
LOW AND HIGH FIDELITY AERODYNAMIC
SIMULATIONS FOR AIRBORNE WIND
ENERGY BOX WINGS

LOW AND HIGH FIDELITY AERODYNAMIC SIMULATIONS FOR
AIRBORNE WIND ENERGY BOX WINGS

by

Gabriel Eduardo Buendía Vela

to complete the subject AE4997: Educational Research Project
at the Delft University of Technology

to be defended publicly on Friday July 1, 2022 at 10:00 AM.

Student number: 5672546
Project duration: February, 2022-June, 2022
Thesis committee: Dr.-Ing. R. Schmehl Tu Delft, chair and daily supervisor

Dr. A. H van Zuijlen Tu Delft, committee member
Dr. D. J. N. Allaerts Tu Delft, committee member
PhD candidate D. Eijkelhof Tu Delft, daily co-supervisor

Copyright © 2022 by G.E. Buendía Vela

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

PREFACE

This work has been a rewarding experience for me in the fields of aerodynamics and automation. I have
gained much more experience in both fields than I initially had and I am leaving a tool for future generations
that will help with the research on aerodynamics and wind energy. I believe that my research could serve as
the basis for faster exploration of AWE concepts, saving computational time and engineering efforts thanks
to task automation.

In the first place, I would like to express my sincere gratitude to my supervisor, Dr.-Ing Roland Schmehl,
who gave me the opportunity to be part of this project and introduced me to the fascinating world of Airborne
Wind Energy. I want to thank him for his patience, interest and the confidence placed in me to present my
work in an international conference. My appreciation also extends to my co-supervisor PhD candidate Dylan
Eijkelhof, who guided me when technical difficulties appeared and read each of this chapters of this work
with dedication. Last but not least, I want to acknowledge with gratitude, the support and love of my parents,
who encouraged me to move forward in difficult times and support me in all decisions I have taken.

v

ABSTRACT

Airborne wind energy systems convert the kinetic energy of wind into usable power. In general terms, this
power is proportional to the ratio C 3

L/C 2
D of aerodynamic coefficients. From a structural perspective, the

thickness-to-chord ratio of conventional AWE wings needs to be high to withstand the high aerodynamic
loads. The box-wing concept opens the possibility of exploring a broader range of airfoils since structural
loads can be redistributed with reinforcements between the two wings. This study aims to develop an au-
tomatic process for constructing a finite volume CFD mesh from a parametrized box-wing geometry, which
is generally the most time-demanding part of CFD analysis. These analyses provide an accurate estimate
of the viscous drag acting on box wing designs. In addition, this study aims to define a criterion of equiva-
lence between a box wing and a conventional wing, and obtain the reference design by optimization using
panel methods for fast aerodynamic computations. The aerodynamic tools used for this study are a steady
panel method (APAME) and Reynolds Averaged Navier-Stokes simulations using a k-ω SST turbulence model
(OpenFOAM). The computational framework is ultimately suitable for aero-structural optimization of a box-
wing because of the high degree of automation and the reduced number of design parameters.

vii

CONTENTS

Preface v

Abstract vii

List of Figures xi

List of Tables xiii

Nomenclature xiv

1 Introduction 1
1.1 AWES . 3
1.2 Motivation for this work. 4
1.3 Outline . 4

2 Literature review 5
2.1 Monoplanes. 5
2.2 Biplanes. 5
2.3 Box wings . 6
2.4 Box wings on AWEs . 6
2.5 Box wings aerodynamics . 7
2.6 Socieconomic impact . 9
2.7 Regulations and legal framework . 11

3 Objectives and methodology 14
3.1 Objectives. 14
3.2 Tools . 14
3.3 Methodology . 15

3.3.1 Geometry generation and panel method solution . 15
3.3.2 CFD meshing . 15
3.3.3 CFD simulation and postprocessing . 17

4 Computational Fluid Dynamics 21
4.1 Panel methods . 21
4.2 Reynolds-averaged Navier-Stokes equations . 22
4.3 Discretization . 23
4.4 Turbulence modelling. 24
4.5 Solving the equations in OpenFOAM . 27

5 Vehicle definition, mesh and initial setup 29
5.1 Box-wing parameters . 29
5.2 Validation set . 30
5.3 APAME mesh . 30

5.3.1 APAME mesh resolution study . 31
5.4 CFD mesh. 33

5.4.1 CFD surface mesh . 34
5.4.2 CFD volume mesh . 36

5.5 CFD mesh resolution study . 39
5.6 CFD simulation setup . 40

5.6.1 Initial values and boundary conditions . 42
5.6.2 Numerical schemes and solver settings . 43
5.6.3 Monitoring residuals and mesh resolution study. 45
5.6.4 Comparison to experimental data . 47

ix

x CONTENTS

6 Post-processing 49
6.1 Post-processing quantities . 49
6.2 Post-processing results . 50

6.2.1 End of the linear region . 51
6.2.2 Maximum lift coefficient . 51
6.2.3 Stalled wing . 55

6.3 Results discussion. 58

7 Parametric study and optimization 61
7.1 Equivalent wing . 61
7.2 Parametric study . 61
7.3 Optimization . 66
7.4 Limitations . 68

8 Conclusions 71
8.1 Conclusions. 71
8.2 Future work . 71

Bibliography 73

A Geometric computations 78
A.1 Center of rotation . 78
A.2 Element size in a curve . 78

B Code 80
B.1 Box wing parametrization. 80

B.1.1 Airfoil generation . 83
B.1.2 Center of rotation . 83
B.1.3 Circunference arc . 84
B.1.4 Swap matrix . 84

B.2 Box wing APAME . 85
B.2.1 APAME input file . 89
B.2.2 Quadrilateral area . 92

B.3 Box wing Pointwise . 92
B.3.1 Compute number of elements . 97
B.3.2 Counter update . 98
B.3.3 Pointwise connector . 98
B.3.4 Pointwise curve . 99
B.3.5 Pointwise domain . 99
B.3.6 Pointwise export to OpenFOAM . 101
B.3.7 Pointwise farfield . 103
B.3.8 Pointwise mesh . 105
B.3.9 Pointwise mirror . 106
B.3.10 Pointwise points . 107
B.3.11 Pointwise rotation . 107
B.3.12 Pointwise save and exit. 109
B.3.13 Pointwise source . 109
B.3.14 Pointwise surface . 111
B.3.15 Rotation matrix . 112
B.3.16 Scaling matrix . 112
B.3.17 Translation matrix . 113

B.4 Other useful functions . 113
B.4.1 Cluster job . 113
B.4.2 Monitor simulation SimpleFOAM . 114

LIST OF FIGURES

1.1 Change in global electricity generation [1]. 1
1.2 Annual change in CO2 related to energy [1]. 2
1.3 Change in electricity generation by source and scenario from 2020 to 2030 [1]. 2
1.4 Global wind annual net capacity additions from 2020 to 2025 [2]. 3
1.5 Classification of AWE systems [8]. 3

2.1 Examples of rigid monoplanes applied to AWE systems: M600 [13] (left) and AP-3 [14] (right) . . 5
2.2 Best wing system according to Prandtl [20]. 6
2.3 Aerodynamic efficiency comparison taken from Andrews [22] (Adapted from Gall & Smith [21]). 7
2.4 Induced drag relative to an elliptically loaded monoplane comparison taken from Andrews et

al. [22](Adapted from Prandtl [20]). 7
2.5 Kite designed by Joby Energy taken from Cherubini et al. [7]. 8
2.6 Kite design taken from KiteKraft [24]. 8
2.7 Box-wing geometry analyzed in Khan [26]. 9
2.8 Box-wing geometry analyzed in Gagnon & Zingg [27]. 9
2.9 Box-wing geometry analyzed in Andrews & Perez [28]. 10
2.10 Biplane kite design proposed in Bauer et al. [29]. 10
2.11 Airborne wind energy main contributors in 2021 [32]. 12
2.12 Potential markets for AWEs deployment [11]. 13

3.1 Flowchart of the whole process . 16
3.2 Flowchart of the geometry generation and panel method solution group 18
3.3 Flowchart of the CFD mesh generation group . 19
3.4 Flowchart of the CFD simulation and postprocessing group . 20

5.1 Geometry definition and parameters . 30
5.2 Box wing parametrization in MATLAB . 32
5.3 Box wing mesh for APAME . 32
5.4 APAME mesh resolution . 33
5.5 Pointwise geometry(pink)/mesh(yellow) difference . 35
5.6 Cant radius region . 36
5.7 Pointwise distribution of the area ratio . 37
5.8 Pointwise distribution of the skewness equiangle . 37
5.9 Cell non-orthogonality [67] . 38
5.10 Pointwise volume mesh quality metrics . 39
5.11 Pointwise volume mesh boundary layer . 40
5.12 Pointwise volume mesh: hexahedra (blue), pyramids (yellow) and tetrahedra (red) 41
5.13 Pointwise mesh refinement cases: a) Low resolution case ≈ 28M cells, b) Medium resolution

case ≈ 51M cells and c) High resolution ≈ 83M cells . 42
5.14 Monitoring process . 45
5.15 Comparison between CFD and experiments . 47

6.1 Schematic representation of the plane normal to the geometry (Not to scale) 50
6.2 Airfoil stall classification by Gault [81] . 51
6.3 Airfoil Cp distribution at different sections for α = 12.3◦ . 52
6.4 Cp and Ux contours at different span sections for α = 12.3◦ . 53
6.5 Vorticity contours for α = 12.3◦ . 54
6.6 Airfoil Cp distribution at different sections for α = 18.5◦ . 55
6.7 Cp and Ux contours at different span sections for α = 18.5◦ . 56

xi

xii LIST OF FIGURES

6.8 Vorticity contours for α = 18.5◦ . 57
6.9 Airfoil Cp distribution at different sections for α = 21◦ . 58
6.10 Cp and Ux contours at different span sections for α = 21◦ . 59
6.11 Vorticity contours for α = 21◦ . 60

7.1 Conventional wing design features from Eijkelhof [44] . 62
7.2 Sweep on wingspan . 63
7.3 Sweeps on h/b and s/c . 64
7.4 Sweeps on λ and Sl /Sr e f ,CW . 66
7.5 First sweep for optimum values . 67
7.6 Second sweep for optimum values . 69

A.1 Graphic representation of the center of rotation taking as an example the points on the LE . . . 79
A.2 Graphic representation of the element size computation in a curve 79

LIST OF TABLES

4.1 Standard k −ϵ coefficients . 25
4.2 k −ω coefficients . 25
4.3 Computed spreading rate of free shear flows . 26
4.4 k −ωSST coefficients . 27

5.1 Geometrical parameters . 31
5.2 Reference conditions . 31
5.3 Experimental data . 31
5.4 APAME geometry/mesh resolution setup . 33
5.5 Relative error (%) in CL for different mesh resolutions . 33
5.6 Relative error (%) in CL for different wing stagger . 33
5.7 Geometrical divisions . 35
5.8 Pointwise surface mesh parameters . 35
5.9 Pointwise volume mesh parameters . 38
5.10 Pointwise refinement parameters . 40
5.11 Initial and boundary conditions definition . 43
5.12 Numerical schemes used . 44
5.13 Solver control settings used . 44
5.14 Cauchy convergence on CL . 45
5.15 Cauchy convergence on CD . 46
5.16 Numerical values for CL . 46
5.17 Numerical values for CD . 46
5.18 Relative error (%) using CFD on CL . 47
5.19 Relative error (%) using CFD on CD . 48

7.1 Geometrical parameters for the conventional wing [44] . 62
7.2 Reference conditions for the conventional wing [44] . 62
7.3 Geometrical parameters sweeping on wingspan . 63
7.4 Geometrical parameters sweeping on s/c and h/b . 64
7.5 Geometrical parameters sweeping on λ and Sl /Sr e f ,CW . 65
7.6 First sweep on parameters for optimal box wing design . 67
7.7 Parameters and results from first sweep for optimum values . 68
7.8 Second sweep on parameters for optimal box wing design . 69
7.9 Parameters and results from second sweep for optimum values . 69
7.10 Results comparison between conventional and box wing designs 70

xiii

NOMENCLATURE

ACRONYMS

AEP Annual Energy Production
AGL Above Ground Level
APAME Aircraft 3D Panel Method
API Application Programming Interface
ARP Aerospace Recommended Practices
AWE Airborne Wind Energy
AWES Airborne Wind Energy Systems
BW Box Wing
CAD Computer-Aided Design
CAPEX Capital Expenditures
CFD Computational Fluid Dynamics
CRF Capital Recovery Factor
CS Certification Specifications
CW Conventional Wing
EASA European Aviation Safety Agency
FDM Finite Difference Method
FEM Finite Element Method
FG-AWES Fly-Gen Airborne Wind Energy System
FVM Finite Volume Method
GAMG Geometric Algebraic Multi Grid
GG-AWES Ground-Gen Airborne Wind Energy System
ICC Initial Capital Cost
IEA International Energy Agency
LCOE Levelized Cost of Energy
LEI Leading Endge Inflatable
MoC means of Compliance
NAA National Aviation Authority
NACA National Advisory Committee for Aeronautics
NZE Net Zero Emissions
OMC Operations and Maintenance Costs
RANS Reynolds Averaged Navier-Stokes
RPAS Remotely Piloted Aircraft Systems
SC Special Conditions
SIMPLE Semi-Inplicit Method for Pressure Linked Equations
SIMPLEC Semi-Inplicit Method for Pressure Linked Equations Consistent
SST Shear Stress Transport
STEPS Stated Policies Scenario
TKE Turbulent Kinetic Energy
TRL Technological Readiness Level
UNCCTEC United Nations Climate Change Technology Executive Committee
WPI Wind Potential Index

LATIN SYMBOLS

A Area of the wing skin [m2]
ABW Area of the box wing skin [m2]

xiv

NOMENCLATURE xv

ACW Area of the conventional wing skin [m2]
a1 k-ω SST coefficient [−]
B Richardson extrapolation coefficient [−]
b Wingspan [m]
bBW Wingspan box wing [m]
bCW Wingspan conventional wing [m]
Cϵ1 Standard k-ϵ coefficient [−]
Cϵ2 Standard k-ϵ coefficient [−]
Cµ Standard k-ϵ coefficient [−]
CD,power Non intrinsic drag forces coefficient [−]
CL,APAME 3D Lift coefficient from APAME [−]
CL,BW 3D Lift coefficient box wing [−]
CL,CW 3D Lift coefficient conventional wing [−]
CL,E xper i ment al 3D Lift coefficient from experimental data [−]
CLα Lift coefficient slope [−]
CL0 Lift Coefficient at zero angle of attack [−]
cr 1 Lower wing root chord [m]
cr 2 Upper wing root chord [m]
ct1 Lower wing tip chord [m]
ct2 Upper wing tip chord [m]
CD 3D Drag coefficient [−]
C f Skin friction coefficient [−]
CL 3D Lift coefficient [−]
cl Local chord lower wing [m]
Cp Pressure coefficient [−]
cu Local chord upper wing [m]
D Drag force [N]
E Specific total energy [Jkg−1]
f⃗e External specific forces [ms−2]
f Variable of interest for Richardson extrapolation [−]
H Specific enthalpy [Jkg−1]
h Box wing height [m]
i Aparent order of the numerical method [−]
I Integral difference in lift coefficient curves [−]

I Identity tensor [−]
k Turbulent kinetic energy [m2s−2]
kc Thermal conductivity [W m−1K −1]
ki Initial turbulent kinetic energy [m2s−2]
L Lift force [N]
lc Characteristic length [m]
lm Turbulent length scale [m]
M Mach number [−]
M AC Mean aerodynamic chord [m]
M ACl Mean aerodynamic chord lower wing [m]
M ACu Mean aerodynamic chord upper wing [m]
Na f Number of points to discretize half airfoil [−]
Nbl Number of lower wing half spanwise sections [−]
Nbu Number of upper wing half spanwise sections [−]
Nbw Number of winglet sections [−]
Ni t Number of iterations evaluated for Cauchy error [−]
NR Number of points to discretize curved regions [−]
Nsi m Number of iterations ran in CFD simulation [−]
p Pressure [Pa]
pi Initial pressure [Pa]
P Useful power [W]
Q∞ Dynamic pressure [kg m−1s−2]

xvi NOMENCLATURE

qH Specific heat sources [Jm−3s−1]
R Cant radius [m]
Re Reynolds number [−]
s Box wing stagger [m]
S Wing surface [m2]
Sr e f ,BW Reference wing area of the box wing [m2]
Sr e f ,CW Reference wing area of the conventional wing [m2]
Sr e f Reference wing area (planform) [m2]
Sl Reference area lower wing [m2]
Su Reference area upper wing [m2]
T Temperature [K]
t Thickness of the wing skin [m]
T∞ Freestream temperature [K]
TI Turbulent intensity [−]
u⃗ Velocity [ms−1]
U⃗i Initial velocity [ms−1]
U Velocity magnitude [ms−1]
U∞ Freestream velocity magnitude [ms−1]
uτ Friction velocity [ms−1]
Ux Velocity component parallel to the freestream [ms−1]
V Wind speed [ms−1]
W Wing weight [N]
W f Specific external work [Jm−3s−1]
x Coordinate in the x axis of the farfield reference frame [m]
xa f Coordinate in the chordwise airfoil direction axis [m]
y Coordinate in the y axis of the farfield reference frame [m]
y+ Dimensionless wall distance [−]
z Coordinate in the z axis of the farfield reference frame [m]
za f Coordinate in the axis connecting airfoil leading edges [m]

GREEK SYMBOLS

α Angle of attack [◦]
α f Upper angle of attack bound [◦]
αI Intersection angle of attack [◦]
αi Lower angle of attack bound [◦]
αp Pressure under relaxation factor [−]
αv Velocity under relaxation factor [−]
β Angle of sideslip [◦]
β′ k-ω coefficient [−]
β∗ k-ω coefficient [−]
β1 k-ω SST coefficient [−]
β2 k-ω SST coefficient [−]
δ Kronecker delta [−]
δF First layer thickness [m]
ϵ Turbulent dissipation rate [m2s−3]
ϵc Cauchy convergence error [−]
γ k-ω coefficient [−]
γ1 k-ω SST coefficient [−]
γ2 k-ω SST coefficient [−]
λ Taper ratio [−]
µ Dynamic viscosity [kg m−1s−1]
µ∞ Freestream dynamic viscosity [kg m−1s−1]
µD Strength of doublet [m2s−1]
ν Kinematic viscosity [m2s−1]

NOMENCLATURE xvii

ν∞ Freestream kinematic viscosity [m2s−1]
νt Turbulent viscosity [m2s−1]
ω Specific turbulence dissipation [s−1]
ωi Initial specific turbulent dissipation [s−1]
ω⃗ Flow vorticity [s−1]
ωn Flow vorticity in the plane normal to xa f [s−1]
ωx Flow vorticity component parallel to the freestream [s−1]
ωz Flow vorticity component perpendicular to the freestream and the

spanwise direction
[s−1]

Ω Mean flow rotation [s−1]

τ Shear stress tensor [Pa]
φ Velocity potential [m2s−1]
ρ Density [kg m3]
ρ∞ Freestream density [kg m−3]
ρi Initial density [kg m−3]
ρs Density of the wing skin [kg m−3]
σ k-ω coefficient [−]
σ∗ k-ω coefficient [−]
σϵ Standard k-ϵ coefficient [−]
σω1 k-ω SST coefficient [−]
σω2 k-ω SST coefficient [−]
σk Standard k-ϵ coefficient [−]
σk1 k-ω SST coefficient [−]
σk2 k-ω SST coefficient [−]
σSS Strength of source or sink [m2s−1]
τw Wall shear stress [Pa]

1
INTRODUCTION

The International Energy Agency (IEA) issued a summary of the current state and forecasts of world energy
and emissions [1]. In particular three main scenarios are studied in the forecasts: Net Zero Emissions by
2050 Scenario (NZE), Announced Pledges Scenario (APS) which takes into account the commitments made
by different countries through the world and the Stated Policies Scenario (STEPS) which contains the current
measures applied by the governments. According to this report, electricity was expected to increase beyond
1000 TWh in 2021, after the decline experienced due to the pandemic in 2020. Renewable energies became re-
ally important as a source of electricity generation in 2020, reaching a share of 28% and making the emissions
fall a 3% in this sector. Figure 1.1 illustrates the change in global electricity generation and is seen how re-
newables were expected to become important in 2021 as well. In terms of CO2 emissions they were expected

Figure 1.1: Change in global electricity generation [1].

to increase up to 1.2 billion tonnes, which means they will cover 2/3 of the reduction experienced because
of the pandemic in 2020. Figure 1.2 illustrates the annual change in CO2 emissions together with the energy
source. This means that in order to reduce the fossil fuel emissions and usage, a higher technological devel-
opment and usage of renewable energies must be set. In terms of the electricity supply, both wind and solar
photo voltaic are expected to rise their share from around 10% in 2020 to 23%, 27% and 40% in the STEPS,
APS and NZE forecasts for 2030, respectively. Figure 1.3 illustrates the importance of each energy source in
the variation of electricity generation between 2020 and 2030.

Between 2023 and 2025 both offshore and onshore wind capacity additions are expected to increase and
make a total average between 65 and 90 GW for the normal and accelerated case, respectively. However, wind
projects face several challenges including social acceptance, permitting and policy uncertainties among oth-
ers. Figure 1.4 illustrates the global additions between years 2020 and 2025. The reason why onshore capacity
growth is faster lies on European and American policies for repowering and refurbishment of old wind tur-

1

1

2 1. INTRODUCTION

Figure 1.2: Annual change in CO2 related to energy [1].

Figure 1.3: Change in electricity generation by source and scenario from 2020 to 2030 [1].

bines [2]. The study made by Jung & Schindler [3] intended to create a global Wind Potential Index (WPI) to
identify the regions suitable for consistent wind farm settlement around the world. This was necessary since
there were discrepancies found between places with high resource potential, meaning high energy yields and
high geographical potential, as well as good accessibility for operation and construction. Examples of coun-
tries with high wind resource but poor accessibility include parts of Canada, Russia and some desserts. How-
ever, the WPI helped to identify regions like Argentina, USA or England where a good compromise between
accessibility and energy yield was found.

Regarding conventional wind turbines, there is a continuous increase on the rotor diameter and the hub
height aiming to reach higher wind power densities. In fact, nameplate capacity has increased from 1 MW
(1998) to 7.58 MW (2016) for onshore wind turbines and from 1.5 MW (1998) to 8 MW (2015) for offshore
wind turbines [4]. However, the issue of this growth is the saturation of key areas suitable for wind extrac-
tion. In addition, large-scale wind turbines for further power extraction will require technological innova-
tions and significant cost reductions that will still need to solve for the power capacity per area maximization
and aeroelastic instabilities [5]. Airborne Wind Energy (AWE) is a relatively new research area for wind energy
extraction that can reach higher altitudes, requires less material for construction and could comply with the
power demands conventional wind turbines have.

1.1. AWES

1

3

Figure 1.4: Global wind annual net capacity additions from 2020 to 2025 [2].

1.1. AWES
Airborne Wind Energy Systems (AWES) convert the kinetic energy of the wind into electrical energy. The
kites used for power extraction operate in two different conditions: free flight or ground attached. The last
condition, which is the most common AWE system, relies on a tether connecting the kite with a fixed or
moving ground station [6]. Among AWE systems it is possible to distinguish between Ground-Gen (GG) and
Fly-Gen (FG) systems. GG-AWES produce energy at the ground station by exploiting the work done by the
traction force on an electrical generator. As previously mentioned the ground station can be either fixed or
movable. FG-AWES produce energy on the kite itself by making use of propellers functioning as small wind
turbines. This energy is transmitted to the ground via a rope, called a tether and they can be further classified
into crosswind or non-crosswind regarding the way they produce energy [7]. Some examples of manufactured
AWE systems are classified and shown in Figure 1.5.

Figure 1.5: Classification of AWE systems [8].

1

4 1. INTRODUCTION

The main advantages of AWES against conventional wind turbines are the lower use of material and thus
capital costs, easier installation and construction, and higher energy yield due to the higher operational alti-
tudes (above 200 m) [9]. If they are deployed offshore, then potential benefits in weight reduction and subse-
quently in CAPEX are expected since the loading case is different. In offshore wind turbines the main focus is
on bending of the tower thus heavy ballast and marine structures are needed, whereas for tethered AWES the
main concern is about tensile loads [10].

However, some important existing challenges need to be assessed, including long periods of continuous
fully autonomous flight, lack of a representative demonstrator that can operate without constant supervision
and limited empirical data, which means revenue or climate benefit predictions are limited as well [11].

1.2. MOTIVATION FOR THIS WORK
The key motivation features of this work can be summarized into two: saving engineering time and get reli-
able simulation data. The challenge of having reliable aerodynamic simulations in a reasonable time affects
not only AWES, but several disciplines inside and outside the aerospace industry.

This work was strongly focused on reducing the computational time that the aerodynamic design process
requires. This process includes the selection of an optimal geometry, the meshing and pre-processing for
CFD simulations, the simulation monitoring and the final post-processing. The reduction is achieved by
identifying and automating several tasks the user is not strictly required to work in.

In terms of AWES, the automated framework was validated and used to explore new designs such as the
rigid box wing concept. A concept that promised aerodynamic advantages when compared to the conven-
tional rigid wing designs.

1.3. OUTLINE
The structure of this work is presented as follows. Chapter 2 describes the box wing concept, together with
the numerical and aerodynamic studies found in the literature. Brief sections regarding the socioeconomic
impact and regulatory framework found in the literature are also included in this chapter. Chapter 3 is fo-
cused on the objectives and the methodology followed for the complete development of this work. Chapter
4 describes the governing equations of fluid dynamics and the numerical discretization for two different ap-
proaches. Chapter 5 aims to give a detailed description of the definition of the vehicle, the meshing process
and the initial setup for both low fidelity and high fidelity aerodynamic simulations. Validation of the tools
used is also presented in this chapter. Chapter 6 focuses on the post processing of the high fidelity simula-
tions used for validation. Finally, a parametric study and optimization using the low fidelity aerodynamic tool
is presented in Chapter 7.

2
LITERATURE REVIEW

In this chapter the box wing concept is explained in detail. Firstly, some insight on the monoplane kites
used by the industry. Secondly, biplane performance is introduced followed by the introduction to box wings
and the typical configurations for aviation. In the third place, some examples of box wings applied to the
AWEs field are presented. Fourth, aerodynamic modelling approaches are introduced and the research gap
is identified for this particular work. Finally, a brief socioeconomic impact analysis of this work is presented
together with the regulatory framework that would be applicable.

2.1. MONOPLANES
Chapter 1 showed there is a large variety of kites that can be used for AWE systems. In particular, Cherubini
et al. [7] distinguish up to seven different types of kites. Leading Edge Inflatable (LEI), ram-air kites, delta
kites, gliders, swept rigid wings, semi-rigid wings and special design kites. Regardless of their nature they are
mostly single wing and most companies are changing to rigid wing designs due to durability and performance
issues [12]. Examples regarding the performance of rigid monoplane prototypes are Makani M600, which was
capable of generating up to 600 kW using eight turbines on-board each having five propeller blades [13], and
Ampyx Power AP-3, which was capable of generating up to 150 kw with no turbines on-board [14].

Figure 2.1: Examples of rigid monoplanes applied to AWE systems: M600 [13] (left) and AP-3 [14] (right)

2.2. BIPLANES
Since the beginning of the aviation biplanes became really popular, being the first flying machine invented in
1903 by the Wright Brothers. However, their popularity decayed in the mid 1930s since they were claimed to
present inherent drag, which was not useful for military applications, but also a difficult aerodynamic design
[15].

Improvements in the design, the materials and also in computational technology allowed to compare and
state superior performance of biplanes against monoplanes in certain applications. They include excellent

5

2

6 2. LITERATURE REVIEW

low speed manoeuvrability, good load carrying ability and good short field landing and takeoff performance
among others [16]. Although the biplane configuration achieved lower maximum lift coefficients, a drag
reduction of 25% and a consequent aerodynamic efficiency increase of 31.2% compared to an equivalent
monoplane was achieved experimentally in Olson & Selberg [17].

One of the fundamental equations in AWE systems is considered to be Loyd’s formula, which describes
the useful power for crosswind kite systems is:

P = 2

27
ρSCL

(
CL

CD

)2

V 3 (2.1)

With CL and CD the lift and drag coefficients, ρ is the air density at the flying altitude, S is the wing surface
and V the wind speed. With this in mind it is possible to state that biplane kites are a suitable option for AWEs
since the power produced increases as the aerodynamic efficiency of the kite squared [18].

In addition, there are adapted versions of Loyd’s formula [6][19] taking into account non intrinsic drag
forces (CD,power) such as on-board turbines or the tether connecting the kite to the ground station. The
useful power for crosswind kite system is now:

P = 2

27
ρSCR

(
CR

CD

)2

V 3 (2.2)

with:

CR =CL

√
1+

(
CD +CD,power

CL

)2

(2.3)

2.3. BOX WINGS
According to Prandtl [20] the best wing system in terms of induced drag was the box wing configuration which
implies closing the biplane configuration on each of its sides as depicted in Fig. 2.2. Note that G denotes
height and b wingspan.

Figure 2.2: Best wing system according to Prandtl [20].

The fact that the aerodynamic characteristics of a biplane wing could be enhanced by transforming it into
a box wing was checked both theoretically and experimentally in Gall & Smith [21]. Aerodynamic efficiency
was shown to increase 6.4% with respect to the biplane case. Figures 2.3 and 2.4 show aerodynamic compar-
isons between different aircraft configurations, being the box-wing design in both cases the one leading to
best performances.

2.4. BOX WINGS ON AWES
When talking about box wings almost all literature focuses on the Prandtl Plane concept applied to transport
aircraft, this is why the aerodynamic approaches are discussed in the following section taking into account
these references. However, there are a couple of airborne wind energy companies that have successfully
manufactured their box wing kites.

Joby Energy Inc. focused on multi frame structure with airfoils. They included airborne wind turbine
generators within the structure [23]. Different small scale prototypes (similar to Fig. 2.5) were tested between
2009 and 2010. Their goal was to build airborne wind turbines that would operate in the upper boundary
layer (Earth) and the upper troposphere.

2.5. BOX WINGS AERODYNAMICS

2

7

Figure 2.3: Aerodynamic efficiency comparison taken from Andrews [22] (Adapted from Gall & Smith [21]).

Figure 2.4: Induced drag relative to an elliptically loaded monoplane comparison taken from Andrews et al. [22](Adapted from Prandtl
[20]).

Kitekraft relies on small tethered aircraft to extract wind energy. They have developed a box plane truss-
like structure aircraft with aluminum extruded wings, carbon fiber rotor blades and multiple control surfaces.
They claim benefits such as power density increase, optimum harvesting efficiency, good stability and weight
reduction [24]. Figure 2.6 represents the 100kW product that KiteKraft would like to have ready by 2024. There
has been successful prototype tests from the company that can already fly all flight phases [25].

2.5. BOX WINGS AERODYNAMICS
During the last decade there have been several studies considering box wings and tandem wings configura-
tions. Unfortunately, most of these studies an aerodynamic approaches are focused on box wings for trans-
port aircrafts. However, the state of art and the tools used for aerodynamic analysis are still relevant to this
research.

Khan [26] conducted a parametric study is conducted to find the minimum induced drag. To study the
aerodynamic effect, vortex lattice algorithms are used as well as Euler inviscid simulations. It is concluded
that the most important parameter is the height to span ratio, since the higher it is, the lower the induced

2

8 2. LITERATURE REVIEW

Figure 2.5: Kite designed by Joby Energy taken from Cherubini et al. [7].

Figure 2.6: Kite design taken from KiteKraft [24].

drag becomes. Some improvement in induced drag is also achieved by varying the cant angles from the
winglets (see Figure 2.7). Other parameters such as stagger, sweep and taper ratio are shown to have no effect
if the proper span loading is maintained. Finally, this analysis does not include viscous effects, structural
nor stability considerations but it is still giving some physical insight for box wings preliminary aerodynamic
calculations.

Gagnon & Zingg [27] varied parameters such as the twist, sweep, section and center of mass for a transonic
box-wing regional jet configuration using inviscid simulations. Five different optimizations are conducted
starting with twist and section variation, and progressively adding more design variables and constraints.
The final results are compared against normal regional jet configurations. The box-wing design is shown to
be more efficient in terms of inviscid pressure drag and stability than the conventional wing design under
this flight conditions (M = 0.78). However, no viscous drag study nor structural analysis are conducted in this
paper. The box-wing configuration used in this analysis is depicted in Figure 2.8.

Andrews & Perez [28] compared the performance of a conventional and a box-wing aircraft. The paramet-
ric study used a vortex panel aerodynamic model including some fixed drag polar corrections for the airfoils
used (NACA 23012). By tuning parameters such as the wing area distribution, the stagger and the height to
span ratio (Figure 2.9) it is concluded that the box-wing design can reach higher aerodynamic efficiency than
the conventional wing design. The fuel consumption is also analyzed in this paper but it is out of the scope of
the present work. In the multidisciplinary analysis, a structural model is introduced for the box-wing: hexag-
onal wingbox with stress carrying booms at each vertex which are connected through shear carrying skins.

Bauer et al. [29] analyzed the performance of small scale monoplane and biplane kites with onboard wind
turbines. CFD is used with a RANS solver and the k-ω turbulence model for the aerodynamics. Amongst all

2.6. SOCIECONOMIC IMPACT

2

9

Figure 2.7: Box-wing geometry analyzed in Khan [26].

Figure 2.8: Box-wing geometry analyzed in Gagnon & Zingg [27].

the parameters tuned in this study, including tether length, rated airspeed, elevation angle, only the wings
aspect ratio area and airfoils are directly involved with the kite geometry. Parameters such as the height to
span ratio, the stagger or the cant angle are not part of this paper. However, the performance of the biplane
resulted to be much higher in terms of lift coefficient than that of the monoplane. This work could be further
improved by varying more geometrical parameters during the optimization, include CFD in the optimization
or couple with a structural solver. Finally, although the proposed model (Figure 2.10) was not strictly a box-
wing but a closed biplane with no lateral airfoils, it is of high relevance for this work that a similar concept
has been studied for AWE systems with potential improvements on rigid kites.

2.6. SOCIECONOMIC IMPACT
In general, AWE systems present a rapid growth in the last decade and it is expected to continue growing
in the following years. Several patents, prototypes and demonstrators have been built and research teams
all over the world are working in several aspects including electronics, design and control of high-altitude
wind energy kites [7]. It is relevant to remark that wind drones present several advantages when compared
to wind turbines. The first one is the lower amount of resources, towers are replaced by thin tethers (6cm
thick for 8 MW system) [6], wings need between 1%-10% the material required for a turbine blade [30] and
time required for massive production is reduced. The second one is the feasibility of reaching higher altitude

2

10 2. LITERATURE REVIEW

Figure 2.9: Box-wing geometry analyzed in Andrews & Perez [28].

Figure 2.10: Biplane kite design proposed in Bauer et al. [29].

winds, and thus higher power density. The disadvantage of wind drones would come in terms of stability but
this is compensated with autonomous systems that make them stay up in the air. The conclusion of this brief
comparison is that wind drones can produce more energy while having cheaper costs than wind turbines.

In terms of social acceptance, several aspects are studied in [31] and are summarized hereafter. In par-
ticular, 5 different technological aspects are analyzed in detail: safety, visibility, sound emissions, ecological
impacts and siting. Regarding safety, AWE systems are in general regarded as more hazardous than wind tur-
bines. Some concerns include the movement of electric tethers through air in fly-gen AWE systems, increased
risk to regular aviation traffic, or the unfeasibility of stopping the system if anything goes wrong. To mitigate
these risks, a regulatory framework for safety must be present in the industry, the redundancy and tolerance
to failure of the systems must be increased and the risk of accidents must be minimized below an acceptable
threshold. Regarding visibility, wind kites impact is in general more positive than in the case of wind turbines.
Taking into account that wind kites operate at higher altitudes, they produce lower or negligible shadow cast
on the ground. Although the ground station might be a problem visually speaking, AWE systems lack of a
tower structure needed for wind turbines, and thus reduce its visual footprint. Finally, the fact that they can
be turned off when there is low or no wind also contributes to lower the visual concerns. Regarding acoustic
emissions, in general it is stated that the impact is low because the wind drones operate at high altitudes.
However, the real impact should be studied by including the tether and ground station noise and monitoring
residents attitude close to AWE sites during long term operations. Regarding ecological aspects, the main
concern is the collision of flying beings. In principle, the amount of bird strikes are expected to be lower than
in the case of a wind turbine because of the higher operational height. It is also shown that birds are likely
to collide with the tether without receiving any significant harm. However, there is still a lot of research to
do on different ecosystems and seasons to conclude that the impact on flying animals is negligible or even

2.7. REGULATIONS AND LEGAL FRAMEWORK

2

11

lower than in wind turbines. Regarding siting of AWEs, there are several drivers connected with the previously
mentioned technological aspects. On the one hand, social acceptance is expected to be key in populated ar-
eas, this is why AWEs operating offshore or remote in areas would imply a higher social acceptance. On the
other hand, other airspace operators are also reluctant to accept AWEs in an already busy airspace, not only in
terms of capacity but also on safety. However, segregation of airspace coincide with the particular regulations
of each country and a more detail study shall be made.

In terms of the economic growth, several achievements have been made in the last years. In 2020, China
and the Netherlands had the highest capacity in terms of offshore wind installations, more than 3GW and 1.5
GW respectively. Being 70% of the global installed offshore capacity (34 GW) in Europe, member countries
are leading both floating wind facilities and AWE demonstration projects [32].

