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Significance

The increasing frequency and 
intensity of droughts in the 
Amazon rainforest raises 
concerns about potential forest 
dieback. However, the precise 
role of drought occurrences in 
this phenomenon remains 
unclear. We used trends in 
temporal autocorrelation of 
satellite-derived indices of 
vegetation activity as a proxy for 
the critical slowing down 
response of the Amazon and 
differentiated between drought 
frequency, intensity, and 
duration to investigate their 
respective effects on the slowing 
down response. We found that 
this slower recovery to 
perturbations prevails in regions 
experiencing more frequent, 
intense, and longer droughts, 
albeit with regional variations. 
Most of the Amazon does not 
show critical slowing down, but 
the predicted increase in 
droughts could disrupt this 
balance, signifying the 
importance of understanding 
these dynamics.
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Dynamic ecosystems, such as the Amazon forest, are expected to show critical slowing 
down behavior, or slower recovery from recurrent small perturbations, as they approach 
an ecological threshold to a different ecosystem state. Drought occurrences are becoming 
more prevalent across the Amazon, with known negative effects on forest health and 
functioning, but their actual role in the critical slowing down patterns still remains 
elusive. In this study, we evaluate the effect of trends in extreme drought occurrences 
on temporal autocorrelation (TAC) patterns of satellite-derived indices of vegetation 
activity, an indicator of slowing down, between 2001 and 2019. Differentiating between 
extreme drought frequency, intensity, and duration, we investigate their respective 
effects on the slowing down response. Our results indicate that the intensity of extreme 
droughts is a more important driver of slowing down than their duration, although 
their impacts vary across the different Amazon regions. In addition, areas with more 
variable precipitation are already less ecologically stable and need fewer droughts to 
induce slowing down. We present findings indicating that most of the Amazon region 
does not show an increasing trend in TAC. However, the predicted increase in extreme 
drought intensity and frequency could potentially transition significant portions of this 
ecosystem into a state with altered functionality.

tropical forest | resilience | drought response

Tropical forests account for half of the global forest carbon sink, with the largest contri-
bution coming from the Amazon forest (1, 2). The Amazon is also a biodiversity hotspot, 
with an estimated 15,000 tree species (3). However, recent studies observed critical slowing 
down of vegetation activity across the Amazon since the early 2000s (4–6). Theory suggests 
that critical slowing down, or the increasingly slower return rate from small perturbations 
(7), is an early warning indicator of dynamic systems approaching a critical threshold into 
an ecosystem state with different functioning. Ongoing climate change might be the driver 
of this push toward large-scale ecosystem collapse, but its precise association with recent 
extreme drought occurrences is unknown (8).

Over the past 20 y, the Amazon has experienced three “one-in-a-century droughts,” 
and these extreme events are predicted to become more frequent and intense due to climate 
change (9–12). Previous research has already focused on the relationship between ecosys-
tem stability and precipitation dynamics within the Amazon. Notably, areas experiencing 
lower rainfall showed the largest stability decline since the early 2000s (4), and droughts 
were found to be the primary driver of the 30-y decline in radar signal in a pantropical 
study (13). Moreover, more severe droughts were more likely to lead to a negative forest 
response (14). While progress has been made in understanding the impact of individual 
droughts on tropical forest stability, the question remains whether and how multiple of 
these pulse disturbances over an extended time frame result in slowing down of the Amazon 
forest vegetation. Depending on the drought severity and the diversity of life strategies 
within the affected communities, we would expect that recurring drought events would 
lead to reduced forest recovery rates due to a gradual decrease in tree growth and increase 
in tree mortality (15), potentially leading the forest community to cross a critical threshold. 
Furthermore, the expected negative impact of recurrent extreme droughts and more spe-
cifically the relative importance of different aspects of drought occurrences—frequency, 
intensity, and duration—on the slowing down response of the Amazon forest vegetation 
have never been quantified on a large scale (16).

Increased temporal autocorrelation (TAC) in the time series of a system’s state variable 
can be used as an indicator for slowing down (7). TAC quantifies the level of correlation 
between consecutive time points in a time series representing an ecosystem. As TAC 
increases, the ecosystem’s current state is more similar to its previous state over time  
(5, 17, 18). This method has been used successfully to detect critical slowing down near D
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ecological thresholds (7, 19). In tropical forests, both static sta-
bility and its temporal variations have been assessed using TAC 
(4, 5, 20, 21). Another potential indicator of slowing down is a 
corresponding increase in the variance of the system’s state time 
series (22). However, this variance increase is less reliable than 
the increase observed in TAC leading up to a critical transition 
(18, 20).

In this study, we investigate whether recurrent extreme drought 
events, particularly variations in their frequency, intensity, or dura-
tion, contribute to stability loss of the Amazon vegetation due to 
critical slowing down. As the concept of critical speeding up, a 
theoretical alternative for detecting stochastically driven critical 
transitions, has been proposed as another mechanism that could 
decrease stability, we explored the possibility of critical speeding 
up occurring. Nevertheless, our investigation did not yield any 
evidence supporting critical speeding up (SI Appendix, Text). To 
quantify critical slowing down, we use TAC trends estimated from 
satellite-derived time series of vegetation activity (Materials and 
Methods). We first derive the TAC over native vegetation pixels as 
the lag-1 autocorrelation of monthly Moderate Resolution 
Imaging Spectrometer (MODIS) Enhanced Vegetation Index 
(EVI) time series from 2001 to 2019 with a spatial resolution of 
5 × 5 km2 (23). EVI functions as a proxy for canopy productivity 
and greenness in tropical forests (24), and TAC derived from EVI 
and from similar greenness indices has been used as an indicator 
of (tropical) forest mortality (19, 20, 25). More intense and longer 
extreme droughts were also correlated with a more substantial 
decrease in EVI during the year following the drought across the 
Amazon forest (SI Appendix, Fig. S1). Then, we explore the link 
between slowing down and extreme drought occurrences using 
cumulative water deficit (CWD) anomalies derived from precip-
itation time series (14, 26) (Materials and Methods).

