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Abstract—State estimation is of considerable significance for
the power system operation and control. However, well-designed
false data injection attacks can utilize blind spots in conventional
residual-based bad data detection methods to manipulate mea-
surements in a coordinated manner and thus affect the secure
operation and economic dispatch of grids. In this paper, we
propose a detection approach based on an autoencoder neural
network. By training the network on the dependencies intrinsic
in ‘normal’ operation data, it effectively overcomes the challenge
of unbalanced training data that is inherent in power system
attack detection. To evaluate the detection performance of the
proposed mechanism, we conduct a series of experiments on
the IEEE 118-bus power system. The experiments demonstrate
that the proposed autoencoder detector displays robust detection
performance under a variety of attack scenarios.

Index Terms—Anomaly detection, autoencoder, false data in-
jection attack, unbalanced training data, machine learning.

I. INTRODUCTION

The power system is increasingly equipped with sensors

and communication infrastructures. This enables smarter grid

operations, but also makes possible novel cyber attack sce-

narios that manipulate power system measurements instead of

directly disrupting ICT infrastructure or stealing valuable data.

Although the typical bad data detection (BDD) within state

estimation (SE) can detect erroneous measurements and some

“basic” attacks, well-designed attacks can remain stealthy and

bypass the BDD, such as the stealthy false data injection at-

tacks (FDIAs) [1]. These stealthy measurements manipulation

attacks severely threaten both the economic dispatching and

security control of the power system [2], [3].

Several techniques have been proposed to deal with stealthy

FDIAs. In [4], the authors have proposed a Kalman filter

estimator together with a chi-square detector. Other statistical

methods, such as sequential detection using Cumulative Sum

(CUSUM)-type algorithms were designed in [5]. The recent

work [6] has proposed a detector utilizing the statistical

consistency of measurements, presuming that the system is

observable by a minimal set of secure phasor measurement

units. These methods, however, can be limited by the prior

This work is supported by the Chinese Scholarship Council.

assumption that measurements fit specific distributions, or by

restrictions on the number of manipulated measurements [7].

Moreover, it is increasingly recognised that the distribution

of normal power system states is not easily characterised using

standard parametric distributions [8]. The need to operate in a

complex stochastic environment has led to the deployment of

data-driven methods. For example, distance-based algorithms

like k nearest neighbour (k-NN) were used to cluster normal

and corrupted measurement states [9]. Nevertheless, the very

high dimensionality of measurements (from the physical,

cyber and market domains) results in data sparsity, where

manipulated measurements may be masked by the noise of

multiple irrelevant dimensions. This can make detection using

a high-dimensional distance-based algorithm computationally

inefficient or even invalid [10].

Alternative data-driven approaches to FDIA detection have

been proposed in the form of support-vector machine (SVM)-

based classifiers [11] and deep neural network-based classi-

fiers [12]. Both are supervised machine learning algorithms

that classify measurements into normal and manipulated data

on the basis of labeled training data. However, due to the

infrequent occurrence (or more likely: absence) of FDIAs in

historical data, the training data set is highly unbalanced,

so that it must be augmented by simulated training data.

Moreover, in this way, the detector only learns to detect known

attacks, which is a significant weakness in a fast-evolving field

with resourceful and potentially well-equipped attackers.

This paper bridges the identified gap by proposing a detec-

tion approach based on an autoencoder neural network. The

main contributions of this paper are listed below:

1) We propose an autoencoder-based detection approach for

FDIAs. It learns to identify anomalous system states

(and therefore possible attacks) using only SCADA-type

power flow measurements for a large range of normal

operating conditions. Therefore it is well-suited to the

inherent data imbalance in FDIA detection applications.

2) We define a case study on the IEEE 118-bus system,

including a model to generate ‘normal’ data. We for-

mulate two FDIA scenarios by considering comprehen-

sive factors of the adversaries’ purpose, capacity, and

knowledge and utilize indicators to evaluate the FDIA
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detection performance of our proposed mechanism. The

experimental results demonstrate the mechanism has a

satisfactory detection accuracy.