According to the United Nations Climate Change Technology Executive Committee [33], companies de-
veloping and using AWEs have a level of maturity, known as Technological Readiness Level (TRL), between 3
and 8. Examples of these companies and different institutions are depicted in Figure 2.11. A relevant metric
that companies consider before investing on AWE or any projects is the Levelized Cost of Energy (LCOE). It is
defined as follows [11]:

LCOE = ICC ×C RF +OMC

AEP
(2.4)

Where ICC stands for Initial Capital Cost (EUR or USD), OMC for Operation and Maintenance Costs (EU-
R/y or USD/y), AEP for Annual Energy Production (MWh/y or kWh/y) and CRF for Capital Recovery factor
depending on the discount rate i and the number of operational years ny .

C RF = i (1+ i)ny

(1+ i)ny −1
(2.5)

As long as the units are consistent, LCOE can be expressed in EUR/MWh or in USD/kWh. It may be around
0.23 USD/kWh for the first commercial systems and predicted to be 0.14 USD/kWh for 2030 which makes
them cost competitive with diesel generated electricity systems whose LCOE is below 0.23 USD/kWh [34].
Potential markets as a function of AWEs size and autonomy, together with the deployment sequence are pre-
sented in Figure 2.12. Note that off grid application is suitable for countries or regions who lack of a good grid.
However, in Europe, the most promising application would be offshore, not only because of the congested
airspace and populated areas but the available space and the less restrictive safety requirements.

Finally, the main concerns on AWEs of different stakeholders are identified by means of interviews con-
ducted by workers of the European Commission [11]. These stakeholders included academic, business and
public personnel. Academic stakeholders are mainly concerned about the system readiness (31%), which
includes continuous and autonomous operation of the systems and the economic performance (38%). Busi-
ness stakeholders are concerned about the regulatory environment (25%) applicable to AWEs and the eco-
nomic performance (24%). Public stakeholders express their concern towards funding availability (24%) to
finance AWEs projects and the regulatory environment (29%) they need to develop.

2.7. REGULATIONS AND LEGAL FRAMEWORK
This work is not required to comply with any as it is focused on box wings aerodynamics in a simulation
environment (CFD and panel methods). However, it was important to mention the regulations that would
apply wind drone was physically manufactured for validation and testing in future projects.

Nowadays, there is no common framework that regulates AWES and prototypes are usually operating
with special permits issued by the local aviation authorities. In Europe the European Aviation Safety Agency
(EASA) is the authority responsible for the European aviation regulations. In general AWES are seen as a
special case of Remotely Piloted Aircraft Systems (RPAS) and they must comply with safety regulations as
RPAS do. It is important to remark that EASA becomes involved in the tests only if the vehicle is heavier than
150 kg. Otherwise it is the National Aviation Authority (NAA) the one responsible of regulating AWES [11]
and issuing the Permits to Fly. The certification process which involves the agreement between the authority
and the applicant, is done by means of a certification basis. This includes the Certification Specifications
(CS), Special Conditions (SC) and the statement of acceptable Means of Compliance (MoC) using Aerospace
Recommended Practices (ARP) standards [35].

According to US regulations [36] tethered aircraft are excluded from unmanned aircraft which means
AWES are just regarded as air traffic obstacles and they follow a different regulation than for the European
case.

2

12 2. LITERATURE REVIEW

Figure 2.11: Airborne wind energy main contributors in 2021 [32].

In terms of the use of airspace, AWEs are expected to fly in Class G airspace which does not require any
specific equipment nor control tower communication. Class G has a typical limit of 1200 feet (365 m) above

2.7. REGULATIONS AND LEGAL FRAMEWORK

2

13

Figure 2.12: Potential markets for AWEs deployment [11].

ground level (AGL) that can be reduced down to 700 feet (213 m) AGL if there is an airport in the vicinity.
However, even if it is an uncontrolled airspace, civil aviation rules must be followed and interference with
other airspace users must be minimized [35].

3
OBJECTIVES AND METHODOLOGY

This chapter is focused on defining the key objectives of the present work, together with the tools needed to
achieve them. Afterwards, the methodology used to reach these goals is explained with the aid of flowcharts,
both the overall process and the particular process blocks.

3.1. OBJECTIVES
The ultimate goal of this work is the generation of reliable simulations to study the aerodynamics of box wing
design concepts applied to AWE systems. In order to achieve this goal, several derived goals were identified:

1. Define the parameters relevant to box wing geometries.

2. Create a framework capable of performing fast aerodynamic computations (low reliability) of box wing
designs for design and optimization purposes.

3. Create a framework to define the high quality CFD meshing process in an automatic manner.

4. Create auxiliary tools to minimize the user inputs and save time in pre and post processing of CFD (high
reliability) simulations.

5. Integrate the previous frameworks and tools to maximize the performance of the computational re-
sources and minimize the overall user and machine time in the loop.

6. Validate the developed tools with experimental data.

7. Define a box wing design equivalent to a conventional wing design for AWE systems applications to-
gether with the quantification of the deficiencies between both designs.

8. Visualize flow streamlines, compute the viscous drag and the different regions in the lift curve including
stall.

3.2. TOOLS
In order to achieve the previously defined goals, several programmes were used. Note that these programmes
are explained in detail in the following chapters of this work. However, find the summary of the programmes
and their respective functions below:

1. APAME is a steady panel method software used for aerodynamic forces and moments calculations suit-
able for evaluation and optimization [37]. In this work it is associated with objectives 2 & 7.

2. Pointwise is a high quality meshing software developed for CFD preprocessing with a wide variety of
applications, including aerospace [38]. In this work it is associated with objective 3.

3. OpenFOAM is an open-source software extensively used by academic organizations and industry for
computational fluid dynamic simulations [39]. In this work it is associated to objectives 4 & 8.

14

3.3. METHODOLOGY

3

15

4. MATLAB is a numerical computing environment suitable for data analysis, algorithms development
data and modelling [40]. In this work it is the main integrator of the different programmes used and is
associated directly or indirectly with all the objectives (1,2,3,4,5,6,7 & 8).

5. Paraview is an open-source software used for visualization and analysis applications [41]. In this work
it is associated with objective 8.

3.3. METHODOLOGY
Having defined the objectives and tools used in this work, the general flow of the different processes involved
is depicted in Figure 3.1. Shaded boxes mean they require some input or intervention from the user, whereas
white boxes denote automated process with no user intervention. There are three main groups of processes
within the flow chart separated by the two decision blocks.

1. Geometry generation and panel method solution

2. CFD mesh generation

3. CFD simulation and postprocessing

Notice that these three different groups are independent of each other and can operate separately pro-
vided the correct inputs for each of them.

Prior to generation of any innovative box wing design aerodynamic data, a validation of APAME and Open-
FOAM applied to AWE box wings is required. This validation is indirectly validating the mesh resolution and
quality used both in MATLAB and in Pointwise. The experimental data for the validation was found in Gall &
Smith [21] and it is described in detail in the following chapters.

Overall, user tasks are divided in three and they include the declaration of parameters (geometrical, mesh,
CFD, flight conditions), performance and quality checks and postprocessing. However, in this work there was
an extra task which consisted of transferring the data and launching the simulations to the cluster. This would
not be required provided that all programmes and resources were locally available.

3.3.1. GEOMETRY GENERATION AND PANEL METHOD SOLUTION
The first main process of this work entails a proper interaction between MATLAB and APAME. The final out-
puts of this process are the reference geometry and the aerodynamic performance. The reference aerody-
namic design is the reference geometry fulfilling the criterion specified by the user in terms of aerodynamic
performance.

Figure 3.2 depicts the detailed flow of processes involved in this first independent loop. The first step is
to generate and store the box geometry in a MATLAB matrix having already defined the key parameters. This
set of points define a wireframe geometry that is translated into nodes and geometrical panels connected
accordingly to APAME format. Once the aerodynamic surface is meshed, the wake nodes and panels are gen-
erated and eventually connected to the trailing edge. All these commands together with the flight conditions
are stored in an input file which is subsequently executed by APAME solver. Once the solver has finished, the
CL vs α curve and the reference geometry already stored in MATLAB are the outputs of this process.

This independent process can be used into three different ways depending on the application. For the
validation of APAME tool, the reference aerodynamic design is fixed beforehand, so it is the user task to check
the aerodynamic performance using the simulation results. For a parametric study, sweeping on different
geometrical parameters and computing the aerodynamic quantities of interest is required. A final check from
the user in terms of the sensitivity of this quantities to the variation of geometrical parameters is expected.
In this application, there is no need for a reference geometry as output unless chosen by the user. For an
optimization process, a cost function is defined together with some constraints and variables to be optimized.
The loop is expected to run in this case until a certain minimum or maximum property is found. The reference
aerodynamic design output of this application is the optimum design.

3.3.2. CFD MESHING
The second main process of this work entails a proper interaction between MATLAB and Pointwise. Figure
3.3 depicts the detailed flow of processes involved in this second independent loop. Pointwise is a bottom-up
software so the meshing process runs incrementally. The first step consists on translating already existing
wireframe data into points, curves and surfaces in Pointwise format. Next, the 1D mesh (nodes for Pointwise)

3

16 3. OBJECTIVES AND METHODOLOGY

Figure 3.1: Flowchart of the whole process

3.3. METHODOLOGY

3

17

is generated in the curves, and the 2D mesh (domains for Pointwise) is generated in the surfaces. Follow-
ing this process, the farfield region is defined together with the refined regions for the 3D mesh. Then, the
3D mesh (block for Pointwise) is started having specified the meshing parameters already. All these actions
are written by MATLAB in the form of commands into a native Pointwise scripting language called Glyph,
an extension to Tcl [42]. Once it is ready, Pointwise is called and executes the glyph file with all the mesh
specifications. It finishes by exporting directly the mesh in OpenFOAM format and in Pointwise format, so it
can be checked afterwards. The quality criteria for the meshing process will be discussed in detail in further
sections.

3.3.3. CFD SIMULATION AND POSTPROCESSING
The third main process of this work entails a proper interaction between MATLAB and OpenFOAM. Figure 3.4
depicts the detailed flow of processes involved in this third independent loop. With a CFD mesh ready, the
only task of the user should be to define the CFD parameters. MATLAB will translate this user requirements
into OpenFOAM configuration files. If both the mesh and these files are properly located, OpenFOAM solver
will be initiated following a parallel decomposition of the mesh into the number of cores used for the com-
putation. After the solver finishes, results coming from all the different processors are joined together. Note
that for simulation in series, parallel decomposition and recomposition blocks do not exist. The outputs of
these simulations are read by MATLAB for the case of the residuals and overall quantities and rendered with
ParaView for the case of the physical magnitudes distributions.

3

18 3. OBJECTIVES AND METHODOLOGY

Figure 3.2: Flowchart of the geometry generation and panel method solution group

3.3. METHODOLOGY

3

19

Figure 3.3: Flowchart of the CFD mesh generation group

3

20 3. OBJECTIVES AND METHODOLOGY

Figure 3.4: Flowchart of the CFD simulation and postprocessing group

4
COMPUTATIONAL FLUID DYNAMICS

This chapter focuses on describing the governing equations of fluid dynamics and discretizing them numer-
ically for two different applications. The first one is focused on achieving a reference box-wing design opti-
mizing with fast and low fidelity aerodynamic software. In this case, a brief introduction to panel methods
is presented together with the software (APAME) that will be used in this work. The second one consists on
having a high reliability estimation of the viscous drag present in box-wing rigid kites. A detailed descrip-
tion on Reynolds-averaged Navier-Stokes equations together with turbulence modelling approaches and the
resolution algorithm implemented in OpenFOAM are presented in this chapter.

4.1. PANEL METHODS
As previously mentioned in the literature review, computational algorithms not including viscous drag esti-
mation were used for box wing optimization purposes due to their fast performance and reasonable reliability
on lift. The most popular method is called the panel method, which assumes the flow to be inviscid, incom-
pressible, irrotational, and steady with the flow field described by the gradient of the velocity potential (Eq.
4.1).

u⃗ =∇φ (4.1)

This potential has two fundamental boundary conditions: no wall penetration and Kutta condition at the
trailing edge. Flat panels with an associated singularity are used to define the surface of the aerodynamic
body. These singularities fulfill the Lapace equation on the velocity potential (Eq. 4.2) and can be a combina-
tion of sources, sinks, vortices and doublets. Wake panels need to be added at the trailing edge to satisfy the
Kutta condition, which states flow must leave the trailing edge smoothly.

∇2φ= 0 (4.2)

Examples of the computation of the velocity potential associated to single sources and doublets are given
in Eqs. 4.3 & 4.4 respectively.

φ (P) = σSS (Q)

2π
ln(r (P,Q)) (4.3)

φ (P) =µD (Q)
∂

∂n⃗Q

(
1

2π
ln(r (P,Q))

)
(4.4)

With the singularities positioned at some collocation point Q, and the velocity potential computed at a dif-
ferent point P, the strength of the source or sink σSS , the strength of the doublet µD and the direction of the
doublet n⃗Q . Once all panels and singularities are defined, it is possible to compute the strength of all sin-
gularities at each panel and thus compute the velocity potential. An example of the combined source and
doublet panel method is formulated hereafter. The source strength at each panel is given by Eq. 4.5.

σ j = n⃗ j ·Q⃗∞ (4.5)

21

4

22 4. COMPUTATIONAL FLUID DYNAMICS

With n⃗ j the normal vector of that panel and Q⃗∞ the dynamic pressure. The boundary condition inside the
surface at each collocation point is given by Eq. 4.6.

N∑
j=1

B jσ j +
N∑

j=1
C jµ j = 0 (4.6)

With B j , C j the influence coefficients, and N the number of collocation points. Influence coefficients are
usually computed assuming a unit strength singularity. However, the influence of the doublet panel on itself
is computed using Eq. 4.7.

ci i = 1

2
(4.7)

Kutta condition provides Eq. 4.8. (
µ1 −µN

)+µW = 0 (4.8)

Combining this last equation with the influence matrix results in N+1 linear equations for the doublets influ-
ence.

N+1∑
j=1

Ci jµ j =

c11 c12 . . . c1N c1W

c21 c22 . . . c2N c2W
...

...
. . .

...
...

cN 1 cN 2 . . . cN N cNW

1 0 . . . −1 1

µ1

µ2
...
µN

µW

 (4.9)

Operating on the previous matrix using Eq. 4.8 and relations on Eq. 4.10, it is possible to reduce it to order N.

ai j = ci j , j ̸= 1, N
ai 1 = ci 1 − ciW , j = 1
ai N = ci N + ciW , j = N

(4.10)

Eq. 4.6 finally yields the form:
a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
...

aN 1 aN 2 . . . aN N

µ1

µ2
...
µN

+

b11 b12 . . . b1N

a21 b22 . . . b2N
...

...
...

bN 1 bN 2 . . . bN N

σ1

σ2
...
σN

= 0 (4.11)

Since the source strength at any collocation point is known (Eq. 4.5), it is straightforward to compute the
doublet strength with the previous relation. The velocity potential is then calculated using Eqs. 4.3 & 4.4.
Having calculated the velocity potential, the velocity and the pressure are computed straightforward (Eqs.
4.1 & 4.12).

1

2
ρ

∣∣∇φ∣∣2 +p = const ant (4.12)

More details and a complete derivation of the panel method and its variants can be found in Katz & Plotkin
[43].

For this particular work, the 3D panel method software that is used is called APAME [37], both because it is
possible to run it without the graphical user interface, and the mesh can be scripted in a different software. It
is an open-source program that is licensed under the General Public License. It is used for subsonic attached
flows and suitable for optimization and conceptual design applications. It has been successfully used for
AWE applications in different optimization frameworks and designs [44][45].

4.2. REYNOLDS-AVERAGED NAVIER-STOKES EQUATIONS
It is known that CFD methods rely on the Navier-Stokes equations, which are defined as follows.

∂ρ

∂t
+∇· (ρu⃗

)= 0 (4.13)

∂ρu⃗

∂t
+∇· (ρu⃗ ⊗ u⃗

)= ρ f⃗e +∇·
(
−pI +τ

)
(4.14)

4.3. DISCRETIZATION

4

23

∂ρE

∂t
+∇·

(
ρHu⃗ −kc∇T −τ · u⃗

)
=W f +qH (4.15)

They represent mass, momentum and energy conservation respectively. Out of the three conservation laws,
the energy equation Eq 4.15 is not fundamental for describing the velocity and pressure evolution. It is not
used from this point onwards. In addition, flow is assumed to be incompressible, since the Mach number
for AWE kites is usually below 0.3, thus density is constant. Viscosity in the freestream is also assumed to be
constant, but not negligible. Under these simplifications, Eqs 4.13 & 4.14 simplify to:

∇· u⃗ = 0 (4.16)

ρ
∂u⃗

∂t
+ρu⃗ ·∇u⃗ =−∇p +µ∆u⃗ +ρ f⃗e (4.17)

Finally, external forces are neglected and steady flow is assumed for our particular aerodynamic studies, lead-
ing to Eq 4.17 being further simplified.

u⃗ ·∇u⃗ =− 1

ρ
∇p +ν∆u⃗ (4.18)

Steady state Reynolds Averaged Navier-Stokes (RANS) equations are chosen for CFD simulations in this
project. The reason is that even if the modelling complexity would be lowered, LES or DNS would require
much more computational power. The starting point of the RANS equations is the Reynolds decomposition,
which decomposes the velocity field into average and fluctuating part1.

u⃗ (⃗x, t) = 〈u⃗ (⃗x, t)〉+ u⃗′ (⃗x, t) (4.19)

A property regarding the fluctuation component states that 〈u⃗′ (⃗x, t)〉 = 0. Introducing Eq. 4.19 into Eqs. 4.16
& 4.18 and time averaging leads to RANS equations shown in Eqs. 4.20 & 4.21.

∇〈u⃗〉 = 0 (4.20)

∇· (〈u⃗〉⊗〈u⃗〉) =− 1

ρ
∇〈p〉+ν∆〈u⃗〉−∇· 〈u⃗′⊗ u⃗′〉 (4.21)

Where 〈u⃗′⊗ u⃗′〉 is known as the Reynolds stress. It is a symmetric tensor containing 6 independent com-
ponents and act as if there were additional stresses in the flow. The addition of this term leads to the well
known closure problem of solving RANS. This problem appears from the fact that there are only 4 equa-
tions (1 for mass and 3 for velocity conservation) and 10 unknowns (pressure, 3 velocity components and 6
Reynolds stress tensor components). The way of approaching it is either by using turbulent viscosity models
or Reynolds stress models. In this project turbulence viscosity models are used since they were found to be
widespread used in the literature.

For the better comprehension of the reader, tensor notation is used from now onwards whenever possible,
4.20 & 4.21 are then expressed as Eqs. 4.22 & 4.232.

〈ui 〉,i = 0 (4.22)

(〈ui 〉〈u j 〉
)

, j =− 1

ρ
〈p〉,i +ν〈ui 〉, j j −〈u′

i u′
j 〉, j

(4.23)

4.3. DISCRETIZATION
In order to solve the Navier-Stokes equations numerically, it is necessary to transform them into discrete
functions. This is achieved by dividing the space into nodes or cells and solving the discretized equations on
these locations. There are usually three basic discretization techniques regarding the spacial derivatives: the
finite difference method (FDM), the finite element method (FEM) and the finite volume method (FVM) [46].

The technique that is used in this work is the finite volume method. It consists on dividing the space into
small volumes associating this volumes to each mesh point. This method is based on cell-averaged values
and since integral formulation is used it has the advantage of quantities being conserved locally and globally.

1Mean quantities are denoted between 〈q〉, whereas fluctuations are denoted with q ′
2Note that , j and , j j mean the first and second spatial derivative with respect to the coordinate x j

4

24 4. COMPUTATIONAL FLUID DYNAMICS

It is also chosen because it can handle any type of mesh either structured or unstructured giving a higher
amount of flexibility to the meshing process [47].

Each of the volumes resulting from the discretization process is treated as a control volume itself. As
stated before, the mean values are computed for each control volume, but the flux calculation on each volume
face has to be independent of the volume to ensure a conservative discretization.The evaluation of the cell
face flux can be done using different schemes, but any of them will introduce errors in the solution that will
increase the diffusion of the scheme. The particular FVM schemes for this work are described in chapter 5.

4.4. TURBULENCE MODELLING
In order to solve for the closure problem described in the previous section, models based on turbulent vis-
cosity (Boussinesq) hypothesis are used [48]. Boussinesq hypothesis states that the turbulent stresses must
be related to the mean velocity gradients in a similar way viscous stresses are related to the full velocity gradi-
ents. This hypothesis is shown in Eq. 4.24, where νt is the Boussinesq Eddy viscosity (or turbulent viscosity),
δi j is the Kronecker delta and k is the turbulent kinetic energy.

〈u′
i u′

j 〉 =−νt

(
〈ui 〉, j +〈u j 〉,i

)
+ 2

3
δi j k (4.24)

The first method to model the turbulent viscosity is called the mixing-length model and was proposed by
Prandtl [49]. It is based on the concept of turbulent length scale lm which is dependent on each particular
problem and serves as a rough approximation to compute the Eddy viscosity through the algebraic expression
described in Eq. 4.25.

νt = l 2
m

∣∣〈ui 〉, j

∣∣ (4.25)

This model has the advantage of being numerically efficient, as algebraic expressions can be easily computed
by any machine. The drawbacks are that the turbulent velocity scale is determined completely by mean flow
and that the mixing length is flow dependent.

An improvement was made to this zero equation model (algebraic) making it a one equation model known
as the Turbulent Kinetic Energy model (TKE) [50] & [51]. Turbulent viscosity (Eq. 4.26) becomes now depen-
dent on the turbulent kinetic energy k, which is computed from the transport equation (Eq. 4.27).

νt = 0.55lm

p
k (4.26)

D̄k

D̄t
+〈u′

i u′
j 〉〈ui 〉, j =−

(
1

2
〈u′

i u′
i u′

j 〉+〈u′
j p ′〉/ρ−νk, j

)
, j
− ϵ̃ (4.27)

TKE equation (Eq. 4.27) can be rewritten in a more compact way as in Eq. 4.28, where P denotes the
production term and T̃ ′ is the model for flux term from gradient-transport hypothesis.

D̄k

D̄t
−P =−T̃ ′− ϵ̃ (4.28)

Note that the production term is closed though Boussinesq hypothesis, there is an algebraic dissipation
model for ϵ̃ (Eq. 4.29) and a model for the energy flux T̃ ′ (Eq. 4.30).

ϵ̃=CD k3/2/lm (4.29)

T̃ ′ =−
(
ν+ νt

σk

)
∇k (4.30)

Further details of this model are out of the scope of this project. However, it is concluded that the model is
not globally applicable since the length scale is still dependent on the flow.

An alternative for this model are models with a transport equation for turbulent viscosity. The most fa-
mous one is Spallart & Allmaras developed in 1992 [52]. It is a one equation model which models the Eddy
turbulent viscosity in an analogous way to the convection-diffusion equation plus a source term. Eq. 4.31 in-
cludes, in the source term, the mean flow rotation Ω̄, the wall distance lw , which is relevant for the behaviour
near the wall, and a destruction term |∇νt |.

D̄νt

D̄t
=∇·

(
νt

σν
∇νt

)
+Sν

(
ν,νt ,Ω̄, lw , |∇νt |

)
(4.31)

4.4. TURBULENCE MODELLING

4

25

It is a model that was specifically calibrated for aerodynamic applications and it gives reasonable predic-
tions for attached boundary layers. However, there are discrepancies found in separated flow and it is not
satisfactory in some free shear flows either.

In order to make turbulent models universally applicable, two-equation models were developed. They are
models using the Boussinesq hypothesis (Eq. 4.24) together with transport equations for 2 different turbulent
scales (φ,ψ). The turbulent viscosity is calculated using these scales νt ∼ φn ·ψm and the power coefficients
are selected via dimensional analysis.

The k − ϵ turbulence model is the most widespread model used extensively in commercial applications
[53]. It was created by Jone & Launder in 1972 [54] but many modifications have been made regarding the
parameters and coefficients present in the equations. The variation implemented in OpenFOAM is called the
Standard k −ϵ model proposed by Launder and Spalding in 1974 [55].

The two scales in this model are the turbulent kinetic energy k and the turbulent dissipation rate ϵ which
are modelled using the transport Eqs. 4.32 & 4.33. The expression for the turbulent viscosity is found in Eq.
4.34.

D̄k

D̄t
=

((
ν+ νt

σk

)
k, j

)
, j
+τi j 〈ui 〉, j −ϵ (4.32)

D̄ϵ

D̄t
=

((
ν+ νt

σϵ

)
ϵ, j

)
, j
+τi j 〈ui 〉, j

Cϵ1ϵ

k
−ϵCϵ2ϵ

k
(4.33)

νt =
Cµk2

ϵ
(4.34)

Where the Reynolds stress tensor is formulated in Eq. 4.35, with Si j the mean shear rate tensor. All the
coefficients are described in Table 4.1. Note that initial and boundary conditions need to be specified for
each particular problem. In addition, for steady simulations the temporal terms are dropped.

τi j = 2νt

[
Si j − 1

3
〈uk〉,k δi j

]
− 2

3
kδi j (4.35)

Cµ σk σϵ Cϵ1 Cϵ2

0.09 1 1.3 1.44 1.92

Table 4.1: Standard k −ϵ coefficients

This turbulence model is suited for external aerodynamics where no separation nor strong pressure gradi-
ents are expected. However the standard version is not directly applicable to wall flows and thus not accurate
enough for predicting the flow turbulence in the boundary layer [56].

An alternative to this model is the popular k −ω, which yields to more accurate results in wall bounded
flows with adverse pressure gradients [53]. The two scales in this model are the turbulent kinetic energy k
and the specific dissipationωwhich are modelled using the transport Eqs. 4.36 & 4.37. The expression for the
turbulent viscosity is found in Eq. 4.38 and the Reynolds stress tensor was defined in Eq. 4.35.

D̄k

D̄t
= ((

ν+σ∗νt
)

k, j
)

, j +τi j 〈ui 〉, j −β∗kω (4.36)

D̄ω

D̄t
= (

(ν+σνt)ω, j
)

, j +τi j 〈ui 〉, j
γω

k
−β′ω2 (4.37)

νt = γ∗ k

ω
(4.38)

All the required turbulent model constants are depicted in Table 4.2.

β∗ σ∗ β′ σ γ

0.09 0.5 3/40 0.5 5/9

Table 4.2: k −ω coefficients

4

26 4. COMPUTATIONAL FLUID DYNAMICS

Although the performance of this model in boundary layer flows is increased, it is quite sensitive to the
freestream conditions set for k andω, leading to changes in the solution and requiring validation with exper-
imental data for each particular case [53].

A comparison of the previous three turbulence models was found in Wilcox [56] for different experiments
in terms of spreading rate. Results are depicted in Table 4.3. Regarding the Spallart-Allmaras model, the plane
jet and the rounded jet values lie outside of the corresponding experiments range. The reason is that this
model was created for external aerodynamic applications like the flow past a wing, but not for applications
including free shear jets expelled from a nozzle. Out of the two-equation models, k −ω is the closest to the
range of experimental spreading rates and all the values lie within the experimental ranges but the mixing
layer case. The k−ϵmodel only predicts the jet plane case within the range of measured values. These results
are in accordance with the goal of these models, which is provide a greater universality in modelling turbulent
flows. In fact, by using the average of the measured values, the error between the models and experiments is
6% and 17% for k −ω and k −ϵ respectively.

k−ϵmodel k−ωmodel SA model Measured
Plane wake 0.256 0.326 0.341 0.32-0.40

Mixing layer 0.098 0.096 0.109 0.103-0.120
Plane jet 0.109 0.108 0.157 0.10-0.11

Round jet 0.12 0.094 0.248 0.086-0.096

Table 4.3: Computed spreading rate of free shear flows

In order to alleviate the deficiencies of k − ϵ and k −ω turbulence models, the k −ω SST model was born
in 1993 by Menter [57]. The basic principle of this model is to use the k −ω model near the wall, whereas the
k − ϵ model is used far from the wall. The transition between the two models is determined by a blending
function. The model implemented in OpenFOAM is the enhanced version published in 2003 and presented
in [58]. The main equations describing this model are formulated in Eqs. 4.39 & 4.40.

D̄k

D̄t
= P̃k +

(
(ν+νtσk)k, j

)
, j −β∗kω (4.39)

D̄ω

D̄t
= γ P̃k

νt
+ (

(ν+νtσω)ω, j
)

, j −β′ω2 +2(1−F1)σω2
1

ω
k, jω, j (4.40)

Note that these equations contain a limited production term P̃k for both the kinetic energy and the spe-
cific turbulent dissipation rate. This term prevents turbulence modelling in stagnation regions. This is given
by Eq. 4.41, where Pk is formulated in 4.42.

P̃k = min
(
Pk ,10β∗kω

)
(4.41)

Pk = νt 〈ui 〉, j

(
〈ui 〉, j +〈u j 〉,i

)
(4.42)

They also contain two different blending functions: one regarding the transition between models (F1)
and another one regarding the Eddy viscosity (F2). The first blending function is formulated in Eq. 4.43, with
C Dkw specified in Eq. 4.44 and y the nearest distance to the wall.

F1 = tanh

{{
min

[
max

(p
k

β∗ωy
,

500ν

y2ω

)
,

4ρσw2 k

C Dkw y2

]}4}
(4.43)

C Dkw = max

((
2ρσw2

1

ω
k, jω, j

)
, 10−10

)
(4.44)

Note that F1 is zero away from the wall (k −ϵ) and switches to one inside the boundary layer (k −ω). This
has a direct influence in model constants, which are interpolated between the two models following Eq. 4.45.

α=α1F1 +α2(1−F1) (4.45)

The second blending function appears in the definition of the turbulent Eddy viscosity (Eq. 4.46).

νt = a1k

max(a1ω, |S|F2)
(4.46)

4.5. SOLVING THE EQUATIONS IN OPENFOAM

4

27

Here S denotes an invariant measure of the strain rate. The second blending function F2 is formulated in Eq.
4.47.

F2 = tanh

{[
max

(
2
p

k

β∗ωy
,

500ν

y2ω

)]2}
(4.47)

All the required turbulent model constants are depicted in Table 4.4.

β1 γ1 σk1 σk2 β2 γ2 σω1 σω2 β∗ a1

0.075 5.0 0.85 1.0 0.0828 0.44 0.5 0.856 0.09 0.31

Table 4.4: k −ωSST coefficients

4.5. SOLVING THE EQUATIONS IN OPENFOAM
Since the main purpose of this work is to compare the aerodynamic characteristics of box wing and conven-
tional wing designs by using the CL vs α and the drag polar curves, a steady state solver is used. In particular,
OpenFOAM has a steady state incompressible solver that uses the Semi-Implicit Method for Pressure Linked
Equations, known as SIMPLE [59]. The basic steps of this method are described hereafter [60][61]:

1. Set the boundary conditions for pressure (pol d) and velocity fields (u⃗ol d) or use the values from previ-
ous iteration.

2. The velocity field is approximated by solving the momentum equation (Eq. 4.18). Note that this ap-
proximation (u⃗p) does not necessarily fulfill the continuity equation (Eq 4.16). The pressure gradient
term is computed by using the pressure field from step 1. The equation is implicitly under relaxed (see
Eq. 4.48) by using the velocity under-relaxation factor αv .

u⃗new = u⃗ol d +αv

(
u⃗p − u⃗ol d

)
(4.48)

3. Compute the mass fluxes at the cell faces.

4. The Poisson equation for pressure is solved to obtain the new pressure distribution. Note that this
equation results from operating continuity and momentum equations (Eqs. 4.16 & 4.18).

1

ρ
∇2pp =−∇· (u⃗new ·∇u⃗new)

(4.49)

Note that under relaxation is applied on this step to take into account convection-diffusion error. The
pressure under-relaxation factorαp is used in this case, together with the solution of the pressure equa-
tion pp .

pnew = pol d +αp

(
pp −pol d

)
(4.50)

5. Correct the mass fluxes at the cell faces.

6. Correct the velocity field using the pressure field from step 4, aiming to satisfy the continuity equation
(Eq. 4.16).

7. Update the boundary conditions on the pressure and velocity fields.

8. Repeat the whole process until convergence, which means velocity field satisfying both the continuity
and momentum equations (Eqs. 4.16 & 4.18).

Non-orthogonality convergence issues can be reduced by repeating steps 4 and 5 for a prescribed number
of times. These are called non orthogonal correctors. All turbulent scaling transport equations (k,ω) are
solved within the loop after the corrector step (step 6). There is a variant of this algorithm called the SIMPLE
consistent (SIMPLEC) algorithm that enhances faster convergence with minimal modifications. In particular,
two modifications are made to the SIMPLE algorithm.

1. When discretizing the momentum equation in a control volume (cell), there are some terms called the
neighbouring terms that are neglected by the SIMPLE algorithm. SIMPLEC algorithm keeps these terms
but computes them by means of approximations instead of using the exact formulas.

4

28 4. COMPUTATIONAL FLUID DYNAMICS

2. Pressure relaxation factor is set to αp = 1, which means no relaxation in the pressure field is required.

For a detailed explanation of this variant, please refer to Vaan Doormaal & Raithby [62].

5
VEHICLE DEFINITION, MESH AND INITIAL

SETUP

This chapter aims to give a detailed description of the preprocessing of the geometry. In particular, the geom-
etry for software validation is used. The chapter begins with the definition of the most relevant variables for
box wing design. It continues with the description of the meshing process and validation in APAME. After-
wards, there is a detailed description of the meshing process and quality metrics used in Pointwise, together
with the different meshes for the resolution study. Finally, OpenFOAM settings are explained, ending with the
comparison to experiments of OpenFOAM RANS simulations.

5.1. BOX-WING PARAMETERS
Having reviewed the parameters that are used for box-wing design in Chapter 2, the following parameters are
considered relevant for the present work and are depicted in Figure 5.1:

• The wingspan denoted as b.

• The vertical separation between wings called height and denoted as h.

• The horizontal separation between wings called stagger and denoted as s.

• The chords at four different sections of the wing: lower wing root and tip (cr 1 and ct1), and upper wing
root and tip (cr 1 and ct1). Note that the chord at the winglet is determined by the chord at the respective
wing tips (ct1 and ct2) which is kept constant during the rotation and interpolated in the straight region.

• The capability of having five different airfoils at the previously mentioned sections: upper wing root,
upper wing tip, lower wing root, lower wing tip, and winglet.

• The radius defining the joints between wings and winglet called cant radius and denoted as R. This
radius refers to the rotation of the whole sections planes. In order to joint the points between sections,
it is necessary to compute local centers of rotation. The center of rotation is strongly dependent on the
points that are being rotated from wing to winglet or viceversa. For example the center of rotation of
the leading edge between the lower wing tip section and winglet section lies on the line defined by the
unitary vector h⃗ (not to scale) at a distance R from the lower wing tip LE. For more details about the
computation of the center of rotation refer to Annex A.1. In this work R is parametrized as a percentage
of the winglet length (

p
h2 + s2), so that it is independent on the airfoil profiles at the tip.

• Five different parameters specifying spanwise and chordwise divisions of the main surfaces, which are
defined for half the box wing. Nbl , Nbu and Nbw are the number of spanwise sections for the lower
wing, upper wing and winglet respectively. Note that physically, they could be interpreted as the po-
sition where the ribs would be located. Na f is the number of chordwise points to discretize the airfoil
geometry. Finally NR is the number of points to describe the curved regions.

29

5

30 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

Figure 5.1: Geometry definition and parameters

All the geometry points are generated and stored in a MATLAB matrix. This data is used for two different
meshing processes. The first one is generating the mesh for APAME directly from MATLAB. The second one is
to generate the necessary Pointwise scripting file containing the commands to generate the CAD model and
subsequent CFD meshing.

5.2. VALIDATION SET
As mentioned in chapter 3 both APAME simulations, Pointwise meshes and OpenFOAM simulations need to
be validated with experimental data. This data, applied to a particular box wing design, was found in Gall &
Smith [21].

Table 5.1 contains all the geometrical parameters of the box wing under examination, whereas Table 5.2
specifies the flight conditions. This particular box wing has constant chord and airfoil in all sections except for
the winglet, being this value equal to the mean aerodynamic chord (MAC). The value for the cant radius was
not found in the paper but it was assumed to be 15% of the winglet length. In addition, the stagger of this wing
is not specified to be forward or backwards. Due to time constraints, to avoid performing two mesh resolution
studies (for CFD), this stagger was assumed to be 0. Figure 5.2 depicts half of the wing generated and stored
in MATLAB and Table 5.3 contains the measured aerodynamic data with its corresponding uncertainty.

5.3. APAME MESH
Although APAME could handle unstructured meshes, a structured mesh consisting of panels aligned with the
flow velocity was chosen for better performance. Figure 5.3 shows an example of the full box wing meshed
for APAME. However, the panel resolution needs to be set to a fixed value. This value should provide reliable

5.3. APAME MESH

5

31

b [m] 1.0160
c [m] 0.2032
h [m] 0.2032
s [m] 0
Airfoil NACA 0012
Airfoil winglet NACA 0003
R [%] 15

Table 5.1: Geometrical parameters

Re 510000
T∞ [K] 288.15
ρ∞ [kg/m3] 1.228
ν [kg/ms] 1.4603E-5

Table 5.2: Reference conditions

α [◦] ∆α [◦] CL ∆CL CD ∆CD

-2 ± 1 -0.0851 ± 0.02 0.0182 ± 0.0005
0 ± 1 0.0125 ± 0.02 0.0173 ± 0.0005
2 ± 1 0.0700 ± 0.02 0.0182 ± 0.0005
4 ± 1 0.2165 ± 0.02 0.0239 ± 0.0005
6 ± 1 0.3541 ± 0.02 0.0358 ± 0.0005
8 ± 1 0.5273 ± 0.02 0.0611 ± 0.0005
10 ± 1 0.6605 ± 0.02 0.0892 ± 0.0005
12.3 ± 1 0.7625 ± 0.02 0.1151 ± 0.0005
14.5 ± 1 0.7933 ± 0.02 0.1503 ± 0.0005
16.5 ± 1 0.8374 ± 0.02 - -
18.5 ± 1 0.8549 ± 0.02 - -
21 ± 1 0.7787 ± 0.02 - -

Table 5.3: Experimental data

results in the least amount of time possible.

