

Delft University of Technology

A Test Case Prioritization Genetic Algorithm guided by the Hypervolume Indicator

Di Nucci, Dario; Panichella, Annibale; Zaidman, Andy; De Lucia, Andrea

DOI
10.1109/TSE.2018.2868082
Publication date
2018
Document Version
Final published version
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Di Nucci, D., Panichella, A., Zaidman, A., & De Lucia, A. (2018). A Test Case Prioritization Genetic
Algorithm guided by the Hypervolume Indicator. IEEE Transactions on Software Engineering, 46 (2020)(6),
674-696. https://doi.org/10.1109/TSE.2018.2868082

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2018.2868082
https://doi.org/10.1109/TSE.2018.2868082

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

A Test Case Prioritization Genetic Algorithm
Guided by the Hypervolume Indicator
Dario Di Nucci , Annibale Panichella , Andy Zaidman , and Andrea De Lucia

Abstract—Regression testing is performed duringmaintenance activities to assess whether the unchanged parts of a software behave

as intended. To reduce its cost, test case prioritization techniques can be used to schedule the execution of the available test cases to

increase their ability to reveal regression faults earlier. Optimal test ordering can be determined using various techniques, such as greedy

algorithms andmeta-heuristics, and optimizingmultiple fitness functions, such as the average percentage of statement and branch

coverage. These fitness functions condense the cumulative coverage scores achieved when incrementally running test cases in a given

ordering using Area Under Curve (AUC)metrics. In this paper, we notice that AUCmetrics represent a bi-dimensional (simplified) version

of the hypervolumemetric, which is widely used inmany-objective optimization. Thus, we propose a Hypervolume-basedGenetic

Algorithm, namely HGA, to solve the Test Case Prioritization problemwhen using multiple test coverage criteria. An empirical study

conducted with respect to five state-of-the-art techniques shows that (i) HGA is more cost-effective, (ii) HGA improves the efficiency of

Test Case Prioritization, (iii) HGA has a stronger selective pressure when dealing withmore than three criteria.

Index Terms—Test case prioritization, genetic algorithm, hypervolume

Ç

1 INTRODUCTION

THE goal of regression testing is to verify that software
changes do not affect the behavior of unchanged parts

[2]. Many approaches have been proposed in literature to
reduce the effort of regression testing [2], [3], which remains
a particular expensive post-maintenance activity [4]. One of
these approaches is test case prioritization (TCP) [5], [6],
whose goal is to execute the available test cases in a specific
order that increases the likelihood of revealing regression
faults earlier [7]. Since fault detection capability is unknown
before test execution, most of the proposed techniques for
TCP use coverage criteria [2] as surrogates with the idea
that test cases with higher code coverage will have a higher
probability to reveal faults. Once a coverage criterion is cho-
sen, search algorithms can be applied to find the order max-
imizing the selected criterion.

Greedy Algorithms have been widely investigated in lit-
erature for test case prioritization, such as simple greedy
algorithms [2], additional greedy algorithms [5], 2-optimal
greedy algorithms [3], or hybrid greedy algorithms [8]. Other
than greedy algorithms, meta-heuristics have been applied
as alternative search algorithms to test case prioritization. To
allow the application of meta-heuristics, proper fitness

functions have been developed [3], such as the Average Per-
centage Block Coverage (APBC) or the Average Percentage
Statement Coverage (APSC). Each fitness function measures
the Area Under Curve (AUC) represented by the cumulative
coverage and cost scores achieved when incrementally exe-
cuting the test cases according to a specific prioritization (or
order). As such, multiple points in the cost-coverage space
are condensed into a single scalar value that can be used as a
fitness function for meta-heuristics, such as single-objective
genetic algorithms. Later work on search-based TCP also
employed multi-objective genetic algorithms considering
different AUC-based metrics as different objectives to opti-
mize [9], [10], [11], [12].

