
Technological support for distributed
agile development

Kevin Dullemond and Ben van Gameren

Technological support for distributed
agile development

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Kevin Dullemond
born in Rotterdam

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Technological support for distributed
agile development

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Ben van Gameren
born in Rotterdam

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c© 2009 Kevin Dullemond and Ben van Gameren. All rights reserved.

Technological support for distributed
agile development

Author: Kevin Dullemond
Student id: 1217445
Email: k.dullemond@student.tudelft.nl

Author: Ben van Gameren
Student id: 1221752
Email: b.j.a.vangameren@student.tudelft.nl

Abstract

Because of the distance between the dispersed development locations, Global Soft-
ware development (GSD) is confronted with challenges regarding communication, co-
ordination and control of the development work. At the same time, agile software
development is strongly built upon communication between engineers and has proven
its benefits, although, mostly on one single site. As such, it might be advantageous to
combine GSD with agile development. This blend however is not straightforward since
the distributed and agile development approaches might have conflicting convictions.
In this thesis we will discuss the advantages and challenges of combining GSD with
agile development based on a literature-based research. The main results presented in
the theoretical part of this thesis (Part I through V), are: (i) aspects of agile software
development, (ii) benefits and challenges associated with these in relation to GSD,
(iii) categories of technological support for agile GSD, (iv) a framework depicting the
mutual relations among them and (v) a discussion regarding specific technologies that
support collaborative development in relation to this framework. Based on one of the
recommendations we make in the theoretical part of this thesis we also perform prac-
tical research (Part VI) in which we define a list of requirements for an Integrated
Collaborative Development Environment (ICDE) and show the technical feasibility of
a number of concepts which realize these.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. ir. D.M. van Solingen, Faculty EEMCS, TU Delft
Committee Member: Ir. B.R. Sodoyer, Faculty EEMCS, TU Delft

Preface

Research Division and Responsibilities

The research reported in this thesis is a joint effort of both authors of this thesis. To make the
division of the research and responsibilities explicitly clear, this thesis is divided in parts.
Here we will specify for each part by witch author, or athors, it was written.

The actual research division and responsibilities are as follows:

Part I Introduction Kevin Dullemond & Ben van Gameren

Part II Global Software Development Ben van Gameren

Part III Extending Global Software Kevin Dullemond
Development with aspects of
the agile development process

Part IV Supporting Agile Global Software Kevin Dullemond & Ben van Gameren
Development with technology

Part V Conclusions and Future Work Kevin Dullemond & Ben van Gameren

Part VI Practical Research Kevin Dullemond & Ben van Gameren

Division of the research assignment and the thesis project

The second year of the master Computer Science in the TU Delft consists of a research
assignment and a thesis project. Often the research assignment consists of a literature study
in preparation of the thesis project while the thesis project consists of solving a research or
engineering problem. In this thesis the research assignment was indeed a literature study in
preparation of the research project. Basically, the thesis project continued right where the

iii

PREFACE

research assignment finished. Because of this we decided to present both in a single thesis.

In order for the supervisors to grade this work however, a split between both lines of re-
search should be made. Because this thesis is structured as a single narration the split
between both assignments is not explicit. On the one hand Part I and Part II are completely
part of the research assignment, while Part IV, Part V and Part VI are completely part of the
thesis project. Part III on the other hand cannot be completely be assigned to either of the
two. In this part, the introduction into agile methodologies and the benefits and challenges
of agile practices in a GSD environment are part of the research assignment. The definition
of aspects of agile software development and how these aspects are related to distance and
the challenges and benefits of agile practices in a GSD environment, however, are part of
the thesis project.

Acknowledgements

We would like to express our gratitude to everyone who contributed directly or indirectly
to our work. In this section we will mention the people who made the most profound
contribution. First of all, we would like to thank our supervisor Rini van Solingen for his
continuous support, guidance, enthusiasm, stimulating discussions, critical notes and review
of our work. We would also like to thank him for his creative input with respect to deciding
on the exact focus of our research. Secondly we would like to thank Arie van Deursen for
the review of our work and his assistance with the LATEX style. Thirdly during our research
we have set up a small ’knowledge group’ with the help of Rini van Solingen.
The following people participate in this group:

Name Company
Toine Hurkmans Exact Software
Bart Platzbeecker Exact Software
Dick Stegeman iHomer
Floris van der Plas Mavim
Ericka Marquez SDL Tridion
Dennis van der Veeke SDL Tridion
Onno Ceelen SDL Tridion
Rini van Solingen TU Delft
Gerard Janssen Xebia

We would like to thank the participants of this group for the input and valuable discussions.
We would also like to thank Rini van Solingen for approaching these people to cooperate in
this format. Finally we would like to thank Kim Stehouwer for his help in the design of a
number of figures and tables in this thesis.

Kevin Dullemond and Ben van Gameren
Delft, the Netherlands

June 18, 2009

iv

Contents

Preface iii
Research Division and Responsibilities . iii
Division of the research assignment and the thesis project iii
Acknowledgements . iv

Contents v

List of Figures ix

List of Tables xi

I Introduction 1

1 Introduction 3
1.1 Background and research focus . 3
1.2 Scientific and societal motivation . 4
1.3 Project structure . 4
1.4 Thesis structure . 6

2 Global Software Development 9
2.1 The general concept . 9
2.2 Benefits . 9
2.3 Challenges . 11

II Global Software Development 15

3 The benefits of Global Software Development 17
3.1 Handle the increased product complexity 17
3.2 Usage of specialized or skilled people . 18

v

CONTENTS

3.3 Access to a sufficiently large workforce 18
3.4 Increased merger and acquisition possibilities 18
3.5 Global presence . 18
3.6 Cost reduction of development . 19
3.7 Reduction in time to market . 19
3.8 Proximity to the market . 19
3.9 Handle the increased organization scale 20
3.10 Overview . 20

4 The challenges of Global Software Development 23
4.1 Geographic dispersion . 23
4.2 Control and coordination breakdown . 24
4.3 Loss of communication richness . 25
4.4 Loss of teamness . 26
4.5 Cultural differences . 29
4.6 Overview . 33

5 Non technological support for alleviating distance in global software devel-
opment 35
5.1 Reduce intensive collaboration . 35
5.2 Reduce cultural distance . 36
5.3 Reduce temporal distance . 38

III Extending Global Software Development with aspects of the agile de-
velopment process 39

6 Agile methodologies 41
6.1 What are agile methodologies? . 41
6.2 Scrum . 45
6.3 eXtreme Programming . 48
6.4 Other agile methods . 53
6.5 Aspects of agile software development . 56

7 Global software development combined with aspects from agile methodologies 67
7.1 How aspects of agile methods can reduce distance in a GSD context 68
7.2 Problems with incorporating agile aspects into GSD 71
7.3 Overview . 76

IV Supporting Agile Global Software Development with technology 81

8 Types of technology which support GSD 83
8.1 Types of technology which support GSD in general 83
8.2 Types of technology which support agile GSD 88

vi

9 How the different types of technological support are applicable to support
agile GSD 91
9.1 An approach to derive technological support for agile GSD 91
9.2 How each aspect can be supported by the different types of technology . . . 92
9.3 Overview . 100

10 How to support the incorporation of agile aspects into the GSD process with
technology 105
10.1 Communication versus Software Development related technology 105
10.2 Collaborative technologies . 107
10.3 Integration of collaborative technologies 114

V Conclusions and Future Work 117

11 Conclusions and Further research 119
11.1 Contributions . 119
11.2 Conclusions . 120
11.3 Reflection . 121
11.4 Recommendations for further research . 122

VI Practical Research 125

12 Practical Work 127
12.1 Research design . 127
12.2 Context . 129
12.3 Findings . 133
12.4 Feasibility study . 140
12.5 Validity of the practical work . 184
12.6 Conclusions and recommendations for further research 184

Bibliography 187

A Interview Structure 199

B Requirements of an ICDE 203

vii

List of Figures

1.1 The structure of this thesis . 7

5.1 Alternative paths to alleviating intensive collaboration [30] 36
5.2 A taxonomy of structural arrangements for software development [30] 37

6.1 Difference in Agile and Heavyweight Methodologies [8] 44
6.2 Difference in Agile and Heavyweight Methodologies [23] 45
6.3 The general phases of Scrum [132] . 47
6.4 The Scrum sprint cycle [36] . 47
6.5 The life cycle of the XP process [1] . 52
6.6 The ASD cycle [79] . 54
6.7 The five phases of FDD [37] . 55

9.1 Relationships between aspect A1 and the distances faced in GSD 92
9.2 Relationships between aspect A2 and the distances faced in GSD 94
9.3 Relationships between aspect A3 and the distances faced in GSD 96
9.4 Relationships between aspect A4 and the distances faced in GSD 98
9.5 Relationships between aspect A5 and the distances faced in GSD 99
9.6 Complete overview of relationships aspects and distances 101
9.7 Overview of the relationships between aspects and distances that can be sup-

ported by technological support . 102

10.1 Communication related technologies . 110

12.1 Presence dimensions . 142
12.2 Presence in Office Communicator . 142
12.3 Presence information of one of your contacts 145
12.4 Available communication options in Office Communicator 145
12.5 The conversation window in Office Communicator 146
12.6 Team Foundation Server 3-tier architecture 148
12.7 Sprint Burndown Chart . 149

ix

LIST OF FIGURES

12.8 Product Burndown Chart . 150
12.9 OCS class diagram . 152
12.10 Relational Database Schema of the OCS Data collector 154
12.11 Entity Relationship Diagram of the OCS Data collector 154
12.12 Relational Database Schema of the OC Actuator 156
12.13 Entity Relationship Diagram of the OC Actuator 156
12.14 TFS Data Collector Component class diagram 157
12.15 Relational Database Schema of the TFS Work Items 159
12.16 Entity Relationship Diagram of the TFS Work Items 160
12.17 Relational Database Schema of the TFS Version Control 161
12.18 Entity Relationship Diagram of the TFS Version Control 162
12.19 Relational Database Schema of the TFS Reports 163
12.20 Entity Relationship Diagram of the TFS Reports 163
12.21 Relational Database Schema of the TFS Data Collector Component 164
12.22 Entity Relationship Diagram of the TFS Data Collector Component 165
12.23 The design of the User Interface . 167
12.24 Example of a Thickbox . 167
12.25 Relational Database Schema of the Total System 168
12.26 Entity Relationship Diagram of the Total System 169
12.27 The menu-bar of the User Interface . 170
12.28 The users list in the User Interface . 170
12.29 The conversations list in the User Interface 171
12.30 The Sprint Backlog . 172
12.31 The Product Backlog . 173
12.32 The Reports . 173
12.33 The User Data Item Page . 174
12.34 The History Data Item Page . 176
12.35 The Project Data Item Page . 177
12.36 The Sprint Data Item Page . 178
12.37 The Sprint Backlog Item Data Item Page . 179
12.38 The Product Backlog Item Data Item Page 179
12.39 The Sprint Burndown Chart . 180
12.40 The Product Burndown Chart . 181
12.41 The join screen . 182
12.42 The incoming join request pop-up . 182
12.43 The popup screen to select a new leader . 182
12.44 The pop-up screen notification that you are the new leader of a conversation . 183

x

List of Tables

3.1 The benefits of GSD and their level of influence 21

4.1 The challenges of GSD and their classification 34

6.1 Relation between the Agile Manifesto and the aspects of agile software de-
velopment . 64

6.2 Relation between eXtreme programming and the aspects of agile software
development . 65

7.1 Benefits of incorporating agile aspects into GSD work 77
7.2 Challenges faced when incorporating agile aspects into GSD work 78
7.3 Proposed solutions to the challenges faced when incorporating agile aspects

into GSD work . 79

8.1 Technological opportunities to exploit the benefits of GSD 85
8.2 Technological opportunities to alleviate the challenges of GSD 86
8.3 Technological objectives to support GSD . 87

9.1 Overview of technological support for aspect A1 93
9.2 Overview of technological support for aspect A2 96
9.3 Overview of technological support for aspect A3 97
9.4 Overview of technological support for aspect A4 98
9.5 Overview of technological support for aspect A5 99
9.6 Overview of technological support for all benefits and challenges 103
9.7 Overview of technological support for all aspects 104

10.1 Relatedness of requirement categories . 106

12.1 Mapping of development activities with their associated Knowledge Areas . . 135
12.2 The different states of the presence button 144

xi

Part I

Introduction

1

Chapter 1

Introduction

The aim of the introductory chapter is to present our problem analysis and to establish objec-
tives for this thesis by outlining our frame of research. First some background information
is given and the research focus is defined. Then the research is justified, both scientifically
and societally. Finally the overall structure of the project is provided. Here both the research
assignments and the project assignment are introduced.

1.1 Background and research focus

Global software development (GSD), which is also known as global software engineering
(GSE), globally distributed software engineering (GDSE) and globally distributed software
development (GDSD) is becoming increasingly interesting these days due to the globaliza-
tion of business [29, 74, 19, 60, 76, 46, 70, 120, 3]. In GSD the software development
process is distributed between several geographically dispersed locations [43, 46, 130].
Advantages of GSD include: market-proximity [64, 73, 46], reducing time-to-market by
working around the clock [29, 71, 50, 46], flexibility with respect to business opportunities
[29, 71], reducing costs by delegating work to countries with low labor cost [30, 46] and
being able to fully utilize available resources [74, 64, 46]. Besides being beneficial, GSD
introduces a number of challenges in relation to communication, coordination and control
of the development process. Examples are: lack of informal communication [29, 71, 74, 4],
reduced hours of collaboration [11, 90, 83, 3], communication delay [4, 75, 70, 43] and loss
of cohesion [29, 72, 70].

The cause of the challenges originating from GSD is the introduction of distance between
the different actors involved in the software development process [82]. It is expected that
this situation can be improved upon by combining agile software development with GSD
[82, 109]. The agile software development approach is used often in practice [129] and
is defined by Abrahamsson et al. [1] as an incremental, cooperative, straightforward and
adaptive approach. Advantages of this approach are being able to respond to change [23],
producing rapid value [23] and facilitating for closer collaboration, both in the development
team and with respect to the customer [40].

3

1. INTRODUCTION

The advantages of both these development approaches seem to complement each other, so
blending them could result in a flexible and dynamic development approach which works
in a distributed setting. Paasivaara et al. [109] however suggests that: ”The combination of
agile methods and distributed development poses several challenges”. This is likely since
the distributed and agile development approaches seem to have conflicting convictions with
regard to certain aspects of development. Agile development, for example, focuses mainly
on informal processes and distributed development usually focuses on formal mechanisms
[125]. These conflicts result in several challenges which should be dealt with for the com-
bined development approach to be a feasible approach. In this thesis we will research the
advantages and challenges of combining agile software development and GSD and how
best to support these. In this research our focus will lie on achieving these goals by means
of technological support. The main research question this graduate project will attempt to
answer is: ”What are the advantages and challenges of the combination of the agile and
distributed development approaches and how is technological support best used to deal with
these?”

1.2 Scientific and societal motivation

As mentioned in the previous section, both GSD and the agile development approach are
used often in practice and posses certain qualities. The combination of both approaches is
desirable to both the scientific world and society. This is because the market demands that
software is delivered more quickly, while at the same time, many software development or-
ganizations have become dispersed, with more than fifty percent of their developers spread
across multiple teams at geographically distributed sites [6]. There is also a need, in GSD,
for the development to be flexible and to be able to accommodate the differences among the
development teams [130]. These are qualities an agile development approach offers [1].

Research regarding the combination of GSD and agile software development is also re-
quested in existing literature. For one Ramesh et al. [125] mentions it: ”careful incorpora-
tion of agility in distributed software development environments is essential in addressing
several challenges to communication, control, and trust across distributed teams”. Sec-
ondly one of the largest pitfalls in distributed development are issues related to communica-
tion [130] and Paasivaara et al. [109] suggests these issues could be dealt with by applying
practices from agile development. Paasivaara et al. [108] also suggests researching tool
support for projects of this kind is interesting. Finally, the literature on using agile methods
in global software development is still scarce [109]. All these reasons lead to the conclusion
that further research is justified.

1.3 Project structure

The project will start with two literature studies. One will investigate the available sup-
porting technologies for distributed development while the other will focus on eliciting the

4

Project structure

challenges and benefits of combining the agile and distributed development approaches.
Ben van Gameren will conduct the former, while Kevin Dullemond will conduct the latter
of these two literature studies. These studies will then be combined to determine how best
to deal with these challenges and how to exploit the benefits as much as possible. In this
section we will introduce both research assignments and conclude with explaining why we
elected to conduct this project as a joint effort.

1.3.1 Research assignment 1

Technologies which support GSD are needed by globally positioned organizations. In this
context the term technology can refer to both a methodology and a tool. This research as-
signment will consider the different technologies which are commonly accepted, it includes
the subtopics communication- and involvement- facilitating technologies and addresses the
limitations of these technologies. The main research question of this assignment will be:
”Which technologies are available to support distributed development and what possibili-
ties and limitations do they posses?”

1.3.2 Research assignment 2

Combining the agile and distributed development approaches will result in certain bene-
fits and challenges. For the combined development approach to be optimal the challenges
should be faced and the benefits should be fully exploited. In order to attempt this, first the
challenges and benefits must be determined. So the main research question of this research
assignment will be: ”To which extend is it desirable to combine the agile and distributed
development approaches?” The three questions that need to be answered to answer the main
research question are:

1. ”What are the benefits of combining the agile and distributed development approaches?”

2. ”What challenges arise when combining the agile and distributed development ap-
proaches?”

3. ”How can the challenges, that arise when combining the agile and distributed devel-
opment approaches, be faced?”

1.3.3 Justification of the joint research effort

This project was conducted by two master students as a joint effort because this poses
several benefits. For one, because the two research questions are related, the amount of
duplicate research performed is reduced, leaving more room to put research time towards
innovative ideas and accomplish more than either of the researchers could have accom-
plished on their own, in the time available. Next to this, because both research problems
collectively support a single objective; determining how best to support agile GSD with
technology, joining them together results in more than the individual parts. The idea is that
this combination is sufficient to reach a founded understanding of the opportunities of agile

5

1. INTRODUCTION

GSD and how best to support these. Finally, the conclusions of this research will benefit
from the complementary views of both researchers regarding the subject.

1.4 Thesis structure

The overall structure of this thesis is given in Figure 1.1. In Part I what is to be researched
in this project is defined and the concept of global software development is introduced. In
part II global software development is further explored leading to a list of challenges and a
list of benefits associated with GSD in general. In this part also the non-technological sup-
port which can be used to respectively alleviate and exploit the aforementioned challenges
and benefits. In part III the second line of research explores the concept of agile software
development and links this to GSD. This is done by defining aspects of agile software de-
velopment and then discussing both how these aspects help and, at the same time, are harder
to realize when working globally distributed. This part also discusses procedural ways to
deal with the difficulties with incorporating the aspects of agile software development in
the GSD process. In part IV the two lines of research come together to discuss technical
approaches to support agile GSD. First five categories of technological support which are
useful to agile GSD are defined. This is followed by discussing for each aspects of ag-
ile GSD how the corresponding benefits and challenges can best be exploited or dealt with,
with the help of technology. Subsequently, in part V, the research is concluded by discussing
the answers to the research questions and by making recommendations with respect to fur-
ther research on this subject. Finally, in part VI, a practical research is performed bases
on a recommendation made in part V. In this part a list of requirement for an Integrated
Collaborative Development Environment (ICDE) is defined and the technical feasibility of
a number of concepts which realize these, is shown.

6

Thesis structure

Figure 1.1: The structure of this thesis

7

Chapter 2

Global Software Development

The aim of this chapter is to introduce the concept of global software development (GSD).
To do this, the general concept of GSD is discussed, followed by a general discussion of
both the advantages and challenges associated with this development approach.

2.1 The general concept

For the last couple of decades the way business is being conducted has been becoming
more and more global and this increases the pressure to distribute software projects glob-
ally [29, 74, 19, 60, 76, 46, 70, 120]. This way of approaching software development is
known by many names. One of the most popular is global software development (GSD),
which will be used in this thesis. Other terms which are used in the literature are: global
software engineering (GSE), globally distributed software engineering (GDSE) and glob-
ally distributed software development (GDSD). In this approach the development process is
distributed between several geographic locations [76, 140, 43, 46, 130]. Besides the glob-
alization trend, also the uprise of advanced information and communication technologies
has enabled new options, allowing distributed work to become easier and more efficient
[10, 49, 130, 3].

2.2 Benefits

In addition to the globalization trend and the uprise of advanced information and commu-
nication technology, there are other reasons for performing projects in a distributed setting
[130]. In fact, major benefits have been attributed to GSD, in spite of problems it might
cause [3]. The most well known sources that mention benefits are Carmel [29] and Herb-
sleb et al. [74]. Carmel distinguishes four categories of benefit factors, namely [29]:

1. Catalyst factors
Reasons for starting to use a distributed development approach.

2. Sustainment factors
Reasons for continuing to use a distributed development approach.

9

2. GLOBAL SOFTWARE DEVELOPMENT

3. Size factors
Reasons for using a distributed development approach originating from size implica-
tions of the organization.

4. Vision factors
Reasons that have to do with a certain vision of future events. Because of choosing
to follow the distributed development approach now, certain positive future develop-
ments could emerge. Benefit factors from this category can be seen as catalyzers for
innovation.

Jacobs et al. [84] made a minor extension by incorporating benefits from Lipnack [97] and
Moll et al. [139]. Next, the most important benefits of GSD found in the literature will be
briefly introduced.

• Product complexity
Software systems become more and more complex due to the continuously growing
possibilities provided by technology and the wider application of these possibilities
[139, 89]. Because of this; single projects, single departments or even single compa-
nies can no longer develop total products. By concurrent and distributed development
the product complexity is handled at the cost of added organizational complexity
[139].

• Usage of specialized or skilled people
Highly skilled engineers, software professionals and managers are a scarce commod-
ity [7] so companies want to make optimal use of them, regardless of their geograph-
ical location [29, 74].

• Access to a sufficiently large workforce
There is a general shortage of people capable of developing software of sufficient
quality [9, 51, 101, 130]. By offshoring companies get access to a labor pool which
is much larger [29, 30, 51, 31, 130].

• Acquisitions
By being able to cooperate between geographically dispersed locations, a company
becomes more flexible with respect to merger and acquisition opportunities wherever
they present themselves. [29, 74]

• Global presence
By having development centers all over the world, the corporate image of companies
includes being a global player. [29]

• Cost-reduction of development
By shifting work to countries where the cost of labor is lower, the total development
cost can be reduced [29, 30, 50, 74, 75, 3].

10

Challenges

• Reduction in time-to-market
By dividing development across multiple time zones follow-the-sun or round-the-
clock development can take place, which can reduce the time to market of a product.
[29, 30, 50, 74, 3]

• Proximity to the market
By developing software physically close to the customer certain business advantages
emerge such as an increase of knowledge of the local market [29, 74] and the creation
of good will by investing in the local market [51]. Another important benefit of being
close to the customer is the ability to respond to local circumstances and preferences
[134]

• Organization scale
Above a certain size, development centers get too difficult to manage. By dividing the
work across several, smaller and thus more flexible, units the management problem
of the single development center is taken care of [29].

Having introduced the most important benefits of GSD we feel it should be noted that the
benefits are not universally applicable. Both Conchúir et al.: ”While there are many sig-
nificant beneficial aspects of GSD, our study clearly shows that these benefits are neither
clear-cut nor can their realization be as taken-for granted as the GSD literature may lead
one to believe” [44] and Gumm: ”What is perceived as benefit in one case, may be only
partially realizable, a disadvantage or even a myth in another one” [66] state this. The
general applicability of these ’potential’ benefits will be discussed further in chapter 3.

2.3 Challenges

Besides being beneficial, GSD also introduces a number of challenges in relation to com-
munication, coordination and control of the development process. These challenges arise
due to geographical, temporal, and socio-cultural distances associated with developing in
a distributed setting [106, 43]. These distances are defined by Carmel as the three unique
aspects of GSD [29]:

• Geographical distance between development sites has a direct impact on project con-
trol, coordination, and communication.

• Temporal distance between development sites make it harder to communicate, im-
pacting project control and coordination.

• Cultural distance between employees of the development sites may lead to mistrust,
miscommunication and lack of cohesion.

Based on these distances Carmel identifies the following five problem areas that potentially
threaten the delivery of the product in time within budget, and with the specified or implic-
itly expected product quality:

11

2. GLOBAL SOFTWARE DEVELOPMENT

• Geographic dispersion
Geographical dispersion reduces the frequency of informal communication as ap-
posed to face-to-face work [71, 73, 83]. In fact the frequency of communication
drops very sharply with physical separation and when the distance has increased to
thirty meters, further increasing the separation has very little influence [5, 73]. Holm-
ström et al. [83] suggest that measuring geographical distance, in the context of GSD,
is best measured in ease of relocation rather than kilometers since a small distance in
kilometers can imply a very large communication difficulty and vice versa. In com-
parison with face-to-face work, when working geographically dispersed communica-
tion lines are longer, it is harder to give feedback quickly, creating and maintaining
trust is more difficult and miscommunication is more frequent [124].

• Control and coordination breakdown
Carmel sees control as the process of adhering to goals, policies or standards and
coordination as the act of integrating each task and organizational unit so that it con-
tributes to the overall objective. The overhead of control and coordination associated
with any software project is large and it increases with GSD because of the reduced
amount of informal communication [29].

• Loss of communication richness
Besides reducing the frequency of communication, using the distributed development
approach also reduces the richness of communication [73]. Carmel defines rich com-
munication as two-way interaction involving more than one sensory channel [29].
Following this definition face-to-face is the richest communication medium [35, 29].
So the inability to communicate face-to-face and the resulting decline in communi-
cation richness and subtle interaction, results in considerable challenges [73, 106].
Loss of communication richness is considered a threat to communication, collabora-
tion, and trust [84].

• Loss of teamness
In good teams, team members help and complement each other and know the other
team members well. In such teams there is also high cohesion which leads to en-
hanced motivation, enhanced moral, greater productivity, harder work, more open
communication, and higher job-satisfaction [29]. Because of the distances in geo-
graphical location and culture, as well as the loss of communication richness, the
development teams posses less of these properties. Herbsleb et al. also show [73]:
”a significant relationship between delay in cross-site work and the degree to which
remote colleagues are perceived to help out when workloads are heavy. This result is
particularly troubling in light of the finding that workers generally believed they were
as helpful to their remote colleagues as to their local colleagues.”

• Cultural differences
In GSD projects people from different areas of the world work together. When peo-
ple from different cultures have to work together this can cause problems because
their customs and believes can be conflicting. Examples of such problems are: it

12

Challenges

takes more time to reach consensus, the chance of misunderstandings increases and
building a cohesive team is more difficult [29].

The challenges from the problem areas discussed are still hard to deal with and will be
discussed further in chapter 4. There are two basic approaches to target these challenges.
The first is to use certain procedures to deal with them, this is discussed in chapter 5, and
the other is to make use of technological support; this is discussed in chapter 8.

13

Part II

Global Software Development

15

Chapter 3

The benefits of Global Software
Development

The most important benefits of GSD have already been roughly introduced in the previous
chapter. In this chapter a more detailed description of these benefits is given and the gen-
eral applicability will be discussed. In each of the next sections a benefit is presented and
examined thoroughly.

3.1 Handle the increased product complexity

Products become more and more complex nowadays, both from technical and managerial
standpoints, due to the continuously growing possibilities provided by technology and the
wider application of these possibilities [139, 89]. This development is especially seen in
industrial products and consumer electronics such as DVD recorders, electron microscopes
and microwaves. These kinds of products are constructed from a large number of subsys-
tems or components. The development of such complex products is imposed with three
main constraints [139]:

1. Complex products are increasingly confronted with higher quality demands

2. Market pressure forces complex products to be developed faster

3. The development of complex products results in equally complex organizational is-
sues

Due to these constraints, the development of these kinds of products can become so complex
that a single department, or even a single company, is not capable to deliver these products
anymore [139]. In order to overcome the organizational, technical and financial issues that
arise from the development of complex products, the product development can be divided
into separate and concurrent projects. These projects are responsible for a part of the product
and can be performed in a geographically dispersed environment [50]. The partitioning of
work tasks horizontally also implies that each site is responsible for a particular function or
module. This subdivision makes it possible to develop a complex product in a distributed

17

3. THE BENEFITS OF GLOBAL SOFTWARE DEVELOPMENT

setting but causes overhead for project organization, project management and engineering
[99].

3.2 Usage of specialized or skilled people

The explosive growth of the software industry has led to a shortage of highly skilled engi-
neers, software professionals and managers [7]. This situation makes it clear that organi-
zations can no longer rely on local skilled labor only, they must have a broader view. In
order to be competitive, software development companies must deploy the best software
designers and developers in the world, regardless of their geographic location [29, 74, 3].
When a company is globally distributed it is easier to contract these skilled workers.

3.3 Access to a sufficiently large workforce

The demand for software engineers has grown substantially for the last decades, this makes
is hard for companies to contract sufficient employees which are capable of developing
software of sufficient quality at the existing site [9, 51, 50, 101, 130]. In the late 1990s
the recruitment of new employees was very problematic due to the technology boom, the
Y2K remediation efforts and the euro currency conversion [31]. Meanwhile, the number
of graduates from universities and technical schools in India, China and other nations has
increased [31]. As a consequence, organizations operates on a global platform to get access
to a labor pool which is much larger [29, 30, 51, 50, 74, 31, 130, 3].

3.4 Increased merger and acquisition possibilities

Growth is one of the most important factors for a software company, because smaller firms
cannot survive against software companies who possess marketing clout and diverse product
offerings [29]. In order to increase their market share software development organizations
make use of merger and acquisition opportunities [29, 74]. The last years mergers and ac-
quisitions become a common practice, the global mergers for 2006 even reached an amount
of USD 3.8 trillion [111]. Another advantage of mergers and acquisitions is the ability to
reach new markets, develop new products and complement existing product lines [73, 50].
An international dispersed organization is more flexible then a single site organization with
respect to merger and acquisition possibilities wherever they present themselves [29, 74].

3.5 Global presence

From a strategic point of view it can be beneficial for an organization to position them
as a global player. Organizations which have their development sites all over the world
are selling their products to two main groups, global businesses and global consumers. A
global business prefers a large and established software supplier for all their global needs,
rather than multiple smaller suppliers in different countries. Individual software consumers

18

Cost reduction of development

follow the mass and prefer a product with a global image. By having software development
centers all over the world a software company shows its worldwide aspirations [29].

3.6 Cost reduction of development

One of the most well known benefits of GSD is the potential to reduce the software develop-
ment and maintenance costs [29, 30, 50, 74, 75, 43, 3]. The largest expense for a software
company is the long-term maintenance of their applications in production. This includes
the people, the infrastructure and the tools required to keep the software operational [111].
The difference in wages across different countries, between persons with equivalent skills,
can be significant, with programmers in India earning roughly ten to twenty percent of
what programmers in the United States earn [29, 3]. This difference in wages, is one of
the reasons that companies consider globalizing their software development activities [3].
The globalization of software development and maintenance has been made possible by the
deployment of cross-continental high-speed communication links, which make it possible
to transfer the source code instantaneously [3]. The potential cost advantages can only be
achieved by companies that are offshoring and outsourcing in a well-defined and planned
way. If this is not the case; additional managerial overhead is required, perceived threat from
lower paid colleagues can arise, and additional time to build up a ’critical mass’ is needed
[43]. These cost-benefit tradeoffs are still not well understood and needs to be examined
[52].

3.7 Reduction in time to market

”Given time zone differences, the ideal dispersed project can be productive around the
clock” [29].

To reduce the time to market, organizations search for development approaches which
could accelerate the development process. If a company has development centers in dif-
ferent countries, at different time zones all around the world, then it is possible to adapt
the follow-the-sun approach. Follow-the-sun development, also known as round-the-clock
development, has the potential to collapse time to market for project completion [29]. This
becomes possible because dispersed software teams can work in 24-hour shifts, creating a
”virtual workday”. At the end of the working day, one team passes the work to another
team located in another time zone [29, 111]. Even in development project that do not op-
erate during the complete 24 hours of the day, it is attractive to have developers working at
one site while developers of another site sleep [52]. This approach can aid organizations
which are under severe pressure to improve time-to-market [29, 30, 50, 74, 3].

3.8 Proximity to the market

By establishing subsidiaries near to the customer, software organizations meet the maxim
to stay close to the customer [29]. Due to this dispersion a more direct interaction between

19

3. THE BENEFITS OF GLOBAL SOFTWARE DEVELOPMENT

client and developer becomes possible [64, 73, 74]. This is particularly important when
rich communication and relationships are needed between customers and developers, in the
case of requirements gathering and design [29]. Another advantage of developing software
physically close to the customer is the increased knowledge of the local market [29, 74].
By contracting local employees there do not exist cultural and linguistic distances to the
customer, there is even a better knowledge of the local business conditions [29, 74, 43].
Creating new jobs can also create good will with local customers, possibly resulting in
more contracts [29, 51]. When a company decides to contract local employees there will be
a cultural division among team member, which introduce socio-cultural challenges. Finally,
the ability to respond to local circumstances and preferences is a major benefit of being
close to the customer [134].

3.9 Handle the increased organization scale

As stated in section 3.4, growth is one of the most important factors for a software company.
As a consequence, software companies have grown quite large. This type of development
centers now have well over thousand employees and become very hard to manage, it is
even possible that at some point co-located development centers become too large and too
difficult to manage [29]. By dividing the work across several, smaller and thus more flexible,
units the management problem of the single development center is taken care of at the cost
of coordination overhead across the dispersed sites [29].

3.10 Overview

In this section an overview of the benefits of global software development and their field of
influence is presented. These benefits can have influence on the corporate level and on the
project level. The project level embraces all the facets of a software development project
such as informal communication, the sense of teamness, knowledge sharing etcetera. All the
aspects which have influence on the decision making at an organizational level are embraced
by the corporate level. Table 3.1 provides this overview in a structured manner; a double
plus in the table indicates that the benefit at hand has a major impact on the corresponding
level; a single plus denotes that the benefit has limited influence on the corresponding level;
an empty cell denotes that the benefit has no influence at all on the corresponding level. For
all the benefits, which are discussed in this section, a classification is sown. So, for example,
the benefit of being able to contract specialized or skilled people all over the world has a
major impact on the project level because development issues can be resolved much faster
as a result of the increased amount of knowledge available in the project team. This benefit
has limited impact on the corporate level, in contrast to the project level, because only some
hiring procedures need to be changed in order to contract the appropriate people.