5.3.1. APAME MESH RESOLUTION STUDY
A mesh resolution study was conducted with five different refinement levels: 1972, 3828, 7540, 15196 and
30276 panels, built in as indicated in Table 5.4. Eq. 5.1 allows to compute the number of panels given the
spanwise and chordwise divisions.

Panel s = 2[(Nbl +1)+ (Nbu +1)+ (Nbw +1)+2(NR −1)]
(
Na f −1

)
(5.1)

Knowing the limits of panel methods two decisions were taken. In the first place, only the lift coefficient
data is compared with experimental data. In the second place, only data in the linear region is checked during
the comparison. Figure 5.4a shows the chosen points for this comparison and the qualitative trend. However,
the relative error was computed for a quantitative comparison in the following way:

Rel ati ve er r or (%) = 100 ·
∣∣∣∣∣CL,APAME −CL,E xper i ment al

max
(
CL,E xper i ment al

) ∣∣∣∣∣ (5.2)

Having computed the relative error, some conclusions can be extracted. The first of them is that regardless
of the number of spanwise panels, the value of the lift coefficient experiences almost no change for a given
angle of attack. The second one is that excluding α = 2◦, the lift coefficient that APAME provides is clower
than the experimental value. The final one is that the lowest panel resolution is the one providing the least
relative error on average. Note that choosing this panel resolution is advantageous since the computational
time increases roughly proportional to the number of panels squared. However, the fact of the stagger being

5

32 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

Figure 5.2: Box wing parametrization in MATLAB

Figure 5.3: Box wing mesh for APAME

different and unknown sign required to repeat this study for the two possible configurations with the lowest
mesh resolution. Results are summarized in Table 5.6 and depicted in Figure 5.4b.

APAME software has shown good agreement with experimental results in the linear region of the lift coef-
ficient regardless of the stagger value, with relative errors under 5%. This tool will be used for the definition
of a box wing equivalent to a conventional wing in Chapter 7.

5.4. CFD MESH

5

33

Nbl 3 10 24 53 110
Nbu 3 10 24 53 110
Nbw 0 2 6 14 30
Naf 59 59 59 59 59
NR 5 5 5 5 5
Wingpanels 1972 3828 7540 15196 30276

Table 5.4: APAME geometry/mesh resolution setup

-5 0 5 10 15 20 25

 [°]

-0.2

0

0.2

0.4

0.6

0.8

1

Experimental

1972 panels

3828 panels

7540 panels

15196 panels

30276 panels

(a) CL vs α curve for different panel resolution

-5 0 5 10 15 20 25

 [°]

-0.2

0

0.2

0.4

0.6

0.8

1

Experimental

s = 0

s = MAC

s = -MAC

(b) CL vs α curve for different stagger values

Figure 5.4: APAME mesh resolution

α [◦] 1972 panels 3828 panels 7540 panels 15196 panels 30276 panels
-2 4.0931 3.9807 3.9384 3.9206 3.9073
0 1.4563 1.4572 1.4568 1.4565 1.4566
2 5.8670 5.7535 5.7118 5.6945 5.6810
4 2.7303 2.5042 2.4212 2.3866 2.3595
6 0.5463 0.2110 0.0864 0.0350 0.0052
8 5.9367 6.3792 6.5435 6.6121 6.6651
10 7.9109 8.4571 8.6600 8.7447 8.8104
12.3 4.4671 5.1257 5.3716 5.4744 5.5540
Average 4.1260 4.2336 4.2737 4.2906 4.3049

Table 5.5: Relative error (%) in CL for different mesh resolutions

α [◦] s = 0 s = MAC s = -MAC
-2 4.0931 7.1653 2.1506
0 1.4563 3.9915 1.0546
2 5.8670 3.9527 8.8647
4 2.7303 1.5189 6.1298
6 0.5463 0.1186 4.2668
8 5.9367 5.5047 1.9762
10 7.9109 6.5479 3.7886
12.3 4.4671 1.9494 0.2493
Average 4.1260 3.8436 3.5601

Table 5.6: Relative error (%) in CL for different wing stagger

5.4. CFD MESH
Unlike panel methods, CFD computation require thoroughly generated meshes with high quality. For accu-
racy reasons it is decided to model the boundary layer (BL) explicitly instead of using wall functions. This is

5

34 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

beneficial for the simulations where boundary layer separation is expected, enhancing the profile prediction
of the boundary layer. In terms of AWE systems, continuous high lift operation is desired, being the prediction
of the stalling point of the wing key for fulfilling this purpose.

In order to explicitly model the boundary layer, it is necessary to find the thickness of the first layer by
imposing a dimensionless wall distance y+ of 1. Eq 5.3 is used to compute the thickness of the first layer δF

by knowing the friction velocity uτ and the kinematic viscosity ν [63].

y+ = δF uτ
ν

→ δF = y+ν
uτ

(5.3)

The friction velocity (uτ) is computed as

uτ =
√
τw

ρ
(5.4)

Where ρ is the fluid density and τw is the wall shear stress computed as

τw = 1

2
C f ρU 2

∞ (5.5)

Where U∞ is the freestream velocity and C f the skin friction coefficient. Since the boundary layer is assumed
to be turbulent due to the high Reynolds number (5E5<Rex <1E7), approximation formulas for the local skin
friction coefficient of a flat plate are used. In particular, the 1/7 power law (turbulent) is used

C f = 0.0576Re
− 1

5
x (5.6)

The first layer thickness for the validation geometry is obtained to be δF = 8.69E-6 m. Note that this value
should be treated as an approximation since it was computed assuming turbulent flow and a flat plate geom-
etry. Further check of the y+ value in the whole wing is needed to ensure the validity of the results1.

For the meshing process, the Pointwise tool was used. Pointwise was chosen as the meshing software
for several reasons. The first one is the broad record in real aerospace applications, which includes major
military aircrafts and spacrafts such as the F-18, F-35 or the International Space Station [38]. The second
reason is the flexibility and variety of options for mesh generation the software offers, which makes it suitable
for parametric analysis and exploring new concept vehicles. The last reason is the possibility to customize
the software by using the API, which opens the possibility for automation maintaining the required quality
control specified by the user.

In terms of the meshing process itself, structured meshes are preferred over unstructured meshes for
quality reasons. However, since it is not always possible to obtain this type of meshes the hybrid approach
was also implemented in this project. Some of the reasons for choosing structured meshes over unstructured
ones include [64]:

• Time and memory saving, since for a given volume, less hexahedra (structured) than tetrahedra (un-
structured) are required to fill it.

• Resolution, since high quality cells are required for critical regions such as the boundary layer. This is
achieved by using high aspect ratio hexahedra.

• Alignment, since more accuracy and easier convergence is expected in the CFD solver when the grid is
aligned with the main flow direction. This is an inherent characteristic of structured grids, which are
generated following the geomeetry contours.

• Well-defined normals, since they are key for boundary conditions and turbulence modelling. In struc-
tured grids the transverse normals are defined easily.

5.4.1. CFD SURFACE MESH
The main spanwise and chordwise divisions for the validation geometry (CAD model) are depicted in Table
5.7. The parameters used to define the surface mesh for the validation geometry are summarized in Table 5.8.
Notice these mesh parameters are given per geometrical panel in each of the three regions of the box wing.
Figure 5.5 intends to clarify this for the reader.

1This check resulted in y+max = 0.1291, y+mi n = 0.0033 and y+av g = 0.0287 on the wing surface.

5.4. CFD MESH

5

35

Nbl 0
Nbu 0
Nbw 0
Naf 82
NR 10

Table 5.7: Geometrical divisions

Type domain wings Structured
Type domain winglets Structured
Type domain curved regions Structured
Vertical nodes TE 3
Chordwise nodes airfoil 130
Chordwise nodes distribution Tanh
Chordwise nodes refinement Element size/2
Spanwise nodes LE/TE wings 151
Spanwise nodes LE/TE winglets 46
Spanwise nodes LE/TE curved regions 10
Spanwise nodes distribution Uniform
Initial element size curved regions [m] 0.0053
Initial element size wings and winglets [m] 0.0032

Table 5.8: Pointwise surface mesh parameters

Figure 5.5: Pointwise geometry(pink)/mesh(yellow) difference

In order to generate a proper volume mesh, it is crucial to generate a high quality surface mesh. Before
the surface mesh generation, the possibly conflicting regions were identified. In this case, the four wingtips
with a 90◦ bending (upper and lower wings) were identified as hazardous. In particular, the internal part of
these corners is crucial for boundary layer extrusion, since cells tend to squeeze instead of expanding, leading
to boundary layer mesh collision issues. This difference in cell size when propagating the boundary layer is
depicted for a 2D bent in Figure 5.6.

The approach followed in this work consisted of specifying the surface mesh size of the bent region, prop-
agate forward using the growth ratio and geometrical relations and set the last layer size as the initial size
of the straight region. Using this approach, more uniformity is ensured in the outer edge of the boundary

5

36 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

layer and the transition towards isotropic cells would be smoother. However, this approach needs to be cor-
rected due to two main reasons. First, the formulas were developed for a planar bent (2D), whereas the bent
in this work is three dimensional. Second, the formulas where developed without taking into account airfoil
geometry and thus thickness. These two features influence the propagation of the layers, and would make
the forward propagation process highly complex. This is the reason why an empirical correction factor was
used to account for these 3D effects. Mathematical details of this formulation can be found in Annex A.2. For
this particular geometry, the correction factor was set to 0.7.

Figure 5.6: Cant radius region

Apart from these conflictive regions, parameters such as the area ratio, the skewness equiangle and the
and maximum included angle are monitored2. The area ratio is a measure of the relative area of a cell with
respect to the adjacent ones. It is mainly useful for finding cell size discontinuities in the surface mesh in-
terfaces. According to guidelines, area ratios of eight to ten in a quad-dominant surface mesh will lead to a
volume mesh with high quality [65]. These ratios were identified to be high in the trailing edge of the wing
because it was made finite to avoid numerical problems. In particular, they are highly concentrated in the
curved regions were the transition form the NACA0012 to NACA0003 occurs. The maximum area ratio in the
surface mesh was 24.9781 (Refer to Figure 5.7 for the complete distribution). However, the average area ratio
is 1.2886, which is the value that is found in all other regions of the geometry. The skewness equiangle is
defined as the maximum ratio between the included angle of the cell and the angle of an equilateral element
(60◦ for triangle, 90◦ for quad). The variation of this parameter is between 0 (good) and 1 (bad). Following
guidelines this quantity should be kept lower than 0.8 for good quality or lower than 0.9 for acceptable qual-
ity, depending on the solver [66]. The maximum included angle and skewness equiangle in the surface mesh
were 110.7805 and 0.2329 respectively. Since both measures are equivalent, only the skewness equiangle dis-
tribution is shown for illustrative purposes in Figure 5.8.

5.4.2. CFD VOLUME MESH

Once the surface mesh quality is within acceptable limits, the volume mesh quality criteria shall be checked.
In particular, parameters such as cell non-orthogonality, skewness centroid, skewness equiangle, maximum
included angle, volume ratios and boundary layer aspect ratio will be checked.

Cell non-orthogonality is a measure of the angle between two vectors (Refer to Figure 5.9). The first one
is the line connecting two neighbouring cell centers across their shared face. The second one is the vector
normal to the cell face [67]. Ideally, all cells would be generated properly and non-orthogonality would not
exist. However, reality is that numerical meshes are rarely orthogonal, and strategies for a high quality vol-
ume mesh are focused on reducing the number of severely orthogonal cells (> 70◦). In terms of the solvers,

2The validation case with low resolution (27811524 cells) at α = 4◦ was chosen to show representative values of the quality metrics, all
other cases present similar metrics and will not be presented to avoid repetition.

5.4. CFD MESH

5

37

Figure 5.7: Pointwise distribution of the area ratio

Figure 5.8: Pointwise distribution of the skewness equiangle

non-orthogonal correctors are used when the mesh has some relevant degree of non orthogonality (> 5◦).
However, if non-orthogonal cells are above 80◦, the mesh will be automatically discarded since convergence
will be really difficult to achieve [68].

Centroid skewness is defined as 1 minus the minimum dot product between two vectors. The first one
is the one connecting both cell and face centroid. The second one is the face normal vector. Values of this
metric range from 0 (zero skew) to 1 (collapsed cell) [69].

Both skewness equiangle and maximum included angle follow similar definition and guidelines as the
ones stated in the previous section. Volume ratio is a measure of the relative volume of a cell with respect to

5

38 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

Figure 5.9: Cell non-orthogonality [67]

the adjacent ones. Since it is equivalent to the area ratio in a surface mesh, similar guidelines are followed
(between eight to ten).

Finally, the aspect ratio is defined depending on the cell type. For hexahedral cells, the aspect ratio is
calculated as the ratio between the maximum and the minimum of the length, width and height, being 1
the aspect ratio of a cube. For tetrahedral cells, it is computed as the ratio between the radius of the sphere
circumscribing the cell and the radius of the inscribed sphere times three. For prism cells, it is the ratio
between the prism average height and the average length of the edges belonging to the triangular base. For
pyramid cells, it is the ratio between the pyramid height and the average length of the edges belonging to the
quadrilateral base [70]. Note that these values are expected to be large in the first layers of the boundary layer
(of the order of 102-103).

Figure 5.10 summarizes the values of the previously described metrics. Again since volume ratio is equiv-
alent to area ratio, values at the trailing edge are expected to be high. However, the average is 1.6807, which
mean the majority of the regions are well below the recommended thresholds.

For the generation of the volume mesh itself, the 3D anisotropic tetrahedral extrusion (T-rex) tool within
Pointwise was used. This tool allows a complete control over the boundary layer and the isotropic cells gener-
ation [71]. For the boundary layer, anisotropic layers containing tetrahedra, prisms, hexahedra and pyramids
are allowed. However, it would be desirable to have structured hexahedra for the boundary layer instead of
unstructured tetrahedra. This is convenient for two reasons: the first one comes directly from the surface
mesh being structured, leading to also structured extrusion of the boundary layer. The second one, is related
to a Pointwise option called ’Convert Wall Domains’ which turns triangular cells associated to the aerody-
namic body into quad dominant cells. Tetrahedral cells are used for the isotropic cells in the farfield where
quality is less important than in the boundary layer. However, some refinements are done in the regions of
interest outside of the boundary layer in order not to lose the information gained by the high quality cells in
the boundary layer. They are discussed in the next section.

Parameters defining the volumetric mesh generation are summarized in Table 5.9. Figure 5.11 shows the
hexahedral cells present in the boundary layer extrusion in sections y = 0, x = MAC/2 and z = h/2. Figure
5.12 depicts the variety of cells present in the volume mesh: in blue, hexahedra extruded for the boundary
layer are shown; in yellow, pyramids aiming to smooth the transition between hexahedra and tetrahedra are
presented; and in red, refined tetrahedra present in the isotropic region (farfield) are displayed.

Max layers BL 34
Full layers BL 34
Growth rate BL 1.2
Solver attribute AllAndConvertWallDoms
First layer height BL [m] 8.69e-6
Max growth rate isotropic cells 1.2

Table 5.9: Pointwise volume mesh parameters

5.5. CFD MESH RESOLUTION STUDY

5

39

Figure 5.10: Pointwise volume mesh quality metrics

5.5. CFD MESH RESOLUTION STUDY
A key goal in CFD is to achieve the highest reliability with the lowest computational resources. In this case, a
mesh sensitivity study is performed to check the magnitude of the error made in CL and CD when compared
to experimental data. Three different resolutions are tested for different angles of attack in this work, all of
them with the same farfield, but using different refinement regions.

In terms of the farfield dimensions, there is not a universal consensus of which should be the extent.
It was found by Athadkar & Desai [72] that for their 2D airfoil simulation using Spallart-Allmaras turbulent
model, a farfield extending 10 chords upstream and 15 chords downstream provided acceptable results. To be
conservative and avoid the boundary conditions influencing the flow over the wing, in the validation cases the
box farfield extends 15 chords upstream, 40 chords downstream and 15 chords in each of the other directions
(top, bottom, port and starboard).

5

40 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

Figure 5.11: Pointwise volume mesh boundary layer

In terms of the refined regions, they are depicted in Figure 5.13 and their parameters are found in Table
5.10. The first one is a box enclosing the geometry and extending 25% more in each direction: upstream,
downstream, top, bottom, port and starboard. This is considered the base case since this refinement is only
relevant for the boundary layer transition from structured to isotropic cells in the gap between the two wings.
It is also important for the transition in the external part of the wing. However, the main limitation is that
the wake is not captured properly due to the short downstream length of this refined region. Notice that the
refinement box rotates together with the rotation associated to the geometry due to a variation in angle of
attack.

The second and third refinements aim to capture the wake properly. Since it is difficult to predict the
direction of the wake leaving the trailing edge, it was observed in initial simulations that the wake leaves in a
direction half the angle of attack, which in this case is the average direction between the trailing edge and the
direction of the freestream. The extent of these refinement regions are 10 chords and 20 chords downstream,
respectively.

Attribute Refinement 1 Refinement 2 Refinement 3
Type Constant Parametric Parametric
Initial spacing [m] 0.004 0.0045 0.0045
Initial decay 0.3 0.3 0.3
Final spacing [m] - 0.015 0.015
Final decay - 0.3 0.3

Table 5.10: Pointwise refinement parameters

5.6. CFD SIMULATION SETUP
The solver used for the RANS simulations is OpenFOAM, which is an open-source leading software in com-
putational fluid dynamic applications [39]. The version used is the one released in June 2020 (v2006), which

5.6. CFD SIMULATION SETUP

5

41

Figure 5.12: Pointwise volume mesh: hexahedra (blue), pyramids (yellow) and tetrahedra (red)

is the last version installed in the high performance cluster where simulations are performed. The data ob-
tained from experiments contain both lift and drag coefficients, which are computed in OpenFOAM following
Eqs. 5.7 & 5.8.

CL = L
1
2ρ∞U 2∞Sr e f

(5.7)

CD = D
1
2ρ∞U 2∞Sr e f

(5.8)

With L and D, the lift and drag force, ρ∞ the freestream density, U∞ the freestream velocity and Sr e f the
reference area. This reference area is the planform area, which in this case needs to take into account both
lifting surfaces Su and Sl (upper and lower wing) as described in Eq. 5.9.

Sr e f = Sl +Su = 2
∫ b/2

0
cl

(
y
)

d y +2
∫ b/2

0
cu

(
y
)

d y (5.9)

With cu and cl the local chord of the upper and lower wings respectively.
In order to exploit the parallelisation capabilities of OpenFOAM and considering the amount of cells in

the CFD mesh it was decided to decompose it into several sub-domains. Each sub-domain is solved in a
different processor (CPU), which can communicate between each other and are joined back together when
the simulation is finished. The configuration file in charge of splitting the full domain into sub-domains

5

42 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

Figure 5.13: Pointwise mesh refinement cases: a) Low resolution case ≈ 28M cells, b) Medium resolution case ≈ 51M cells and c) High
resolution ≈ 83M cells

given a decomposition method and number of cores is named decomposeParDict. Scotch decomposition
algorithm was chosen because it requires no input from the user and automatically tries to minimise the
number of CPU boundaries [73]. All simulations but test cases in this work were run using a single node and
48 cores.

5.6.1. INITIAL VALUES AND BOUNDARY CONDITIONS
The initial and boundary condition values used in the simulations were defined in a separate file named in-
cludeDict. The first of them is the initial velocity vector U⃗i , which is calculated specifying the angle of
attack α, the angle of sideslip β and the magnitude of the velocity U∞ as in Eq. 5.10. i, j and k are the chord-
wise, spanwise and upwards projections respectively. However, this initial velocity vector is always taking α
= 0◦ and β = 0◦, since the rotation for different angles of attack or sideslip occurs in the meshing process and
not in the boundary conditions itself. Note that rotating the geometry is the approach followed when per-
forming wind tunnel experiments and it is convenient to replicate the same setup and flight conditions when
validating the CFD simulations.

U⃗i =U∞ · (i , j ,k) =U∞ · (cos
(
β
)

cos(α),−sin
(
β
)

, sin(α)) (5.10)

The second quantity is the Reynolds number, defined by Eq. 5.11. Where µ∞ is the dynamic viscosity of
the freestream and lc the characteristic length of the body. This characteristic length in this work is set to be
the mean aerodynamic chord (MAC) taking into account both lifting surfaces M ACl and M ACu (upper and
lower wing) which is computed according to Eq 5.12.

Re = ρ∞U∞lc

µ∞
(5.11)

M AC = M ACl
Sl

Sr e f
+M ACu

Su

Sr e f
=

=
(

2

Sl

∫ b/2

0
cl

(
y
)2 d y

)
Sl

Sr e f
+

(
2

Su

∫ b/2

0
cu

(
y
)2 d y

)
Su

Sr e f

(5.12)

5.6. CFD SIMULATION SETUP

5

43

The third quantity to be initialized is the turbulent kinetic energy of the eddies in the flow, denoted as ki .
According to Eq. 5.13 they are dependent on the initial freestream speed U∞, and the turbulence intensity TI

which is given in percentage.

ki = 3

2

(
Ui TI

100

)2

(5.13)

The turbulence intensity is classified into high, medium and low turbulence cases. High turbulence typically
presents values between 5-20%, medium turbulence between 5-1% and low turbulence below 1%. For exter-
nal aerodynamic applications, the turbulence intensity is usually low [74]. Since the quality of the wind tunnel
used for the experimental data is unknown, it was assumed a turbulence intensity of 2% for the experiments.

The fourth to be computed during the initialization is the specific turbulent dissipation rate ωi . Two
possibilities are found for the initialization of this variable: from the turbulent length scale or from the eddy
viscosity ratio. The second approach was followed given that it is suitable for external aerodynamics, whereas
the first one is more focused on internal flow applications [75]. According to Eq. 5.14 this quantity is depen-
dent on the turbulent kinetic energy ki , the kinematic viscosity of the freestream ν∞ and the eddy viscosity
ratio νt

ν∞ .

ωi = ki

ν∞

(
νt

ν∞

)−1

(5.14)

The fift and last quantity to be initialized is the ratio between the freestream pressure and the freestream
density pi /ρi . Incompressible simulations in OpenFOAM do not use the pressure but operate directly with
the pressure over density ratio. CFD simulations for AWE applications do not exceed M = 0.3, so it is safe
to assume incompressible flow. Table 5.11 summarizes the type of boundary condition used in the different
regions together with the initial and boundary values.

Boundary quantity Farfield type Farfield value Wall type Wall value

U [m/s] inletOutlet
inletValue = Ui fixedValue (0 0 0)
Initial value = 0

p [m2/s2] outletInlet
outletValue = pi /ρi zeroGradient -
Initial value = pi /ρi

ω [1/s] inletOutlet
inletValue = ωi omegaWallFunction Initial value = ωiInitial value = ωi

νt [m2/s] calculated Initial value = 0 nutkWallFunction Initial value = 0

k [m2/s2] inletOutlet
inletValue = ki fixedValue Value = 0
Initial value = ki

Table 5.11: Initial and boundary conditions definition

5.6.2. NUMERICAL SCHEMES AND SOLVER SETTINGS
Any numerical simulation requires two conditions. The first one is stability on the numerical solution, which
means errors remain bounded when the iteration process advances. The second one is consistency in the
numerical scheme, which means the numerical scheme must tend to the differential equation when the time
and spatial steps are infinitesimally small. If these two conditions are fulfilled then convergence is eventually
fulfilled. In the steady state simulations, it was decided to keep a fixed amount of iterations instead of spec-
ifying a stopping convergence criteria to see the evolution of the forces and the residuals at different angles
of attack and mesh resolutions. However, Cauchy convergence criterion was used to judge if the number of
fixed iterations chosen was giving converged values. This criterion is formulated as follows:

ϵc = 1

Ni t −1

Ni t−1∑
n=0

∣∣XNsi m−n −XNsi m−n−1
∣∣ (5.15)

With X the variable of interest, Nsi m the fixed number of iterations ran in the simulation, Ni t the number
of iterations taken into account for the calculation of the error starting from the last value and propagating
backwards. ϵc is a measure of the average error between each step in the last Ni t iterations of the simulation.
The quantities of interest in this work are CL and CD . Since these quantities are already normalized, an ac-
ceptable value for convergence was assumed to be ϵc <= 10E −4 with a Ni t = 1000, which implies a variation
on these quantities in the fourth decimal place.

5

44 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

It is not the purpose of this work to provide a deep study in OpenFOAM simulation settings. For this
reason, most of the settings were chosen to be based on the ones used by Lebesque [76], who performed
RANS steady state simulations on a leading edge inflatable kite (LEI) imposing rigid geometry for Re ∼ 1E6.

The files that contain all the information regarding numerical schemes and solver settings are fvSchemes
and fvSolution respectively. The main categories [77] and the chosen numerical schemes for steady state
simulations are summarized in Table 5.12. The time scheme is set to steady state which means temporal
derivatives are zero and timestep is non relevant for the solution. Gradient schemes are set to Gauss linear,
which interpolates the values of the cell centres to the face centres by using central difference. Divergence
schemes are chosen to be bounded upwind for stability reasons. For advective terms like the flow velocity
U , the chosen scheme is bounded Gauss linear Upwind default (second order), whereas for non-advective
terms like k or ω bounded Gauss linear (first order) is enough. Laplacian scheme (diffusion) is chosen to be
Gauss linear corrected to account for cell non-orthogonality. Surface normal gradients are also corrected for
the same reason.

Category Chosen scheme
Time steadyState
Gradient Gauss linear
Divergence (U) bounded Gauss linearUpwind default
Divergence (k,ω) bounded Gauss upwind
Laplacian Gauss linear corrected
Interpolation linear
Surface normal gradient corrected

Table 5.12: Numerical schemes used

The solver settings associated to the different categories are summarized in 5.13. For the pressure term,
the Geometric Algebraic Multi Grid (GAMG) solver is used together with a Gauss seidel smoother. The work-
ing principle is to use a coarse grid/matrix for a fast initial solution that is used to smoothen high frequency er-
rors and as starting point for the finer grid/matrix. For the other variables, an iterative solver (smooth solver)
using Gauss-Seidel smoother is used. SIMPLE settings refer to the SIMPLE algorithm explained in Chapter
4. In this case the SIMPLE consistent (SIMPLEC) algorithm is used because of a better rate of convergence
(faster). This algorithm follows the same steps as SIMPLE except for a small manipulation of the momentum
equations that makes SIMPLEC velocity correction equations to discard terms that are less relevant than the
velocity neighbour correction terms discarded in SIMPLE [62]. According to the mesh characteristics of the
validation geometry, there are no severely orthogonal cells (> 70◦), but a small percentage close to that value.
This is the reason why the number of orthogonal correctors is set to 1. In terms of relaxation factors, they
were set to 0.3 for the velocity and 0.5 for all other variables, except pressure. This increased the stability of
the calculations at the expense of decreasing the rate of convergence. Finally, at the beginning of steady state
simulations, ten non orthogonal potential flow corrector steps are set for flow field initialization.

Category Settings
Solver

(
p

)
GAMG
smoother GaussSeidel

Solver (U ,k,ω) smoothSolver
smoother symGaussSeidel

SIMPLE consistent yes
nNonOrthogonalCorrectors 1

Relaxation factors
U 0.3
k,ω 0.5
potentialFlow nNonOrthogonalCorrectors 10

Table 5.13: Solver control settings used

5.6. CFD SIMULATION SETUP

5

45

5.6.3. MONITORING RESIDUALS AND MESH RESOLUTION STUDY

All simulations were run for 10000 iterations and the residuals from the fluid variables as well as the aerody-
namic coefficients magnitude were monitored. Figure 5.14 is an illustrative example of the monitoring pro-
cess for the α = 4◦ low resolution simulation. Once the simulation is finished, convergence is evaluated using
Cauchy convergence criterion for the last 1000 iterations (Refer to Eq. 5.15). This criterion is used to check
whether the simulation would need to continue for more iterations or if a stable solution has been reached
within the specified iterations. Tables 5.14 & 5.15 summarize the Cauchy measured error for all cases. In this
case, all of them were below 10−4, which means maximum variations in the fourth decimal place of the CL

and CD are expected in the last iterations. Two conclusions can be extracted from the values depicted in these
tables. The first one is that higher resolutions, on average, present higher values of the Cauchy metric, which
means convergence would need more iterations to be equal to the metrics obtained for lower resolutions.
The second one is that higher angles of attack, in general, take more time to converge than lower angles of
attack. This is explained by the increased complexity that the non linear region has in the simulations at high
angles of attack. Effects such as boundary layer separation and stall are expected in these regions.

0 2000 4000 6000 8000 10000

Iterations

10-10

10-8

10-6

10-4

10-2

100

R
e

s
id

u
a

ls

U
x

U
y

U
z

p

k

(a) Residual fluid variables

0 2000 4000 6000 8000 10000

Iterations

10-2

100

102

|A
e

ro
d

y
n

a
m

ic
 c

o
e

ff
ic

ie
n

ts
|

(b) Aerodynamic coefficients

Figure 5.14: Monitoring process

α [◦] Low resolution Medium resolution High resolution
-2 3.9386E-6 3.878E-6 5.0665E-6
4 8.9057E-6 1.1465E-5 1.6577E-5
12.3 2.4136E-6 3.0244E-5 3.4126E-5
14.5 3.1201E-5 3.5657E-5 8.4527E-5
16.5 3.2133E-5 3.8688E-5 7.5248E-5
18.5 4.8208E-5 7.0399E-5 4.7046E-5
21 1.9413E-5 3.9170E-5 6.7688E-5
Average 2.3991E-5 3.2786E-5 4.7182E-5

Table 5.14: Cauchy convergence on CL

Note that even if the simulation has converged for a particular mesh resolution, this does not imply the
solution is accurate. Accuracy of the solution was evaluated using the numerical results on the aerodynamic
coefficients of the three different resolutions. In particular, Richardson extrapolation [78] is used for a com-
plete grid convergence analysis. The main goal of this procedure is to obtain solutions for different grid levels
and then extrapolate them to the case ∆x=0. Note that this case would correspond to having the exact solu-
tion of the variables of interest. In this work, these variables are the lift and drag coefficients. For the case of
three grid levels, Richardson extrapolation is performed solving for the unknowns fexact , B and i , numerically
in the system of equations shown in Eq 5.16.

5

46 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

α [◦] Low resolution Medium resolution High resolution
-2 3.6315E-7 3.9621E-7 4.8546E-7
4 4.5728E-7 1.3762E-6 8.8671E-7
12.3 4.1677E-6 3.7196E-6 5.3443E-6
14.5 5.3966E-6 7.6190E-6 2.1552E-5
16.5 7.8101E-6 8.8307E-6 1.9061E-5
18.5 1.2261E-5 2.3930E-5 1.8713E-5
21 8.5350E-6 8.8107E-6 2.0387E-5
Average 5.5701E-6 7.8117E-6 1.2347E-5

Table 5.15: Cauchy convergence on CD

f1 = fexact +B∆xi

1

f2 = fexact +B∆xi
2

f3 = fexact +B∆xi
3

(5.16)

Where f denotes the variable of interest, B a coefficient for the curve, i the apparent order of the method
and ∆x the grid level. Values of CL and CD for the different mesh resolutions and angles of attack, together
with the value obtained using Richardson extrapolation are shown in Tables 5.16 & 5.17. Absolute relative
errors with respect to the estimated exact value using Richardson extrapolation are also depicted in these
tables. The first feature extrated from this process is that using a low resolution for values of the angle of attack
where non linear effects are not predominant, is enough to obtain a value close (< 0.1%) to the estimation of
the exact value of CL . However, for the point of maximum lift coefficient (α = 18.5◦) and stall (α = 21◦), relative
absolute errors exceed 10% for lower resolution creating a significant difference to the exact value. A similar
behaviour applies for the drag coefficient. However, even if the errors show lower values, there is a drag
contribution that comes directly from the lift (induced drag). This contribution is also affected by the error
when estimating the lift coefficient, being this quantity the main driver when choosing a mesh resolution. In
this case, medium or high resolution are proven acceptable for the maximum lift point, whereas for analyzing
stall, a high resolution would be preferred.

α [◦] Low resolution Medium resolution High resolution Richardson
-2 -0.1182 (0.25%) -0.1183 (0.12%) -0.1184 (0.05%) -0.1185
4 0.2360 (0.16%) 0.2362 (0.08%) 0.2363 (0.04%) 0.2364
12.3 0.7021 (0.19%) 0.7030 (0.06%) 0.7032 (0.03%) 0.7034
14.5 0.8098 (0.11%) 0.8109 (0.03%) 0.8108 (0.01%) 0.8107
16.5 0.8931 (0.09%) 0.8938 (0.01%) 0.8938 (0.005%) 0.8939
18.5 0.8759 (10.36%) 0.9453 (3.26%) 0.9631 (1.44%) 0.9771
21 0.6397 (12.69%) 0.6863 (6.34%) 0.7122 (2.80%) 0.7327

Table 5.16: Numerical values for CL

α [◦] Low resolution Medium resolution High resolution Richardson
-2 0.01715 (0.056%) 0.01708 (0.002%) 0.01708 (0.001%) 0.01708
4 0.02144 (0.036%) 0.02137 (0.003%) 0.02136 (0.002%) 0.02136
12.3 0.06926 (0.029%) 0.06914 (0.012%) 0.06909 (0.005%) 0.06905
14.5 0.08945 (0.024%) 0.08934 (0.011%) 0.08930 (0.005%) 0.08926
16.5 0.11043 (0.036%) 0.11025 (0.016%) 0.11017 (0.007%) 0.11011
18.5 0.21950 (0.075%) 0.22235 (0.217%) 0.22116 (0.096%) 0.22023
21 0.26800 (3.042%) 0.27752 (1.743%) 0.28464 (0.770%) 0.29029

Table 5.17: Numerical values for CD

5.6. CFD SIMULATION SETUP

5

47

5.6.4. COMPARISON TO EXPERIMENTAL DATA
Having performed the mesh resolution study and estimated the exact value that could be obtained from the
simulations, a comparison with the experimental data used for validation is performed. Figure 5.15 shows
the data obtained with CFD simulations and their relative position to the experimental data. In general, the
trend in lift coefficient is in good agreement with the experiments except for the maximum lift coefficient
point. In terms of drag coefficient, CFD results are aligned with those obtained from experiments for low
angles of attack. The causes of these differences are identified to be mainly two. The first one, is due to
the stagger between wings. As previously mentioned, although the box wing from the experiments presents
stagger, it was decided to perform a zero stagger case for the CFD simulations due to the unknown sign of
the stagger and time constraints. This difference is thought to affect mostly the drag coefficient, but also the
lift coefficient at high angles of attack. Having some stagger between wings changes the effective angle of
incidence facing each wing, provided that the vertical separation between them allows for flow interaction.
It also changes the wing area facing the flow at angles of attack different than zero, changing this way the
form drag. The second reason contributing to differences between CFD and experiments is the cant radius.
The value of this quantity was not specified in the experiments, and the assumed value may induce some
differences in lift and drag coefficients.

Quantification of this difference, together with the value of the coefficients is presented in Tables 5.18 &
5.19. Relative error was computed in this case as defined in Eq. 5.2. As previously mentioned, errors in CL

do not exceed 7% except on the maximum lift coefficient point. However, relevant differences in the drag
coefficient are found for α = 12.3◦ and α = 14.5◦.

-5 0 5 10 15 20 25

 [°]

-0.2

0

0.2

0.4

0.6

0.8

1

Experimental

Low resolution

Medium resolution

High resolution

Richardson extrapolation

(a) CL vs α curve

-5 0 5 10 15 20 25

 [°]

0

0.05

0.1

0.15

0.2

0.25

0.3

Experimental

Low resolution

Medium resolution

High resolution

Richardson extrapolation

(b) CD vs α curve

Figure 5.15: Comparison between CFD and experiments

α [◦] Richardson Experimental
-2 -0.1185 (3.90%) -0.0851
4 0.2364 (2.32%) 0.2165
12.3 0.7034 (6.91%) 0.7625
14.5 0.8107 (2.04%) 0.7933
16.5 0.8939 (6.61%) 0.8374
18.5 0.9771 (14.31%) 0.8549
21 0.7327 (5.38%) 0.7787

Table 5.18: Relative error (%) using CFD on CL

5

48 5. VEHICLE DEFINITION, MESH AND INITIAL SETUP

α [◦] Richardson Experimental
-2 0.01708 (0.732%) 0.01818
4 0.02136 (1.668%) 0.02386
12.3 0.06909 (30.611%) 0.11568
14.5 0.08930 (40.607%) 0.15028

Table 5.19: Relative error (%) using CFD on CD

6
POST-PROCESSING

The goal of this chapter is to present and post process the numerical results obtained from the simulations.
It begins with a brief description of the quantities to be analyzed followed by a presentation of this quantities
for different flight conditions. Finally, the main trends are discussed in the last section of this chapter.