II. STATE ESTIMATION AND DATA ATTACKS

In this section, we briefly review the state estimation and

bad data detection technique and formulate the FDIA problem.

A. State estimation

The power system we consider has nb buses and nt trans-

mission lines. The vector θ = [θ1, θ2, . . . , θnb
]T represents

nb phase angles, excluding the angle of the reference bus. In

this paper, a DC power flow model is assumed, in which the

reactive power is neglected and bus voltages are assumed to

be 1 (p.u.). The vector P I ∈ R
nb of active power injections

is related to the angle vector θ,

P I = APF = AR−1AT θ, (1)

where PF ∈ R
nt is the branch active power flow vector, R ∈

R
nt×nt is a diagonal matrix of transmission line reactances and

A ∈ R
nb×nt is the branch-to-node incidence matrix [13]. In

the following, we shall use the power injection vector P I as

the system state x ∈ R
nb . It is functionally equivalent to the

more commonly used phase angle vector θ, but it allows for

more elegant generation and detection of FDIAs.

We consider a system where the active power injections

and line flows are measured with some error. Thus the system

model H ∈ R
(nb+nt)×nb for measurement and state can be

written by

z =

[
I

HF

]
x+ e = Hx+ e, (2)

where the measurement noise vector e ∼ N (0, D) denotes m
independent zero-mean Gaussian variables with the covariance

matrix D = diag(δ21 , . . . , δ
2
m) and the measurement vector

z ∈ R
m indicates measured power injection and line power

flow with noise. Identity matrix I ∈ R
nb×nb and distribution

factor matrix HF ∈ R
nt×nb are parts in H corresponding

to the power injection and line power flow, respectively. Ac-

cording to (1), the distribution factor matrix can be described

as HF = R−1AT (AR−1AT )−1. Given the observation of the

measurements z, the state estimate x̂ is solved by the weighted

least squares (WLS) approach [14] as

x̂ = (HTD−1H)−1HTD−1z := Kz. (3)

B. Bad data detection and stealth FDIAs

The vector x̂ is then utilized to estimate the power injection

and line power flow measurements by ẑ = Hx̂. In bad

data detection, a residual is defined to describe the difference

between the actual and the estimated measurements, namely

ro = z − ẑ. This naturally gives rise to a BDD scheme that

identifies bad data by comparing the 2-norm of ro with a

certain threshold τ , i.e. an alarm is triggered if ‖ro‖2 > τ .

We denote a ∈ R
m as the non-zero false data vector injected

into measurement vector z. The manipulated measurement

vector can be described as za = z + a. Here the vector c
is defined as the deviation of the estimated state before and

after the attack. The corrupted system state can be denoted as

x̂a = x̂ + c. According to (3), the falsified state estimate x̂a

can be written by

x̂a = (HTD−1H)−1HTD−1za

= (HTD−1H)−1HTD−1(z + a) (4)

= x̂+ c,

and the corresponding ra after the attack can be expressed as

ra = za −Hx̂a = z + a−H(x̂+ c)
= ro + (a−Hc).

(5)

If a = Hc, then the manipulated residual ra equals the original

residual ro. Thus the attacker manipulates the measurements

with the residual unchanged and keeps stealthy with respect to

this physics-based BDD scheme. This remains true if a �= Hc,
as long as ‖ra‖2 ≤ τ is still satisfied.

For our FDIA detection study, we consider one attack

scenario from the perspective of an adversary that manipulates

load patterns [3], for example in order to hide excessive power

consumption or to reduce apparent power consumption for

economic motives. The adversary needs to corrupt the power

generation and power flow accordingly to avoid detection by

BDD. The attack scenario will be detailed in section IV.

III. FDIA DETECTION MECHANISM

In this section, we propose an FDIA detection mechanism

based on the autoencoder algorithm. We first analyze the

specific characteristics and advantages of the method for

identifying FDIAs in the context of the power system. Then,

we explain the attack detection principle of the autoencoder-

based mechanism in detail. Finally, we describe the complete

training and detection process of our proposed mechanism.