Results

General Trends across the Amazon Forest. The Amazon-wide 
analysis of EVI TAC shows that 37% of the mature vegetation 
exhibited slowing down, corresponding to an overall increasing 
linear trend in TAC over the past 20 y, with a large spatial 
variability in the trends across the Amazon forest (Fig.  1). In 
general, the trends increase from the northwest to the southeast 
(SI Appendix, Table  S1), following the overall rainfall gradient 
present throughout the Amazon basin. This gradient implies a 
generally higher vulnerability of the south-eastern Amazon to a 
tipping event.

The mean EVI TAC time series over the whole Amazon forest 
shows a significant decreasing trend until halfway 2014, followed 
by a significant increasing trend up to 2019 (Fig. 1). Varying the 
window length from five to three or seven years to calculate the 
TAC gives similar temporal and spatial results (Materials and 
Methods and SI Appendix, Fig. S2). We also compared the EVI 
TAC trend with the TAC trends of vegetation optical depth 
[VOD, spatial resolution of 25 × 25 km2, based on earlier analysis 
of Boulton et al. (4), although there are some known issues with 
this dataset (27)] and kernel Normalized Difference Vegetation 
Index [kNDVI, spatial resolution of 5 × 5 km2, less sensitive to 
saturation than EVI (28)]. All three indices show similar spatial 
and temporal patterns indicating that the different EVI, VOD, 
and kNDVI vegetation proxies have comparable results in terms 
of slowing down, even though they represent changes in canopy 
greenness, vegetation structure, and gross primary productivity, 
respectively (Materials and Methods and SI Appendix, Figs. S3 and 
S4). However, we focus further analyses of this study on the 
finer-scale EVI TAC trend (but showing the kNDVI model 

results in SI Appendix, Materials), as fine-scale ecosystem heter-
ogeneity plays an important role in tropical forest mortality to 
drought (25, 29, 30).

Impact of Extreme Drought Frequency, Intensity, and Duration. 
Earlier studies have demonstrated EVI’s sensitivity to extreme 
drought occurrences (SI Appendix, Fig. S1 and refs. 14 and 24). 
Building upon this, we initially assessed the sensitivity of the EVI 
TAC to extreme drought occurrences by comparing the average 
time series across all pixels that experienced the widespread drought 
events in 2005, 2010, and 2015 and the mean TAC trends between 
pixels with different drought history categories (Materials and 
Methods and SI  Appendix, Figs.  S5 and S6). Subsequently, we 
analyzed the potential drivers of this slowing down of the Amazon 
forest vegetation by exploring its relationship with extreme drought 
occurrences. Therefore, we implemented Spatial Simultaneous 
Autoregressive Lag Models (SSALMs) to account for spatial 
autocorrelation in the data (31) (Materials and Methods). The trend 
in TAC was used as the response variable, while multiple drought 
and environmental characteristics were included as explanatory 
variables (Materials and Methods, Fig. 2, and SI Appendix, Fig. S7 
and Table  S2). In all analyses, coefficients showing significant 
positive effects on the TAC trend are considered to have a 
destabilizing effect on the ecosystem, since they contribute to an 
increase in TAC over time, potentially leading to slowing down 
of the ecosystem.

The SSALM results first show a destabilizing effect for different 
drought characteristics. An increase in both the intensity and 
duration of extreme droughts has a significant positive impact on 
the trend of TAC, leading to slowing down within the ecosystem 
(Fig. 2 and SI Appendix, Table S2). Our results indicate that while 
the main effect of drought frequency is not significant, its inter-
action with drought intensity significantly increases the TAC 
trend. Furthermore, our findings confirm previous research which 
suggests that wet periods could help to stabilize an ecosystem in 
the face of increased droughts (14, 32) (SI Appendix, Fig. S7 and 
Table S2). When we i) extend the studied drought period up to 
15 y earlier, ii) use different moving window lengths to calculate 
the TAC, iii) include only the pixels with a significant TAC trend 
when in agreement with the SD trend (5) (Materials and Methods 
and SI Appendix, Fig. S8), or iv) use the kNDVI TAC trend instead 
of the EVI TAC trend, the models show consistent destabilizing 
effects of extreme drought occurrences on the TAC trend. The 
models explain a limited part of the variation in the TAC trend, 
showing pseudo-R2 values between 0.08 and 0.14 (SI Appendix, 
Tables S2–S5). These relatively low values align with other recent 
research investigating the effects of droughts on tropical forests 
(33, 34), and are partly caused by the large variation within pixels 
and the lack of detailed information on soil moisture, texture, and 
tree species composition. Moreover, the factors that influence the 
trends in TAC were found to vary across different regions within 
the Amazon forest. We repeated the analysis for 13 different woody 
plant subregions within the Amazon (35) (Materials and Methods, 
Fig. 3, and SI Appendix, Table S1). In the north-western Amazon, 
an increase in the TAC trend is solely attributed to more frequent 
extreme droughts and higher climate variability. However, in the 
southern and north-eastern Amazon, longer and/or higher inten-
sity droughts also contribute to the increase in the TAC trend 
(Fig. 3 and SI Appendix, Table S1).