6.1. POST-PROCESSING QUANTITIES
In this section, the relevant quantities used for the post process are defined. The first one is the pressure
coefficient [79], which measures the relative pressures acting on the flowfield in a non dimensional form.
It is defined in Eq. 6.1, where p is the pressure of a particular point, Sr e f the reference lifting surface and
freestream pressure, density and velocity magnitude denoted with p∞, ρ∞ and U∞, respectively. This equa-
tion can be further simplified for incompressible flows using Bernoulli’s equation to Eq. 6.2, where U is the
magnitude of the velocity at a particular point.

Cp = p −p∞
1
2ρ∞U 2∞

(6.1)

Cp = 1−
(

U

U∞

)2

(6.2)

The simplified form of the Cp leads to four different trends depending on the sign and value of this coeffi-
cient. If Cp = 0 it means the velocity magnitude at a particular location matches that of the freestream, which
means pressure is matched as well to the freestream value. If Cp > 0 the particular point experiences higher
pressure values and lower speeds than the freestream up to reaching zero velocity point. If Cp = 1, there is
an stagnation point (U = 0) at the particular location, with the pressure value being equal to the stagnation
pressure. Note that the maximum value Cp can assume is 1. The last trend occurs if Cp < 0, the flow will
experience lower pressure and higher speeds than the freestream. Note that in this cases Cp values can be
lower than -1, meaning a higher speed on these regions.

The second quantity to be analyzed is flow vorticity ω⃗ on the plane perpendicular to the aerodynamic
geometry chordwise direction. This quantity is related to the spinning motion present at a particular point of
the flow. It is computed following Eq. 6.3 [80].

ω⃗=∇×U⃗ (6.3)

Recap that in this case the geometry was rotating when the angle of attack changed, leaving the boundary
conditions intact. A generic 2D cut in the spanwise direction is represented in Figure 6.1 to show the normal
vector to the previously mentioned plane, n⃗. In this image, xa f is the axis following the chordwise direction of
the airfoils and za f is the axis connecting the lower and upper airfoils perpendicular to xa f pointing upwards.

The vorticity component to be analyzed is computed depending of the angle of attack following Eq. 6.4.

ωn =ωx cosα−ωz sinα (6.4)

Finally, last quantity to be analyzed will be the velocity parallel to the freestream, which in this case is Ux .
This is presented together with the streamlines defined by the vector velocity field.

49

6

50 6. POST-PROCESSING

Figure 6.1: Schematic representation of the plane normal to the geometry (Not to scale)

For the Cp and Ux , three different spanwise sections are chosen for analysis. They are named root, the
one corresponding to y = 0, mid span, the one corresponding to y = b/2 and tip, the one corresponding to y =
b/2-R which is the beginning of the curved region. In terms of Cp , additional graphs on the Cp distribution
on the airfoils defined by cutting on the previous regions are presented as well.

For the vorticity ωn , 8 different planes parallel to the normal plane defined before are examined. This
planes are measured from the distance to the trailing edge of the wing and are specified in terms of MAC. The
list of planes is: 1.1 MAC, 1.5 MAC, 2 MAC, 3.5 MAC, 5 MAC, 10 MAC, 15 MAC and 20 MAC.

Regarding the resolution of the simulations, the ones corresponding to the high refinement case were
used for post-processing.

6.2. POST-PROCESSING RESULTS
Three different points on the lift coefficient curve were chosen for post-processing due to their relevance in
aerodynamic analyses. The first one corresponds to the end of the linear region, α = 12.3 ◦, which is the point
where lift performance begins to asymptotically increase as the boundary layer starts to separate. The second
one corresponds to the point of maximum lift coefficient, α = 18.5 ◦, which is the point followed by a sudden
decrease in lift due to strong separation of the boundary layer. The final one corresponds to the wing already
stalled, α = 21◦, which is the point where strong non linear effects are expected.

Being separation key in the post process of the results, a brief introduction to airfoil stalling types is pre-
sented hereafter. In airfoil aerodynamics, four different types of stall can be distinguished [81][82]. The first
one is called thin airfoil stall, affecting airfoils with sharp leading edges. It consists on laminar separation
followed by turbulent reattachment which results in a separation bubble that is present at any angle of at-
tack different than zero. This bubble expands with increasing angle of attack forming a benign stall when it
reaches the trailing edge. The second type is known as leading edge stall, which is characterized by significant
and abrupt lift loss. It is identified by the formation of a short bubble near the leading edge which changes
its size with the angle of attack. At critical conditions either the short bubble bursts or turbulent reseparation
occurs after the short bubble, causing a sudden loss of lift. The third type of stall occurs when trailing edge
stall occurs before leading edge short bubble separation, causing a gradual decrease in lift coefficient curve
slope as trailing edge stall progresses. Note that when leading edge stall occurs, an abrupt decrease in lift is
expected. The fourth and last type corresponds to pure trailing edge separation, which gradually decreases
the lift as the trailing edge separation point moves towards the leading edge of the airfoil. Figure 6.2 provides
an illustration of the first three types of stall.

6.2. POST-PROCESSING RESULTS

6

51

Figure 6.2: Airfoil stall classification by Gault [81]

6.2.1. END OF THE LINEAR REGION

Regarding the pressure coefficients over airfoils of the previously mentioned wing sections, they are depicted
in Figure 6.3. Figures 6.3a & 6.3b show conventional airfoil Cp trends in the linear region at the root and mid
span sections. This means, high suction peaks near the leading edge and pressure coefficient near 0 at the
trailing edge, which are characteristics of attached flow. Regarding the tip section depicted in Figure 6.3c,
a smaller suction peak is found than in the previous sections, but also a localized separation and reattach-
ment at the upper wing upper side is observed. Although this separation is not critical, it would indicate the
beginning of leading edge stall.

Regarding the Cp and Ux in the different sections, they are depicted in Figure 6.4. Again, root and mid
section present similar features, high acceleration regions in their upper surfaces and similar stagnation re-
gions at the leading edge of their lower surfaces (Figures 6.4a & 6.4c). At the trailing edge, pressure tends to
equalize freestream pressure (Cp = 0) and wake lines exit the trailing edge smoothly. Note as well that lower
wing has an influence in the pressure experienced by the lower surface of the upper wing, making it lower
than the pressure experienced by the lower surface of the lower wing. In terms of Ux negative values appear
in the leading edge stagnation points where some recirculation is expected (6.4b & 6.4d). Tip section present
smaller acceleration and stagnation regions, which are depicted in Figure 6.4e. Upper wing wake does not
equalize with the freestream pressure in this plane and neither the wake direction keeps constant but de-
flects upwards (Figure 6.4f). This might be caused by the particular location of this section. Since this is a
region followed by a rotation and thickness reduction of the profile (from NACA 0012 to NACA 0003), out of
the section plane effects are expected.

In terms of vorticity, the sequence of normal planes is depicted in Figure 6.5. In general, the trend of
vortex generation is similar to that found in conventional wings with winglets: counter clockwise vortices at
the right part and clockwise vortices at the left part of the wing. However, since the winglet connects both
upper and lower wing, it does not allow the enlargement of tip vortices, but eventually fuses both vortices
from upper and lower tips into one. A relevant feature to highlight in this vorticity contours can be found in
Figures 6.5b & 6.5c, which is the presence of counter rotating small vortices at the tip section (y = b/2-R) of
the upper wing. These are caused due to the concave shape of the upper wing upper surface, where the flow
struggles to reattach to the upper surface.

6.2.2. MAXIMUM LIFT COEFFICIENT

In this case, some regions are experiencing strong separations and some still keep flow attached. On the one
hand, pressure coefficient at the root (Figure 6.6a) shows boundary layer separation at the upper wing leading
edge in the form of a huge separation bubble extending up to the trailing edge. On the other hand, massive
separation occurs at the lower wing root section making pressure at the trailing edge not matching the one at
the freestream. Pressure coefficient at the midspan (Figure 6.6b) presents two opposite trends: an upper wing
with fully attached flow and a lower wing with boundary layer separation. Finally, the tip section (Figure 6.6c)

6

52 6. POST-PROCESSING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(a) Root

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(b) Mid span

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(c) Tip

Figure 6.3: Airfoil Cp distribution at different sections for α = 12.3◦

presents some flow separation on the second half of the lower wing and an increasing leading edge separation
bubble on the upper wing.

The pressure coefficient and the velocity component aligned with the freestream are depicted in Figure
6.7. Figures 6.7a & 6.7b show that the flow is experiencing separation on both wings, being the lower one
under the most critical condition (massive separation) and the upper one alleviated by the lower one (lower
pressure on upper wing lower surface) showing a huge separation bubble. Figures 6.7c & 6.7d show a less
critical condition where separation is only occurring on the lower wing in the form of a separation bubble.

6.2. POST-PROCESSING RESULTS

6

53

(a) Root Cp (b) Root Ux

(c) Mid span Cp (d) Mid span Ux

(e) Tip Cp (f) Tip Ux

Figure 6.4: Cp and Ux contours at different span sections for α = 12.3◦

Both trailing edge wakes point in the direction that allows pressure equalizing with the freestream one. Fi-
nally, Figures 6.7e & 6.7f show a some degree of boundary layer separation of the lower wing starting at the
trailing edge and the further development of leading edge stall on the upper wing. As in the previous flight
condition, pressure is not matched for the upper wing and the wake deflects upwards.

In terms of vorticity, having some degree of separation makes the flow turbulent and prone to generate
vortices inside and outside these regions. Figure 6.8 depicts the sequence of vorticity in the normal planes.
The final result is again the one that could be expected in a conventional wing after clockwise and counter
clockwise vortices fuse together. However Figure 6.8a present a wide variety of vortices. The separated regions
tend to generate vortices opposite sense than the ones generated by the wings themselves. Outside these
separation regions, opposite vortices to the ones generated inside are created to keep constant circulation.
Note that although the size of these vortices is proportional to the separated regions, their strength is lower
than the natural vortices released by the wing structure itself. This is why in the recombination the prevailing
sense of rotation is kept as the one from the vortices generated by the wing.

6

54 6. POST-PROCESSING

(a) 1.1 MAC (b) 1.5 MAC

(c) 2 MAC (d) 3.5 MAC

(e) 5 MAC (f) 10 MAC

(g) 15 MAC (h) 20 MAC

Figure 6.5: Vorticity contours for α = 12.3◦

6.2. POST-PROCESSING RESULTS

6

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-7

-6

-5

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(a) Root

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-7

-6

-5

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(b) Mid span

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-7

-6

-5

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(c) Tip

Figure 6.6: Airfoil Cp distribution at different sections for α = 18.5◦

6.2.3. STALLED WING

In this case, most of the wing is stalled and lift coefficient has decreased dramatically. At the wing root and
mid section, massive stall is experienced by both wings, being the pressure coefficient almost constant for the
upper surfaces after the suction peak (Figures 6.9a & 6.9b). However, for the case of the wing tip section, the
leading edge stall separation bubble in the upper wing has not turned into massive separation yet, meaning
that it is still providing some useful lift force (Figure 6.9c). For the lower wing separation has developed in a
less abrupt way than for the other two sections.

6

56 6. POST-PROCESSING

(a) Root Cp (b) Root Ux

(c) Mid span Cp (d) Mid span Ux

(e) Tip Cp (f) Tip Ux

Figure 6.7: Cp and Ux contours at different span sections for α = 18.5◦

Figure 6.10 depicts the pressure coefficient and the velocity component aligned with the freestream. At
the root, Figures 6.10a & 6.10b show large recirculation regions in the trailing edge of the upper wing given by
the massive boundary layer separation. The lower wing presents smaller recirculation regions and pressure
match is not achieved in either wing. At the mid span section, 6.10c & 6.10d show similar separation regions
that try to align with the chordwise airfoil direction. At the tip, Figures 6.10e & 6.10f show the difference
between the stalling trends of the upper and lower wings at this section. As previously stated just the upper
wing is the one not completely stalled, whereas the size of the separated region of the lower wing seems to
be lower as compared to the size of the other two sections. This lower wing has fully developed trailing edge
stall.

In terms of vorticity, Figure 6.11 shows the evolution of vortices in the normal planes. In this flight condi-
tion, boundary layer separation occurs in the whole lower wing and in most of the upper wing but the region
nearby the upper wing tips. Huge regions of non-zero vorticity appear in the inner and outer part of the
separated boundary layer changing rotation sense to preserve the total circulation (Figure 6.11a). The most
relevant fact is the final rotation sense of the vortices is opposed to the one found in the previous two flight

6.2. POST-PROCESSING RESULTS

6

57

(a) 1.1 MAC (b) 1.5 MAC

(c) 2 MAC (d) 3.5 MAC

(e) 5 MAC (f) 10 MAC

(g) 15 MAC (h) 20 MAC

Figure 6.8: Vorticity contours for α = 18.5◦

6

58 6. POST-PROCESSING

conditions. Since the wing is operating in a highly non linear and stalled regime, turbulence, separation and
angle of attack are leading to this non conventional results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(a) Root

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(b) Mid span

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
af

/MAC

-4

-3

-2

-1

0

1

C
p

Lower wing lower surface

Lower wing upper surface

Upper wing lower surface

Upper wing upper surface

(c) Tip

Figure 6.9: Airfoil Cp distribution at different sections for α = 21◦

6.3. RESULTS DISCUSSION
After having analyzed the results from the simulations, some conclusions can be extracted about the aerody-
namics of box wing designs with no stagger and symmetric airfoils. The first of them is that the root section

6.3. RESULTS DISCUSSION

6

59

(a) Root Cp (b) Root Ux

(c) Mid span Cp (d) Mid span Ux

(e) Tip Cp (f) Tip Ux

Figure 6.10: Cp and Ux contours at different span sections for α = 21◦

stalls before the tip section. The main difference between these sections is the cant radius region near the tip
inducing 3D effects. In this case these effects are beneficial and prevent the whole wing entering in stall at
once. The second conclusion is about the relative size of the separation between upper and lower wing. As
a general trend, upper wing stall is delayed with respect to lower wing stall, this might be explained because
of the reduced pressure acting at the lower surface of the upper wing and the effective angle of attack of the
flow, which may be changed in the region between wings. The third conclusion is that regardless of the vor-
tices generated by the separation region, the direction that prevails in the end is the one imposed by the wing
perturbating the flow. However, separation generated vortices can influence on these rotation sense. Finally,
the stall mechanism that governs the whole wing is thin airfoil stall, except on the regions nearby the upper
wing tip where leading edge stall and trailing edge stall are occurring.

6

60 6. POST-PROCESSING

(a) 1.1 MAC (b) 1.5 MAC

(c) 2 MAC (d) 3.5 MAC

(e) 5 MAC (f) 10 MAC

(g) 15 MAC (h) 20 MAC

Figure 6.11: Vorticity contours for α = 21◦

7
PARAMETRIC STUDY AND OPTIMIZATION

This chapter aims to describe the process for achieving an optimized box wing design equivalent to a conven-
tional wing design for AWE systems. The chapter begins with the definition of equivalent wings, explaining
the features that should be maintained and the reference conventional wing chosen. The chapter continues
with a parametric study to check for the aerodynamic variations in terms of lift coefficient that result from
sweeping on different geometrical parameters. This chapter concludes with a detailed explanation of the
optimization process and a discussion of the extent of validity of the final results.

7.1. EQUIVALENT WING
In order to obtain a box wing design which is equivalent to a conventional wing design for AWE applications,
the criterion for equivalence must be established beforehand. In this particular work, an equivalent wing
must fulfill five conditions:

1. Provide an equal or higher tether force at all angles of attack, which is equivalent to the lift coefficient
curve CL vs α.

2. Use the same airfoil profiles in the lifting regions (upper and lower wings).

3. Wingspan equal or lower than the conventional wing.

4. Reference surface equal or lower than the conventional wing.

5. Weight equal or lower than the conventional wing.

Notice that these conditions give degrees of freedom to the design process, with a wide range of possible
variables of interest to be swept over.

The conventional wing geometry chosen was defined by Eijkelhof [44], who presented a multi megawatt
AWE reference system within his optimization framework. The relevant geometrical parameters regarding
the wing of this system and the flight conditions are depicted in Tables 7.1 & 7.2. Geometrical parameters
from this design are referred with the subscript CW onwards. Note that the airfoil is an uncommon design
that was obtained through reverse engineering and improvement of the Makani M600 wing sections. Figure
7.1a illustrates this high lift highly cambered airfoil. Figure 7.1b shows the CL vs α curve of the conventional
wing design obtained with APAME. Altough this curve is the result of several Fluid Structure Interaction (FSI)
iterations meaning that it corresponds to the deformed wing shape and not the original one, it is assumed
that box wing rigidity is superior or at least it can be improved with more connections between wings with
little deformation. This is the reason why it is be directly compared to the deformed conventional wing lift
curve. This curve is defined by its slope CLα = 6.0798 and α = 0 lift coefficient value CL0 = 0.9076 ranging from
α = -14.8◦ to α = 9.2◦.

7.2. PARAMETRIC STUDY
In order to decide which parameters is the lift coefficient more sensitive to, some sweeps on wingspan, height
over span ratio, stagger over chord ratio, fore wing area and taper ratio were performed fixing the other pa-
rameters.

61

7

62 7. PARAMETRIC STUDY AND OPTIMIZATION

b [m] 42.4694
MAC [m] 3.5425
Sref [m2] 150.4478
Areaskin [m2] 323.3616
Airfoil name MRevE-v2HC

Airfoil (t/c)@(x/c) 28.6% @ 31.4%
Airfoil (f/c)@(x/c) 9.0% @ 41.1%

Table 7.1: Geometrical parameters for the conventional wing [44]

U∞[m/s] 60
T∞ [K] 288.15
ρ∞ [kg/m3] 1.228
ν [kg/ms] 1.4603E-5

Table 7.2: Reference conditions for the conventional wing [44]

0.2 0.4 0.6 0.8 1

x/c

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y
/c

(a) MRevE-v2HC airfoil

-20 -10 0 10 20 30

 [°]

-1

-0.5

0

0.5

1

1.5

2

C
L

(b) 3D Lift coefficient curve

Figure 7.1: Conventional wing design features from Eijkelhof [44]

The metric that was used to decide the sensitivity to CL is computed as the area difference between the
two lift curves: box wing (BW) and conventional wing (CW), following Eq. 7.1, whereαi = -14.8◦ andα f = 9.2◦.

I =
∫ α f

αi

(
CL,BW (α)−CL,CW (α)

)
dα (7.1)

Considering the 3D panel method predicts the lift coefficient in the linear region, Eq. 7.1 can be further
simplied to Eq. 7.2. Note that this equation is valid whenever the intersection angle of attack between the
curves αI lies within the integration limits.

I = 1

2
(αI −αi)

(
CL,BW (αi)−CL,CW (αi)

)+ 1

2

(
α f −αI

)(
CL,BW

(
α f

)−CL,CW
(
α f

))
(7.2)

For the case where αI lies out of the integration bounds, Eq. 7.1 adopts the shape of Eq. 7.3.

I = 1

2
(αF −αi)

((
CL,BW (αi)−CL,CW (αi)

)+ (
CL,BW

(
α f

)−CL,CW
(
α f

)))
(7.3)

Notice that the sign of I, determines whether the box wing design lift coefficient curve has a better overall
performance than the conventional wing design (+) or not (-).

First sweep was performed changing the wingspan and calculating the chord of the box wing. For this
calculation, the reference surface of the box wing was fixed to the same value the conventional wing had. As
an additional simplification, the chord was kept constant at all box wing sections, thus being equivalent to
the MAC. The other variables were kept fixed during this sweep. Eq. 7.4 was used to obtain the MAC. Values

7.2. PARAMETRIC STUDY

7

63

for this sweep are shown in Table 7.3.

M AC = Sr e f ,CW

2b
(7.4)

b [m] Start: bCW /2
End: bCW

Points: 16
MAC [m] Eq. 7.4
h/b 0.2
s/MAC 0.3
Airfoilwings MRevE-v2HC

Airfoil winglet NACA 0030
R [%] 15

Table 7.3: Geometrical parameters sweeping on wingspan

Figure 7.2a depicts the evolution of the lift coefficient difference with the wingspan. Two conclusions can
be extracted from this graph. Being both the height to span and stagger to chord ratios fixed, an increase
in wingspan implies an increase in the overal lift coeffficient of the wing. The second one is that being the
reference area fixed, the chord will tend to decrease with increasing wingspan, and the associated increase
in lift coefficient will tend to increase asymptotically. Both CLα and CL0 also increase in the same manner.
This is depicted in Figure 7.2b, where crosses denote the values from the conventional wing design. On the
one hand, for this particular conditions the value of CL0,CW is exceeded whenever bBW >0.7bCW , which would
be equivalent to an increase in camber of the conventional wing sections. On the other hand, the slope CLα

follows the trend of increasing whenever the aspect ratio of the box wing increases and reach similar values
when both aspect ratios are the same.

20 25 30 35 40 45

b [m]

-0.04

-0.02

0

0.02

0.04

0.06

0.08

I

(a) I sensitivity

20 25 30 35 40 45

b [m]

3.5

4

4.5

5

5.5

6

6.5

C
L

0.7

0.8

0.9

1

1.1

C
L
0

(b) CLα and CL0 sensitivity

Figure 7.2: Sweep on wingspan

The second sweep was performed varying independently two parameters: the stagger to chord ratio s/c
and the height to span ratio h/b. Again the reference surface of the box wing is kept fixed to the same value as
the conventional wing. Table 7.4 includes the different sweeps performed in this case. Figure 7.3a depicts the
sensitivity of I to the previously mentioned sweeps. It can be observed that at least two optimum regions in
terms of I exist: the first one with slightly negative stagger to chord ratios around -0.5 and ratios of h/b around
0.6; and the second one with similar stagger but low h/b ratio around 0.2. However, looking at the CLα and
CL0 contours in Figures 7.3b & 7.3c it is clear that any of the lift coefficient curves obtained from the sweeps
is exceeding the one from the conventional wing at all angles of attack. This occurs because the intersecting
angle of attack αI lies within the range [-14.8,9.2], and because the aspect ratio of the wing is fixed, leading to
little improvement in CLα. However, the tendency towards having two independent wings (high h/b) shows
some improvement in terms of CLα. Different is the case for CL0, which shows a optimal region centered in

7

64 7. PARAMETRIC STUDY AND OPTIMIZATION

sligthly negative s/MAC around -0.5 and h/b around 0.75. This can be explained due to the influence between
the two wings.

There are certain combinations (yellow regions) where the influence of the two wings is equivalent to have
an effective camber that is better than the two independent cambers on each of the separate wings. This effect
leads to higher values of CL0. For values outside of this region, either the effective camber is non optimal, or
it becomes equivalent to the actual camber of the corresponding wings (wings act independently).

Notice that in this second sweep, h/b values higher than 1 were not explored because this configuration
was not considered to be a practical solution.

b [m] 0.7bCW

MAC [m] 2.5304
h/b Start: 0.2

End: 1
Points: 17

s/MAC Start: -2.2
End: 2.2
Points: 41

Airfoilwings MRevE-v2HC

Airfoil winglet NACA 0030
R [%] 15

Table 7.4: Geometrical parameters sweeping on s/c and h/b

0.2 0.4 0.6 0.8 1

h/b

-2

-1

0

1

2

s
/c

0.005

0.01

0.015

0.02

I

(a) I contour

0.2 0.4 0.6 0.8 1

h/b

-2

-1

0

1

2

s
/c

5.1

5.2

5.3

5.4

5.5

5.6

C
L

(b) CLα contour

0.2 0.4 0.6 0.8 1

h/b

-2

-1

0

1

2

s
/c

0.87

0.88

0.89

0.9

0.91

0.92

0.93

C
L
0

(c) CL0 contour

Figure 7.3: Sweeps on h/b and s/c

The third and last sweep was performed varying independently two parameters: the taper ratio λ and

7.2. PARAMETRIC STUDY

7

65

the fore wing area percentage Sl /Sr e f , keeping the reference surface constant and equal to the conventional
wing. For simplicity. the taper ratio variation was the same for both upper and lower wings and it was defined
as Eq. 7.5. ct i and cr i denote chord at the root and the tip of the corresponding wing (upper or lower).

λi = ct i

cr i
(7.5)

Since both parameters in this last swept are strongly related to the reference surface, some operations need
to be defined to compute the chords at the different sections of the box wing. Considering upper and lower
wings planforms have trapezoidal shape, Eqs. 7.6, 7.7, 7.8 & 7.9 define the relevant chords.

cr 1 = 2
Sl

Sr e f ,CW

Sr e f ,CW

b (1+λ1)
(7.6)

ct1 =λ1cr 1 (7.7)

cr 2 = 2

(
1− Sl

Sr e f ,CW

)
Sr e f ,CW

b (1+λ2)
(7.8)

ct2 =λ2cr 2 (7.9)

Table 7.5 contains the geometrical parameters for this last sweep. Figure 7.4a shows the trend of the integral
difference between curves (I) for this last sweep. In particular, it depicts that the highest positive difference
is achieved for rectangular planform wings (λ = 1) and high fore wing area percentage. However, this trend
is mainly dominated by the value of CL0 as depicted in Figure 7.4c. If the maximum lift coefficient slope was
desired, the best option would be to keep rectangular wings with the same surfaces. Figure 7.4b presents the
highest values of CLα being reached when the relative fore area is between 50-55%.

b [m] 0.7bCW

cr1 [m] Eq. 7.6
ct1 [m] Eq. 7.7
cr2 [m] Eq. 7.8
ct2 [m] Eq. 7.9
h/b 0.75
s/MAC 1.6
λ Start: 0.75

End: 1
Points: 6

Sl/Sref,CW Start: 0.3
End: 0.7
Points: 11

Airfoilwings MRevE-v2HC

Airfoil winglet NACA 0030
R [%] 15

Table 7.5: Geometrical parameters sweeping on λ and Sl /Sr e f ,CW

Some conclusions in terms of relevant parameters are extracted from the three different sweeps made.
The first one is that regardless of the ratios they might be involved in, the wingspan and the chord of the box
wing are key parameters for the generation of lift. The second one is that in aerodynamic terms, a high height
over span ratio is desired to increase the lift coefficient slope, whereas negative stagger to chord ratio values
between 0 and -1 provide the best CL0 for a given height to span ratio. Finally, the taper ratio and relative fore
wing area were found to be non relevant for this study, so rectangular wings with the same wing planform are
chosen for the following studies.

Notice that this parametric study did not take into account structural considerations but aerodynamic
ones and was performed to check for the relevant parameters and main trends of the lift coefficient.

7

66 7. PARAMETRIC STUDY AND OPTIMIZATION

30 40 50 60 70

Relative fore area [%]

0.75

0.8

0.85

0.9

0.95

1

0.01

0.015

0.02

0.025

I

(a) I contour

30 40 50 60 70

Relative fore wing area [%]

0.75

0.8

0.85

0.9

0.95

1

5.45

5.5

5.55

5.6

C
L

(b) CLα contour

30 40 50 60 70

Relative fore wing area [%]

0.75

0.8

0.85

0.9

0.95

1

0.9

0.91

0.92

0.93

0.94

C
L
0

(c) CL0 contour

Figure 7.4: Sweeps on λ and Sl /Sr e f ,CW

7.3. OPTIMIZATION
Having analyzed the sensitivity of the lift coefficient on some geometrical parameters, a basic optimization
study is made to obtain the best lift coefficient performance box wing with the minimum weight. Since it is
not the purpose of this work to create an structural model of the box wing, the weight is computed making
some simplifications. First, no ribs are considered, and only the skin weight is taken into account. Second,
the thickness of the skin, t, is assumed constant throughout the whole wing. Third and last, the material and
thus the density of the skin ρs is assumed to be the same for the whole wing. Eq. 7.10 gives the simplified
weight of the wing, being A the area of the wing skin.

W = t Aρs (7.10)

Notice that since both conventional and box wing are assumed to be made of the same material and have the
same skin thickness, the weight comparison reduces to compare their respective wing skin areas.

The steps followed for the optimization process are described as follows:

1. Initialize sweeps on b, c, h and s.

2. Save the combinations that fulfill the constraints on the reference surface and wing weight: A) Sr e f ,BW ≤
Sr e f ,CW & B) ABW ≤ ACW

3. Sweep on the previous combinations simulating in APAME.

4. Filter the results from: A) Numerical errors & B) Values such that:

CL,BW (α=−14.8◦) < CL,CW (α=−14.8◦) and CL,BW (α= 9.2◦) < CL,CW (α= 9.2◦)

7.3. OPTIMIZATION

7

67

5. Plot the Paretto front showing the values of I and ABW . The inverse of I is represented instead so both
ABW and I−1 are tried to be minimized.

6. Choose the optimal point (combination) based on engineering judgement.

7. Define new sweep intervals (refined) around this combination and repeat from step 2 until step 6.

First initialization of parameters was done following Table 7.6. This gives a total of 10000 combinations
that need to be checked for constraint compliance. After this check, 3690 combinations result compliant with
the constraints. These combinations are simulated with APAME and subsequently filtered before ploting the
Paretto front. This second filtering process ensured 1207 combinations compliant with the constraints and
exceeding the conventional wing performance in terms of CL .

Figure 7.5a depicts the trends in terms of skin area and the inverse of the integral lift coefficient difference.
It would be the general practice to choose an optimum satisfying the lowest values of A and I−1. However,
since some assumptions were set for the weight being equivalent to the wing skin area and all the combi-
nations depicted exceed the CL of the conventional wing, optimum values were chosen only regarding the
lowest skin area values. Figure 7.5b shows the lift coefficient curves of the conventional wing and the three
first optima. The three optimum values in terms of input parameters and results are summarized in Table 7.7.

b [m] Start: bCW /4
End: bCW

Points: 10
MAC [m] Start: MACCW /4

End: MACCW

Points: 10
h [m] Start: 0.05bCW

End: bCW

Points: 10
s [m] Start: 0

End: MACCW

Points: 10
Airfoilwings MRevE-v2HC

Airfoil winglet NACA 0030
R [%] 15

Table 7.6: First sweep on parameters for optimal box wing design

10 15 20 25

I-1

50

100

150

200

250

300

A
 [

m
2
]

Combinations

Optimum 1

Optimum 2

Optimum 3

(a) Paretto front

-15 -10 -5 0 5
-1

-0.5

0

0.5

1

1.5

2

C
L

Conventional wing

Optimum 1

Optimum 2

Optimum 3

(b) CL vs α

Figure 7.5: First sweep for optimum values

Second initialization of parameters was done focusing on Optimum 1 and refining around it as specified
in Table 7.8. Note that in the previous sweep, negative stagger was omitted to save computational time. Even

7

68 7. PARAMETRIC STUDY AND OPTIMIZATION

Parameters Optimum 1 Optimum 2 Optimum 3
b [m] 17.6956 (0.42bCW) 17.6956 (0.42bCW) 21.2347 (0.5bCW)
MAC [m] 0.8856 (0.25MACCW) 0.8856 (0.25MACCW) 0.8856 (0.25MACCW)
h [m] 2.1235 (0.05bCW) 2.1235 (0.05bCW) 2.1235 (0.05bCW)
s [m] 0 0.3936 (0.11MACCW) 0
Results Optimum 1 Optimum 2 Optimum 3
CL0 1.0136 1.0007 1.0419
CLα 5.7881 5.7927 5.9597
Sref [m2] 31.3433 31.3433 37.6120
A [m2] 75.6560 75.6620 89.3698
I 0.0515 0.0465 0.0601

Table 7.7: Parameters and results from first sweep for optimum values

if the lift coefficient performance is slightly better, the skin coefficient area is similar to the case of positive
stagger. In this second refinement, negative stagger is included for completeness. This gives a total of 14641
combinations that were all complying with the surface and weight constraints. After simulating them in
APAME, the second filter reduces these number to 7859 combinations that exceed the conventional wing
performance in terms of CL . Again the Paretto front from these combinations is plotted in Figure 7.6a and
the lowest weight (skin area) points as optimum points. In this case, the point corresponding to the lowest
weight region and minimum I−1, which is maximum integral difference between lift coefficient curves, is
highlighted and compared to the first three weight minima.

Figure 7.6b is representing the CL vs α curves for the previously mentioned optima and the quantitative
results are summarized in Table 7.9. All error percentages in the results section of the table are expressed
relative to optimum 1 values. First relevant fact is that all optima have the same wingspan, MAC and height
between wings and only vary in terms of stagger. This is reasonable since minimum weight configuration
compliant with the constraints is expected to vary slightly with the stagger. Second relevant fact is the lower
overall performance of positive stagger against negative stagger in terms of I, lead by a decrease in CL0. This
observation is in line with the trends from the parametric study discussed in the previous section. However,
the decrease and increase from optima 2 & 3 has a magnitude of 4% which would not be critical to choose
between them. Third relevant fact is the superior performance of optimum 10. The value of I increases a 10%
with respect to the value of no stagger with an increase in the skin area of less than 0.03%.

If this optimum is compared with the conventional wing values (Table 7.10), interesting results can be
extracted. In the first place, lift coefficient slope and lift coefficient for zero angle of attack remain almost
unaffected with changes of ±2%. In terms of the reference surface of the box wing, it was reduced to 6.09
times the reference surface of the conventional wing, and the skin area was reduced 5.65 times compared
to its equivalent conventional wing value. This would mean that an equivalent box wing has a superior per-
formance than the conventional wing, allowing both weight savings, lower skin friction drag, and similar lift
performances. However, several simplifications were taken into account to reach to this final design and the
limits of this assertions need to be discussed in detail.

7.4. LIMITATIONS
Results of this optimization process need to be analyzed critically and taking into account the inherent limi-
tations that panel methods present. The main important assumptions together with the limitations they are
related to are summarized in the following list:

1. The regime of operation of the wings lie in the linear part of the lift coefficient curve and it is steady. On
the one hand, non linear effects are expected in reality including stall, which can not be predicted with
this model. Note that for the case of box wings the stalling characteristics could be either enhanced or
worsened depending on the interaction between upper and lower wings. On the other hand, APAME
has proven to be reliable in the linear region in terms of lift, which implies that the performance in
terms of CL of an equivalent box wing would be similar than conventional one at least when both are
in the linear regime.

2. The skin friction drag is related to the area covering the skin of the airfoil and the skin material qual-
ity. Under the same conditions: same skin surface roughness and attached flow, the box wing would

7.4. LIMITATIONS

7

69

b [m] Start: 0.4bCW

End: 0.6bCW

Points: 11
MAC [m] Start: 0.2MACCW

End: 0.3MACCW

Points: 11
h/b Start: 0.05

End: 0.15
Points: 11

s/MAC Start: 1
End: -1
Points: 11

Airfoilwings MRevE-v2HC

Airfoil winglet NACA 0030
R [%] 15

Table 7.8: Second sweep on parameters for optimal box wing design

10 12 14 16 18 20

I-1

40

60

80

100

120

140

A
 [

m
2
]

Combinations

Optimum 1

Optimum 2

Optimum 3

Optimum 10

(a) Paretto front

-15 -10 -5 0 5
-1

-0.5

0

0.5

1

1.5

2
C

L

Conventional wing

Optimum 1

Optimum 2

Optimum 3

Optimum 10

(b) CL vs α

Figure 7.6: Second sweep for optimum values

Parameters Optimum 1 Optimum 2 Optimum 3 Optimum 10
b [m] 16.9878 (0.4bCW) 16.9878 (0.4bCW) 16.9878 (0.4bCW) 16.9878 (0.4bCW)
MAC [m] 0.7085 (0.2MACCW) 0.7085 (0.2MACCW) 0.7085 (0.2MACCW) 0.7085 (0.2MACCW)
h [m] 1.6988 (0.1b) 1.6988 (0.1b) 1.6988 (0.1b) 1.6988 (0.1b)
s [m] 0 0.1417 (0.2MAC) -0.1417(-0.2MAC) -0.7085(-MAC)
Results Optimum 1 Optimum 2 Optimum 3 Optimum 10
CL0 1.0404 1.0382 (-0.21%) 1.0495 (0.87%) 1.0617 (2.05%)
CLα 5.9705 5.9720 (0.025%) 5.9747 (0.07%) 6.0125 (0.70%)
Sref [m2] 24.0717 24.0717 (0%) 24.0717 (0%) 24.0717 (0%)
A [m2] 57.1967 57.1974 (0.001%) 57.1976 (0.0015%) 57.2102 (0.024%)
I 0.0607 0.0585 (-3.62%) 0.0628 (3.46%) 0.0666 (9.72%)

Table 7.9: Parameters and results from second sweep for optimum values

present a much lower skin friction drag than the conventional wing (Recap the skin area was reduced
5.65 times). However, whenever the flight conditions are not ideal or in the non linear regime, no state-
ment can be made about the skin friction drag.

3. The form drag is related to the frontal area of the wing that faces the flow. The frontal area of the
designed box wing was around five times less than the frontal area of the conventional one at zero angle
of attack. This means that under the assumption of attached flow at this α, flow would be rejoined in a

7

70 7. PARAMETRIC STUDY AND OPTIMIZATION

Results Conventional wing Box wing
CL0 0.9076 1.0617 (1.70%)
CLα 6.0798 6.0125 (-1.11%)
Sref [m2] 150.4478 24.0717 (-84%)
A [m2] 323.3616 57.2102 (-82.31%)

Table 7.10: Results comparison between conventional and box wing designs

quicker and smoother way for the case of the box wing. However, if the angle of attack changes, a more
detailed computation of the area facing the flow would be needed, together with the interference that
the upper wing may induce in the lower one.

4. The weight of the wing was strongly simplied to Eq. 7.10. Recap that this is not taking into account
neither differences in materials, nor thicknesses, nor internal structural elements neither in the con-
ventional wing nor in the box wing design. However, the savings in the weight of the box wing skin
(84%) give some margin for all these features not being taken into account to be included.