We observed that the AUC metric used in the related lit-
erature for TCP represents a simplified version of the well-
known hypervolume [13], which is a metric used in many-
objective optimization. Indeed, the problem of condensing
multiple points in the objective space (i.e., a Pareto front)
has been already investigated in many-objective optimiza-
tion using the more general concept of hypervolume under
manifold [13], which is a generalization of the AUC-based
metrics used in previous TCP studies but for the higher
dimensional objective space. We argue that the hypervolume
can be used to condense not only a single cumulative code
coverage criteria (as done by previous AUC metrics used in
TCP literature) but also multiple testing criteria, such as the
test case execution cost or further coverage criteria (e.g.,
branch, and past-fault coverage), in only one scalar value.

In our previous work [1], we introduced a Hypervolume-
based Genetic Algorithm (HGA) to solve the TCP problem
with multiple testing criteria. We conducted a preliminary
study on six open-source programs and we compared HGA

with the Additional Greedy algorithm [5], [14] when
optimizing up to three testing criteria. Our preliminary

� D. Di Nucci is with the Vrije Universiteit Brussel, Brussels 1050,
Belgium. E-mail: dario.di.nucci@vub.be.

� A. Panichella and A. Zaidman are with the Delft University of Technol-
ogy, Delft 2628, CD, The Netherlands.
E-mail: anni.panico@gmail.com, a.e.zaidman@tudelft.nl.

� A. De Lucia is with the University of Salerno, Fisciano (SA) 84084, Italy.
E-mail: adelucia@unisa.it.

Manuscript received 18 Oct. 2017; revised 18 Aug. 2018; accepted 28 Aug.
2018. Date of publication 31 Aug. 2018; date of current version 15 June 2020.
(Corresponding author: Dario Di Nucci.)
Recommended for acceptance by P. McMinn.
Digital Object Identifier no. 10.1109/TSE.2018.2868082

674 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

0098-5589� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3861-1902
https://orcid.org/0000-0002-3861-1902
https://orcid.org/0000-0002-3861-1902
https://orcid.org/0000-0002-3861-1902
https://orcid.org/0000-0002-3861-1902
https://orcid.org/0000-0002-7395-3588
https://orcid.org/0000-0002-7395-3588
https://orcid.org/0000-0002-7395-3588
https://orcid.org/0000-0002-7395-3588
https://orcid.org/0000-0002-7395-3588
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0003-2413-3935
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0002-4238-1425
mailto:
mailto:
mailto:
mailto:

results showed that HGA is not only much faster than the
greedy algorithm but that the generated test orderings
reveal more regression faults than the alternative algorithm
for large software programs. However, despite these encou-
raging results, further studies are needed to answer the
following questions: (i) How doesHGAperform compared to
other state-of-the-art techniques for the TCP problem? (ii) To
what extent doesHGAscale when dealing with more than three test-
ing criteria? (iii) To what extent doesHGAscale when dealing with
large software systems containing real faults?

To answer the aforementioned open questions, in this
paper we provide an extensive evaluation of Hypervolume-
based and state-of-the-art approaches for TCP when dealing
with up to five testing criteria (four objectives). In particular,
we carry out a first case study to assess the cost-effectiveness
and the efficiency of the various approaches. We compare
HGA with respect to three state-of-the-art techniques: a cost
cognizant Additional Greedy algorithm [5], [14], a single
objective Genetic Algorithm based on an AUC metric
(GA) [3], and Non-dominated Sorting Genetic Algo-

rithm II (NSGA-II), a multi-objective search-based algo-
rithm [9], [10], [11], [12].

A well-known limitation in many-objective optimization
is that traditional multi-objective evolutionary algorithms
(e.g., NSGA-II) do not scale when handling more than three
criteria. This happens because the number of non-dominated
solutions increases exponentially with the number of objec-
tives [15], [16], [17] (selection resistance). Therefore, we per-
form a second case study to assess the selective pressure
capabilities of HGAwhen dealingwithmore than three criteria,
comparing it with two many-objective search algorithms,
namely Generalized Differential Evolution 3

(GDE3) [18] and Multi-objective Evolutionary

Algorithm Based on Decomposition (MOEA/D-DE) [19].
Finally, we conduct a third case study with the aim of
evaluating the performance of HGA when dealing with large
software systems containing real faults. The studies are
designed to answer the following research questions:

� RQ1: What is the cost-effectiveness and efficiency of
HGA, compared to state-of-the-art test case prioritization
techniques?

