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Coherent elastic excitation of spin waves
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We model the injection of elastic waves into a ferromagnetic film (F) by a nonmagnetic transducer (N). We
compare the configurations in which the magnetization is normal and parallel to the wave propagation. The lack of
axial symmetry in the former results in the emergence of evanescent interface states. We compute the energy-flux
transmission across the N|F interface and sound-induced magnetization dynamics in the ferromagnet. We predict
efficient acoustically induced pumping of spin current into a metal contact attached to F.
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I. INTRODUCTION

The macroscopic magnetic moment of a ferromagnet
results from a symmetry-broken ground state in which the
constituent spins align by the exchange interaction [1]. The
underlying crystal lattice breaks the rotational invariance
of the magnetic order. Owing to spin-orbit interaction and
dipolar fields, the spins experience elastic deformations in
the form of a magnetoelastic coupling (MEC). Vice versa,
the lattice is affected by the magnetization in the form of,
e.g., magnetostriction. The MEC appears to be the dominant
cause for Gilbert damping [2] of the magnetization dynamics
of insulators and plays the key role in equilibration of the
magnetic system with its surroundings [3]. It also offers elastic
control of magnetization dynamics.

While the coupled elastic and magnetic dynamics was
first investigated half a century ago [3,4], interest in this
area has been rekindled by improved material growth and
fabrication methods. Uchida et al. [5] induced spin pumping
by longitudinal acoustic waves injected into a ferromagnetic
insulator, suggesting MEC to be a possible mechanism
behind the transverse spin Seebeck effect [6]. Weiler et al.
excited ferromagnetic resonance (FMR) in a cobalt film
by pulsed surface acoustic waves [7]. Static strains induce
effective magnetic fields that can be used to manipulate the
magnetization [8]. Full magnetization reversal of a magnetic
film on a cantilever by magnetomechanical coupling has been
predicted [9].

While several authors [3,4] investigated magnetoelastic
waves (MEWs) in magnetic bulk crystals, boundary conditions
and finite size effects, which are essential to understand
ultrathin films and nanostructures, have seldom been ad-
dressed [10]. We previously proposed [11] a scattering theory
for MEW propagation analogous to the Landauer-Büttiker
formalism for electronic transport in mesoscopic systems [12].

Here we study the excitation and propagation of MEWs
in a ferromagnet by a nonmagnetic transducer that injects
elastic waves into the ferromagnet. MEWs are generated at the
interface by MEC-induced hybridization between the spin and
elastic waves. The mixing is resonantly enhanced around the
(anti)crossing of the spin and lattice wave dispersion relations
at which fully mixed magnon polarons (MPs) are generated.
Far from this region, the MEWs can be considered dominantly
magnonic (spin) or phononic (elastic). Because of their mixed

character, MPs can be excited by exposing the ferromagnet to
sound waves.

The equations of motion for MEWs propagating in arbitrary
directions are derived in Sec. II A. Two special cases of
interest are waves traveling perpendicular to (configuration 1)
and along (configuration 2) the equilibrium magnetization,
since they can be solved analytically and offer direct physical
insights. Here we focus on configuration 1 and compare
results with configuration 2 where appropriate [11]. Physically,
configuration 1 differs from configuration 2 by the broken
axial symmetry that causes a mixing of the right and left
precessing spin waves. We formulate the basis for a scattering
matrix theory in Sec. II B and derive magnetoelastic boundary
conditions (BCs) in Sec. II C. The energy transport across a
nonmagnet|ferromagnet interface and the resulting excitation
of MEWs are given in Sec. III A. Considering thin film
ferromagnets, we investigate finite size effects such as standing
wave excitations in Sec. III B. We conclude with a discussion
in Sec. IV.