5. The structural deformation of the wing is not taken into account for the box wing case. The conven-
tional wing results are based on a deformed wing geometry, with maximum wing tip displacements of
the order of 0.23-1.23% the wingspan of the conventional wing. However, the existence of the winglets
joining the upper and lower wings is expected to provide more rigidity to the design and produce less
deformations than in the conventional case. The region between the winglets should consider the use
of stiffening elements in order to prevent undesired bending of the geometry.

8
CONCLUSIONS

This is a concluding chapter that summarizes the work done, the main results and the future research aligned
with the topic.

8.1. CONCLUSIONS
In this project, an automatic framework for box wing low and high fidelity aerodynamic studies was devel-
oped. The framework could be used for two different approaches. The first one is for evaluation of an exis-
tent box wing design. The second one is for obtaining box wing designs equivalent to conventional wings by
means of optimization.

In the first place, the box wing geometry was fully parametrized with eight physical parameters, five airfoil
profiles and five discretization parameters. This allowed a wide range of combinations for box wing designs.

In the second place, the geometry was prepared to be meshed for two different aerodynamic tools. First
tool is the low fidelity solver, which uses a steady panel method for aerodynamic computations. For this
application, a surface mesh with low resolution was shown to provide fast and accurate values of the lift
coefficient in the linear region. Second tool is the high fidelity solver, which uses discretized RANS equations,
requiring a high quality volume mesh. Among the three options medium or high resolution seem to provide
accurate results in terms of lift and drag coefficient in all regions. However, for points in the lift coefficient
curve after the maximum lift coefficient, high resolution is strongly recommended.

In the third place, the post processing of the CFD computations show relevant features of box wing aero-
dynamics such as delayed stall of the upper wing as compared to the lower one, delayed boundary layer
separation of the wing tip as compared to the wing root sections and vortex recombination behaviour.

In the last place, an equivalent box wing design to a megawatt conventional wing was performed using
the low fidelity tool. An optimization process was executed reducing the reference surface and the area of
the skin of the conventional wing an 84% and 82%, respectively. Similar values of lift coefficient slope and lift
coefficient at zero angle of attack were obtained during this process.

8.2. FUTURE WORK
The high degree of automation of this work allows to define the start of a wide variety of applications for
box wing designs applied to AWE systems. However, since this study was focused on the automation, strong
simplifications were made for the aerodynamic analyses and optimization of the low fidelity tool. Among the
different options, the most relevant ones for the continuation of this work are listed as follows:

• Develop a detailed structural model that gives a better estimation of the weight and resistance to the
aerodynamic loads. This could be coupled with the low fidelity solver to perform fast aero-structural
optimization studies.

• Perform CFD studies on the two possible staggered configurations of the validation case and compari-
son.

• Perform validation and calibration of CFD parameters using wind tunnel experimental data of cam-
bered box wing designs.

71

8

72 8. CONCLUSIONS

• Verify the results obtained for the equivalent megawatt wing of this work with CFD or experiments.

• Increase the complexity of the functions used for the CFD meshing, allowing a higher degree of flexi-
bility in this process.

BIBLIOGRAPHY

[1] International Energy Agency, World Energy Outlook 2021. [Online]. Available: https://www.iea.org/
reports/world-energy-outlook-2021 (visited on 03/18/2022).

[2] ——, Renewables 2020, Wind. [Online]. Available: https://www.iea.org/reports/renewables-
2020/wind (visited on 03/18/2022).

[3] C. Jung and D. Schindler, “A global wind farm potential index to increase energy yields and accessibil-
ity,” Energy, vol. 231, p. 120 923, 2021, ISSN: 0360-5442. DOI: 10.1016/j.energy.2021.120923.

[4] P. Enevoldsen and G. Xydis, “Examining the trends of 35 years growth of key wind turbine components,”
Energy for Sustainable Development, vol. 50, pp. 18–26, 2019, ISSN: 0973-0826. DOI: 10.1016/j.esd.
2019.02.003.

[5] R. Brood, Ö. Ceyhan, W. Engels, J. Peeringa, and G. De Winkel, “Upwind 20mw wind turbine pre-design:
Blade design and control,” ECN-E-11-017, Tech. Rep., 2011.

[6] M. Diehl, “Airborne wind energy: Basic concepts and physical foundations,” in Airborne Wind Energy,
U. Ahrens, M. Diehl, and R. Schmehl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 3–
22, ISBN: 978-3-642-39965-7. DOI: 10.1007/978-3-642-39965-7_1.

[7] A. Cherubini, A. Papini, R. Vertechy, and M. Fontana, “Airborne wind energy systems: A review of the
technologies,” Renewable and Sustainable Energy Reviews, vol. 51, pp. 1461–1476, 2015.

[8] R. Schmehl, Airborne wind energy – An introduction to an emerging technology. [Online]. Available:
http://www.awesco.eu/awe-explained/ (visited on 03/21/2022).

[9] S. Watson, A. Moro, V. Reis, et al., “Future emerging technologies in the wind power sector: A european
perspective,” Renewable and sustainable energy reviews, vol. 113, pp. 109–270, 2019.

[10] A. Cherubini, G. Moretti, and M. Fontana, “Dynamic modeling of floating offshore airborne wind en-
ergy converters,” in Airborne Wind Energy: Advances in Technology Development and Research, R. Schmehl,
Ed. Singapore: Springer Singapore, 2018, pp. 137–163, ISBN: 978-981-10-1947-0. DOI: 10.1007/978-
981-10-1947-0_7.

[11] European Commission and Directorate-General for Research and Innovation, Study on challenges in
the commercialisation of airborne wind energy systems. Publications Office, 2018. DOI: 10.2777/933106.

[12] G. Lutsch, “Airborne Wind Energy Network HWN500–Shouldering R&D in Co-Operations,” in Book of
Abstracts AWEC 2015, AWEC, 2015.

[13] Makani Power, The Energy Kite, Selected Results From the Design, Development and Testing of Makani’s
Airborne Wind Turbines Part I, 2020. [Online]. Available: https://airbornewindeurope.org/wp-
content/uploads/2022/04/Makani-2020_TheEnergyKiteReport_Part1-web.pdf (visited on
05/26/2022).

[14] Ampyx Power, Technology: Demonstrator AP3, 2017. [Online]. Available: https://www.ampyxpower.
com/technology/demonstrator-ap3/ (visited on 05/26/2022).

[15] R. B. Addoms, “Aerodynamic and structural design considerations for high lift biplane wing systems,”
Ph.D. dissertation, University of California, Los Angeles, 1972.

[16] R. B. Addoms and F. W. Spaid, “Aerodynamic design of high-performance biplane wings,” Journal of
Aircraft, vol. 12, no. 8, pp. 629–630, 1975. DOI: 10.2514/3.59846.

[17] E. Olson and B. Selberg, “Experimental determination of improved aerodynamic characteristics utiliz-
ing biplane wing configurations,” Journal of Aircraft, vol. 13, no. 4, pp. 256–261, 1976. DOI: 10.2514/3.
44523.

[18] M. L. Loyd, “Crosswind kite power (for large-scale wind power production),” Journal of Energy, vol. 4,
no. 3, pp. 106–111, 1980. DOI: 10.2514/3.48021.

73

https://www.iea.org/reports/world-energy-outlook-2021
https://www.iea.org/reports/world-energy-outlook-2021
https://www.iea.org/reports/renewables-2020/wind
https://www.iea.org/reports/renewables-2020/wind
https://doi.org/10.1016/j.energy.2021.120923
https://doi.org/10.1016/j.esd.2019.02.003
https://doi.org/10.1016/j.esd.2019.02.003
https://doi.org/10.1007/978-3-642-39965-7_1
http://www.awesco.eu/awe-explained/
https://doi.org/10.1007/978-981-10-1947-0_7
https://doi.org/10.1007/978-981-10-1947-0_7
https://doi.org/10.2777/933106
https://airbornewindeurope.org/wp-content/uploads/2022/04/Makani-2020_TheEnergyKiteReport_Part1-web.pdf
https://airbornewindeurope.org/wp-content/uploads/2022/04/Makani-2020_TheEnergyKiteReport_Part1-web.pdf
https://www.ampyxpower.com/technology/demonstrator-ap3/
https://www.ampyxpower.com/technology/demonstrator-ap3/
https://doi.org/10.2514/3.59846
https://doi.org/10.2514/3.44523
https://doi.org/10.2514/3.44523
https://doi.org/10.2514/3.48021

8

74 BIBLIOGRAPHY

[19] S. Costello, C. Costello, G. François, and D. Bonvin, “Analysis of the maximum efficiency of kite-power
systems,” Journal of Renewable and Sustainable Energy, vol. 7, no. 5, pp. 53–108, 2015. DOI: 10.1063/
1.4931111.

[20] L. Prandtl, Induced drag of multiplanes (technical note No. 182), 1924.

[21] P. D. Gall and H. C. Smith, “Aerodynamic characteristics of biplanes with winglets,” Journal of Aircraft,
vol. 24, no. 8, pp. 518–522, 1987. DOI: 10.2514/3.45470.

[22] S. A. Andrews, “Multidisciplinary analysis of closed, nonplanar wing configurations for transport air-
craft,” Ph.D. dissertation, Royal Military College of Canada, 2016.

[23] J. Bevirt, Tethered airborne power generation system with vertical take-off and landing capability, US
Patent App. 12/784,328, Nov. 2010.

[24] KiteKraft, KiteKraft Technology. [Online]. Available: https://www.kitekraft.de/technology (vis-
ited on 02/22/2022).

[25] ——, KiteKraft Blog. [Online]. Available: https://medium.com/kitekraft/kitekraft-succeeds-
with-autonomous-all-phase-flight-of-new-kite-demonstrator-f13b12690d55 (visited on
02/22/2022).

[26] F. A. Khan, “Preliminary aerodynamic investigation of box-wing configurations using low fidelity codes,”
M.S. thesis, Luleå University of Technology Dept. of Space Science, Kiruna, 2010.

[27] H. Gagnon and D. W. Zingg, “Aerodynamic optimization trade study of a box-wing aircraft configura-
tion,” Journal of Aircraft, vol. 53, no. 4, pp. 971–981, 2016. DOI: 10.2514/1.C033592.

[28] S. A. Andrews and R. E. Perez, “Comparison of box-wing and conventional aircraft mission performance
using multidisciplinary analysis and optimization,” Aerospace Science and Technology, vol. 79, pp. 336–
351, 2018, ISSN: 1270-9638. DOI: 10.1016/j.ast.2018.05.060.

[29] F. Bauer, R. M. Kennel, C. M. Hackl, F. Campagnolo, M. Patt, and R. Schmehl, “Drag power kite with very
high lift coefficient,” Renewable Energy, vol. 118, pp. 290–305, 2018, ISSN: 0960-1481. DOI: 10.1016/j.
renene.2017.10.073.

[30] U. Zillmann and P. Bechtle, “Emergence and economic dimension of airborne wind energy,” in Airborne
Wind Energy: Advances in Technology Development and Research, R. Schmehl, Ed. Singapore: Springer
Singapore, 2018, pp. 1–25, ISBN: 978-981-10-1947-0. DOI: 10.1007/978-981-10-1947-0_1.

[31] H. Schmidt, G. de Vries, R. Schmehl, and R. Renes, “The social acceptance of airborne wind energy: A
literature review,” Energies, vol. 15, no. 4, 2022, ISSN: 1996-1073. DOI: 10.3390/en15041384.

[32] IRENA, Offshore renewables: An action agenda for deployment, International Renewable Energy Agency.
Abu Dhabi, 2021, ISBN: 978-92-9260-349-6.

[33] United Nations Climate Change Technology Executive (UNCCTE) Committee, Emerging climate tech-
nologies in the energy supply sector. [Online]. Available: https : / / unfccc . int / ttclear / tec /
energysupplysector.html (visited on 03/07/2022).

[34] J. Weber, M. Marquis, A. Cooperman, et al., “Airborne wind energy,” National Renewable Energy Lab
(NREL), Golden, CO (United States), Tech. Rep., 2021.

[35] V. Salma, R. Ruiterkamp, M. Kruijff, M. M. R. van Paassen, and R. Schmehl, “Current and expected
airspace regulations for airborne wind energy systems,” in Airborne Wind Energy: Advances in Tech-
nology Development and Research, R. Schmehl, Ed. Singapore: Springer Singapore, 2018, pp. 703–725,
ISBN: 978-981-10-1947-0. DOI: 10.1007/978-981-10-1947-0_29.

[36] F. A. Administration, Notification for Airborne Wind Energy Systems (AWES), FAA-2011-1279, Dec 2011.
[Online]. Available: https://www.govinfo.gov/content/pkg/FR- 2011- 12- 07/pdf/2011-
31430.pdf (visited on 03/17/2022).

[37] Daniel Filkovic, APAME-Aircraft 3D panel method, 2010. [Online]. Available: http://www.3dpanelmethod.
com/home.html (visited on 05/27/2022).

[38] Cadence, Pointwise for cfd meshing. [Online]. Available: https://www.pointwise.com/ (visited on
05/24/2022).

[39] OpenFOAM, About openfoam. [Online]. Available: https://www.openfoam.com/ (visited on 05/24/2022).

https://doi.org/10.1063/1.4931111
https://doi.org/10.1063/1.4931111
https://doi.org/10.2514/3.45470
https://www.kitekraft.de/technology
https://medium.com/kitekraft/kitekraft-succeeds-with-autonomous-all-phase-flight-of-new-kite-demonstrator-f13b12690d55
https://medium.com/kitekraft/kitekraft-succeeds-with-autonomous-all-phase-flight-of-new-kite-demonstrator-f13b12690d55
https://doi.org/10.2514/1.C033592
https://doi.org/10.1016/j.ast.2018.05.060
https://doi.org/10.1016/j.renene.2017.10.073
https://doi.org/10.1016/j.renene.2017.10.073
https://doi.org/10.1007/978-981-10-1947-0_1
https://doi.org/10.3390/en15041384
https://unfccc.int/ttclear/tec/energysupplysector.html
https://unfccc.int/ttclear/tec/energysupplysector.html
https://doi.org/10.1007/978-981-10-1947-0_29
https://www.govinfo.gov/content/pkg/FR-2011-12-07/pdf/2011-31430.pdf
https://www.govinfo.gov/content/pkg/FR-2011-12-07/pdf/2011-31430.pdf
http://www.3dpanelmethod.com/home.html
http://www.3dpanelmethod.com/home.html
https://www.pointwise.com/
https://www.openfoam.com/

BIBLIOGRAPHY

8

75

[40] Mathworks, Matlab. [Online]. Available: https://www.mathworks.com/products/matlab.html
(visited on 05/24/2022).

[41] ParaView, Welcome to paraview. [Online]. Available: https://www.paraview.org/ (visited on 05/24/2022).

[42] Pointwise, Glyph version 3.18.6. [Online]. Available: https://www.pointwise.com/glyph2/files/
Glyph/cxx/GgGlyph-cxx.html (visited on 05/24/2022).

[43] J. Katz and A. Plotkin, Low-Speed Aerodynamics, 2nd ed., ser. Cambridge Aerospace Series. Cambridge
University Press, 2001. DOI: 10.1017/CBO9780511810329.

[44] D. Eijkelhof, “Design and optimisation framework of a multi-MW airborne wind energy reference sys-
tem,” M.S. thesis, Delft University of Technology & Technical University of Denmark, 2019.

[45] U. Fasel, P. Tiso, D. Keidel, G. Molinari, and P. Ermanni, “Reduced-order dynamic model of a morphing
airborne wind energy aircraft,” AIAA Journal, vol. 57, no. 8, pp. 3586–3598, 2019. DOI: 10.2514/1.
J058019.

[46] C. Hirsch, “Basic discretization techniques,” in Numerical Computation of Internal and External Flows
(Second Edition), C. Hirsch, Ed., Second Edition, Oxford: Butterworth-Heinemann, 2007, pp. 141–144,
ISBN: 978-0-7506-6594-0. DOI: 10.1016/B978-075066594-0/50044-8.

[47] O. Kolditz, “Finite volume method,” in Computational Methods in Environmental Fluid Mechanics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 173–190, ISBN: 978-3-662-04761-3. DOI: 10.
1007/978-3-662-04761-3_8.

[48] J. Boussinesq, Essai sur la théorie des eaux courantes. Impr. nationale, 1877.

[49] L. Prandtl, “7. bericht über untersuchungen zur ausgebildeten turbulenz,” ZAMM - Journal of Ap-
plied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 5, no. 2,
pp. 136–139, 1925. DOI: 10.1002/zamm.19250050212.

[50] A. N. Kolmogorov, “Equations of turbulent motion in an incompressible fluid,” in Dokl. Akad. Nauk
SSSR, vol. 30, 1941, pp. 299–303.

[51] L. Prandtl, “Uber ein neues formel-system fur die ausgebildete turbulenz, nachr akad wiss, gottingen,
math,” Phys. Kl, vol. 1945, p. 6, 1945.

[52] P. SPALART and S. ALLMARAS, “A one-equation turbulence model for aerodynamic flows,” in 30th
Aerospace Sciences Meeting and Exhibit. DOI: 10.2514/6.1992-439.

[53] P. Catalano and M. Amato, “An evaluation of rans turbulence modelling for aerodynamic applications,”
Aerospace Science and Technology, vol. 7, no. 7, pp. 493–509, 2003, ISSN: 1270-9638. DOI: https://doi.
org/10.1016/S1270-9638(03)00061-0.

[54] W. Jones and B. Launder, “The prediction of laminarization with a two-equation model of turbulence,”
International Journal of Heat and Mass Transfer, vol. 15, no. 2, pp. 301–314, 1972, ISSN: 0017-9310. DOI:
10.1016/0017-9310(72)90076-2.

[55] B. Launder and D. Spalding, “Paper 8 - the numerical computation of turbulent flows,” in Numerical
Prediction of Flow, Heat Transfer, Turbulence and Combustion, S. V. Patankar, A. Pollard, A. K. Singhal,
and S. P. Vanka, Eds., Pergamon, 1983, pp. 96–116, ISBN: 978-0-08-030937-8. DOI: 10.1016/B978-0-
08-030937-8.50016-7.

[56] D. Wilcox, Turbulence Modeling for CFD, 3rd ed. DCW Industries, 2006, vol. 1, ISBN: 9781928729082.

[57] F. Menter, “Zonal two equation k-w turbulence models for aerodynamic flows,” in 23rd Fluid Dynamics,
Plasmadynamics, and Lasers Conference. DOI: 10.2514/6.1993-2906.

[58] F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the sst turbulence
model,” in International Symposium on Turbulence, Heat and Mass Transfer, vol. 4, West Redding:
Begell House Inc., 2003, pp. 625–632.

[59] L. S. Caretto, A. D. Gosman, S. V. Patankar, and D. B. Spalding, “Two calculation procedures for steady,
three-dimensional flows with recirculation,” in Proceedings of the Third International Conference on
Numerical Methods in Fluid Mechanics, H. Cabannes and R. Temam, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 1973, pp. 60–68, ISBN: 978-3-540-38392-5. DOI: 10.1007/BFb0112677.

https://www.mathworks.com/products/matlab.html
https://www.paraview.org/
https://www.pointwise.com/glyph2/files/Glyph/cxx/GgGlyph-cxx.html
https://www.pointwise.com/glyph2/files/Glyph/cxx/GgGlyph-cxx.html
https://doi.org/10.1017/CBO9780511810329
https://doi.org/10.2514/1.J058019
https://doi.org/10.2514/1.J058019
https://doi.org/10.1016/B978-075066594-0/50044-8
https://doi.org/10.1007/978-3-662-04761-3_8
https://doi.org/10.1007/978-3-662-04761-3_8
https://doi.org/10.1002/zamm.19250050212
https://doi.org/10.2514/6.1992-439
https://doi.org/https://doi.org/10.1016/S1270-9638(03)00061-0
https://doi.org/https://doi.org/10.1016/S1270-9638(03)00061-0
https://doi.org/10.1016/0017-9310(72)90076-2
https://doi.org/10.1016/B978-0-08-030937-8.50016-7
https://doi.org/10.1016/B978-0-08-030937-8.50016-7
https://doi.org/10.2514/6.1993-2906
https://doi.org/10.1007/BFb0112677

8

76 BIBLIOGRAPHY

[60] OpenFOAM, OpenFOAM: User Guide v2112. SIMPLE algorithm. [Online]. Available: https://www.
openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-simple.
html (visited on 05/16/2022).

[61] H. Jasak, “Error analysis and estimation for the finite volume method with applications to fluid flows.,”
Ph.D. dissertation, Imperial College London (University of London), 1996.

[62] J. P. Van Doormaal and G. D. Raithby, “Enhancements of the simple method for predicting incompress-
ible fluid flows,” Numerical heat transfer, vol. 7, no. 2, pp. 147–163, 1984.

[63] H. Schlichting and K. Gersten, “Internal flows,” in Boundary-Layer Theory. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2017, pp. 519–556, ISBN: 978-3-662-52919-5. DOI: 10.1007/978-3-662-52919-
5_17. [Online]. Available: https://doi.org/10.1007/978-3-662-52919-5_17.

[64] J. Chawner, Quality and Control – Two Reasons Why Structured Grids Aren’t Going Away. [Online]. Avail-
able: https://www.pointwise.com/articles/quality- and- control- two- reasons- why-
structured-grids-aren-t-going-away (visited on 05/24/2022).

[65] Pointwise, Area and Volume Ratio. [Online]. Available: https://www.pointwise.com/doc/user-
manual/examine/functions/area-volume-ratio.html#description (visited on 05/24/2022).

[66] ——, Equiangle Skewness. [Online]. Available: https://www.pointwise.com/doc/user-manual/
examine/functions/equiangle-skewness.html (visited on 05/24/2022).

[67] SIMSCALE, Documentation. cfd numerics: Non-orthogonal correctors. [Online]. Available: https://
www.simscale.com/docs/simulation-setup/numerics/non-orthogonal-correctors/ (visited
on 05/30/2022).

[68] CFD Direct, Openfoam v7 user guide: 4.5 numerical schemes. [Online]. Available: https://cfd.direct/
openfoam/user-guide/v7-fvschemes/ (visited on 05/30/2022).

[69] Pointwise, Centroid skewness. [Online]. Available: https://www.pointwise.com/doc/user-manual/
examine/functions/centroid-skewness.html (visited on 05/30/2022).

[70] ——, Aspect ratio. [Online]. Available: http://www.pointwise.com/doc/user-manual/examine/
functions/aspect-ratio.html (visited on 05/30/2022).

[71] ——, T-rex tab. [Online]. Available: https://www.pointwise.com/doc/user-manual/grid/solve/
unstructured-domains/t-rex.html (visited on 05/24/2022).

[72] M. Athadkar and S. Desai, “Importance of the extent of far-field boundaries and of the grid topology in
the cfd simulation of external flows,” International Journal of Mechanical And Production Engineering,
vol. 2, pp. 69–72, 2014, ISSN: 2320-2092.

[73] OpenFOAM, Openfoam user guide: 3.2 running applications in parallel. [Online]. Available: https:
//www.openfoam.com/documentation/user-guide/3-running-applications/3.2-running-
applications-in-parallel (visited on 05/31/2022).

[74] CFD Online, Turbulence intensity. [Online]. Available: https : / / www . cfd - online . com / Wiki /
Turbulence_intensity (visited on 05/31/2022).

[75] ——, Eddy viscosity ratio. [Online]. Available: https://www.cfd-online.com/Wiki/Eddy_viscosity_
ratio (visited on 05/31/2022).

[76] G. Lebesque, “Steady-state rans simulation of a leading edge inflatable wing with chordwise struts,”
M.S. thesis, Delft University of Technology, 2020.

[77] OpenFOAM, Openfoam v8 user guide: 4.5 numerical schemes. [Online]. Available: https : / / cfd .
direct/openfoam/user-guide/v8-fvschemes/ (visited on 05/31/2022).

[78] L. F. Richardson and J. A. Gaunt, “Viii. the deferred approach to the limit,” Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character,
vol. 226, no. 636-646, pp. 299–361, 1927. DOI: 10.1098/rsta.1927.0008.

[79] I. H. Abbott and A. E. Von Doenhoff, Theory of wing sections: Including a summary of airfoil data. Dover
Publications, Inc., New York, 1959.

[80] D. J. Acheson, Elementary fluid dynamics: Oxford University Press. Oxford, England, 1990.

[81] D. E. Gault, “A correlation of low-speed, airfoil-section stalling characteristics with reynolds number
and airfoil geometry,” Tech. Rep. NACA-TN-3963, 1957.

https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-simple.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-simple.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-simple.html
https://doi.org/10.1007/978-3-662-52919-5_17
https://doi.org/10.1007/978-3-662-52919-5_17
https://doi.org/10.1007/978-3-662-52919-5_17
https://www.pointwise.com/articles/quality-and-control-two-reasons-why-structured-grids-aren-t-going-away
https://www.pointwise.com/articles/quality-and-control-two-reasons-why-structured-grids-aren-t-going-away
https://www.pointwise.com/doc/user-manual/examine/functions/area-volume-ratio.html#description
https://www.pointwise.com/doc/user-manual/examine/functions/area-volume-ratio.html#description
https://www.pointwise.com/doc/user-manual/examine/functions/equiangle-skewness.html
https://www.pointwise.com/doc/user-manual/examine/functions/equiangle-skewness.html
https://www.simscale.com/docs/simulation-setup/numerics/non-orthogonal-correctors/
https://www.simscale.com/docs/simulation-setup/numerics/non-orthogonal-correctors/
https://cfd.direct/openfoam/user-guide/v7-fvschemes/
https://cfd.direct/openfoam/user-guide/v7-fvschemes/
https://www.pointwise.com/doc/user-manual/examine/functions/centroid-skewness.html
https://www.pointwise.com/doc/user-manual/examine/functions/centroid-skewness.html
http://www.pointwise.com/doc/user-manual/examine/functions/aspect-ratio.html
http://www.pointwise.com/doc/user-manual/examine/functions/aspect-ratio.html
https://www.pointwise.com/doc/user-manual/grid/solve/unstructured-domains/t-rex.html
https://www.pointwise.com/doc/user-manual/grid/solve/unstructured-domains/t-rex.html
https://www.openfoam.com/documentation/user-guide/3-running-applications/3.2-running-applications-in-parallel
https://www.openfoam.com/documentation/user-guide/3-running-applications/3.2-running-applications-in-parallel
https://www.openfoam.com/documentation/user-guide/3-running-applications/3.2-running-applications-in-parallel
https://www.cfd-online.com/Wiki/Turbulence_intensity
https://www.cfd-online.com/Wiki/Turbulence_intensity
https://www.cfd-online.com/Wiki/Eddy_viscosity_ratio
https://www.cfd-online.com/Wiki/Eddy_viscosity_ratio
https://cfd.direct/openfoam/user-guide/v8-fvschemes/
https://cfd.direct/openfoam/user-guide/v8-fvschemes/
https://doi.org/10.1098/rsta.1927.0008

BIBLIOGRAPHY 77

[82] A. Haines, “Scale effects on aircraft and weapon aerodynamics (les effets d’echelle et l’aerodynamique
des aeronefs et des systemes d’armes),” Advisory Group For Aerospace Research and Development
(AGARD), Neuilly-Sur-Seine, France, Tech. Rep. ADA291964, 1994.

A
GEOMETRIC COMPUTATIONS

A.1. CENTER OF ROTATION
In order to compute the center of rotation between two points one located at the wing and the other at the
winglet, Figure A.1 serves as illustration of the following steps being followed:

• Vectors r⃗1 =O A and r⃗2 =OB are defined. Note that the position of the center of rotation O is unknown
and these two vectors are thus a function of this position.

• Vectors h⃗ = [s 0 h] and its normal vector n⃗ = [h 0 − s] contained in the plane xz are defined and normal-
ized.

• In order to find the position of the center of rotation, the following equations are formulated:

– Since the turn must be 90deg both vectors must be perpendicular r⃗1 · r⃗2 = 0

– Since the arc between points A and B must be circular then |⃗r1| = |⃗r2|
– Since the plane containing the arc must be perpendicular to h⃗ then r⃗1×r⃗2

|⃗r1×r⃗2| = n⃗

• Finally these equations are solved and the position of O is obtained.

A.2. ELEMENT SIZE IN A CURVE
In order to compute the element size in the last layer of the boundary layer, some steps must be followed.
Figure A.2 aims to illustrate the variables involved in the process.

• The spacing in the vertical direction of the boundary layer (sv) is strongly dependent on the layer num-
ber (n). It is also influenced by the growth rate (GR) and the initial boundary layer thickness (yi).

sv (n) = yi ∗GRn (A.1)

• The angle between two lines perpendicular the curve (α) is computed by specifying the desired divi-
sions in the curved region (Ndi v) and thus the surface mesh size (lc).

lc = πR

2Ndi v
(A.2)

α= 90/Ndi v (A.3)

• The radius of the curve (R) is known and the vectors giving the position in the curve r⃗1 (n) = [
x1 (n) , y1 (n)

]
and r⃗2 (n) = [

x2 (n) , y2 (n)
]

are generated as a function of the layer number following these equations:

x1 (n) = R − sv (n) (A.4)

y1 (n) = 0 (A.5)

x2 (n) = (R − sv (n))cosα (A.6)

y2 (n) = (R − sv (n))sinα (A.7)

78

A.2. ELEMENT SIZE IN A CURVE

A

79

Figure A.1: Graphic representation of the center of rotation taking as an example the points on the LE

• The element size as a function of the layer number is computed as:∣∣∣d⃗ (n)
∣∣∣= |⃗r2 (n)− r⃗1 (n)| (A.8)

• Finally, the surface element size (ls) in the straight region is just the distance between two curves in the
last layer (Nmax)

ls =
∣∣∣d⃗ (Nmax)

∣∣∣ (A.9)

However, if this process is used for 3D meshes, a correction factor (F ≤ 1) need to be applied to take
into account 3D effects.

ls = F
∣∣∣d⃗ (Nmax)

∣∣∣ (A.10)

Figure A.2: Graphic representation of the element size computation in a curve

B
CODE

All the code with some example scripts can be found on GitHub:
https://github.com/gabrielebuendiavela/aerABox.

B.1. BOX WING PARAMETRIZATION

1 % This function generates the geometry of a boxwing given certain
2 % parameters and stores it in two different ways: a matrix containing all
3 % the cross sections defining the wing and a list of all points present
4 % in the wing
5 % Author : Gabriel Buendia
6 % Version : 1
7 % Inputs:
8 % h -> Height between wings [m]
9 % b -> Wingspan [m]

10 % R -> Cant radius [m]
11 % c_r1 -> Chord at the root of the lower wing [m]
12 % c_t1 -> Chord at the tip of the lower wing [m]
13 % c_r2 -> Chord at the root of the upper wing [m]
14 % c_t2 -> Chord at the tip of the upper wing [m]
15 % s -> Wing stagger [m]
16 % N_bu -> Number of spanwise sections upper wing
17 % N_bl -> Number of spanwise sections lower wing
18 % N_bw -> Number of spanwise sections winglet
19 % N_el -> Number of elements to discretize airfoils
20 % N -> Number of sections to discretize the cant region
21 % Finite -> Finite trailing edge: 1-yes | 0-no
22 % af_1r -> Airfoil at the root of the lower wing
23 % af_1t -> Airfoil at the tip of the lower wing
24 % af_2r -> Airfoil at the root of the upper wing
25 % af_2t -> Airfoil at the tip of the upper wing
26 % af_w -> Airfoil at the winglet
27 % Outputs:
28 % Slices_Wing -> Matrix [N_points_airfoil x 3 x N_slices] containing
29 % all the wing cross sections [m]
30 % Points_Wing -> Matrix [N_points_airfoil*N_slices x 3] containing
31 % all the points of the wing [m]
32 function [Slices_Wing, Points_Wing] = ...

ParametrizationBWFiniteTE(h,b,R,c_r1,c_r2,c_t1,c_t2,s,N_bu,N_bl,N_bw,N_el,N, ...
Finite,af_1r,af_2r,af_1t,af_2t,af_w)

33 addpath("sr_bwp\")
34

35 % Define the airfoils
36 % load("MEGAWESAirfoil.mat") % You can choose to load your own airfoil geometry, then ...

you should specify it manually at each section
37 airfoil_1root = generateAirfoil(af_1r,length(af_1r),N_el,Finite); % Dimensionless ...

airfoil profile 1 root
38 % airfoil_1root = AirfoilRevEHC; % Replace your own airfoil variable name
39 airfoil_1root = swapmatrix(airfoil_1root);

80

https://github.com/gabrielebuendiavela/aerABox

B.1. BOX WING PARAMETRIZATION

B

81

40 airfoil_1tip = generateAirfoil(af_1t,length(af_1t),N_el,Finite); % Dimensionless ...
airfoil profile 1 tip

41 % airfoil_1tip = AirfoilRevEHC; % Replace your own airfoil variable name
42 airfoil_1tip = swapmatrix(airfoil_1tip);
43 airfoil_2root = generateAirfoil(af_2r,length(af_2r),N_el,Finite); % Dimensionless ...

airfoil profile 2 root
44 % airfoil_2root = AirfoilRevEHC; % Replace your own airfoil variable name
45 airfoil_2tip = generateAirfoil(af_2t,length(af_2t),N_el,Finite); % Dimensionless ...

airfoil profile 2 tip
46 % airfoil_2tip = AirfoilRevEHC; % Replace your own airfoil variable name
47 airfoil_winglet = generateAirfoil(af_w,length(af_w),N_el,Finite); % Dimensionless ...

airfoil profile winglet
48 % airfoil_winglet = generateAirfoil(af_w,length(af_w),N_el,Finite); % Replace your ...

own airfoil variable name
49

50 % Close open profiles (finite TE)
51 if Finite == 1
52 prov_size = length(airfoil_winglet);
53 airfoil_1root(prov_size+1,:) = airfoil_1root(1,:);
54 airfoil_1tip(prov_size+1,:) = airfoil_1tip(1,:);
55 airfoil_2root(prov_size+1,:) = airfoil_2root(1,:);
56 airfoil_2tip(prov_size+1,:) = airfoil_2tip(1,:);
57 airfoil_winglet(prov_size+1,:) = airfoil_winglet(1,:);
58 else
59 airfoil_1root(1,2) = 0; airfoil_1root(end,2) = 0;
60 airfoil_1tip(1,2) = 0; airfoil_1tip(end,2) = 0;
61 airfoil_2root(1,2) = 0; airfoil_2root(end,2) = 0;
62 airfoil_2tip(1,2) = 0; airfoil_2tip(end,2) = 0;
63 airfoil_winglet(1,2) = 0; airfoil_winglet(end,2) = 0;
64 end
65

66 % Calculations
67 airfoil_1r = c_r1*airfoil_1root; % Dimensional airfoil 1 at the root
68 airfoil_1t = c_t1*airfoil_1tip; % Dimensional airfoil 1 at the tip
69 airfoil_2r = c_r2*airfoil_2root; % Dimensional airfoil 2 at the root
70 airfoil_2t = c_t2*airfoil_2tip; % Dimensional airfoil 2 at the tip
71 airfoil_1w = c_t1*airfoil_winglet; % Dimensional airfoil winglet
72 airfoil_2w = c_t2*airfoil_winglet; % Dimensional airfoil winglet
73 vec_h = [s 0 h]; vec_h = vec_h/norm(vec_h); % Versor connecting airfoils 1 and 2
74 vec_hn = [vec_h(3) 0 -vec_h(1)]; % Versor normal to vec_h
75 vec_i = [1 0 0]; % Versor from x axis
76 vec_j = [0 1 0]; % Versor from y axis
77 vec_k = [0 0 1]; % Versor from z axis
78 p_O = [0 0 0]; % Origin
79 p_A = [0 b/2-R 0]; % End of lower wing
80 p_B = p_A + R*vec_h; % Center of circunference 1
81 p_C = p_B + R*vec_j; % Lower part of winglet
82 p_D = p_C + (sqrt(h^2+s^2)-2*R)*vec_h; % Upper part of winglet
83 p_E = p_D - R*vec_j; % Center of circumference 2
84 p_F = p_E + R*vec_h; % End of upper wing
85 p_G = p_F - (b/2-R)*vec_j; % Root of upper wing
86

87 airfoil_O = zeros(length(airfoil_1r),3);
88 airfoil_O(:,1) = airfoil_1r(:,1); airfoil_O(:,3) = airfoil_1r(:,2);
89

90 airfoil_A = zeros(length(airfoil_1t),3)+p_A;
91 airfoil_A(:,1) = airfoil_1t(:,1)+p_A(1); airfoil_A(:,3) = airfoil_1t(:,2)+p_A(3);
92

93 airfoil_C = zeros(length(airfoil_1t),3)+p_C;
94 airfoil_C(:,1) = airfoil_1w(:,1)+p_C(1); airfoil_C(:,2) = airfoil_1w(:,2)+p_C(2);
95

96 airfoil_D = zeros(length(airfoil_2t),3)+p_D;
97 airfoil_D(:,1) = airfoil_2w(:,1)+p_D(1); airfoil_D(:,2) = airfoil_2w(:,2)+p_C(2);
98

99 airfoil_F = zeros(length(airfoil_2t),3)+p_F;
100 airfoil_F(:,1) = airfoil_2t(:,1)+p_F(1); airfoil_F(:,3) = airfoil_2t(:,2)+p_F(3);
101

102 airfoil_G = zeros(length(airfoil_2t),3)+p_G;
103 airfoil_G(:,1) = airfoil_2r(:,1)+p_G(1); airfoil_G(:,3) = airfoil_2r(:,2)+p_G(3);
104

105 center_temp = airfoil_A(1,:)+R*vec_h;

B

82 B. CODE

106 for i = 1:length(airfoil_1t)
107 opts = optimoptions('fsolve', 'TolFun', 1E-10, 'TolX', 1E-10);
108 center = fsolve(@(r0) ...

functioncenter(r0,airfoil_A(i,:),airfoil_C(i,:),vec_hn),center_temp,opts);
109 center_temp = center;
110 CP1(:,:,i) = circunferencearc(center,airfoil_A(i,:),airfoil_C(i,:),N);
111 end
112 CP1(:,:,end) = CP1(:,:,1);
113 center_temp = airfoil_F(1,:)-R*vec_h;
114 for i = 1:length(airfoil_2t)
115 opts = optimoptions('fsolve', 'TolFun', 1E-10, 'TolX', 1E-10);
116 center = fsolve(@(r0) ...

functioncenter(r0,airfoil_D(i,:),airfoil_F(i,:),vec_hn),center_temp,opts);
117 center_temp = center;
118 CP2(:,:,i) = circunferencearc(center,airfoil_D(i,:),airfoil_F(i,:),N);
119 end
120 CP2(:,:,end) = CP2(:,:,1);
121

122 % Join points and organize in lines
123 N_lines = length(airfoil_1r);
124 N_points_lines = 2*(N-2)+6+N_bu+N_bw+N_bl;
125 Points_Wing = zeros(N_lines*N_points_lines,3);
126 k = 0;
127 % Optional figure, suppress in optimization applications
128 % Uncomment lines 129, 130, 157, 193-199 for visualization
129 % figure()
130 % hold on
131 for i = 1:N_lines
132 counter = i+(N_points_lines-1)*k;
133 Points_Wing(counter,:) = airfoil_O(i,:);
134 aux_low = (airfoil_A(i,:)-airfoil_O(i,:))/(N_bl+1);
135 for j = 1:N_bl
136 Points_Wing(counter+j,:) = airfoil_O(i,:)+j*aux_low;
137 end
138 Points_Wing(counter+1+N_bl,:) = airfoil_A(i,:);
139 for j = 1:(N-2)
140 Points_Wing(counter+1+N_bl+j,:) = CP1(j,:,i);
141 end
142 Points_Wing(counter+N+N_bl,:) = airfoil_C(i,:);
143 aux_winglet = (airfoil_D(i,:)-airfoil_C(i,:))/(N_bw+1);
144 for j = 1:N_bw
145 Points_Wing(counter+N+N_bl+j,:) = airfoil_C(i,:)+j*aux_winglet;
146 end
147 Points_Wing(counter+N+N_bl+N_bw+1,:) = airfoil_D(i,:);
148 for j = 1:(N-2)
149 Points_Wing(counter+j+N+N_bl+N_bw+1,:) = CP2(j,:,i);
150 end
151 Points_Wing(counter+2*N+N_bl+N_bw,:) = airfoil_F(i,:);
152 aux_up = (airfoil_G(i,:)-airfoil_F(i,:))/(N_bu+1);
153 for j = 1:N_bu
154 Points_Wing(counter+2*N+N_bl+N_bw+j,:) = airfoil_F(i,:)+j*aux_up;
155 end
156 Points_Wing(counter+2*N+N_bl+N_bw+N_bu+1,:) = airfoil_G(i,:);
157 % plot3(Points_Wing(counter:counter+2*N+N_bl+N_bw+N_bu+1,1), ...