� RQ2: How does HGA perform with respect to many-
objective test case prioritization techniques?

� RQ3: How does HGA perform on a large software system
with real faults?

Our results suggest that the solution (test ordering) pro-
duced by HGA is more cost-effective than the solution gen-
erated by Additional Greedy, GA, and NSGA-II. In
terms of efficiency, HGA is much faster than GA and NSGA-

II. Moreover, with respect to Additional Greedy, its
efficiency does not decrease as the size of the software pro-
gram and of the test suite increase. When comparing HGA

with many-objective search algorithms (e.g., GDE3 and
MOEA/D-DE), we observe that it is not only more or equally
effective, but it is also up to 3 times more efficient. Finally,
when dealing with large software systems such as MySQL,
we observe similar results to those achieved in the first
case study.

The contributions of this paper compared to the confer-
ence paper [1] can be summarized as follows:

1) We extend the empirical evaluation by conducting
two new case studies.

2) We partially replicate a previous study [12] on a
large real-world software system, namely MySQL.

3) We compare our algorithm with five state-of-the-art
algorithms for the Test Case Prioritization problem,
namely Additional Greedy [5], [14], a Gene-

tic Algorithm based on an AUC metric [3],
Non-dominated Sorting Genetic Algorithm

II [20], Generalized Differential Evolution

3 [18], and Multi-objective Evolutionary

Algorithm Based on Decomposition [19].
4) We provide a comprehensive replication package

[21] including all the raw data and working data sets
of our studies.

In addition, we provide more details of the HGA algo-
rithm, expand the discussion of related work, and provide a
more qualitative discussion of the results. The remainder of
the paper is organized as follows. Section 2 discusses the
related literature, while Section 3 presents the proposed
algorithm. Sections 4, 5, and 6 describe our empirical studies
including the research questions and the results that we
obtained. Section 7 discusses the threats that could affect
the validity of the results achieved. Finally, Section 8 con-
cludes the paper.

2 BACKGROUND AND RELATED WORK

The Test Case Prioritization (TCP) problem consists of gen-
erating a test case ordering t0 2 PT that maximizes fault
detection rate f [7]:

Definition 1. Given: a test suite T , the set of all permutations
PT of test cases in T , and a function f : PT ! R.

Problem. find t0 2 PT such that ð8t00Þðt00 2 PT Þðt00 6¼ t0Þ
½fðt0Þ � fðt00Þ�
However, the fault detection capability case is not

known to the tester before test execution. Therefore,
researchers have proposed to use surrogate metrics, which
are in some way correlated with the fault detection
rate [2], to determine test case execution order. They can
be divided into two main categories [22]: white-box metrics
and black-box metrics.

Code coverage is the most widely used metric among
white-box ones, e.g., branch coverage [5], statement cover-
age [6], block coverage [23], and function or method cover-
age [24]. Other prioritization criteria were also used instead
of structural coverage, such as interactions [25], [26],
requirement coverage [27], statement and branch diver-
sity [28], [29], and additional spanning statement and
branches [30]. Other than white-box metrics also black-box
metrics have been proposed. For example, Bryce et al. pro-
posed the t-wise approach that considers the maximum
interactions between t model inputs [31], [32] [33]. Other
approaches considered the input diversity calculated using
NCD [34], the Jaccard distance [35], [36], and the Levensh-
tein distance [37], [38] between inputs. Finally, Henard et al.
considered also the number of killed model mutants [36],
[39]. Henard et al. [22] compared various white-box and
black-box criteria for TCP, showing that there is a “little dif-
ference between black-box and white-box performance”.