II. THEORETICAL METHOD

A. Magnetoelastic waves in ferromagnets

In this section, we recapitulate the continuum theory
of low energy excitations in a ferromagnet including the
magnetoelastic coupling. We closely follow Kittel [4] to
obtain the coupled equations of motion for magnetization (M)
and displacement (R) fields. An applied magnetic field and
easy-axis anisotropy, and thus the equilibrium magnetization
direction, is chosen along the ẑ direction (see Fig. 1).

1. Energy density in a ferromagnet

The free energy density H has contributions from the
Zeeman interaction, magnetic anisotropy, exchange interac-
tion, MEC, and elastic energy,

H = HZ + Han + Hex + HMEC + Hel. (1)

For small deviations from equilibrium (Mx,y � Mz ≈ Ms ,
the saturation magnetization), Zeeman plus anisotropy energy
densities read [4]

HZ + Han = ω0

2γMs

(
M2

x + M2
y

)
, (2)
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(a) Config. 1 (b) Config. 2

FIG. 1. (Color online) Two canonical configurations for magnetoelastic wave propagation in ferromagnets. The magnetization is saturated
along the z axis by a magnetic field H. The blue arrows depict an instantaneous magnetization texture with spin wave excitations. The red wavy
arrow represents wave propagation along (a) x̂ and (b) ẑ.

where ω0 = γμ0H is the ferromagnetic resonance frequency,
H is the magnitude of the external plus the anisotropy fields
along ẑ, μ0 is the vacuum permeability, and γ (>0) is the
gyromagnetic ratio. The exchange energy density can be
expressed as [13]

Hex = A

M2
s

[
(∇Mx)2 + (∇My)2

]
, (3)

in terms of the exchange constant A. The elastic energy density
for an isotropic solid reads

Hel = 1

2
ρF (Ṙ · Ṙ)2 + λF

2

(∑
i

Sii

)2

+ μF

∑
ij

S2
ij , (4)

in terms of the density ρF , the Lame’s constants λF and μF , and
the components of the strain tensor [14] Sij = 1/2(∂Ri/∂xj +
∂Rj/∂xi).

For cubic symmetry the MEC energy density is
parametrized by the MEC constants b1,2 as

HMEC = b1

M2
s

∑
i

M2
i Sii + b2

M2
s

∑
i �=j

MiMjSij

+ r0

3M2
s

∂A

∂r
[(∇Mx)2 + (∇My)2]

(∑
i

Sii

)
,

≈ 2b2

Ms

(MxSxz + MySyz), (5)

where r is the distance between nearest neighbor spins with
equilibrium value r0, and only terms linear in Mx,y have been
retained in the second step. The effects of the nonlinear terms
have been considered elsewhere [15]. The (disregarded) last
term in Eq. (5) represents the MEC [16] mediated by the
dependence of the exchange integral on r . Considering the
linear terms only, we may interpret the MEC as an effective
Zeeman field with its x and y components proportional to Sxz

and Syz, respectively.

2. Equations of motion

The Hamilton equations of motion for the energy density
defined above read [4,17]

Ṁx = ω0My − D∇2My + b2γ

(
∂Ry

∂z
+ ∂Rz

∂y

)
, (6)

Ṁy = −ω0Mx + D∇2Mx − b2γ

(
∂Rx

∂z
+ ∂Rz

∂x

)
, (7)

ρF R̈x = μF ∇2Rx + (λF + μF )
∂

∂x
∇ · R + b2

Ms

∂Mx

∂z
, (8)

ρF R̈y = μF ∇2Ry + (λF + μF )
∂

∂y
∇ · R + b2

Ms

∂My

∂z
, (9)

ρF R̈z = μF ∇2Rz + (λF + μF )
∂

∂z
∇ · R

+ b2

Ms

(
∂Mx

∂x
+ ∂My

∂y

)
, (10)

where D = 2Aγ/Ms is the spin wave stiffness. We disregard
dissipation since we are primarily interested in magnetic insu-
lators such as yttrium iron garnet (YIG) with very weak Gilbert
and mechanical damping. The equations above demonstrate
coupling between all five field variables that renders an analytic
solution intractable. In the following we therefore focus on two
configurations corresponding to wave propagation orthogonal
to and along the equilibrium magnetization direction (z) as
shown in Fig. 1.