Points_Wing(counter:counter+2*N+N_bl+N_bw+N_bu+1,2), ...
Points_Wing(counter:counter+2*N+N_bl+N_bw+N_bu+1,3),'-k','LineWidth',0.5)

158 k = k+1;
159 end
160

161 % Join points and organize in slices
162 N_slices = 2*(N-2)+6+N_bu+N_bl+N_bw;
163 N_points_slices = length(airfoil_A);
164 Slices_Wing = zeros(N_points_slices,3,N_slices);
165 k = 0;
166 Slices_Wing(:,:,1) = airfoil_O;
167 Increment_Low = (airfoil_A-airfoil_O)/(N_bl+1);
168 for i = 1:N_bl
169 Slices_Wing(:,:,i+1) = airfoil_O+i*Increment_Low;
170 end
171 Slices_Wing(:,:,2+N_bl) = airfoil_A;
172 for i = 1:N-2

B.1. BOX WING PARAMETRIZATION

B

83

173 aux = CP1(i,:,:);
174 Slices_Wing(:,:,i+2+N_bl) = reshape(aux,[3 N_points_slices])';
175 end
176 Slices_Wing(:,:,N+1+N_bl) = airfoil_C;
177 Increment_Winglet = (airfoil_D-airfoil_C)/(N_bw+1);
178 for i = 1:N_bw
179 Slices_Wing(:,:,i+N+1+N_bl) = airfoil_C+i*Increment_Winglet;
180 end
181 Slices_Wing(:,:,N+2+N_bl+N_bw) = airfoil_D;
182 for i = 1:N-2
183 aux = CP2(i,:,:);
184 Slices_Wing(:,:,N+i+2+N_bl+N_bw) = reshape(aux,[3 N_points_slices])';
185 end
186 Slices_Wing(:,:,2*N+1+N_bl+N_bw) = airfoil_F;
187 Increment_Up = (airfoil_G-airfoil_F)/(N_bu+1);
188 for i = 1:N_bu
189 Slices_Wing(:,:,i+2*N+1+N_bl+N_bw) = airfoil_F+i*Increment_Up;
190 end
191 Slices_Wing(:,:,2*N+2+N_bl+N_bw+N_bu) = airfoil_G;
192

193 % for i = 1:N_slices
194 % plot3(Slices_Wing(:,1,i),Slices_Wing(:,2,i),Slices_Wing(:,3,i),'b','LineWidth',1.5)
195 % end
196 % grid on
197 % campos([-5.81744979365763,-7.348383400029182,6.328819187324961])
198 % drawnow
199 % axis equal

B.1.1. AIRFOIL GENERATION

1 % This function generates a 4 or 5 series NACA airfoil
2 % Author : Gabriel Buendia
3 % Version : 1
4 % Inputs:
5 % designation -> Airfoil designation
6 % digits -> 4 or 5
7 % panels -> Number of points discretizing the airfoil
8 % TE -> Trailing edge
9 % Outputs:

10 % airfoil -> vector [panels x 2] containing the x and z
11 % coordinates of the airfoil
12 function airfoil = generateAirfoil(designation,digits,panels,TE)
13 iaf.designation= designation;
14 iaf.n= panels;
15 iaf.HalfCosineSpacing=1;
16 iaf.wantFile=0;
17 iaf.datFilePath='./';
18 iaf.is_finiteTE=TE;
19 switch digits
20 case 4
21 af = naca4gen(iaf);
22 case 5
23 af = naca5gen(iaf);
24 end
25 airfoil = zeros(iaf.n*2+1,2);
26 airfoil(:,1) = af.x;
27 airfoil(:,2) = af.z;
28 end

B.1.2. CENTER OF ROTATION

1 % This function generates the system of equations to be solved for
2 % computing the center of rotation
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:

B

84 B. CODE

6 % r0 -> Center of rotation
7 % r1 -> Point 1 belonging to the arc
8 % r2 -> Point 2 belonging to the arc
9 % hn -> Vector normal to the circle plane

10 % Outputs:
11 % F -> System of five equations equated to 0
12 function F = functioncenter(r0,r1,r2,hn)
13 v1 = r1-r0;
14 v2 = r2-r0;
15 F(1) = dot(v1,v2);
16 F(2) = norm(v1)-norm(v2);
17 aux = cross(v1,v2)/norm(cross(v1,v2));
18 F(3) = aux(1)-hn(1);
19 F(4) = aux(2)-hn(2);
20 F(5) = aux(3)-hn(3);
21 end

B.1.3. CIRCUNFERENCE ARC

1 % Function that computes N points of the arc of the circunference
2 % given 2 orthogonal points and the center (Note that it only works
3 % if both points are orthogonal). Note that the arc ends are excluded.
4 % Author : Gabriel Buendia
5 % Version : 1
6 % Inputs:
7 % rc -> Center of the circunference
8 % r1 -> Point 1
9 % r2 -> Point 2

10 % N -> Number of points
11 % Output:
12 % CP -> Points on the circunference
13 function CP = circunferencearc(rc,r1,r2,N)
14 theta = linspace(0,pi/2,N);
15 theta = theta(2:end-1);
16 x = @(t) rc(1) + cos(t).*(r1(1)-rc(1)) + sin(t).*(r2(1)-rc(1));
17 y = @(t) rc(2) + cos(t).*(r1(2)-rc(2)) + sin(t).*(r2(2)-rc(2));
18 z = @(t) rc(3) + cos(t).*(r1(3)-rc(3)) + sin(t).*(r2(3)-rc(3));
19 CP(:,1) = x(theta);
20 CP(:,2) = y(theta);
21 CP(:,3) = z(theta);
22 end

B.1.4. SWAP MATRIX

1 % This function swaps the elements of a matrix
2 % Author : Gabriel Buendia
3 % Version : 1
4 % Inputs:
5 % A -> Matrix to swap
6 % Outputs:
7 % A -> Swapped matrix
8 function A = swapmatrix(A)
9 [a,∼] = size(A);

10 b = mod(a,2);
11 if b == 0
12 a = a/2;
13 else
14 a = (a-1)/2;
15 end
16 for i = 1:a
17 aux = A(i,:);
18 A(i,:) = A(end-(i-1),:);
19 A(end-(i-1),:) = aux;
20 end

B.2. BOX WING APAME

B

85

B.2. BOX WING APAME

1 % This function generates an APAME geometry and the input file given
2 % certain parameters
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % Slices_Wing -> Matrix [N_points_airfoil x 3 x N_slices] containing
7 % all the wing cross sections [m]
8 % h -> Height between wings [m]
9 % name -> Name of the input file

10 % airspeed -> Freestream reference speed [m/s]
11 % density -> Freestream density [kg/m^3]
12 % pressure -> Freestream pressure [Pa]
13 % mach -> Fresstream Mach number
14 % cases -> Vector [n x 2] of cases to simulate in APAME
15 % containing the AoA [deg] and AoS [deg] to simulate
16 % wingspan -> Wingspan [m]
17 % MAC -> Mean aerodynamic chord [m]
18 % surf -> Surface area [m]
19 % origin -> Origin of coordinates [m]
20 % method -> # singularity method:
21 % 0-constant source/doublet
22 % 1-constant doublet
23 % err -> Error
24 % colldepth -> Collocation point depth [m]
25 % farfield -> Far field coefficient
26 % collcalc -> Collocation point calculation:
27 % 0-approximate
28 % 1-accurate
29 % velorder -> Interpolation method/order for velocity calculations:
30 % 0-nodal
31 % 1-first
32 % 2-second
33 % results -> Result requests:
34 % 0-no
35 % 1-yes
36 % requests -> Type of request: [vector 1x13] specify 1 or 0
37 % 1-coefficients
38 % 2-forces
39 % 3-geometry
40 % 4-velocity
41 % 5-pressure
42 % 6-center points
43 % 7-dipole values
44 % 8-source values
45 % 9-velocity components
46 % 10-mesh characteristics
47 % 11-static pressure
48 % 12-dynamic pressure
49 % 13-manometer pressure
50 % Outputs:
51 % Nopan -> Number of wing panels
52 function [NoPan,area] = ...

BoxWingAPAME(Slices_Wing,h,name,airspeed,density,pressure,mach,cases,wingspan, ...
MAC,surf,origin,method,err,colldepth,farfield,collcalc,velorder,results,requests)

53 addpath("sr_bwa\")
54

55 % Wing Panels
56 [Nx, Ny, Nz] = size(Slices_Wing);
57 for i = 1:Nz
58 Slices_Wing(:,:,i) = Slices_Wing(linspace(Nx,1,Nx),:,i);
59 end
60 Slices_Wing(:,3,:) = Slices_Wing(:,3,:)-h/2;
61 aux_z = Nz;
62 for k = 1:Nz
63 aux_z = aux_z + 1;
64 for j = 1:Ny
65 for i = 1:Nx

B

86 B. CODE

66 if j == 2
67 Slices_Wing(i,j,aux_z) = -Slices_Wing(i,j,Nz-k+1);
68 else
69 Slices_Wing(i,j,aux_z) = Slices_Wing(i,j,Nz-k+1);
70 end
71 end
72 end
73 end
74 [Nx, Ny, Nz] = size(Slices_Wing);
75 aux_nodes = 0;
76 Wake_Points = 5;
77 Spacing_Wake = 10;
78 Nodes = (Nx-1)*Nz;
79 Nodes_List = zeros(Nodes,3);
80 Track_Nodes = zeros(Nx-1,Nz);
81 Track_Panels = zeros(Nx-1,Nz-2);
82 area = 0;
83 for k = 1:Nz
84 for i = 1:Nx-1
85 aux_nodes = aux_nodes+1;
86 Nodes_List(aux_nodes,:) = Slices_Wing(i,:,k);
87 Track_Nodes(i,k) = aux_nodes;
88 end
89 end
90 aux_panels = 0;
91 for j = 1:Nz-2
92 for i = 1:Nx-1
93 aux_panels = aux_panels + 1;
94 Track_Panels(i,j) = aux_panels;
95 end
96 end
97 aux_pannodes = 0;
98 Panels = (Nz-2)*(Nx-1);
99 NoPan = Panels;

100 Panel_Nodes = zeros(Panels,4);
101 for j = 1:Nz-2
102 for i = 1:Nx-1
103 aux_pannodes = aux_pannodes + 1;
104 if j < Nz/2
105 if i == Nx-1
106 Panel_Nodes(aux_pannodes,1) = Track_Nodes(1,j);
107 Panel_Nodes(aux_pannodes,4) = Track_Nodes(1,j+1);
108 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j);
109 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,j+1);
110 elseif i > Nx/2
111 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i+1,j);
112 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i+1,j+1);
113 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j);
114 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,j+1);
115 else
116 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i+1,j);
117 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i+1,j+1);
118 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i,j);
119 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j+1);
120 end
121 elseif j == Nz-2
122 if i == Nx-1
123 Panel_Nodes(aux_pannodes,1) = Track_Nodes(1,j+1);
124 Panel_Nodes(aux_pannodes,4) = Track_Nodes(1,end);
125 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j+1);
126 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,end);
127 elseif i > Nx/2
128 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i+1,j+1);
129 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i+1,end);
130 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j+1);
131 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,end);
132 else
133 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i+1,j+1);
134 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i+1,end);
135 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,j+1);
136 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i,end);

B.2. BOX WING APAME

B

87

137 end
138 else
139 if i == Nx-1
140 Panel_Nodes(aux_pannodes,1) = Track_Nodes(1,j+1);
141 Panel_Nodes(aux_pannodes,4) = Track_Nodes(1,j+2);
142 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j+1);
143 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,j+2);
144 elseif i > Nx/2
145 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i+1,j+1);
146 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i+1,j+2);
147 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j+1);
148 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,j+2);
149 else
150 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i+1,j+1);
151 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i+1,j+2);
152 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,j+1);
153 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i,j+2);
154 end
155 end
156 area_aux = quadrilateralArea(Nodes_List(Panel_Nodes(aux_pannodes,:),:));
157 area = area + area_aux;
158 end
159 end
160 aux_panconnect = 0;
161 Panel_Connectivity = zeros(Panels,4);
162 for j = 1:Nz-2
163 for i = 1:Nx-1
164 aux_panconnect = aux_panconnect + 1;
165 if i == 1
166 Panel_Connectivity(aux_panconnect,4) = 0;
167 Panel_Connectivity(aux_panconnect,2) = Track_Panels(i+1,j);
168 if j == 1
169 Panel_Connectivity(aux_panconnect,1) = Track_Panels(i,j+1);
170 Panel_Connectivity(aux_panconnect,3) = Track_Panels(i,end);
171 elseif j == Nz-2
172 Panel_Connectivity(aux_panconnect,1) = Track_Panels(i,1);
173 Panel_Connectivity(aux_panconnect,3) = Track_Panels(i,j-1);
174 else
175 Panel_Connectivity(aux_panconnect,1) = Track_Panels(i,j+1);
176 Panel_Connectivity(aux_panconnect,3) = Track_Panels(i,j-1);
177 end
178 elseif i == Nx-1
179 Panel_Connectivity(aux_panconnect,1) = Track_Panels(i-1,j);
180 Panel_Connectivity(aux_panconnect,4) = 0;
181 if j == 1
182 Panel_Connectivity(aux_panconnect,2) = Track_Panels(i,j+1);
183 Panel_Connectivity(aux_panconnect,3) = Track_Panels(i,end);
184 elseif j == Nz-2
185 Panel_Connectivity(aux_panconnect,2) = Track_Panels(i,1);
186 Panel_Connectivity(aux_panconnect,3) = Track_Panels(i,j-1);
187 else
188 Panel_Connectivity(aux_panconnect,2) = Track_Panels(i,j+1);
189 Panel_Connectivity(aux_panconnect,3) = Track_Panels(i,j-1);
190 end
191 else
192 Panel_Connectivity(aux_panconnect,1) = Track_Panels(i-1,j);
193 Panel_Connectivity(aux_panconnect,3) = Track_Panels(i+1,j);
194 if j == 1
195 Panel_Connectivity(aux_panconnect,2) = Track_Panels(i,j+1);
196 Panel_Connectivity(aux_panconnect,4) = Track_Panels(i,end);
197 elseif j == Nz-2
198 Panel_Connectivity(aux_panconnect,2) = Track_Panels(i,1);
199 Panel_Connectivity(aux_panconnect,4) = Track_Panels(i,j-1);
200 else
201 Panel_Connectivity(aux_panconnect,2) = Track_Panels(i,j+1);
202 Panel_Connectivity(aux_panconnect,4) = Track_Panels(i,j-1);
203 end
204 end
205 end
206 end
207 Panel_List = ones(Panels,9);

B

88 B. CODE

208

209 % Wake panels
210 Panels = Panels + Wake_Points*(Nz-2);
211 Nodes = Nodes + Wake_Points*Nz;
212

213 for k = 1:Nz
214 for i = 1:Wake_Points
215 aux_nodes = aux_nodes+1;
216 v_aux1 = Slices_Wing(1,:,k)-Slices_Wing(2,:,k); v_aux1 = v_aux1/norm(v_aux1);
217 v_aux2 = Slices_Wing(end,:,k)-Slices_Wing(end-1,:,k); v_aux2 = ...

v_aux2/norm(v_aux2);
218 v_aux_avg = (v_aux1+v_aux2)/2; v_aux_avg = v_aux_avg/norm(v_aux_avg);
219 aux_wake = Spacing_Wake*i*v_aux_avg;
220 Nodes_List(aux_nodes,:) = aux_wake+Slices_Wing(1,:,k);
221 Track_Nodes(Nx-1+i,k) = aux_nodes;
222 end
223 end
224

225 for j = 1:Nz-2
226 for i = Nx-1+1:Nx-1+Wake_Points
227 aux_pannodes = aux_pannodes + 1;
228 if j < Nz/2
229 if i == Nx-1+1
230 Panel_Nodes(aux_pannodes,2) = Track_Nodes(1,j);
231 Panel_Nodes(aux_pannodes,1) = Track_Nodes(1,j+1);
232 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,j);
233 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i,j+1);
234 else
235 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i,j);
236 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i,j+1);
237 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i-1,j);
238 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i-1,j+1);
239 end
240 elseif j == Nz-2
241 if i == Nx-1+1
242 Panel_Nodes(aux_pannodes,4) = Track_Nodes(1,j+1);
243 Panel_Nodes(aux_pannodes,3) = Track_Nodes(1,end);
244 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i,j+1);
245 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,end);
246 else
247 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i,j+1);
248 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,end);
249 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i-1,j+1);
250 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i-1,end);
251 end
252 else
253 if i == Nx-1+1
254 Panel_Nodes(aux_pannodes,4) = Track_Nodes(1,j+1);
255 Panel_Nodes(aux_pannodes,3) = Track_Nodes(1,j+2);
256 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i,j+1);
257 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j+2);
258 else
259 Panel_Nodes(aux_pannodes,1) = Track_Nodes(i,j+1);
260 Panel_Nodes(aux_pannodes,2) = Track_Nodes(i,j+2);
261 Panel_Nodes(aux_pannodes,4) = Track_Nodes(i-1,j+1);
262 Panel_Nodes(aux_pannodes,3) = Track_Nodes(i-1,j+2);
263 end
264 end
265 end
266 end
267 for j = 1:Nz-2
268 for i = Nx-1+1:Nx-1+Wake_Points
269 aux_panconnect = aux_panconnect + 1;
270 Panel_Connectivity(aux_panconnect,1) = Track_Panels(1,j);
271 Panel_Connectivity(aux_panconnect,2) = Track_Panels(Nx-1,j);
272 Panel_Connectivity(aux_panconnect,3) = NaN;
273 Panel_Connectivity(aux_panconnect,4) = NaN;
274 end
275 end
276

277 for i = 1:Panels

B.2. BOX WING APAME

B

89

278 Panel_List(i,2:5) = Panel_Nodes(i,:);
279 Panel_List(i,6:9) = Panel_Connectivity(i,:);
280 if Panel_List(i,1) == 0
281 Panel_List(i,1) = 10;
282 end
283 end
284 commandAPAME = ...

inputFileAPAME(airspeed,density,pressure,mach,cases,wingspan,MAC,surf,origin, ...
method,err,colldepth,farfield,collcalc,velorder,results,requests,Nodes, ...
Nodes_List,Panels,Panel_List);

285

286 % Writing in file
287 fileName = fopen(name,'w');
288 fprintf(fileName,commandAPAME);
289 fclose(fileName);
290 end

B.2.1. APAME INPUT FILE

1 % This function generates an APAME input file command given the geometry
2 % Author : Gabriel Buendia
3 % Version : 1
4 % Inputs:
5 % airspeed -> Freestream reference speed [m/s]
6 % density -> Freestream density [kg/m^3]
7 % pressure -> Freestream pressure [Pa]
8 % mach -> Fresstream Mach number
9 % cases -> Number of cases to simulate in APAME

10 % wingspan -> Wingspan [m]
11 % MAC -> Mean aerodynamic chord [m]
12 % surf -> Surface area [m]
13 % origin -> Origin of coordinates [m]
14 % method -> Singularity method:
15 % 0-constant source/doublet
16 % 1-constant doublet
17 % err -> Error
18 % colldepth -> Collocation point depth [m]
19 % farfield -> Far field coefficient
20 % collcalc -> Collocation point calculation:
21 % 0-approximate
22 % 1-accurate
23 % velorder -> Interpolation method/order for velocity calculations:
24 % 0-nodal
25 % 1-first
26 % 2-second
27 % results -> Result requests:
28 % 0-no
29 % 1-yes
30 % requests -> Type of request: [vector 1x13] specify 1 or 0
31 % 1-coefficients
32 % 2-forces
33 % 3-geometry
34 % 4-velocity
35 % 5-pressure
36 % 6-center points
37 % 7-dipole values
38 % 8-source values
39 % 9-velocity components
40 % 10-mesh characteristics
41 % 11-static pre> ->s>sure
42 % 12-dynamic pressure
43 % 13-manometer pressure
44 % numbernodes -> Number of nodes that the geometry contains
45 % nodes -> Geometry and wake nodes matrix [Nodes x 3] specifying:
46 % [x_pos y_pos z_pos] x Nodes
47 % numberpanels -> Number of panels that the geometry contains
48 % panels -> Geometry and wake panels matrix [Panels x 7] specifying:

B

90 B. CODE

49 % [Type Node1 Node2 Node3 Node4 Panel1 Panel2 Panel3 Panel4] x ...
Panels

50 % Type: 1 -> Square | 10 -> Wake
51 % Node1234: Nodes enclosing the panel
52 % Panel1234: Panels surrounding the actual panel
53 % Outputs:
54 % commandAPAME -> String containing the command for an APAME input file
55 % to be written
56 function commandAPAME = ...

inputFileAPAME(airspeed,density,pressure,mach,cases,wingspan,MAC,surf,origin, ...
method,err,colldepth,farfield,collcalc,velorder,results,requests,numbernodes, ...
nodes,numberpanels,panels)

57 [∼,l_case] = size(cases); l_req = length(requests);
58 [r_nod, c_nod] = size(nodes); [r_pan, c_pan] = size(panels);
59 x0 = origin(1);
60 y0 = origin(2);
61 z0 = origin(3);
62 string = append('CASE_NUM ',num2str(l_case),'\n');
63 string1 = '';
64 string2 = '';
65 for i = 1:l_case
66 if i < l_case
67 string1 = append(string1,num2str(cases(1,i)),' ');
68 string2 = append(string2,num2str(cases(2,i)),' ');
69 else
70 string1 = append(string1,num2str(cases(1,i)),'\n');
71 string2 = append(string2,num2str(cases(2,i)),'\n');
72 end
73 end
74 cases = append(string,string1,string2);
75 string3 = '';
76 for i = 1:r_nod
77 for j = 1:c_nod
78 if j < c_nod
79 string3 = append(string3,num2str(nodes(i,j)),' ');
80 else
81 string3 = append(string3,num2str(nodes(i,j)),'\n');
82 end
83 end
84 end
85 nodes = string3;
86 string5 = '';
87 for i = 1:r_pan
88 for j = 1:c_pan
89 if j < c_pan
90 if isnan(panels(i,j))
91 string5 = append(string5,' ');
92 else
93 string5 = append(string5,num2str(panels(i,j)),' ');
94 end
95 else
96 if isnan(panels(i,j))
97 string5 = append(string5,'\n');
98 else
99 string5 = append(string5,num2str(panels(i,j)),'\n');

100 end
101 end
102 end
103 end
104 panels = string5;
105 commandAPAME = append(['APAME input file\n'...
106 'VERSION 3.1\n'...
107 '# FLOW PARAMETERS\n'...
108 '# airspeed [m/s]\n'...
109 'AIRSPEED ',num2str(airspeed),'\n' ...
110 '# air density [kg/m^3]\n' ...
111 'DENSITY ',num2str(density),'\n' ...
112 '# atmospheric pressure [Pa]\n' ...
113 'PRESSURE ',num2str(pressure),'\n' ...
114 '# prandtl-glauert correction:\n' ...
115 '# 0-no correction\n' ...

B.2. BOX WING APAME

B

91

116 '# *-Mach number\n' ...
117 'MACH ',num2str(mach),'\n' ...
118 '# number of cases\n' ...
119 '# angles of attack [degrees]\n' ...
120 '# sideslip angles [degrees]\n' ...
121 cases, ...
122 '# REFERENCE VALUES\n' ...
123 '# wing span [m]\n' ...
124 'WINGSPAN ',num2str(wingspan),'\n' ...
125 '# mean aerodynamic chord [m]\n' ...
126 'MAC ',num2str(MAC),'\n' ...
127 '# wing surface [m^2]\n' ...
128 'SURFACE ',num2str(surf),'\n' ...
129 '# reference point [m]\n' ...
130 'ORIGIN *\n' ...
131 num2str(x0),' ',num2str(y0),' ',num2str(z0),'\n' ...
132 '# SOLVER PARAMETERS\n' ...
133 '# singularity method:\n' ...
134 '# 0-constant source/doublet\n' ...
135 '# 1-constant doublet\n' ...
136 'METHOD ',num2str(method),'\n' ...
137 '# error\n' ...
138 'ERROR ',num2str(err),'\n' ...
139 '# collocation point depth\n' ...
140 'COLLDIST ',num2str(colldepth),'\n' ...
141 '# "far field" coefficient\n' ...
142 'FARFIELD ',num2str(farfield),'\n'...
143 '# collocation point calculation:\n' ...
144 '# 0-approximate\n' ...
145 '# 1-accurate\n' ...
146 'COLLCALC ',num2str(collcalc),'\n' ...
147 '# interpolation method/order for velocity calculations:\n' ...
148 '# 0-nodal\n' ...
149 '# 1-first\n' ...
150 '# 2-second\n' ...
151 'VELORDER ',num2str(velorder),'\n' ...
152 '# RESULT REQUESTS\n' ...
153 '# 0-no\n' ...
154 '# 1-yes\n' ...
155 '# RESULTS <1> or <0> (yes or no will the result file be written)\n' ...
156 'RESULTS ',num2str(results),'\n' ...
157 '# 1 coefficients\n' ...
158 'RES_COEF ',num2str(requests(1)),'\n' ...
159 '# 2 forces\n' ...
160 'RES_FORC ',num2str(requests(2)),'\n' ...
161 '# 3 geometry\n' ...
162 'RES_GEOM ',num2str(requests(3)),'\n' ...
163 '# 4 velocity\n' ...
164 'RES_VELO ',num2str(requests(4)),'\n' ...
165 '# 5 pressure\n' ...
166 'RES_PRES ',num2str(requests(5)),'\n' ...
167 '# 6 center points\n' ...
168 'RES_CENT ',num2str(requests(6)),'\n' ...
169 '# 7 dipole values\n' ...
170 'RES_DOUB ',num2str(requests(7)),'\n' ...
171 '# 8 source values\n' ...
172 'RES_SORC ',num2str(requests(8)),'\n' ...
173 '# 9 velocity components\n' ...
174 'RES_VELC ',num2str(requests(9)),'\n' ...
175 '# 10 mesh characteristics\n' ...
176 'RES_MESH ',num2str(requests(10)),'\n' ...
177 '# 11 static pressure\n' ...
178 'RES_STAT ',num2str(requests(11)),'\n' ...
179 '# 12 dynamic pressure\n' ...
180 'RES_DYNA ',num2str(requests(12)),'\n' ...
181 '# 13 manometer pressure\n' ...
182 'RES_MANO ',num2str(requests(13)),'\n' ...
183 '# 1 2 3 4 5 6 7 8 9 10 11 12 13\n' ...
184 '# GEOMETRY\n' ...
185 '# x y z [m]\n' ...
186 'NODES ',num2str(numbernodes),'\n' ...

B

92 B. CODE

187 nodes, ...
188 '# type node_id1 node_id2 node_id3 [node_id4] elem_id1 [elem_id2 [elem_id3 ...

[elem_id4]]]\n' ...
189 'PANELS ',num2str(numberpanels),'\n' ...
190 panels, ...
191 '# end of input file\n']);

B.2.2. QUADRILATERAL AREA

1 % This function computes the area of a quadrilateral element given 4
2 % points
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % points -> Vector [4x3] containing the coordinates [m] of the four
7 % points defining the quadrilateral element
8 % Outputs:
9 % area -> Area of the quadrilateral element [m^2]

10 function area = quadrilateralArea(points)
11 vector = zeros(4,3);
12 vector(1,:) = points(2,:)-points(1,:);
13 vector(2,:) = points(4,:)-points(1,:);
14 vector(3,:) = points(4,:)-points(3,:);
15 vector(4,:) = points(2,:)-points(3,:);
16 cross_vec(1,:) = cross(vector(1,:),vector(2,:));
17 cross_vec(2,:) = cross(vector(3,:),vector(4,:));
18 area_1 = 0.5*norm(cross_vec(1,:));
19 area_2 = 0.5*norm(cross_vec(2,:));
20 area = area_1 + area_2;
21 end

B.3. BOX WING POINTWISE

1 % This function generates the glyph file to be run by Pointwise to generate
2 % the CFD mesh
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % name -> Name of the input file
7 % Slices_Wing -> Matrix [N_points_airfoil x 3 x N_slices] containing
8 % all the wing cross sections [m]
9 % b -> Wingspan [m]

10 % R -> Cant radius [m]
11 % h -> Height between wings [m]
12 % s -> Wing stagger [m]
13 % c_r1 -> Chord at the root of the lower wing [m]
14 % c_t1 -> Chord at the tip of the lower wing [m]
15 % c_r2 -> Chord at the root of the upper wing [m]
16 % c_t2 -> Chord at the tip of the upper wing [m]
17 % N -> Number of sections to discretize the cant region
18 % N_bu -> Number of spanwise sections upper wing
19 % N_bl -> Number of spanwise sections lower wing
20 % N_bw -> Number of spanwise sections winglet
21 % el_size -> Size of the element [m]
22 % tolBound -> This attribute is the tolerance to use when splitting
23 % and joining the curves specified as the boundaries, for
24 % detecting end to end connections of the boundaries, and
25 % for creating the surface from the boundaries
26 % tolThres -> This attribute specifies the percentage of length of
27 % the boundary curves of a created surface that must be
28 % database constrained to automatically set the fitting
29 % entities
30 % AR -> Aspect ratio of the desired cells
31 % nodesTEz -> Nodes to discretize finite trailing edge
32 % advanced -> Structure containing options for unstructured mesh only

B.3. BOX WING POINTWISE

B

93

33 % -Fields:
34 % --IsoCellType -> 'Triangle'||'TriangleQuad'
35 % --Algorithm -> 'Delaunay (Default)'||
36 % 'AdvancingFront'||
37 % 'AdvancingFrontOrtho'||
38 % 'ThinSurfaceInterpolation'
39 % --EdgeMinimumLength -> Number||
40 % 'Automatic (Default)'||
41 % 'Boundary'||
42 % 'TRexBoundary'||
43 % 'NotApplied'
44 % --EdgeMaximumLength -> Number||
45 % 'Automatic (Default)'||
46 % 'Boundary'||
47 % 'TRexBoundary'||
48 % 'NotApplied'
49 % --NormalMaximumDeviation -> Number (Default 0)
50 % --NormalSurfaceDeviation -> Number (Default 0)
51 % --QuadMaximumIncludedAngle -> Number (Default 150)
52 % --QuadMaximumWarpAngle -> Number (Default 30)
53 % FF -> Structure containing options for defining the farfield
54 % -Fields:
55 % --Type -> 'Box' : Box shape farfield
56 % 'Cylinder' : Cylindrical shape farfield
57 % 'Sphere' : Spherical shape farfield
58 % --Cell -> 'Unstructured' : Unstructured elements in the FF
59 % 'Voxel' : Voxel elements in the FF
60 % --Dims -> They depend on the 'optionsFF' specified
61 % if 'Box' -> 3x2 Matrix : [x_positive x_negative;
62 % y_positive y_negative;
63 % z_positive z_negative]
64 % if 'Cylinder' -> 3x2 Matrix : [L_positive L_negative;
65 % Radius_1 Radius_2;
66 % Axis_alignment 0]
67 % if 'Sphere' -> 1x1 Variable : Radius
68 % BLoptions -> Structure containing options for the boundary layer
69 % -Fields:
70 % --maxLayers -> This default is the maximum number of
71 % T-Rex layers of an unstructured block when it is created :
72 % Number (Default 0)
73 % --fullLayers -> This default is the minimum number of
74 % fully structured T-Rex layers of an unstructured block when
75 % it is created : Number (Default 0)
76 % --growthRate -> This default is the growth rate of
77 % T-Rex layers of an unstructured block when it is created :
78 % Number (Default 1.2)
79 % --push -> This default is the flag for pushing
80 % T-Rex attributes onto the connectors and domains of an
81 % unstructured block when a it is created : 'true' or 'false'
82 % (Default false)
83 % --solverAttribute -> Sets the named unstructured solver
84 % attribute : 'TetPyramidPrismHex'||'AllAndReducePyramids'||
85 % 'AllAndConvertWallDoms'||'LegacyTetPyramidPrismHex'||
86 % 'TetPyramid'
87 % --firstLayerHeight -> Specifies the BL thickness of the
88 % first cell : Number (User specified)
89 % ISOoptions -> -minLength -> Minimum length of the isotropic tets :
90 % Number||'Boundary' (Default Boundary)
91 % -maxLength -> Maximum length of the isotropic tets :
92 % Number||'Boundary' (Default Boundary)
93 % sources -> Cell array {1xN_source}
94 % Each of the elements of the cell array is a structure
95 % defining the source.
96 % -Fields:
97 % --Type -> 'Box' : Box shape source
98 % 'Cylinder' : Cylindrical shape source
99 % 'Sphere' : Spherical shape source

100 % --Startface -> 'x' : Source start and end faces are defined
101 % following the unitary vector i (x axis)
102 % 'y' : Source start and end faces are defined
103 % following the unitary vector j (y axis)

B

94 B. CODE

104 % 'z' : Source start and end faces are defined
105 % following the unitary vector k (z axis)
106 % --Center -> Specify the COG of the source in cartesian coords
107 % 1x3 Vector : [x_center y_center z_center]
108 % --Dims -> They depend on the 'optionsSrc' specified
109 % if 'Box' -> 1x3 Vector :
110 % [length height width]
111 % if 'Cylinder' -> 1x3 Vector :
112 % [radius top_Radius length]
113 % Note that radius and top_Radius
114 % are the same for cylinder and
115 % different if defining a cone
116 % if 'Sphere' -> 1x3 Vector :
117 % [radius base_Angle top_Angle]
118 % Note that base_Angle ->
119 % [0,90] deg and top_Angle ->
120 % [90,180] deg and are used to
121 % define cut sphere sources
122 % --Distr -> 'Constant': The begin values will be used
123 % throughout the source
124 % 'Parametric' : The begin values will be used at
125 % the minimum parametric limits and the end values
126 % will be used at the maximum parametric limits of
127 % the source
128 % 'AxisToPerimeter : The begin values will be
129 % used along the axis and the end values will be
130 % used at the perimeter of the source
131 % 'CenterToPerimeter : The begin values will be
132 % used at the center and the end values will be
133 % used at the perimeter of the source
134 % --Distrval -> 2x2 Matrix: [spacing_initial spacing_final;
135 % decay_initial decay_final]
136 % Note that for the 'constant' case only the
137 % initial values are read
138 % surfDom -> Structure containing specification for surface mesh in terms of
139 % 'structured' or 'unstructured'.
140 % Fields:
141 % -wings -> Specify the structure on the upper and lower
142 % wings
143 % -cant -> Specify the structure on the cant regions
144 % -winglets -> Specify the structure on the winglets
145 % distribution -> Connector grid point distribution function is
146 % specified : 'MRQS' | 'Tanh'
147 % refineVal -> Minimum node spacing in the connector
148 % N_cant -> Number of nodes in the cant region
149

150 % fixedPoint -> Vector (1x3) defining the fixed point for the rotation
151 % [xRot yRot zRot]
152 % rotAxis -> if 'x' : The rotation axis is x
153 % if 'y' : The rotation axis is y
154 % if 'z' : The rotation axis is z
155 % rotAngle -> Angle to be rotated [deg]
156 % exportPath -> String that specifies where the mesh is exported to
157 % savePath -> String that specifies the path for the file to be saved
158 % saveName -> String that specifies the name of the file to be saved
159 function BoxWingGlyph(name,Slices_Wing,b,R,h,s,c_r1,c_t1,c_r2,c_t2,N,N_bl,N_bu,N_bw, ...

el_size,tolBound,tolThres,AR,nodesTEz,advanced,FF,symmetry,BLoptions,ISOoptions, ...
sources,surfDom,distribution,refineVal,N_cant,fixedPoint,rotAxis,rotAngle, ...
exportPath,savePath,saveName)

160 addpath("sr_bwg\sr_aux\")
161 addpath("sr_bwg\sr_pw\")
162 % File
163 fileName = fopen(name,'w');
164 fprintf(fileName,'package require PWI_Glyph 5.18.5\n');
165

166 % Lines and sections
167 [N_lines,∼,N_slices] = size(Slices_Wing);
168

169 % IDs
170 point_ID = zeros(N_slices,N_lines-1);
171 line_ID = zeros(N_slices,6);

B.3. BOX WING POINTWISE

B

95

172 surface_ID = zeros(N_slices-1,3);
173

174 % Counter Limits
175 counter_points = 0;
176 LE = N_lines/2;
177 counter_lines = 10^(ceil(log10(N_slices))*ceil(log10(N_lines-1)));
178 counter_surfaces = 10^(ceil(log10(N_slices))*ceil(log10(N_lines-1))+1);
179 counter_farfield = 10^(ceil(log10(N_slices))*ceil(log10(N_lines-1))+2);
180 counter_source = 10^(ceil(log10(N_slices))*ceil(log10(N_lines-1))+3);
181

182 % Surface Mesh Options
183 [N_LEls, N_LEus, N_AF, N_R, N_WL] = ...

computeNumberOfElements(el_size,b,R,h,s,c_r1,c_t1,c_r2,c_t2,N,N_bl,N_bu,N_bw,AR);
184 nodesAirfoil = N_AF;
185

186 % Farfield
187 if isequal(symmetry,'off')
188 dim = [s b h];
189 arrangement = 2*ones(1,3);
190 [∼,posMax] = max(dim); arrangement(posMax) = 1;
191 [∼,posMin] = min(dim); arrangement(posMin) = 3;
192 else
193 dim = [s b/2 h];
194 arrangement = 2*ones(1,3);
195 [∼,posMax] = max(dim); arrangement(posMax) = 1;
196 [∼,posMin] = min(dim); arrangement(posMin) = 3;
197 end
198

199 % Sources
200 sources_size = length(sources);
201

202 %% Computations
203 for i = 1:N_slices
204 for j = 1:N_lines-1
205 counter_points = counter_points+1;
206 point_ID(i,j) = counter_points;
207 pointCommand = pwPoints(counter_points,Slices_Wing(j,1,i), ...