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 675

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

In all the aforementionedworks, once a prioritization crite-
rion is chosen, a greedy algorithm is used to order the test
cases according to the chosen criterion. Two main greedy
strategies can be applied [8], [40]: the total strategy selects test
cases according to the number of code elements they cover,
whereas the additional strategy iteratively selects the test case
that yields the maximal coverage of code elements not cov-
ered yet by previously selected test cases. Recently, Hao et al.
[8] and Zhang et al. [40] proposed a hybrid approach that
combines total and additional coverage criteria showing that
their combination can be more effective than the individual
components. Greedy algorithms have also been used to com-
bine multiple testing criteria such as code coverage and cost.
For example, Elbaum et al. [41] considered code coverage and
execution cost, where the additional greedy algorithm was
customized to condense the two objectives in only one func-
tion (coverage per unit cost) to maximize. Three-objective
greedy algorithms have been also used to combine
statement coverage, historical fault coverage, and execution
cost [2], [42].

2.1 Search-Based Test Case Prioritization

Other than greedy algorithms, meta-heuristics have been
investigated as alternative search algorithms to test case
prioritization. Li et al. [3] compared additional greedy
algorithm, hill climbing, and genetic algorithms for code
coverage-based TCP. To enable the application of meta-
heuristics they developed proper fitness functions: Average
Percentage Block Coverage (APBC), Average Percentage
Decision Coverage (APDC), or Average Percentage State-
ment Coverage (APSC). For a generic coverage criterion
(e.g., branch coverage), the corresponding fitness function is
defined as follows:

Definition 2. Let E ¼ e1; . . . ; emf g be a set of target elements to
cover; let t ¼ ht1; t2; . . . ; tni be a given test case ordering; let
TEi be the position of the first test in t that covers the element
ei 2 E; the Average Percentage of Element Coverage, i.e., the
AUC metric, is defined as

APEC ¼ 1�
Pm

i¼1 TEi

n�m
þ 1

2� n
: (1)

In the definition above, the target elements in E can be
branches (Equation (2) would correspond to APDC), state-
ments (APSC), basic blocks (APBC), etc. Equation (2) con-
denses the cumulative coverage scores (e.g., branch
coverage) achieved when considering the test cases in the
given order t using the Area Under Curve (AUC) metric.
This area is delimited by the cumulative points whose
y-coordinates are the cumulative coverage scores (e.g., state-
ment coverage) achieved when varying the number of exe-
cuted test cases (x-coordinates) according to a specified
ordering [3].

Equation (1) relies on the assumption that all test cases
have equal cost. However, such an assumption is unrealistic
in practice and, as consequence, test orderings optimizing
Equation (1) may become sub-optimal when measuring the
test execution cost. In principle, the cost of each test could
be measured as its actual execution time. As argued by pre-
vious studies [14], [42], such a measurement is not reliable
because it depends on several external factors such as

different hardware, application software, operating system,
etc. Therefore, researchers used different metrics as proxy
for the actual execution time, such as counting the number
of executed statements [14], the number of executed basic
blocks in the control flow graph [42], or estimating the mon-
etary cost of each test case [43], or re-using the test execution
measurements from past regression testing activities [41].

Given a measurement of the test execution cost, the “cost-
cognizant” variant of Equation (1) has been defined in the
literature [12] as follows:

Definition 3. Let E ¼ e1; . . . ; emf g be a set of target elements
to cover; let t ¼ ht1; t2; . . . ; tni be a given test case ordering;
let C ¼ c1; . . . ; cmf g be the cost of tests in t; let TEi be the
position of the first test in t that covers the element ei 2 E;
the “Cost-cognizant” Average Percentage of Element Cov-
erage is defined as

APECc ¼
Pm

i¼1

Pn
j¼TEi

cj � 1
2 cTEi

� �
Pn

i¼1 ci �m
: (2)

When assuming that all tests have the same cost
(i.e., 8ci 2 C; ci ¼ 1), Equation (2) becomes equivalent to
Equation (1) [44]. This “cost-cognizant” variant measures
the AUC delimited by the cumulative points whose y-
coordinates are the cumulative coverage scores (e.g., state-
ment coverage) while their x-coordinates are the cumulative
test execution costs for a specified test ordering t.

