surveillance and Tracking (SST) products will 
depend on how well the covariance characterizes the true uncertainty, i.e. uncertainty 
realism. Covariance unrealism is affected both by the scaling and orientation of the 
covariance matrix with respect the true PDF [1]. For instance, covariance 



misrepresentation (either in orientation or dimension) can lead to differences of more 
than an order of magnitude in the computation of the probability of collision [2]. Not 
only is covariance realism desired in conjunction analysis but also for other products 
(see [3] and [2] for further examples on the relevance of covariance in SST products).  
The accessibility and exploitation of the future space environment will greatly depend 
on the realistic provision of SST products. For future Space Traffic Management (STM) 
systems, a basic operational requirement is to be able to identify high probability 
collisions while discarding false alarms effectively [4].  

It is a common practice among SST product providers to artificially increase the 
covariance matrix by means of a scaling factor, acting as a safety factor [1]. The 
principal drawback of these techniques is the definition of a scaling factor that lacks 
physical insight in the covariance realism problem and is only based on statistical 
consistency techniques and processing of empirical data.  

The novel methodology introduced in the present is based on the consider analysis 
(or consider parameters) theory presented in [5] and [6]. The novelty of the technique 
proposed is the definition of a methodology to estimate the variances of the consider 
parameters to mitigate covariance unrealism. Hence, the central motivation of this 
paper becomes the definition of a novel technique that considers both dynamics and 
statistics when treating for covariance unrealism, targeting the most relevant causes 
for covariance realism degradation. 

An additional estimation process is conceived to compute the variances of certain 
modelled consider parameters. The estimation is done by means of a least-squares 
estimator algorithm in the covariance space, where a parallelism is established with a 
classical OD algorithm. A noise-only covariance (i.e. a covariance matrix derived from 
an OD) is fitted to a time evolving observed covariance (obtained from an statistical 
comparison of past orbital solutions) where the variances of certain consider 
parameters are estimated. In the covariance determination methodology, the 
estimated parameters will lead to the sought correction and consequent improvement 
of covariance realism. This novel method entails the definition of physically derived 
weights that give empirical insight on the expected uncertainty of certain dynamic and 
measurement models, applicable for posterior propagations. 

In Section 1 the motivation, as well as the relevant terminology and the covariance 
realism metrics will be discussed, laying the theoretical foundations of the 
methodology. In Section 2, the validation chain used for the verification of the 
conceived methodology and its implementation is introduced together with previous 
conclusion obtained from [7]. In Section 3, the results of the validation case plus the 
operational case of the Sentinel 3A satellite are displayed and discussed. Finally, 
Section 4 summarizes the conclusions and future work. 

1.1 Relevant terminology  

Some of the terms that are used along this paper are now defined for clarification: 

- Observation: set of measurements related to a certain epoch, belonging to a given 
object and obtained by certain sensor, e.g. range, range-rate, azimuth, elevation, 
right ascension, declination. 

- Orbit determination (OD): process with which the orbital state (position and 
velocity at the estimation epoch, as well as dynamical parameters such as drag 
coefficient or solar radiation pressure coefficient) of an object are estimated based 
on observations obtained from sensors, typically telescopes and/or radars in SST. 



- Estimated parameters/orbital state: set of orbital parameters (position, velocity 
and dynamical parameters) obtained through an orbit determination process. 

- Estimated/determined orbit: evolution over time of an object’s state obtained 
through an orbit determination process over a time interval with available 
observations. 

- Predicted/propagated orbit: evolution over time of an object’s state obtained 
through an orbit propagation process of a previously estimated orbital state over a 
time interval without available observations 

- A-posteriori covariance: covariance of the estimated orbital state resulting from 
an orbit determination process. Depending on whether consider parameters have 
been consider or not: 

o Noise-only covariance, if no consider parameters have been included in the 
orbit determination. Therefore, it only accounts for measurement noise. 

o Consider covariance, if consider parameters have been included in the orbit 
determination. This covariance matrix is larger than the noise-only one. 

- Propagated covariance: uncertainty characterization over time of the orbit 
(position and velocity) of the object obtained through propagation of the a-posteriori 
covariance 

- Consider parameters: parameters that are not estimated in the orbit determination 
process but whose uncertainty is added to the a-posteriori covariance in order to 
improve covariance realism. 

- Variance of consider parameters: uncertainty of the consider parameters. 