Configuration 1. For wave propagation along the x direction
the partial derivatives with respect to y and z in Eqs. (6)–(10)
vanish and only the transverse displacement Rz couples to the
magnetization dynamics. The MEC [Eq. (5)] reduces to

HMEC = b2

Ms

Mx

∂Rz

∂x
, (11)
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which is not invariant under rotation about the z direction. With
constant coefficients the equations of motion are solved by
plane waves B(x,t) = Re[b(k,ω)ei(kx−ωt)] and can be written
as a matrix equation Aχ = 0,⎛

⎝ iω ωm 0
−ωm iω −ib2γ k

ib2k/(ρF Ms) 0 ω2 − ω2
p

⎞
⎠

⎛
⎝mx

my

rz

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠, (12)

where ωm = ωm(k) = ω0 + Dk2 and ωp = ωp(k) =
k
√

μF /ρF are the uncoupled magnonic and phononic
dispersion relations.

Configuration 2. For waves propagating along the z di-
rection both transverse components Rx and Ry couple to the
magnetization dynamics. The MEC [Eq. (5)] then reduces to
the axially symmetric form

HMEC = b2

Ms

(
Mx

∂Rx

∂z
+ My

∂Ry

∂z

)
. (13)

By the transformation M± = Mx ± iMy and R± = Rx ± iRy ,
the 4 × 4 matrix equation is block-diagonalized into two 2 × 2
equations [11],(

i(ω − σωm) σγ b2k

ib2k/ρF Ms ω2 − ω2
p

) (
mσ

rσ

)
= 0, (14)

where σ = ± is a chirality index. m+ denotes the spin waves
that precess “with” the magnetic field, while m− represents
counter-rotating modes with frequency ω = −ωm(k). Since
k is imaginary for any (positive) frequency, these waves
are always evanescent and cannot exist in the bulk of the
ferromagnet. r+ represents the right and r− the left circularly
polarized elastic waves.

Comparison between configurations 1 and 2. Since we
consider waves along symmetry directions, only the elastic
shear waves couple to the magnetization in both cases [18].
The three eigenmodes for configuration 1, as will be discussed
in Sec. II C, correspond to the three coupled variables [see
Eq. (12)], and two eigenmodes for configuration 2 [see
Eq. (14)]. The right and left precessing magnetoelastic modes
are uncoupled under the axial symmetry of configuration 2,
but they become mixed when this symmetry is broken in
configuration 1. The elastic displacement rz then couples to
the evanescent m− as well as the propagating m+ waves. This
mixing is important in the “ultrastrong” coupling regime in
which the rotating wave approximation, i.e., the neglect of the
± coupling, breaks down. Typically, the FMR frequency is
much higher than the frequency equivalent of MEC strength,
and the rotating wave approximation is valid. Nevertheless, the
evanescent waves are necessary to formulate proper boundary
conditions and affect the conversion of acoustic to magnetic
energy at the interfaces.

3. Magnetoelastic eigenmodes

Diagonalization of Eq. (12) leads to the dispersion relations
of the magnetoelastic waves (MEWs),

ω± =

√√√√ω2
m + ω2

p

2
±

√(
ω2

m − ω2
p

2

)2

+ b2
2k

2γωm

ρF Ms

. (15)

The wave vectors ka of the eigenmodes at frequency ω, where
the subscript a labels the eigenmodes, are obtained by inverting
the dispersion relation [Eq. (15)], as will be discussed in
Sec. II C. The corresponding eigenvectors χa are