Since these metrics allow to condense multiple cumula-
tive points in only one scalar value, single-objective genetic
algorithms can be applied to find an ordering maximizing
the AUC. According to the empirical results achieved by Li
et al. [3], in most of the cases, the difference between the
effectiveness of permutation-based genetic algorithms and
additional greedy approaches is not significant.

2.2 Multi-Objective Test Case Prioritization

Later works highlighted that given themulti-objective nature
of the TCP problem, permutation-based genetic algorithms
should considermore than one testing criterion. For example,
Li et al. [9] proposed a two-objective permutation-based
genetic algorithm to optimize APSC and execution cost
required to reach the maximum statement coverage(cumula-
tive cost). They use a multi-objective genetic algorithm,
namely NSGA-II, to find a set of Pareto optimal test case
orderings representing optimal compromises between the
two correspondingAUC-based criteria.

Based on the concept of Pareto optimality [45], in this for-
mulation of the problem, a test cases permutation tA is bet-
ter than another permutation tB, (and vice versa), if and
only if tA outperforms tB in at least one objective and it is
not worse in all other objectives. Formally:

Definition 4. Given two permutations of test cases, tA and tB,
and a set of n functions (objectives) f : PT ! R, tA dominates
tB ðtA � tBÞ if an only if

fiðtAÞ � fiðtBÞ; 8i 2 1; 2; . . . ; n

and

9i 2 1; 2; . . . ; n : fiðtAÞ > fiðtBÞ:
(3)

676 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

Definition 5. Given the concept of Pareto dominance and a set of
feasible solutions V, a solution t� is Pareto optimal if a solution
able to dominate it does not exist, namely

@tA 2 V : tA � t�: (4)

Definition 6. A Pareto Front is a set composed of Pareto optimal
solutions

P � ¼ ft� 2 Vg: (5)

It is worth considering that multi-objective approaches
for test case prioritization return a Pareto front of permuta-
tions, that is a set of Pareto optimal test orderings.

Islam et al. [10] and Marchetto et al. [11] used NSGA-II

to find Pareto optimal test case orderings representing
trade-offs between three different AUC-based criteria:
(i) cumulative code coverage, (ii) cumulative requirement
coverage, and (iii) cumulative execution cost. Similarly,
Epitropakis et al. [12] compared greedy algorithms, MOEAs
(NSGA-II e TAEA), and hybrid algorithms. As already done
by Islam et al. [10] and Marchetto et al. [11], they consid-
ered different AUC-based fault surrogates: statement cov-
erage (APSC), D-coverage (APDC), and past fault coverage
(APPFD). They showed that three-objective MOEAs and
hybrid algorithms are able to produce more effective solu-
tions with respect to those produced by additional greedy
algorithms based on a single AUC metric.

In this paper, we notice that these approaches [9], [10],
[11], [12] to test case prioritization have important draw-
backs. First of all, these measures are computed considering
the Area Under Curve obtained plotting the value of the
metric with respect to the test cases position in a Cartesian
plan [11] and then computing a numerical approximation of
the Area Under Curve, using the Trapezoidal rule [46].
These values are projections of a manifold of cumulative
points (e.g., a projection of a volume into two areas). There-
fore, despite the AUC metrics being strictly dependent on
each other, the different AUC metrics are calculated inde-
pendently (we will show an example in Section 3). Moving
to this multi-objective paradigm where AUC metrics are
treated as independent objectives has an additional over-
head compared to a single-objective search. In multi-
objective search, the computational complexity of comput-
ing the dominance relation for all pairs of candidate test
permutations is Oðn2 �mÞ, where n is the number of test
permutations andm is the number of AUC metrics. Instead,
in single-objective search, the cost of sorting the individuals
to select the best ones is Oðn� log nÞ for stochastic selection
or OðnÞ with tournament selection. In general, the select-
ion in single-objective search is less expensive than the
selection in a multi-objective paradigm.