- Observed covariance: uncertainty characterization over time of the object’s orbit 
generated from an statistical analysis of estimated and propagated orbits, covering 
the propagation time interval and relative to the start time of the propagation 

- Observed covariance generation: process in which different orbits, including 
estimated (obtained through orbit determination processes) and propagated ones, 
are compared among them in order to derive the observed covariance. 

- Covariance determination: process in which the variance of consider parameters 
is estimated in order to fit the propagated covariance to the observed covariance. 

 

1.2 Covariance realism metrics 

From [8], several metrics for testing covariance realism are defined, giving especial 
emphasis in the analysis of the Gaussianity of the population of samples derived from 
successive ODs, either for the validation and processing of real orbits. The following 
conditions should be fulfilled if covariance realism is sought: 

 The distribution of the satellite’s predicted position is normal. 

 The mean error of the predicted satellite’s location is approximately 0. 

 The dispersion of the error in the predicted states is consistent with the 
predicted covariance (i.e. covariance containment is achieved). 

It is assumed that if a multivariate normal distribution is normal in all its directions (i.e. 
univariate distributions are proven to be normal) the complete multivariate distribution 
can be regarded as normal. From [8], different normality tests are compared and one 
empirical test is regarded as the best option: Michael’s statistical (see [9] and [10] for 
further reference on the implementation). This test provides a powerful graphical 
statistical test to reject normality based on the definition of confidence boundary 
regions dependent on a significance level of the test (defined by the author).  



The mean error of the predicted state will be computed for a set of predicted epochs 
by measuring the bias between the true reference state and the dispersion of 
computed states.  

Finally, the containment condition will be measured as introduced in [7], by measuring 
the Mahalanobis distance (see [11]) of each MC sample and check whether the 
conditions for a normally distributed 3 degrees of freedom multivariate distribution are 
fulfilled (from [12]). 

Note that in the previous paper, no tests for normality were introduced as the 
population of orbitals states were derived using a sufficient sampling (10000 samples) 
and by considering Gaussian processes in the addition of the perturbations. For the 
cases considered hereafter these conditions do not hold and thus normality must be 
ensured. If normality is rejected, deriving an observed covariance is still feasible 
however lacks statistical and physical consistency, as no Gaussian distribution will 
characterize a non-Gaussian PDF and covariance realism will not achievable. 

 VALIDATION CHAIN 

A Monte Carlo (MC) based approach is followed 
to sample the PDF characterizing the orbital state 
estimation uncertainty. Full insight in the validation 
chain, depicted in Figure 1, can be found in [7]. 
From the previous figure, there are important 
remarks about the validation chain worth 
mentioning: 

 All the simulated orbits are generated 
considering the same reference RSO 

 The MC chain yields a different orbital 
solution by considering two noise sources: a 
random Gaussian noise for the measurement 
generation process and a constant perturbation 
through a complete orbital arc. 

 The aggregation of the MC samples will yield 
a population that fairly characterizes the PDF of 
the orbital estimation. 

The previous validation chain provides insight on the effect of the different model 
errors in the estimation of the state and also in the covariance realism problem. In [7], 
several conclusions were derived: 

 A perturbation in the atmospheric drag force model is compensated by the 
estimation of the drag coefficient, during the OD. However, the propagation of 
the state entails an accumulation of orbital error when comparing the estimated 
MC orbits vs. the reference one. This translates into a loss of realism of the 
noise-only covariance in the along-track direction, appreciated during the 
prediction/propagation of the associated uncertainty. A correction using a 
consider parameter for the atmospheric drag force model is required and its 
variance is estimated using the methodology. The computed consider 
parameter variance delivers a realistic consider covariance and the 
perturbation in the atmospheric drag force model is successfully recovered, 
validating the methodology and its implementation. 

 

Figure 1 Validation chain of the 
Covariance Determination 

methodology 

 



 A perturbation in the range bias has a direct impact in the orbital estimation of 
the OD. At estimation epoch, the different orbital solutions yield a dispersion of 
the orbital state that is appreciated mainly in the along-track direction (with non-
negligible contributions to the cross-track and radial directions). At the same 
time, this yields a degradation of covariance realism not only during the 
propagation of the noise-only covariance matrix but also at estimation epoch. 
The modelled consider parameter effectively upgrades the covariance realism 
and recovers the input perturbation. 