20

Overview

Table 3.1: The benefits of GSD and their level of influence

21

Chapter 4

The challenges of Global Software
Development

In contrast with the benefits presented in chapter 3, global software development also intro-
duces a number of challenges in the field of communication, coordination and control of the
development process. These challenges arise due to geographical, temporal and socio cul-
tural distances associated with developing in a distributed setting [29, 106, 43, 83]. Based
on these distances Carmel identifies five centrifugal forces [29]:

• Geographic dispersion

• Control and Coordination breakdown

• Loss of communication richness

• Loss of teamness

• Cultural differences

These five problem areas pull apart the global software team, having a negative influence on
the development of the product. In the remaining of this chapter we describe and classify
the challenges of global software development into their corresponding problem areas. In
section 4.1, the challenges arising from geographic dispersion are presented. Secondly, in
section 4.2 the control and coordination breakdown challenges are discussed, followed by
the challenges originated from the loss of communication richness. The central issue in
section 4.4 is the loss of teamness arising from the distributed development approach. In
section 4.5 the cultural differences are covered. Finally, in section 4.6, an overview of all
the challenges and their classification into one or multiple problem areas is presented.

4.1 Geographic dispersion

In this section the adverse affects of distance on the frequency of communication are dis-
cussed. In 1977 Allen showed a relationship between distance and communication, when

23

4. THE CHALLENGES OF GLOBAL SOFTWARE DEVELOPMENT

the distance between colleagues increases communication drops fast [5]. Other disadvan-
tages of working geographical dispersed is that communication lines are longer, it is harder
to give feedback quickly, creating and maintaining trust is more difficult and miscommuni-
cation is more frequent [124, 29].

Lack of informal communication

One of the main challenges which occur in a distributed setting is the lack of informal com-
munication due to geographic or temporal separation [29, 71, 74, 4]. Especially in organi-
zations with rapidly changing environments and dynamic projects informal communication
plays a major role. Informal communication allows team members to develop working
relationships, and allows a better flow of information about the current project [72]. The
frequency of informal communication drops very sharply when colleagues are physical sep-
arated [71, 73, 83]. Allen found that this is the case when colleagues offices are more than
30 meters from another [5].

Increased effort to initiate contact

When developers are co-located, contact can generally be initiated quite easily. Employees
know who is around and how busy they are. When team members are separated geograph-
ically or temporally, the effort required to initiate contact increases [71, 70, 3]. This is
because developers are not aware of the skills and roles of their remote colleagues. One of
the main difficulties to initiate contact is to determine the appropriate colleague [71, 70]. As
a consequence it can be the case that a developer applies minor modifications to the system
without trying to make contact with the person who has more knowledge of that part of the
system; this can lead to errors in the system which slowdown the project.

4.2 Control and coordination breakdown

In this section the discussion of dispersion versus co-location highlights that it is harder to
manage from a distance. Several communication, coordination and control mechanisms fall
apart when team members are far apart. In such a setting it is not possible to walk to a
colleague his office to discuss and resolve a problem immediately [29].

Reduced hours of collaboration

Having developers located in different time-zones allows organizations to increase the num-
ber of working hours during a day. An obvious disadvantage of being separated by tempo-
ral distance is that the number of overlapping working hours during a workday is reduced
[11, 90, 83, 3]. In order to improve the effectiveness of the software development it is
necessary to have some overlapping work-hours during the day [43]. In these overlapping
hours it is possible to communicate directly with each other. However, sufficient over-lap
in working hours may be difficult to achieve due to, different working hours, lunch breaks
and holidays [71, 43]. Only one hour time difference between two sites can already have a

24

Loss of communication richness

large influence on the number of overlapping hours. There is an hour lost at the beginning
and the end of each day, additionally there may be two hours lost since typical lunch time
was displaced by an hour. So, a small time difference may already cause that there are only
five overlapping hours in a day [71]. This means that team members might have to work
flexible hours in order to increase the number of overlapping hours [96].

Lack of shared understanding

Software development requires much communication, both formal as informal, for handling
crucial tasks. Informal communication helps people to stay aware of what other people
are working on, what the current state of the project is, where the required expertise is
located and other background information. All this information together enables developers
to work together efficiently [74]. When an organization is globally dispersed this important
project information must be shared differently. Managers must be able to adequately share
import project information to all teams in order to exploit the benefits of GSD. However,
when teams have inadequate information about the project they cannot determine what tasks
are on the critical path and reuse opportunities may be overlooked [29, 74]. In order to
exploit the benefits of GSD, there must be effective mechanisms for sharing information
and facilitating common understanding.

Increased dependency on technology

An dispersed organization is dependent on information and communication technologies in
order to collaborate. These technologies are used for communication and have impact on
the coordination of the most critical processes in an organization [4]. Ebert et al. state that it
is necessary to have a convenient and well working technical infrastructure for information
and communication in order to run a global organization successful [50].

Increased complexity of the technical infrastructure

An unexpected challenge can arise when companies are using a variety of tools and products
from third-party vendors. Obtaining global support for these tools can be a problem, just as
obtaining the same version of the tools. Battin et al. found that software vendors are offering
different versions of the tools in different countries. It can be possible that one site has the
latest version of the tool while another site has an older version which are not completely
compatible [11, 74, 131]. Finally the import and export regulations of each county must be
understand totally, because these may prohibit the usage of certain technology throughout
the distributed team [11].

4.3 Loss of communication richness

Using the distributed development approach not only reduces the frequency of communica-
tion as discussed before. But has also a negative impact on the richness of communication
[73]. Rich communication is defined by Carmel as two-way interaction involving more

25

4. THE CHALLENGES OF GLOBAL SOFTWARE DEVELOPMENT

than one sensory channel. Following this definition face-to-face is the richest communi-
cation medium [35, 29]. The inability to communicate using rich communication media
results in several challenges.

Communication delay

When organizations are dispersed across different time zones it is not always possible to
contact a colleague at the moment that their help is needed. It is possible that this person
is not at work or in an important meeting. In this case it is not possible to communicate
directly; this implies that the use of asynchronous tools is required to be able to communi-
cate. These kind of tools have the disadvantage that the amount of time it takes to receive
a response increases [4, 75, 70, 43]. The delay in receiving a response from the remote site
can increase the amount of time it takes to resolve the issue at hand [24]. Another reason for
the delayed feedback is the increased risk of misunderstandings especially when the content
of the message was ambiguous [47, 90].

4.4 Loss of teamness

Before the loss of teamness as a centrifugal force of global software teams is covered, the
characteristics of a team must be presented. Carmel state that a real team must satisfy the
following characteristics [29]:

A real team:

• is perceived to be a team by its members

• is recognized as a team by non-members

• has collective responsibility for its products

• shares responsibility for managing its work

• has a common goal or set of tasks

• works together on tasks that are interdependent

• demands peak performance from all members

• shares its rewards

• is small in number of members

It is clear from the presented characteristics that in good teams, team members help and
complement each other and know the other team members well. In such team there is also
high cohesion which leads to enhanced motivation, enhanced moral, greater productivity,
harder work, more open communication and higher job-satisfaction [29]. The loss of team-
ness which occurs in global software teams, is a consequence of distance between team
members, cultural differences and the loss of communication richness. Due to this loss of
teamness global software teams satisfy less of these properties than collocated teams.

26

Loss of teamness

Loss of cohesion

One of the most important factors for a successful software development team is cohesion.
Teams with high cohesion have many benefits as mentioned before. However, cohesion is
more difficult for cross-cultural teams because of physical separation and lack of informal
contact [29, 72, 70]. Due to these restrictions, team members may not be aware of the
details of the work activities of their other team members, because they are only interested
in their own activities. If awareness of current work is not completely spread across the
whole team, misunderstandings can continue unnoticed and code conflicts can arise [4]. At
the same time this lack of familiarity with remotely located colleagues can result in a lack
of teamness and a reduced sense of trust [3].

Reduced trust

In a globally distributed setting trust is far harder to acquire or maintain than in classical
development, because of the lack of close interpersonal contact [123, 105]. Pyysiäinen
defines six problem areas in trust building, namely [123]:

• Personal dispositions
Personalities and interaction styles of parties in different companies can be ambigu-
ous. It is possible that receivers interpreted a short and direct message, which was sent
by a person who preferred messages that went straight to the point, as a commanding
message and that the sender was not satisfied with their work. This misunderstanding
is a consequence of different personal ways of expressing themselves; this could lead
to misunderstandings and can reduce the level of trust.

• Common history
Because of the temporary nature of software development teams, companies often
forgot to discuss the available documentation and whom to contact in specific issues.
As a consequence of the lack of information and the fact that clear organizational
charts and face-to-face meetings were lacking, background information was not suf-
ficient exchanged. People did not get to know the roles, responsibilities and skills of
each other and hesitated to spontaneously give and ask for help. This lack of knowl-
edge can led to a decreased level of trust and motivation.

• Mediating third parties
In the case of distributed development spontaneous transfer of knowledge via third
parties was often blocked, because no mediating link persons between companies
were available. The two companies did not know the exact reasons for delay in deliv-
eries and testing, they did not know the causes for changes and some troubling bugs
remained unclear. This kind of uncertainty about the positive intentions and motives
of the other party can result in distrust.

• Shared category membership
One obvious problem is that people from different companies not actually feel that
they are working towards a common goal. Reaching the sub-goals of each site seems

27

4. THE CHALLENGES OF GLOBAL SOFTWARE DEVELOPMENT

to have the highest priority instead of reaching the common goal. A lot uncertainty
exist whether information is confidential and must be withheld from other companies
or that the information is free accessible for other companies. When an employee is in
doubt, the information is kept internal and is not accessible by the other companies. In
this case ideas that would have helped the progress of the project are not exchanged.
Another reason why it is difficult for a single site to identify them with a common goal
is the limited feedback they receive on the quality of their work and that they could not
perceive how their contributions are affecting the total progress. As a consequence,
the commitment of the subcontractor can be weakened or even totally collapsed.

• Predictable role behavior
Co-located organizations often indicate roles in their processes but when an organi-
zation is operating in a global setting these clear prediction of the behavior of other
people on the basis of their role is not possible because there was no such indication
for the global organization. As a consequence it is hard to determine who has the right
to decide on issues, especially at lower levels in the organization. It is even possible
that a developer makes major changes to core modules, even though those kinds of
tasks were not ascribed to him. These uncertainties have a negative influence of the
level of trust between colleagues.

• Internalized common rules
It is often the case that basic issues as common terms are not clearly stated. There
is also a lack of binding principles, communication and change-request protocols to
be used in the development process. These unclear thresholds for changes can cause
unnecessary and overlapping changes, contributes to uncertainties and reduces the
level of trust between the different sites.

Due to the lack of close interpersonal contact and the problems in building trust, colleagues
in a distributed setting are less inclined to help remote colleagues when workloads are heavy
[73]. As a consequence developers may be doubtful of the knowledge, capabilities and skills
of the team members from other sites [11, 131]. This impression may have a significant
influence on the collaboration in a team.

Perceived threat from low-cost alternatives

Employees in the higher-cost economies can have the feeling that their jobs are most likely
to be taken by their colleagues in lower-cost economies, creating a ”we versus they” men-
tality [50, 74, 32]. As a result, they may not want to cooperate with their remote colleagues,
which negatively affect the team work.

Increased Team size

Global teams in multiple sites are generally larger per task than co-located teams [29].
When a team becomes larger there are more employees involved which al have another role
in the development process, this makes it more difficult for a manager to control the project

28

Cultural differences

[53]. The main advantage of small teams is that it ensures effective communication among
all team members [26]. This can also result in the increased level of trust and cohesiveness
between team members. When a team becomes larger these advantages disappear and the
success rate of the project drops down sharply [29, 26].

4.5 Cultural differences

Cultural differences can lead to misunderstandings which slow down the software devel-
opment process [29]. These misunderstandings can arise due to excessive stereotyping,
more in-group conversation and lower interpersonal attractiveness. In a global setting team
members are part of multiple cultures, namely national cultures, corporate cultures, pro-
fessional cultures, functional cultures and team cultures [29]. In section 4.5.1 the cultural
fundamentals identified by Hofstede and Hall are presented and in section 4.5.2 the different
subcultures and their accompanying challenges are discussed.

4.5.1 Fundamentals

Because there is no general theory of cultural differences, we use the dimensions identified
by Hofstede [81] and Hall [67] in order to make the fundamentals of culture more tangible.
Hofstede identified the following five dimensions of national culture [81]:

• Power Distance Index (PDI)
This fundamental dimension of culture has to do with how people think about equality
and relationships with superiors and subordinates. In some cultures people are careful
about expressing their opinion to superiors and show proper respect to their boss. On
the other hand, superiors are expecting that subordinates only give input when their
opinion is asked. Other cultures do not stick close to organizational hierarchy and
managers even expect feedback from subordinates.

• Individualism (IDV)
Another dimension Hofstede distinguishes is the extent to which a person sees herself
as an individual rather than part of a group. When people are expected to have their
own opinion, are concerned with personal achievement, with individual rights and
independence they are part of an individualistic culture. However, when people see
themselves as part of a group they attach more importance to group welfare. This is
the case in collectivist cultures.

• Masculinity (MAS)
This dimension reviews the differences in working culture; in a ”taking care of busi-
ness culture” the company counts above all. In this culture most of the decisions
are taken from the organizational viewpoint. Employees, in this culture, are judged
at dimensions such as competitiveness, assertiveness, promotions and bonuses. At
the other extreme there are cultures in which the quality of life of an employee is
viewed as more important. In these cultures decisions are taken from a more personal
viewpoint.

29

4. THE CHALLENGES OF GLOBAL SOFTWARE DEVELOPMENT

• Uncertainty Avoidance Index (UAI)
The UAI indicates to what extent a culture programs its members to feel either un-
comfortable or comfortable in unstructured situations. Unstructured situations are
novel, unknown, surprising, ambiguous, different from usual. Uncertainty avoiding
cultures try to minimize the possibility of such situations by strict laws and rules,
safety and security measures. The key fundamental of these cultures is stability in-
stead of innovation and change. At the opposite, Uncertainty accepting cultures are
more tolerant of opinions different from what they are used to, and try to have as few
rules as possible.

• Long-Term Orientation (LTO)
This is the last dimension identified by Hofstede and has to do with the relative im-
portance of the short-term versus the long-term. Values associated with Long Term
Orientation are thrift, persistence, diligence and patience. Characteristics of the Short
Term Orientation are respect for tradition, fulfilling social obligations and protecting
one’s face. This dimension introduces both positive and negative values which can
result into different challenges.

Edward Hall also introduced five dimensions of culture [67]:

• Space
An less more obvious cultural fundamental is space, there can be major differences
between cultures because in one culture it is normal to stand one feet from each other
while in another culture this is too close and is experienced as being rude. Another
example is the seating arrangement at a table, one culture can have strict protocols of
arranging the people while another culture has not. So, different cultures vary in their
attitudes toward space.

• Material goods
The importance of material goods can also differ between cultures. In all cultures
material goods are used for power and status, but the materials which provide power
and status differ. In one culture a big office at the corner of the building indicates a
high level of power and status while in another culture this is the case with an open
office space next to his subordinates.

• Friendship
In cultures where it takes a long time to develop friendships, it is commonly the
case that they are durable and involve a strong sense of mutual obligation. In these
cultures people prefer to do business with people with whom they have developed a
relationship. In other cultures, people make friends quickly and they do business with
anyone who is capable.

• Time
There are two different time cultures; the linear time culture and the expandable time
culture. In a linear time culture time and deadlines are taken seriously; people plan

30

Cultural differences

processes in great detail, people treat deadlines very seriously and people are punc-
tual in order to achieve time commitments. Expandable time cultures consider time
commitments to be achieved only if possible. People change plans often and eas-
ily because delays are less important than the overall quality of the process. These
differences in time perception can lead to misunderstandings.

• Agreement
Expressing agreement and disagreement varies by culture. In some cultures the de-
tailed written contract is essential to agreement, while in other cultures a handshake
is sufficient. In some cultures disagreement is openly and quickly expressed, while
in other cultures open confrontation must be avoided. These differences must be
handled in order to prevent misunderstandings.

A manager should have a high level of awareness of the above presented fundamentals in
order to overcome the challenges which arise in a global organization [29].

4.5.2 Challenges

At this point, there is a clear understanding of the cultural fundamentals and we are able to
identify the cultural challenges. These challenges are divided into five subcultures:

National Culture

National culture covers many facets of the daily life including, spoken language, national
traditions, ethnic values and norms of behavior [29, 30].

Differences in language
In globally distributed development, some or all of the developers speak English, either as
first or second language. Having to communicate in real-time can be overwhelming for these
people finding it hard to follow the conversation [74, 90, 3]. This problem can even arise
when the whole team exists of native speakers due to different dialects and local accents.
This is the reason why most developers prefer to make use of Asynchronous communication
tools because these allows non-native speakers to clearly formulate their position and makes
it possible to check that they really make their point clear before sending the message [4].

Differences in ethical values
Next to differences in language between the various cultures, there are also differences in
the perception of space and material goods which play a major role in GSD. In order to
exploit the benefits of GSD these challenges must be solved.

Corporate Culture

Organizational culture encompasses the corporate norms and values of an organization, the
organization can be small and co-located but it can also be a large and globally dispersed
multinational [30]. Organizational culture includes, management styles, appraisals, rewards

31

4. THE CHALLENGES OF GLOBAL SOFTWARE DEVELOPMENT

and communication styles used by the employees [29].

Differences in organizational vision
The cultural fundamentals taking care of business, Long-Term orientation and risk avoid-
ance have a great impact on the management of a multi-sited organization. In some cultures
the company counts above all, while in other cultures the quality of life is viewed as more
important. Between the members of other cultures there can also be a difference in attitude
towards risk avoidance as well as there can be a difference between the relative importance
of the short-term and the long-term. When there is no attention given to these inconsis-
tencies, the different sites can resolve management issues in a different way. Due to these
different approaches a lack of understanding can arise between the multiple sites of an or-
ganization [29, 120].

Differences in managing individualism and collectivism
When an organization has multiple sites across the world there are multiple cultures in-
volved in the organization. One of challenges which arise is the combination of individual-
istic cultures and collectivist cultures. In an individualistic culture individuals are rewarded
for their achievements this can lead to embarrassment and loss of team harmony for team
members with a collectivist cultures. It is also possible that a collectivist, who expects to
be told honestly what is the matter, is insulted because members of a collectivist culture do
not confront him with issues directly, but handle these in a group fashion. So, a meeting
between members of individualist and collectivist cultures can result in mutual conflicts just
because of their styles of communication [29].

Differences in terms of agreement
Another challenge in the area of corporate culture is the different way cultures use to ex-
press agreement and disagreement. In some cultures a detailed written contract is essential
while in others a handshake is sufficient. These can lead to misunderstandings by both par-
ties since one could believe that he had an agreement while the other was not aware of this
[29].

Differences in time perception
Different time perceptions can lead to misunderstandings. A linear time person finds it im-
polite or even unacceptable when someone is not able to achieve time commitments, and
may even conclude that he cannot count on this person. However, someone who sees time as
expandable is more concerned with the other factors of the process, such as quality. These
conflicting ways of thinking can lead to a lack of understanding between members of these
two cultures [29, 74].

Professional Culture

The professional culture is ingrained in us through highly structured formal education dur-
ing many years. This culture is maintained by training programs and by taking courses. A
professional culture is strong, since a person often chooses his profession for life [29].

32

Overview

Differences in Quality Assessment
There is a great difference in the quality assessment of western cultures and the quality
assessment of other cultures. These have to do with the different ways of education, for
instance, in Japan the focus is on recording and fixing of all the existing bugs of a system.
They do not care much about the criticality of the bugs; both the critical and minor bugs
must be fixed before the newest version of the product is released. In the western culture
the focus is more on the critical bugs, if these are resolved a new version of the product can
be released [29]. Minor bugs are solved in a next release.

Differences in design
Another challenge which arises due to different formal education is the difference in ap-
proaching development problems. In the design phase western software architects approach
the problem from a top-down approach. First the global design is made and after that the
details are filled in. Software architects from other cultures can begin with many details
which in later phases emerge into the big picture. This approach is called the bottom-up
approach. Due to these differences software architects from both cultures can be frustrated
during the design sessions [29, 120].

Functional Culture

A functional culture is made up of the norms and habits associated with functional roles
within the organization. There exist different functional roles within the organization like,
marketing, sales, finance, R&D and manufacturing [29].

Differences in attitude toward hierarchy
In organizations which operate on a global platform, having employees from a range of dif-
ferent cultures, problems may arise because of different attitudes toward hierarchy [29, 74].
In cultures that do not revere hierarchy it is commonly accepted that employees expresses
their opinion to superiors and have discussions about the development process. In other
cultures, that do revere to hierarchy, these interactions are less likely to occur and can even
been seen as impolite. These differences should be managed adequately in order to prevent
misunderstandings [29].

4.6 Overview

All the challenges raised above are summarized in table 4.1. In this table the challenges
which can be categorized into more than one problem area have several plusses on a row; a
double plus indicates the main problem area, the section in which the challenge is discussed;
a single plus indicates that there is a relation between the challenge and the corresponding
problem area; and an empty cell indicates that there is no relation between the problem
area and the challenge at hand. In this fashion, table 4.1 gives an effective and structured
overview of the many challenges involved with global software development and their ac-
companying problem area(s). We can, for example, see that the increased effort it takes

33

4. THE CHALLENGES OF GLOBAL SOFTWARE DEVELOPMENT

to initiate contact with colleagues at another location has high impact on the frequency of
communication, represented by a double plus in the table. Cultural differences between
the members of a team and the lack of teamness aggravate this challenge; this relation is
indicated by a single plus in the table.

Table 4.1: The challenges of GSD and their classification

34

Chapter 5

Non technological support for
alleviating distance in global software

development

Managers in a global distributed organization are experimenting and quickly adjusting their
tactical approaches in order to take optimal advantage of the benefits offered by GSD. How-
ever, he most intuitive approach for alleviating distance is to apply technological solutions,
these solutions are discussed in chapter 8. In this chapter the focus is on non-technological
support which reduces the problems of distance in global software development. These non
technological solutions are aimed at reducing intensive collaboration between team mem-
bers, the impact of national and organizational cultural differences and temporal distance.

5.1 Reduce intensive collaboration

The transitions of tasks between the Center and the Foreign Entity is one of the main or-
ganizational difficulties of dispersed organizations [30]. Usually the Center is a firm in
either North America or in the European Union. The Foreign Entity is usually located in a
newly industrialized or developing nation [30]. The tasks which need to be divided between
these two locations range from well defined and structured to poorly defined and unstruc-
tured. Unstructured and hard to define tasks are intuitively associated with an increased
level of coordination complexity between the Center and the Foreign Entity. Figure 5.1
shows that this is not always the case and that organizations can move to the far left or to
the far right, in order to reduce the coordination complexity. Organizations which move
to the lower left corner in figure 5.1 are outsourcing relatively straightforward tasks with
low complexity such as maintenance activities, help desks and data centers to their foreign
entity. These tasks are more manageable over distance, because the need to communicate
and clarify requirements is relatively limited and the tasks are relatively stable [64, 30, 104].
On the other hand, organizations are moving to the lower right corner, these organizations
are outsourcing tasks which are relatively complex and unstructured to their foreign entity.
The foreign entity takes full responsibility for a system, product or corporate process. This
alleviates many of the distance problems because the foreign entity is not using links with

35

5. NON TECHNOLOGICAL SUPPORT FOR ALLEVIATING DISTANCE IN GLOBAL

SOFTWARE DEVELOPMENT

Figure 5.1: Alternative paths to alleviating intensive collaboration [30]

the center as frequently [30, 104]. Finally, figure 5.1 shows that organizations which are
using the follow-the-sun approach are characterized by a very dense web of coordination
that is needed to transfer knowledge and collaborate on tasks. In this case it is not possible
to move to the far left or to the far right because each site must be able to add its own value
to the process so that the other site can quickly proceed to add its own value without further
clarifications.

5.2 Reduce cultural distance

Cultural distance stems from the degree of difference between the center and the foreign
entity. In figure 5.2 the structural arrangements for global software development are plot-
ted along the distance from center’s national culture and the distance from center’s orga-
nizational culture. The upper left corner represents organizations with negligible cultural
differences due to cultural unity while the lower right corner represents organizations with
substantial cultural differences due to the cultural diversity. Carmel et al. presented four ap-
proaches, represented by the arrows in figure 5.2, in order to alleviate the cultural distance
between the different sites [30]:

1. Bridgehead
The first of these arrangements is the offshore-onshore bridgehead, which reduces
both national and organizational cultural distance. This arrangement is also known
as the 75/25 rule, essentially 75 percent of personnel work occurs offshore, while 25
percent occurs onshore. The individuals assigned to work onshore are more experi-
enced and have a corresponding cultural notion, both to colleagues and customers.

36

Reduce cultural distance

Figure 5.2: A taxonomy of structural arrangements for software development [30]

This results in less misunderstandings and a higher understanding of customer re-
quirements. In other words the 25 percent of personnel that are onshore effectively
serve as a bridge between the customer and the offshore workforce in order to reduce
cultural distance.

2. Internalization of Foreign Entity
In order to reduce organizational distance some American and European companies
are opening internal-to-the-firm foreign software centers. By internalizing global
software development, and avoiding collaboration with external foreign partners, the
distance in organizational culture is reduced.

3. The cultural liaison
The informal role of the cultural liaison is to facilitate the cultural, linguistic and
organizational flow of communication and to bridge cultures, mediate conflicts, and
resolve cultural miscommunications. This role might be fulfilled by an individual
who travels back and forth between the key stakeholder sites [83]. As a consequence
both the organizational as the national differences in culture are reduced.

4. Language
The last approach presented by Carmel et al. is the influence of language; spoken
language is an important component of national cultural distance. Many decision-
makers hesitate to engage in international alliances, especially with nations in which
the command of English is weak. This language factor is one of the reasons for the

37

5. NON TECHNOLOGICAL SUPPORT FOR ALLEVIATING DISTANCE IN GLOBAL

SOFTWARE DEVELOPMENT

success of offshore IT work in countries with strong English language capabilities.
Some organizations invest in English as a foreign language course in order to improve
professional communication.

5.3 Reduce temporal distance

Despite of the considerable power asynchronous technologies for dispersed tasks synchronous
communication is still preferred. Advantages of synchronous communication include re-
solving miscommunications, misunderstandings and small problems before they become
unmanageable [30]. When two teams use asynchronous communication techniques a small
issue can take days, but a brief conversation can quickly clarify the problem. Another
disadvantage of being involved in global work is the need to compromise personal life to
speak colleagues in other time zones. The goal of this approach is to minimize the time-
zone differences to be able to use effective synchronous communication [30, 83]. However,
reducing temporal distance eliminates the advantage of the follow-the-sun approach.

38

Part III

Extending Global Software
Development with aspects of the agile

development process

39

Chapter 6

Agile methodologies

Agile software development methods are an approach to software development in which the
process of software development is much more flexible than with traditional development
methods. In this chapter we will attempt to define what an agile method is and discuss
the reasons behind the current uprise. After this, an overview of both Scrum and eXtreme
programming will be given followed by a less in depth overview of Crystal methodologies,
Adaptive software development and Feature driven development. In conclusion we will link
agile methodologies with global software development by defining aspects of agile software
development and by discussing which of those aspects have an impact on the distances
caused by working globally distributed.

6.1 What are agile methodologies?

The software engineering discipline has existed ever since the 1960s and has come a long
way since then [95]. First, software was written without much of a plan and the design
of the system was determined from many short term decisions. This only worked well for
small systems, since for larger systems fixing bugs and adding new features was too hard
[8]. So, disciplined processes, called methodologies [56], were imposed upon software
development, with the aim of making software development more predictable and more
efficient [8]. Traditional, plan-driven methodologies are based on a sequential series of
steps, such as requirements definition, solution building, testing and deployment [8]. They
start with determining the set of requirements as complete as possible. Then based on these
requirements a plan of development is formulated [141]. Characteristics of these traditional,
heavyweight methodologies are: [8]

• Predictive approach
Concerns following a predictive and repeatable development approach in which a
large part of the process is planned in advance.

• Comprehensive Documentation
Concerns an extensive and explicit specification of all information in the project, with
the requirements being the most important example.

41

6. AGILE METHODOLOGIES

• Process Oriented
Concerns having a well defined procedure for the tasks performed by all project mem-
bers.

• Tool Oriented
Concerns that Specific tools must be in use for completion and delivery of each task.

A few Well-known examples of traditional methods are:

• The waterfall method [128]
This method defines phases of which each project consists and a structured progres-
sion between them. Each of these phases in turn consists of a predefined set of activ-
ities and deliverables.

• The spiral model [22]
This method combines the iterative nature of prototyping with the controlled and
systematic aspects of the waterfall model. It combines elements of both design and
prototyping-in-stages, in an effort to combine advantages of top-down and bottom-
up concepts [8]. This development approach is much more flexible than the waterfall
method, it however still needs to be planned methodically, with tasks and deliverables
identified in each step of the model [69].

• The Unified Process [85]
This method aims at working with short, time-boxed iterations, accept changes read-
ily, and reflect team collaboration. But at the same time it follows four general phases
in a linear fashion and as the development proceeds less time is spent on requirements
and analysis, and more time is spent on construction, testing and transition.

Currently, many sources report the development of lightweight methodologies as a reaction
to the inflexibility of these existing, heavyweight, methods [56, 80, 1, 87, 41, 141, 8, 69].
Examples of these new methodologies are:

• Scrum [132, 133]

• eXtreme programming [13, 12, 62, 15]

• Crystal methods [38, 39]

• Adaptive software development [77, 79, 80]

• feature driven development [37, 110]

After the development of these new methodologies, in 2001, seventeen prominent process
methodologists held a meeting to discuss future trends in software development. They
noticed their methods had many commonalities and defined a name for methods of this kind:
”agile methods”. They formed the ”Agile Alliance” and wrote ”The agile manifesto” [16]
in which they defined four core values:

42

What are agile methodologies?

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

They also defined a set of principles in which these values are realized:

AM1 Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

AM2 Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

AM3 Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

AM4 Business people and developers must work together daily throughout the project.

AM5 Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

AM6 The most efficient and effective method of conveying information to and within a de-
velopment team is face-to-face conversation.

AM7 Working software is the primary measure of progress.

AM8 Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

AM9 Continuous attention to technical excellence and good design enhances agility.

AM10 Simplicity–the art of maximizing the amount of work not done–is essential.

AM11 The best architectures, requirements, and designs emerge from self-organizing teams.

AM12 At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

From these values and principles it can be gathered that the agile methods claim to place
more emphasis on people, interaction, working software, customer collaboration, and change,
rather than on processes, tools, contracts and plans. The main difference between agile
methods and traditional method which are iterative, like the spiral model and the unified
process mentioned earlier, is that agile methods are also responsive and flexible during the
iterations, while the iterative traditional methods are merely flexible between subsequent it-
erations [132]. Whether this approach actually works remains to be seen, as empirical stud-
ies evaluating the effectiveness and the possibilities of using agile software development

43

6. AGILE METHODOLOGIES

methods are still scarce [8]. Awad [8] performed a survey among software practitioners in
government and commercial organizations in Perth. The most noticeable results from this
study are that practitioners feel that agile methodologies lower development costs in small-
scale projects, have no effect on cost in medium-scale projects and have a negative effect
on large-scale projects. Cockburn et al. confirm that agile development is more difficult in
larger teams [40]. They however also state that it is possible: Nevertheless, it is interesting
to occasionally find successful agile projects with 120 or even 250 people [40]. Another
result from the survey written by Awad was that the surveyed practitioner, on average, felt
that agile methods were harmful for the quality of the final product. Shine technologies per-
formed a similar survey [137] which produced quite different results. Their results showed
nothing but positivism towards agile methods. Highsmith and Wysocki [78] also performed
a survey, but they focused on researching software development processes used amongst
organizations and organizational agility. One of the results of this survey was that agile
methodologies are indeed very popular the moment. A final study we will mention here is
a survey by Salo and Abrahamsson [129]. This survey aimed at gathering information with
respect to the application of two agile methods, namely Extreme Programming and Scrum,
in a number of European organizations of embedded software known to be interested and
active in experimenting with agile software development methods. The results indicate em-
bedded software development organizations seem to be able to apply agile methodologies
and that the appreciation of these methodologies seems to increase once they are adopted
and applied in practice.

This section will be concluded with two summaries of the differences between heavyweight
and lightweight methodologies. Figure 6.1 shows the summary by Awad [8] and figure 6.2
shows the summary by Boehm [23]. In the remaining sections of this chapter, the agile
methodologies mentioned in this section will be discussed.

Figure 6.1: Difference in Agile and Heavyweight Methodologies [8]

44

Scrum

Figure 6.2: Difference in Agile and Heavyweight Methodologies [23]

6.2 Scrum

Scrum [132] is an agile process that emphasizes a set of project management values and
practices [93]. I does not define any specific software development techniques for the im-
plementation phase. Scrum concentrates on how the team members should function in order
to produce the system flexibly in a constantly changing environment [1]. The term ’scrum’
originated from a strategy in the game of rugby [132] where it denotes a way of restarting
the game, either after an accidental infringement or when the ball has gone out of play. In
a scrum the players of both teams stand opposite to each other, in a squatted position, with
their heads interlocked between the heads of the most forward players of the opposite team.
A player of the team that did not cause the scrum (did not infringe) throws the ball into the
scrum and then the players of both teams try to compete for the ball by trying to hook the
ball backwards with their feet. In doing this teamwork is very important since two teams
are trying to push each other backwards.

6.2.1 Artifacts

The two most important artifacts during the Scrum process are:

• Product Backlog
The evolving, prioritized, queue of product functionality requirements that are not
yet adequately addressed by the current version of the system. Bugs, defects, cus-
tomer requested enhancements, competitive product functionality, competitive edge
functionality, and technology upgrades are backlog items [132, 133].

• Sprint Backlog
The portion of the product backlog, scheduled for the current iteration, called a sprint.
The items of the sprint backlog are broken down into tasks. For each of these tasks
the following is maintained [141]:

– task description

– task originator

– task owned

– status

45

6. AGILE METHODOLOGIES

– time remaining until completion

Each day the time remaining for items is re-estimated to reflect the current knowledge
regarding the item.

6.2.2 Roles and responsibilities

The roles which can be identified in a Scrum development team are [141]:

• Product Owner
Is responsible for creating and prioritizing the Product Backlog, choosing what will
be included in the next iteration/Sprint, and reviewing the system (with other stake-
holders) at the end of the Sprint.

• Scrum Master
Measures progress, removes obstacles, and leads the team meetings, but at the same
time participates in product development.

• Scrum team member
Scrum teams are self-directed and self-organizing teams. The team commits to a
defined goal for an iteration and is given the authority, autonomy, and responsibility
to decide how best to meet it [141].

6.2.3 Process

The Scrum process, depicted in figure 6.3, consists of three phases: pre-game, game and
post-game. The process begins with the pre-game phase which is an explicitly defined
process with well-defined inputs and outputs [132]. In this phase a definition of a new re-
lease based on currently known backlog is made, along with an estimate of its schedule and
cost. Subsequently, a high-level architectural design of the implementation of the backlog
is made.