Moreover, the tester has to inspect the Pareto front in
order to find the most suitable solution with respect to the
testing criteria but no guidelines are provided for selecting
the ordering (Pareto optimal solution) to use. The Pareto
efficient solutions generated by a multi-objective search are
trade-offs in the space of the AUC metrics and not in the
space of the original testing criteria, which are the actual
aspects that decision-makers (a.k.a. testers) look at for
regression testing purpose. Furthermore, each solution in
the Pareto front represents a permutation of tests and

selecting a different permutation requires re-evaluating all
the test cases in that permutation.

Another important limitation of these classical multi-
objective approaches is that they lose their effectiveness as the
problem dimensionality increases, as demonstrated by previ-
ous work in numerical optimization [47]. Therefore, other
non-classical many-objective solvers must be investigated
when dealing with multiple (many) testing criteria. Finally,
in [3], [9], [10], [12] there is a lack of strong empirical evidence
of the effectiveness ofMOEAswith respect to simple heuristics,
such as greedy algorithms, in terms of cost-effectiveness.

In this paper, we notice that the most natural way to deal
with the multi-objective TCP problem is represented by the
hypervolume-based solvers since the AUC metrics used in
the related literature for TCP represent a specific simplified
version of the hypervolume metric [13]. Indeed, in many-
objective optimization, the hypervolume metric is widely
used to condense points from a higher dimensional objec-
tive space in only one scalar value. For these reasons, in this
paper, we propose to use a hypervolume metric to solve the
multi-objective TCP problem. Moreover, because of the
monotonicity properties of the coverage criteria, the compu-
tation of the hypervolume for TCP requires polynomial
time versus the exponential time required for traditional
many-objective problems.

2.2.1 Hypervolume-Based Many-Objective

Optimization

Multi-objective meta-heuristics have been successfully
applied in the literature to solve a number of software engi-
neering problems, such as software refactoring [48], test
data generation [49], defect prediction [50], [51], and regres-
sion testing [42], [52]. These problems have often been
solved with algorithms like the Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [20] or the improved
Strength Pareto Evolutionary Algorithm (SPEA2)
[53], which are very effective for problems with two or three
objectives. However, handling more than four objectives is
particularly challenging as the number of non-dominated
solutions may exponentially increase with the number of
objectives to optimize. In this scenario, the classical non-
dominated sorting algorithms or other classical environ-
mental selection mechanisms are not able to promote some
solutions over the others within a given population (selection
resistance [15], [16]) because all solutions are incomparable
(i.e., they do not dominate each other).

To address this problem, researchers in the evolutionary
computation community developed a new class of meta-
heuristics, often referred to as many-objective algorithms, for
problems with more than three search objectives. According
to a recent survey by Li et al. [15], strategies to address the
selective resistance include diversity-based, reference set based,
and indicator-based algorithms. For example, the General-

ized Differential Evolution 3 (GDE3) [18] relies on a
diversity-based mechanism to improve the selection pres-
sure. GDE3 extends differential evolution (DE) for con-
strained multi-objective and many-objective optimization
where the population for the next generation is generated
by combining the non-dominated sorting with a pruning
algorithm for the non-dominated set. The non-dominated
set is pruned according to the solution diversity, which is

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 677

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

measured with a crowding estimation metric based on the
nearest neighbors. Solutions having the smallest distance to
their neighbors are the most crowded ones in the non-
dominated set and can be pruned out. Kukkonen and
Deb [54] showed that GDE3 with crowding estimation is
effective and efficient in producing well-diversified trade-
offs for problems with more than two objectives.