This paper discusses the performance of the methodology considering a set of 
realistic orbits. For this, the same validation chain as depicted in Figure 1 applies. 
Later on, a real case will be treated using the Precise Orbit Determination (POD) 
solutions and measurements of the Sentinel 3A satellite. Next section will introduce 
the extended metrics conceived for the analysis of the covariance realism of both 
noise-only and consider covariance, providing robust techniques to test for the 
performance of the devised methodology. 

 RESULTS 

In the present section two different cases are presented. In order to conclude the 
validation process of the Covariance Determination methodology, Case A is presented 
aiming to prove the performance of the methodology when faced with a realistic set of 
simulated orbits affected by atmospheric model errors. 

Furthermore, once concluded the verification of the methodology, a real scenario, 
Case B, is analyzed by performing a covariance realism improvement of the Sentinel 
3A satellite orbit propagation, considering an entire year of measures. 

3.1 Case A: Validation case with realistic orbits and dynamic perturbation 

The orbit and physical properties of the reference RSO are listed in Table 1. The orbit 
has been taken from a public TLE of Sentinel-3A (41335) [13]. 

The dynamical model used is a complete one: 16x16 
gravity field, third body perturbation of the Moon and 
MSIS-90 atmospheric density model. The features of 
this test case are displayed in the following table: 

The aim of this test case is to validate the performance 
of the methodology when faced with a small sampling 
of the PDF associated to the uncertainty of the state 
estimation and prediction (yielding the observed 
covariance) considering subsequent batches of ODs. 
This case aims to mimic the process that would be 
considered when analyzing real measurements and 
orbits of a satellite, where the availability of 
measurements conditions the accuracy of the results. 
This case includes a Gaussian atmospheric drag force 
model error (AE) regarded as: 

𝑐𝐴𝐸~𝑁(0, 𝜎𝐴𝐸 = 5% ) (1) 

Table 1 Simulated RSO orbit and 
physical properties for Case A 

Reference RSO 

Semi-major axis 7186.877 km 

Eccentricity 0.001113 

Inclination 98.72 deg 

RAAN 77.03 deg 

Mass 100 kg 

Area 10 m2 

Drag coefficient 0.4 

 



In terms of covariance consistency among the different ODs, the weighted Root Mean 
Squared (RMS) and the differences among the estimated (MC) covariance matrices 
have been analyzed, obtaining similar results as those presented for Case 1 displayed 
in [7]. Additional figures describing the results obtained for the present test case can 
be found in the Appendix (Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12). As 
expected, the estimated drag 
coefficient absorbs the atmospheric 
drag force error.  

Before testing covariance containment, 
it is of the utmost relevance to ensure 
that the distribution of orbital errors 
obtained from the comparison of 
predicted orbits against the reference 
one (following the method introduced in 
[7] and [14]) is normal and unbiased. 
The averaged error of the distribution is 
listed in Table 3 together with its 
relative magnitude with respect the 
standard deviation of the distribution. 

Table 3 Averaged and relative error of the distribution in the T, N and W directions, where 𝑡0 stands 
for estimation epoch and subsequent prediction times are expressed relative to it, Case A 

𝑬𝒑𝒐𝒄𝒉 Δ𝑇 (𝑚) Δ𝑁 (𝑚) Δ𝑊 (𝑚) Δ𝑇/𝜎𝑇(%) Δ𝑁/𝜎𝑁(%) Δ𝑊/𝜎𝑊(%) 
𝒕𝟎 0.326 0.132 0.188 7.06 8.48 11.24 

𝒕𝟎 + 𝟏𝒅𝒂𝒚 0.505 -0.054 -0.184 6.94 -7.27 -11.15 

𝒕𝟎 + 𝟐𝒅𝒂𝒚𝒔 0.047 -0.120 -0.209 0.37 -7.22 -11.78 

𝒕𝟎 + 𝟑𝒅𝒂𝒚𝒔 -0.192 0.076 0.183 -0.90 10.08 10.31 

𝒕𝟎 + 𝟒𝒅𝒂𝒚𝒔 -0.023 0.099 0.233 -0.07 13.94 12.19 

𝒕𝟎 + 𝟓𝒅𝒂𝒚𝒔 -0.341 -0.101 -0.190 -0.67 -13.10 -9.82 

𝒕𝟎 + 𝟔𝒅𝒂𝒚𝒔 -1.152 -0.083 -0.258 -1.63 -12.04 -12.40 

Inspecting the previous table, the bias of the distribution is not found significant as in 
most of the cases, even during propagation, the relative value of the bias when 
compared with the standard deviation of the distribution is found to be 10 times 
smaller. 