χa =
⎛
⎝mx

my

rz

⎞
⎠ = Na

⎛
⎜⎝

ib2γ kaωma/
(
ω2 − ω2

ma

)
b2γ kaω/

(
ω2 − ω2

ma

)
1

⎞
⎟⎠, (16)

where Na is a dimensionless normalization factor, ωma ≡
ωm(ka), and the eigenmodes consist of elliptical magneti-
zation precession around z coupled with the elastic shear
mode along z. The dispersion [Eq. (15)] is plotted in
Fig. 2 for parameters appropriate for YIG: Ms = 1.4 ×
105 A/m, b2 = 5.5 × 105 J/m3, D = 8.2 × 10−6 m2/s, H =
8 × 104 A/m, γ = 2.8 × 1010 Hz/T, ρF = 5170 kg/m3, and
μF = 74 GPa [19–21]. When the MEC is weak, the branches
in the dispersion diagram are quite close to the uncoupled
dispersion relations ωm or ωp [see Eq. (15)] in much
of the phase space [the W regions in Fig. 2(b)]. Here
the mode with frequencies close to ωm(ωp) is dominantly
magnonic (phononic). In the crossing regime, i.e., when
4b2

2k
2γωm/ρF Ms � (ω2

m − ω2
p)2, the excitations hybridize

[the S region in Fig. 2(b)]. We refer to the quasiparticle close
to k0 at which the uncoupled dispersions cross as “magnon
polaron (MP)”. Since the uncoupled magnon dispersion is very
flat compared to that of the phonons, we may define a narrow
M region in ω space [Fig. 2(b)] in which the magnon character
dominates both excitation modes, while the phonon character
is suppressed, leading to a pseudoband gap for quasiphononic
excitations [see also Fig. 4(b)]. For spin wave stiffness
D � ω0/k2

0, k0 ≈ ω0
√

ρF /μF , and the M region covers the

frequency interval |ω − ω0| �
√

b2
2ω0γ /4μF Ms ≈ 24 MHz.

B. Energy flux and eigenmode normalization

Energy conservation can be expressed by the continuity
equation [3]

∂H
∂t

+ ∇ · F = 0, (17)

where the energy flux F = Fx x̂,

Fx = −
[

2A

M2
s

(
∂Mx

∂t

∂Mx

∂x
+ ∂My

∂t

∂My

∂x

)

+ ∂Rz

∂t

(
μF

∂Rz

∂x
+ b2

Mx

Ms

)]
. (18)

For real k, B(x,t) = [b(k,ω)ei(kx−ωt) + b∗(k,ω)e−i(kx−ωt)]/2,
whence the time-averaged energy flux F̄ is constant,

F̄x = Aωk

M2
s

(|mx |2 + |my |2) + μF ωk

2
|rz|2 + b2ω

2Ms

Im(r∗
z mx).

(19)

For the eigenmode χa ,

F̄ a
x = N2

a

[
μF kaω

2
+ Ab2

2γ
2

M2
s

k3
aω

(
ω2 + ω2

ma

)
(
ω2 − ω2

ma

)2

+ b2
2γ

2Ms

kaωωma

ω2 − ω2
ma

]
. (20)
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(a) (b)

FIG. 2. (Color online) (a) Dispersion relation for magnetoelastic waves (MEWs) in a ferromagnet calculated using Eq. (15) and parameters
for YIG. The arrow on the ordinate indicates the FMR frequency ω0. The blue dashed box is expanded in (b) to reveal the anticrossing. The
dashed lines denote the unperturbed magnonic (ωm, green line) and phononic (ωp , blue line) dispersion relations, while the solid lines represent
the coupled MEWs. The ω-k space can be classified into three regions: (i) the W region, where the MEWs can be considered quasiphononic or
quasimagnonic, (ii) the S region, where the MEWs have a mixed character, and (iii) the M region, where both excitations are quasimagnonic,
leading to a pseudoband gap for quasiphononic excitations.