The next phase is the game phase and is an empirical process. This means that many of
the processes in the phase are unidentified or uncontrolled. To handle this uncertainty the
phase consists of a number of iterations called sprints. A Sprint is a time-boxed period of
time of usually 30 working days [141, 8, 69]. During a sprint new release functionality,
selected for this sprint, is developed, while constantly adjusting with respect to time, re-
quirements, quality, cost, and competition. If explicit process knowledge is available it is
used, otherwise tacit knowledge and trial and error is used to build process knowledge. The
sprint cycle is depicted in figure 6.4. Between sprints, when one sprint finished and the next
one begins, controls, including risk management, are defined for the next sprint in so-called
”Sprint Planning meetings”. This is done to avoid chaos while maximizing flexibility [132].

The scrum process ends with the end-game phase. This phase, like the pre-game phase,
is an explicitly defined process with well-defined inputs and outputs. In this phase the
preparations for release are made, including final documentation, pre-release staged testing,
acceptance testing, evaluation and the actual release.

46

Scrum

Figure 6.3: The general phases of Scrum [132]

Figure 6.4: The Scrum sprint cycle [36]

47

6. AGILE METHODOLOGIES

6.3 eXtreme Programming

Extreme programming (XP) is an agile process methodology which can be characterized
by short development cycles, incremental planning, continuous feedback, reliance on com-
munication, and evolutionary design. The individual pieces of XP are not new, but XP has
integrated them in such a way as to form a new methodology. The term ’extreme’ comes
from taking principles and practices, which to Beck seem common-sense, to extreme levels
[15]. It is based upon five underlying values which XP’s practices attempt to elicit. The five
core values are [141]:

• Communication
Good communication helps reduce misunderstandings and increase cooperation in
teams. Beck states: ”Problems with projects can invariably be traced back to some-
body not talking to somebody else about something important” [12].

• Simplicity
By just designing what is explicitly asked for by the customer in the requirements,
the chance of making something the customer does not want decreases.

• Feedback
By acquiring timely feedback, misunderstandings in specification are discovered more
quickly.

• Courage
The development team needs to have courage in its actions and decision making to
perform the right actions and make the right decisions.

• Respect
Since XP, and in fact most agile methodologies, revolve around close collaboration
in teams, it is important that teams get along well.

The initial version of the XP software methodology [12] published in 2000 had 12 programmer-
centric, technical practices. In 2005, XP was changed to include 13 primary practices and
11 corollary practices [15]. The primary practices are intended to be useful independent of
each other and the other practices used, though the interactions between the practices may
amplify their effect. The corollary practices are likely to be difficult without first mastering
a core set of the primary practices [141].

The 13 primary technical practices of XP are: (taken from Williams [141]):

XP1 Sit together
The whole team develops in one open space.

XP2 Whole team
Utilize a cross-functional team of all those necessary for the product to succeed.

48

eXtreme Programming

XP3 Informative workspace
Place visible wall graphs around the workspace so that team members (or other inter-
ested observers) can get a general idea of how the project is going.

XP4 Energized work
XP teams do not work excessive overtime for long periods of time. The motivation
behind this practice is to keep the code of high quality (tired programmers inject more
defects) and the programmers happy (to reduce employee turnover).

XP5 Pair programming
Refers to the practice whereby two programmers work together at one computer,
collaborating on the same design, algorithm, code, or test.

XP6 Stories
The team write short statements of customer-visible functionality desired in the prod-
uct. The developers estimate the story; the customer prioritizes the story.

XP7 Weekly cycle
At the beginning of each week a meeting is held to review progress to date, have the
customer pick a weeks worth of stories to implement that week (based upon developer
estimates and their own priority), and to break the stories into tasks to be completed
that week. By the end of the week, acceptance test cases for the chosen stories should
be running for demonstration to the customer to drive the next weekly cycle.

XP8 Quarterly cycle
The whole team should pick a theme or themes of stories for a quarters worth of
stories. Themes help the team reflect on the bigger picture. At the end of the quarter,
deliver this business value.

XP9 Slack
In every iteration, plan some lower-priority tasks that can be dropped if the team gets
behind such that the customer will still be delivered their most important functionality.

XP10 Ten-minute build
Structure the project and its associated tests such that the whole system can be built
and all the tests can be run in ten minutes so that the system will be built and the tests
will be run often.

XP11 Test-first programming
All stories have at least one acceptance test, preferably automated. When the accep-
tance test(s) for a user story all pass, the story is considered to be fulfilled. Addition-
ally, automated unit tests are incrementally written using the test-driven development
(TDD) [14] practice in which code and automated unit tests are alternately and incre-
mentally written on a minute-by-minute basis.

XP12 Continuous integration
Programmers check in to the code base completed code and its associated tests several

49

6. AGILE METHODOLOGIES

times a day. Code may only be checked in if all its associated unit tests and all of unit
tests of the entire code base pass.

XP13 Incremental design
Rather than develop an anticipatory detailed design prior to implementation, invest
in the design of the system every day in light of the experience of the past. The
viability and prudence of anticipatory design has changed dramatically in our volatile
business environment. Refactoring to improve the design of previously-written code
is essential. Teams with robust unit tests can safely experiment with refactorings
because a safety net is in place.

The 11 collary technical practices of XP are: (taken from Williams [141]):

XP14 Real customer involvement
The customer is available to clarify requirements questions, is a subject matter ex-
pert, and is empowered to make decisions about the requirements and their priority.
Additionally, the customer writes the acceptance tests.

XP15 Incremental deployment
Gradually deploy functionality in a live environment to reduce the risk of a big de-
ployment.

XP16 Team continuity
Keep effective teams together.

XP17 Shrinking team
As a team grows in capacity (due to experience), keep their workload constant but
gradually reduce the size of the team.

XP18 Root cause analysis
Examine the cause of a discovered defect by writing acceptance test(s) and unit test(s)
to reveal the defect. Subsequently, examine why the defects was created but not
caught in the development process.

XP19 Shared code
Once code and its associated tests are checked into the code base, the code can be
altered by any team member. This collective code ownership provides each team
member with the feeling of owning the whole code base and prevents bottlenecks
that might have been caused if the owner of a component was not available to make a
necessary change.

XP20 Code and tests
Maintain only the code and tests as permanent artifacts. Rely on social mechanisms
to keep alive the important history of the project.

XP21 Single Code Base
Make use of a single code base to avoid having to maintain various versions of the
project.

50

eXtreme Programming

XP22 Daily deployment
Put new code into production every night.

XP23 Negotiated scope contract
Fix the time, cost, and required quality of a project but call for an on-going negotiation
of the scope of the project.

XP24 Pay-per-use
Charge the user every time the system is used to obtain their feedback by their usage
patterns.

6.3.1 Artifacts

In XP documentation is kept to a minimum and information is instead primarily shared by
via oral communication, the code itself, and tacit knowledge transfer. The ”documentation”
that XP does use is usually of an unofficial, improvised nature, like paper index cards which
contain brief requirements and visible wall graphs [141].

6.3.2 Roles and responsibilities

The roles which can be identified in a XP development team are [12, 1, 141]:

• Manager
Is responsible for the project as a whole. The manager forms the team, obtains re-
sources, manages people and problems and interfaces with external groups.

• Coach
Guides the XP team members through the XP process and is responsible for this
process. The coach is typically a programmer and not a manager.

• Tracker
Traces the estimates made by the team and gives feedback on their accurateness in
order to improve future estimations. The tracker also tracks the progress of each
iteration and whether this progress is sufficient to reach the specified goals within the
given resource and time constraints. The tracker is a programmer, not a manager or
customer.

• Programmer
Writes tests, design, and code; refactors; identifies and makes estimates for task du-
ration.

• Tester
Helps the customer write functional tests, run the functional tests regularly, broadcast
the test results and maintain the testing tools. The tester may also be a programmer.

• Customer
Determines the requirements and functional tests, as well as the priority of each re-
quirement. The customer decides when a requirement is satisfied.

51

6. AGILE METHODOLOGIES

• Consultant
External member with specific technical knowledge needed at some time during the
project. The consultant’s expertise is used to solve specific problems.

6.3.3 Process

The XP process, depicted in figure 6.5, consists of the following six phases [12, 1]:

Figure 6.5: The life cycle of the XP process [1]

• Exploration
In this phase the customers specify the features they wish to be included in the first
release of the system, while at the same time, the project team familiarizes itself with
the tools, technology and practices they will be using in the project. This phase takes
between a few weeks and a month, depending largely on how familiar the technology
is to the programmers.

• Planning
In this phase the priority of the requirements is set and an agreement of the content
of the first small release is made. This is done by estimating how much effort each
requirement would take to implement. The time span of the first release does not
normally exceed two months, while the planning phase itself takes a couple of days.

• Iterations to release
In this phase several iterations of the system will be gone through in order to arrive
at the first release. The schedule determined in the planning phase is broken down to
a number of iterations that will each take one through four weeks to implement. The

52

Other agile methods

first iteration creates a system that possesses the architecture of the whole system. To
do this, requirements which enforce building the structure of the whole system are
selected. At the end of every iteration the functional tests defined by the customer are
run. At the end of the final iteration the system is ready for production.

• Productionizing
In this phase extra testing and checking of the performance of the system is done, in
order for the system to be able to be released to the customer. During this, required
changes to the system may be found, and a decision is made whether they are carried
out for the current release or documented for later implementation. During this phase,
iterations may need to be shortened to one week.

• Maintenance
In this phase, the first release of the system is taken into production for customer use.
This release must be maintained while at the same time producing new iterations.
In order to do this, this phase also requires customer support tasks and may thus
decelerate the development velocity or require the addition of new people into the
team.

• Death
When all the requirements of the customer, including the ones regarding performance
and reliability, are incorporated into the system, this phase is reached. In this phase
the necessary documentation of the system is written, as no more changes to the
architecture, design and code are made. Another reason for the death phase to occur
is discontinuation of further development of the system.

6.4 Other agile methods

Crystal methodologies

Crystal methodologies are part of a family of methodologies called the Crystal family [39].
All of these methodologies provide guidelines of policy standards, work products, ”local
matters”, tools, standards and roles to be followed in the development process [1]. With
regard to the development process, only two commonalities exist among the entire crystal
family: Incremental cycles may not exceed four months and reflection workshops must be
held after every delivery so that the methodology is self-adapting [141].

The word ”crystal” in the name of this methodology-family refers to the various facets
of a gemstone, each one being a different viewpoint towards one and the same underlying
core [80]. The underlying core represents values and principles, while each facet represents
a specific set of elements such as techniques, roles, tools, and standards. An example of
a value that is common among the entire crystal family is the importance of proper com-
munication and collaboration among the team members [39]. The different methods are
assigned colors arranged in ascending opacity, where a less opaque color represents a more
agile methodology. The most Agile version is Crystal Clear, followed by Crystal Yellow,

53

6. AGILE METHODOLOGIES

Crystal Orange and Crystal Red. The version of crystal you use depends on the number
of people involved, which translates into a different degree of emphasis on communication
[41]. At the moment only crystal clear and crystal orange have been developed [1].

Adaptive software development

Adaptive Software Development (ASD) [77] is a process methodology focused on iterations
and constant prototyping and is particularly suited for the development of large and complex
software systems. The aim of ASD is to provide a framework with just enough guidance so
the project does not fall into chaos, but not so much that it would suppress emergence and
creativity [1].

According to HighSmith An iteration in the ASD process: ”needs to be short, so teams
can learn from small rather than large mistakes” [77]. Such a iteration is, as depicted in
figure 6.6, is divided into three phases [77, 79]:

Figure 6.6: The ASD cycle [79]

• speculate phase

In this phase the objectives, vision, goals, and requirements of the system to be de-
veloped in the current iteration are specified. The name speculate is chosen instead
of planning because planning seems to imply that uncertainty must be avoided.

• Collaborate phase

In this phase the system to be built for the current iteration is constructed.

• Learn phase

54

Other agile methods

In this phase the products constructed during the collaboration phase are exposed to a
variety of stakeholders to ascertain value. ”Customer focus groups, technical reviews,
beta testing, and postmortems are all practices that expose results to scrutiny” [77].
Feedback from this phase as well as the system constructed during this iteration are
inputs for the next iteration, so it is possible to learn from mistakes made during this
iteration.

Feature driven development

Feature Driven Development (FDD) [37, 110] is an agile and adaptive approach to develop
systems, which does not cover the entire software development process, but just the design
and building phases. The approach prescribes emphasis on quality aspects throughout the
process, short iterations with frequent and tangible deliveries and accurate monitoring of
other progress of the project [37, 110, 1]. The process, which is depicted in figure 6.7,
consists of five sequential phases, of which the first three are done at the beginning of the
project and the last two form the iterative part of the process:

Figure 6.7: The five phases of FDD [37]

• Develop an overall model
When this phase begins, the domain experts already are aware of the scope, context
and requirements of the system to be built. So, requirement gathering and optionally,
the creation of the documentation of these requirements, has been done at this stage.
In this stage all team members and the chief architect are informed of the high-level
description of the system with so-called ”walkthroughs” of the system, at various
levels of detail.

• Build a features list
In this phase a categorized list of the features to support the requirements is produced.
The size of these features is so that they can be implemented in ten days. Features
requiring more time than ten days are broken down into sub-features. Finally the list
of features produced, is reviewed by the users and sponsors of the system to test if the
list is both valid and complete.

55

6. AGILE METHODOLOGIES

• Plan by feature
In this phase, the categories of features are sequenced with respect to their priority
and dependencies among another. Then the categories are assigned to developers who
will be responsible for the development of that category, and a schedule of milestones
is created.

• Design by feature and build by feature
In these phases all the features are produced in an iterative manner. Each iteration, a
set of features is selected and the developers responsible for the development of the
feature categories selected in this iteration, form teams to perform the implementa-
tion. An iteration usually takes anywhere between a few days and two weeks. When
an iteration if finished the completed features are integrated into the main build and a
new set of features is selected for the next iteration.

6.5 Aspects of agile software development

In this chapter we introduced the concept of agile methodologies in the context of software
engineering in general. This thesis, however, is concerned with the combination of agile
methodologies and global software development. Therefore we will define a subdivision of
agile software development into aspects to be able to systematically discuss how agile soft-
ware development can be beneficial explicitly with respect to global software development.
With the term ”aspect of agile software development” we denote the goals agile software
development attempts to accomplish. More explicitly, for the agile manifesto and agile
methodologies which define explicit practices, these aspects can be seen as the outcome of
using an agile practice from a certain subset of agile practices. In this section we will dis-
cuss these aspects. For each of these aspects we will start by giving a definition of what the
aspect entails followed by a clarification of how exactly the aspect is reflected in the agile
manifesto, and the eXtreme programming and Scrum agile methodologies, because these
methodologies were most thoroughly examined in this chapter. This discussion will be most
thorough and explicit with respect to the Agile Manifesto and XP since these define design
practices explicitly. Finally we will discuss whether or not the aspect offers benefits exclu-
sive to global software development. In chapter 2 we stated that all challenges associated
with global software development originate from the increased distances of geographical,
temporal and socio-cultural nature. Therefore this final discussion will entail whether or not
the aspect under discussion is able to ease the dealing with at least one of the three distances.
The division of the aspects into aspects that do not, or only minorly, influence distance and
those that do, is made because our interest in this thesis mainly lies on using agile software
development to explicitly improve global software development. Therefore aspects that of-
fer similar benefits in a distributed environment as they do in a co-located environment are
of less concern in this thesis. The relation between the aspects and the practices of the Agile
Manifesto and eXtreme programming will be summarized in table 6.1 and 6.2 at the end of
this section.

56

Aspects of agile software development

A1 Close collaboration among the members of the development team

Short description

This aspect concerns that all members of the development team should work together daily
throughout the project in a very close way, while communicating frequently.

Relation to the agile methodologies

This aspect is reflected in the agile manifesto in the following way. For one it urges that busi-
ness people and developers should work together daily throughout the project (AM4). Also
it states that the best architectures, requirements and designs emerge from self-organizing
teams (AM11). For teams to be self organizing the members need to work together closely.
Lastly it claims the most effective and efficient method of conveying information to and
within the development team is face-to-face conversation (AM6). So it recommends an ex-
plicit way to achieve close collaboration, emphasizing its importance.

Scrum explicitly advocates collaborative teams of developers [132]. Next to this it defines a
pre-game phase in which the project planning and process tracking is made a collaborative
activity. Extreme programming also focuses on the importance of teams that collaborates
closely. The first value of XP is that good communication helps reduce misunderstandings
and increase cooperation in teams. Beck states: ”Problems with projects can invariably be
traced back to somebody not talking to somebody else about something important” [12].
The final value of XP which emphasizes the importance of respect within the team and that
the team gets along well, is quite related to the importance of close collaboration as well.
This high priority of close collaboration is also reflected in a couple of practices of XP. For
instance, advocating the whole team works in a single room (XP1) is a way to try and coerce
the teams into collaborating closely. Picking teams in which the members supplement each
other (XP2), guaranteeing the continuity of effective teams (XP16), and using an informative
workspace (XP3) and user stories (XP6) to make knowledge sharing easier, are ways to try
and achieve close collaboration as well. Finally, one of the best known practices to achieve
close collaboration in XP is pair programming (XP5), in which two team members actually
work together on a single task.

Relation to distance

Having development teams that collaborate closely could be a way to deal with distance be-
cause the negative affects of being geographically, temporally or social-culturally separated
are of less concern to a close development team.

A2 Short iterations, frequent builds and continuous integration

Short description

This aspect concerns that development is done by delivering incremental components of
business functionality in so-called iterations. Developing a product in this fashion helps

57

6. AGILE METHODOLOGIES

to keep focus on short term goals and to create working software quickly. During these
iterations the work should be integrated and build as frequent as possible to be able to detect
and resolve problems early, when they still can be dealt with, with relative ease. After each
iteration ends and before the next one begins, the process that is used should be adapted to
work even better in the next iteration [56].

Relation to the agile methodologies

The processes specified in each of the agile methodologies discussed in this chapter concern
a development process consisting of short iterations with frequent builds. While the Agile
Manifesto does not explicitly specify a process, it does state that the highest priority is to
satisfy the customer through early and continuous delivery of valuable software (AM1), that
software needs to be delivered frequently, with a preference to a short time scale (AM3) and
that working software is the primary measure of progress (AM7).

XP also has such practices: It dictates both a weekly (XP7) and quarterly (XP8) build, the
fact that iterations should also consist of work which can be omitted if deadlines cannot be
reached (XP9) and that the design of the system should be done incrementally (XP13). Next
to this it offers many practices related with continuous integration (XP12). These practices
are: being able to build the system in ten minutes (XP10), use test-first programming to
be able to always test the current system (XP11), doing root-cause analysis when a defect
is detected (XP18) and using daily (XP22) and incremental (XP15) deployment to avoid the
problems and risks associated with big deployments. Continuous integration is closely re-
lated to feedback, as by continuously integrating and building, feedback can be acquired
more often. This regards both feedback acquired from colleagues and the customer as well
as feedback acquired from the results of tests. Acquiring timely feedback is one of the core
values of eXtreme programming. Feedback is reflected in the Agile Manifesto as well, as
can be gathered from principle AM9, which subscribes the continuous attention to technical
excellence and good design.

The final part of this aspect left to relate to existing agile methodologies concerns the self-
adaptivity of the process. The Agile Manifesto states that the team should reflect, at regular
intervals, on how to become more effective and then tune and adjust its behavior accord-
ingly (AM12). In Scrum this is done in what is called a Sprint Retrospective meeting which
is held at the end of every sprint. In ASD and Crystal methods, self-adaptivity is most no-
ticeable [56]. In XP, it seems to be disallowed by to the rather rigid rules, but this is only
a surface impression since XP does encourage people to tune the process. Review of the
process however, is not an explicit part of the process in eXtreme programming, although
there are suggestions to change this [56].

Relation to distance

Using short iterations with frequent builds and continuous integration is also an aspect of
agile software development which could help deal with the distance in a globally distributed

58

Aspects of agile software development

setting. The increased amount of feedback, for instance, could decrease the socio-cultural
distance because of the motivating factor this offers. Also the things that are more difficult
because of the global and temporal displacement, insight in the progress of the project and
managing the versioning of the system, can be alleviated by this aspect.

A3 Decentralizing the decision making

Short description

In agile software development part of the decision making is moved to the developers.
Management is still needed to remove roadblocks standing in the way of progress. The
development team, however, is entitled to make certain technical decisions without involve-
ment of the management. This aspect also concerns the decisions made by a subgroup of a
development team rather than an individual.

Relation to the agile methodologies

This aspect is less directly found in the methodologies discussed. Most agile methodologies
however, advise having faith in the abilities of the developers. The Agile Manifesto for
instance states that projects should be built around motivated individuals that receive the
environment and support they need and that they should be trusted to get the job done
(AM5). It also emphasizes the power of self-organizing teams (AM11) and that such teams
need to be trusted to get the job done. This is exactly what this aspect seems to be about
most; management should recognize the expertise of the developers [56]. In XP this aspect
does not correspond to a specific practice but in XP the developers must be able to make all
technical decisions [56] and this is quite what this aspect is about. Next to the developers
being trusted by management to make decision they should also be courageous enough to
do so. This is reflected in the courage value of eXtreme programming: ”The development
team needs to have courage in its actions and decision making to perform the right actions
and make the right decisions” [141].

Relation to distance

This aspect also can help to deal with the distances associated with GSD projects. For one,
being trusted and receiving autonomy motivates developers and thus decreases the social-
cultural distance. Next to this, problems associated with the geographical and temporal
distance can be avoided by taking away the bureaucratic communication overhead.

A4 Customer involvement

Short description

This aspect involves the active participation of the customer in the development of the sys-
tem. This involvement is used to acquire feedback on the current implementation of the
system and to further clarify the requirements of the system to be built. It is important to
note that the customer has the right to change requirements during the entire project.

59

6. AGILE METHODOLOGIES

Relation to the agile methodologies

The Agile Manifesto emphasizes the importance of the customer in the development pro-
cess. Again we refer to the fact that the Agile Manifesto regards satisfying the customer
through early and continuous delivery of valuable software as having the highest priority
(AM1). Also it states that changing requirements should be welcomed, even late in devel-
opment (AM2). Besides this also in the values of the Agile Manifesto the importance of
this aspect can be seen as these both mention the importance of customer collaboration and
responding to change.

In eXtreme programming there is a practice which states that the customer should be avail-
able to clarify the requirements, is a subject matter expert, is empowered to make decisions
about the requirements and their priority and writes the acceptance tests (XP14). Another
way XP aims to keep the involvement of the customer high, is the use of stories (XP6).
These are short statements regarding the desired functionality of the product, visible to the
customer, which the customer prioritizes. Furthermore eXtreme programming states the
contract which is agreed with the customer should allow for on-going negotiation regarding
the scope of the project to allow for further flexibility (XP23). Finally, XP also recommends
charging on a pay-per-use basis as to obtain feedback from the users based on their us-
age patterns (XP24). With respect to customer involvement in Scrum Schwaber states the
following: ”The SCRUM approach, however, welcomes and facilitates their controlled in-
volvement at set intervals, as this increases the probability that release content and timing
will be appropriate, useful, and marketable” [132].

Relation to distance

This aspect can also be beneficial with respect to helping to cope with the distances faced
when developing globally distributed. This is because getting the appropriate feedback
motivates the development team and motivated individuals feel more like a team, thus de-
creasing the social cultural distance.

A5 Collective ownership of work

Short description

This aspect concerns that what is produced is the result of the entire team, and not an
individual. No single team member owns, or is responsible for a specific code segment
and all work can be changed by the entire team, without explicit permission. This aspect,
however, is not restricted to all team members being able to change part of the work without
explicit permission. It also concerns the development team having a shared vision and
responsibility of the system to be built. The whole team is creating something together,
aiming for a single collaborative goal and is collectively responsible that this goal is reached.

60

Aspects of agile software development

Relation to the agile methodologies

This aspect is again found in a less direct manner in both the Agile Manifesto and Scrum.
Chao et al. [33] states: ”. . . several agile methods (e.g. XP and Scrum) imply that explicit
knowledge including designs and models should be collectively owned”. It is true that this
aspect is merely implied in the Agile Manifesto. The Agile Manifesto states that the best
architectures, requirements and design emerge from self-organizing teams (AM11) and these
kind of teams are teams with a shared responsibility with the respect to the work they are
performing. The principle which states projects should be built around motivated individu-
als who should be given the environment and support they need and should be trusted to get
the job done (AM5) implies the project is the shared responsibility of the entire development
team.

In eXtreme programming there is a practice which explicitly states that all code is shared
by the development team and thus can be altered by any team member (XP19). It also spec-
ifies a practice that a single code base should be used (XP21) which makes it easier for all
team members to have constant access to all work. Besides this, eXtreme programming
dictates a cross functional team (XP2). This also supports this practice because a team must
be knowledgeable in all fields required in the project to be able to share the responsibility
of the project.

At first glance it seems Scrum is incompatible with collective ownership because it defines
the role of product owner. However, Judy et. all states: ”a capable Scrum Product Owner
and performing team can build a spirit of collective ownership over all aspects of a product
lifecycle while still fulfilling the Scrum roles. This collective product ownership is close to
the lean product development origins of agile which values the insights into products held
by those who build them and positions an organization for sustained excellence and product
innovation.” [86].

Relation to distance

By incorporating this aspect into the development process the socio-cultural distance could
be decreased since teams that work together towards a common goal are often more cohe-
sive.

A6 The most important artifact is the system to be built

Short description

This aspect concerns that working software is the most important goal of the project and
other matters, like documentation, are inferior to it. Spending a lot of time on updating
non-essential artifacts should be prevented.

61

6. AGILE METHODOLOGIES

Relation to the agile methodologies

One of the values of the Agile Manifesto states ”working software over comprehensive
documentation” which is exactly what this aspect is about. This aspect is also reflected in
two of its practices. Firstly it states working software is the primary measure of progress
(AM7) and secondly it states the highest priority is to satisfy the customer through early
and continuous delivery of valuable software (AM1). Extreme programming also shows the
higher importance of software by stating only the code and tests are artifacts that should be
maintained (XP20).

Relation to distance

This aspect does not offer specific benefits when working globally distributed which it does
not offer when working co-located.

A7 Favoring simplicity

Short description

Agile software development favors simplicity, or the maximization of the amount of work
not done [16]. This aspect concerns looking for the simplest working solution first and
improving it later only if the need arises. This aspect is based on the assumption that
requirements and other matters with respect to the project are likely to be changed in the
future so that it is rarely worth to implement things supposed to be helpful at some point in
the future.

Relation to the agile methodologies

The relation of this aspect to the methodologies is rather direct. The Agile Manifesto states
that it is essential (AM10), and eXtreme programming states simplicity as one of its core
values. It does not mention simplicity directly in one of its practices, however.

Relation to distance

This aspect does not offer specific benefits when working globally distributed which it does
not offer when working co-located.

A8 Sustainable pace of development

Short description

This aspect is concerned with the fact that people should not work excessive overtime for
long periods of time. The motivation behind this is that un-energized people produce less
and lower quality work than energized people. DeMarco states: ”Extended overtime is a
productivity reducing technique” [48]. The idea is that the development speed is such that
all people involved in the project are able to maintain a constant pace indefinitely.

62

Aspects of agile software development

Relation to the agile methodologies

Again the relation to both the Agile Manifesto and eXtreme programming is rather direct.
The Agile Manifesto prescribes that the sponsors, developers and users should be able to
maintain a constant pace indefinitely (AM8) while XP dictates that the members of the
development team must stay energized (XP4) and thus not work excessive overtime for long
periods of time. Finally, eXtreme programming also mentions that a team which grow in
capacity, due to experience, should keep a constant workload but should shrink in size to
keep the workload of the individual members of the team constant (XP17).

Relation to distance

This aspect does not offer specific benefits when working globally distributed which it does
not offer when working co-located.

Overview

In table 6.1 an overview is given of the relation between the principles of the Agile Man-
ifesto and the aspects of agile software development we defined in this section. In table
6.2 an overview is given of the relation between the practices of eXtreme programming and
these same aspects.

63

6. AGILE METHODOLOGIES

Table 6.1: Relation between the Agile Manifesto and the aspects of agile software develop-
ment

64

Aspects of agile software development

Table 6.2: Relation between eXtreme programming and the aspects of agile software devel-
opment

65

Chapter 7

Global software development
combined with aspects from agile

methodologies

When carrying out software development projects professionally, a process is used to pre-
vent the project from lapsing into chaos. What kind of process should be used will depend
on the specific requirements and constraints of the project. Barry Boehm argues: ”Both
agile and plan-driven methods have a home ground of project characteristics in which each
clearly works best, and where the other will have difficulties. Hybrid approaches that com-
bine both methods are feasible and necessary for projects that combine a mix of agile and
plan-driven home ground characteristics.” [23]. For globally distributed projects, Grinter et
al. [64] suggest using a structured, plan driven process, as a way to coordinate such projects.
There are however two reasons why less plan-driven, more agile practices could be useful
for GSD projects.

1. The agile methodologies could be beneficial to global software development in the
same way they are useful to software development in general. This regards that in
general, they are able to better cope with uncertainty and changing requirements in
projects than plan-driven approaches. Examples of such projects are projects devel-
oping genuinely novel products since these projects are often faced with uncertainty
regarding, both requirements and implementation technologies, and subcontractors
or partners need to be involved long before these uncertainties can be resolved. This
reason alone would justify attempting to facilitate the use of agile methods in a dis-
tributed setting.

2. The application of practices from agile methodologies could result in a reduction of
the negative influence of distance on communication, coordination, and control in a
GSD context. This is plausible since, on the one hand, the most important challenges
of GSD lie in the complexity of maintaining good communication, coordination and
control when teams are dispersed [4], while on the other hand, agile methodologies
emphasize communication and as a result, reduce coordination and control overhead
[82, 109].

67

7. GLOBAL SOFTWARE DEVELOPMENT COMBINED WITH ASPECTS FROM AGILE

METHODOLOGIES

There is, however, another side to this story, as frequent collaboration and face-to-face com-
munication belong to the basic principles of agile methods [109]. The literature on XP, for
instance, emphasizes that it is important to have the team members physically located close
to each other [13]. So when attempting to incorporate agile practices into GSD this will
lead to various challenges the original agile methodologies did not have to deal with, due to
assuming the various team members would be physically close to each other [91, 109].

We refrain from elaborating any further on the first reason why agile methodologies could
be beneficial to GSD because this is not specific to GSD. We direct the interested reader
at [23, 21] for a more thorough explanation. In the rest of this chapter we will discuss the
impact incorporating aspects of agile development approaches, introduced in the previous
chapter, have on the perceived distances and the consequences of these distances, in a dis-
tributed setting. We will do this by first discussing how incorporation of each of the aspects
that influence distance can reduce the distances faced. Then we will discuss the main chal-
lenges faced when using agile software development practices in a distributed environment
and how these challenges can be faced. In the last section we will conclude by summarizing
the benefits, challenges and potential solutions discussed in this chapter in three overview
tables for easy reference.

7.1 How aspects of agile methods can reduce distance in a GSD
context

As discussed in chapter 2, all the challenges associated with global software development
originate from the existence of three kinds of distances:

• Geographical distance
The dislocation in space experienced by two actors wishing to interact.

• Temporal distance
The dislocation in time experienced by two actors wishing to interact.

• Socio-cultural distance
The dislocation in understanding of the values and normative practices of other actors.

The combination of these distances is what makes global software development such a
complex task [82]. A way to deal with the challenges commonly faced in GSD would
be to reduce these distances themselves, reduce the consequences of the existence of these
distances or help to cope with the consequences of these distances. This section will discuss
the influence the aspects defined in chapter 6 have on the three types of distances.

Aspect 1: Close collaboration among the members of the development team

Temporal

Close collaboration leads to good report between colleagues. Good report between col-
leagues means they are more willing to compromise with respect to working times. An

68

How aspects of agile methods can reduce distance in a GSD context

example of this effect with respect to XP pair programming is mentioned by Agerfalk et
al.: ”. . . people were flexible and, even though there was a delay in response, individual
developers tried hard to spend as much time as possible with the distributed pair program-
mer” [82]. Hence the negative influence of the temporal distance is reduced since the time
overlap is increased in comparison to both team members just working normal office hours
and not being flexible. Next to this, colleagues will also be more inclined to help out a
colleague with a small task, like answering a quick question, when at home. This helps to
reduce the challenge of delayed communication.

Geographic

The main challenges which are a direct consequence of the geographic distance in GSD are
the lack of informal communication and the increased effort to initiate contact. At the same
time close collaboration between team members generally increases informal communica-
tion and eases initiating contact. Therefore we can say close collaboration between team
members reduces the main consequences of the geographical distance.

Socio-cultural

Close collaboration, does not just lead to good report between colleagues, it also leads to a
better mutual understanding between them. Therefore close collaboration actually reduces
the socio-cultural distance between team members. Agerfalk et al. again mentions XP pair
programming as an example: ”. . . the practice of pair programming improved individual
commitment for enhancing mutual understanding between team members” [82]. Because of
this, challenges mainly caused by the socio-cultural distance, like ”lack of team cohesion”
and ”lack of trust”, are being dealt with by having a closely collaborating team.

Aspect 2: Short iterations, frequent builds and continuous integration

Socio-cultural

The main distance this aspect of agile development targets is the socio-cultural distance.
This is because short iterations, frequent build and continuous integration leads to feedback.
This feedback motivates the developer [109] and motivated developers feel more like a
team. Next to this, seeing high quality work early and frequently results in trust [109]. Both
feeling more like a team and increased trust reduce the socio-cultural distance caused by
working globally distributed.

Temporal and geographical

In GSD projects in general, it is quite hard to have a good idea of the progress of work,
mainly due the temporal and geographical distances which make direct communication dif-
ficult. Because of this, problems can be detected too late, and this can result in time and
resources being wasted. Continuous integration can improve upon this situation because it
leads to transparency of the progress [135, 109]. Another issue in GSD projects aggravated
by geographic and temporal distance is configuration management: the management of the

69

7. GLOBAL SOFTWARE DEVELOPMENT COMBINED WITH ASPECTS FROM AGILE

METHODOLOGIES

evolution of the complete system [138]. Continuously integrating, in contrast to integrat-
ing everything at the end of the project, makes configuration management less of an issue
[135]. This is because most problems faced when continuously integrating the system are
faced in isolation and isolated problems are easier to indentify because they cannot interact
with each other [58].

Aspect 3: Decentralizing the decision making

Temporal and geographical

Because of this aspect, both temporal and geographical distance becomes less of an issue
because, developers can take certain decisions without having to confer with management
which could be located in another part of the world. Next to this, the geographical and
temporal distances often make it hard to make proper estimations regarding the progress
of the project. By letting the people performing the work make these estimations they are
often more accurate [135].