The Amazon forest is a complex system, which cannot be com-
pletely captured using only one parameter such as lag-1 autocor-
relation in EVI time series. The critical slowing down theory is 
developed to understand tipping points induced by bifurcation 
in one-dimensional systems, therefore requires careful application D
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in a system that might be represented by more dimensions (36). In 
further support of our interpretation regarding the Amazon’s dimin-
ishing stability due to increased drought occurrences, we employed 
a Bayesian dynamic linear model (DLM) to estimate time-varying 
EVI TAC, while also accounting for the variation in climate forcing 
(ref. 37 and Materials and Methods). Echoing the results of the 
conventional TAC metric, the trend of this time-varying TAC also 
displayed an increase with longer drought histories (SI Appendix, 
Fig. S9).

Effect of Precipitation Regime. The SSALM also shows a strong 
impact of the precipitation regime on the slowing down response of 
the Amazon, as both precipitation seasonality and the interannual 

variability of the precipitation determine the rate of slowing down. 
Our results show that a greater degree of seasonality (i.e., concentrated 
precipitation within a shorter rainy season, calculated as the Seasonality 
Index from Walsh and Lawler (38) and Materials and Methods) and 
a higher interannual variability of precipitation (i.e., more variable 
rainfall between years, calculated as the coefficient of variation of the 
annual mean precipitation values (39) and Materials and Methods) 
have a negative impact on the stability of tropical forests, and this 
impact gets more negative when the area experienced more droughts 
(SI Appendix, Fig. S7 and Tables S2–S5). These negative effects of 
more variable precipitation on the trend in TAC are consistent across 
most of the 13 subregions within the Amazon forest (SI Appendix, 
Table S1).

Fig. 1.   General trends in EVI TAC across the Amazon forest. (A) EVI TAC trend from January 2001 until December 2019 across the Amazon forest. (B) Frequency 
distribution of the EVI TAC trend across the Amazon with the dashed line showing the mean trend value. (C) Mean EVI TAC time series from July 2003 until July 
2017 across the Amazon forest (black line) with the density of the TAC time series of 1,000 random pixels shown from dark green to yellow (with density values 
ranging between 1 and 250). In (C), the values are plotted in the middle of the five-year moving window, and the lowest mean TAC value occurs in April 2013 
(dotted line), with the mean trend from July 2003 until April 2013 and the total trend significantly negative and the mean trend from April 2013 until July 2017 
significantly positive.
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Discussion

We find that more than one-third of the investigated forest area 
of the Amazon shows an increasing trend in EVI TAC of their 
canopy productivity over the period between 2001 and 2019. 
Given EVI’s capability to detect changes in forest functioning in 
the Amazon (24), this increasing trend could be considered an 
early warning indicator that these areas are approaching a thresh-
old to a die-off event, leading to an ecosystem state with qualita-
tively different functioning.

This slowing down in one-third (37%) of the Amazon is con-
tradictive to the findings of Boulton et al. (4), whose research 
indicated that three-quarters (76%) of the Amazon showed slow-
ing down by increasing trends in VOD TAC from 2003 onward. 
This difference in area affected by slowing down can partly be 
attributed to the different time periods used for the TAC calcula-
tions. When evaluated over the same time span (2001 to 2016), 
using VOD instead of EVI, only 50% of all VOD pixels show an 

increasing trend in TAC, compared to 38% of all EVI pixels 
(SI Appendix, Fig. S3). Moreover, both indices display similar mean 
TAC trends in our study, with a significant increase only starting 
in April 2012 and 2013 for VOD and EVI TAC, respectively. This 
one-year time lag between VOD and EVI TAC could be linked to 
the intrinsic properties of these indices. EVI only captures the 
response of photosynthetic vegetation, while VOD represents both 
photosynthetic and nonphotosynthetic biomass. When assessing 
the fire response of tropical forests, EVI was found to recover faster 
than VOD, possibly due to leaves responding more rapidly than 
branches (40, 41). This pattern of fast canopy recovery might 
extend to drought events, as suggested by SI Appendix, Fig. S1. 
The concept of critical slowing down points toward a slower recov-
ery rate following perturbations, thus it would make sense that 
VOD shows this slowing down response earlier in the time series 
than EVI.