A. Autoencoder-based attack detector

FDIA detection is essentially a classification problem with

the objective of distinguishing false data from data that is

considered ‘normal’. What the SVM-based [11] and deep

neural network-based classifiers [12] have in common is to

treat FDIA detection as a supervised learning task. However,

supervised learning requires a training data set with represen-

tative examples of normal system operation and attacks. Such

data sets are in short supply, because of the rarity of attacks,

unwillingness to share data, and evolving attacks. As a result,

it is difficult to learn a satisfactory discriminator of ‘normal’

and ‘attack’ scenarios on this basis [15].

Instead, we propose to approach FDIA detection as a one-

class classification problem, where the detector is trained on

examples of only ‘normal’ operation data. Observations with

features that deviate substantially from those in the training

data will be considered anomalies, in this case as ‘potential

attacks’. There are two main advantages to this approach. First,

the autoencoder-based mechanism avoids the need to gather or

generate attack data to create balanced data sets for training

the classifiers. Second, by focusing on what is normal only,
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Fig. 1. The schematic of the Autoencoder.

the proposed mechanism is naturally prepared for unknown

attack patterns.

Autoencoders learn the most important features of the

training data (i.e. normal power system measurements) by

sending the measurements through an information bottleneck

while attempting to reconstruct the training data with min-

imal error [16]. The structure of the autoencoder algorithm

is depicted in Fig. 1. The dimension reduction process of

mapping the d0-dimensional input data to the code in the

bottleneck layer B through hidden layers H1 to Hn is named

the encoder. Afterwards, the decoder decompresses the code

to d0-dimensional output data. Weight matrices W and bias

vectors b are utilized in the encoding and decoding process as

Y = σ(W e
n(. . . σ(W

e
0Z + be0) . . .) + ben) , (6a)

Ẑ = σ(W d
n(. . . σ(W

d
0 Y + bd0) . . .) + bdn) , (6b)

where W e
n and W d

n denote weight matrices for encoding and

decoding process respectively, ben and bdn are bias vectors, and

σ represents a nonlinear element-wise activation function. Z
refers to the input data vector, Y is the data in the bottleneck

layer and vector Ẑ stands for the output data.

B. Training and detection process

The residual associated with a training observation Zj is

given by rj = Zj − Ẑj . The reconstruction error Rj is

expressed as the ratio of the length of rj to the input data

dimension d0 and the objective of the training process is to

minimize the mean value of the sum of all reconstruction

errors Rj as

min
W, b

{
J := 1

S

S∑
1
(‖rj‖2/d0)

}
, (7)

where S denotes the total number of the observations used for

training. By training the autoencoder on training data that is

considered normal, it learns to efficiently encode the features

of this data in the bottleneck layer B. Data that deviates from

the training data in a structural way is therefore highly likely

to have a larger reconstruction error.

The training and FDIA detection process of the proposed

mechanism is depicted in Fig. 2. In the training stage, the

Training Data Learned 
Data Pattern

Testing Data Reconstructed     
Testing Data

Reconstruction Error 
Rj

Possible Attack Normal

W, b

Training Stage

Detection Stage
Threshold

τα   Rj > τα ? 

Yes No

1

Validation Data
W, b

Encoder and Decoder

Encoder and Decoder

Fig. 2. The proposed training and FDIA detection mechanism.

algorithm iteratively updates the value of weight matrices

W and bias vectors b until the function J converges. At

the end of the training process, the reconstruction errors

Rj for the validation set are sorted in ascending order. A

threshold τα equals to the αth percentile is then chosen, for

example at the value where an ‘inflection point’ occurs in the

error distribution. A possible FDIA is detected when, for a

measurement Zj in the test set, the reconstruction error Rj

exceeds the threshold τα.

IV. CASE STUDY

In this section, we evaluate the detection performance of the

proposed mechanism using a case study on the IEEE 118-bus

system. First, we describe the process of modelling normal op-

erating conditions and explain how to create anomalous attack

scenarios. Then, we describe and analyse the load-targeted

attack scenario. For this scenarios, we will first quantify the

detection performance of our proposed detection mechanism.