F̄ vanishes for imaginary k, i.e., evanescent waves that store,
but do not propagate, energy. Equations (19) and (20) reduce
to the flux carried by purely elastic (spin) waves in the
limit b2 → 0 and ω → ωp(ωm). In transport theory it is
convenient to choose the normalization factors Na such that
each eigenmode carries unit energy flux, i.e., F̄ a

x = 1 W/m2

[Eq. (20)]. When interested in the amplitude or the energy
density, choosing a normalization factor of Na = 1 may be
simpler. The calculated physical quantities are of course
independent of the normalization chosen. In the following we
will employ flux normalized representation for the propagating
waves.

C. Boundary conditions and acoustic actuation of MEWs

So far we have discussed MEWs in the bulk of a ferro-
magnet. Next, we derive the interface connection rules for
a nonmagnetic transducer (N) attached to a ferromagnet (F).
The required boundary conditions (BCs) can be obtained by
integrating the equations of motion over the abrupt interface
with discontinuous constitutive parameters. This is equivalent
to demanding continuity of the energy flux [Eq. (18)] across
the interface [3]. The first BC corresponds to zero spin wave
angular momentum flux at the interface or “free” BC for the
magnetization,

∂Mx,y

∂x

∣∣∣∣
F

= 0. (21)

Here, we disregard the anisotropies that could “pin” the
magnetization at the interface. Continuity of mass velocity
(or, equivalently, displacement) at the interface implies

∂Rz

∂t

∣∣∣∣
F

= ∂Rz

∂t

∣∣∣∣
N

. (22)

The third BC is the continuity of stress at the interface,(
μF

∂Rz

∂x
+ b2

Mx

Ms

)∣∣∣∣
F

= μN

∂Rz

∂x

∣∣∣∣
N

. (23)

These BCs should be satisfied for all frequencies. The wave
numbers ka in F corresponding to a given frequency ω (>0) of
the elastic wave incident from N are obtained by inverting the
MEW dispersion relation [Eq. (15)]. The secular equation

0 = μF D2

ρF

k6 +
[

2ω0DμF

ρF

− b2
2γD

ρF Ms

− D2ω2

]
k4

−
[

2ω2ω0D + μF

ρF

(
ω2 − ω2

0

) + b2
2γω0

ρF Ms

]
k2

+ω2
(
ω2 − ω2

0

)
(24)

is cubic in k2, implying three (doubly degenerate) solutions.
One of these solutions (k1) is real for all ω, representing a
propagating wave. It corresponds to the ω− branch of the
dispersion [Fig. 2(a)] with limiting values k1 → ω

√
ρF /μF

for ω < ω0 and k1 → √
(ω − ω0)/D for ω > ω0 for b2 → 0.

The second root k2 corresponds to the upper ω+ branch
of the dispersion with, for b2 → 0, limiting values k2 →√

(ω − ω0)/D for ω � ω0 and k2 → ω
√

ρF /μF for ω > ω0,
therefore evanescent for ω below and propagating above ω0.
The third solution k3 → i

√
(ω + ω0)/D in the limit b2 → 0 is

always evanescent and thus does not appear in the dispersion
diagram [Fig. 2(a)].

III. RESULTS

A. Acoustic energy transfer across N|F interfaces

Here we consider a ferromagnet (F) in contact with a non-
magnetic transducer (N) that injects elastic waves propagating
along x̂ (see Fig. 3). Both F and N are semi-infinite (or with
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FIG. 3. (Color online) Scattering process at an N|F interface with
magnetization along ẑ. Linear polarized (along ẑ) transverse acoustic
waves generated in a nonmagnetic transducer (N) impinge on a
ferromagnet (F) in the x direction. The incident wave is partially
reflected (without mode conversion) and partially transmitted into the
F as three MEWs (shown as red wavy arrows). One of these MEWs
is always propagating, the second one is evanescent or traveling
depending on the frequency of the incident wave, while the third
one is always evanescent.

a perfect absorber attached to the F side) so that only the
N|F interface at x = 0 matters while there are no incoming
propagating waves from F. With these boundary conditions a
flux-normalized sound wave in N (with parameters denoted by
subscript N ) reads