South-eastern Amazon forests exist under drier and more sea-
sonal rainfall conditions and thus are likely to better cope with 

Fig. 2.   Patterns of drought-related drivers of critical slowing down in the Amazon forest (Left column) and their marginal effects on the EVI TAC trend in the 
Amazon-wide Spatial Simultaneous Autoregressive Lag Model (Right column, SI Appendix, Table S2). A marginal effect is the predicted change in the EVI TAC trend 
after varying a variable of interest while holding others constant at their mean value. (A and B) Average drought intensity (i.e., most negative cumulative water 
deficit value); (C and D) drought frequency (i.e., number of occurred droughts); and (E and F) average drought duration (i.e., number of drought months) across 
the Amazon forest. The main effect of drought frequency on the TAC trend was not significant in the Amazon-wide model.
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increasing drier conditions (39, 42). However, given that they are 
already operating at their physiological limits (43), they may be 
more vulnerable to shift than in western regions of the basin. This 
vulnerability has been shown previously using both modeled and 
coarse-scale satellite data (4, 16). Our results confirm this obser-
vation using finer-scale satellite imagery, and furthermore, link 
this increasing trend in TAC to areas that experienced a higher 
drought frequency, intensity, and duration. This causal relation-
ship between extreme drought occurrences and slowing down is 
also supported by ecological evidence that extreme droughts can 
lead to forest mortality and thus ecosystem changes in structure 
and function (44, 45). Since drought frequency and intensity over 
the Amazon are predicted to increase with ongoing climate change 
(12), this implies that the effects of slowing down are expected to 
aggravate. In other words, more future droughts are expected to 
cause changes in forest structure and functioning by increasing 
forest mortality and can potentially bring more areas in the 
Amazon closer to a tipping point, especially those areas already 
more affected by climate change and land use changes.

Our results show moreover that the intensity of extreme drought 
events is more important than their duration for critical slowing 
down, as the standardized coefficient of drought duration is 
smaller than that of drought intensity in the Amazon-wide model, 
and not even significant in the combined TAC-SD model (Fig. 2 
and SI Appendix, Tables S2, S4, and S5). This can be explained by 
the biological response of trees to droughts. Droughts can cause 
tree mortality through two pathways: hydraulic failure and carbon 
starvation (46). Hydraulic failure occurs when the water loss from 
transpiration exceeds the water uptake, causing xylem vessels to 
become embolized and reducing the tree’s water transport capacity, 
ultimately leading to death. Carbon starvation occurs when a tree 
avoids hydraulic failure by closing its stomata and, leading to a 
negative carbon balance and death during prolonged periods with-
out photosynthesis. High intensity droughts are more likely to 

cause irreversible dehydration, resulting in hydraulic failure, while 
longer low-intensity droughts can cause mortality through carbon 
starvation (46). Hydraulic failure has been proposed as the major 
trigger for tree mortality in tropical rainforests (44), which aligns 
with our findings that drought intensity increases the slowing 
down response more than drought duration.

Extreme wet precipitation events are also known to have neg-
ative effects on tree growth and survival (32). Our results did 
not show a significant effect of more severe extreme wet periods 
on the slowing down of the Amazon forest vegetation. However, 
we found a significant decreasing effect on the TAC trend when 
they occurred in combination with more droughts. This may 
indicate a buffering effect of the wet period’s water excess which 
is stored in the groundwater and can maintain surface water 
bodies during following dry periods (14, 32). Within the regional 
models, this buffering effect is only significant in the north-eastern 
subregion 11.

We also find that a more variable precipitation pattern increases 
the slowing down of the Amazon forest, both on the scale of the 
whole Amazon and within all the regional models. These destabi-
lizing effects could partly be explained by the fact that seasonality 
is negatively correlated with mean annual precipitation across the 
Amazon, and pantropical vegetation in wetter areas was found to 
have a lower TAC (20). Smith and Boers (21) also found that 
empirical recovery rates generally decreased with more concen-
trated precipitation in a global study. We did not find the previ-
ously suggested positive effect of high precipitation variability on 
the stability of tropical vegetation to droughts (39). However, the 
interannual variability of precipitation in this study was calculated 
over a period of 40 years, which cannot encompass the lifespan of 
a forest community. Other research that used a similar short-term 
period to define the interannual variability of precipitation did 
find the same negative relationship with vegetation stability, albeit 
on a global scale (21).

Fig. 3.   Drought-related drivers of slowing down of the Amazon forest for each woody plant subregion, shown on top of the precipitation seasonality across the 
Amazon. (A) The colored outlines of the various subregions indicate whether drought frequency, intensity, duration, or none of these factors were significant 
drivers of slowing down in each region. Variables were defined as drivers of slowing down in a region when they had at least one significant increasing main or 
interaction effect on the TAC trend and no significant decreasing effects. (B) Woody plant subregions from Silva-Souza and Souza (35).
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The spatial variability we found in response to the different 
types of droughts can be related to ecological differences in forest 
communities across the Amazon. In the Amazon forest, evergreen 
and (semi)deciduous tree species co-occur, but dry-affiliated spe-
cies are more common in southern and central regions than in the 
northwest (47, 48). Previous research suggests that tropical forest 
communities are shifting toward more dry-affiliated and decidu-
ous components with less rainfall, both through recruits that are 
more dry-affiliated and through higher mortality of wet-affiliated 
trees (42, 49). Furthermore, tree species found in more seasonal 
forests have progressively more resistant xylem tissue (43). The 
lower mean annual precipitation and higher seasonality of the 
south-eastern region (woody subregions 7 and 13; Fig. 3 and 
SI Appendix, Table S6) and their higher percentage of (semi)decid-
uous forests (47) would make these regions more sensitive to tree 
mortality through carbon starvation. This could explain why their 
trend in TAC is driven by increased drought duration, compared 
to the TAC trend in the north-western regions 1 and 3 being 
driven only by frequency. In the south-eastern and eastern subre-
gions (2 and 12, respectively), this loss of stability is linked to 
increased drought intensity. Both regions consist mainly of moist 
evergreen forests (47), suggesting a high sensitivity to hydraulic 
failure and high-intensity droughts. The sensitivity of the 
north-eastern region 11 to longer droughts might also be related 
to its relatively high seasonality (Fig. 3 and SI Appendix, Table S6), 
indicating the occurrence of tree species with more resistant xylem 
(43) that could make them more sensitive to carbon starvation as 
well, similar to the southern regions.