Specifically, the detection probability, false positive rate, false

negative rate are tested. Next, the detection performance of our

detector will be compared with a conventional BDD detector.

To do so, we introduce “knowledge limited” attacks that both

detectors can potentially detect. Notably, the “knowledge-

limited” attacks are more of interest in reality as the attacker

may have an inaccurate (e.g. out-dated or estimated) system

model.

A. Modeling normal operating conditions

With the long-term secure and stable operation, the power

system has a large number of normal operating conditions

which involve a significant volume of loads, power generations

and power flows data set. Trained by these data, the proposed

mechanism will acquire the data pattern which represents the

model of normal system operating conditions.

In the IEEE 118-bus system, electricity is supplied by

M = 54 generators, transmitted via Q = 186 branches

and ultimately consumed by N = 99 loads. We generate

‘normal’ (i.e. physically feasible and economically reasonable)

power system states and corresponding measurements by using

optimal power flow solutions.

Second order polynomial cost functions were assumed for

generators, i.e., f(PG
g ) = Cg,2(P

G
g )2 + Cg,1P

G
g . Hence
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the economic dispatch PG∗
is solved with the objective to

minimize the total generation cost. The solutions are implicitly

parameterized by the nodal load PL
l and generation cost

parameter as

PG∗
= argmin

PG

M∑
g=1

Cg,2(P
G
g )2 + Cg,1P

G
g (8)

s.t.

M∑
g=1

PG
g −

N∑
l=1

PL
l = 0,

where the injection P I = P I(PG, PL) is determined by the

mapping of load PL and generation PG onto the nodes.

Normal operating conditions are generated using a data set

that contains a total of 43,717 historical hourly loads from

32 European countries between 2013 and 2017 [17]. These

time series were used to generate a 99 load point time series

as follows. The national load time series are first divided by

1000, to obtain reasonable magnitudes for individual buses.

Then each load point is assigned a random linear combination

of the 32 sources by sampling from the Dirichlet distribution

with vector valued parameter (1, . . . , 1)T , which generates

a uniform distribution on the 31-simplex. Additionally, a

normally distributed variation with a standard deviation of

±5% of the measured value is added to each measurement.

An additional source of randomness was created by ran-

domly sampling the generating cost coefficients of the 54 gen-

erators as follows. Coefficients Cg,2 were sampled uniformly

in the range [0.085, 0.1225] $/MWh2 and Cg,1 uniformly

in the range [1, 5] $/MWh. These values span the range of

generators included in the IEEE 9-bus system supplied with

Matpower [18].

The procedure above was used to generate snapshot injec-

tions P I = P I(PG∗
, PL), which were converted into line flow

measurements using PF = HFP I . In this investigation, line

transmission limits and generator capacities are not enforced,

as the focus of this work is on the recognition of load,

generation and power flow patterns. This results in a 339-

dimensional measurement vector for training, containing 99,

54 and 186-dimensional data of loads, power generations

and line power flows, respectively. Independent measurement

noise e is added using a truncated Gaussian distribution with

zero mean, standard deviation of 0.33% and an absolute

value less than 1% of the original value [19]. The generated

data set T ∈ R
43717×339 was divided into a training set

Tr ∈ R
26197×339, a validation set Tv ∈ R

8760×339 and testing

set Te ∈ R
8760×339.

In this paper, the autoencoder network contains 4 hidden

layers in the encoder with dimensions of 339, 256, 128 and

64, respectively. The bottleneck layer has 32 nodes, and the

decoder maps the 32-dimensional data to a 339-dimensional

output through 3 hidden layers with the same dimensions as

the encoder. In this paper, we used the sigmoid activation

function between the second and penultimate hidden layer and

the Adam Optimizer [20] to iteratively optimize the value

of weight matrices W and bias vectors b. The batch size

and learning rate for training was 256 and 10−5 respectively

and 2000 training epochs were used. Training and testing

of the autoencoder was conducted using tensorflow on

the Google Colab environment using the GPU option. An

initial performance analysis of hyperparameter settings for the

autoencoder-based FDIA detector is available in [21].