Socio-cultural

Giving the individual developers and development teams autonomy is a great motivator and
allows people to be more productive [57]. As mentioned earlier, this increase in motivation
leads to developers feeling more like a team, which reduces the socio-cultural distance
between them. Next to this, allowing teams and individual developers to make their own
decisions conveys trust. According to Zand [144], one of the most powerful ways to show
your own trustworthiness is to trust the other.

Aspect 4: Customer involvement

Socio-cultural

In the description of aspect two, we described that constant feedback decreases the socio-
cultural distance between team members, because feedback motivates the developers and
seeing high quality work early and frequently results in trust. Feedback, however, is much
more valuable when it is given by the actor for which the system is being built: the customer.
Only the customer can decide if a feature is implemented in the way he had in mind. In
agile software development high customer involvement is a general practice. Agile methods
generally advocate that the customer becomes part of the development team during part of,
or even the entire, development process.

Aspect 5: Collective ownership of work

Socio-cultural

In chapter 4 the characteristic that a real team should posses according to Carmel [29] are
mentioned. Two of those characteristics are:

• Collective responsibility for its products

70

Problems with incorporating agile aspects into GSD

• Shared responsibility for managing its work

Hence, collective ownership of work will lead to closer development teams, which, in turn,
reduces the socio-cultural distance between its members.

7.2 Problems with incorporating agile aspects into GSD

The need for frequent and rich informal communication is larger when developing in an
agile fashion than when following more plan-driven methodologies. This is however also
more difficult when developing globally distributed due to the existence of the geographical,
temporal and socio-cultural distances. Often agile methods even advocate the need for phys-
ical proximity, XP for example, emphasizes that it is important to have the team members
physically located close to each other [13, 91]. This leads to challenges faced in non-agile
distributed development to worsen and the emergence of new challenges when attempting
to use an agile methodology in a distributed setting. In the previous section we discussed
the benefits an agile methodology could offer in a distributed setting. We discussed how a
number of aspects of agile methodologies we identified as being able to influence distance
in chapter 6, could offer advantages with respect to dealing with the three distances faced
in distributed development. In this section we will return to these aspects but this time we
will discuss how working globally distributed makes it harder to achieve these aspects and
initial ideas on how to overcome these difficulties.

Aspect 1: Close collaboration among the members of the development team

Geographical and temporal

The geographical and temporal distances between developers in GSD projects causes fre-
quent communication between developers to be difficult [135, 57, 125, 109]. Because of
this, close collaboration is also harder to accomplish than when the development team is
collocated since frequent communication is essential for close collaboration. Basically,
there are two ways to deal with this issue, which must be used in conjunction in order to
achieve the best possible result:

1. Improve the communication itself

2. Facilitate other means for knowledge sharing

Examples of ways to improve the actual communication between developers are:

• Synchronize work hours
By synchronizing the work-hours of the development team as much as possible the
temporal distance can be minimized [125]. This will make a larger amount of syn-
chronous communication between developers possible. The work-hours should at
least be synchronized to the degree that regular short status meetings can be held with
the entire development team [57, 125].

71

7. GLOBAL SOFTWARE DEVELOPMENT COMBINED WITH ASPECTS FROM AGILE

METHODOLOGIES

• Provide for informal communication through formal channels
By formalizing the informal communication in a way that it utilizes formal channels
the reliance on informal communication is reduced [125]. An example of doing this
is by designating someone as the point of contact for each team. This person is
responsible for facilitating communication across the teams and is to work closely
with both development and project management teams on a daily basis [125, 94, 92].
This solution will also give the opportunity to incorporate a little more control into the
development process when it is extended with a more formal structure for reporting
and responsibility [125]. When doing this, potential problems in the collaboration
between the various development sites are more easily visible and can be dealt with.

• Maintain constant communication
Even though constant face-to-face communication is infeasible when developing ge-
ographically distributed, constant communication is still feasible by making use of
other means of communication [125]. When selecting a means of communication
synchronous means, like telephone calls and instant messaging, should be favored
over asynchronous means, like SMS and email. However when it is impossible to use
synchronous communication asynchronous communication is a sufficient surrogate
as long as the communication loops are short [94].

Examples of facilitating for knowledge sharing are:

• Make use of universally-accessible knowledge base
By making use of a universally-accessible knowledge base like Wikis, message boards
and repositories the progress of the various teams is more transparent [135, 27, 125,
94]. This will help decrease misunderstandings between development teams and
makes sure knowledge is consistent between all development teams. The amount
of information that is documented in such a knowledge base should be larger than
when developing in a non-distributed setting, yet not as excessive as with plan driven
methodologies. The idea is to document to a level of detail which is sufficient at the
current state of the project [135, 57, 125].

• Perform extensive requirements-communication
It is important for all developers in a project to have a view on the requirements which
is as similar as possible [116]. Because of this, when developing dispersed across
the world, more ceremony needs to be put into communicating requirements [57].
Fowler [57] gives the example of using acceptance tests as ways of communicating
requirements. When doing this one development team would describe the features
which needed to be implemented in the next iteration. Another team would then
use these descriptions to write test scripts, which can be either manual or automated.
As the scripts are developed, both the development teams coordinate by means like
email and instant messaging as well as regular conference calls to review if there is
consensus about the requirements.

72

Problems with incorporating agile aspects into GSD

Socio cultural

In distributed development, participants at different sites are less likely to perceive them-
selves as part of the same team than with collocated development. Because of this, team
members find it hard to have faith in the good intentions of remote colleagues [91] and there
can be a lack of team cohesion [125]. These things make close collaboration between devel-
opers at different geographical locations more difficult. In order to deal with this, trust and
shared understanding must be build between team members. Examples of way to achieve
this are:

• Select teams that work well together
By selecting teams of people that have had prior working relationships with each
other the problems described above are greatly alleviated [125]. If this is not possible,
selecting teams in such a way that the people that need work most closely together
have a good working relationship would still make close collaboration between the
teams easier in general.

• The periodic exchange of team members between sites
By periodically rotating team members between sites, more developers get to work
together on a single location. Because of this, the sense of being a single community
among developers, is increased, as well as the trust in remote colleagues [57, 117, 27,
125]. When following this policy, basically there are three variables to consider:

– The amount of people to exchange

– Which people to exchange

– The amount of time these people will stay at another site

Fowler [57] suggests the concept of ambassadors. In this concept at least one member
of each team is present at another site at all times to represent his team. Fowler
suggests periods of exchange of several months and choosing people for the role of
ambassador that do not mind being away from home for several months. He also
suggests that is particularly important for project managers to spent some time as
ambassadors because of the very nature of their function. In order to be able to help
resolve conflicts and flush out problems before they become serious, experience with
working in the different teams is really important [57]. Layman et al. [94] suggests
that having a having a key member of one team physically located with the other
team can provide an essential two-way communication conduit. They argue, because
this person will communicate often with both teams because of his importance in the
process, he will increase the connection between these teams. Braithwaite et al. [27]
and Poole [117] both suggest shorter, but more frequent exchanges of different people
in order for more members of the teams to have physically met each other and built a
working relationship.

73

7. GLOBAL SOFTWARE DEVELOPMENT COMBINED WITH ASPECTS FROM AGILE

METHODOLOGIES

Aspect 2: Short iterations, frequent builds and continuous integration

Performing short iterations, frequent builds and continuous integration is harder in a dis-
tributed than in a collocated setting for a couple of reasons. For one, the lengths of the
iterations must be increased to compensate for the time lost due to communication over-
head [57]. Both Fowler [57] and Ramesh et al. [125] suggest adopting an iteration length of
at least two weeks. Fowler however, also reports that the iteration length should stay below
two months.

Secondly, iterations using an agile development approach often define stand up meetings at
the start of the iteration and regular short status meetings during the iterations, in which ev-
eryone, or a large portion of the team members, should take place. Carrying these practices
over to the distributed environment is important for proper coordination between teams [57]
but also difficult, both due to the different work-hours of different teams [57] and because
it is often impossible to perform such meetings in a single room due to the geographic dis-
tance between the teams. Because of this, these meetings have to be tailored to work when
working distributed [57]. We will discuss these adaptations based on the distance which
makes it necessary:

• Geographic
The geographic dislocation is best dealt with by providing team members with as
many communication media as possible in order for the communication between
them to be as rich as possible [27]. An example of this is providing a remote col-
league a link to example code during a video conference [27].

• Temporal
With respect to the difference in working hours the teams should compromise so all
teams share an equal amount of discomfort [57]. Also, because the time these meet-
ings can take is limited, when a remote team member has to go through something
before the discussion can continue, it is best to leave the point for now and agree to
return to the issue at a later time when the remote team member has had time to do
this outside of the meeting [27].

Lastly, configuration and version management is also more difficult in a distributed setting
[109]. Even though teams at different geographical locations are working on the project,
possibly at the same time, an unambiguous global view of the current system needs to be
maintained. To accomplish this, a common code base should be used [117, 109]. This
would need to consist of both a source control system and common build environment
which enables all developers to build and test their code [117]. This however, also has some
extra difficulties associated with it when working in a distributed setting. These difficulties
originate from the geographic and temporal distances and we will discuss these separately:

• Geographic
Because of the use of a single code base and multiple, geographically distributed sites,
some sites could experience suboptimal performance of the common code base. This

74

Problems with incorporating agile aspects into GSD

could both be caused by communication lines which are too narrow, but, in certain
parts of the world, they might also periodically fail altogether [57, 109]. There are
three basic ways to deal with this problem:

1. Locate the code-base server on the site which has the highest amount of devel-
opers working on the project [57].

2. Locate the code-base server on neither of the sites, but rather place is strategi-
cally in the middle, so no one suffers from extreme performance issues.

3. Make use of a clustered code repository, with each site having access to a code-
base server. Of course the clustered code repository must be such that the global
integrity is maintained [57].

• Temporal
If the developers have different work-hours, if some developer breaks the build at
the end of his work-day and goes home this causes the team that works after having
to deal with the broken build without having access to the developer that caused it.
In the worst case this might cause development of an entire site to stall for a day.
The way to deal with proposed in the literature, is to arrange for developers that
committed changes to the mainline, do not go home until it is confirmed that their
changes resulted in a successful build [135, 57]. Another problem caused by teams
working at different times of the day, is that this makes it tougher to find a time to
take the server down for updates or backups.

Aspect 3: Decentralizing the decision making

Socio cultural

In order to use decentralization of decision making properly within a project, the develop-
ers should be autonomous and independent enough to actually make decisions on their own.
Particularly in Asian cultures, but also in others, this is often a problem because they are
often trained to listen to their superiors and not make decisions on their own [57]. This is
quite a problem, as parting people from a life-long believe is often a process which takes
quite some time. Fowler [57] suggests however, that in the end people with cultural heritage
of this kind will come around and actually relish the freedom they have received. Mean-
while, it is best for superiors to keep in mind the cultural heritage of these people and be
prepared to deal with any problems that this might cause.

Geographic and Temporal

The other side of this story is that it can be hard to make decisions decentralized when glob-
ally and temporally distributed from the rest of the development team. This is because the
developer which has to make the decision can reach better decisions when he has access to
certain types of information, depending on the decision that needs to be taken, and this in-
formation can be harder to acquire when the development team is distributed geographically
and temporally.

75

7. GLOBAL SOFTWARE DEVELOPMENT COMBINED WITH ASPECTS FROM AGILE

METHODOLOGIES

Aspect 4: Customer involvement

Geographic and Temporal

In distributed development, the customers may be located far away making frequent interac-
tion difficult to arrange. Having the customer on site is even harder in this situation and if it
can be arranged the on-site customer might gradually lose connection to his or her own en-
vironment [109]. A way to deal with this is by arranging frequent regular meetings with the
customer. For these meetings the customer should travel to the development site as often as
possible and otherwise make use of as many communication media as possible in order for
the communication between them to be as rich as possible. Kircher [91] mentions the use of
video conferences, arranged via email, in distributed XP effectively involves the customer
throughout the project. Another example is having regular integrated builds accessible to
the customer. The customer is then able to test out the most recent version of the system
and submit feedback. This might not be quite as immediate as co-location, it still allows the
customer to correct any misunderstandings quickly; as well as allowing them to refine their
own understanding of the requirements [57]. Still, communication via such media is only a
substitute for face-to-face communication and if the customer is located in a different part
of the world time differences also have be dealt with. In order to deal with these issues it
is possible to make use of a proxy-customer which is not actually the customer but rather
someone who plays the role of on-site customer [135, 94, 92]. When selecting proxy cus-
tomers it is best to select people with a combination of interests and abilities in technical
and business spheres. The proxy-customer must be able to interact equally well with the
technical and the business project members but does not necessarily have be experienced
[135]. He or she should be able to make conclusive decisions on project functionality and
scope, and have a vested interest in the project [94, 92].

Aspect 5: Collective ownership of work

The main problem with incorporating this aspect of agile methodologies in a GSD context is
that the very idea might conflict with certain ideologies and cultural believes. Berteig [18],
for instance, discusses teaching a course on agile development in Romania. Several of the
Romanians following the course felt that the collective ownership of work closely resembled
elements from the communistic ideology, to which they objected. Another problem with
incorporating this aspect in a distributed setting is that all work should be accessible by
everyone from anywhere in order for all the work to truly be collectively owned. The
solution to this is very similar to the common code base discussed earlier in this section so
we will refrain from describing this here any further.

7.3 Overview

In this section we will provide an overview of the benefits and challenges discussed in
the rest of this chapter, as well as the proposed solutions to these challenges, for quick
reference. Table 7.1 provides an overview of the benefits of incorporating agile aspects into
GSD work, table 7.2 of the challenges faced when incorporating agile aspects into GSD

76

Overview

work and finally table 7.3 sums up the proposed solutions to the challenges faced when
incorporating agile aspects into GSD work.

Table 7.1: Benefits of incorporating agile aspects into GSD work

77

7. GLOBAL SOFTWARE DEVELOPMENT COMBINED WITH ASPECTS FROM AGILE

METHODOLOGIES

Table 7.2: Challenges faced when incorporating agile aspects into GSD work

78

Overview

Table 7.3: Proposed solutions to the challenges faced when incorporating agile aspects into
GSD work

79

Part IV

Supporting Agile Global Software
Development with technology

81

Chapter 8

Types of technology which support
GSD

In order to properly discuss how to support agile global software development with technol-
ogy, different types of technological support, beneficial in that specific environment, should
be defined. We will define these categories based on what requirements are needed in sup-
porting technology for agile GSD. To derive these ’so-called’ requirement categories for
agile GSD we will first propose such categories for GSD in general in section 8.1. Follow-
ing this we will discuss which benefits and challenges, associated with GSD in general, can
be supported by which of the requirement categories we defined. By doing this we verify
that each of the requirement categories supports at least one of the challenges and benefits.
In the second section we will propose a similar categorization. This categorization will
concern the types of technological support applicable to assist in dealing with problems and
exploiting possibilities in incorporating agile aspects into the GSD development process.
To do this we will discuss to what extend the requirement categories of GSD in general are
applicable in this context and how they should be altered or extended to be fully applicable.

8.1 Types of technology which support GSD in general

In this section a categorization of technological aid to help with GSD is proposed. The ap-
plicability of the proposed requirement categories is argued by showing that each of these
categories support at least a single characteristic of GSD. To do this, first we discuss which
benefits and challenges of GSD, defined in chapter 3 and 4, can be supported by technology.
Subsequently we discuss technological support from which requirement categories can be
used to support each of these challenges and benefits.

The first process that collaboration technologies should support is the communication be-
tween team members. This is required because the software development process does not
operate on mandate, orders and edicts but on the self-managing capabilities of the devel-
opers [29, 103]. Hence the technology needs to provide an infrastructure for collaborative
sessions, making it easier to contact colleagues, in order to support this self-managing char-

83

8. TYPES OF TECHNOLOGY WHICH SUPPORT GSD

acter of software development [29, 103]. Another problem in distributed software develop-
ment is the risk of re-inventing the wheel. This risk can be reduced when tools are used to
create a rich and up-to-date project memory including versioned files, change histories and
technical documentation [29, 103, 70]. Thirdly, in a globally distributed project it is much
harder to understand what other project members are doing than in a co-located project
[29, 103, 70]. Therefore project transparency is necessary in order to coordinate effectively
with the members of the team. Technology which provides status information about tasks,
people and other dynamic team information to all team members at different sites can in-
crease the transparency of the project. The final process we discuss is quality assurance.
Quality assurance is essential to monitor and guarantee the quality of the product. Tech-
nology which supports quality assurance functions, such as bug tracking and requirements
tracking can have a positive influence on the total quality of the product [29]. From this
enumeration the following requirement categories can be derived:

R1 Facilitate direct contact between colleagues
Technological support which facilitates direct communication between two or more
actors

R2 Facilitate knowledge sharing among colleagues
Technological support which facilitates the sharing of technical project knowledge

R3 Facilitate transparency of the project status
Technological support which facilitates the sharing of organizational project knowl-
edge

R4 Facilitate quality assurance
Technological support which facilitates quality assurance functions to monitor and
guarantee the quality of the product

As announced we will start by enumerating all the benefits of GSD and by examining the
possibilities for technological support for each of the benefits, this is shown in table 8.1.
We can see that there are four benefits which can be exploited by means of technology;
these benefits have a single plus in the technological support (TS) column. Take for ex-
ample the benefit of being able to use specialized or skilled people; this benefit could be
further exploited by technology which makes the information of the specialists more eas-
ily accessible to anyone who is interested. Another benefit which can be further exploited
by means of technological support is the time to market reduction. Technology adapted to
round-the-clock development can further help to decrease the time to market than common
development tools. For all benefits listed in table 8.1 non technological support (NTS), e.g.
changes in approaches, can exploit the benefits of GSD.

Following the categorization of the benefits into non technological support and technologi-
cal support the same categorization is applied to the challenges of GSD, this shown in table
8.2. Most of the cultural challenges of GSD can only be alleviated by non technological
support, the only cultural challenge that can be alleviated by technology is the challenge

84

Types of technology which support GSD in general

Table 8.1: Technological opportunities to exploit the benefits of GSD

of differences in language. It is possible to automatically translate the content of messages
into the native language of all participants. However, these translate machines must be im-
proved in order to be used on a regular basis. Other challenges which can be supported by
technological aid are the lack of shared understanding between colleagues and the increased
effort it takes to initiate contact with colleagues. Technology which makes it easier to get
in touch with colleagues and technology which provide relevant project information to all
team members, alleviate these challenges.

Now we have enumerated and examined the possibilities for technological support for all
benefits and challenges we can apply the proposed classification to each benefit and chal-
lenge. In table 8.3 all the benefits and challenges which can be supported by technology
are enumerated and the proposed classification is applied to each of them. In this table a
double-plus sign indicates it is possible to use technological support from the correspond-
ing category to directly exploit or alleviate a benefit or challenge respectively. A single-plus
sign also indicates exploitation or alleviation is possible with the help of technological sup-
port from the corresponding category. However, either the technology does not alleviate the
challenge directly, but it alleviates one or more consequences of the challenge, or the level
of exploitation, which can be achieved by technology, is limited.

We will discuss the categorization of all benefits and challenges in order to give an overview
of the possibilities technology offers, with respect to a certain benefit or challenge. In table
8.3 it can be seen that exploiting the benefit of being able to handle an increased prod-
uct complexity, benefit B1 can be supported by technologies offering features from cate-
gories R3 and R4. Technological support which fulfills requirement R3 reflects the current
project status which is required to integrate the total product successful, technological sup-
port which fulfills requirement R4 causes the modules to be implemented according to their

85

8. TYPES OF TECHNOLOGY WHICH SUPPORT GSD

Table 8.2: Technological opportunities to alleviate the challenges of GSD

specifications. Benefit B2 can be supported by technology from categories R1, R2 and R3,
technology from category R1 because it eases direct communication with the specialist, R2
because it eases knowledge sharing in the entire development team and R3 because it shows
the status of the specialist. Benefit B3 can be supported in a similar fashion as benefit B2
because in both benefits collaboration between team members is very important. Direct
communication, knowledge sharing and project transparency help team members to col-
laborate more effectively. The last benefit we discuss, benefit B4, can be supported from
technology which fulfills requirement categories R1, R2 and R3. Technology from category
R2 because it eases knowledge sharing in a distributed team which is working in different
time-zones. Category R3 is also useful because it reflects the current project status and so
increases the transparency of the total project. Technology from category R1 could also be
beneficial because it allows team members to communicate directly and resolve issues at
hand more quickly.

In the second part of table 8.3 all the challenges are classified. The first challenge, chal-

86

Types of technology which support GSD in general

Table 8.3: Technological objectives to support GSD

lenge C1, can be alleviated by technological support which makes it easier for team mem-
bers to communicate, category R1 or technological support which eases knowledge sharing,
category R2. Challenge C2 can be alleviated by technology which facilitates direct com-
munication and decreases the effort required to initiate contact, requirement category R1.
Technology from category R3 is also beneficial because it helps to determine the appropri-
ate colleague to contact. Another challenge of GSD is that the hours of collaboration in
a distributed development team are reduced. Technology which facilitate direct communi-
cation, knowledge sharing and transparency of the project status help to reduce the impact
of this challenge. Challenge C4 can also be supported by technological support from cat-
egories R1 and R2, technological support from these categories directly increase the level
of shared understanding. Requirements R3 and R4 alleviate the consequences of a lack of
shared understanding among team members. By providing sufficient organizational knowl-
edge and quality assurance procedures the impact of misunderstanding is reduced. The fifth
challenge we discuss is similar to both challenge C1 and challenge C2; in order to reduce
the communication delay one could use technologies which support direct communication
and provide the availability of colleagues. Knowledge sharing can be used to deal with the
consequences in the same manner as challenge C4. The loss of cohesion, challenge C6, can
be alleviated from technology from all categories; technology from category R3 directly al-
leviates this challenge by distributing details about the work activities of all team members
among the whole team. Technology from the other categories do not alleviate the challenge
directly and are indicated with a single plus in the table. The challenge of a reduced level

87

8. TYPES OF TECHNOLOGY WHICH SUPPORT GSD

of trust, challenge C7, can directly be alleviated by technology which support quality as-
sessment. The increased quality of the developed code causes the team members to trust in
the capabilities of each other. Technology which facilitate direct communication or trans-
parency of the project status help to reduce the impact of this challenge. Challenge C8 can
only be alleviated when team members have a good understanding of both organizational
and technical project knowledge. Finally challenge C9 can be alleviated by using an uni-
versal translator. This kind of technology is especially useful when it is used to facilitate
direct communication or knowledge sharing between team members who do not speak the
same language.

Now we have applied the proposed classification to all benefits and challenges, that can
be supported by means of technology, it appears that each of the requirement categories
support at least a single benefit or challenge and it is possible to categorize each benefit and
challenge into at least one of the requirement categories. This classification can be used to
determine which kind of technological support is needed in order to support GSD in general.

8.2 Types of technology which support agile GSD

In order to be able to discuss the kind of technology useful when incorporating agile aspects
into a global development approach, a categorization for the different types of technological
support is needed. In the previous section a categorization for technological aid to help with
global software development in general is presented. This categorization is largely applica-
ble to agile GSD as well, because of the large similarity between both the concept of GSD
in general and the concept of a GSD approach with incorporated agile aspects. This large
similarity originates from the nature of both concepts; in both development approaches the
collaboration between people is complicated because of the three distances faced in a glob-
ally distributed setting. Because of the large similarity, we will start with the requirement
categories defined in the previous section, followed by discussing whether this list of re-
quirement categories is both applicable and complete with respect to agile GSD as well.

Requirement R1; Facilitate direct contact between colleagues, is applicable since the im-
portance of direct contact between colleagues is still present. In fact, it has only grown,
especially with the incorporation of aspect A1: Close collaboration among the members
of the development team. The same is true both for requirement R2; Facilitate knowledge
sharing among colleagues and requirement R3, Facilitate transparency of the project status,
as these requirement mainly aim to alleviate the difficulty of collaboration between people
and in agile development close interpersonal collaboration is essential. Lastly, requirement
R4, Facilitate quality assurance, is applicable as well since more valuable feedback offers
the same benefits with respect to agile GSD as it does with GSD in general. If anything,
it is even more important because the agile development approach explicitly recognizes the
necessity of elaborate feedback.

Having discussed the categories used to categorize the technological support for GSD in

88

Types of technology which support agile GSD

general and showing these categories all apply in the case of agile GSD as well; we should
determine whether this list of features completely covers all that can be supported with tech-
nology. We feel that this is not the case since none of these requirements explicitly help the
continuous integration, and thus the possibility of frequent builds, of the system. So, we
propose to use the list of requirement categories defined in the previous section extended
with a fifth one, which consists of technological support which facilitates continuous inte-
gration and frequent builds. The complete list of requirement categories applicable to agile
GSD is as follows:

R1 Facilitate direct contact between colleagues
Technological support which facilitates direct communication between two or more
actors.

R2 Facilitate knowledge sharing among colleagues
Technological support which facilitates the sharing of technical project knowledge.

R3 Facilitate transparency of the project status
Technological support which facilitates the sharing of organizational project knowl-
edge.

R4 Facilitate quality assurance
Technological support which facilitates quality assurance functions to monitor and
guarantee the quality of the product.

R5 Facilitate continuous integration and frequent builds
Technological support which eases the process of continuously integrating the system
as well as producing builds frequently.

89

Chapter 9

How the different types of
technological support are applicable

to support agile GSD

In order to incorporate the five aspects of the agile development approach that influence
distance into the GSD development process in the best way possible, the challenges faced
should be alleviated and the benefits should be exploited as much as possible. One way
to achieve this is by making use of technological support. In this chapter, we will dis-
cuss what types of technological support are beneficial to which aspects or more precisely:
which challenges and benefits belonging to the aspects can be supported by which type of
technological aid. We will start, in the first section, by describing a structured approach
to derive this for each aspect. In this derivation first the relation between the aspects and
the distances is discussed followed by a discussion how each of the challenges and bene-
fits is best supported by the different types of technological support. Subsequently, in the
second section, we will apply this approach consecutively for each aspect to derive how
they are best supported by technology. In the third and final section the relations between
all aspects and distances are summarized as well as what types of technological support
are beneficial to which aspects. The aim of this is to reflect on how technologically sup-
porting the incorporation of agile aspects into the GSD development process impacts the
overall interdependencies between the aspects, distances and all corresponding challenges
and benefits.

9.1 An approach to derive technological support for agile GSD

In this section we will describe a structured approach to derive which challenges and ben-
efits belonging to each of the five aspects of agile development that influence distance can
be supported by which type of technological aid. Firstly for every aspect, the relationship
between it and the distances caused by working globally distributed will be illustrated. This
is done by creating a graph with the distances and aspects depicted as nodes and the in-
terdependencies as directed arcs, which correspond to either a benefit or a challenge. The
arcs which correspond to a benefit are directed from the aspect to the distance it targets and

91

9. HOW THE DIFFERENT TYPES OF TECHNOLOGICAL SUPPORT ARE APPLICABLE TO

SUPPORT AGILE GSD

represent how the aspect helps to cope with the target distance. The arcs which correspond
to a challenge are directed from the distance which causes the challenge to the aspect the
challenge opposes and represent how the distance makes it harder to carry out the aspects.
Following this, we will discuss which benefits can be supported and which challenges can
be alleviated by means of technological support. We will do this by discussing support
from which of the categories of technological support is beneficial with respect to the ben-
efit or challenge under discussion. We will conclude the discussion of each aspect with a
table summarizing technological support from which categories is beneficial with respect
to each of the benefits and challenges discussed. In this table a double-plus sign indicates it
is possible to use technological support from the corresponding category to directly exploit
or alleviate a benefit or challenge respectively. A single-plus sign also indicates exploita-
tion or alleviation is possible with the help of technological support from the corresponding
category. However, either the technology does not alleviate the challenge itself or the level
of exploitation of the benefit, the technology can achieve, is limited. The final row of such
tables will consist of a summarization in which the overall use of the various categories of
technological support with respect to the current aspect is displayed. This row is obtained
by picking the highest scoring value from the column for each cell. This is done in this
fashion as opposed to, for instance, averaging the result, because we did not compare the
challenges and benefits to each other, to produce an overall weight allocation. This way the
final row of the table will show which categories of technological support can be used for
direct or indirect support of at least one benefit or challenge, for each aspect.

9.2 How each aspect can be supported by the different types of
technology

A1 Close collaboration among the members of the development team

Figure 9.1: Relationships between aspect A1 and the distances faced in GSD

92

How each aspect can be supported by the different types of technology

The main challenge with respect to aspect A1 is challenge C1: the fact that frequent commu-
nication is difficult in a distributed setting. Because of this, close collaboration among team
members is more difficult. This can be alleviated by technological support, which makes it
easier for team members to communicate and by technological support which eases knowl-
edge sharing in the entire development team; categories R1 and R2 respectively. Features
belonging in category R3 could also help to initiate contact, if the specific feature makes
it possible to determine who to contact by offering information with respect to individual
knowledge and availability of colleagues. From figure 9.1 it can be gathered that when
the influence of challenge C1 is decreased, benefits B1, B2 and B3 are better exploited and
in turn the influence of challenge C2 is decreased as well. This derivation also works the
other way around: technological support for benefit B2 will decrease the geographical and
temporal distance which in turn decreases the magnitude of challenge C1. In this particular
example, the same types of technological support that help to deal with challenge C1 also
support benefit B2 because C1 and B2 are closely related. So, when incorporating aspect
A1 into a GSD project technological support offering features from category R1 and R2 are
most important and features from category R3 could also be beneficial. This is summarized
in table 9.1.

Table 9.1: Overview of technological support for aspect A1

A2 Short iterations, frequent builds and continuous integration

With respect to this aspect various challenges and benefits can be alleviated or exploited
respectively, by means of technological support. For one, challenge C5 can be alleviated
both by facilitating knowledge sharing and facilitating transparency of the project status.
This is because knowledge sharing will provide team members with a better and more com-
plete understanding of the technical project knowledge: the knowledge required to actually
solve the difficulties associated with the project. The transparency of the project status, on
the other hand, will ease the access to organizational knowledge, which is the knowledge

93

9. HOW THE DIFFERENT TYPES OF TECHNOLOGICAL SUPPORT ARE APPLICABLE TO

SUPPORT AGILE GSD

Figure 9.2: Relationships between aspect A2 and the distances faced in GSD

regarding how the project is to be carried out by the development team and how this is pro-
gressing. Both these types of information together make up an unambiguous global view
of the current system. Technological support from categories R2 and R3 alleviate access to
these types of information and thus alleviate challenge C5.

Another challenge which can be alleviated by means of technological support is challenge
C4. By facilitating direct contact, having meetings geographically distributed is made easier.
Therefore technological support which offers features from category R1 will directly target
this challenge. Another large factor when dealing with this challenge is the difficulty to
arrange the meetings when the people required to be present do not share the same working
hours. By facilitating access to the information regarding the availability of the participants,
as well as other relevant data with respect to the organizational part of the project, this chal-
lenge can be directly dealt with. Technological support from category R3 accomplishes this.
Lastly, technological support from category R2 will also help dealing with this challenge,
although in a less direct manner, because when knowledge sharing is improved, the actual
need for having meetings is decreased.

The last challenge associated with this aspect, challenge C3, can also be supported by tech-
nology. Technology from category R1, R2 and R3 can all provide this support because they
all facilitate a certain aspect of communication and when communication is less difficult,
the communication overhead will be decreased.

Next we will discuss how the benefits caused by this aspect can be exploited by means

94

How each aspect can be supported by the different types of technology

of technological support. Firstly benefit B4, can be further exploited by facilitating quality
assurance, technology from category R4, because better quality assurance will improve the
quality of the feedback. Technological support from categories R1, R2 and R5 help to ex-
ploit this benefit in an indirect manner. Support from R5 causes the feedback to be more
up-to-date because, the information the feedback is based on is created more often. Support
from R1 and R2; finally, help exploit this benefit by helping to make the feedback accessi-
ble to the appropriate people. Benefit B5 is related to benefit B4 in the sense that feedback
can also concern the quality of work. In this benefit however, emphasis lies on team mem-
bers witnessing the high quality themselves. This can be achieved, either by examining a
prototype of the system or by taking note of certain measures which increase the chances
of creating a high quality product. An example of such a measure is employing a certain
testing scheme. When this is done and the results of these tests are positive, this is also an
indicator that the work is of high quality. These ways to witness the high quality of work
can be supported by technology offering features from categories R4 and R5. Technology
from R4 offers measures to assure a high quality system is created and because of support
from R5 it is easier to have access to a prototype of the current system.

Another benefit caused by aspect A2 which can be further exploited by using technolog-
ical support is benefit B6. For one, technology from category R3 provides an overall view
of the current state of the project and thus increases the transparency of the project status
directly. Technology from R4 and R5 is also useful since R4 enables the quality aspect of
the progress to be available and R5 enables the overview to be updated more often and thus
to more accurately reflect the actual state of the project.

The last benefit of aspect A2, benefit B7, can also be supported by technology. This is
because continuous integration eases the problem of configuration management, which is
the management of the evolution of the complete system [138]. This is done by perform-
ing the integration before the entire system is complete on the portion of the system that is
complete. Because of these ’so-called’ partial system integrations, problems are detected
earlier and so can be more easily dealt with. This process can be supported by technology
by making these frequent partial system integrations easier to do. This is achieved by tech-
nology which fulfills requirement R5.

A3 Decentralizing the decision making

With respect to this aspect challenge C7 can be alleviated by use of technological support
by easing the access to the knowledge necessary to reach the right decisions. Because this
mainly concerns technical decisions, technological support from R2 can be used to directly
alleviate the challenge, while support from R3 is useful as well, yet in an indirect manner.
This is because knowledge regarding the organizational status and setup of the project will
provide a context to make the decisions in, yet the information the decisions are mainly
based on will be technical information. The same is true with respect to the exploitation of
benefit B8 since when better decision are made, less control is needed in both directions be-

95

9. HOW THE DIFFERENT TYPES OF TECHNOLOGICAL SUPPORT ARE APPLICABLE TO

SUPPORT AGILE GSD

Table 9.2: Overview of technological support for aspect A2

Figure 9.3: Relationships between aspect A3 and the distances faced in GSD

96

How each aspect can be supported by the different types of technology

tween the people technically implementing the project and the people managing the project.
Benefit B9 is further exploited directly by technological support from both R2 and R3. This
is because both knowledge regarding the content of work to be performed and the context
this work is to be performed in, directly influences the estimation of the current and ex-
pected progress.

Again, like with aspect A1, some benefits and challenges cannot be directly supported by
technological aids. These benefits and challenges are however also supported indirectly be-
cause the technological support for the other benefits and challenges cause the entire aspect
to function better.