ψN (x � 0) = (Mx,My,Rz)
ᵀ =

√
2

μNωki

(0, 0, 1)ᵀei(kix−ωt)

+ r(ω)

√
2

μNωki

(0, 0, 1)ᵀe−i(kix+ωt), (25)

where ki = ω
√

ρN/μN is the wave number of the incident (and
reflected) wave and r(ω) is the reflection coefficient calculated
below. In F we have to consider the three MEWs derived above:

ψF (x � 0) =
∑

l=1,2,3

tl(ω)χle
i(klx−ωt). (26)

The propagating waves in Eq. (26) are assumed to be
flux-normalized such that the reflection and transmission
probabilities of the propagating waves are simply given by
|r|2 and |tj |2, leading to

|r|2 +
∑

j

|tj |2 = 1, (27)

where the index j runs over propagating modes only. The
normalization factor Na has been chosen to be 1 for evanescent
modes.

Imposing the four boundary conditions [Eqs. (21)–(23)]
yields four equations for the four variables r,t1,2,3,∑

l

tlklχl[1] = 0, (28)

∑
l

tlklχl[2] = 0, (29)

∑
l

tlχl[3] =
√

2

μNωki

(1 + r) , (30)

∑
l

(
iμF kltlχl[3] + b2

Ms

tlχl[1]

)
= iμNki

√
2

μNωki

(1 − r),

(31)

with χl[m] denoting the mth element of the vector χl .
The analytic solutions are unwieldy and not presented
here. In Fig. 4(a) we plot the energy flux carried by
the propagating waves for a junction of magnetic YIG
and nonmagnetic gadolinium gallium garnet (GGG) with
parameters ρN = 7085 kg/m3 and μN = 90 GPa [22]. The
small but finite acoustic mismatch causes partial reflec-
tion even far from the resonance without actuating the
magnetization.

Figure 4(a) is very similar to the analogous plot for
the symmetric configuration (configuration 2) considered in
Ref. [11] in which circularly polarized MEWs propagate
along the equilibrium magnetization direction. Far from the
anticrossing, transmission is efficient into the quasiphononic
excitation. The modes gradually change their character when
approaching the anticrossing. Hence transmission into one
branch increases at the cost of the other one. The evanescent
modes apparently do not affect the steady state transmission
even close to the anticrossing. We expect them to play a
significant role in the transmitted energy current only in the
ultrastrong coupling regime in which the MEC is of the order
of ω0. However, this does not imply that the evanescent states
may be neglected. They do store significant energy and should
show up in the transients when actuation is carried out by
ultrashort pulses. Furthermore, the presence of defects would
mix the evanescent interface states with propagating ones. The
MEWs are efficiently excited in the full frequency range [see
Fig. 4(a)] including MPs, which are formed at about 2.79 and
2.84 GHz [see Fig. 4(b)], although in contrast to the energy
density in Fig. 4(b), the energy flux is still dominated by the
lattice degree of freedom [see Fig. 4(c)].

B. Excitation of spin waves in ferromagnetic films

We now consider finite size effects in the device depicted
in Fig. 5 in which F is bounded by the actuator on one side and
air or vacuum on the other. Since we disregard damping, net
energy transport through any cross section vanishes. N is still
described by Eq. (25) while in F,

ψF (0 � x � d) =
∑

l=1,2,3

[t+l χl(kl)e
i(klx−ωt)

+ t−l χl(−kl)e
−i[kl (x−d)+ωt]], (32)

with kl > 0 for traveling and Im(kl) > 0 for evanescent waves.
Since χl[1,2](−kl) = −χl[1,2] and χl[3](−kl) = χl[3],
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(a) (b)

(c)

FIG. 4. (Color online) (a) Normalized energy flux carried by the reflected and transmitted waves. At ω0, wave 2 changes character from
evanescent to propagating. (b) Ratio between the elastic and magnetic energy densities associated with the transmitted waves. The ratio becomes
very small when the magnetic energy dominates but never vanishes. The shaded region depicts the pseudoband gap for elastic waves. (c) Lattice
contribution to the energy flux for the two transmitted waves. The arrows on the abscissas indicate the FMR frequency ω0.