B. Creating attack scenarios

We develop feasible FDIAs from the perspective of the

adversaries by adding an offset to the normal operating condi-

tions created in the previous section. To gain economic profit,

attackers inject false data into the grid by using the acquired

knowledge of the targeted power system. In the context of this

paper, this knowledge is represented by the incidence matrix

A (topology) and the reactance matrix R of the transmission

lines. Moreover, we assume that the capacity of an attacker

is limited by the attackable measurement set [1] and the

maximum number of the measurements that the attacker can

corrupt simultaneously.

In the following, we quantify the factors described above.

According to the attack capacity, the adversary selects a set

of attacked loads LA ⊆ L. The attacker then determines

the change rate βl of each selected load and calculates the

total load change
∑

l∈LA βlP
L
l , in which βlP

L
l equals the

change ΔPL
l of each load. Similarly, the attack selects a set of

attacked generators GA ⊆ G. Next, the attack determines ratios

of the power generating’s change amount λ1 : λ2 : . . . : λ|GA|
and normalizes the ratios to get the power generations’ change

ΔPG
g . Here |GA| represents the cardinality of GA.

ΔPG
g =

[∑
l∈LA

βlP
L
l

]
× λg∑

g′∈GA λg′
(9a)

All load changes ΔPL
l and generation changes ΔPG

g , together

with zeros that denote buses with unchanged injection make

up the power injection change vector ΔP I
A ∈ R

118. Besides,

similar to (2), the attacker then utilizes the knowledge of the

topology and grid parameters to coordinately calculate power

flows change vector ΔPF
A ∈ R

186.

ΔPF
A = HF ·ΔP I

A, (9b)

Afterwards, the attack vector a consists of the change vector

of loads, power generations and line power flows.

The FDIA manipulates the original data of loads, power

generations and line power flows. The pattern of the corrupted

data may deviate from that of normal operating conditions,

which enables it to be detected by the autoencoder if the

reconstruction error Rj exceeds τα.

C. Load-targeted attack for economic profit

1) Detection effectiveness validation: We first validate the

effectiveness of the trained detector. In this experiment, we

observe the change of the reconstruction error Rj before and

after a false data injection attack and compare it with the

threshold τα. A common scenario for an attack happens when

the adversary gets the data of a local area and utilizes it to
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Fig. 3. Detection effectiveness validation by launching an FDIA.

manipulate the neighboring measurements. Here, we select 12

hours’ operating data from 9:00 to 20:00 on December 31st,

2017 as an example. Assuming the attacker gets the three

loads’ profile of bus 108, 109, 110, at 14:00, to gain economic

profit, an attack is launched by injecting false data to decrease

the power demand of the loads by 10% as −7.48MW,

−5.69MW and −6.28MW respectively. Accordingly, to bal-

ance the power of loads and generations, the attacker decreases

the nearby power injection of two generators connected to bus

number 110 and 111 with the ratio λ1 : λ2 = 1. Based on (9b),

the corresponding transmission line power flows are obtained.

The experiment result is depicted in Fig. 3.

From the result, we can observe that before the attack,

the reconstruction error Rj of normal operating data is in

the range of 3.10 × 10−4 and 5.60 × 10−4, and they are

lower than the threshold τ97% = 7.25 × 10−4 learned in the

training process shown in the subsection B of Section III. To be

specific, after observing the reconstruction error distribution of

the validation data, the threshold is set as 97th percentile due

to the occurrence of the ‘inflection point’ where the cumulative

distribution curve of the reconstruction error flattens out from

the steep rise. After manipulation by the false data injection,

the reconstruction error Rj at 14:00 increases from 4.40×10−4

to 7.53×10−4, which exceeds the threshold τ97% and triggers

an alarm. The detector thus recognizes an anomaly in the

corrupted measurements, which deviate from measurements

taken in normal operating conditions. This result demonstrates

that the autoencoder is capable of FDIA detection in at least

some scenarios.