On the other hand, in the central and northern regions (5, 6, 
7, 9, and 10, respectively), and in the southern region 8, we do 
not find clear indicators of drought-related drivers of slowing 
down. In these central models, the drought-related variables only 
show significant decreasing effects, while they were not significant 
in the southern model (SI Appendix, Table S1). It is worth noting 
that subregion 8 extended beyond the study region, meaning that 
the lower half of this region was not represented in the model 
results. Both central regions (5 and 6) have experienced a high 
number of drought events, and ranked among the regions with 
the highest average drought intensity and duration among all 
regions (SI Appendix, Table S6). As a result, their limited respon-
siveness to various types of droughts might be attributed to their 
extensive prior exposure to droughts, and thus, to a possible pre-
programmed adaptive mechanism against such events.

A limitation of our models is that, by using TAC derived from 
EVI time series, we assume that a decreased greenness of the veg-
etation not linked to seasonality indicates decreased vitality of the 
forest. This assumption is not problematic in areas where tree 
species cope with droughts by mainly focusing on embolism resist-
ance. However, some tropical tree species respond to changing 
precipitation regimes by shifting their investment from stem 
growth to root growth without a decrease in their total produc-
tivity (50). It is also important to note that TAC is an indicator 
and not a direct measurement of stability. The assumption of a 
linear relationship between TAC and stability may not hold in a 
multidimensional system such as the Amazon, and may therefore 
provide an incomplete picture of ecosystem dynamics. However, 
the observed slowing down of EVI does indicate clear changes in 
the functioning of the ecosystem. Additionally, our analysis omit-
ted pixels significantly affected by human activity. Nevertheless, 
we anticipate that anthropogenic disturbances would likely 
amplify the adverse effects of extreme droughts on the slowing 
down response of the forest (51). Moreover, the length of the time 
series is restricted, limiting its representation of long-term trends 
in the Amazon forest. However, since the time period used in this 

study includes multiple widespread drought events, we were able 
to capture the short-term responses to these recurrent events.

To summarize, our findings reveal a correlation between an 
increased TAC and recurrent extreme drought occurrences across 
the Amazon forest. The observed slowing down patterns, as discussed 
here, find support in other remote sensing studies (4, 5), underscor-
ing their reliability. However, the challenge to correctly interpret 
these remotely sensed patterns and their driving forces remains, 
illustrated by the low pseudo-R2 values of the models, which indicate 
that a great part of the variability within the TAC trend remains 
unexplained. The next crucial step involves using mechanistic models 
to unravel the causality behind these relationships.

Based on our analyses, we speculate that the predicted increase 
in drought intensity and duration will likely expand the forest 
areas experiencing critical slowing down, particularly in the more 
seasonal north- and south-eastern regions. The internal rain cycle 
in these areas may trigger a cascading effect, potentially leading 
to further slowing down in other parts of the Amazon forest, with 
implications for global effects on other tipping points (52, 53). 
Thus, safeguarding these mature forests and mitigating additional 
global warming should be primary concerns of international 
importance. Recognizing the pivotal role of indigenous peoples 
and traditional communities in preserving these forests and ful-
filling commitments to combat climate change is crucial (54, 55).

Materials and Methods

Satellite Imagery. The delineation of the Amazon forest was adopted from ref. 
56. Monthly images of the Enhanced Vegetation Index (EVI) over the Amazon 
forest were derived over the period 2001 to 2019 from the daily MODIS MCD43C4 
product with a spatial resolution of 0.05° (23), following ref. 20, using Eq. 1:

	
[1]EVI = 2.5 ×

(NIR − RED)

(NIR + 6 × RED − 7.5 × BLUE + 1)
,

with NIR, RED, and BLUE the surface reflectance values of the near-infrared, red, 
and blue MODIS bands. We used EVI instead of Normalized Difference Vegetation 
Index (NDVI) time series because the former is more sensitive to canopy varia-
tions in high biomass regions (57). Data masking and preprocessing followed ref. 
14. We excluded pixels from the time series when they had a low Bidirectional 
Reflectance Distribution Function (BRDF) inversion quality (50% or more fill val-
ues) or when they were classified as outliers (58). Afterward, pixels with more than 
10% missing values in their time series were masked (20). In order to decrease the 
probability of anthropogenic influences on the drought response of the Amazon 
forest, the analysis focused on native forest landscapes (59) with a tree cover 
higher than 60% as derived from the MODIS MOD44B vegetation continuous 
fields product (60), and burnt areas derived from the MODIS MCD64A1 burned 
areas product (61) were also masked out.

For the comparison with the VOD, we used the Ku-band product from the 
Vegetation Optical Depth Climate Archive (VODCA) dataset (62). It has a reso-
lution of 0.25°, and the pixels were masked using the criteria of Boulton et al. 
(4) of ≤80% evergreen broadleaf fraction and the presence of human land use 
according to the MODIS Land Cover Type product in 2001 (4, 63).