Table 9.3: Overview of technological support for aspect A3

A4 Customer involvement

With respect to this aspect challenge C8 can be alleviated in a similar fashion as challenge
C1 from aspect A1. Thus technological support from category R1 and R2 support it directly
because this eases communication and R3 supports it indirectly since this only helps with
the arrangement of direct contact. Benefit B12 can be further exploited by facilitating for
constant integration and frequent builds because this will provide the customer with pro-
totypes, to give feedback on, more often. Because of this the customer can be involved
without actually having to be on site, since the prototype can be sent to a remote location.
This is also why technical support from categories R1 and R2 also help further exploitation
of this benefit, since if both the feedback and the information regarding and including the
prototype are as easily accessible to the customer as possible; this will result in the best and
most feedback possible.

97

9. HOW THE DIFFERENT TYPES OF TECHNOLOGICAL SUPPORT ARE APPLICABLE TO

SUPPORT AGILE GSD

Figure 9.4: Relationships between aspect A4 and the distances faced in GSD

What is noticeable in figure 9.4 is the absence of loops. Because of this the challenge that
cannot be directly alleviated by technological support, challenge C9, also is not indirectly
alleviated within this aspect. For obvious reasons when other aspects are incorporated that
do influence the geographical and temporal distance in a positive manner, this will alleviate
challenge C9.

Table 9.4: Overview of technological support for aspect A4

A5 Collective ownership of work

Aspect A5 can only be supported by technological support which alleviates challenge C11.
This can be done by using technological support from category R2, because support from
this category eases access to technological project information and so also to all work pro-

98

How each aspect can be supported by the different types of technology

Figure 9.5: Relationships between aspect A5 and the distances faced in GSD

duced by the development team. Technological support from category R3 can support chal-
lenge C11 in an indirect fashion because working together in a single work-base can be done
more effectively and efficiently when knowledge, regarding the current and past activities
of the other members of the team, is available.

In figure 9.5 the absence of a loop on the left-hand side is most noticeable. However, in
contrast to the previous aspect, here all benefits of the aspects can be exploited and all chal-
lenges can be alleviated, either directly or indirectly, within this aspect. This is because
challenge C11 on the left-hand side can be directly alleviated by technological support as
discussed in the previous paragraph. When this is done this will improve the overall func-
tioning of the aspect as a whole and thus indirectly further help to exploit benefit B13. This
will result in a decrease of the social-cultural distance and thus will also put a strain on
challenge C10.

Table 9.5: Overview of technological support for aspect A5

99

9. HOW THE DIFFERENT TYPES OF TECHNOLOGICAL SUPPORT ARE APPLICABLE TO

SUPPORT AGILE GSD

9.3 Overview

In this section we will provide overviews of the material discussed in this chapter. First
we will provide an overview of the relationships that exist between the distances and the
aspects in the same way as was done in the figures in the previous section, in figure 9.6.
Next in figure 9.7, the same figure is presented, however with all relationships that cannot
be supported by technological aid removed. Following this two tables, table 9.6 and 9.7, are
depicted. Table 9.6 depicts by which types of technological support the corresponding ben-
efits and challenges can be supported. Table 9.7 shows a summary of the same information
to make clear which types of technological support can be used to support which aspects.

100

Overview

Figure 9.6: Complete overview of relationships aspects and distances

101

9. HOW THE DIFFERENT TYPES OF TECHNOLOGICAL SUPPORT ARE APPLICABLE TO

SUPPORT AGILE GSD

Figure 9.7: Overview of the relationships between aspects and distances that can be sup-
ported by technological support

102

Overview

Table 9.6: Overview of technological support for all benefits and challenges

103

9. HOW THE DIFFERENT TYPES OF TECHNOLOGICAL SUPPORT ARE APPLICABLE TO

SUPPORT AGILE GSD

Table 9.7: Overview of technological support for all aspects

104

Chapter 10

How to support the incorporation of
agile aspects into the GSD process

with technology

The previous chapter was concluded by giving an overview of supporting technology from
which requirement categories are useful with respect to each challenge and benefit associ-
ated with incorporating agile aspects into the GSD process. In this chapter we will start
with drawing some general conclusions from this overview. Following this we will discuss
specific technologies supporting collaborative development. Here we will discuss commu-
nication related technologies, software development related technologies and how these so-
lution support the various challenges and benefits identified in the previous chapter. We will
conclude this chapter by discussing how integrating all the different types of technological
support is beneficial.

10.1 Communication versus Software Development related
technology

As announced in the introduction, in this section we will draw conclusions, regarding the
importance of the different forms of technological support, from the overviews presented in
table 9.6 and table 9.7. The first thing to mention is that which specific forms of techno-
logical support are most beneficial depends on the specific project for which it is attempted
to derive this. It is for instance possible to not incorporate all aspects of agile software de-
velopment, in which case part of the table does not apply. Next to this, all challenges and
benefits associated with the aspects, elected to be incorporated into the project, will have
varying degrees of importance in different projects. Because of this, the challenges and
benefits will have different prioritizations in different projects and drawing conclusions for
the general case is difficult.

Despite the inherent difficulties with drawing general conclusions, still some conclusions
can be drawn. For one, it can be seen in table 9.6 that requirement category R2 supports

105

10. HOW TO SUPPORT THE INCORPORATION OF AGILE ASPECTS INTO THE GSD
PROCESS WITH TECHNOLOGY

all five aspects directly. So, in general, technological support from category R2 will im-
prove an agile GSD project. Another thing to take note off in the table, is that technological
support from categories R4 and R5 can only be used to exploit benefits and not to alleviate
challenges, caused by working globally distributed. In fact, requirement categories R4 and
R5 are very much related with respect to their impact on an agile GSD project. This can be
derived more explicitly by defining a fifteen-entry tertiary vector for each of the requirement
categories; the columns in table 9.6. Then, for each of the ten possible combinations of two
vectors the vectors are compared and the absolute difference in the number of ’+’-signs is
summated. The overview of this, sorted from most similar to most different requirement
categories, is shown in table 10.1.

Table 10.1: Relatedness of requirement categories

As we mentioned, requirement categories R4 and R5 are very much related with respect to
their impact on the agile GSD process. Next to this R1 and R2 are also quite related. When
the division of the requirement categories into the two sets {R1, R2} and {R4, R5} is made it
is quite clear R3 is most related with the first one since the difference between R3 and both
entries of this set is smaller than the difference between R3 and both the entries of the other
set. Following this reasoning we propose to distinguish the list of requirement categories
into two sets of categories:

Set1 {R1, R2, R3}
Set2 {R4, R5}

Both these combinations of related categories make sense since R1, R2 and R3 all aim to
support the actual communication between developers and R4 and R5 aim more at support-

106

Collaborative technologies

ing software development related matters. Another reason why this division is accurate is
that the maximum cut also divides the requirement categories in these two groups. In the
next section we will separately discuss the technological realization of both the groups of
requirement categories defined here.

10.2 Collaborative technologies

In this section specific technology supporting collaboration development will be discussed.
Firstly the communication related technologies will be discussed and secondly the software
development related. The discussion of both these sections, however, differs. On the one
hand the discussion of the communication related technologies is structured by the type of
communication provided by the different technologies discussed. On the other hand the dis-
cussion regarding the software development related technologies is structured by the goal of
the discussed technologies. This is done in this fashion because the software development
related technologies are defined with a specific goal in mind in the context of collaborative
development. The different communication related technologies, however, all share a com-
mon goal: to ease the exchange of information between people. Even though all forms of
communication share one abstract common goal, some forms of communication are more
appropriate to reach certain goals than others. An example is using an asynchronous form
of communication like email or a forum and attempt to have a synchronous discussion; con-
stantly waiting for the other to answer. This is a feasible way to communicate but there exist
other, more appropriate solutions like instant messaging software.

10.2.1 Communication related technologies

To be able to discuss the communication related technologies in a structured fashion we will
define two characteristics of such technologies. Firstly communication can either be ’syn-
chronous’ or ’asynchronous’. Communication is regarded ’synchronous’ when the sending
and receipt of messages between actors communicating can be regarded as instantaneous.
When the sending and receipt of messages cannot be regarded as instantaneous the com-
munication is called ’asynchronous’. An example of the difference between ’synchronous’
and ’asynchronous’ communication is that using an instant messenger client to ask some-
one, available at his computer, a question is ’synchronous’ while emailing the same person
a question is regarded ’asynchronous’. The second characteristic of communication re-
lated technologies we defined is that it can either be ’direct’ or ’indirect’. Communication
can be considered ’direct’ when the intended recipient or recipients of the communication
are known in advance. When this is unknown the communication is considered ’indirect’.
An example of the difference between ’direct’ and indirect communication is that making
knowledge available on a Wiki for all developers is ’indirect’ whereas sending an email to
a specific group of people is ’direct’. In the remainder of this section we will first discuss
specific technologies which support the different types of communication followed by an
overview of the discussed technologies. We will conclude with discussing how these types
of communication are related to the requirement categories and how the discussed technolo-

107

10. HOW TO SUPPORT THE INCORPORATION OF AGILE ASPECTS INTO THE GSD
PROCESS WITH TECHNOLOGY

gies are best applied to support the challenges and benefits associated with the incorporation
of agile aspects into GSD.

Synchronous Communication

In this section we will discuss examples of well-known technologies which can be used to
facilitate synchronous communication. These technologies will be discussed by the type of
information they are able to transmit. Firstly there are technologies facilitating synchronous
’text-based communication’. Instant messaging software, such as AIM1, Yahoo Messenger2

and MSN Messenger3, is such a technology as it creates the possibility of real-time text-
based communication between two or more participants. It is a technology facilitating direct
communication; the intended recipient or recipients of the communication should be known
in advance. There are also technologies facilitating ’text-based communication’ which are
indirect. Such technologies are known as ’chat-rooms’ in which the users subscribe to a
number of rooms or channels. Everyone subscribed to a certain room or channel is able to
send a message to all users currently subscribed to it. Examples of such technologies are
web-based chat-rooms and IRC.

Secondly there exist technologies facilitating synchronous ’audio- and video-based commu-
nication’. Again, a distinction can be made between technology supporting direct and in-
direct communication. For direct communication technologies exist to send audio or video
directly to the recipient or recipients. Such technologies are commonly known as conferenc-
ing tools and examples are applications implementing VOIP, telephones and video-phones
[59]. For indirect communication supporting technologies of this kind are different types
of broadcasting systems. An example of this is an intercom system, which transmits audio
signals and delivers it to every development location.

Thirdly it is possible to use a shared virtual space where communication via different media
is controlled by movement within this virtual space [63]. Such a technology attempts to
mimic face-to-face communication as close as possible by simulating the environment of a
normal meeting. Examples of such technologies are I-maginer4 and Workspace 3D5.

Finally there exist synchronous communication technologies facilitating remote control and
inspection; so-called application sharing technologies. Such technologies can be used to re-
motely inspect each others work but also to collaboratively work on a common goal or
demonstrate something. They are intended for supporting direct communication as the in-
tended recipient is known in advance. An example of such a technology is screen sharing
software, with or without the capability of remote control, like Virtual Network Comput-

1http://www.aim.com
2http://messenger.yahoo.com
3http://messenger.live.com
4http://www.i-maginer.fr
5http://www.tixeo.com

108

Collaborative technologies

ing [127] and Team Viewer6. A second example is a virtual whiteboard, either physical or
non-physical, which can be used to remotely visualize ideas to each other for example for
informal workgroup meetings [113].

Asynchronous Communication

In this section we will discuss examples of well-known technologies which can be used
to facilitate asynchronous communication. Firstly there exist technologies which facilitate
direct communication. Again these can be text-based like SMS [114, 20] and email [118],
audio-based like voicemail and composite-based like fax, file transfer and MMS [20].

Secondly there exist technologies which facilitate indirect communication. Since the tech-
nologies which support this type of communication support most types of information, the
subdivision we used to structure the previous categories is inappropriate. For this type of
communication we will structure the supporting technologies using the type of content of
the communication they provide. The first of such types is technical project knowledge:
the knowledge required to actually solve the difficulties associated with the project. An
example of technology supporting the communication of technical project knowledge is a
code-repository like Subversion (SVN) [42] or Concurrent Versions System (CVS) [65].
The second type of content of communication regards organizational project knowledge:
the knowledge regarding how the project is to be carried out by the development team and
how this is progressing. Examples of this are scheduling software, like an online agenda,
tracking tools like Bugzilla7 and Trac8 and tools which display a group of people and their
availability, like many instant messengers provide by means of a buddy list. Lastly there are
several technologies in this category which can be used for communicating both technical
and organizational project knowledge. Examples of this are forums, wikis, newsgroups,
mailing lists, blogs and RSS-feeds [68].

Overview

In figure 10.1 an overview of the communication related technologies is given structured
using the type of communication they support.

Relation between types of communication and communication related requirement
categories

In this section the relation between the types of communication defined above and the com-
munication related requirement categories (R1, R2 and R3) will be discussed. Since R1, R2
and R3 all have to do with communication these requirements can be fulfilled by each of
the types of communication. Some of these, however, are more appropriate to use in certain
situations than others. For category R1 it is necessary to be able to discuss matters with
colleagues and notify them of certain matters. The most suitable type of communication

6http://www.teamviewer.com
7http://www.bugzilla.org
8http://trac.edgewall.org

109

10. HOW TO SUPPORT THE INCORPORATION OF AGILE ASPECTS INTO THE GSD
PROCESS WITH TECHNOLOGY

Figure 10.1: Communication related technologies

to achieve this is synchronous communication. Both direct and indirect communication are
of equal importance since both communication types provide for immediate feedback and
hence have the ability to help reach immediate decisions. They only differ with respect to
the fact if it is known in advance with whom to converse. The best way to support these
forms of synchronous communication is the technologies which directly supports them. For
instance direct synchronous communication is supported well by instant messengers and in-
direct synchronous communication is supported well by chat-rooms. When, however, such
means of communication are either unavailable or inapplicable due to certain project proper-
ties, such as temporal dispersion, asynchronous technologies can also be useful. Examples
of this are the exchange of emails (direct communication) and the discussion of certain mat-
ters on a forum (indirect communication). Next, requirement categories R2 and R3 will be
jointly discussed since similar restrictions with respect to the type communication which
facilitate them, apply. This is because R2 and R3 both regard the sharing of information
among colleagues. They only differ with respect to the content of the information being
shared. R2 and R3 differ with R1 with respect to that the sender does not intend for the com-
munication to reach the recipient immediately. This is for instance the case when the sender
wants to make documentation of a certain functionality available. This is best achieved by
technology supporting asynchronous communication like for instance a wiki. Synchronous
communication technologies can also be used since it is possible to access synchronously
received information in an asynchronous fashion. An example of this is when a message is
received via an instant messenger, the message can stay on the screen for a long period of
time or it can be logged to a text file. Therefore the recipient can read the message when it
is needed. Finally, like for R1, whether direct or in direct communication is required, relies
solely on the fact whether it is known in advance for whom the communication is intended.

110

Collaborative technologies

Which communication related technologies are best equipped to support the agile
aspects

Which specific technology is best equipped to either exploit or alleviate a specific bene-
fit or challenge depends on the type of information that needs to be communicated. For
instance to deal with C4, standup and status meetings are more difficult, a synchronous
communication technology which is as rich as possible, like video or virtual-based confer-
encing technology, is most suitable. This is because such technologies transfer information
which contains a high content of tacit knowledge about other participants, in the form of
facial expressions, verbalizations, movements or postures which helps to better understand
one-another [100]. When aiming at making frequent communication between colleagues,
distributed in time and space, possible, rich communication with respect to tacit knowledge
again can beneficial. This particularly regards situations where either one colleague is ex-
plaining something to another, colleagues are having a mutual discussion or a member of
the development team is discussing something with the customer. When the colleagues,
however, are attempting to actually develop together, for example when they are pair pro-
gramming from XP, tools facilitating remote control and inspection combined with more
simple synchronous communication technologies like an instant messaging program or an
audio connection are more useful. This is because in this particular case having the same
view of what is being worked on is more important than tacit knowledge gathered from for
example the facial expression of the other. Less direct collaborative development, such as
collaboratively developing software in a development team, requires other kinds of tech-
nological support. When the developers are not working together as closely as in pair
programming they still need to share information to work together effectively. This infor-
mation can be roughly divided in two types of data; the actual production code, for which
a code repository is the most suitable supporting communication technology and techni-
cal meta-data about the system, for which technical solutions like wikis, forums and even
email are appropriate. Next to the actual work, information regarding the project and the
development team itself is also important. Examples of tools which are suitable for this are
scheduling software and tracking software like BugTracker and Trac.

In this section we mentioned a variety of technologies which are able to facilitate commu-
nication. In order to support the communication related benefits and challenges associated
with the agile aspects, appropriate supporting technologies should be selected based on both
the type of communication and the type of information that needs to be communicated.

10.2.2 Software development related technologies

In section 10.1 we derived that requirement categories R4 and R5 regard software devel-
opment related technologies. Because software development related technologies in the
context of collaborative development are all created with a certain goal in mind we will use
the division of these technologies in those that support quality assurance (R4) and those that
support continuous integration and frequent builds (R5) to structure this section. Because
of this the technologies which are discussed in discussion are assigned to the requirement

111

10. HOW TO SUPPORT THE INCORPORATION OF AGILE ASPECTS INTO THE GSD
PROCESS WITH TECHNOLOGY

categories and thus no specific section to discuss this assignment is needed. The section is
concluded with a discussion of how the discussed technologies are best applied to support
the challenges and benefits associated with the incorporation of agile aspects into GSD.

Quality assurance

In this section technological support which facilitates quality assurance will be discussed.
Firstly the quality of a software product can be guaranteed testing the behavior of the sys-
tem. This can be supported by technology which allows to automate the testing of functional
requirements. Examples of such technologies are tools that automate white-box [28] test-
ing like Selenium9 and Watir10 and tools that automate black box [28] testing like JUnit11

and TestNG12. Tools that support automated white box testing often also assist with trac-
ing the fault to the actual code segment where it occurs. Next to functional requirements,
non-functional requirements, related to for example performance and load capacities, can
be tested automatically. Examples of tools which support this are Apache JMeter13 and
OpenSTA14.

Writing the tests for the test automation tools discussed above can be quite labor inten-
sive. Therefore tools that provide automatic test case generation can help. Galler et al.
[61] provide an overview of tools which provide automatic test generation for Java. Most
of these tools automatically generate test cases based either randomly or based on explicit
specifications of the classes. Some tools, like TestEra [98], Korat [25] and QuickCheck
[34], test the various methods in a class in isolation while a tool like T2 [119] test also test
the interrelated functionality of the methods. Once the test cases are generated it is possible
to test for internal errors, runtime exceptions and violations of the specification.

Besides testing whether the system satisfies the requirements the quality of the system can
also be assured by the direct elicitation of errors in the source code. Findbug15, for example,
is a program which searches the source code for known errors like null-pointer dereferenc-
ing and reports any problem it discovers. Problems in the source code can also be discovered
by determining which sections of code are more likely to contain a fault. This can be done
by analyzing the source code using so-called code metrics, which are values which quantify
how well a certain section of code is written [17]. An example of bad section of code is us-
ing a deep loop-nesting structure. Besides making faults more likely in a particular section
of code, a bad metric score also indicates the section of code is harder to read and maintain.
Hence, even when such a section of code does not contain an actual fault, the quality of the
overall product will increase by refactoring the code to improve the metrics. Examples of

9http://seleniumhq.org
10http://wtr.rubyforge.org
11http://www.junit.org
12http://testng.org
13http://jakarta.apache.org/jmeter
14http://www.opensta.org
15http://findbugs.sourceforge.net

112

Collaborative technologies

tools which support quality assurance by means of metrics are: PMD16, Metrics17, CCCC18

and Testwell CMTJava19.

Finally also tools for providing quality assurance exist which combine all of the above
characteristics. Examples of such tools are JTest and C++test by Parasoft20.

Continuous integration and frequent builds

In this section we will discuss technologies which facilitate continuous integration and fre-
quent builds. Software Configuration Management (SCM) systems accomplish this task
since they help to manage the evolution of the system. We will describe the two most com-
mon ways in which this is achieved by SCM systems. Firstly, version control is used to
manage the multiple versions of the system that arise during the evolution of the system;
thus making the evolution of the system concrete and controllable. Perry [115] distinguishes
three types of versions; successive versions which result from the small corrections and im-
provements, parallel versions which result from providing alternate implementations or
divergent functionality and composed versions which result from constructing a component
from separate pieces. Examples of systems that provide version control are SVN and CVS.

Secondly SCM systems can provide functionality to ease the specification and maintenance
of the configuration of the system to be built; how the separate components must be com-
bined in order to create the system. To be able to build the system both a description of the
structure of the system and information about how to derive object code from the source
code modules, are needed. An example of an early tool is Make [54] in which both the de-
scription and the information is specified in a resource, the makefile, that was used to derive
object code and to link it together. Other examples are Apache Ant21, Apache Maven22,
Rational Clearcase23, Telelogic Synergy24, Perforce Jam25 and SCons26.

Which software development related technologies are best equipped to support the
agile aspects

The relation between specific benefits and challenges associated with the incorporation of
the agile aspects and the software development related supporting technologies is not as
clear as with communication related technologies. This is because the challenges and ben-
efits associated with the agile aspects have to do with the very concept of both quality

16http://pmd.sourceforge.net
17http://metrics.sourceforge.net
18http://sourceforge.net/projects/cccc
19http://www.testwell.fi/cmtjdesc.html
20http://www.parasoft.com
21http://ant.apache.org
22http://maven.apache.org
23http://www-01.ibm.com/software/awdtools/clearcase
24http://www.telelogic.com
25http://www.perforce.com
26http://www.scons.org

113

10. HOW TO SUPPORT THE INCORPORATION OF AGILE ASPECTS INTO THE GSD
PROCESS WITH TECHNOLOGY

assurance and continuous integration whereas communication is a means to reach many
goals. Besides this it is also different from the communication related technologies since
both quality assurance and continuous integration are not significantly more difficult be-
cause of the distributed nature of the development of software; the requirements that are
needed in the tools are not different from those in the co-located case. However to support
certain challenges and benefits certain supporting technologies are more significant than
others. For example when exploiting B7, Configuration management is less of an issue
SCM functionality which eases the specification and maintenance of the configuration of
the system to be built is more important than a version management tool.

10.3 Integration of collaborative technologies

In the previous section we described technologies which facilitate collaborative software
engineering. In this section we will discuss technologies which attempt to combine the
functionalities of these technologies. The advantage of integrating the various technologies
is that information available in or as a result of one technology is available to another which
can be improved by using this information. An example of this is a tool which combines
the identity of the last committer of a certain branch in the repository to an instant messen-
ger user. Using this information the integrating technology can make the name of the last
committer clickable, opening up a direct instant message connection with him or her using
the instant messaging software.

Existing technologies like this have emerged with different initial goals in mind. Firstly
integrated development environments (IDE) like Eclipse27 and Microsoft Visual Studio28

have been combined with collaborative technologies such as code-repositories and func-
tional testing, integrating these in the process. Examples of these extensions of IDEs are:
Jazz29, Merlin Toolchain30, Team Foundation Server (TFS) and Visual Studio Team Sys-
tem31. Secondly there are hosts for open source projects like SourceForge32, Launchpad33,
Google Code34 and Microsoft CodePlex35. These technologies have been extended with all
sorts of functionality regarding collaborative development such as: code review, build sys-
tems and bug tracking. Thirdly there exist systems created to centralize the building of the
system. Examples of such systems are Apache Continuum36, CruiseControl37 and Tinder-
box38. These systems, in turn, have also been extended with communication related tech-

27http://www.eclipse.org
28http://msdn.microsoft.com/en-us/vstudio
29http://jazz.net
30http://merlintoolchain.sourceforge.net
31http://www.microsoft.com/visualstudio/en-us/products/teamsystem
32http://sourceforge.net
33https://launchpad.net
34http://code.google.com
35http://www.codeplex.com
36http://continuum.apache.org
37http://cruisecontrol.sourceforge.net
38http://www.mozilla.org/projects/tinderbox

114

Integration of collaborative technologies

nologies like scheduling software and quality assurance functionalities such as functional
testing and code metrics. Finally there exist technologies which aim to integrate differ-
ent communication related collaborative technologies. Collaborative virtual environments
(CVE), like Croquet39, are examples of this. They mainly aim to combine synchronous
forms of communication, such as text, audio and video based communication, however also
can be used to share knowledge. For one it can be seen what other project members are do-
ing by checking their status in the virtual environment. Secondly also information regarding
the project, like the content of Scrum board can be placed in the virtual environment. A fi-
nal example of a technology which attempts to integrate different communication related
collaborative technologies is a tool such as Zimbra40 which integrates an email client, with
scheduling software, instant message, task management, wiki and versioning management.
In general, technologies which primarily aim for any of these functionalities are being ex-
tended in the same fashion. Examples are audio and video based communication in Google
Talk41 and Microsoft MSN and calendar support in Gmail42 and Microsoft Outlook43.

Basically, all the aforementioned technologies have similar goals regarding the integration
of collaborative technologies. Some technologies which arose from quite different areas of
concern, such as hosts for open source projects and centralized build environments, where
extended to a degree that it is difficult to differentiate between them. The functionality of all
these technologies which primarily concerns us in this thesis is how the different collabora-
tive technologies are best combined, not what the initial goal was to integrate the respective
technologies. Therefore we will continue this section by discussing the most interesting in-
tegrations of collaborative technologies we found in the types of technology we discussed.
Firstly it is possible to integrate tools regarding requirement, testing and project manage-
ment. The Merlin Toolchain is an example of a tool which performs such an integration of
tools for the Eclipse IDE. The added value of this is that information available in one tool is
available to improve the functionality of another. An example of this is integrating test and
requirement management tools since this integration makes it feasible to display which of
the requirements is covered in which of the tests. Likewise, it can be advantageous to link
tasks with corresponding bugs and bugs with related requirements and tests.

Secondly, quality assurance, automated build tools and SCM tools can also be integrated
to be able to continuously integrate and test the system. Examples of tools which allow for
this sort of integration are centralized building systems like the Apache continuum but also
TFS, an extension of the Visual Studio IDE. TFS offers a wide range of functionalities also
covering the functionalities concerning the integration of requirement, testing and projects
management tools discussed above. The combination of quality assurance and automated
building is not restricted to functional testing but concerns all sorts of quality assurance. It
is for example also possible to continuously measure the code metrics as well, making it

39http://www.croquetconsortium.org
40http://www.zimbra.com
41http://www.google.com/talk
42http://gmail.com
43http://office.microsoft.com/en-us/outlook

115

10. HOW TO SUPPORT THE INCORPORATION OF AGILE ASPECTS INTO THE GSD
PROCESS WITH TECHNOLOGY

possible to respond immediately when certain metrics approach or reach unacceptable val-
ues.

Thirdly, tools which implement continuous integration also provide a means to visualize
the results. Usually this is made available in some sort of knowledge base, like a wiki, so
it is communicated via asynchronous indirect communication. Apache Continuum, for ex-
ample, is also configurable to notify certain people via direct communication such as email
and instant-messaging and synchronous communication such as IRC.

Another example of an interesting added value of the combination of collaborative tech-
nologies arises in performing code reviews. When performing a code review the reviewer
needs to have a view of the code and a way to communicate his findings. The added value
of integrating the support for this in a single tool is that by combing the code-view and the
communication tool, issues reported by the reviewer are more easily linked with the section
of source code to which they refer. Also, the information regarding this communication can
stay linked with the code and be available for future reference.

Finally, the various communication related technologies can be integrated. In a CVE, it
is for instance possible to directly communicate with a colleague using a form of commu-
nication supported by the CVE, like text-chat or audio-chat. Besides direct communication
however, it also possible to use the CVE to deduce status information regarding your col-
leagues, by seeing if their avatar is available, and share information, by for example putting
up a big sign in the virtual environment explaining how to perform a specific task. CVEs
attempt to integrate the different communication related technologies in such a way, that it
most closely resembles same-site development. A tool like Zimbra, on the other hand, does
not attempt to reproduce the look and feel of the natural work environment of a collocated
team but rather attempts to connect the various communication tools people use, as seamless
as possible. Examples of this are the integration of an email client, scheduling software, an
instant messenger, task management software, a wiki and a versioning management tool.

116

Part V

Conclusions and Future Work

117

Chapter 11

Conclusions and Further research

In this chapter we start by discussing how this research contributes to the existing body
of knowledge regarding global software development in general and the agile development
approach in a globally distributed environment, in particular. Subsequently we will attempt
to answer the research questions by drawing conclusions from the results we gathered. In
the third section we will discuss the limitations of our work concerning completeness and
ambiguity aspects of our research. Finally, we will conclude by making recommendations
concerning areas of interesting research which extends our research.

11.1 Contributions

In this study we researched how the combination of GSD and agile software development is
best supported by technology. This is useful because GSD is becoming increasingly inter-
esting these days due to the globalization of business and agile software development allows
for flexible development. Because of the flexibility of agile software development and the
emphasis on informal communication, it is also a way to alleviate the difficulties associated
with GSD. In the existing literature it is suggested that research regarding the incorporation
and support of agile software development is warranted. Despite this, however, actual re-
search is still quite scarce and so we chose to contribute to the general body of knowledge
by creating a fundament for further research. Next to this we also created a framework to
asses how different types of technological support help with respect to certain aspects of
agile GSD. We used this framework to discuss what kind of technological support is useful
with respect to each challenge and benefit of agile GSD.

We started by discussing GSD in general. To do this we created an overview of all ben-
efits, challenges and solutions to the challenges of GSD in general. In the overview of the
challenges, the challenges where grouped by their respective problem areas. Following this
we discussed agile software development. This was done by defining what exactly is meant
with agile software development by comparing it with heavyweight processes and provid-
ing an overview of a number of well-known agile methodologies. Based on this discussion
we identified and discussed eight aspects of agile software development and concluded that

119

11. CONCLUSIONS AND FURTHER RESEARCH

five of these aspects are capable of affecting the distances faced in a GSD environment.
Subsequently we discussed how incorporating these five aspects into the GSD process:

1. can help to alleviate the consequences of the distances

2. can be problematic because the distances aggravate the difficulty of carrying out the
aspects

3. can be improved by using standard solutions from the literature to deal with the chal-
lenges meant by point 2.

Finally we switched the focus towards technological support. To do this, first we proposed
categories for technological support and checked their applicability by showing they are all
beneficial with respect to at least one benefit or challenge of GSD in general. Subsequently
we extended the requirement categories with a fifth category in order for them to be ap-
plicable with respect to agile GSD as well. Following this we discussed per aspect which
benefits and challenges can be supported by which of the defined categories. We concluded
by discussing how this support can be achieved by existing technological solutions. The
entirety of the aspects, their associated benefits and challenges, and the categories of tech-
nological support supporting them, including specific technological solutions, constitutes
how technological support can be used to support agile GSD.

11.2 Conclusions

The main question we attempted to answer in this thesis is the following:

”What are the advantages and challenges of the combination of the agile and distributed
development approaches and how is technological support best used to deal with these?”

The first part of the question was answered by defining aspects of agile software devel-
opment and providing an overview of the benefits and challenges these aspects cause in
a GSD environment. The second part of the question was answered in threefold. Firstly
five categories of technological support for agile GSD were defined to be able to discuss
technological support in a structured fashion. Secondly how each of the individual bene-
fits and challenges are best supported by technology was discussed using these requirement
categories. It is, however, difficult to draw conclusions regarding the most appropriate
technological support for a general project because this depends on the specific project for
which it is attempted to derive this. It is for instance possible to not incorporate all aspects
of agile software development, in which case part of the table can be neglected. Next to this
all challenges and benefits associated with the aspects elected to be incorporated into the
project will have varying degrees of importance in different projects. Because of this, the
challenges and benefits will have different prioritizations in different projects and drawing
conclusions for the general case is difficult.

The third and last aspect of how the second part of the main question was answered regards

120

Reflection

the discussion of explicit, existing technological solutions and how these are connected
with the requirement categories and the explicit support of benefits and challenges. From
this discussion we conclude that the integration of the various collaborative technologies is
advantageous since this enables the various technologies to make use of each others data
which in turn makes it possible to provide extra functionality and seem like a single system
to the end user.

11.3 Reflection

The first limitation of our research concerns that the challenges and benefits are not mutually
comparable with respect to their importance. This is because the importance of each of the
challenges and benefits is likely to depend on each specific practical setting. For example:
a company working within the same time zone suffers less from challenges caused by the
temporal distance, and therefore will probably prioritize them differently than a company
which is scattered all over the globe. The consequence of this is that it is not possible to
derive from our work a strategy to select specific challenges and benefits to try and support,
because they are most important in general. However, it is possible to determine how best
to support specific benefits and challenges.

The second limitation of our research concerns the completeness of all defined benefits,
challenges, requirement categories and agile aspects. We cannot guarantee the complete-
ness of these because we have found no method to derive them in a way that is both con-
clusive and exclusive. In other words; it is possible there are other challenges, benefits,
requirement categories and agile aspects we did not elicit. The negative impact of this lim-
itation on our research, however, is limited. For one, the benefits and challenges discussed
are derived from an extensive literature research. The challenges and benefits of GSD in
general are derived from a particularly large set of resources. With respect to the require-
ment categories the derivation is based on a much smaller set of resources. The four initial
categories closely resemble requirement categories defined by Carmel [29] and to further
argue their applicability we showed that each of these categories supported at least a single
characteristic of GSD. The same was done for the category which was added to make the
categorization applicable for agile GSD as well. Finally the agile aspects cannot be directly
founded in literature at all. To correctly found the agile aspects we discussed how they are
interrelated with existing methodologies. This was done by discussing how the aspects are
reflected in the practices and core values of the Agile Manifesto and eXtreme programming,
and how they are reflected in Scrum.

Thirdly, we perform categorizations which posses an inherent subjective characteristic. This
applies to both the assignment of agile principles to the agile aspects and the assignment
of requirement categories to benefits and challenges. We dealt with this limitation by per-
forming the categorizations in a structured fashion. Another thing that helped deal with
this limitation were the two different viewpoints of both authors which arose from the two
different research assignments.

121

11. CONCLUSIONS AND FURTHER RESEARCH

Subsequently, aspects, challenges, benefits and requirement categories are not guaranteed
to be completely disjunctive. It is attempted to create groups which have the least possible
amount of overlap, but still because of the linguistic nature of the concepts, some overlap is
unavoidable. For example, having regular and frequent discussions between all members of
the development team as part of an iterative approach is part of both aspect A1, Close col-
laboration among the members of the development team, and A2, Short iterations, frequent
builds and continuous integration, as this both concerns close collaboration in a develop-
ment team and following an iterative approach.