Furthermore, tests for univariate normality of the distribution are included for the T, N 
and W distributions. A 5% of significance level is defined by the author, selected as a 
common metric for statistical tests: 

 

Figure 2 Michael's normality test for case A for the along-track (left), radial (center) and cross-track 

(right) directions at different propagation epochs, Case A 

Table 2 Features of Case A 

Test case A 

Consider parameter Atmospheric Drag Model Error 

Observed covariance Realistic simulated 

Reference orbit 01-01-2018 to 01-07-2018 

Measurement generation 5 days batch 

Estimation epoch for OD End of measurement period 

Predicted orbit Estimation epoch + 7 days 

 



From inspection of the tests, the distributions are found to be normal. As none of the 
distributions is found to infringe the boundaries of the defined confidence regions, the 
univariate distribution are assumed normal because the null hypothesis of normality 
cannot be rejected. Note that in Figure 2 new points infringe the confidence regions, 
this is only indicative that at estimation epoch the normality of the W direction is 
rejected but as propagation occurs a normal distribution can be safely assumed.  

Finally, the containment metrics are listed in the following tables to depict the 
performance of the methodology when correcting for covariance unrealism: 

Table 4 Covariance containment analysis for the noise-only (left) and consider (right) position 

covariance of Case A, where 𝑡0 stands for estimation epoch and subsequent prediction times are 
expressed relative to it, Case A 

Time 
 Noise-only covariance  Consider covariance 

 1-σ 2-σ 3-σ 4-σ  1-σ 2-σ 3-σ 4-σ 

t0  20.93% 72.67% 96.51% 99.42%  9.88% 44.77% 75.00% 88.95% 

t0 + 1 day  18.23% 70.12% 95.87 % 99.25%  20.93% 64.53% 87.79% 97.67% 

t0 + 2 days  12.10% 55.01% 86.47% 96.35 %  19.77% 71.51% 96.51% 99.42% 

t0 + 3 day  8.74% 41.79% 72.05% 88.01%  24.42% 72.67% 94.77% 99.42% 

t0 + 4 days  6.67% 32.41% 61.42% 78.88%  19.77% 68.02% 96.51% 100.00% 

t0 + 5 days  5.23% 26.48% 49.00% 64.49%  23.84% 72.67% 94.77% 99.42% 

t0 + 6 days  4.01% 21.98% 41.67% 57.11%  20.35% 70.93% 96.51% 100.00% 

Theor.  19.90% 73.90% 97.10% 99.87%  19.90% 73.90% 97.10% 99.87% 

From inspection of the previous tables, the noise-only covariance matrix (Table 4, left) 
fails to realistically represent the uncertainty of the object during the prediction of its 
orbit. The containment metrics show a degradation of the realism that is not observed 
during the propagation of the consider covariance (Table 4, right). The solution 
provided by the Covariance Determination algorithm has estimated a variance of the 
atmospheric drag force model error of 26.49%2, i.e. a standard deviation of 5.147%, 
almost the 5% of the input noise model. In addition, Figure 13 in Appendix shows 
graphically the degradation of the covariance realism of the noise-only covariance 
matrix compared to the increased realism that the consider covariance provides. 

3.2 Case B: Sentinel 3A case 

Table 5 summarizes the most relevant features of the Sentinel 3A Case B. The 
dynamical model used in the processing of the ODs and propagation of the orbits is a 
high-fidelity dynamic model considering high degree and order gravitational model with 
third body perturbations. Only range and range-rate measurements are considered. 
The data sources used for the processing of the different ODs of the Sentinel are 
summarized in Table 6. 

The resulting weighted RMS of the different ODs is depicted in Figure 3. Weights seem 
to be wrongly defined for the processed measurements, however, a calibration 
procedure preceded the processing of ODs where weights and biases were accurately 
defined based on the comparison of measurements with respect to the Precise Orbit 
Determination (POD) solution. 



Table 5 Features of Sentinel 3A case, Case B 

Case of Sentinel 3A satellite 

Consider parameter Atmospheric Drag Model Error 

Observed covariance Operational 

Reference orbit 01-05-2018 to 01-06-2019 

OD period  7 days batch 

Shift between ODs 1 day 

Estimation epoch End of measurement period 

Predicted orbit Estimation epoch + 8 days 
 

Table 6 Data sources for the Sentinel 3A 
tracking campaign, Case B 

Sentinel 3A 

Orbits POD orbits for Sentinel 3A 

Manoeuvres  Publicly available [15] 

Measurements 
LeoLabs’ PFISR & MSR 

radars 
 

 

Figure 3 Weighted RMS of the ODs for the tracking campaign of the Sentinel 3A, Case B 

The differences between the different estimated noise-only covariance matrices can 
be regarded in Figure 4. The differences among the different noise-only covariance 
matrix vary greatly due to the different conditions that influence the estimation process 
of an OD (i.e. measurement availability, number of measurements, geometry, etc.). 