The kernel Normalized Difference Vegetation Index (kNDVI) was calculated 
from the same MODIS MCD43C4 product (23) following ref. 28, using Eq. 2:

	 [2]kNDVI = tanh

(

(

NIR − RED

2 × �

)2
)

,

with NIR and RED as the surface reflectance values of the near-infrared and red 
MODIS bands and σ as a length-scale parameter to represent the sensitivity of 
the index to sparsely/densely vegetated regions. We calculated σ per pixel as the 
temporal median of 0.5 × (NIR + RED), following ref. 28, and used the quality 
bands to remove pixels from the time series when they had a low BRDF inversion 
quality. We then removed all pixels that were masked out in the EVI product. The D
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kNDVI is more resistant to saturation and is more robust to noise and stability 
across spatial and temporal scales, compared to the NDVI and EVI (28).

Drought Events. For precipitation data, we used the monthly TerraClimate data-
set from 1980 to 2019, with a spatial resolution of 0.041°, which is 4 km at the 
equator (26). The precipitation data were rescaled using bilinear interpolation to 
the same resolution of the EVI data. We calculated the precipitation seasonality 
as the Seasonality Index following Walsh and Lawler (38) and the interannual 
variability of precipitation as the coefficient of variation of the annual mean pre-
cipitation values following ref. 39.

Extreme droughts were defined both spatially and temporally using cumu-
lative water deficit (CWD) anomalies, following ref. 14. We calculated the CWD 
over the Amazon forest from precipitation time series from 1980 to 2019 (26) 
according to Aragão et al. (9), assuming a fixed evapotranspiration of 100 mm 
per month. From this CWD dataset, we calculated the mean and SD of CWD per 
month. Standardized anomalies were then calculated per pixel by subtracting 
the mean from the pixel value and dividing the result by the SD. CWD anomalies 
below −1.96 are significantly drier than average (with P < 0.05). We defined 
extreme drought periods as starting with at least 2 mo of significantly dry CWD 
anomalies and ending when the anomaly gets positive, similar to how Anderson 
et al. (64) defined drought periods using the Standardized Precipitation Index 
(SPI). Because we used a fixed evapotranspiration value, the CWD anomalies 
in this study represent meteorological droughts and not hydrological droughts. 
Extreme wet periods were defined similarly by calculating cumulative water 
excess (CWE) anomalies (14, 32). We used a nonstandardized drought metric 
over the SPI to define our drought events because the tropical forest response 
to droughts is known to be decoupled from standardized drought indices (65).

Drought frequency is the number of droughts that occurred during a certain 
period. Drought intensity and duration are calculated per drought period. Drought 
intensity is calculated as the absolute value of the most negative CWD anomaly 
value during the drought period. Drought duration is defined as the number of 
months in the drought period. The average intensity and duration of droughts per 
pixel are determined by calculating the mean values of intensity and duration for 
all droughts occurring within the pixel during the specified period. Wet severity 
is the absolute value of the sum of all CWE anomaly values within a wet period. 
We include multiple drought characteristics to achieve a quantitative picture of 
the drought impact on the tropical forest ecosystem (66).

TAC. The EVI time series were detrended and deseasonalized using STL decompo-
sition (seasonal and trend decomposition using Loess) (67). We defined the time 
window used to calculate the long-term trend at 19 mo and the seasonal window 
at 13 mo. The remainder of the decomposed EVI time series was used to calculate 
the lag-1 autocorrelation with a moving window length of 5 y (60 mo) (4). The 
results were robust when using alternative moving window lengths of 3 or 7 y 
(SI Appendix, Fig. S2 and Table S3). In the EVI TAC calculation, we did not use a fixed 
seasonal window in the STL decomposition like Boulton et al. (4) did. If a drought 
would cause a permanent change in the seasonality amplitude or offset of the time 
series, using a fixed seasonality would cause anomalies in the remainder compo-
nent and thus in the TAC that are not related to a changed stability per se (20). We 
also did not control for longer cycles such as El Niño Southern Oscillation (ENSO) 
that might influence the precipitation and drought regimes of the Amazon, as we 
are interested in their impact on the critical slowing down response of the Amazon. 
This resulted in 70,336 pixels that could be included in the following analyses. The 
same process was followed for the kNDVI time series, resulting in 107,345 pixels 
with a nonmasked trend in TAC (SI Appendix, Fig. S4). The trend in TAC was calculated 
as the slope of the linear regression of the TAC time series from 2001 to 2019.

For the comparison with the VOD, we calculated the EVI and VOD TAC over the 
same time period 2001 to 2016, and we did calculate the VOD TAC using a fixed 
seasonality following the method of Boulton et al. (4) (SI Appendix, Fig. S3). The 
VOD TAC looks different from that of Boulton et al. (4) because of the different 
time period used in the analysis. Recent research found that the merging of 
data from multiple sensors done to produce the VODCA dataset induces strong 
biases on critical slowing down indicators (68); hence, these data are not used 
in the further models.