FIG. 5. (Color online) Schematic of an N|F structure exposed to
vacuum or air on the F side. Elastic waves incident from N excite
MEWs in F. The F|vacuum interface at x = d totally reflects all
waves. Standing wave solutions in F are broadened by the energy
leakage back into N.

the boundary conditions [Eqs. (21)–(23)] at x = 0 read∑
l

(t+l klχl[1] + t−l klχl[1]eikld ) = 0, (33)

∑
l

(
t+l klχl[2] + t−l klχl[2]eikld

) = 0, (34)

∑
l

(
t+l χl[3] + t−l χl[3]eikld

) =
√

2

μNωki

(1 + r), (35)

∑
l

[(
iμF klχl[3] + b2

Ms

χl[1]

)
(t+l − t−l eikld )

]

= iμNki

√
2

μNωki

(1 − r). (36)

The total reflection corresponds to the free boundary condition
at the outer interface (x = d),∑

l

klχl[1](t+l eikld + t−l ) = 0, (37)
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∑
l

klχl[2](t+l eikld + t−l ) = 0, (38)

∑
l

[(
iμF klχl[3] + b2

Ms

χl[1]

)
(t+l eikld − t−l )

]
= 0, (39)

thereby completing the set of seven linear equations
[Eqs. (33)–(39)] for seven variables (r,tσl ). While no energy
is transported it is instructive to plot the normalized energy
flux carried by the reflected and the forward traveling waves,
corresponding to the coefficients r , t+1 , and t+2 , for different
F thicknesses in Fig. 6. The flux of transmitted waves is not
bounded by unity now [see Fig. 6(a)]. The sharp feature in
the flux of transmitted wave 1 disappears with decreasing d,
implying that the standing wave excitation in F is most efficient
when the wavelength of the incident elastic wave matches d.

The magnetization dynamics or MEW excitation in F can
be detected conveniently via spin pumping [23] into a thin
(∼few nm) platinum film [5,7] that converts the spin current
into a transverse charge current via the inverse spin Hall effect
(ISHE) [24]. The spin current density injected into a thin Pt
film [25] contact on F reads [23]

Js = gr�

4πM2
s

(M × Ṁ)|x=d , (40)

where gr is the real part of the spin mixing conductance per
unit area [23], and we disregard its imaginary part as well as
spin current backflow [26]. The time-averaged spin current is

polarized along ẑ,

〈Js〉t =
〈

gr�

4πM2
s

(MxṀy − MyṀx)|x=d

〉
t

ẑ = gr�ω

4π
β2 ẑ,

(41)

where we define the “spin pumping angle” [27] β =√
Im[m∗

xmy/M2
s ] as a dimensionless measure of the pumped

spin current, with Mx,y(x = d) = mx,ye
−iωt and [Eq. (32)]

mx,y =
∑

l

χl[1,2](t+l eikld − t−l ). (42)

The spin current pumped into the Pt film is converted into
a transverse voltage by the ISHE that can be computed
by solving the spin diffusion equation with the appropriate
boundary conditions [28].

The squared spin pumping angle β2 is proportional to the
incident energy flux Fin. The ratio β2/Fin is plotted against ω

in Fig. 6 (upper panels) for different thicknesses d. The spin
current is resonantly enhanced around the FMR frequency ω0

with a maximum that decreases with d, as expected from the
excitation efficiency (lower panels in Fig. 6). A dip in the
frequency dependence of the spin pumping angle develops at
a frequency slightly below ω0 with decreasing d (upper panels
in Fig. 6). This dip is attributed to an enhanced excitation
of the evanescent (counter-rotating) m− mode, which pumps
spin current with opposite polarity, when d is comparable
to or less than the decay length (a few hundred nm) of this
mode. In configuration 2, the m− mode does not couple to the
incident r+ wave, hence the β2 spectra are almost symmetric
Lorentzians (see Fig. 7).