MOEA/D is decomposition-based evolutionary algorithm
[19] which decomposed a multi- or a many-objective problem
into multiple single-objective problems obtained via sum-
scalarization. Specifically, it specifies beforehand a set of pre-
defined search directions uniformly distributed over the
entire Pareto-optimal front. These directions are obtained by
normalizing the search objectives and combining them using
a weighted sum approach, where different weights are used
to specify the different search directions to consider. Then, the
MOEA/D promotes solutions that are closer to these directions,
which therefore correspond to well-distributed reference
points the search aims to reach. The idea of using predefined
reference points has been proved to be so effective that it has
been reused and extended in more recent many-objective
algorithms, such as NSGA-III [55], the surface-based evolu-
tionary algorithm (SEA) [56], and other decomposition-based
evolutionary algorithms [57].

The closest many-objective algorithms to HGA are the
indicator-based evolutionary algorithms. The first algorithm
proposed in the literature and falling in this category is
IBEA [58], an evolutionary algorithm that selects solutions
based on a binary hypervolume indicator that compares
the portion of hypervolume they dominate. Emmerich et al.
[59] proposed SMS-EMOA, which is a steady-state evolution-
ary algorithm that combines non-dominated sorting with
an hypervolume-based selection. It first uses the non-
dominated sorting to determine the set of non-dominated
solutions in each generation. Then, solutions with the least
hypervolume contribution are discarded if the number of
non-dominated solutions is larger than the fixed population
size. Recently, Jiang et al. [60] proposed a more-efficient
algorithm for the exact computation of the hypervolume.
However, no analysis or proof is given about its worst-case
computational complexity.

While the aforementioned hypervolume-based evolution-
ary algorithms help to generate better solutions than classical
multi-objective algorithms (e.g., NSGA-II, SPEA2), they are
particularly expensive due to the algorithms used to compute
the hypervolume, whose complexity is exponential in the
number of objectives [61], [62]. Indeed, previous studies
showed that there is no polynomial algorithm available for
the exact computation of the hypervolume dominated by a
generic set of non-dominated solutions [61]. To cope with the
computation cost of the exact hypervolume computation,
researchers have proposed various approximating strategy.
Bader and Zitzler [62] used Monte Carlo simulation to
approximate the exact hypervolume values. Ishibuchi et al.
[63] used a scalarizing function-basedmethod to approximate
the hypervolumemetric.

Our approach follows the line of research defined by
the aforementioned hypervolume-based evolutionary algo-
rithms.However,we introduce a novel polynomial-time algo-
rithm for the exact computation of the hypervolume but that
is applicable when the functions used in the hypervolume

computation are monotonic, such as in case of the TCP prob-
lem. Therefore, defining a polynomial-time algorithm for the
exact computation of the hypervolume indicator for any set of
solutions (i.e., for any problem) still remain an open challenge.
Since our algorithm provides an exact computation of the
hypervolume for TCP, there is no need for the usage of
approximation strategies in our context.

3 HYPERVOLUME GENETIC ALGORITHM FOR TEST
CASE PRIORITIZATION

This section describes the proposed hypervolume metric for
the multi-objective test case prioritization problem. It also
highlights connections and differences with the AUC-based
metrics used in previous work on search-based test case pri-
oritization [3], [9], [10], [11], [12].

3.1 Hypervolume Indicator

In many-objective optimization, there is a growing trend to
solve many-objective problems using quality scalar indicators
to condense multiple objectives into a single objective [13].
Therefore, instead of optimizing the objective functions
directly, indicator-based algorithms are aimed at finding a
set of solutions that maximize the underlying quality indi-
cator [13]. One of the most popular indicators is the hypervo-
lume, which measures the quality of a set of solutions as the
total size of the objective space that is dominated by one (or
more) of such solutions (combinatorial union [13]). For two-
objective problems, the hypervolume corresponds to the area
under the curve, i.e., the portion of the area that is domi-
nated by a given set of candidate solutions, while for three-
objective problems it is represented by the volume.