The temporal dynamics of the EVI TAC can be driven by two processes: 1) the 
changes in the stability of the system that influence the return rate after exter-
nal perturbations and 2) the confounding effects of the changes in TAC of the 

climate driver that directly affect the EVI TAC (6, 20, 69). In this study, we are only 
interested in the first process, so we checked whether the confounding effect was 
present in our data. We derived the TAC of the CWD anomalies time series in the 
same way as those of the EVI time series, and calculated the overall trend in TAC 
to represent the TAC dynamics of the climate driver. An increasing trend in the TAC 
trends of the CWD anomalies would point to a systematic change in the drought 
regime. This could be a change in the drought frequency, intensity, or duration. If 
the confounding effect would be present, we would expect a positive relationship 
between the TAC trends of the EVI and CWD anomalies. However, our data did 
not show this significant positive relationship (SI Appendix, Fig. S10). Therefore, 
we assume that the original EVI TAC time series can be used to investigate the 
changes in the Amazon forest stability that might lead to critical slowing down.

Variance. In order to quantify the trend in variance, we also used the remainder 
of the decomposed EVI time series to calculate the SD with a moving window 
length of 5 y (60 mo). The trend in EVI SD over 2001 to 2019 had a slight but 
significant positive relationship (R2 = 0.02, P < 0.001) with the trend in EVI TAC 
and showed a similar mean trend with the minimal value reached in May 2013, 
followed by a significant increasing trend until 2019 (SI Appendix, Fig. S8).

Sensitivity of EVI TAC to Drought Events. To visualize the sensitivity of the 
EVI TAC to drought events, we first calculated the mean time series of the sig-
nificant CWD anomalies across the whole Amazon to find the most widespread 
drought months according to our drought definition. We used a threshold of at 
least three consecutive months of mean values below −0.08 to define a wide-
spread drought event, resulting in three drought events from June to December 
2005 (“2005 drought”), September 2009 to January 2010 (“2010 drought”) and 
September 2015 to May 2016 (“2015 drought”) (SI Appendix, Fig. S5). For each 
of these droughts, we then calculated the mean EVI TAC time series for all pix-
els that experienced at least 1 mo of that drought, and we can see peaks in the 
time series of the drought pixels during the associated drought period (colored 
arrows in SI Appendix, Fig. S5). We also calculated the difference in the average 
time series of all pixels affected and unaffected by the three widespread drought 
events. Particularly for the 2010 and 2015 droughts, this illustrates the increase 
in the mean TAC of the affected pixels compared to their nondrought counterparts 
(SI Appendix, Fig. S5). We then divided all pixels into three different drought history 
categories, depending on their total drought duration (0 mo, 1 to 10 mo, and 
more than 10 mo). To account for the different number of pixels in each category, 
we calculated the mean EVI TAC trend value of 100 randomly chosen pixels per 
category, and we repeated this procedure 1,000 times for each category to make 
sure that the sampling was not leading to spurious results. We then plotted box-
plots of the 1,000 mean EVI TAC trends per category (SI Appendix, Fig. S6). We 
used the total drought duration both in the whole time period, 2001 to 2019, 
and in the period when the mean EVI TAC across the Amazon increased, 2013 to 
2019 (Fig. 1). For both time periods, the TAC trend of the no-drought group was 
significantly different from the medium- and long-drought histories according 
to Kruskal–Wallis and post hoc Dunn tests (70, 71). These boxplots show that 
pixels that experienced long droughts have a more increasing trend in TAC than 
those that experienced no droughts, especially when the droughts occurred more 
recent (SI Appendix, Fig. S6). Both figures indicate that the raw EVI TAC values are 
sensitive enough to detect the ecosystem response to extreme drought events, 
even when spatial autocorrelation and the climatic diversity across the Amazon 
are not taken into account.

Time-Varying EVI TAC Trend. The Amazon forest is a very complex system, 
which is not easily captured using only one parameter. As an additional line of 
support for our interpretation that the Amazon is losing stability due to increased 
drought occurrences, we applied a Bayesian DLM to estimate time-varying EVI 
TAC, using the available code of Liu et al. (37). The Bayesian DLM consists of an 
observation equation and a state evolution equation, and estimates the time-
varying TAC from the EVI and precipitation time series, to also account for the 
temporal variation in climate forcing. 97% of all pixels had an increasing linear 
trend in the time-varying EVI TAC over 2001 to 2019 (SI Appendix, Fig. S9). We 
used the same methodology as before to show the sensitivity of the TAC trend 
to different drought histories. For each drought history category, we randomly 
selected 100 pixels, took their mean, and repeated this procedure 1,000 times. 
Pixels that experienced more drought months had significantly higher time-
varying EVI TAC trends (SI Appendix, Fig. S9).D
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Spatial Simultaneous Autoregressive Lag Models. We performed linear 
regressions to analyze the relationship between the extreme drought occurrences 
and the potential critical slowing down of the Amazon forest vegetation over 
the period 2001 to 2019. The trend in TAC was used as the response variable 
in the models, while drought and environmental characteristics were included 
as explanatory variables. To address the proposed research question that aims 
to identify which drought characteristic has the most significant impact on the 
Amazon’s slowing down response, we considered drought frequency, average 
intensity, and average duration as relevant factors. Furthermore, we included 
three environmental variables that are known to impact the stability of tropical 
forests based on previous findings. Consistent with prior research (39, 72), we 
expected that higher seasonality would decrease the stability of the Amazon. The 
impact of higher interannual variability of precipitation on the stability of tropical 
forests has been reported to be both positive and negative, depending on the 
time period included and the regions considered (14, 21, 39). Finally, we included 
the total severity of extreme wet periods in our analysis. Previous research has 
suggested that extreme wet periods could mitigate the negative effects of subse-
quent extreme drought events (14, 32). Our objective was to investigate whether 
this also holds true when investigating the slowing down response of the Amazon. 
We did not include more variables in the analysis to keep the main model focused 
on drought-related drivers. However, we additionally created a separate model 
that included extra environmental variables describing the elevation (73) and 
the soil sand and clay content (74) across the Amazon to test whether adding 
extra variables would improve the explanatory power of the model (SI Appendix, 
Table S7). Adding extra environmental variables improved the model fit (lower 
AIC) but did not change the significance of any of the drought-related drivers 
compared to the main model (SI Appendix, Table S7).