Another limitation is concerned with the overview we provide concerning the relationship
between aspects, benefits, challenges and distances. Here we focused on how the incorpo-
ration of the aspects influenced the distances, either in a positive or negative way, via its
associated benefits and challenges. Because of this, we have only shown the influence the
aspects have on each other by influencing the distances. This is not the entire story because
the aspects also influence each other directly. An example is that aspect A2 causes the more
frequent building of an intermediate system and aspect A4, Customer involvement, directly
benefits from this because it allows the customer to give feedback, on the most recent build,
more frequently. The reason we do not discuss these direct interdependencies in this thesis
is that our focus lies on the combination of the GSD and agile development approaches and
not on the interaction of the various aspects of agile development.

Finally, the overall limitation of this research is that it is limited to a theoretical analysis
of available literature and deduction of theoretical aspects, benefits, challenges and require-
ment categories. These are fully based on literature and deductions from this literature.
As such our findings are well-founded in theory and traceable to its sources. However,
our research results have not yet been validated as a whole. As such, we will continue
with the validation of these findings by means of a series of industrial case studies. These
are expected to complete and/or confirm (parts of) our findings and extend the work with
guidelines on how to exploit them in practice.

11.4 Recommendations for further research

Having performed the research described in this thesis several interesting possibilities of
further research regarding agile GSD have emerged. Firstly to further objectify the various
categorizations we performed as well as validate the completeness and disjunctiveness of
the various benefits, challenges and aspects we defined, an expert committee can be used.
Secondly the mutual importance of benefits and challenges can be researched. On the one
hand this can be done for a specific project, concluding with an advice regarding the kind of
technological support that is most beneficial for that particular project. On the other hand,
various different projects can be researched, in order to deduce the dimensions of a project
which particularly influence the mutual importance of the benefits and challenges. In this
fashion several categories of projects with similar requirements with respect to the tech-

122

Recommendations for further research

nological support can be defined. Thirdly, the research regarding the mutual relationships
between aspects, distances, benefits and challenges can be extended by explicitly research-
ing the mutual relationships between aspects. Fourthly, the theoretical conclusions we drew
in this thesis should be evaluated in practical cases. This not only regards the applicability of
the framework but also, for example, how well the non-technological solutions to the chal-
lenges faced when incorporating agile aspects into GSD, work. Finally it is interesting to
research how the overall integration of collaborative technologies supporting agile GSD can
be improved upon. In such a research it can be researched which technologies profit most
from being integrated and what view of such an integrated system are most valuable for its
users. Examples of such views are a code-centric view, most closely resembling a classic
IDE, and a communication centric view, attempting to mimic a normal, co-located, work
environment. Such a research can be quite large; therefore we will mention some examples
of smaller research projects concerning this research. Firstly, to integrate communication
related technologies, researching what communication lines are used most often in projects
is valuable. Secondly researching the applicability of existing, but not yet widespread, com-
munication technologies, in the context of project development can be quite useful as well.
Examples of such technologies are virtual meeting software and Collaborative Virtual Envi-
ronments (CVE). Lastly, researching specific types of project collaboration requiring quite
extensive communication, like pair programming and code review, can be useful to elicit
the requirements of an environment integrating all technologies necessary to support agile
GSD sufficiently. This is plausible, since if the most communication demanding activities
can be sufficiently supported by such an environment it is likely that this is true for most
other activities as well. We propose to call such a development environment an Integrated
Collaborative Development Environment (ICDE).

123

Part VI

Practical Research

125

Chapter 12

Practical Work

In the previous chapter we concluded that there is a lot to gain with respect to supporting
agile GSD with technology by integrating the supporting technologies into an Integrated
Collaborative Development Environment (ICDE). In this chapter we attempt to make a first
step into constructing such an ICDE. This chapter is structured as follows: Firstly we de-
scribe the research design we have adopted. Subsequently we discuss the context in which
we did the practical work. Following this we discuss how the research described in the
research design was performed and what the results we acquired. Finally we discuss the
validity of the practical work described in this chapter and recommend further research.

12.1 Research design

The goal of the practical part of this master thesis is to make a first step into the construc-
tion of an Integrated Collaborative Development Environment (ICDE). Therefore our initial
research question is:

”What are the requirements of an Integrated Collaborative Development Environment to
support agile GSD?”

In order to elicit these requirements we conduct qualitative research. With the term qualita-
tive research a type of research is meant that produces findings not arrived at by statistical
procedures or other means of quantification [45]. We primarily choose qualitative research
as opposed to quantitative research because of the emphasis on interpersonal relations in the
research problem. Qualitative methods are particularly appropriate to study the complexities
of human behavior, for example regarding communication and difficulties in understanding
[136]. Next to this, qualitative studies can generate well-grounded hypotheses and findings
that incorporate the complexity of the phenomenon under study [121] which is precisely
what we attempt to accomplish in this research. This incorporation of the complexity of
the phenomenon under study originates from the qualitative approach since such methods
force the researcher to delve into the complexity of the problem, rather that abstract it away
[107, 142]. The alternative to qualitative research, quantitative research, is less appropriate

127

12. PRACTICAL WORK

in this particular setting, since much of human behavior cannot be adequately described and
explained through statistics and other quantitative methods [136].

Qualitative research attempts to develop an understanding or interpretation that answers
the basic question of what is going on. This is done through an iterative process that starts
by developing an initial understanding of the setting and perspectives of the people being
studied. This understanding is then tested and modified through cycles of additional data ac-
quisition and analysis until an adequately coherent interpretation is reached [102, 112, 88].
We start this research with preliminary knowledge regarding existing supporting technolo-
gies and common problems and solutions in the field of agile GSD. This knowledge origi-
nates from our research discussed in the previous parts of this thesis. It should be extended
with practical insights, to be able to construct a categorized list of requirements of an ICDE.
This is true, since the practical validity of the problems and solutions need to be tested and
because the knowledge can be extended with new insights to create a more complete list
of requirements. The method we choose to acquire these practical insights, is interviewing
people in four different companies performing the roles of manager, architect and developer
in projects of an agile and globally distributed nature. We choose the method of interview-
ing rather than observation or participant-observation because we expect interviewing to be
a very direct and time-efficient method for extracting practical insights from experts. Dis-
advantages of interviews are that they are subject to common problems such as bias, poor
recall, and poor or inaccurate articulation [143].

Interviews can be divided into three categories based on the degree of structuring: struc-
tured, semi-structured and unstructured interviews [55]. The goal of structured interviews
is to capture precise data of a codable nature so as to explain behavior within pre-established
categories and consist of pre-established questions with a limited set of response categories
and generally little room for variation [55]. The goal of unstructured interviews is to un-
derstand the complex behavior of members of society without imposing any a priori cate-
gorization that may limit the field of inquiry [55, 122]. In our research we choose the third
type of interviews: semi-structured interviews. This kind of interviews possesses qualities
of both structured and unstructured interviews. In the interviews we perform, we do have
a list of general questions but we also deviate from this list, make up extra questions as
we go along and allow the interviewees to bring up issues of their accord. We choose this
type of interviewing because we feel this leaves the most room for well informed infor-
mants to provide us with important insights. Disadvantages of interviewing in this fashion
are concerned with the fact that data obtained from interviews are likely to be biased due
to the interviewer influencing the interviewee with his own preconceived ideas [126]. Ad-
ditionally, because of the semi-structured nature, the length of such interviews is harder to
estimate and control, and because of this the chance of running out of time is more profound.

Following the acquisition of data we analyze the data. Qualitative analysis is not the quan-
tification of qualitative data but rather the nonmathematical process of interpretation, car-
ried out for the purpose of discovering concepts and relationships in raw data and organizing
these into a theoretical explanatory scheme [45]. The main technique we use to analyze the

128

Context

data gathered using the semi-structured interviews discussed above, is coding because we
attempt to create a categorized list of requirements. In qualitative research the purpose of
coding is not, applying a pre-established set of categories to the data according to explicit,
unambiguous rules, with the primary goal being to generate frequency counts of the items
in each category, like in experimental or survey research or content analysis [88]. Instead
it involves selecting particular segments of data and sorting these into categories that facili-
tate insight, comparison, and the development of theory [45]. The coding categories that are
defined during the analysis may be deducted from the evaluation questions, existing theory,
or prior knowledge of the setting and system but they may also be developed inductively by
the evaluator during the analysis or taken from the language and conceptual structure used
by the people studied [88]. Next to coding we also create analytical memos to be able to
convert our perceptions and thoughts into a visible form that allows reflection and further
manipulation [45, 102].

The analysis of the data gathered from the semi-structured interviews resulted in a cate-
gorized list of requirements of an ICDE which were subsequently validated by the inter-
viewees. These requirements mainly concern the integration of several existing forms of
technological support. Using this list of requirements and again the data gathered from the
semi-structured interviews we deducted a number of ideas, which integrate certain existing
technologies, to try out in a feasibility study. Following this we validated and improved
upon these ideas by follow-up interviews with people from the same companies as the ini-
tial semi-structured interviews. This resulted in a technical feasibility study which was
conducted subsequently in cooperation with the companies. This feasibility study was con-
ducted to show the technical feasibility of a subset of the ideas we defined.

12.2 Context

During our entire research project we were involved in a knowledge group set up around
the research project. This group consisted of the following companies: Exact Software,
IHomer, Mavim, SDL Tridion and Xebia. The primary goal of the knowledge group was
to exchange knowledge regarding distributed and agile development with the emphasis on
the Scrum methodology. The group arranged periodic meetings. In these meetings we
discussed our progress in the research project, how each company dealt with distributed
agile development and discussed a number of specific themes in the context of distributed
agile development. These companies fulfilled different roles with respect to the practical
part of our research. Firstly, as mentioned, all companies took part in the meetings of the
knowledge group and thus provided us with valuable feedback with respect to the general
progress of our research. Secondly, the semi-structured interviews were conducted at Ex-
act Software, IHomer, SDL Tridion and Xebia. Thirdly, the definition of the concepts and
brainstorming on ideas for a feasibility study, were done in cooperation with Exact Soft-
ware, IHomer, and SDL Tridion. Finally, the feedback on the implemented system created
during our feasibility study was given by this same group. In the rest of this section we will
briefly describe the five companies in the knowledge group.

129

12. PRACTICAL WORK

Exact Software

Institutional Context
Exact Software is established in 1984 and is one of the world’s leading providers of busi-
ness software solutions. The integrated software solutions Exact Software offers include:
Enterprise Resource Planning (ERP), Human Resource Management (HRM), Customer Re-
lationship Management (CRM), Corporate Performance Management (CPM), project man-
agement and electronic workflow management. Exact Software has offices in more than 40
countries in Europe; the Middle East; North, Central and South America; Asia; Australia
and Africa. Currently, there are over 2.500 employees employed by Exact Software world-
wide.

Customers
Exact Software provides solutions to small and medium-sized businesses which all have
different implementation and industry requirements ranging from manufacturing, distribu-
tion and retail to trade and service environments.

Technologies and Methodologies
Exact Software offers a large variety of software solutions, for each of these solutions the
most appropriate techniques and methodologies are used.

Distributed Context
Exact Software has structured its global network into four regions: Asia Pacific; Europe,
the Middle East and Africa; the Americas and the Netherlands to be able to efficiently ac-
commodate the varied needs worldwide.

Structure
The main activities with respect to corporate R&D level are carried out in Delft and Kuala
Lumpur. Each of the four regions mentioned above provide input to R&D by defining busi-
ness cases and requirements. They each serve their own distinct market, in a different way,
but all of these project teams share commitment to achieve a single solution capable of serv-
ing all markets. To achieve this commitment, the corporate strategy of Exact Software is
developed and defined by the corporate headquarter, located in Delft. Regional development
mainly concerns the development of local and custom solutions.

IHomer

Institutional Context
IHomer was founded in 2008 and focuses on software development and maintenance. This
organization is completely distributed and has no main office; instead all the employees
work at home. IHomer currently employs about 10 experienced employees.

Customers
IHomer is still in its construction phase and has several ongoing projects by different orga-
nizations. They try to establish a basis for long term relationships.

130

Context

Technologies and Methodologies
IHomer applies the Scrum Agile Methodology and uses modern development tools based
on the Microsoft platform and Java in order to keep projects manageable and to achieve
short turnaround times.

Mavim

Institutional Context
Mavim was founded in 1990 and has offices in the Netherlands, Australia and New Zealand.
It received international publicity through its first product SIS. Because of its international
success SIS was later renamed to Rules. Currently, about 250000 users use Rules to struc-
ture and optimize their business processes. Besides software Mavim also offers technical
and functional support. Examples are trainings, functional and business consultancy and
support. Mavim currently has about 60 employees.

Customers
Rules, Mavim his main product, is suitable for companies of any size, whether they are
national or international. Therefore, customers arise from various branches. Examples are:
construction, financial services, health care, trade, ICT, logistics, government and building
cooperations.

Technologies and Methodologies
Mavim is a Microsoft Gold partner and the first company which has achieved Visio Data
Visualization Specialist certification in the Netherlands1. Mavim applies the Scrum method-
ology for maintenance on and adding features to its existing software. The Scrum method-
ology is used together with user stories for the development of new products. Mavim uses
C#.NET in combination with Microsoft Visual Studio Team System 2008.

Distributed Context
Most developers at Mavim frequently work from home. In the past, Mavim did a distributed
project in India who created a satellite application for them.

Structure
Mavim uses Team Foundation Server as main code repository. People working from home
can be contacted by Windows Live Messenger, by mail and by company telephone. Work-
ing at home is done at least once a week. People work individually both at home and at
work, this is caused by a high level of specialization for the maintenance team, but working
together is done when necessary. New products and user stories are developed co-located
on the main location in Noordwijk.

1http://visiotoolbox.com/de/articles/News_Announcements/Mavim\%20first\
%20Microsoft\%20Data\%20Visualization\%20Specialist\%20in\%20the\%20Netherlands_201.
aspx

131

12. PRACTICAL WORK

SDL Tridion

Institutional Context
Tridion is established in 1999 and has focused on enabling customers to manage their con-
tent within a web environment. Since 2000, Tridion expanded to other European countries
and has opened offices in America and in Asia Pacific. In 2007 Tridion has been acquired by
SDL plc and the name of the company was altered to SDL Tridion. SDL Tridion employs
around 180 people divided over all sites.

Customers
SDL Tridion provides content management solutions for a wide variety of industries, for
example: manufacturing, financial services, travel and tourism, and the public sector. They
serve a large variety of businesses, including small sized businesses and multinationals.

Technologies and Methodologies
SDL Tridion applies a methodology which consists of five phases: the prepare stage, the
structure stage, the design stage, the build stage and the deploy stage. This methodology
is applied to ensure effective and fast Content Management System implementations. SDL
Tridion uses both .NET and Java technology to develop their Web Content Management
solution.

Distributed Context
Since 2000, Tridion started with distributed projects in which the different teams all per-
formed a modular task.

Structure
SDL Tridion has development centers in Amsterdam, Kiev (Ukraine) and San Jose (United
States). Projects are defined in either two ways:

1. Project teams are formed across country borders and tasks are performed by all team
members in cooperation. In these projects the daily communication and coordination
is essential. These projects have developers and testers in multiple locations working
on the same code base.

2. Project teams are formed locally to execute specific tasks. Often a work package is
executed by the team and the outcome is shared with the other development centers.
Examples in this category: projects which are developed in country A and tested in
country B.

Xebia

Institutional Context
Xebia was founded in the Netherlands in 2001, performs large scale development projects,
consultancy in architecture and auditing, and helps organizations to manage their corporate
IT infrastructure. In 2004, Xebia opened a specialized development center in India and an

132

Findings

independant consultancy branch in France which focuses on architecture and agile consult-
ing. Xebia is an international IT consultancy and project organization, with currently about
150 employees.

Customers
Most of Xebia’s consultancy clients are Top 300 organizations. However, they also work
with smaller and/or specialized organizations concerning agile transformation and software
projects.

Technologies and Methodologies
Xebia focuses on Enterprise Java technology, Agile development methods and outsourcing
services.

Distributed Context
In 2006, Xebia started distributed projects with teams made up half of Dutch and half of
Indian team members.

Structure
Xebia implemented a distributed software development team model on multiple projects
of variable types with teams located half in the Netherlands and half in India. These fully
distributed teams use the Scrum process combined with engineering practices taken from
eXtreme Programming.

12.3 Findings

In this section we will describe the research we performed and the results we obtained. We
will follow the structure described in the section research design and therefore will start
with describing the data acquisition associated with eliciting the list of requirements of an
ICDE.

12.3.1 Deducing the requirements of an ICDE: data acquisition

We started with preliminary knowledge regarding existing supporting technologies and
common problems and solutions in the field of agile GSD, originating from our research
discussed in the previous parts of this thesis. To be able to transform this knowledge into
a list of requirements of an ICDE we sought to both test and extend it with practical in-
sights. To do so we arranged, with four of the five companies (Exact Software, iHomer,
SDL Tridion and Xebia) in the knowledge group we are part of, to conduct several two
hour interviews at each of these companies. Because we wanted to determine requirements
for an integrated development environment aiming to support working collaboratively in a
distributed setting and using an agile paradigm we requested to interview people who most
closely resembled the following profile:

• Five years of experience working in IT

133

12. PRACTICAL WORK

• Two years of experience working in a distributed setting

• Two years of experience in his or her current role

• Level of education HBO and above

Because we wanted to get an overall view of how to support a distributed project we also re-
quested to interview people performing different roles in the development process, namely:

• An architect/designer

• A developer

• A product/project manager

Most our requests were honored and we were able to interview each of the different roles at
Exact Software, iHomer and SDL Tridion whereas we were able to interview an architect
and a developer at Xebia.

In the time span of a week we visited all the companies and conducted the interviews.
As discussed earlier these interviews were of a semi-structured nature. We used a scheme
of basic questions to guide us through the interviews, elaborating when necessary. This
scheme is included in appendix A. It consists of four mayor lines of questioning. The first
line of questioning attempts to elicit information regarding the work context of the intervie-
wee to be able to put the information we gather during the interview in the proper context.
We planned approximately fifteen minutes for this. In the second line of questioning it is
attempted to elicit common user stories and scenarios with respect to collaborative devel-
opment and the difficulties that arise in a distributed context. To do this we created a list
of collaborative activities in the development process and asked similar questions regarding
each of these. For this line of questioning we planned sixty minutes because we feel find-
ing out how all collaborative development activities are carried out and what challenges are
faced when performing them is an integral part of the goal of these interviews. To show that
it is likely we covered all collaborative activities in the development process we explicitly
connected the activities we listed with the associated SWEBOK Knowledge Areas (KA) [2]
in table 12.1. In this mapping of collaborative activities to Knowledge Ares from SWEBOK
we did not cover all Knowledge areas. The ones that were not covered are the following:

1. Software engineering process

2. Software engineering tools and methods

The software engineering process and Software engineering tools and methods were left
out because the subjects covered in these Knowledge Areas either fell outside the scope of a
project or could not be regarded collaborative activities. The software engineering process
knowledge area mainly concerns the selection of a process and software engineering tools
and methods mainly concerns supporting methods and tools for the software engineering
process. Finally we also cover information regarding the software engineering process in
the first and fourth line of questioning (discussed later in this section), respectively about

134

Findings

Activity Knowledge Areas Explanation
Planning Software Engineering This KA consists of more that just the

Management planning activity but this concerns non-
collaborative activities and activities
that are more closely associated with
different knowledge areas.

Requirement Software Requirements
clarification
Design Software Design
Construction Software Construction
Quality assurence Software Testing Here we grouped two KAs because they

Software Quality both concern quality assurence. In
the interviews we split this activity
into testing and code review and
evaluation.

Integration Software Configuration
Management

Maintenance Software Maintenance

Table 12.1: Mapping of development activities with their associated Knowledge Areas

the context and technological support. In the third line of questioning we attempt to elicit
the negative impact of working in a distributed setting on informal, non work-related, com-
munication. We feel it is important to attempt to make this explicit since informal, non
work-related, communication is a form of social interaction often lost when working in a
distributed setting. Because of this it might be the cause of some of the problems and so in-
formation regarding this could lead to ways to deal with these problems. We also explicitly
asked the interviewees whether they had solutions of their own to deal with these issues. We
planned thirty minutes for this line of questioning. The fourth and final line of questioning
regards eliciting information regarding the integration of existing technological support. In
this line of questioning we split the discussion in three categories:

1. Integration between communication related technologies

2. Integration between software development related technologies

3. Integration between communication related and software development related tech-
nologies

For each of these categories we attempted to elicit the current types of integration that are
in place as well as ideas to either improve the existing integrations or ideas regarding entire
new forms of integration. We planned fifteen minutes for this line of questioning.

Both of the interviewers took part in interviewing each interviewee. Both the researchers

135

12. PRACTICAL WORK

took part in the discussion to allow for a natural flow in the conversation and allow all nec-
essary subjects to come up. We did, however, assign roles to ourselves. One of us would
be in charge of following the structure of the interview while the other would make sure
sufficient notes were created during the interview for analysis. These notes were created
using the same structure as was used for the interviews attempting to write down as much
useful information as possible. Between interviews we switched between the two roles
mentioned above, both of the interviewers performing each role roughly the same number
of times. Finally we asked all interviewees to validate our findings after we analyzed the
data and created a categorized list of requirements of an ICDE. How we constructed that
list is discussed in the next section.

12.3.2 Deducing the requirements of an ICDE: data analysis

Following the interviews we used coding and analytical memos to use the data to construct
a categorized list of requirements of an ICDE. This list answers our initial research question:

”What are the requirements of an Integrated Collaborative Development Environment to
support agile GSD?”

Firstly we started to construct an uncategorized list of requirements. The entries of this
list were inductively developed from prior knowledge combined with the data gathered
from the interviews. Following this we split the requirements into categories based on the
explicit goal the requirements attempt to accomplish. The categories, or sub-requirements
of an ICDE, we defined are the following:

RC1 Incorporate the knowledge about the project into the development environment

RC2 Facilitate inter-personal contact

RC3 Derive information from the system

We also defined a mapping of these categories of requirements of an ICDE to the integration
of requirement categories of technological support introduced in chapter 8. To recap, these
categories are the following:

R1 Facilitate direct contact between colleagues
Technological support which facilitates direct communication between two or more
actors.

R2 Facilitate knowledge sharing among colleagues
Technological support which facilitates the sharing of technical project knowledge.

R3 Facilitate transparency of the project status
Technological support which facilitates the sharing of organizational project knowl-
edge.

136

Findings

R4 Facilitate quality assurance
Technological support which facilitates quality assurance functions to monitor and
guarantee the quality of the product.

R5 Facilitate continuous integration and frequent builds
Technological support which eases the process of continuously integrating the system
as well as producing builds frequently.

This mapping regards which types of technological support should be integrated into the de-
velopment environment to reach the requirements of an ICDE of the categories mentioned
above. Firstly to achieve the requirements from category RC1, technology from category
R2 and R3 should be integrated into the development environment. This is because tech-
nology from categories R2 and R3 are the supporting technologies with information about
the project. Secondly to achieve the requirements from category RC2, technology from cat-
egory R1 and R3 should be integrated into the development environment. This is because,
in order to facilitate interpersonal contact, technologies which support communication (R1)
should be available in the development environment as well as information regarding the
status the other people in the project (R3). Finally to achieve the requirements from cate-
gory RC3, technology from category R4 and R5 should be integrated into the development
environment. This is because technology from categories R4 and R5 are the supporting tech-
nologies from which information about the system can be derived.

Following the definition of these three sub-requirements of an ICDE we further extended
and refined the list of requirements and assigned them to these categories. The entire cate-
gorized list of requirements is presented in appendix B. The entries within each of the cat-
egories are approaches to achieve (parts of) the sub-requirements. Next, we will illustrate
the three categories by presenting examples extracted from the entire list of requirements in
appendix B.

RC1 Incorporate the knowledge about the project into the development environment
Firstly this can be achieved by creating connections in the context. An example of this
is connecting work items, such as an issue, with information about related actors, like
the reporter of the issue and the actor assigned to resolve the issue. Secondly, this can
be achieved by means of a ’dashboard’: An overview of the current status of the entire
project. Examples of such status information are information regarding the quality of
the system and information regarding the progress of implementation. Finally, this
sub-requirement can be achieved by notifying certain actors when specific events
occur. An example is to automatically send an email to the actor that made a commit
which broke the system.

RC2 Facilitate inter-personal contact
Firstly, this can be achieved by providing for different media to communicate, like
text audio and video, and facilitating switching between these media. Secondly, it can
be achieved by offering clear, accurate and up-to-date status information about rele-
vant actors. Thirdly, this sub-requirement can also be achieved by non-technological

137

12. PRACTICAL WORK

approaches. Examples of this are providing a uniform discussion environment and
the exchange of ambassadors between sites to create a stronger connection between
these sites.

RC3 Derive information from the system
A way to achieve this is integrating the functionality of existing systems support-
ing the creation of the system. An example of this is connecting the continuous build
server and the solutions used to provide quality assurance to achieve continuous qual-
ity assurance.

Finally, as mentioned earlier, the list of requirements was validated by the people we inter-
viewed.

12.3.3 Ideas for further research

After having made a categorized list of requirements of an ICDE we used this list in com-
bination with the data originally gathered from the interviews to create a list of concepts
which warrant further research. These concepts could be actual ideas but also more general
propositions for further research. The first of these concepts we defined is to research the
usage of a ”mandatory” open line, between virtual neighbors (people that are each others
specific remote contact person), on certain pre-defined times. This idea is related to the
virtual neighbor (or buddy) system discussed in the list of requirements. By opening a com-
munication line between two virtual neighbors, for example once a week for thirty minutes,
they are able to keep in touch and talk about unplanned subjects. The idea is to mimic the
interactions they have with the person physically sitting next to them. Research regarding
this idea would concern gathering the requirements for such a scheduled conversation with
respect to for example duration and frequency; deducing how this could be best supported
by technological support and ultimately trying it out in an actual project setting, followed
by an evaluation.

The second concept we defined is to research the concept of an ’ongoing conversations list’.
The basic idea with respect to this concept is to mimic the overhearing of conversations in
ones local workspace. In such a setting, people learn things from overhearing conversations
and are also able to jump in and contribute. Basically an ’ongoing conversations list’ would
entail the following:

1. List of the current ongoing conversations (via chat, audio, video etc.) with the partic-
ipants and a topic, question or issue.

2. This list could be shown on a central overview screen.

3. Basic functionality:

a) People can start an ”open conversation” either with explicit other participants
or without.

138

Findings

b) People can join a ”open conversations” to be able to read/see/hear it (either
as a observant or participant) and it is clear to everyone who is monitoring the
conversation.

c) It is possible to switch between the different conversation media.

4. It should be possible to switch from normal (private) forms of communication to an
open conversation (and vice versa)

Other names that describe a list described here well are ’topic pool’ and ’synchronous fo-
rum’. This research could entail the construction of a prototype, testing it out in a project
setting and evaluating the progress.

The third concept we defined has to do with the creation of a single overview of all rel-
evant project related data. Such an overview is also known as a ’dashboard’. There exist
solutions which provide an overview of project related data but we feel these solutions could
be extended. Research regarding this concept could entail both what project data is relevant
to show and how to acquire the necessary data. Examples of project information which
could be shown on a dashboard are the following:

1. Functional/Integration/regression/metrics test status

2. Organizational information

a) Indicator for percentage of planned tasks which are completed

b) Divergence with respect to planning

c) SCRUM board / burn down chart

3. Overview of configuration machines (both for testing and maintenance) and if they
are patched sufficiently

The fourth concept we defined concerns researching: what information regarding the
current activity (status) of a colleague is beneficial, which of this information can be gath-
ered and how it helps both with respect to collaboration and making the development team
feel more like a team. Next to this it could also be researched how best to integrate the
status information into the environment of the developer. Examples of ways to extend the
status information of remote colleagues visible to members of the development team are the
following:

1. Including the application people are currently using in the status (for example the
status used in OCS).

2. Pointing an always on global-camera on the work space of all developers. This way
it is possible to see what colleagues are available at their work-stations and how busy
they are (which can be deducted by looking at them).

3. Adding the current view of the developer in the status. Examples of this are:

139

12. PRACTICAL WORK

a) Looking at bug #xxx in the bug tracker

b) Currently working on task #xxx

c) Documenting on subject Y in the wiki

The fifth and final concept we defined is quite general in nature. It regards researching
how to lower the threshold for using the various communication media which are available.
This regards exploring the current types of communication available and how (and when)
they are being applied, but also when (and why) they are not being applied when they could
be beneficial. We feel this is important as we gathered from the interviews that quite some
means to communicate that companies have in place are not used or could be used more.
This research could lead to concrete advice regarding how to make better use of communi-
cation media currently in place, the quality of these media and what communication media
could prove to be beneficial when added.

12.4 Feasibility study

With the five concepts we defined in the previous section we returned to the companies to
determine what research we could best perform in the context of our research. After having
a number of discussions we decided to integrate three of these concepts in one single system
after this called ’our system’. Firstly, our system will provide for an ’ongoing conversation
list’ with the possibility to join the ongoing conversations. Secondly, our system will pro-
vide an overview of the status information of the members of the development team. And
thirdly, our system will provide and overview of relevant project information. The infor-
mation necessary to create such a system should come from the technological support the
development team uses. For this feasibility study we elected two such systems which are
often used in practice: Microsoft office communications server 20072 and Team Foundation
Server 20083 and their associated clients: Microsoft office communicator 20074 and Visual
Studio Team System 2008 Team Suite5 respectively. We chose to use these two specific
systems because most companies from the knowledge group use these and they contain the
information necessary to implement the three concepts.

Office Communicator (OC) is an instant messaging program, used with Office Commu-
nications Server (OCS), aimed at corporate environments. It provides features like instant
messaging; Voice over IP, Video conferencing and Screen Sharing. We use this system to
gather information regarding the ongoing conversations and the status of the members of
the development team. Next to that we add the possibility to request to join an ongoing con-
versation. Visual Studio Team System (VSTS) and Team Foundation Server (TFS) together
make up a set of software development, collaboration, metrics, and reporting tools. In this
TFS takes care of the data storage and collaboration backend and VSTS takes care of the

2http://www.microsoft.com/communicationsserver/en/us/default.aspx
3http://msdn.microsoft.com/en-us/teamsystem/default.aspx
4http://office.microsoft.com/en-us/communicator/HA102037151033.aspx
5http://www.microsoft.com/products/info/product.aspx?pcid=ef08ccd2-8cd8-44ae-81a4-f7bc63f007d4

140

Feasibility study

visualization of the data to the developer in an integrated development environment. TFS
provides a source control repository, work item tracking, reporting services, build services
and project management capabilities. We use this system to gather information regarding
project related items like sprint backlog items and also combine this data with user informa-
tion to extend the view of the status of the members of the development team (for example
what sprint backlog items a specific user is working on). Finally, we extract overviews from
this system and incorporate these in our system.

In the rest of this section we will start by describing the general context of the feasibil-
ity study. To do this, we will first describe the functionality of both source systems in more
detail. Following this we will describe what exactly we are going to display in our system
and explain the functionality we added. Following the context we will discuss our technical
implementation. Subsequently we will discuss how to use the user interface of our system.
We will conclude by validating this feasibility study by discussing the feedback we acquired
about our system from the three companies that helped define this feasibility study.

12.4.1 Context

Office communications server 6

Microsoft Office Communications Server is an enterprise real-time communications server.
It provides the infrastructure for enterprise instant messaging, presence information, file
transfer, peer to peer and multiparty voice and video calling, ad hoc and structured con-
ferences (audio, video and web), connectivity with the general telephone network (Public
Switched Telephone Network or PSTN) and desktop and application sharing. These fea-
tures are available within an organization, between organizations, and with external users
on the public internet or standard phones on the PSTN. Microsoft Office Communicator
2007 and the LiveMeeting console (LMC) 2007 are the primary client applications released
for OCS. OC 2007 is the client used for IM, presence, voice and video calls and ad hoc con-
ferences. LMC is used for more structured meetings, conferences and application sharing.
It can run natively against either OCS or the LiveMeeting hosted service. In this feasibility
study we regard the use of Office Communicator and we will discuss its basic usage. First
we will discuss the use of presence information in Office Communicator. Following this we
will discuss the functionality of Office Communicator regarding communication between
contacts. We will conclude the discussion of Office Communicator by explaining which
portion of the information we chose to incorporate in our system and how we extended the
communication related functionality.

Presence information7

A person’s presence is determined by a collection of attributes that describe the person’s

6Based on http://en.wikipedia.org/wiki/Microsoft_Office_Communications_
Server

7Adaptation of http://office.microsoft.com/en-us/help/HA102067221033.aspx

141

12. PRACTICAL WORK

status, activity, location, willingness to communicate, and contact information. Presence
information helps you to contact others and helps others to reach you. In figure 12.1 the
dimensions of status available in Office Communicator are displayed and in figure 12.2 it is
shown how this information is displayed in its user interface.

Figure 12.1: Presence dimensions

Figure 12.2: Presence in Office Communicator

Presence information provides context for a contact and helps you to decide the best way
to communicate with the contact. For example, assume that you need to discuss a proposal
with a co-worker. You look at his status in your Contact List and see that the contact is
available. You could walk down the hall and talk to the person face-to-face, but you notice
the person’s location indicator and personal note indicates the person is working at home,
so you decide to send an instant message to the contact instead. Communicator displays
various bits of information about each contact, so you can see the contact’s context - are
they available; in a meeting; free in an hour; working at home - and you can use that context
to make a decision about the best way to communicate with the contact. For example, if the
contact is in a meeting and you have urgent business to discuss, you can send him an instant
message. Figure 12.3 shows how the status of your contact is shown in the communicator
interface and also a number of options you can use to contact them.
As can be seen in figure 12.2 each contact has a presence button that reflects the contact’s
status. A contact’s presence button changes color based on a variety of factors. This is
described in table 12.2.

Presence button Status text Description
Available The contact is online and can participate in

conversations. This status can be set

142

Feasibility study

Presence button Status text Description
manually by the user.

Busy The contact is available but engaged in another
In a Call activity. Activities include:
In a Conference
In a Meeting • In a call The contact is in a phone, voice,

or video conversation.

• In a Conference The contact is in a multiparty
conversation using phone, voice, or video.

• In a Meeting The Office Outlook calendar shows
the contact has a scheduled meeting.

This presence level can be set manually by the user.
Do not disturb You see this status for a contact if the contact has

assigned you to an access level other than the Team
access level and the following condition exists:

• The contact has manually set his or her presence
status to Do Not Disturb.

Urgent You see this status for a contact if the contact has
interruptions only assigned you to the Team access level and the

following condition exists:

• The contact has manually set his or her presence
status to Do Not Disturb.

Away The contact is probably not available. This
Out of office status is displayed for the following reasons:

• The contacts computer has been idle for more than
the idle time period setting15 minutes by default.

• The contacts Office Outlook calendar or Out of Office
Assistant indicates that he or she is out of the office.

• The contact is temporarily unavailable. As soon as
activity is detected on the contacts computer,
Communicator 2007 automatically resets the presence
status to the appropriate state.

• The contact has manually set his or her presence status

143

12. PRACTICAL WORK

Presence button Status text Description
to Away.