Slices_Wing(j,2,i),Slices_Wing(j,3,i));
208 fprintf(fileName,pointCommand);
209 end
210 if (i < N_bl+3)||(i > 2*N+N_bl+N_bw+1) %((i > 16)&&(i < 21))
211 domainType = surfDom.wings;
212 nodesLE = N_LEls;
213 nodesTE1y = N_LEls;
214 nodesTE2y = N_LEls;
215 elseif ((i > N+N_bl+1)&&(i < N+N_bl+N_bw+3))
216 domainType = surfDom.winglet;
217 nodesLE = N_WL;
218 nodesTE1y = N_WL;
219 nodesTE2y = N_WL;
220 else
221 domainType = surfDom.cant;
222 nodesLE = N_cant;
223 nodesTE1y = N_cant;
224 nodesTE2y = N_cant;
225 end
226 % Exterior curve
227 counter_lines = counter_lines+1;
228 line_ID(i,1) = counter_lines;
229 curveCommand = pwCurve(counter_lines,point_ID(i,1:LE));
230 connectorCommand = ...

pwConnector(line_ID(i,1),nodesAirfoil,line_ID(i,1),'dimension',distribution, ...
refineVal);

231 fprintf(fileName,curveCommand);
232 fprintf(fileName,connectorCommand);
233 % Interior curve
234 counter_lines = counter_lines+1;
235 line_ID(i,2) = counter_lines;
236 curveCommand = pwCurve(counter_lines,point_ID(i,LE:end));
237 connectorCommand = ...

pwConnector(line_ID(i,2),nodesAirfoil,line_ID(i,2),'dimension',distribution, ...

B

96 B. CODE

refineVal);
238 fprintf(fileName,curveCommand);
239 fprintf(fileName,connectorCommand);
240 % TE in z direction
241 counter_lines = counter_lines+1;
242 line_ID(i,3) = counter_lines;
243 curveCommand = pwCurve(counter_lines,[point_ID(i,end) point_ID(i,1)]);
244 connectorCommand = pwConnector(line_ID(i,3),nodesTEz,line_ID(i,3),'dimension');
245 fprintf(fileName,curveCommand);
246 fprintf(fileName,connectorCommand);
247

248 if i ≤ 1
249 line_ID(i,4:6) = NaN;
250 else
251 % LE
252 counter_lines = counter_lines+1;
253 line_ID(i,4) = counter_lines;
254 curveCommand = pwCurve(counter_lines,[point_ID(i-1,LE) point_ID(i,LE)]);
255 connectorCommand = pwConnector(line_ID(i,4),nodesLE,line_ID(i,4),'dimension');
256 fprintf(fileName,curveCommand);
257 fprintf(fileName,connectorCommand);
258 % TE1 in y direction (lower)
259 counter_lines = counter_lines+1;
260 line_ID(i,5) = counter_lines;
261 curveCommand = pwCurve(counter_lines,[point_ID(i-1,1) point_ID(i,1)]);
262 connectorCommand = pwConnector(line_ID(i,5),nodesTE1y,line_ID(i,5),'dimension');
263 fprintf(fileName,curveCommand);
264 fprintf(fileName,connectorCommand);
265 % TE2 in y direction (upper)
266 counter_lines = counter_lines+1;
267 line_ID(i,6) = counter_lines;
268 curveCommand = pwCurve(counter_lines,[point_ID(i-1,end) point_ID(i,end)]);
269 connectorCommand = pwConnector(line_ID(i,6),nodesTE2y,line_ID(i,6),'dimension');
270 fprintf(fileName,curveCommand);
271 fprintf(fileName,connectorCommand);
272 %Surfaces
273 % Exterior surface
274 counter_surfaces = counter_surfaces+1;
275 surface_ID(i-1,1) = counter_surfaces;
276 surfaceCommand = pwSurface(counter_surfaces,[line_ID(i-1,1) line_ID(i,4) ...

line_ID(i,1) line_ID(i,5)],tolBound,tolThres);
277 domainCommand = pwDomain(counter_surfaces,[line_ID(i-1,1) line_ID(i,4) ...

line_ID(i,1) line_ID(i,5)],domainType,advanced);
278 fprintf(fileName,surfaceCommand);
279 fprintf(fileName,domainCommand);
280 % Interior surface
281 counter_surfaces = counter_surfaces+1;
282 surfaceCommand = pwSurface(counter_surfaces,[line_ID(i-1,2) line_ID(i,4) ...

line_ID(i,2) line_ID(i,6)],tolBound,tolThres);
283 domainCommand = pwDomain(counter_surfaces,[line_ID(i-1,2) line_ID(i,4) ...

line_ID(i,2) line_ID(i,6)],domainType,advanced);
284 fprintf(fileName,surfaceCommand);
285 fprintf(fileName,domainCommand);
286 surface_ID(i-1,2) = counter_surfaces;
287 % TE surface
288 domainType = 'structured';
289 counter_surfaces = counter_surfaces+1;
290 surfaceCommand = pwSurface(counter_surfaces,[line_ID(i-1,3) line_ID(i,6) ...

line_ID(i,3) line_ID(i,5)],tolBound,tolThres);
291 domainCommand = pwDomain(counter_surfaces,[line_ID(i-1,3) line_ID(i,6) ...

line_ID(i,3) line_ID(i,5)],domainType);
292 fprintf(fileName,surfaceCommand);
293 fprintf(fileName,domainCommand);
294 surface_ID(i-1,3) = counter_surfaces;
295 end
296 counter_points = counterUpdate(N_lines-1,counter_points);
297 counter_lines = counterUpdate(6,counter_lines);
298 counter_surfaces = counterUpdate(3,counter_surfaces);
299 end
300

301 % Angle of attack rotation

B.3. BOX WING POINTWISE

B

97

302 rotationCommand = pwRotation(fixedPoint,rotAxis,rotAngle,'allDataBaseandGrid',NaN, ...
[point_ID(:);line_ID(:);surface_ID(:)],line_ID(:),surface_ID(:));

303 fprintf(fileName,rotationCommand);
304

305 % Symmetry copy
306 if isequal(symmetry,'off')
307 mirrorCommand = ...

pwMirror([point_ID(:);line_ID(:);surface_ID(:)],line_ID(:),surface_ID(:),'y');
308 fprintf(fileName,mirrorCommand);
309 domainNumber = 2*length(surface_ID(:));
310 else
311 domainNumber = length(surface_ID(:));
312 end
313

314 % Source in between wings
315 sourceCommand = pwSource(counter_source,sources{1}.Type,sources{1}.StartFace, ...

sources{1}.Center,sources{1}.Dims,sources{1}.Distr,sources{1}.DistrVal);
316 fprintf(fileName,sourceCommand);
317 rotationCommand = pwRotation(fixedPoint,rotAxis,rotAngle,'allSource',NaN,NaN,NaN,NaN);
318 fprintf(fileName,rotationCommand);
319

320 % Farfield generation
321 farfieldCommand = pwFarfield(counter_farfield,0,FF.Type,FF.TypeCell,FF.Dims,arrangement);
322 fprintf(fileName,farfieldCommand);
323

324 % Rest of sources (refinements)
325 if sources_size > 1
326 for i = 2:sources_size
327 counter_source = counter_source+1;
328 sourceCommand = pwSource(counter_source,sources{i}.Type,sources{i}.StartFace, ...

sources{i}.Center,sources{i}.Dims,sources{i}.Distr,sources{i}.DistrVal);
329 fprintf(fileName,sourceCommand);
330 rotationCommand = ...

pwRotation(fixedPoint,rotAxis,rotAngle/2,'otherSource',counter_source, ...
NaN,NaN,NaN);

331 fprintf(fileName,rotationCommand);
332 end
333 end
334

335 % Volumetric mesh generation
336 volumeMeshCommand = pwMesh(counter_farfield, BLoptions, ISOoptions);
337 fprintf(fileName,volumeMeshCommand);
338

339 % Export and save commands
340 exportCommand = pwExportOPF(counter_farfield,domainNumber,'3D',exportPath);
341 fprintf(fileName,exportCommand);
342 saveandfinishCommand = pwSaveAndFinish(savePath,saveName);
343 fprintf(fileName,saveandfinishCommand);
344 fclose(fileName);

B.3.1. COMPUTE NUMBER OF ELEMENTS

1 % This function computes the number of elements given an element size, some
2 % geometrical parameters and the aspect ratio of the desired cells
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % el_size -> Size of the element [m]
7 % b -> Wingspan [m]
8 % R -> Cant radius [m]
9 % h -> Height between wings [m]

10 % s -> Wing stagger [m]
11 % c_r1 -> Chord at the root of the lower wing [m]
12 % c_t1 -> Chord at the tip of the lower wing [m]
13 % c_r2 -> Chord at the root of the upper wing [m]
14 % c_t2 -> Chord at the tip of the upper wing [m]
15 % N -> Number of sections to discretize the cant region
16 % N_bu -> Number of spanwise sections upper wing

B

98 B. CODE

17 % N_bl -> Number of spanwise sections lower wing
18 % N_bw -> Number of spanwise sections winglet
19 % AR -> Aspect ratio of the desired cells
20 % Outputs:
21 % N_LEls -> Number of elements in the lower wing leading edge
22 % N_LEus -> Number of elements in the upper wing leading edge
23 % N_AF -> Number of elements present in the airfoil
24 % N_R -> Number of elements in the leading edge of the cant region
25 % N_WL -> Number of elements in the winglet
26 function [N_LEls, N_LEus, N_AF, N_R, N_WL] = ...

computeNumberOfElements(el_size,b,R,h,s,c_r1,c_t1,c_r2,c_t2,N,N_bl,N_bu,N_bw,AR)
27 c_min = min([c_r1,c_r2,c_t1,c_t2]);
28 N_LEls = 1+ceil((b/2-R)/((N_bl+1)*el_size)/AR);
29 N_LEus = 1+ceil((b/2-R)/((N_bu+1)*el_size)/AR);
30 N_AF = 1+ceil(c_min/el_size);
31 N_R = 1+ceil(pi*R/(2*(N-1))/el_size/AR);
32 N_WL = 1+ceil((sqrt(h^2+s^2)-2*R)/((N_bw+1)*el_size)/AR);
33 end

B.3.2. COUNTER UPDATE

1 % This function aim to reset the counter for each airfoil section
2 % Author : Gabriel Buendia
3 % Version : 1
4 % Inputs:
5 % N -> Number of points in a section
6 % counter -> Actual value of the counter at the end of the section
7 % Output:
8 % counter -> Updated counter to the next decimal place
9 function counter = counterUpdate(N,counter)

10 digits = ceil(log10(N));
11 counter = counter/10^digits;
12 counter = ceil(counter);
13 counter = counter*10^digits;
14 end

B.3.3. POINTWISE CONNECTOR

1 % This function aims to generate a connector with nodes on a curve (1D mesh)
2 % for Pointwise language
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % ID -> Pointwise ID desired connector number
7 % dim -> Expected nodes on the connector or spacing
8 % ID_DB -> Pointwise ID of the database curve
9 % spacing -> 'dimension' : Nodes are created specifying a dimension

10 % 'separation' : Nodes are created specifying an average spacing
11 % distribution -> Connector grid point distribution function is
12 % specified : 'MRQS' | 'Tanh'
13 % refineVal -> Minimum node spacing in the connector
14 % Outputs:
15 % connectorCommand -> String containing the command to write the
16 % connector
17 function connectorCommand = pwConnector(ID,dim,ID_DB,spacing,distribution,refineVal)
18 switch spacing
19 case 'dimension'
20 dimension = append('pw::Connector setDefault Dimension ',num2str(dim),'\n ');
21 case 'separation'
22 dimension = append(['pw::Connector setCalculateDimensionMethod Spacing\n' ...
23 'pw::Connector setCalculateDimensionSpacing '],num2str(dim),'\n ');
24 end
25

26 connectorCommand = append([dimension, ...
27 'set _CN(',num2str(ID),') [pw::Connector createOnDatabase ...

$_DB(',num2str(ID_DB),')]\n', ...

B.3. BOX WING POINTWISE

B

99

28 '$_CN(',num2str(ID),') replaceDistribution 1 [pw::DistributionTanh create]\n']);
29 if nargin > 4
30 distributionCommand = append(['set _TMP(mode_1) [pw::Application begin Modify ...

[list $_CN(',num2str(ID),')]]\n', ...
31 ' pw::Connector swapDistribution ',distribution,' ...

[list [list $_CN(',num2str(ID),') 1]]\n', ...
32 ' [[$_CN(',num2str(ID),') getDistribution 1] ...

getEndSpacing] setValue ',num2str(refineVal),'\n', ...
33 ' [[$_CN(',num2str(ID),') getDistribution 1] ...

getBeginSpacing] setValue ...
',num2str(refineVal),'\n', ... '

34 '$_TMP(mode_1) end\n', ...
35 'unset _TMP(mode_1)\n']);
36 connectorCommand = append(connectorCommand,distributionCommand);
37 end
38 end

B.3.4. POINTWISE CURVE

1 % This function aims to generate single curve from a list of points
2 % for Pointwise language
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % ID -> Pointwise ID desired database number
7 % list -> List of points IDs that belong to the curve
8 % options -> NaN : Simple curve joining points
9 % 1 : Spline using Catmull-Rom algorithm

10 % 2 : Spline using Akima algorithm
11 % Outputs:
12 % curveCommand -> String containing the command to write the curve
13 function curveCommand = pwCurve(ID,list,options)
14 size = length(list);
15 string = '';
16 for i = 1:size
17 auxstr = strcat(' $_TMP(PW_1) addPoint [list 0 0 $_DB(', ...
18 num2str(list(i)),')]\n');
19 string = append(string,auxstr);
20 end
21 if nargin < 3
22 options = '';
23 else
24 switch options
25 case 1
26 options = ' $_TMP(PW_1) setSlope CatmullRom\n';
27 case 2
28 options = ' $_TMP(PW_1) setSlope Akima\n';
29 end
30 end
31 curveCommand = append(['set _TMP(mode_1) [pw::Application begin Create]\n ' ...
32 'set _TMP(PW_1) [pw::SegmentSpline create]\n'], ...
33 string, ...
34 options, ...
35 ' set _DB(',num2str(ID),[') [pw::Curve create]\n' ...
36 ' $_DB(',num2str(ID),') addSegment $_TMP(PW_1)\n' ...
37 ' unset _TMP(PW_1)\n$_TMP(mode_1) end\n' ...
38 'unset _TMP(mode_1)\n']);
39 end

B.3.5. POINTWISE DOMAIN

1 % This function aims to generate a domain (2D mesh) from a list of
2 % connectors for Pointwise language
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:

B

100 B. CODE

6 % ID -> Pointwise ID desired domain number
7 % list -> List of connector IDs enclosing the domain
8 % options -> 'structured' : Structured domain
9 % 'unstructured' : Unstructured domain

10 % advanced -> Structure containing options for unstructured mesh only
11 % Fields:
12 % -IsoCellType -> 'Triangle'||'TriangleQuad'
13 % -Algorithm -> 'Delaunay (Default)'||
14 % 'AdvancingFront'||
15 % 'AdvancingFrontOrtho'||
16 % 'ThinSurfaceInterpolation'
17 % -EdgeMinimumLength -> Number||
18 % 'Automatic (Default)'||
19 % 'Boundary'||
20 % 'TRexBoundary'||
21 % 'NotApplied'
22 % -EdgeMaximumLength -> Number||
23 % 'Automatic (Default)'||
24 % 'Boundary'||
25 % 'TRexBoundary'||
26 % 'NotApplied'
27 % -NormalMaximumDeviation -> Number (Default 0)
28 % -NormalSurfaceDeviation -> Number (Default 0)
29 % -QuadMaximumIncludedAngle -> Number (Default 150)
30 % -QuadMaximumWarpAngle -> Number (Default 30)
31 % Outputs:
32 % domainCommand -> String containing the command to write the
33 % domain
34 function domainCommand = pwDomain(ID,list,options,advanced)
35 size = length(list);
36 string = '[list ';
37 for i = 1:size
38 if i < size
39 auxstr = append('$_CN(',num2str(list(i)),') ');
40 else
41 auxstr = append('$_CN(',num2str(list(i)),')]');
42 end
43 string = append(string,auxstr);
44 end
45 switch options
46 case 'structured'
47 domainCommand = append('set _DM(',num2str(ID),') [pw::DomainStructured ...

createFromConnectors ',string,']\n');
48 case 'unstructured'
49 domainCommand = append('set _DM(',num2str(ID),') [pw::DomainUnstructured ...

createFromConnectors ',string,']\n');
50 if nargin > 3
51 IsoCellType = advanced.IsoCellType;
52

53 if sum(strcmp(fieldnames(advanced), 'Algorithm')) == 1
54 Algorithm = advanced.Algorithm;
55 else
56 Algorithm = 'Delaunay';
57 end
58

59 if sum(strcmp(fieldnames(advanced), 'EdgeMinimumLength')) == 1
60 EdgeMinimumLength = advanced.EdgeMinimumLength;
61 else
62 EdgeMinimumLength = 'Automatic';
63 end
64

65 if sum(strcmp(fieldnames(advanced), 'EdgeMaximumLength')) == 1
66 EdgeMaximumLength = advanced.EdgeMaximumLength;
67 else
68 EdgeMaximumLength = 'Automatic';
69 end
70

71 if sum(strcmp(fieldnames(advanced), 'NormalMaximumDeviation')) == 1
72 NormalMaximumDeviation = advanced.NormalMaximumDeviation;
73 else
74 NormalMaximumDeviation = 0;

B.3. BOX WING POINTWISE

B

101

75 end
76

77 if sum(strcmp(fieldnames(advanced), 'SurfaceMaximumDeviation')) == 1
78 SurfaceMaximumDeviation = advanced.NormalMaximumDeviation;
79 else
80 SurfaceMaximumDeviation = 0;
81 end
82

83 if isequal(IsoCellType,'TriangleQuad')
84 if sum(strcmp(fieldnames(advanced), 'QuadMaximumWarpAngle')) == 1
85 QuadMaximumIncludedAngle = advanced.QuadMaximumIncludedAngle;
86 else
87 QuadMaximumIncludedAngle = 150;
88 end
89

90 if sum(strcmp(fieldnames(advanced), 'QuadMaximumWarpAngle')) == 1
91 QuadMaximumWarpAngle = advanced.QuadMaximumWarpAngle;
92 else
93 QuadMaximumWarpAngle = 30;
94 end
95 domainCommand = append([domainCommand,...
96 'set _TMP(mode_1) [pw::Application begin UnstructuredSolver [list ...

$_DM(',num2str(ID),')]]\n'...
97 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

IsoCellType ',IsoCellType,'\n'...
98 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

Algorithm ',Algorithm,'\n'...
99 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

EdgeMinimumLength ',num2str(EdgeMinimumLength),'\n'...
100 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

EdgeMaximumLength ',num2str(EdgeMaximumLength),'\n'...
101 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

NormalMaximumDeviation ',num2str(NormalMaximumDeviation),'\n'...
102 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

SurfaceMaximumDeviation ...
',num2str(SurfaceMaximumDeviation),'\n'...

103 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...
QuadMaximumIncludedAngle ...
',num2str(QuadMaximumIncludedAngle),'\n'...

104 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...
QuadMaximumWarpAngle ',num2str(QuadMaximumWarpAngle),'\n'...

105 ' $_TMP(mode_1) run Initialize\n' ...
106 '$_TMP(mode_1) end\n']);
107 else
108 domainCommand = append([domainCommand,...
109 'set _TMP(mode_1) [pw::Application begin UnstructuredSolver [list ...

$_DM(',num2str(ID),')]]\n'...
110 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

IsoCellType ',IsoCellType,'\n'...
111 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

Algorithm ',Algorithm,'\n'...
112 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

EdgeMinimumLength ',num2str(EdgeMinimumLength),'\n'...
113 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

EdgeMaximumLength ',num2str(EdgeMaximumLength),'\n'...
114 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

NormalMaximumDeviation ',num2str(NormalMaximumDeviation),'\n'...
115 ' $_DM(',num2str(ID),') setUnstructuredSolverAttribute ...

SurfaceMaximumDeviation ...
',num2str(SurfaceMaximumDeviation),'\n'...

116 ' $_TMP(mode_1) run Initialize\n' ...
117 '$_TMP(mode_1) end\n']);
118 end
119 end
120 end
121 end

B.3.6. POINTWISE EXPORT TO OPENFOAM

B

102 B. CODE

1 % This function aims to import the volume mesh from Pointwise to openFOAM
2 % format. It is made by dafault for the case in which the wing is simulated
3 % within a box farfield without the symmetry option on
4 % Author : Gabriel Buendia
5 % Version : 1
6 % Inputs:
7 % ID -> ID of the already existing bulk data entity
8 % numberDomains -> Number of domains the aerodynamic profile is composed of
9 % dimension -> '2D' or '3D'

10 % path -> String that specifies where the mesh is exported to
11 % Outputs:
12 % exportCommand -> String containing the command to export the mesh to
13 % openFOAM
14 function exportCommand = pwExportOPF(ID,numberDomains,dimension,path)
15 string = '$_TMP(PW_5) apply [list ';
16 for i = 1:numberDomains
17 if i < numberDomains
18 auxstring = append('[list $_BL(',num2str(ID),') [pw::GridEntity getByName ...

dom-',num2str(i),']] ');
19 else
20 auxstring = append('[list $_BL(',num2str(ID),') [pw::GridEntity getByName ...

dom-',num2str(i),']]]\n');
21 end
22 string = append(string,auxstring);
23 end
24 exportCommand = append(['pw::Application setCAESolver OpenFOAM 3\n' ...
25 'pw::Application markUndoLevel {Set Dimension ',dimension,'}\n' ...
26 'set _TMP(PW_1) [pw::BoundaryCondition create]\n' ...
27 'pw::Application markUndoLevel {Create BC}\n' ...
28 'unset _TMP(PW_1)\n' ...
29 'set _TMP(PW_1) [pw::BoundaryCondition getByName bc-2]\n' ...
30 '$_TMP(PW_1) setName inlet\n' ...
31 '$_TMP(PW_1) setPhysicalType -usage CAE patch\n' ...
32 'pw::Application markUndoLevel {Name BC}\n' ...
33 '$_TMP(PW_1) apply [list [list $_BL(',num2str(ID),') [pw::GridEntity getByName ...

dom-',num2str(numberDomains+6),']]]\n' ...
34 'pw::Application markUndoLevel {Set BC}\n' ...
35 'set _TMP(PW_2) [pw::BoundaryCondition create]\n' ...
36 'pw::Application markUndoLevel {Create BC}\n' ...
37 'unset _TMP(PW_2)\n' ...
38 'set _TMP(PW_2) [pw::BoundaryCondition getByName bc-3]\n' ...
39 '$_TMP(PW_2) setName outlet\n' ...
40 '$_TMP(PW_2) setPhysicalType -usage CAE patch\n' ...
41 'pw::Application markUndoLevel {Name BC}\n' ...
42 '$_TMP(PW_2) apply [list [list $_BL(',num2str(ID),') [pw::GridEntity getByName ...

dom-',num2str(numberDomains+4),']]]\n' ...
43 'pw::Application markUndoLevel {Set BC}\n' ...
44 'set _TMP(PW_3) [pw::BoundaryCondition create]\n' ...
45 'pw::Application markUndoLevel {Create BC}\n' ...
46 'unset _TMP(PW_3)\n' ...
47 'set _TMP(PW_3) [pw::BoundaryCondition getByName bc-4]\n' ...
48 '$_TMP(PW_3) setName upAndDown\n' ...
49 '$_TMP(PW_3) setPhysicalType -usage CAE patch\n' ...
50 'pw::Application markUndoLevel {Name BC}\n' ...
51 '$_TMP(PW_3) apply [list [list $_BL(',num2str(ID),') [pw::GridEntity getByName ...

dom-',num2str(numberDomains+3),']] [list $_BL(',num2str(ID),') ...
[pw::GridEntity getByName dom-',num2str(numberDomains+5),']]]\n' ...

52 'pw::Application markUndoLevel {Set BC}\n' ...
53 'set _TMP(PW_4) [pw::BoundaryCondition create]\n' ...
54 'pw::Application markUndoLevel {Create BC}\n' ...
55 'unset _TMP(PW_4)\n' ...
56 'set _TMP(PW_4) [pw::BoundaryCondition getByName bc-5]\n' ...
57 '$_TMP(PW_4) setName back\n' ...
58 '$_TMP(PW_4) setPhysicalType -usage CAE patch\n' ...
59 'pw::Application markUndoLevel {Name BC}\n' ...
60 '$_TMP(PW_4) apply [list [list $_BL(',num2str(ID),') [pw::GridEntity getByName ...

dom-',num2str(numberDomains+1),']] [list $_BL(',num2str(ID),') ...
[pw::GridEntity getByName dom-',num2str(numberDomains+2),']]]\n' ...

61 'pw::Application markUndoLevel {Set BC}\n' ...
62 'set _TMP(PW_5) [pw::BoundaryCondition create]\n' ...

B.3. BOX WING POINTWISE

B

103

63 'pw::Application markUndoLevel {Create BC}\n' ...
64 'unset _TMP(PW_5)\n' ...
65 'set _TMP(PW_5) [pw::BoundaryCondition getByName bc-6]\n' ...
66 '$_TMP(PW_5) setName cylinder\n' ...
67 '$_TMP(PW_5) setPhysicalType -usage CAE wall\n' ...
68 'pw::Application markUndoLevel {Name BC}\n' ...
69 string, ...
70 'pw::Application markUndoLevel {Set BC}\n' ...
71 'unset _TMP(PW_1)\n' ...
72 'unset _TMP(PW_2)\n' ...
73 'unset _TMP(PW_3)\n' ...
74 'unset _TMP(PW_4)\n' ...
75 'unset _TMP(PW_5)\n' ...
76 'set _TMP(PW_1) [pw::VolumeCondition create]\n' ...
77 'pw::Application markUndoLevel {Create VC}\n' ...
78 '$_TMP(PW_1) setName Volume\n' ...
79 'pw::Application markUndoLevel {Name VC}\n' ...
80 '$_TMP(PW_1) apply [list $_BL(',num2str(ID),')]\n' ...
81 'pw::Application markUndoLevel {Set VC}\n' ...
82 '$_TMP(PW_1) setPhysicalType volumeToCell\n' ...
83 'pw::Application markUndoLevel {Change VC Type}\n' ...
84 'unset _TMP(PW_1)\n' ...
85 ' set _TMP(mode_1) [pw::Application begin CaeExport]\n' ...
86 ' $_TMP(mode_1) addAllEntities\n' ...
87 ' $_TMP(mode_1) initialize -strict -type CAE ',path,'\n' ...
88 ' $_TMP(mode_1) verify\n' ...
89 ' $_TMP(mode_1) write\n' ...
90 '$_TMP(mode_1) end\n' ...
91 'unset _TMP(mode_1)\n']);

B.3.7. POINTWISE FARFIELD

1 % This function aims to generate an empty farfield (3D mesh) from a list of
2 % domains for Pointwise language
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % ID -> Pointwise ID desired farfield number
7 % list -> List of domains IDs enclosing the geometry of interest
8 % You may also specify 'all' by typing 0
9 % optionsFF -> 'Box' : Box shape farfield

10 % 'Cylinder' : Cylindrical shape farfield
11 % 'Sphere' : Spherical shape farfield
12 % optionsCell -> 'Unstructured' : Unstructured elements in the FF
13 % 'Voxel' : Voxel elements in the FF
14 % dimensions -> They depend on the 'optionsFF' specified
15 % if 'Box' -> 3x2 Matrix : [x_positive x_negative;
16 % y_positive y_negative;
17 % z_positive z_negative]
18 % if 'Cylinder' -> 3x2 Matrix : [L_positive L_negative;
19 % Radius_1 Radius_2;
20 % Axis_alignment 0]
21 % if 'Sphere' -> 1x1 Variable : Radius
22 % arrangement -> 1x3 Vector specifying the largest and the shortest
23 % directions e.g. [1 2 3] where 1 is the largest and 3
24 % the lowest (only useful for 'Box' case)
25 % Outputs:
26 % farfieldCommand -> String containing the command to write the
27 % farfield
28 function farfieldCommand = ...

pwFarfield(ID,list,optionsFF,optionsCell,dimensions,arrangement)
29 size = length(list);
30 string = '[list ';
31 if size ̸= 1
32 for i = 1:size
33 if i < size
34 auxstr = append('$_DM(',num2str(list(i)),') ');
35 else

B

104 B. CODE

36 auxstr = append('$_DM(',num2str(list(i)),')]]');
37 end
38 string = append(string,auxstr);
39 end
40 allBoundary = '';
41 else
42 allBoundary = 'set _TMP(mode_1) [pw::Grid getAll -type pw::Domain]\n';
43 string = append(string,'$_TMP(mode_1)]]');
44 end
45 switch optionsFF
46 case 'Box'
47 x_forw = dimensions(arrangement(1),1); x_back = dimensions(arrangement(1),2);
48 y_forw = dimensions(arrangement(2),1); y_back = dimensions(arrangement(2),2);
49 z_forw = dimensions(arrangement(3),1); z_back = dimensions(arrangement(3),2);
50 farfieltype = append([' $_TMP(mode_2) setFarfieldShapeType Box\n'...
51 ' $_TMP(mode_2) setFarfieldLength {',num2str(x_forw),' ...

',num2str(x_back),'}\n'...
52 ' $_TMP(mode_2) setFarfieldWidth {',num2str(y_forw),' ...

',num2str(y_back),'}\n'...
53 ' $_TMP(mode_2) setFarfieldHeight {',num2str(z_forw),' ...

',num2str(z_back),'}\n']);
54 case 'Cylinder'
55 L_forw = dimensions(1,1); L_back = dimensions(1,2);
56 r_forw = dimensions(2,1); r_back = dimensions(2,2);
57 axis = dimensions(3,1);
58 switch axis
59 case 1
60 alignment = 'X';
61 case 2
62 alignment = 'Y';
63 case 3
64 alignment = 'Z';
65 otherwise
66 alignment = 'Automatic';
67 end
68 farfieltype = append([' $_TMP(mode_2) setFarfieldShapeType Cylinder\n'...
69 ' $_TMP(mode_2) setFarfieldLength {',num2str(L_forw),' ...

',num2str(L_back),'}\n'...
70 ' $_TMP(mode_2) setFarfieldCapRadii {',num2str(r_forw),' ...

',num2str(r_back),'}\n'...
71 ' $_TMP(mode_2) setShapeAlignment ',alignment,'\n']);
72 case 'Sphere'
73 R = dimensions;
74 farfieltype = append([' $_TMP(mode_2) setFarfieldShapeType Sphere\n'...
75 ' $_TMP(mode_2) setFarfieldRadius ',num2str(R),'\n']);
76 otherwise
77 x_forw = dimensions(1,1); x_back = dimensions(1,2);
78 y_forw = dimensions(2,1); y_back = dimensions(2,2);
79 z_forw = dimensions(3,1); z_back = dimensions(3,2);
80 farfieltype = append([' $_TMP(mode_2) setFarfieldShapeType Box\n'...
81 ' $_TMP(mode_2) setFarfieldHeight {',num2str(x_forw),' ...

',snum2str(x_back),'}\n'...
82 ' $_TMP(mode_2) setFarfieldLength {',num2str(y_forw),' ...

',snum2str(y_back),'}\n'...
83 ' $_TMP(mode_2) setFarfieldWidth {',num2str(z_forw),' ...

',snum2str(z_back),'}\n']);
84 end
85 switch optionsCell
86 case 'Unstructured'
87 meshtype = append(' $_TMP(mode_2) setMeshType Unstructured\n');
88 case 'Voxel'
89 meshtype = append(' $_TMP(mode_2) setMeshType Voxel\n');
90 otherwise
91 meshtype = append(' $_TMP(mode_2) setMeshType Unstructured\n');
92 end
93

94 farfieldCommand = append([allBoundary, ...
95 'set _TMP(mode_2) [pw::Application begin VolumeMesher ',string,'\n'...
96 farfieltype,...
97 meshtype,...
98 ' $_TMP(mode_2) createGridEntities\n'...

B.3. BOX WING POINTWISE

B

105

99 ' $_TMP(mode_2) end\n'...
100 'unset _TMP(mode_1)\n'...
101 'unset _TMP(mode_2)\n'...
102 'set _BL(',num2str(ID),') [pw::Grid getAll -type pw::Block]\n'...
103 'pw::Application markUndoLevel {Automatic Volume Mesh}\n']);
104 end

B.3.8. POINTWISE MESH

1 % This function aims to generate an unstructured 3D Mesh in pointwise having
2 % already defined an empty volume mesh
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % ID -> ID of the already existing bulk data entity
7 % BLoptions -> Structure containing options for the boundary layer
8 % Fields:
9 % -maxLayers -> This default is the maximum number of

10 % T-Rex layers of an unstructured block when it is created :
11 % Number (Default 0)
12 % -fullLayers -> This default is the minimum number of
13 % fully structured T-Rex layers of an unstructured block when
14 % it is created :
15 % Number (Default 0)
16 % -growthRate -> This default is the growth rate of
17 % T-Rex layers of an unstructured block when it is created :
18 % Number (Default 1.2)
19 % -push -> This default is the flag for pushing
20 % T-Rex attributes onto the connectors and domains of an
21 % unstructured block when a it is created :
22 % 'true' or 'false' (Default false)
23 % -solverAttribute -> Sets the named unstructured solver
24 % attribute :
25 % 'TetPyramidPrismHex'||'AllAndReducePyramids'||
26 % 'AllAndConvertWallDoms'||'LegacyTetPyramidPrismHex'||
27 % 'TetPyramid'
28 % -firstLayerHeight -> Specifies the BL thickness of the
29 % first cell :
30 % Number (User specified)
31 % ISOoptions -> -minLength -> Minimum length of the isotropic tets :
32 % Number||'Boundary' (Default Boundary)
33 % -maxLength -> Maximum length of the isotropic tets :
34 % Number||'Boundary' (Default Boundary)
35 % Outputs:
36 % volumeMeshCommand -> String containing the command to write the 3D
37 % mesh
38 function volumeMeshCommand = pwMesh(ID, BLoptions, ISOoptions)
39 volumeMeshCommand = append(['set _TMP(mode_1) [pw::Application begin ...