2) General detection performance: In addition to the one-

off effectiveness demonstrated above, we are also interested

in its statistical detection performance. This is tested by

launching a larger number of FDIAs at various times and

with various false load data injection magnitudes. Here the

magnitude is defined as the percentage of load reduction in

targeted nodes. For the sake of comparison, the attack targets

remained the same as these utilized in the last experiment. In

this experiment, we launch an attack at 2:00, 14:00 and 21:00
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Fig. 4. Detection probability of attacks at different time with different false
load data injection magnitude.

in each day of 2017 by reducing reported loads between 1% to

30% and observing the detection performance. The detection

probability is the ratio of detected attacks to all the launched

attacks, namely the true positive rate. The results are shown

in Fig. 4.

Because the load demands at 2:00, 14:00 and 21:00 differ

significantly, the resulting power system states (including

flows) are also substantially different. However, the result

shows, under the same false load injection magnitude, the

detection probabilities differ only slightly. This demonstrates

that the autoencoder learns the intrinsic relationship of the

loads, power generations and power flows from different

operating conditions, leading to robust detection results.

In addition, we launch 8760 attacks, one for each hour of

2017, by decreasing the power demand of the same buses by

15%. Besides, we use the hourly normal operating data in

2017 as a control group. The result is shown in Table I.

TABLE I
DETECTION PERFORMANCE EVALUATION.

Normal Data Attack Data
True Negative 96.5% (8453) True Positive 93.6% (8199)
False Positive 3.5% (307) False Negetive 6.4% (561)

From the experiment result, we can find that the detection

probability (true positive rate) is 93.6%, which denotes a

satisfactory detection performance. As mentioned in the first

experiment, the threshold τ97% was used, corresponding to

a 3% misclassification rate in the validation set. It is worth

noting that the false positive rate is comparable to the 3.5%
observed in Table I. This result suggests that the autoencoder

has a good generalization capability and does not overfit.

3) Detection performance comparison: In the above experi-

ments, our proposed autoencoder-based detector has succeeded

in generating a diagnosis signal in the presence of FDIAs

which can keep stealthy from the viewpoint of BDD. In

the second experiment, we compare our detector with BDD

in detection of ‘unstealthy’ FDIAs. Such attacks have the
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Fig. 5. Detection performance comparison between the proposed mechanism
and the BDD scheme in load-targeted attack scenario.

possibility to be detected by the BDD while the detectability

is intimately related to the topology or parameter errors in the

construction of FDIAs by the attacker. Thus in what follows

there exist knowledge deviations in the system model acquired

by the attacker in computing the attack vector of (9). In

particular, we explore the case that the attacker knows the

exact topology of the network but inaccurate line reactance R
in (1). This can be described by

R̂ = R · (IR + γ), (10)

where IR ∈ R
nt×nt is the identity matrix and γ ∈ R

nt×nt

is a diagonal matrix whose elements denote the reactance

deviation ratio - which we will refer to as the knowledge
deviation ratio. In this experiment, we range the magnitude

of the deviations from 0.01 to 0.20, with randomly sampled

signs for each element. According to the explanation of (2),

this will lead to an erroneous distribution factor matrix HF and

thus obtain inaccurate power flow values. We keep the attack

target unchanged from the previous experiments and set the

false load data injection magnitude on the selected three loads

by decreasing them by 15%. The results are shown in Fig. 5.

As the level of knowledge deviation increases from ±1% to

±20%, the detection probability of BDD rises from 0.038 to

0.548, but it remains lower than the detection performance of

the autoencoder.

V. CONCLUSION

In this paper, we propose an FDIA detection mechanism

based on an autoencoder neural network. The main contribu-

tion is that, distinct from existing approaches, the approach

learns the internal dependency of ‘normal’ operation data,

which avoids the need for gathering or generating attack

data for training the classifiers and thus effectively overcomes

the inherent unbalanced training data set challenge in power

system. The results demonstrate that the mechanism is able to

robustly detect stealthy FDIAs. Moreover, it still outperforms

a BDD scheme when the attacker has only approximate

knowledge of the network parameters.
In future work, we aim to extend the method to analyze

temporal signatures and to include contextual information.
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