Inactive This contact may be available, but his or her computer
has been idle for more than the idle time period
settingfive minutes by default. In this state, the
contact is online and transitioning from an Available
state, as indicated by the half-green/half-yellow
button. This status is set by Communicator.

Busy (Inactive) This contact is engaged in a meeting or is scheduled
to be in a meeting (as indicated in the Outlook calendar)
, but his or her computer has been inactive for the idle
time period setting5 minutes by default. This status
is set by Communicator.

Offline The contact is not available. This status is displayed
for the following reasons:

• The contact has manually set his or her presence
status to Appear Offline. (Appear Offline is not available
by default. The system administrator must enable it for
an organization using the group policy:
EnableAppearOffline.)

• Communicator is not running on the contacts
computer, or the contact has not signed-in.

• The contact has blocked you from seeing his
or her presence status.

Unknown status Communicator cannot determine the status of the
contact. This status is usually displayed because
the contacts presence status is stored in another
computer system, such as that of an organization
that is not a federated partner.

Blocked This button is displayed in your Contact List
next to the contact name you have blocked. To
the person you have blocked, you appear
to be offline.

Table 12.2: The different states of the presence button

Communication functionality

In figure 12.4 the drop-down menu displayed when right clicking one of your contacts in
the Communicator user interface can be seen. This shows the different options available to
communicate with a colleague using Communicator:

144

Feasibility study

Figure 12.3: Presence information of one of your contacts

Figure 12.4: Available communication options in Office Communicator

1. Send an instant message. Text based

2. Call. Audio based

3. Start a video call. Video based

4. Send an email message. Text based, asynchronous

Besides these options to communicate Communicator offers more ways to enrich the com-
munication. When in an instant message conversations with someone (having clicked send
an instant message in the previously mentioned drop down menu) a window such as shown
in figure 12.5 can be seen.
From this figure it can be gathered that from within a conversation it is possible to do a num-
ber of things. Firstly it is possible to change the type of communication between text based,

145

12. PRACTICAL WORK

Figure 12.5: The conversation window in Office Communicator

audio based and video based. Secondly it is possible to send a file to a contact. Lastly it is
possible to invite more people into the conversation, turning the conversation into a multi
participant conversation.

Office Communicator in connection with this feasibility study

In this feasibility study we use Office Communicator to gather information to incorporate
the user status in our system and we extend the functionality to create an open conversation
list. To incorporate the user status we gather various types of information from communi-
cator. Firstly the information about a user:

1. Real name

2. Email address

3. User note

4. Communicator status

5. Out Of Office status

6. The time the user has been away

The decision to collect these types of information is made intuitively based on the inter-
views and literature findings. We do feel there are grounds to assume however, the specific
information that will be beneficial will depend on the specific context in which the solution
will be used. Secondly we gather information regarding conversations. We show for each

146

Feasibility study

user which conversations they are part of or have been part of. About each conversation we
record the following:

1. Start time

2. Participants

3. History

4. Active status

Besides displaying information, regarding current and past conversations with Office Com-
municator between members of the development team, we also extend the functionality of
Communicator. In Office Communicator only people in a specific conversation have the
ability to add other people to that conversation, or, for that matter, know the conversation is
going on. When working co-located you often notice when colleagues are having a (verbal)
conversation. When you are interested in the content of the conversation you can listen-in
on the conversation or even join the conversation. Another possibility is your colleagues
are trying to resolve an issue you know the answer to and you can help them resolve it.
We are looking to extend the functionality of Office Communicator to more resemble the
co-located situation. For that reason we show the list of ongoing conversations and offer the
possibility of asking to join them. When a member of the development team requests to join
a conversation, the leader of that conversation is given the choice whether or not to allow
this. Finally, we also show a list of past conversations to allow members of the development
team access to potentially valuable project knowledge contained in the past conversation
data.

Team Foundation Server8

Team Foundation server provides source control, data collection, reporting, and project
tracking, and is intended for collaborative software development projects. It works in a
three-tier architecture: the client tier, the application tier and the data tier as displayed in
figure 12.6. The client tier is used for creating and managing projects and accessing the
items that are stored and managed for a project. TFS does not include any user interface
for this tier, rather it exposes web services, located in the application layer, which client
applications, like Visual Studio Team System, can use to integrate TFS functionality. The
application layer also includes a web portal and a document repository facilitated by Win-
dows SharePoint Services. The web portal, called the Team Project Portal, acts as the
central point of communication for projects managed by TFS. The document repository is
used for both project items and the revisions tracked, as well as for aggregated data and
generated reports. The data layer, finally, provides the persistent data storage services for
the document repository. It is not exposed to the client tier, only the application tier is.

Most activity in Team Foundation Server revolves around a work item. Work items are

8Based on http://en.wikipedia.org/wiki/Team_Foundation_Server

147

12. PRACTICAL WORK

Figure 12.6: Team Foundation Server 3-tier architecture

a single unit of work which needs to be completed. It has fields to define area, iteration,
assignee, reported by, a history, file attachments, and any number of other attributes. Work
items themselves can be of several different types. The framework chosen for any given
project in a Team Foundation Server defines what types of work items are available and
what attributes each type of work item contains. When creating a project, a software de-
velopment framework must be chosen, and cannot be changed afterwards. TFS includes a
few common templates. Examples are MSF for CMMI Process Improvement which con-
tains bugs, quality of service requirements, risks, scenarios and tasks, and MSF for CMMI
Process Improvement which contains bugs, change requests, issues, requirements, reviews,
risks and tasks. In this feasibility study we used the Scrum for Team Systems9 template, on
which we will elaborate further below. TFS finally also provides a source control repository
system called Team Foundation Version Control and extensive reporting capabilities.

Scrum for Team Systems10

As mentioned above, we use Scrum for Team Systems as the framework template for TFS
in this feasibility study. Scrum for Team Systems defines the Product backlog items and the
Sprint backlog items as Scrum related work items. A product backlog is a prioritized list
of project requirements with estimated times to turn them into completed product function-
ality. Priority should be assigned based on the items of most value to the business or that
offer the earliest Return on Investment. This list should evolve, changing as the business
conditions or technology changes. Product backlog items can be functional requirements,
non-functional requirements, and issues. The precision of the estimate depends on the pri-
ority and granularity of the Product Backlog item, with the highest priority items that can
be selected in the first few Sprints being very granular and precise. The Sprint backlog is
a list of tasks that defines a Team’s work for a Sprint. The list emerges during Sprint plan-
ning. The tasks on the Sprint backlog are what the Team has defined as being required to

9http://www.scrumforteamsystem.com
10Based on http://scrumforteamsystem.com/processguidance/v1/Artefacts/

Artefacts.html

148

Feasibility study

turn committed Product Backlog items into system functionality. Each task identifies who
is responsible for doing the work and the estimated amount of work remaining on the task
on any given day during the Sprint. Scrum for Team Systems defines the following Scrum
related reports:

1. Sprint Burndown Chart. Graph in which the vertical axis displays the hours of
effort remaining for the Sprint and the horizontal axis displays the duration of the
sprint in days. The burndown is supposed to be shown by the line of descent from the
start of the Sprint with the starting hours, down to the end of the Sprint with no hours
remaining. An example is shown in figure 12.7.

Figure 12.7: Sprint Burndown Chart

2. Product Burndown Chart. Comparable to the sprint burndown chart but applicable
for the progress of completing product backlog items as opposed to sprint backlog
items. An example is shown in figure 12.8.

TFS in connection with this feasibility study

In this feasibility study we use TFS to gather information to extend the user information
further and also to incorporate project information. We extend the user information by
extracting information regarding:

1. Which sprint backlog item each user is assigned to

2. What files each user currently has checked out

3. What files each user has last checked in

149

12. PRACTICAL WORK

Figure 12.8: Product Burndown Chart

With respect to the project status we extract information regarding:

1. All releases per project

2. All sprints per release

3. All sprint backlog items per sprint

4. All product backlog items per project

5. All sprint backlog items per product backlog item

6. What files are currently checked out project wide

7. The last check-in of the entire project

8. The sprint burndown Chart

9. The product burndown Chart

150

Feasibility study

12.4.2 Technical implementation

In this section we discuss the technical implementation of feasibility study. Our system
consists out of four components.

1. The OCS Data Collector
This component collects presence information and information regarding the conver-
sations from OCS and stores it in the database.

2. The OC Actuator
This component makes it possible for people not part of a certain conversation to
request to join the conversation with the current leader of that conversation (initially
the person starting the conversation).

3. The TFS Data Collector
This component collects information regarding projects, sprints, products and the
code repository from TFS and stores it in the database.

4. The User interface component
This component displays the information we gathered in the OCS Data Collector and
TFS Data Collector components in a combined way and offers the functionality we
added in the OC Actuator component.

We will discuss these components in the rest of this section. Meanwhile we will introduce
the database design on an as needed basis in the discussion of each component. We will
conclude this section with an overview of the entire database design.

The OCS Data Collector
This component collects data from the Microsoft Office Communications Server. IHomer
arranged for OCS accounts for us on the same server as they use themselves for us to test
our implementation. Because they have the OCS server hosted by an external party it was
infeasible for us to implement this server side. Because of this, we created a client side
component which should run alongside all instances of Office Communicator (each and ev-
ery OC user should run this component) and writes all relevant information to a MySQL
database. This component uses the Communicator 2007 Automation API11 to acquire the
necessary information from Office Communicator.

This client side component consists of three subcomponents, a communicator component
which gathers all data from OCS, a database component which retrieves and writes all in-
formation to the MySQL database and a main component which initializes and starts the
database and communicator component. We wrote all these components in C# .NET be-
cause using this language the Communicator auotmation API can be called directly and
we have a lot of experience with programming in Java, which is quite similar. Figure 12.9
shows how these components are interrelated.

11http://msdn.microsoft.com/en-us/library/bb758719.aspx

151

12. PRACTICAL WORK

Figure 12.9: OCS class diagram

Communicator Component
As stated, the main objective of the communicator component is to collect data from OCS.
This component gathers the required information two ways. On the one hand, it uses the
Office Communicator Automation API to actively gather required information. On the other
hand, it subscribes to receive notifications from this same API when certain events occur in
communicator. When the communicator component is started it creates a list to be able to
log the instant messaging conversations. This list contains references to all the instant mes-
saging windows the user has started and a unique conversation id for each of them. It is the
responsibility of this instance of the OCS data collector to log the history of these conversa-
tions in the database. Subsequently the component subscribes itself to receive notifications
of the following events:

• OnContactStatusChange

• OnIMWindowCreated

• OnIMWindowContactAdded

Once the component is subscribed to these event handlers it checks if the user is logged
in to communicator; if this is not the case it launches the sign in screen of communicator
asking the user to log in. When the user is logged in, it updates the status of this user and
the status of all other contacts to the database using the database component.

Now we have an instance of communicator running, which is subscribed to receive cer-
tain notifications, we are able to perform actions when one of the above mentioned events
occur. Firstly we discuss the OnContactStatusChange event, which occurs when one of the
contacts changes his or her status. When we receive a notification from the automation API
that such an event has occurred we update the status of the associated user to the database
using the database component. Another event we receive is the OnIMWindowCreated event,

152

Feasibility study

which occurs when a conversation window is created. Upon receipt of this event the asso-
ciated window reference should be added to the list of OCS window references discussed
earlier if the user logged in on the computer where this instance of the data collector is
running initiated the conversation. It is, however, not possible to directly determine from
the event information whether or not this user has started the conversation himself. There-
fore the window reference is temporarily stored in a variable and we wait until we receive
a OnIMWindowContactAdded event. If the contact added in the first OnIMWindowContac-
tAdded event received after the OnIMWindowCreated event is indeed the user of this OCS
data collector instance himself, then he was the one that initiated the conversation and the
window reference can be added to the list together with a unique conversation id, otherwise
he was not and the window reference can be discarded.

Next to listening to notifications of the automation API the communicator component con-
tinuously executes a loop in which it actively uses this API to perform the following actions:

• Acquire the information regarding all users

• Acquire the information regarding the conversations

At the beginning of each loop we update the status of all users to the database, this includes
basic contact information such as the sign in name, friendly name and the current status
of a contact, this information can directly be obtained from a messenger contact using the
Communicator API. These contacts also contain more detailed information about the sta-
tus which can be gathered by using the presence properties of a contact. This information
includes a note field, an indicator whether or not the contact is currently out of office and
the time the contact is logged out. When all contact information is updated the informa-
tion regarding the conversations from the reference list is updated in the database as well.
This information includes the initiator, the start time, the history and the participants of the
conversation. If a conversation in the list does not exist anymore it is removed from the
associated list. When all this information is written to the database, we wait for a certain
amount of time and restart the loop from the beginning.

Database Component
All the data gathered by the communicator component is written to the database using a
database component. The structure of the tables in which the data is stored is shown in
figure 12.10 and in figure 12.11.

153

12. PRACTICAL WORK

Figure 12.10: Relational Database Schema of the OCS Data collector

Figure 12.11: Entity Relationship Diagram of the OCS Data collector

154

Feasibility study

The OC Actuator
This component makes it possible for people not part of a certain conversation to request to
join the conversation with the current leader of that conversation (initially the person start-
ing the conversation). Next to this, this component also makes it possible for the current
leader of a conversation, the user that receives the join requests and is logging the conver-
sation, to transfer ownership to another user when he closes the conversation. Because we
implemented the OCS Data Collector client side anyway we extended this solution to in-
corporate this functionality. This component also uses the Communicator 2007 Automation
API to acquire the necessary information from Office Communicator.

Communicator Component
We extend the communicator component defined in the OCS data collector section to in-
corporate the extra functionality. To make it possible for a user to join a conversation he
is not part of, he should place a request to join the conversation into the database (using
a user interface component). In the loop discussed in the OCS Data Collector component,
functionality is added which checks for such requests for all conversations in the list. When
such a request exists for a conversation in the list, the communicator component ask its user
(automatically the leader) whether he wishes to allow this request. When the leader allows
the request the user who placed the request is added to the conversation.
To make it possible to select a new leader, when the original initiator of a conversation
leaves the conversation, we add a second list of references to conversation windows. In this
list each instance of the OCS data collector stores the window-references of the conversa-
tions he did not initiate. We rename the original list to L1 and this second list to L2 to be
able to differentiate between the lists. Next to this we further extend the functionality in
the main loop of the communicator component. Firstly, when a conversation, this instance
of OCS data collector is responsible for, is closed, its user is asked to select a new leader
(using a pop-up screen). Subsequently, this owner switch request is placed in the database.
Each OCS data collector instance checks this database table in its loop to determine if there
are any outstanding requests for it to become a leader of a conversation. If this is the case,
it moves the window-reference associated with that conversation from L2 to L1 and effec-
tively takes over the logging and join-request handling responsibilities.

Database Component
All the data gathered by the communicator component is written to the database using the
same database component as the OCS Data collector component. The structure of the tables
is an extension of the tables of the OCS Data collector and are shown in figure 12.12 and in
figure 12.13.

155

12. PRACTICAL WORK

Figure 12.12: Relational Database Schema of the OC Actuator

Figure 12.13: Entity Relationship Diagram of the OC Actuator

156

Feasibility study

The TFS Data Collector
This component collects information regarding projects, sprints, products and the repository
from TFS and stores it in the database. We host a trial version of Team Foundation Server
ourselves, to be able to test our implementation. Because of this, we are able to develop this
component server side.

This component also, like the OCS Data Collector, consists of three subcomponents: a
TFS component which retrieves data from TFS, a database component which handles the
communication with the database and a main component which initializes and starts the
database and TFS component. Figure 12.14 shows how these components, all written in C#
.NET, are interrelated. As discussed this component gathers different types of information

Figure 12.14: TFS Data Collector Component class diagram

from TFS. This is done by periodic, active retrieval of all required information from TFS
via its associated APIs12. We structure the discussion of the TFS Data Collector component
by the types of information we gather:

• TFS Work Items

• TFS Version Control

• TFS Reports

We will discuss for each of these groups what data is collected and how the database is
structured.

12http://msdn.microsoft.com/en-us/library/bb130307(VS.80).aspx

157

12. PRACTICAL WORK

TFS Work Items
The TFS Data Collector component can gather information about all projects which cur-
rently exist on the TFS. Firstly, relevant information for each of these projects, such as the
project name and the project id, is gathered and written to the database. Secondly, data
about the project iterations and associated information is gathered, this data includes re-
leases, sprints and the iteration id. Subsequently all required information about a specific
sprint is retrieved from TFS. Examples are: the title, the sprint id, the current state of the
sprint, the start date, the end date and a short description. Finally information about all
the product backlog items and sprint backlog items, associated with the current project, is
gathered and stored in the database. We choose to gather the following information from
the backlog items: the title, the description, state, estimated effort, work remaining and who
is assigned to it. All the information mentioned above is gathered from different TFS Work
Items. We use WIQL, a Work Item Query Language13, to be able to select the appropriate
set of work items. All the information about the work items gathered by the TFS component
is written to the database using the database component. The structure of the tables in which
the data is stored is shown in figure 12.15 and in figure 12.16.

13http://msdn.microsoft.com/en-us/library/bb130198.aspx

158

Feasibility study

Figure 12.15: Relational Database Schema of the TFS Work Items

159

12. PRACTICAL WORK

Figure 12.16: Entity Relationship Diagram of the TFS Work Items

160

Feasibility study

TFS Version Control
This part of the TFS Data collector component gathers relevant information about TFS
Version Control. It provides an overview of all the files a specific user currently has checked
out. This overview is created by using the TFS Version Control API which makes it possible
to retrieve a set of pending changes per project. This part also provides an overview of the
last files a user has checked in into version control. This is done by selecting all change sets
per project, after which the most recent change set per user is stored into the database. The
structure of the tables in which the data, gathered by the TFS Data Collector component is
stored is shown in figure 12.17 and in figure 12.18.

Figure 12.17: Relational Database Schema of the TFS Version Control

161

12. PRACTICAL WORK

Figure 12.18: Entity Relationship Diagram of the TFS Version Control

162

Feasibility study

TFS Reports
The last part of the TFS Data Collector component stores the generated reports of a TFS
project into the database. An image file of these reports is gathered by performing an au-
thenticated HTTP web-request to the project portal site. Subsequently this image is stored
in the database in a BLOB; a binary large object. The structure of the tables in which the
data is stored is shown in figure 12.19 and in figure 12.20.

Figure 12.19: Relational Database Schema of the TFS Reports

Figure 12.20: Entity Relationship Diagram of the TFS Reports

163

12. PRACTICAL WORK

TFS Overview
In figure 12.21 and figure 12.22 an overview of the total database structure of the TFS Data
Collector component is presented.

Figure 12.21: Relational Database Schema of the TFS Data Collector Component

164

Feasibility study

Figure 12.22: Entity Relationship Diagram of the TFS Data Collector Component

165

12. PRACTICAL WORK

The User Interface Component
This component displays the information we gathered in the OCS Data Collector and TFS
Data Collector components in a combined way and offers the functionality we added in the
OC Actuator component. When the OCS Data Collector, the OC Actuator and the TFS Data
Collector components are running and filling the database with data, several User Interfaces
could be used at the same time. In this feasibility study we elected to create one such user
interface in PHP generated HTML. We chose this technology because this allows us the
show the functionality of our system in a separate application (Microsoft Internet Explorer
6 and Mozilla Firefox 3) but also because HTML pages can easily be integrated into Office
Communicator. In our view, user interfaces that are integrated with the other development
supporting technologies (like for example Visual Studio Team System) would prove useful
as well, but are beyond the scope of a feasibility study.

For the technical implementation of the user interface we used AJAX (Asynchronous Javascript
and XML) to load the required information and Thickbox to show specific information
about an item. The overall page overview is shown in figure 12.23. When a menu item
in the menu div is clicked the content of the specific page is loaded into the main div.
The main div is then automatically reloaded every ten seconds with fresh data from the
database. When an item about which our system contains information is clicked in the main
div a Thickbox is displayed containing this information. A Thickbox is a webpage UI dialog
widget written in JavaScript which function is to show inline content. It is opened on top
of the existing page, mostly obscuring the underlying page. An example of this is shown in
figure 12.24. Like the main div, the content of the Thickboxes is reloaded every ten seconds
to provide an up-to-date overview of the data. When data items about which information is
available in our system are clicked inside a Thickbox, the content of this is loaded in that
same Thickbox. A complete discussion and overview of the user interface will be described
in the User interface description section.

166

Feasibility study

Figure 12.23: The design of the User Interface

Figure 12.24: Example of a Thickbox

167

12. PRACTICAL WORK

Database Overview
The total overview of the structure of the database is shown in figure 12.25 and in figure
12.26.

Figure 12.25: Relational Database Schema of the Total System

168

Feasibility study

Figure 12.26: Entity Relationship Diagram of the Total System

169

12. PRACTICAL WORK

12.4.3 User interface description

In this section we will describe what information we display and how this is connected via
menus and also what functionality is available in the user interface. To do this we will first
explain the different pages the five menu items in the menu div evoke. For each of these
pages we will provide a screenshot of an example, discuss all the information visible on the
page and mention all the clickable data items. When such a data item is clicked a Thick-
box is shown, as discussed in the previous section. Following the discussion of the menu
items we will consecutively discuss each of these Data Item Pages with data by providing a
screenshot, discussing all data visible in the box and what data items are shown on the page.
We will conclude by discussing how we incorporated the functionality we added to OCS in
our User Interface.

Menu
The menu bar is shown in figure 12.27. It consists of five entries which we will discuss
consecutively.

Figure 12.27: The menu-bar of the User Interface

Users
Having clicked the users item in the menu bar a page like in figure 12.28 will be shown.

On this page all the users will be displayed with their real name and their status in OCS.
Clicking the name of a user will bring up the user data item page. The OCS status is dis-

Figure 12.28: The users list in the User Interface

170

Feasibility study

played using the same icons as are used in Office Communicator. Hovering over this icon
brings up a tooltip with a textual description of the current status of the respective user.

Conversations
On this page, shown in figure 12.29, the conversations held between the members of the
development team using Office Communicator are shown. The conversations are divided in
two groups: the conversations that are still active and the conversations that have already
ended.

Figure 12.29: The conversations list in the User Interface

The following information in shown regarding all conversations:

1. A clickable history icon. Clicking this icon brings up the history data item page.

2. The initiator of the conversation. Name of the user initially starting the conversation.
Clicking this name will bring up the user data item page.

3. The exact time the conversation has started.

4. The participants of the conversation. Names of the users that are part of the con-
versation or have been part of the conversation in the past. Users that are still par-
ticipating in the conversation are displayed in green, those that are no longer part of
the conversation are displayed in red. Clicking one of these names will bring up the
corresponding user data item page.

For the conversations that are still active an extra option is available when compared to the
conversations that have ended. Behind each conversation a join-icon is shown. When this
icon is clicked the join a conversation pages is displayed. How this functionality can be
used is explained later when we explain how the functionality we added to OCS is incorpo-
rated in the User Interface.

171

12. PRACTICAL WORK

Sprint Backlog
On this page a tree is shown with all projects as the root. Clicking a project name expands
the respective project sub-tree to show all associated releases. Clicking a specific release in
turn expands the tree further to show all sprints that are associated with the clicked release.
Finally when a sprint is clicked a third and final expansion of the tree displays all sprint
backlog items associated with the respective sprint. A screenshot of the totally expanded
tree is shown in figure 12.30.

Figure 12.30: The Sprint Backlog

On this page links exist to the following Data Item Pages:

1. The project data item page. Is shown when the i-icon behind the respective project
name is clicked.

2. The sprint data item page. Is shown when the i-icon behind the respective sprint name
is clicked.

3. The sprint backlog item data item page. Is shown when the respective sprint backlog
item is clicked.

Product Backlog
Like with the sprint backlog a tree is used to display the product backlog. As root notes
again the projects are used and when these are clicked the tree expands to show the associ-
ated product backlog items. The expanded tree is shown in figure 12.31. On this page two
links exist to the following Data Item Pages:

1. The project data item page. Is shown when the i-icon behind the respective project
name is clicked.

2. The product backlog item data item page. Is shown when the respective product
backlog item is clicked.

172

Feasibility study

Figure 12.31: The Product Backlog

Reports
Like with the sprint backlog and the product backlog the reports are also accessed using a
tree. As root notes again the projects are used and when these are clicked the tree expands
to show links to the two available reports per page. The expanded tree is shown in figure
12.32. On this page three links exist to the following Data Item Pages:

Figure 12.32: The Reports

1. The project data item page. Is shown when the i-icon behind the respective project
name is clicked.

2. The sprint burndown chart page. Is shown when this option is clicked for a particular
project.

3. The product burndown chart page. Is shown when this option is clicked for a partic-
ular project.

Data Item Pages
Below for all Data Item Pages we will provide a screenshot, discuss the information shown

173

12. PRACTICAL WORK

on the page and discuss links it has to other Data Item Pages. Each of these Data Item Pages
has a back and forward button at the top to ease navigating them.

User data
An example of this page is shown in figure 12.33.

Figure 12.33: The User Data Item Page

This figure shows most of the available information with the exception of the notification

174

Feasibility study

that the user is out of office and how long the user has been away (the user in this example
is online). We will now give an overview of the information shown on the page and discuss
links it has to other Data Item Pages:

• Real name. The real name of the user.

• OCS status. The OCS status is displayed using the same icons as are used in Office
Communicator. Hovering over this icon brings up a tooltip with a textual description
of this status.

• Out of office. If the user is out of office this information is displayed after the OCS
status icon. This information is optional.

• Office Communicator user note. The text which the user has set in the note in office
communicator. This information is optional.

• Time away. The total time the user has not been logged in to Office Communicator.
This information is optional.

• E-mail. The email address used in Office Communicator.

• Sprint backlog items. This shows, per project, which sprint backlog items this user
is associated with. These sprint backlog items are divided in three categories: The
sprint backlog items that the user is currently working on, those that he is assigned to
do but has not yet started to work on and those that he has already finished working
on. In this overview clicking the project name links to the Data Item Page of the
project and clicking the sprint backlog items links to the Data Item Page of that sprint
backlog item.

• Currently checked out files. Shows what files this user currently has checked out,
what action he has performed on them and since when each file is checked out.

• Last checkin. Shows what files this user has last checked in, when this check-in
took place, what action was performed on each file and what project the check-in is
associated with. In this overview clicking the project name links to the Data Item
Page of the project.

• Conversations currently involved in. Displays a list of all active conversations this
user is involved in. This overview contains precisely the same information and links
as the active conversations in the conversations menu page discussed earlier.

History
An example of this page is shown in figure 12.34. We will now give an overview of the

information shown on the page and discuss links it has to other Data Item Pages:

• The initiator of the conversation. Name of the user initially starting the conversation.
Clicking this name links to the user data item page.

• The exact time the conversation has started.

175

12. PRACTICAL WORK

Figure 12.34: The History Data Item Page

• The participants of the conversation. Names of the users that are part of the conversa-
tion or have been part of the conversation in the past. Users that are still participating
in the conversation are displayed in green, those that are no longer part of the conver-
sation are displayed in red. Clicking one of these names links to the corresponding
user data item page.

• The exact text the participants of the conversation have said in the conversation.
Note: Like all data on all Data Item Pages also the conversation is updated automat-
ically so it is possible to passively follow the conversation.

Project
An example of this page is shown in figure 12.35. We will now give an overview of the

information shown on the page and discuss links it has to other Data Item Pages:

• The name of the project.

• Currently checked out files. Shows what files are currently checked out for this
project, what action is performed on them, since when each file is checked out and
what user has checked out each file. Clicking the name of one of these users links to
the user data item page of that user.

• Last checkin. Shows what files are last checked in for this project, when this check-in
took place, what user performed the check in and what action was performed on each
file. Clicking the name of the user that performed the check in links to the user data
item page.

• Product backlog items. This shows what product backlog items are associated with
this project. In this overview clicking the product backlog items links to the Data
Item Page of that product backlog item.

176

Feasibility study

Figure 12.35: The Project Data Item Page

• Sprint backlog items. This shows what sprint backlog items are associated with this
project. In this overview clicking the sprint backlog items links to the Data Item Page
of that sprint backlog item.

Sprint
An example of this page is shown in figure 12.36. We will now give an overview of the

information shown on the page and discuss links it has to other Data Item Pages:

• The name of the sprint.

• A description of the sprint.

• The capacity in hours of the sprint.

• The exact start date of the sprint.

• The exact end date of the sprint.

• The current state of the sprint.

• Part of project. The name of the project this sprint is part of. Clicking this name links
to the associated project data item page.

177

12. PRACTICAL WORK

Figure 12.36: The Sprint Data Item Page

• Product backlog items. This shows what product backlog items are associated with
this sprint. In this overview clicking the product backlog items links to the Data Item
Page of that product backlog item.

• Sprint backlog items. This shows what sprint backlog items are associated with this
sprint. In this overview clicking the sprint backlog items links to the Data Item Page
of that sprint backlog item.

Sprint backlog item
An example of this page is shown in figure 12.37. We will now give an overview of the

information shown on the page and discuss links it has to other Data Item Pages:

• The title of the sprint backlog item.

• A description of the sprint backlog item.

• The estimated hours for the sprint backlog item.

• The number of hours remaining until completion.

• The priority of this sprint backlog item.

• The current state of the sprint backlog item.

• Assigned to. Name of the user to which this sprint backlog item is assigned. Clicking
this name links to the user data item page.

• Part of project. Name of the project this sprint backlog item is part of. Clicking this
name links to the respective project data item page.

178

Feasibility study

Figure 12.37: The Sprint Backlog Item Data Item Page

• Part of sprint. Name of the sprint this sprint backlog item is part of. Clicking this
name links to the respective sprint data item page.

• Product backlog items. This shows what product backlog item this sprint backlog
item is associated with. Clicking the product backlog item links to the Data Item
Page of that product backlog item.

Product backlog item
An example of this page is shown in figure 12.38.

Figure 12.38: The Product Backlog Item Data Item Page

179

12. PRACTICAL WORK

We will now give an overview of the information shown on the page and discuss links it has
to other Data Item Pages:

• The title of the product backlog item.

• A description of the product backlog item.

• The estimated hours for the product backlog item.

• The number of hours remaining until completion.

• The priority of this product backlog item.

• The current state of the product backlog item.

• Part of project. Name of the project this product backlog item is part of. Clicking this
name links to the respective project data item page.

• Part of sprint. Name of the sprint this product backlog item is part of. Clicking this
name links to the respective sprint data item page.

• Sprint backlog items. This shows what sprint backlog items this product backlog item
is associated with. Clicking the product backlog items links to the respective Data
Item Page of that product backlog item.

Sprint burndown chart
An example of this page is shown in figure 12.39.

Figure 12.39: The Sprint Burndown Chart

This page only shows the sprint burn down chart.

180

Feasibility study

Product burndown chart
An example of this page is shown in figure 12.40.

Figure 12.40: The Product Burndown Chart

This page only shows the product burn down chart.

Added functionality
Up till now our system has mainly combined and visualized existing information from mul-
tiple sources. However, additional functionality has been added as well. Our system pro-
vides the possibility of requesting to join an ongoing conversation in Office Communicator.
To do this click on the join-icon behind the conversation you want to join, either on the
conversations menu page or the Thickbox of a specific user. When you click this button a
window such a the one shown in figure 12.41. In this screen you should type your OCS
username and click join. Doing so leads to the screen shown which shows the current state
of your join-request. While you are watching this screen the user that originally started
the conversation gets a pop up stating you are requesting to join the conversation, asking
whether or not he wants to allow this. A screenshot of this popup box is shown in figure
12.42. If the user chooses to allow your request the status of the request is updated to ap-
proved on the page and you will soon be added to the conversation. If the user chooses to
decline your request the status of your request is updated to declined on the status page. If
your request to join a certain conversation is declined once, it is not possible to request to
join that conversation again as it will automatically be declined.

181

12. PRACTICAL WORK

Figure 12.41: The join screen

Figure 12.42: The incoming join request pop-up

A final part of our system is the possibility to elect a new leader of the conversation when
the original leader leaves the conversation while others continue the conversation. To ac-
complish this, when the user originally starting the conversation closes the conversation
window when at least two other users are still active in the conversation a screen such as
the one shown in figure 12.43 is popped up asking this user to select one of the other users
to take over the leadership. When he has selected one of the other users and clicked apply
the selected user will be notified that he is the new leader of the conversation with a pop-up
box shown in figure 12.44. From now on this user will receive the request of people asking
to join the conversation. When this user closes the conversation when at least two users are
still active in the conversation he, in turn, will have to elect one of these as the new leader.

Figure 12.43: The popup screen to select a new leader

182

Feasibility study

Figure 12.44: The pop-up screen notification that you are the new leader of a conversation

12.4.4 Validation of the feasibility study

With the system completed we returned to the three companies which took part in the def-
inition of the feasibility study, to confirm the technical feasibility of the three concepts we
implemented. For each of these companies we presented our system to a representative and
requested feedback both regarding the technical feasibility and also regarding their views
of further expansion of our system. All three companies agreed this system confirms the
technical feasibility of the three concepts we attempted to implement. Therefore we con-
clude this feasibility study has shown the technical feasibility of the three concepts. The
companies particularly liked how the information from both systems was linked together
and the increased visibility of the conversations of remote colleagues they would otherwise
have missed. Finally, we discussed a number of ideas for further expansion of the system:

1. Increasing the scalability of the user interface by clustering data and providing the
possibility to filter the data based on certain parameters.

2. Allowing the users to have private conversations by adding the possibility for users to
switch between public and private conversations.

3. Annotating the conversations in a fashion so the content of the conversation can be
seen more easily in a single glance. This can for instance be achieved by showing the
last line of a conversation or a tag-cloud of the content of the conversation, for each
conversation in the conversations list.

4. Creating user interfaces for each of the programs used often in the development pro-
cess, for example Visual Studio.

5. Extending the type of systems we use as a source of information. Examples of such
additional systems are issue management systems, build servers, Enterprise Resource
Planning systems, Enterprise Relationship Management systems, Customer Relation-
ship Management systems and workflow systems.

6. Extending the information that can be deduced by our system by use of artificial
intelligence. By doing this, the system could for instance proactively notify the users
of information that could be useful to them.