 

Figure 4 Relative differences of the estimated noise-only covariance matrices with respect to the  
average covariance matrix of the population for the Sentinel 3A tracking campaign, Case B 

After all ODs were processed, the covariance realism metrics are used to analyze the 
complete distribution of orbital differences. Table 7 lists the results of the average 
orbital error. 



Table 7 Averaged and relative error of the distribution in the T, N and W directions, where 𝑡0 stands 
for estimation epoch and subsequent prediction times are expressed relative to it, Case B 

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝒆𝒑𝒐𝒄𝒉 Δ𝑇 (𝑚) Δ𝑁 (𝑚) Δ𝑊 (𝑚) Δ𝑇/𝜎𝑇(%) Δ𝑁/𝜎𝑁(%) Δ𝑊/𝜎𝑊(%) 

𝒕𝟎 -11.71 -0.20 2.12 -45.27 -16.98 21.43 
𝒕𝟎 + 𝟏 -10.84 0.69 3.14 -22.67 49.34 34.03 
𝒕𝟎 + 𝟐 -9.69 -0.25 -6.37 -12.55 -14.75 -70.64 
𝒕𝟎 + 𝟑 -14.17 -0.55 -2.77 -12.32 -25.15 -25.49 
𝒕𝟎 + 𝟒 -21.58 0.22 7.88 -13.07 9.69 77.87 
𝒕𝟎 + 𝟓 -20.69 0.56 2.46 -9.07 18.61 19.21 
𝒕𝟎 + 𝟔 -30.97 -0.36 -9.14 -10.16 -10.35 -82.84 
𝒕𝟎 + 𝟕 -41.66 -0.45 -1.43 -10.96 -12.44 -9.71 

𝒕𝟎 + 𝟖 -50.43 0.20 10.71 -11.00 4.41 88.49 

Next, the normality tests for orbital differences in the TNW frame distributions are 
shown in Figure 6. The only direction where normality can be assumed is the T 
direction while the N and W directions clearly reject the null hypothesis of normality.  

Neither an unbiased orbital distribution can be assumed (inspecting Table 3) nor a 
univariate normal distribution is found in the radial and normal direction (see Figure 
6). For this reason, as the only direction that shows a behavior close to normal is the 
along-track direction and because the effect of an atmospheric drag consider 
parameter is mostly noticeable in such direction, a realism upgrade in the along-track 
direction is sought using the Covariance Determination methodology. 

Due to the fact that noise-only covariance matrices depend on the conditions of the 
OD (as shown in Figure 4), and since the solution of the Covariance Determination 
method depends on the considered noise-only covariance, a Covariance 
Determination processing was executed per OD. The final solutions are summarized 
in Figure 5, were a central tendency for the atmospheric drag consider parameter is 
observed with an average value close to the median. The average value of the 
consider parameter may be taken as a reference of the accumulated error introduced 
by the atmospheric drag force model. 

 

Figure 5 Histogram of the dynamic consider parameter estimations, Case B 

 

Figure 6 Michael's normality test for the Sentinel case and along-track (left), radial (center) and cross-

track (right) directions at different propagation epochs, Case B 



Finally, to test the methodology performance in the correction of covariance realism in 
the along-track direction a univariate containment test is employed (which is 
analogous to using the Mahalanobis distance on the position space). Since the only 
direction displaying a Gaussian behavior is the along-track, only containment will be 
analyzed in this direction, as covariance realism has no sense when the PDF sampling 
indicates a non-normal distribution of error. For this, the number of points contained in 
several sigma bounds are compared against the theoretical metrics of a normal 
univariate distribution. In Table 8 the results for both noise-only covariance and 
consider covariance are listed, where a significant improvement in covariance realism 
is achieved using the correction introduced by the atmospheric drag consider 
parameter estimated. 