UnstructuredSolver [list $_BL(',num2str(ID),')]]\n' ...
40 ' $_BL(',num2str(ID),') setUnstructuredSolverAttribute TRexMaximumLayers ', ...

num2str(BLoptions.maxLayers), '\n' ...
41 ' $_BL(',num2str(ID),') setUnstructuredSolverAttribute TRexFullLayers ', ...

num2str(BLoptions.fullLayers), '\n' ...
42 ' $_BL(',num2str(ID),') setUnstructuredSolverAttribute TRexGrowthRate ', ...

num2str(BLoptions.growthRate), '\n' ...
43 ' $_BL(',num2str(ID),') setUnstructuredSolverAttribute TRexPushAttributes ', ...

num2str(BLoptions.push), '\n' ...
44 ' $_BL(',num2str(ID),') setUnstructuredSolverAttribute TRexCellType ', ...

num2str(BLoptions.solverAttribute), '\n' ...
45 ' set _TMP(PW_1) [pw::TRexCondition getByName {Boundary Layer}]\n' ...
46 ' $_TMP(PW_1) setValue ', num2str(BLoptions.firstLayerHeight), '\n' ...
47 ' $_BL(',num2str(ID),') setUnstructuredSolverAttribute EdgeMinimumLength ', ...

num2str(ISOoptions.minLength), '\n' ...
48 ' $_BL(',num2str(ID),') setUnstructuredSolverAttribute EdgeMaximumLength ', ...

num2str(ISOoptions.maxLength), '\n' ...
49 ' $_BL(',num2str(ID),') setUnstructuredSolverAttribute EdgeMaximumGrowthRate ...

', num2str(ISOoptions.maxGrowth), '\n' ...
50 ' $_TMP(mode_1) setStopWhenFullLayersNotMet true\n' ...

B

106 B. CODE

51 ' $_TMP(mode_1) setAllowIncomplete true\n' ...
52 ' $_TMP(mode_1) run Initialize\n' ...
53 '$_TMP(mode_1) end\n' ...
54 'unset _TMP(mode_1)\n']);
55 end

B.3.9. POINTWISE MIRROR

1 % This function aims to generate a mirror copy of all database, connectors
2 % and domains selected with respect to certain cartesian axis for
3 % Pointwise language
4 % Author : Gabriel Buendia
5 % Version : 1
6 % Inputs:
7 % listDB -> Defines the list of database entities (IDs) to be copied
8 % listCN -> Defines the list of conectors (IDs) to be copied
9 % listDM -> Defines the list of domains (IDs) to be copied

10 % axis -> if 'x' : The reflection plane is yz
11 % if 'y' : The reflection plane is xz
12 % if 'z' : The reflection plane is xy
13 % Outputs:
14 % mirrorCommand -> String containing the command to write the mirror copy
15 function mirrorCommand = pwMirror(listDB,listCN,listDM,axis)
16 switch axis
17 case 'x'
18 axis = [1 0 0];
19 case 'y'
20 axis = [0 1 0];
21 case 'z'
22 axis = [0 0 1];
23 end
24 sizeDB = length(listDB);
25 sizeCN = length(listCN);
26 sizeDM = length(listDM);
27 string = 'pw::Application setClipboard [list ';
28 for i = 1:sizeDB
29 if ∼isnan(listDB(i))
30 string = append(string,'$_DB(',num2str(listDB(i)),') ');
31 end
32 end
33 for i = 1:sizeCN
34 if ∼isnan(listCN(i))
35 string = append(string,'$_CN(',num2str(listCN(i)),') ');
36 end
37 end
38 for i = 1:sizeDM
39 if ∼isnan(listDM(i))
40 if i < sizeDM
41 string = append(string,'$_DM(',num2str(listDM(i)),') ');
42 else
43 string = append(string,'$_DM(',num2str(listDM(i)),')]\n');
44 end
45 end
46 end
47 mirrorCommand = append(['pw::Application clearClipboard\n', ...
48 string, ...
49 'pw::Application markUndoLevel Copy\n', ...
50 'set _TMP(mode_1) [pw::Application begin Paste]\n', ...
51 ' set _TMP(PW_1) [$_TMP(mode_1) getEntities]\n', ...
52 ' set _TMP(mode_2) [pw::Application begin Modify $_TMP(PW_1)]\n', ...
53 ' pw::Entity transform [pwu::Transform mirroring {',num2str(axis(1)),' ...

',num2str(axis(2)),' ',num2str(axis(3)),'} 0] [$_TMP(mode_2) getEntities]\n', ...
54 ' $_TMP(mode_2) end\n', ...
55 ' unset _TMP(mode_2)\n', ...
56 '$_TMP(mode_1) end\n', ...
57 'unset _TMP(mode_1)\n']);
58 end

B.3. BOX WING POINTWISE

B

107

B.3.10. POINTWISE POINTS

1 % This function aims to generate single point for Pointwise language
2 % Author : Gabriel Buendia
3 % Version : 1
4 % Inputs:
5 % ID -> Pointwise ID desired database number
6 % x -> x coordinate of the point
7 % y -> z coordinate of the point
8 % z -> z coordinate of the point
9 % Outputs:

10 % pointCommand -> String containing the command to write the point
11 % in Pointwise
12 function pointCommand = pwPoints(ID,x,y,z)
13 pointCommand = append('set _DB(', num2str(ID),[') [pw::Point create]\n' ...
14 '$_DB(',num2str(ID),') setPoint {'],num2str(x,'%.6f'),' ', ...
15 num2str(y,'%.6f'),' ',num2str(z,'%.6f'),'}\n');
16 end

B.3.11. POINTWISE ROTATION

1 % This function aims to generate a rotation of all entities selected with
2 % respect to certain fixed point and cartesian axis for Pointwise language
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % fixedPoint -> Vector (1x3) defining the fixed point for the rotation
7 % [xRot yRot zRot]
8 % rotAxis -> if 'x' : The rotation axis is x
9 % if 'y' : The rotation axis is y

10 % if 'z' : The rotation axis is z
11 % rotAngle -> Angle to be rotated [deg]
12 % option -> String defining the entities to be rotated
13 % -'allDataBaseandGrid': Rotates all database and grid entities
14 % (connectors and domains) specified in listDB, listCN and list DM
15 % -'allDataBase': Rotates all database entities created
16 % so far withouth list specification
17 % -'allGrid': Rotates all grid entities created so far withouth
18 % list specification
19 % -'allSource': Rotates all source entities created so far withouth
20 % list specification
21 % -'otherDataBase': Rotates all database entities
22 % spcified in the list listO
23 % -'otherConnector': Rotates all connector entities
24 % spcified in the list listO
25 % -'otherDomain': Rotates all domain entities
26 % spcified in the list listO
27 % -'otherSource': Rotates all source entities
28 % spcified in the list listO
29 % listO -> Defines the list of entities (IDs) specified in option 'other...'
30 % to be rotated
31 % listDB -> Defines the list of database entities (IDs) to be rotated
32 % listCN -> Defines the list of conectors (IDs) to be rotated
33 % listDM -> Defines the list of domains (IDs) to be rotated
34

35 % Outputs:
36 % rotationCommand -> String containing the command to write the rotation
37 function rotationCommand = ...

pwRotation(fixedPoint,rotAxis,rotAngle,option,listO,listDB,listCN,listDM)
38 switch rotAxis
39 case 'x'
40 rotAxis = [1 0 0];
41 case 'y'
42 rotAxis = [0 1 0];
43 case 'z'
44 rotAxis = [0 0 1];
45 end

B

108 B. CODE

46 switch option
47 case 'allDataBaseandGrid'
48 sizeDB = length(listDB);
49 sizeCN = length(listCN);
50 sizeDM = length(listDM);
51 string = ' set _TMP(mode_1) [pw::Application begin Modify [list ';
52 for i = 1:sizeDB
53 if ∼isnan(listDB(i))
54 string = append(string,'$_DB(',num2str(listDB(i)),') ');
55 end
56 end
57 for i = 1:sizeCN
58 if ∼isnan(listCN(i))
59 string = append(string,'$_CN(',num2str(listCN(i)),') ');
60 end
61 end
62 for i = 1:sizeDM
63 if ∼isnan(listDM(i))
64 if i < sizeDM
65 string = append(string,'$_DM(',num2str(listDM(i)),') ');
66 else
67 string = append(string,'$_DM(',num2str(listDM(i)),')]]\n');
68 end
69 end
70 end
71 string2 = '';
72 case 'allDataBase'
73 string = append(['set _TMP(PW_1) [pw::Database getAll]\n' ...
74 ' set _TMP(mode_1) [pw::Application begin Modify $_TMP(PW_1)]\n']);
75 string2 = 'unset _TMP(PW_1)\n';
76 case 'allGrid'
77 string = append(['set _TMP(PW_1) [pw::Grid getAll]\n' ...
78 ' set _TMP(mode_1) [pw::Application begin Modify $_TMP(PW_1)]\n']);
79 string2 = 'unset _TMP(PW_1)\n';
80 case 'allSource'
81 string = append(['set _TMP(PW_1) [pw::Source getAll]\n' ...
82 ' set _TMP(mode_1) [pw::Application begin Modify $_TMP(PW_1)]\n']);
83 string2 = 'unset _TMP(PW_1)\n';
84 case 'otherDataBase'
85 sizeO = length(listO);
86 string = ' set _TMP(mode_1) [pw::Application begin Modify [list ';
87 for i = 1:sizeO
88 if ∼isnan(listO(i))
89 if i < sizeO
90 string = append(string,'$_DB(',num2str(listO(i)),') ');
91 else
92 string = append(string,'$_DB(',num2str(listO(i)),')]]\n');
93 end
94 end
95 end
96 string2 = '';
97 case 'otherConnector'
98 sizeO = length(listO);
99 string = ' set _TMP(mode_1) [pw::Application begin Modify [list ';

100 for i = 1:sizeO
101 if ∼isnan(listO(i))
102 if i < sizeO
103 string = append(string,'$_CN(',num2str(listO(i)),') ');
104 else
105 string = append(string,'$_CN(',num2str(listO(i)),')]]\n');
106 end
107 end
108 end
109 string2 = '';
110 case 'otherDomain'
111 sizeO = length(listO);
112 string = ' set _TMP(mode_1) [pw::Application begin Modify [list ';
113 for i = 1:sizeO
114 if ∼isnan(listO(i))
115 if i < sizeO
116 string = append(string,'$_DM(',num2str(listO(i)),') ');

B.3. BOX WING POINTWISE

B

109

117 else
118 string = append(string,'$_DM(',num2str(listO(i)),')]]\n');
119 end
120 end
121 end
122 string2 = '';
123 case 'otherSource'
124 sizeO = length(listO);
125 string = ' set _TMP(mode_1) [pw::Application begin Modify [list ';
126 for i = 1:sizeO
127 if ∼isnan(listO(i))
128 if i < sizeO
129 string = append(string,'$_SR(',num2str(listO(i)),') ');
130 else
131 string = append(string,'$_SR(',num2str(listO(i)),')]]\n');
132 end
133 end
134 end
135 string2 = '';
136 end
137 rotationCommand = append([string, ...
138 ' pw::Entity transform [pwu::Transform rotation -anchor ...

{',num2str(fixedPoint(1)),' ',num2str(fixedPoint(2)),' ...
',num2str(fixedPoint(3)),'} {',num2str(rotAxis(1)),' ',num2str(rotAxis(2)),' ...
',num2str(rotAxis(3)),'} ',num2str(rotAngle),'] [$_TMP(mode_1) ...
getEntities]\n' ...

139 ' $_TMP(mode_1) end\n' ...
140 ' unset _TMP(mode_1)\n' ...
141 string2]);
142 end

B.3.12. POINTWISE SAVE AND EXIT

1 % This function aims to save the mesh in a Pointwise file and close the
2 % Pointwise application
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % path -> String that specifies the path for the file to be saved
7 % name -> String that specifies the name of the file to be saved
8 % Outputs:
9 % saveandfinishCommand -> String containing the command to save and

10 % close Pointwise
11 function saveandfinishCommand = pwSaveAndFinish(path,name)
12 string = append('{',path,'/',name,'.pw}\n');
13 saveandfinishCommand = append(['pw::Application save ',string ...
14 'pw::Application exit\n']);
15 end

B.3.13. POINTWISE SOURCE

1 % This function aims to generate an empty source (3D refinement region) from
2 % in any location and shape specified by the user for Pointwise language
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % ID -> Pointwise ID desired source number
7 % optionsSrc -> 'Box' : Box shape source
8 % 'Cylinder' : Cylindrical shape source
9 % 'Sphere' : Spherical shape source

10 % startface -> 'x' : Source start and end faces are defined
11 % following the unitary vector i (x axis)
12 % 'y' : Source start and end faces are defined
13 % following the unitary vector j (y axis)
14 % 'z' : Source start and end faces are defined
15 % following the unitary vector k (z axis)

B

110 B. CODE

16 % center -> Specify the COG of the source in cartesian coords
17 % 1x3 Vector : [x_center y_center z_center]
18 % dimensions -> They depend on the 'optionsSrc' specified
19 % if 'Box' -> 1x3 Vector : [length height width]
20 % if 'Cylinder' -> 1x3 Vector : [radius top_Radius length]
21 % Note that radius and top_Radius are
22 % the same for cylinder and different
23 % if defining a cone
24 % if 'Sphere' -> 1x3 Vector : [radius base_Angle top_Angle]
25 % Note that base_Angle -> [0,90] deg and
26 % top_Angle -> [90,180] deg are used
27 % to define cut sphere sources
28 % distribution -> 'Constant': The begin values will be used
29 % throughout the source
30 % 'Parametric' : The begin values will be used at the
31 % minimum parametric limits and the end values will be
32 % used at the maximum parametric limits of the source
33 % 'AxisToPerimeter : The begin values will be used along
34 % the axis and the end values will be used at the perimeter
35 % of the source
36 % 'CenterToPerimeter : The begin values will be used at
37 % the center and the end values will be used at the perimeter
38 % of the source
39 % spec -> 2x2 Matrix: [spacing_initial spacing_final;
40 % decay_initial decay_final]
41 % Note that for the 'constant' case only the initial
42 % values are read
43 % Outputs:
44 % sourceCommand -> String containing the command to write the
45 % source
46 function sourceCommand = ...

pwSource(ID,optionsSrc,startface,center,dimensions,distribution,spec)
47 switch optionsSrc
48 case 'Box'
49 switch startface
50 case 'x'
51 R = rotationMatrix(0,270,0);
52 T = translationMatrix(-center(3),center(2),center(1));
53 len = dimensions(1,1); height = dimensions(1,2); width = dimensions(1,3);
54 case 'y'
55 R = rotationMatrix(90,0,0);
56 T = translationMatrix(center(1),-center(3),center(2));
57 len = dimensions(1,2); height = dimensions(1,3); width = dimensions(1,1);
58 case 'z'
59 R = rotationMatrix(0,0,0);
60 T = translationMatrix(center(1),center(2),center(3));
61 len = dimensions(1,3); height = dimensions(1,2); width = dimensions(1,1);
62 end
63 typeDim = append(' $_SR(',num2str(ID),') box -length ',num2str(len),' ...

-height ',num2str(height),' -width ',num2str(width));
64 case 'Cylinder'
65 radius = dimensions(1,1); topRadius = dimensions(1,2); len = dimensions(1,3);
66 switch startface
67 case 'x'
68 R = rotationMatrix(0,270,0);
69 T = translationMatrix(-center(3),center(2),center(1));
70

71 case 'y'
72 R = rotationMatrix(90,0,0);
73 T = translationMatrix(center(1),-center(3),center(2));
74 case 'z'
75 R = rotationMatrix(0,0,0);
76 T = translationMatrix(center(1),center(2),center(3));
77 end
78 typeDim = append(' $_SR(',num2str(ID),') cylinder -radius ...

',num2str(radius),' -topRadius ',num2str(topRadius),' -length ...
',num2str(len));

79 case 'Sphere'
80 radius = dimensions(1,1); baseAngle = dimensions(1,2); topAngle = ...

dimensions(1,3);
81 switch startface

B.3. BOX WING POINTWISE

B

111

82 case 'x'
83 R = rotationMatrix(0,270,0);
84 T = translationMatrix(-center(3),center(2),center(1));
85 case 'y'
86 R = rotationMatrix(90,0,0);
87 T = translationMatrix(center(1),-center(3),center(2));
88 case 'z'
89 R = rotationMatrix(0,0,0);
90 T = translationMatrix(center(1),center(2),center(3));
91 end
92 typeDim = append(' $_SR(',num2str(ID),') sphere -radius ',num2str(radius),' ...

-baseAngle ',num2str(baseAngle),' -topAngle ',num2str(topAngle));
93 end
94 Transform = R*T;
95 Transform = reshape(Transform,[1 16]);
96 size = length(Transform);
97 string = '[list ';
98 for i = 1:size
99 if i < size

100 auxstr = append(num2str(Transform(i)),' ');
101 else
102 auxstr = append(num2str(Transform(i)),']');
103 end
104 string = append(string,auxstr);
105 end
106 sourceCommand = append(['set _TMP(mode_1) [pw::Application begin Create]\n'...
107 ' set _SR(',num2str(ID),') [pw::SourceShape create]\n'...
108 ' $_SR(',num2str(ID),') setPivot Center\n'...
109 typeDim,'\n'...
110 ' $_SR(',num2str(ID),') setTransform ',string,'\n' ...
111 '$_TMP(mode_1) end\n' ...
112 'unset _TMP(mode_1)\n']);
113 switch distribution
114 case 'Constant'
115 spacingB = spec(1,1); spacingE = spacingB;
116 decayB = spec(2,1); decayE = 0.5;
117 typeDist = append(' $_SR(',num2str(ID),') setSpecificationType Constant');
118 case 'Parametric'
119 spacingB = spec(1,1); spacingE = spec(1,2);
120 decayB = spec(2,1); decayE = spec(2,2);
121 typeDist = append(' $_SR(',num2str(ID),') setSpecificationType Parametric');
122 case 'AxisToPerimeter'
123 spacingB = spec(1,1); spacingE = spec(1,2);
124 decayB = spec(2,1); decayE = spec(2,2);
125 typeDist = append(' $_SR(',num2str(ID),') setSpecificationType ...

AxisToPerimeter');
126 case 'CenterToPerimeter'
127 spacingB = spec(1,1); spacingE = spec(1,2);
128 decayB = spec(2,1); decayE = spec(2,2);
129 typeDist = append(' $_SR(',num2str(ID),') setSpecificationType ...

CenterToPerimeter');
130 end
131 sourceCommand = append([sourceCommand,...
132 'set _TMP(mode_1) [pw::Application begin Modify [list $_SR(',num2str(ID),')]]\n'...
133 typeDist,'\n'...
134 ' $_SR(',num2str(ID),') setBeginSpacing ',num2str(spacingB),'\n'...
135 ' $_SR(',num2str(ID),') setEndSpacing ',num2str(spacingE),'\n'...
136 ' $_SR(',num2str(ID),') setBeginDecay ',num2str(decayB),'\n'...
137 ' $_SR(',num2str(ID),') setEndDecay ',num2str(decayE),'\n'...
138 '$_TMP(mode_1) end\n'...
139 'unset _TMP(mode_1)\n']);
140 end

B.3.14. POINTWISE SURFACE

1 % This function aims to generate single patched surface from a list of
2 % curves for Pointwise language. Note that curves do not need to intersect,
3 % and the intersect tolerance will be specified by tolThres.

B

112 B. CODE

4 % Author : Gabriel Buendia
5 % Version : 1
6 % Inputs:
7 % ID -> Pointwise ID desired database number
8 % list -> List of curves IDs that enclose the surface
9 % tolBound -> This attribute is the tolerance to use when splitting

10 % and joining the curves specified as the boundaries, for
11 % detecting end to end connections of the boundaries, and
12 % for creating the surface from the boundaries
13 % tolThres -> This attribute specifies the percentage of length of
14 % the boundary curves of a created surface that must be
15 % database constrained to automatically set the fitting
16 % entities
17 % Outputs:
18 % curveCommand -> String containing the command to write the surface
19 function surfaceCommand = pwSurface(ID,list,tolBound,tolThres)
20 size = length(list);
21 string = append(' set _DB(',num2str(ID),') [$fitter createPatch ');
22 for i = 1:size
23 if i < size
24 auxstr = append('[list $_DB(',num2str(list(i)),')] ');
25 else
26 auxstr = append('[list $_DB(',num2str(list(i)),')]]\n');
27 end
28 string = append(string,auxstr);
29 end
30 surfaceCommand = append(['set fitter [pw::Application begin SurfaceFit]\n' ...
31 ' $fitter setBoundaryTolerance ',num2str(tolBound),'\n' ...
32 ' $fitter setFitEntitiesThreshold ',num2str(tolThres),'\n' ...
33 string, ...
34 ' $fitter run 0\n' ...
35 '$fitter end\n']);
36 end

B.3.15. ROTATION MATRIX

1 % This function aims to generate a rotation matrix for a rigid body in
2 % cartesian coordinates
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % rx: Rotation angle in x axis [deg]
7 % ry: Rotation angle in y axis [deg]
8 % rz: Rotation angle in z axis [deg]
9 % Outputs:

10 % R : Rotation matrix -> 3x3 Matrix
11 function R = rotationMatrix(rx,ry,rz)
12 Rx = [1 0 0 0;
13 0 cosd(rx) sind(rx) 0;
14 0 -sind(rx) cosd(rx) 0;
15 0 0 0 1];
16 Ry = [cosd(ry) 0 -sind(ry) 0;
17 0 1 0 0;
18 sind(ry) 0 cosd(ry) 0;
19 0 0 0 1];
20 Rz = [cosd(rz) -sind(rz) 0 0;
21 sind(rz) cosd(rz) 0 0;
22 0 0 1 0;
23 0 0 0 1];
24 R = Rx*Ry*Rz;
25 end

B.3.16. SCALING MATRIX

1 % This function aims to generate a scaling matrix for a rigid body in
2 % cartesian coordinates.

B.4. OTHER USEFUL FUNCTIONS

B

113

3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % sx: Scaling factor in x axis
7 % sy: Scaling factor in y axis
8 % sz: Scaling factor in z axis
9 % Outputs:

10 % S : Scaling matrix -> 3x3 Matrix
11 function S = scalingMatrix(sx,sy,sz)
12 S = [sx 0 0 0;
13 0 sy 0 0;
14 0 0 sz 0;
15 0 0 0 1];
16 end

B.3.17. TRANSLATION MATRIX

1 % This function aims to generate a translation matrix for a rigid body in
2 % cartesian coordinates
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % tx: Translation vector component in x axis
7 % ty: Translation vector component in y axis
8 % tz: Translation vector component in z axis
9 % Outputs:

10 % T : Translation matrix -> 3x3 Matrix
11 function T = translationMatrix(tx,ty,tz)
12 T = [1 0 0 tx;
13 0 1 0 ty;
14 0 0 1 tz;
15 0 0 0 1];
16 end

B.4. OTHER USEFUL FUNCTIONS

B.4.1. CLUSTER JOB

1 % This function aims to write the .pbs file for launching simulations in the
2 % TU Delft cluster
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % job -> Structure containing job parameters
7 % Fields:
8 % -FolderPath: Path to save the file locally
9 % -Name: Name asigned to the job in the cluster

10 % -Queue: awep-test, awep-fast, awep-small, awep-medium, awep-large
11 % -Hours: Time reserved for the job in the cluster
12 % -Nodes: Number of nodes to be used
13 % -Cores: Number of cores to be used
14 % -NodeType: f, k, g, h, i
15 % -Solver: Type of solver within OpenFOAM to be used
16 % -FinalTime: End of the simulation
17 % -Path: Path to specify the working directory in the cluster
18 function ofClusterJob(job)
19 fileName = fopen(append(job.FolderPath,'job.pbs'),'w');
20 if job.Hours > 9
21 wallTime = append('#PBS -l walltime=',num2str(job.Hours),':00:00\n');
22 else
23 wallTime = append('#PBS -l walltime=0',num2str(job.Hours),':00:00\n');
24 end
25 string = append(['#!/bin/bash\n' ...
26 '#PBS -j oe\n' ...
27 '#PBS -o log.mylog.${PBS_JOBID}\n' ...

B

114 B. CODE

28 '#PBS -N ',job.Name,'\n' ...
29 '#PBS -q ',job.Queue,'\n' ...
30 wallTime ...
31 '#PBS -l ...

nodes=',num2str(job.Nodes),':ppn=',num2str(job.Cores),':type', ...
job.NodeType,'\n' ...

32 '#PBS -m abe\n' ...
33 '#PBS -M G.E.BuendiaVela@student.tudelft.nl\n\n' ...
34 '##################\n' ...
35 '#User Settings\n' ...
36 '##################\n\n' ...
37 'solver=',job.Solver,'\n' ...
38 'runNumber=1\n' ...
39 'finalTime = ',num2str(job.FinalTime),'\n\n' ...
40 'echo Job started on `uname -n` at `date`\n\n' ...
41 'echo "Loading OpenFOAM-v2006"\n' ...
42 'module load mpi/openmpi-1.8.8-gnu\n' ...
43 'module load openfoam/v2006\n\n' ...
44 '# Change to your working directory\n' ...
45 'cd ',job.Path,'\n' ...
46 'echo "Working directory: " ',job.Path,'\n\n' ...
47 '#################\n' ...
48 '# Run OpenFOAM in Parallel\n' ...
49 '#################\n' ...
50 'echo "Starting OpenFOAM job at: " $(date)\n\n' ...
51 '# Decompose for parallel computing\n\n' ...
52 'echo "Renumbering the mesh before decomposition"\n' ...
53 'renumberMesh > log.renumberMesh.1 2>&1\n\n' ...
54 'echo "Checking the mesh"\n' ...
55 'checkMesh -latestTime > log.checkMesh.1 2>&1\n\n' ...
56 'echo "Decomposing the domains"\n' ...
57 'decomposePar -cellDist -force -latestTime > log.decomposePar ...

2>&1\n\n' ...
58 '# Create solver log with run number of maximum 10\n' ...
59 'touch log.$runNumber.$solver\n\n' ...
60 '# Run the solver (parallel)\n' ...
61 'which $solver\n' ...
62 'echo "Running " $solver\n' ...
63 '# Actual line runs the openfoam\n' ...
64 'mpirun --hostfile $PBS_NODEFILE $solver -parallel > ...

log.$runNumber.$solver 2>&1\n' ...
65 '# Post processing\n' ...
66 'reconstructPar > log.reconstructPar.1 2>&1\n' ...
67 'echo "solution reconstructed"\n\n' ...
68 'touch foam.foam\n\n' ...
69 'rm -rf processor*\n' ...
70 '$PBS_NODEFILE $solver -postProcess -func yPlus -time $finalTime > ...

log.$runNumber.$solver.yPlus 2>&1\n' ...
71 'echo "Removing decomposed folders"\n\n' ...
72 'echo "Ending OpenFOAM job at: " $(date)\n']);
73 fprintf(fileName,string);
74 fclose(fileName);
75 end

B.4.2. MONITOR SIMULATION SIMPLEFOAM

1 % This function aims to read the data coming directly from OpenFOAM to
2 % check the convergence of the variables
3 % Author : Gabriel Buendia
4 % Version : 1
5 % Inputs:
6 % name -> String specifying the name (and path) of the file to be
7 % read
8 % numIt -> Number of iterations for the Cauchy residual
9 % Outputs:

10 % forces_c_val -> Matrix containing the forces coeffients at
11 % each timestep (timestepx3)
12 % res -> Vector containing the Cauchy residuals of the

B.4. OTHER USEFUL FUNCTIONS

B

115

13 % aerodynamic forces (1x3)
14 function [forces_c_val,res] = ofScanLogSimpleFOAM(name,numIt)
15 fileID = fopen(name,'r');
16 string_full = fscanf(fileID,'%c');
17 fclose(fileID);
18 Ux_s = 'Ux, Initial residual = ';
19 Ux_index = strfind(string_full,Ux_s);
20 Uy_s = 'Uy, Initial residual = ';
21 Uy_index = strfind(string_full,Uy_s);
22 Uz_s = 'Uz, Initial residual = ';
23 Uz_index = strfind(string_full,Uz_s);
24 p_s = 'p, Initial residual = ';
25 p_index = strfind(string_full,p_s);
26 omega_s = 'omega, Initial residual = ';
27 omega_index = strfind(string_full,omega_s);
28 k_s = 'k, Initial residual =';
29 k_index = strfind(string_full,k_s);
30 forces_s = 'Sum of forces';
31 forces_index = strfind(string_full,forces_s)+21;
32 Ux_val = zeros(1,length(Ux_index));
33 Uy_val = zeros(1,length(Uy_index));
34 Uz_val = zeros(1,length(Uz_index));
35 p_val = zeros(2,length(p_index)/2);
36 omega_val = zeros(1,length(omega_index));
37 k_val = zeros(1,length(k_index));
38 forces_c_val = zeros(3,length(forces_index));
39 for i = 1:length(Ux_index)
40 aux_ind = 1;
41 while ∼strcmp(string_full(Ux_index(i)+length(Ux_s)+aux_ind),char(44))
42 aux_ind = aux_ind+1;
43 end
44 aux_ind = aux_ind-1;
45 Ux_val(i) = ...

str2num(string_full(Ux_index(i)+length(Ux_s):Ux_index(i)+length(Ux_s)+aux_ind));
46 end
47 for i = 1:length(Uy_index)
48 aux_ind = 1;
49 while ∼strcmp(string_full(Uy_index(i)+length(Uy_s)+aux_ind),char(44))
50 aux_ind = aux_ind+1;
51 end
52 aux_ind = aux_ind-1;
53 Uy_val(i) = ...

str2num(string_full(Uy_index(i)+length(Uy_s):Uy_index(i)+length(Uy_s)+aux_ind));
54 end
55 for i = 1:length(Uz_index)
56 aux_ind = 1;
57 while ∼strcmp(string_full(Uz_index(i)+length(Uz_s)+aux_ind),char(44))
58 aux_ind = aux_ind+1;
59 end
60 aux_ind = aux_ind-1;
61 Uz_val(i) = ...

str2num(string_full(Uz_index(i)+length(Uz_s):Uz_index(i)+length(Ux_s)+aux_ind));
62 end
63 index = 1;
64 for i = 1:length(p_index)
65 aux_ind = 1;
66 while ∼strcmp(string_full(p_index(i)+length(p_s)+aux_ind),char(44))
67 aux_ind = aux_ind+1;
68 end
69 aux_ind = aux_ind-1;
70 if mod(i,2) == 1
71 p_val(1,index) = ...

str2num(string_full(p_index(i)+length(p_s):p_index(i)+length(Ux_s)+aux_ind));
72 else
73 p_val(2,index) = ...

str2num(string_full(p_index(i)+length(p_s):p_index(i)+length(Ux_s)+aux_ind));
74 index = index+1;
75 end
76 end
77 for i = 1:length(omega_index)
78 aux_ind = 1;

B

116 B. CODE

79 while ∼strcmp(string_full(omega_index(i)+length(omega_s)+aux_ind),char(44))
80 aux_ind = aux_ind+1;
81 end
82 aux_ind = aux_ind-1;
83 omega_val(i) = str2num(string_full(omega_index(i)+length(omega_s):omega_index(i)+ ...

length(omega_s)+aux_ind));
84 end
85 for i = 1:length(k_index)
86 aux_ind = 1;
87 while ∼strcmp(string_full(k_index(i)+length(k_s)+aux_ind),char(44))
88 aux_ind = aux_ind+1;
89 end
90 aux_ind = aux_ind-1;
91 k_val(i) = ...

str2num(string_full(k_index(i)+length(k_s):k_index(i)+length(k_s)+aux_ind));
92 end
93

94 for i = 1:length(forces_index)
95 aux_ind = 1;
96 for j = 1:3
97 switch j
98 case 1
99 while ∼strcmp(string_full(forces_index(i)+length(forces_s)+aux_ind), ...

char(32))
100 aux_ind = aux_ind+1;
101 end
102 aux_ind2 = aux_ind-1;
103 aux_ind = aux_ind+1;
104 case 2
105 while ∼strcmp(string_full(forces_index(i)+length(forces_s)+aux_ind), ...

char(32))
106 aux_ind = aux_ind+1;
107 end
108 aux_ind3 = aux_ind-1;
109 aux_ind = aux_ind + 1;
110 otherwise
111 while ∼strcmp(string_full(forces_index(i)+length(forces_s)+aux_ind), ...

char(41))
112 aux_ind = aux_ind+1;
113 end
114 aux_ind4 = aux_ind-1;
115 end
116 end
117 forces_c_val(1,i) = ...

str2num(string_full(forces_index(i)+length(forces_s):forces_index(i)+ ...
length(forces_s)+aux_ind2));

118 forces_c_val(2,i) = ...
str2num(string_full(forces_index(i)+length(forces_s)+aux_ind2+ ...
1:forces_index(i)+length(forces_s)+aux_ind3));

119 forces_c_val(3,i) = ...
str2num(string_full(forces_index(i)+length(forces_s)+aux_ind3+ ...
1:forces_index(i)+length(forces_s)+aux_ind4));

120 end
121

122 figure()
123 semilogy(Ux_val,'Linewidth',2)
124 hold on
125 semilogy(Uy_val,'Linewidth',2)
126 semilogy(Uz_val,'Linewidth',2)
127 semilogy(p_val(2,:),'Linewidth',2)
128 semilogy(omega_val,'Linewidth',2)
129 semilogy(k_val,'Linewidth',2)
130 set(gca,'FontSize',14)
131 xlabel('Iterations','FontSize',14)
132 ylabel('Residuals','FontSize',14)
133 leg = legend('U_x','U_y','U_z','p','\omega','k','Location','Best');
134 leg.NumColumns = 2;
135 grid on
136

137 load("Flight_Conditions.mat")
138 figure()

B.4. OTHER USEFUL FUNCTIONS

B

117

139 semilogy(abs(forces_c_val(3,:))/Q,'Linewidth',2)
140 hold on
141 semilogy(abs(forces_c_val(2,:))/Q,'Linewidth',2)
142 semilogy(abs(forces_c_val(1,:))/Q,'Linewidth',2)
143 set(gca,'FontSize',14)
144 xlabel('Iterations','FontSize',14)
145 ylabel('|Aerodynamic coefficients|','FontSize',14)
146 legend('C_L','C_S','C_D','Location','Best')
147 grid on
148

149 forces_c_val = forces_c_val';
150 fprintf('Drag coefficient\n')
151 resDrag = cauchyResidual(forces_c_val(:,1)/Q,numIt);
152 fprintf('Sideforce coefficient\n')
153 resSide = cauchyResidual(forces_c_val(:,2)/Q,numIt);
154 fprintf('Lift coefficient\n')
155 resLift = cauchyResidual(forces_c_val(:,3)/Q,numIt);
156 res = [resDrag resSide resLift];
157 end
158

159 function res = cauchyResidual(forces,numIt)
160 counter = 0;
161 summatory = 0;
162 while counter ≤ numIt - 1
163 diff = abs(forces(length(forces)-counter)-forces(length(forces)-counter-1));
164 summatory = summatory + diff;
165 counter = counter + 1;
166 end
167 res = summatory/(numIt-1);
168 fprintf('The Cauchy residual is %d\n',res)
169 end

	Preface
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	AWES
	Motivation for this work
	Outline

	Literature review
	Monoplanes
	Biplanes
	Box wings
	Box wings on AWEs
	Box wings aerodynamics
	Socieconomic impact
	Regulations and legal framework

	Objectives and methodology
	Objectives
	Tools
	Methodology
	Geometry generation and panel method solution
	CFD meshing
	CFD simulation and postprocessing

	Computational Fluid Dynamics
	Panel methods
	Reynolds-averaged Navier-Stokes equations
	Discretization
	Turbulence modelling
	Solving the equations in OpenFOAM

	Vehicle definition, mesh and initial setup
	Box-wing parameters
	Validation set
	APAME mesh
	APAME mesh resolution study

	CFD mesh
	CFD surface mesh
	CFD volume mesh

	CFD mesh resolution study
	CFD simulation setup
	Initial values and boundary conditions
	Numerical schemes and solver settings
	Monitoring residuals and mesh resolution study
	Comparison to experimental data

	Post-processing
	Post-processing quantities
	Post-processing results
	End of the linear region
	Maximum lift coefficient
	Stalled wing

	Results discussion

	Parametric study and optimization
	Equivalent wing
	Parametric study
	Optimization
	Limitations

	Conclusions
	Conclusions
	Future work

	Bibliography
	Geometric computations
	Center of rotation
	Element size in a curve

	Code
	Box wing parametrization
	Airfoil generation
	Center of rotation
	Circunference arc
	Swap matrix

	Box wing APAME
	APAME input file
	Quadrilateral area

	Box wing Pointwise
	Compute number of elements
	Counter update
	Pointwise connector
	Pointwise curve
	Pointwise domain
	Pointwise export to OpenFOAM
	Pointwise farfield
	Pointwise mesh
	Pointwise mirror
	Pointwise points
	Pointwise rotation
	Pointwise save and exit
	Pointwise source
	Pointwise surface
	Rotation matrix
	Scaling matrix
	Translation matrix

	Other useful functions
	Cluster job
	Monitor simulation SimpleFOAM