(a) (b) (c)

FIG. 6. (Color online) Energy fluxes and squared spin pumping angle β2 per incident flux Fin vs frequency ω of the incident elastic wave
for F layer thickness (a) d = 1 μm, (b) d = 100 nm, and (c) d = 10 nm. Note the different scales on the ordinate. The arrows on the abscissas
indicate the FMR frequency ω0. The fluxes shown here are carried by the forward propagating transmitted waves in F and reflected wave in N.
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(a) (b) (c)

FIG. 7. (Color online) Configuration 2: Energy fluxes and squared spin pumping angle β2 per incident flux Fin vs frequency ω of the
incident elastic wave for F layer thickness (a) d = 1 μm, (b) d = 100 nm, and (c) d = 10 nm. The arrows on the abscissas indicate the FMR
frequency ω0. The fluxes shown here are carried by the forward propagating transmitted waves in F and reflected wave in N.

The maximum value of β2/Fin around ω0 as a function
of d in Fig. 8(a) shows a peak at d ≈ 0.62 μm, a thickness
comparable to the wavelength of the incident elastic wave.
β2/Fin is plotted for d = 0.62 μm over a wider frequency
range in Fig. 8(b). Two additional peaks can be attributed to
spin wave resonances (kn = nπ/d, n = 1,2). A perfect energy
sink at the outer interface, as considered in the previous section,
suppresses any reflection. The resulting average squared spin
pumping angle per incident flux, depicted by the blue dashed

line in Fig. 8(b), is indeed considerably smaller than in the
case of a reflecting interface.

We note that all the excited modes are dominantly
magnonic because the frequencies corresponding to the
wave numbers kn lie in the W region [Fig. 2(b)]. The
translational symmetry breaking at the interface allows ex-
citation of spin waves without wave-number conservation.
(β2/Fin)max (and hence the spin current) decreases with
increasing n.

(a) (b)

FIG. 8. (Color online) (a) Maximum value of β2/Fin in the frequency range around ω0 vs the thickness of the ferromagnetic film (d).
(b) β2/Fin vs ω for d = 0.62 μm corresponding to the maximum in (a). The peaks corresponding to the first two standing MEWs, in addition
to the uniform mode, can be seen. The fully damped case, corresponding to an ideal acoustic sink at the far end (or an infinitely thick F layer
as considered in Sec. III A), is depicted by the dashed line. The arrow on the abscissa indicates the FMR frequency ω0.
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IV. CONCLUSION

We study the excitation of magnetization dynamics in a
ferromagnet (F) via elastic waves injected by an attached
nonmagnetic transducer (N). To this end, a scattering theory
formulation of the magnetoelastic waves (MEWs) resulting
from magnetoelastic coupling (MEC) in F has been employed.
We solve the equations of motion for MEWs propagating
orthogonal to (configuration 1) and along (configuration 2)
the equilibrium magnetization direction. Configuration 1 leads
to excitation of evanescent counter-rotating spin waves, in
addition to the two traveling quasispin and quasielastic
waves. The evanescent waves are not important for energy
transport but play significant roles in other phenomena, such
as transients in pulsed excitation or evanescent-wave mediated
coupling between two media [29].

Acoustic excitation of MEWs can efficiently generate
magnetization dynamics in the form of magnon polarons
(MPs) around the anticrossing region. In sufficiently thin

ferromagnetic films standing spin waves can also be excited.
The efficiency is maximized for F layer thicknesses that
match the wavelength of the elastic waves. The magnetization
dynamics can be detected by spin pumping into an adjacent
normal metal layer via the inverse spin Hall effect. The
formulation of energy and spin transport by MEWs unifies
phononics and magnonics, thereby paving the way into yet
unchartered territory.
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