183

12. PRACTICAL WORK

12.5 Validity of the practical work

In this section we will reflect on the validity of the entire practical research. The first con-
sideration with respect to the validity concerns the construct validity. Construct validity of
a research means that the research is constructed in a fashion that it develops a sufficient op-
erational set of measures and ensures that subjective judgments are used to collect the data
[143]. To meet these requirements we explicitly defined a research design. In this research
design we described how we were going to collect and analyze the data as precisely as
possible and had this research design reviewed by the supervisor of this research. Another
tactic we use to be able to claim construct validity is using multiple sources of evidence
because a finding or conclusion from a study is much more convincing and accurate if it is
based on several different sources of information. In fact, we used triangulation by first per-
forming document based research (our literature research) and subsequently gathering data
by performing several interviews. The second consideration with respect to the validity of
the research concerns internal validity. Internal validity of research has to do with showing
that inferences made in the research are valid by properly demonstrating a causal relation
between them. In this research however, we do not try to infer matters, but to elicit a list of
requirements for an ICDE to support distributed agile development and a number of con-
cepts which implement these. Therefore internal validity is not applicable to our research.
We also cannot claim external validity, the third consideration which concerns the general-
izability of the findings of a study, outside of the domain our study was carried out in. This
is because generalization of findings outside the domain the study was carried in is not auto-
matic. In order to generalize the results of our research, from the domain of five companies
part of our knowledge group to the domain of all software engineering companies which
develop globally distributed using agile methodologies, this research should be replicated
in a few different domains and produce similar results. We have not performed such exter-
nal replications as of yet and thus cannot claim external validity. We have however done
something similar to replication research but on a smaller scale within the research itself, by
asking the companies to validate each others results. This does not directly influence exter-
nal validity, yet it does improve the results. The fourth and final consideration with respect
to the validity of the research concerns whether or not a research is reliable. Reliability of
research means that if the research is repeated it will produce exactly the same results. We
cannot claim our research is reliable. This is because a large portion of the data is acquired
by semi-structured interviews which, by definition, cannot be repeated in exactly the same
fashion.

12.6 Conclusions and recommendations for further research

In this chapter we described the research we performed based on a recommendation made
in part V of this thesis. In that section we discuss supporting agile GSD with technology by
integrating the supporting technologies into an Integrated Collaborative Development Envi-
ronment (ICDE). In this chapter we have attempted to make a first step into the construction
of such an ICDE by defining a categorized list of requirements of an ICDE, deducing a
number of concepts to materialize these requirements and finally showing the technical fea-

184

Conclusions and recommendations for further research

sibility of three of these concepts by implementing these in a feasibility study.

In this section we will discuss the recommendations of further research we have after con-
ducting the research described in this chapter. We will not reiterate the recommendations
voiced in part V of the research regarding the more theoretical part of our research. These
recommendations still stand, but here we describe what further research we recommend re-
garding the creation of an ICDE. In other words: we will discuss how we think the specific
line of research started in this chapter should be continued.

To start, we argue the line of research discussed in this chapter is viable and further re-
search is warranted. We draw this conclusion based on the experiences we had during this
past year with the companies in our research group, the literature research we performed
and the practical research we did. In our opinion the distances faced when developing glob-
ally distributed can be more easily dealt with, when a system is in place which essentially
does two things. Firstly, it integrates all work related information and effectively provides
this to the users to support the exchange of knowledge and avoid misunderstanding. Sec-
ondly, it helps make remote communication more natural and intuitive and thus supports
the communication process.

Having said this, there is still a lot of work to be done before a system as described above
can be realized. For one, the list of requirements should be validated and possibly extended
by performing research similar to ours with another set of companies. When the list of re-
quirements reaches a state were subsequent research no longer leads to large extensions or
alterations, external validity can be claimed for the domain the companies are elected from.
Subsequently, the concepts we defined to realize certain requirements should be researched
further. Firstly, subsequent validation is required to be certain the concepts actually sup-
port distributed development. Examples of this are cases studies in which these concepts
are tried out and subsequently evaluated by investigating work items and performing inter-
views with the people involved. Secondly the concepts themselves should be investigated
further as well. In our system for example we elected to gather certain types of information
about users and the project from two particular systems. Research in this area would con-
cern deducing what information is useful and from which systems this information can be
gathered. Thirdly, we did not show the technical feasibility of a ”mandatory” open line. A
feasibility research should be done to show this as well. Finally, altogether new concepts
could be defined to realize particular requirements of the requirement list.

185

Bibliography

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile software development
methods. Review and analysis. VTT Publications, 2002.

[2] A. Abran and J.W. Moore. Swebok: Guide to the Software Engineering Body of
Knowledge. IEEE Computer Society, 2004.

[3] P.J. Ågerfalk, B. Fitzgerald, H. Holmström Olsson, and E.Ó. Conchúir. Benefits
of global software development: The known and unknown. In Q. Wang, D. Pfahl,
and D.M. Raffo, editors, ICSP, volume 5007 of Lecture Notes in Computer Science,
pages 1–9. Springer, 2008.

[4] P.J. Ågerfalk, B. Fitzgerald, H. Holmström Olsson, B. Lings, B. Lundell, and E.Ó.
Conchúir. A framework for considering opportunities and threats in distributed soft-
ware development. In In Proceedings of the International Workshop on Distributed
Software Development (DiSD 2005), pages 47–61, August 2005.

[5] T. Allen. Managing the flow of technology. MIT press, 1977.

[6] M. Aoyama. Web-based agile software development. Software, IEEE, 15(6):56–65,
Nov/Dec 1998.

[7] A. Arora and S. Athreye. The software industry and india’s economic development.
Information Economics and Policy, 14(2):253–273, June 2002.

[8] M.A. Awad. A Comparison between Agile and Traditional Software Development
Methodologies. Honours program thesis, University of Western Australia, 2005.

[9] S. Baker, G. McWilliams, and M. Kripalani. Forget the huddled masses: Send nerds.
Business Week, pages 110–116, July 1997.

[10] R. Barner. The new millennium workplace: Seven changes that will challenge man-
agers and workers. The Futurist, 30:14–18, 1996.

[11] R.D. Battin, R. Crocker, J. Kreidler, and K. Subramanian. Leveraging resources in
global software development. Software, IEEE, 18(2):70–77, Mar/Apr 2001.

187

BIBLIOGRAPHY

[12] B Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

[13] K. Beck. Embracing change with extreme programming. Computer, 32(10):70–77,
1999.

[14] K. Beck. Test Driven Development: By Example. Addison-Wesley, 2003.

[15] K. Beck. Extreme Programming Explained: Embrace Change, Second edition.
Addison-Wesley, 2004.

[16] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas. The agile manifesto. The
agile alliance, 2001.

[17] R.E. Berry and B.A.E. Meekings. A style analysis of c programs. Commun. ACM,
28(1):80–88, 1985.

[18] M. Berteig. Agile is not communism. 2007.

[19] L.L. Bierema, J.W. Bing, and T.J. Carter. The global pendulum. Training and Devel-
opment, 56(70):72–78, may 2002.

[20] G.L. Bodic. Mobile Messaging Technologies and Services: SMS, EMS and MMS.
John Wiley & Sons, Inc., 2005.

[21] B. Boehm and R. Turner. Using risk to balance agile and plan-driven methods. Com-
puter, 36(6):57–66, 2003.

[22] B. W. Boehm. A spiral model of software development and enhancement. IEEE
Computer, pages 61–72, May 1988.

[23] B.W. Boehm. Get ready for agile methods, with care. IEEE Computer, 35(1):64–69,
2002.

[24] D. Boland and B. Fitzgerald. Transitioning from a co-located to a globally-distributed
software development team: a case study at analog devices inc. IEE Seminar Digests,
2004(912):4–7, 2004.

[25] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on java
predicates. In International Symposium on Software Testing and Analysis (ISSTA
’02), pages 123–133, July 2002.

[26] E. Bradner, G. Mark, and T.D. Hertel. Team size and technology fit: participa-
tion, awareness,and rapport in distributed teams. Professional Communication, IEEE
Transactions on, 48(1):68–77, March 2005.

188

[27] K. Braithwaite and T. Joyce. Xp expanded: Distributed extreme programming. In
Extreme Programming and Agile Processes in Software Engineering, pages 180–188.
Springer Berlin / Heidelberg, 2005.

[28] M.A. Bunge. Treatise on Basic Philosophy: Volume 4: Ontology II: A World of
Systems. Reidel, 1979.

[29] E. Carmel. Global software teams: collaborating across borders and time zones.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[30] E. Carmel and R. Agarwal. Tactical approaches for alleviating distance in global
software development. IEEE Softw., 18(2):22–29, 2001.

[31] E. Carmel and P. Tjia. Offshoring Information Technology: Sourcing and Outsourc-
ing to a Global Workforce. Cambridge University Press, 2005.

[32] V. Casey and I. Richardson. Practical experience of virtual team software develop-
ment. In European Software Process Improvement, 2004.

[33] T. Chau, F. Maurer, and G. Melnik. Knowledge sharing: Agile methods vs. tayloristic
methods. In IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 302–307. IEEE Computer Society, 2003.

[34] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
haskell programs. In Proceedings of the ACM Sigplan International Conference on
Functional Programming (ICFP-00), volume 35.9 of ACM Sigplan Notices, pages
268–279, N.Y., sep 2000. ACM Press.

[35] H.H. Clark and S.E. Brennan. Grounding in communication. In In Resnick, L.B.,
Levine, J.M. and Teasley, S.D., Perspectives on social shared cognition, pages 127–
149, Washington, DC, USA, 1990. American Psychological Association.

[36] M. Clifton and J. Dunlap. What is scrum? codeproject, 2003.

[37] P. Coad, E. Lefebvre, and J. De Luca. Java Modeling in Color with UML. Prentice
Hall, 1999.

[38] A. Cockburn. Writing effective use cases, The crystal collection for software profes-
sionals. Addison Wesley, 2000.

[39] A. Cockburn. Agile software development. Addison-Wesley, 2002.

[40] A. Cockburn and J. Highsmith. Agile software development: The people factor.
Computer, 34(11):131–133, 2001.

[41] D Cohen, M. Lindvall, and P. Costa. An introduction to agile methods. Advances in
Computers, 62:2–67, 2004.

[42] B. Collins-Sussman, B.W. Fitzpatrick, and C.M. Pilato. Version Control with Sub-
version. O’Reilly & Associates, Sebastopol, California, June 2004.

189

BIBLIOGRAPHY

[43] E.Ó. Conchúir, H. Holmström Olsson, P.J. Ågerfalk, and B. Fitzgerald. Exploring
the assumed benefits of global software development. Global Software Engineering,
2006. ICGSE ’06. International Conference on, pages 159–168, Oct. 2006.

[44] E.Ó. Conchúir, H. Holmström Olsson, P.J. Ågerfalk, and B. Fitzgerald. Global soft-
ware development: Never mind the problems are there really any benefits? In Pro-
ceedings of the ICGSE International Conference on Global Software Engineering.,
2006.

[45] J.M. Corbin and A.C. Strauss. Basics of Qualitative Research: Techniques and Pro-
cedures for Developing Grounded Theory. Sage, 2007.

[46] D. Damian and D. Moitra. Guest editors’ introduction: Global software development:
How far have we come? Software, IEEE, 23(5):17–19, Sept.-Oct. 2006.

[47] D.E. Damian and D. Zowghi. The impact of stakeholders’ geographical distribution
on managing requirements in a multi-site organization. Requirements Engineering,
2002. Proceedings. IEEE Joint International Conference on, pages 319–328, 2002.

[48] T. DeMarco. Slack, Getting Past Burnout, BusyWork, and the Myth of Total Effi-
ciency. Broadway Books, 2002.

[49] G. DeSanctis and P. Monge. Introduction to the special issue: Communication pro-
cesses for virtual organizations. Organization Science, 10(6):693–703, 1999.

[50] C. Ebert and P. De Neve. Surviving global software development. Software, IEEE,
18(2):62–69, Mar/Apr 2001.

[51] C. Ebert, C.H. Parro, R. Suttels, and H. Kolarczyk. Improving validation activities in
a global software development. In ICSE ’01: Proceedings of the 23rd International
Conference on Software Engineering, pages 545–554, Washington, DC, USA, 2001.
IEEE Computer Society.

[52] J.A. Espinosa and E. Carmel. The effect of time separation on coordination costs
in global software teams: a dyad model. System Sciences, 2004. Proceedings of the
37th Annual Hawaii International Conference on, pages 10 pp.–, Jan. 2004.

[53] S. Faraj and L. Sproull. Coordinating expertise in software development teams. Man-
age. Sci., 46(12):1554–1568, 2000.

[54] S.I. Feldman. Make- a program for maintaining computer programs. Software -
Practice and Experience, 9:255–265, 1979.

[55] A. Fontana and J.H. Frey. The interview: From neutral stance to political involve-
ment. In N.K. Denzin and Y.S. Lincoln, editors, The Sage Handbook of Qualitative
Research, pages 695–727. Sage Publications, 2005.

[56] M. Fowler. The new methodology. 2000.

190

[57] M. Fowler. Using agile software process with offshore development. martin-
fowler.com, july 2004.

[58] M. Fowler. Continuous integration. 2006.

[59] R.L. Freeman. Telecommunication System Engineering. John Wiley & Sons, Inc.,
2004.

[60] T. L. Friedman. The World Is Flat: A Brief History of the Twenty-First Century.
Farrar, Straus and Giroux, 2005.

[61] S.J. Galler, B. Peischl, and F. Wotawa. Automatic test generation tools for java based
on design-by-contracttm: A survey. SNA TECHNICAL REPORT SNA-TR-2007-
1P4, Softnet Austria Competence Network, september 1997.

[62] R.L. Glass. Extreme programming: The good, the bad, and the bottom line. IEEE
Softw., 18(6):112, 2001.

[63] C. Greenhalgh and S. Benford. Massive: a collaborative virtual environment for
teleconferencing. ACM Trans. Comput.-Hum. Interact., 2(3):239–261, 1995.

[64] R.E. Grinter, J.D. Herbsleb, and D.E. Perry. The geography of coordination: dealing
with distance in r&d work. In GROUP ’99: Proceedings of the international ACM
SIGGROUP conference on Supporting group work, pages 306–315, New York, NY,
USA, 1999. ACM.

[65] D. Grune. Concurrent versions system, a method for independent cooperation. Tech-
nical report, IR 113, Vrije Universiteit, 1986.

[66] D.-C. Gumm. Mutual dependency of distribution, benefits and causes: An empirical
study. Global Software Engineering, 2007. ICGSE 2007. Second IEEE International
Conference on, pages 113–124, Aug. 2007.

[67] E.T. Hall. Beyond culture. Anchor Press, 1976.

[68] B. Hammersley. Content Syndication with RSS: Sharing Headlines and Information
Using XML. O’Reilly, 2003.

[69] T. Hataria. The confounding world of process methodologies. In Proc. CCEC 2006
Symposium, 2006.

[70] James D. Herbsleb. Global software engineering: The future of socio-technical co-
ordination. In FOSE ’07: 2007 Future of Software Engineering, pages 188–198,
Washington, DC, USA, 2007. IEEE Computer Society.

[71] J.D. Herbsleb and R.E. Grinter. Splitting the organization and integrating the code:
Conway’s law revisited. Software Engineering, 1999. Proceedings of the 1999 Inter-
national Conference on, pages 85–95, 1999.

191

BIBLIOGRAPHY

[72] J.D. Herbsleb and A. Mockus. An empirical study of speed and communication in
globally distributed software development. Software Engineering, IEEE Transac-
tions on, 29(6):481–494, June 2003.

[73] J.D. Herbsleb, A. Mockus, T.A. Finholt, and R.E. Grinter. Distance, dependencies,
and delay in a global collaboration. In CSCW ’00: Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages 319–328, New York,
NY, USA, 2000. ACM.

[74] J.D. Herbsleb and D. Moitra. Global software development. Software, IEEE,
18(2):16–20, Mar/Apr 2001.

[75] J.D. Herbsleb, D.J. Paulish, and M. Bass. Global software development at siemens:
experience from nine projects. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 524–533, New York, NY, USA, 2005.
ACM.

[76] G. Hertel, S. Geister, and U. Konradt. Managing virtual teams: A review of cur-
rent empirical research. Human Resource Management Review, 15(1):69–95, March
2005.

[77] J. Highsmith. Messy, exiting, and anxiety-ridden: Adaptive software development.
American Programmer, 10(1), 1997.

[78] J. Highsmith and R.K. Wysocki. How agile are organizations today? Cutter Consor-
tium, 7(12), dec 2006.

[79] J.A. Highsmith. Adaptive Software Development: A Collaborative Approach to Man-
aging Complex Systems. Addison Wesley, 2000.

[80] J.A. Highsmith. Agile Software Development Ecosystems. Addison Wesley, 2002.

[81] G. Hofstede. Cultural constraints in management theories. Academy of Management
Executive, 7(1):81–94, 1993.

[82] B. Holmström Olsson, B. Fitzgerald, P.J. Ågerfalk, and E.Ó. Conchúir. Agile prac-
tices reduce distance in global software development. Information Systems Develop-
ment, 23(3):7–18, 2006.

[83] H. Holmström Olsson, E.Ó. Conchúir, P.J. Ågerfalk, and B. Fitzgerald. Global soft-
ware development challenges: A case study on temporal, geographical and socio-
cultural distance. Global Software Engineering, 2006. ICGSE ’06. International
Conference on, pages 3–11, Oct. 2006.

[84] J.C. Jacobs and J.H. van Moll. Effects of Virtual Product Development on Product
Quality and their Influencing Factors. PhD, Eindhoven University of Technology,
2007.

192

[85] I. Jacobson, G. Booch, and J. Rumbaugh. The unified process. IEEE Softw.,
16(3):96–102, 1999.

[86] K.H. Judy and I. Krumins-Beens. Great scrums need great product owners: Un-
bounded collaboration and collective product ownership. In Proceedings of the 41st
Hawaii International Conference on System Sciences, page 462. IEEE Computer So-
ciety, 2008.

[87] J. Kalermo and J. Rissanen. Agile software development in theory and practice.
Master thesis, University of jyväskylä, 2002.

[88] B. Kaplan and J.A. Maxwell. Qualitative research methods for evaluating computer
information systems. In J.G. Anderson and C.E. Aydin, editors, Evaluating the Or-
ganizational Impact of Healthcare Information Systems, Health Informatics, pages
30–55. Springer, 2005.

[89] P. Keil, D.J. Paulish, and R.S. Sangwan. Cost estimation for global software develop-
ment. In EDSER ’06: Proceedings of the 2006 international workshop on Economics
driven software engineering research, pages 7–10, New York, NY, USA, 2006. ACM.

[90] L. Kiel. Experiences in distributed development: a case study. In The International
Workshop on Global Software Development, ICSE, pages 44–47, 2003.

[91] M. Kircher, P. Jain, A. Corsaro, and D. Levine. Distributed extreme programming. In
Proceedings of the International Conference on eXtreme Programming and Flexible
Processes in Software Engineering, pages 20–23, May 2001.

[92] M. Korkala and P. Abrahamsson. Communication in distributed agile development:
A case study. In EUROMICRO ’07: Proceedings of the 33rd EUROMICRO Con-
ference on Software Engineering and Advanced Applications, pages 203–210, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[93] C. Larman. Agile & Iterative Development - A Manager’s Guide. Addison-Wesley,
2004.

[94] L. Layman, L. Williams, D. Damian, and H. Bures. Essential communication prac-
tices for extreme programming in a global software development team. Information
& Software Technology, 48(9):781–794, 2006.

[95] N.G. Leveson. Software engineering: Streching the limits of complexity. Communi-
cations of the ACM, 40(2):129–131, February 1997.

[96] B. Lings, B. Lundell, P.J. Ågerfalk, and B. Fitzgerald. A reference model for suc-
cessful distributed development of software systems. Global Software Engineering,
2007. ICGSE 2007. Second IEEE International Conference on, pages 130–139, Aug.
2007.

[97] J. Lipnack and J. Stamps. Virtual Teams: People Working Across Boundaries with
Technology, Second Edition. John Wiley & Sons, Inc., New York, NY, USA, 2000.

193

BIBLIOGRAPHY

[98] D. Marinov and S. Khurshid. Testera: A novel framework for automated testing of
java programs. In Proceedings of the 16th IEEE Conference on Automated Software
Engineering (ASE 2001). IEEE, nov 2001.

[99] P.E. McMahon. Distributed development: Insights, challenges, and solutions.
CrossTalk - The Journal of Defense Software Engineering, November 2001.

[100] A. Mehrabian. Nonverbal communication. Aldine & Atherton, 1972.

[101] A. Metiu and B. Kogut. Distributed knowledge and the global organization of soft-
ware development. Oxford Review of Economic Policy, 17(02):248–264, 2002.

[102] M.B. Miles and M. Huberman. Qualitative Data Analysis: An expanded sourcebook.
Sage, 1994.

[103] A. Mockus and J. Herbsleb. Challenges of global software development. Software
Metrics, IEEE International Symposium on, 0:182, 2001.

[104] A. Mockus and D.M. Weiss. Globalization by chunking: a quantitative approach.
Software, IEEE, 18(2):30–37, Mar/Apr 2001.

[105] N.B. Moe and D. Smite. Understanding lacking trust in global software teams:
A multi-case study. In J. Münch and P. Abrahamsson, editors, Product-Focused
Software Process Improvement, 8th International Conference, PROFES 2007, Riga,
Latvia, July 2-4, 2007, Proceedings, volume 4589 of Lecture Notes in Computer
Science, pages 20–34. Springer, 2007.

[106] G.M. Olson and J.S. Olson. Distance matters. Human-Computer Interaction,
15(2/3):139–178., Sep 2000.

[107] N. Oza, T. Hall, A. Rainer, and S. Grey. Critical factors in software outsourcing:
a pilot study. In WISER ’04: Proceedings of the 2004 ACM workshop on Interdis-
ciplinary software engineering research, pages 67–71, New York, NY, USA, 2004.
ACM.

[108] M. Paasivaara and C. Lassenius. Using iterative and incremental processes in global
software development. IEE Seminar Digests, 2004(912):42–47, 2004.

[109] M. Paasivaara and C. Lassenius. Could global software development benefit from
agile methods? Global Software Engineering, 2006. ICGSE ’06. International Con-
ference on, pages 109–113, Oct. 2006.

[110] S.R. Palmer and M. Felsing. A Practical Guide to Feature-Driven Development.
Pearson Education, 2001.

[111] K. Parvathanathan, A. Chakrabarti, P.P. Patil, S. Sen, N. Sharma, and Y. Johng.
Global development and delivery in practice experiences of the IBM Rational India
Lab. IBM, International Technical Support Organization, 2007.

194

[112] M.Q. Patton. Qualitative Evaluation and Research Methods. Sage Publications,
1990.

[113] E.R. Pedersen, K McCall, T.P Moran, and F.G. Halasz. Tivoli: an electronic white-
board for informal workgroup meetings. In CHI ’93: Proceedings of the INTERACT
’93 and CHI ’93 conference on Human factors in computing systems, pages 391–398,
New York, NY, USA, 1993. ACM.

[114] C. Peersman, S. Cvetkovic, P. Griffiths, and H. Spear. The global system for mobile
communications short message service. Personal Communications, IEEE, 7(3):15–
23, Jun 2000.

[115] D.E. Perry. Version control in the inscape environment. In Proceedings of the 9th
International Conference on Software Engineering, pages 142–149, March 1987.

[116] K. Pohl. The three dimensions of requirements engineering: a framework and its
applications. Information Systems, 19(3):243–258, 1994.

[117] C. J. Poole. Distributed product development using extreme programming. In Ex-
treme Programming and Agile Processes in Software Engineering, 5th International
Conference, XP 2004, Garmisch-Partenkirchen, Germany, June 6-10, 2004, Proceed-
ings, volume 3092 of Lecture Notes in Computer Science, pages 60–67. Springer,
2004.

[118] R.J. Potter. Electronic Mail. Science, 195(4283):1160–1164, 1977.

[119] I.S.W.B. Prasetya, T.E.J. Vos, and A. Baars. Trace-based reflexive testing of oo pro-
grams with t2. Software Testing, Verification, and Validation, 2008 1st International
Conference on, pages 151–160, April 2008.

[120] R. Prikladnicki, J.L.N. Audy, D. Damian, and T.C. de Oliveira. Distributed software
development: Practices and challenges in different business strategies of offshoring
and onshoring. Global Software Engineering, 2007. ICGSE 2007. Second IEEE In-
ternational Conference on, pages 262–274, Aug. 2007.

[121] R. Prikladnicki, R. Evaristo, D. Damian, and J.L.N. Audy. Conducting qualitative
research in an international and distributed research team: Challenges and lessons
learned. In Proceedings of the 41st Annual Hawaii International Conference on
System Sciences (HICSS 2008), page 442. IEEE Computer Society, 2008.

[122] K.F. Punch. Introduction to social research: Quantitative and qualitative ap-
proaches. Sage, 1998.

[123] J. Pyysiäinen. Building trust in global inter-organizational software development
projects: Problems and practices. In The International Workshop on Global Software
Development, ICSE, pages 69–74, 2003.

[124] F. Rafii. How important is physical collocation to product development success?
Business Horizons, 38(1):78–84, 1995.

195

BIBLIOGRAPHY

[125] B. Ramesh, L. Cao, K. Mohan, and P. Xu. Can distributed software development be
agile? Commun. ACM, 49(10):41–46, 2006.

[126] S.A. Rice. Hypotheses and verifications in clifford r. shaw’s studies of juvenile delin-
quency. In Methods in Social Science, pages 549–565. University of Chicago Press,
1931.

[127] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A. Hopper. Virtual network com-
puting. IEEE Internet Computing, 2(1):33–38, 1998.

[128] W. Royce. Managing the development of large software systems. In Proc. IEEE
Wescon, pages 1–9, August 1970.

[129] O. Salo and P. Abrahamsson. Agile methods in european embedded software devel-
opment organisations: a survey on the actual use and usefulness of extreme program-
ming and scrum. Software, IET, 2(1):58–64, February 2008.

[130] R. Sangwan, M. Bass, N. Mullick, D.J. Paulish, and J. Kazmeier. Global Software
Development Handbook. Auerbach Publications, 2007.

[131] S. Sarker and S. Sahay. Implications of space and time for distributed work: an
interpretive study of us-norwegian systems development teams. Eur. J. Inf. Syst.,
13(1):3–20, 2004.

[132] K. Schwaber. Scrum development process. In OOPSLA’95 Workshop on Business
Object Design and Implementation, 1995.

[133] K. Schwaber and Beedle M. Agile Software Development with Scrum. Alan R. Apt,
first edition, 2001.

[134] H.J. Shatz and A.J. Venables. The geography of international investment. Policy
Research Working Paper Series 2338, The World Bank, May 2000.

[135] M. Simons. Internationally agile. InformIT, march 2002.

[136] S.J. Taylor and R. Bogdan. Introduction to Qualitative Research Methods. John
Wiley & Sons, 1984.

[137] Shine Technologies. Agile methodologies survey results. 2003.

[138] W.F. Tichy. Tools for software configuration management. In Proceedings of the
International Workshop on Software Version and Configuration Control, pages 1–20,
January 1988.

[139] J. van Moll, J. Jacobs, R. Kusters, and J. Trienekens. Defect detection oriented life-
cycle modeling in complex product development. Information and Software Tech-
nology, 46(10):665–675, august 2004.

196

[140] M.-A. Vanzin, M.B. Ribeiro, R. Prikladnicki, I. Ceccato, and D. Antunes. Global
software processes definition in a distributed environment. Software Engineering
Workshop, 2005. 29th Annual IEEE/NASA, pages 57–65, April 2005.

[141] L. Williams. A survey of agile development methodologies. 2004.

[142] C. Wohlin, M. Höst, and K Henningsson. Empirical research methods in software
engineering. In Reidar Conradi and Alf Inge Wang, editors, Empirical Methods
and Studies in Software Engineering, Experiences from ESERNET, volume 2765 of
Lecture Notes in Computer Science, pages 7–23. Springer, 2003.

[143] R.K. Yin. Case study research : design and methods. SAGE Publications, Thousand
Oaks, California, 1994.

[144] D.E. Zand. The leadership triad : knowledge, trust, and power. Oxford University
Press, New York, 1997.

197

Appendix A

Interview Structure

Main Goal:
To elicit the main requirements of an ICDE

Sub Goal:
To elicit:

• How cooperation in both co-located and distributed teams takes place

• What exactly is more difficult in a distributed team in comparison with a co-located
team with respect to cooperation

• How these problems are currently dealt with and how satisfying this is

Guiding questions:

1. Eliciting context information:

a) What kind of development does your company do (product versus project de-
velopment)?

b) What kind of development teams does your company have? Examples of vari-
ables to describe the development teams are:

i. The number of teams
ii. The geographical location

iii. The size
iv. The social cultural background
v. Do different teams cooperate in distributed fashion or are the teams actually

distributed themselves?

c) Describe an ”average” work day of yourself

d) How well is the cooperation:

i. Within the co-located teams
ii. Within the distributed teams

199

A. INTERVIEW STRUCTURE

e) How does this correspond with you initial expectations?

2. Eliciting common user stories or scenarios with respect to collaborative develop-
ment
Here we attempt to asses in what way several activities carried out in the development
process can be considered collaborative activities. The activities we consider are the
following:

a) Planning

b) Requirement clarification

c) Design

d) Quality assurance

i. Testing
ii. Code review

e) Construction

f) Integration

g) Maintenance

The leading questions we ask for each of these activities are:

a) How is this activity performed at your company?

b) How is information regarding it being documented and communicated? (How
is knowledge regarding the activity being shared?)

c) When carrying out this activity with whom do you cooperate and in what way?

d) How does being physically distributed from you colleagues make this activity
harder?

e) How do you attempt to solve these issues?

f) What are the limitations of these solutions?

3. Eliciting the negative impact of working in a distributed setting on informal, non
work-related, communication

a) To what degree do you communicate in an informal non work-related fashion
with your co-located colleagues

b) To what degree do you communicate in an informal non work-related fashion
with your colleagues who are located elsewhere

c) (If there is a difference between a. and b.) Describe the reason for this difference

d) How do you try to prevent this difference?

e) Do you have ideas of yourself on how this situation could be improved upon?
(Both technological and non-technological)

200

4. Eliciting the extend to which technological support is currently integrated and
ideas on how to improve this
Here we split the discussion into three categories:

a) Integration between communication related technologies

b) Integration between software development related technologies

c) Integration between communication related and software development related
technologies

The leading questions we ask for each of these are:

a) What tooling do you use for this purpose?

b) What goal does using each of these technologies have?

c) Describe the integration between different technologies of this category

d) Propose improvements or extensions to integrating the supporting technologies

201

Appendix B

Requirements of an ICDE

Main
Allow for efficient collaboration among the people of the development team to enable the
creation of high quality software.

Sub-Requirements:
RC1: Incorporate the knowledge about the project into the development environment
RC2: Facilitate inter-personal contact
RC3: Derive information from the system

Coupling requirements to requirement categories:
RC1: Integration of R2 and R3 into the development environment
RC2: Integration of R1 and R3 into the development environment
RC3: Integration of R4 and R5 into the development environment

RC1: Incorporate the knowledge about the project into the development environment

• Context linking (annotate work items)

◦ Linking of work items to related actors

? example: The initial reporter of an issue linked to that issue
? example: The author of a piece of code to that piece of code

◦ Link work items to a related discussion

◦ Link related work items together

? example: A requirement linked to the corresponding test cases, use cases
and issues.

? example: A commit on a branch linked to a resolved work item (and possi-
bly also to an entry in the activity-list in the HRM-system)

• Provide a ”dashboard” with the current status of the project

◦ Functional/Integration/regression/metrics test status

203

B. REQUIREMENTS OF AN ICDE

◦ Organizational

? Indicator for percentage of planned tasks which are completed
? Divergence with respect to planning
? example: SCRUM board / burn down chart

◦ Overview of configuration machines (both for testing and maintenance) and if
they are patched sufficiently

Clarification: A dashboard regards an overview with red/orange/yellow and
green squares indicating the status

• Notification of certain events regarding the system

◦ example: failed build

? author of a failed test
? author of a failed use case

◦ Various communication media

? RSS, IM, mail, IRC, Twitter
? The dashboard

RC2: Facilitate inter-personal contact Technological

• Make it easy to change the richness of communication with a specific individual

◦ This regards switching between communication media

◦ This includes switching from no contact at all to an active conversation

• Status of people should be clear, up-to-date and accurate (connected with all com-
munication media)

◦ example: Phone occupied

◦ example: Agenda

◦ example: Camera on room (overview)
Just to see people sit behind their computers and work

◦ example: Status based on the view people have in their development environ-
ment

• The following communication media are desirable:

◦ Text

◦ Audio

◦ Video

◦ Context sharing (screen sharing)
Seeing the others context is more important than being able to directly influence
it

204

◦ Visualization

? example: Drawing something on a board

Non-technological approaches

• Distributed meetings Explicit process (when large-scale)

◦ Planning poker

◦ Clear agenda

◦ With discussion-leader

? Being able to put questions on hold
? All sorts of other administration rights

Uniform discussion environment

◦ Environment in which the communication with all actors in the meeting is uni-
form

? Pro: prevent co-located people from having a local discussion which other
actors are not able to follow

? Pro: Actors feel more equally connected to all participants in the discussion
? Con: This approach might seem very unnatural when you are talking to a

co-located colleague in the next room
? Con: The advantages with respect to having a discussion when being col-

located are lost between the actors that could potentially share the same
room

• Improving informal communication
Why?

◦ To lower the threshold to ask for help

? Because a better view of your colleagues capabilities
? To know how to approach your colleagues (socially)
? When asking for help someone that knows you socially will be more willing

to help you

◦ To improve the overall working experience of the developers

How?

◦ Work a certain period of time per week (half a day) with a certain remote col-
league (via webcam)

◦ Physically visiting the remote site for a certain period of time

◦ Making use of ”informal” communication media such as: Weblogs/newsletter/Twitter
etc.

205

B. REQUIREMENTS OF AN ICDE

? Colleagues will know something about each other
? Colleagues will have a topic to start a random conversation

◦ Exchange of ambassadors between team which will act as a proxy between their
new and original site.

◦ Performing the first part of the project same site
? Colleagues will get to know each other better
? Doing the initial work together leads to feeling of common ownership

which in turn increased the teamness
◦ Periodical presentations of separate teams (which collaborate) will help to keep

clear what everyone is doing
? People will feel more like a team
? Contacting people you have seen before is easier

◦ Asking something via phone(audio) as apposed to chat could help to initiate
informal contact

◦ Calling remote contacts without a specific topic to discuss once a week will ease
asking each other questions, updating each other and informal communication

? Unconditional contact appointments
◦ Having a specific remote contact person (virtual neighbor or ’buddy’)

? Have regular contact
? Helps to keep the distributed teams connected

RC3: Derive information from the system

• Connecting the continuous build server to the quality assurance to produce continu-
ous quality assurance

◦ Functional testing
◦ Code-metrics (static analysis)

? Objective assessment of code
◦ Regression testing

• An environment for multiple versions of the software

◦ A full configuration of a development machine for each version (including the
state of the IDE)

? Virtual machine image
? So, patched just like the machine(s) on which this version was last devel-

oped
◦ For each version a collection of configurations (virtual machines) on which that

specific version must work to be able to automatically test on.
? So, a configuration with the different versions of the software the system

works with (like different OS, different version of an OS, different VM,
different database architectures etc.)

206