Table 8 Covariance containment results considering the for the noise-only (left) and consider (right) 

position covariance estimated from the OD for the Sentinel 3A tracking campaign, Case B 

Time 
 Noise-only covariance  Consider covariance 
 1-σ 2-σ 3-σ  1-σ 2-σ 3-σ 

t0  20.00% 42.61% 56.52%   20.00% 42.61% 56.52% 

t0 + 1 day  13.91% 31.30% 42.61%  23.48% 36.52% 51.30% 

t0 + 2 days  9.57% 24.35% 36.52%  29.57% 58.26% 73.91% 

t0 + 3 day  12.17% 23.48% 34.78%  40.87% 68.70% 83.48% 

t0 + 4 days  10.43% 22.61% 31.30%  48.70% 79.13% 88.70% 

t0 + 5 days  8.70% 21.74% 26.09%  53.91% 79.13% 86.96% 

t0 + 6 days  11.30% 20.87% 26.09%  63.48% 88.70% 94.78% 

t0 + 7 days  8.70% 18.26% 25.22%  66.09% 85.22% 91.30% 

t0 + 8 days  5.22% 15.65% 23.48%  69.57% 89.57% 94.78% 

Theor.  66.70% 95.00% 99.70%  66.70% 95.00% 99.70% 

The graphical representation of the correction introduced by the Covariance 
Determination methodology is depicted in Figure 7. Inspecting the previous picture, it 
is clear that the noise-only covariance realism in the along-track direction is degraded 
while the consider covariance achieves remarkable improvements. However, as the 
atmospheric drag consider parameter only corrects for uncertainty unrealism in the 
along-track direction, the radial and normal directions display great divergences when 
comparing the observed covariance against the noise-only and consider covariance 
matrices. 

 

Figure 7 Evolution of the T, N and W position sigma of the noise-only, observed and consider 
covariance for the Sentinel 3A tracking campaign, fitting for a dynamic consider parameter, Case B 



 CONCLUSIONS 

This paper has concluded the work initiated by a previous paper ending the validation 
campaign of the presented methodology to improve covariance realism. The 
motivation of the conceived methodology is endorsed by the requirements of current 
and future STM and SST providers, whose product critically depend on the quality and 
realism of the processed states and associated covariance matrices. 

It has been shown how Covariance Determination methodology can effectively 
improve covariance realism in a simulated scenario considering realistic orbits. When 
uncertain values of the atmospheric drag force model are present but its uncertainty 
not considered during the propagation of the covariance matrix, a degradation of 
covariance realism is observed. However, the Covariance Determination methodology 
can effectively improve the covariance realism by providing a first estimation of the the 
uncertainties of physically meaningful consider parameters. 

Additional metrics for covariance realism have been evaluated to ensure that the 
orbital distribution of errors around the reference state is normal and unbiased, as 
suggested in [8]. For Case A, these conditions were ensured whereas in Case B, the 
one of the Sentinel 3A satellite, the distributions were found to be neither unbiased nor 
Gaussian (with the single exception of the along-track direction).  

Following from the previous conclusions, a Covariance Determination was carried out 
estimating the error of the atmospheric drag force model. Thanks to the investigated 
consider parameter, which has its main influence in the along-track direction, a 
covariance realism improvement can be still achieved. 

A representative value of the error of the atmospheric drag force model is derived from 
the previous analysis, where a central tendency of the model’s uncertainty of over 45% 
is observed. Taking into account that this value is the result of the aggregation of many 
uncertainty sources (i.e. atmospheric density model, drag coefficient, cross-sectional 
area variability, among others), the authors deemed to be representative the computed 
value. 

Recommendations for future work will explore the reasons for the non-Gaussianity of 
the computed orbital distributions, the modelling of additional consider parameters that 
treat the uncertainty unrealism of the radial and normal direction and the 
implementation of a time-correlated consider parameters for the atmospheric drag 
force that follows a random-walk, Brownian motion or comparable noise model. 
Finally, linearity of the covariance propagation should be investigated and the use of 
non-linear uncertainty propagation techniques assessed. 
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APPENDIX 

 

Figure 8 Weighted RMS of the ODs for test 
Case A 

 

 

Figure 9 Drag coefficient error vs. atmospheric 
drag force model perturbation for test Case A 

 

 

Figure 10 Atmospheric drag force model error 
vs. T-position RMS, Case A 

 

Figure 11 Atmospheric drag force model error 
vs. N-position RMS, Case A 

 

 

Figure 12 Atmospheric drag force model error 
vs. W-position RMS, Case A 

 

 

Figure 13 Evolution of the T, N and W position 
sigma of the noise-only, observed and consider 

covariance for test Case A 
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