We checked that our model met all the assumptions of a linear model. These 
assumptions are linearity of the data, normality of the residuals, homogeneity of 
residuals variance, and independence of the error terms. A Moran’s I test indicated 
the presence of spatial autocorrelation in the residuals of the fitted linear models, 
which can affect the estimates of the model coefficients. The variogram pointed 
to a range of spatial correlation between pixels of 9.5 km. We used a Lagrange 
Multiplier Diagnostic for spatial dependence to find a substitute model structure 
for the linear models, and the SSALM was found to decrease the model AIC the 
most (31, 75, 76). The SSALM assumes that the autoregressive process only occurs 
in the response variable, which is the trend in TAC. A neighborhood structure was 
created by defining all pixels closer than the range as neighbors and assigning 
higher weights to closer neighbors in a spatial weights matrix (W). These weights 
ranged from 0.13 to 1.00. The SSALM includes a term for the spatial autocorre-
lation in the response variable (ρWY, with ρ as the autoregression coefficient), 
together with the standard term for the n explanatory variables and errors (Xnβn 
+ ε) used in ordinary least squares (OLS) regression (31):

Y = ρWY + X1β1 + X2β2 + …… + X
n
β
n
+ ε.

Fitting the SSALM to our data significantly improved our models by decreasing 
the AIC. The Nagelkerke R2 was included as a measure of goodness of fit (77).

We included all three drought characteristics (drought frequency, average 
drought duration, and average drought intensity), together with the total wet 
severity, the precipitation seasonality, and the interannual variability of the pre-
cipitation in the model as explanatory variables (Fig. 2 and SI Appendix, Fig. S7). 
We included two-way interactions between the drought frequency and all other 
variables since we expected their effects would change depending on the number 
of drought occurrences. This resulted in all variance inflation factors (VIFs) having 
values below five. In the main model, the drought characteristics were calcu-
lated on the same period as the EVI time series (January 2001 until December 
2019). However, the results did not change when the time period of the drought 

characteristics was extended five, ten, or 15 y earlier or when a shorter or longer 
moving window was used to calculate the TAC (SI Appendix, Tables S2 and S3). 
When we repeated the analysis including only the pixels with a significant trend 
in TAC that did not exhibit a significant trend in SD in the opposite direction (5), 
following the theory that an increase in TAC cannot serve as evidence of slowing 
down if there is no corresponding increase in variance (22), we were left with 
37,990 or 54% out of 70,336 pixels (SI Appendix, Fig. S8). The only difference in 
the SSALM output from the original model was that the main effect of drought 
duration did not have a significant effect on the TAC trend anymore (SI Appendix, 
Table S4). When we repeated the analysis using the kNDVI TAC trend as a response 
variable, we also got similar results (SI Appendix, Table S5). The main difference 
between the models was that the main effect of drought frequency was not sig-
nificant in the EVI model, but significantly negative in the kNDVI model. The 
destabilizing effects of more intense, longer, and more frequent and intense 
droughts are shown in the kNDVI model as well.

Regional Models. We used a subdivision of the Amazon into 13 woody plant 
subregions, following Silva-Souza and Souza (35). They used data on woody 
species composition from 301 assemblages and performed unconstrained ordi-
nation, interpolation, and clustering techniques to identify these 13 woody 
subregions. The variation in their subregions could partly be explained by 
human factors, spatial structure, and environmental variables. The SSALM was 
iteratively run separately for each subregion to look at the spatial variation 
of the drought and climatic effects on the TAC trend (SI Appendix, Table S1). 
Because each subregion was composed of a different amount of pixels, we 
randomly selected 1,200 pixels from each subregion to use in the models. 
We used 1,200 pixels as this was the number of pixels included in the one-
to-smallest subregion. Subregion 13 only included 562 pixels and is the only 
subregion for which the model was run with fewer pixels. In Fig. 3, drought 
frequency, intensity, and duration were defined as drivers of slowing down in 
a region when they had at least one main or interaction effect that significantly 
increased the TAC trend and no effects that significantly decreased the TAC 
trend. SI Appendix, Table S6 shows the variation in drought occurrences and 
environmental variables in each of the subregions.

Text. We used the assistance of the Large Language Model, ChatGPT, to improve 
the fluency and readability of the text.

Data, Materials, and Software Availability. TIF files and R scripts data have been 
deposited in Figshare and GitHub (https://figshare.com/s/0363ff12d5bee640524b   
and https://github.com/jvanpassel/amazon_droughts) (78, 79).
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