Hypervolume in Two-Objective TCP. To illustrate intui-
tively the proposed hypervolume metric, let us consider for
simplicity only two testing criteria: (i) maximizing the state-
ment coverage and (ii) minimizing the execution cost of a
test suite. When considering the test cases in a specific
order, the cumulative coverage and the cumulative execu-
tion cost reached by each test case draw a set of points
within the objective space.

For example, let us consider the test suite T ¼ t1;f
t2; . . . ; tng with the following statement coverage Cov ¼
covSðt1Þ; covSðt2Þ; . . . ; covSðtnÞf g and execution cost Cost ¼
costðt1Þ; costðt2Þ; . . . ; costðtnÞf g. As depicted in Fig. 1a, if we
consider the ordering t ¼ ht1; t2; . . . ; tni we can measure the
cumulative scores as follows: the first test case t1 covers a
specific set of code statements covSðp1Þ ¼ covSðt1Þ with cost
equal to costðp1Þ ¼ costðt1Þ (first cumulative point p1); the
second test case in the ordering t2 reaches a new cumula-
tive statement coverage covSðp2Þ ¼ covSðp1Þ [covSðt2Þ with
costðp2Þ ¼ costðp1Þ þ costðt2Þ (second cumulative point p2).
In general, covSðpiÞ ¼ covSðpi�1Þ [covSðtiÞ and costðpiÞ ¼
costðpi�1Þ þ costðtiÞ. Thus, each test case prioritization corre-
sponds to a set of points in the two-objective space denoted by
the two testing criteria, i.e., statement coverage and execution
cost in our example (see Fig. 1a). These points areweaklymono-
tonically increasing since cumulative cost increases, while
cumulative coverage is stable or increases when adding a
new test case from the ordering, i.e., covSðpiÞ 	 covSðpiþ1Þ and
costðpiÞ4costðpiþ1Þ. Note that in Fig. 1a jcovSðpiÞj denotes the
cardinality of the set covSðpiÞ.

678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

Given this set of points, we can measure how quickly the
given ordering t optimizes the two objectives by measuring
the proportion of the area dominated by the corresponding
cumulative points P ðtÞ, denoted by the gray area in Fig. 1a.
The dominated area is represented by all points in the objec-
tive space that are worse than the cumulative points accord-
ing to the concept of dominance in the multi-objective
paradigm in Definition 4. Notice that by definition [64], the
area dominated by a given point A ¼ ðxa; yaÞ within the bi-
dimensional objective space F ¼ fcost; jcovjg (i.e., cumula-
tive cost and cumulative coverage) is the rectangle (area)
delimited by all points in F such that cost � xa and
jcovj
 ya. For example, the area dominated by a cumulative
point pi in Fig. 1a is the rectangle (area) delimited by
cost � costðpiÞ and jcovj
 jcovSðpiÞj. Given a set of non-
dominated points P ðtÞ within the bi-dimensional objective
space F ¼ fcost; jcovjg, the overall dominated area is given
by the union of the area (rectangle) dominated by each sin-
gle point pi 2 P ðtÞ [64].

Two different orderings correspond to two different sets
of cumulative points and then two different dominated
areas. Therefore, we can compare the corresponding frac-
tion of dominated areas to decide whether one candidate
test case ordering is better or not than another one (fitness
function): larger dominated areas imply faster statement
coverage rate. In this two-objective space, the dominated
area can easily be computed as the sum of the rectangles of
width ½costðpiþ1Þ � costðpiÞ� and height jcovSðpiÞj as reported
in Fig. 1a.

Hypervolume in Three-Objective TCP. Similarly, if we con-
sider a third testing criterion (such as past faults coverage
jcovPF ðpiÞj) each candidate prioritization corresponds to a set
of points in a three-dimensional space and, in this case, the
dominated proportion of the objective space is represented by
a volume instead of an area, as depicted in Fig. 1b. Since even
in this three-objective space the cumulative points are always
weakly monotonically increasing, the dominated volume can
be computed as the sum of the parallelepipeds of width
½costðpiþ1Þ � costðpiÞ�, height jcovSðpiÞj, and depth jcovPF ðpiÞj.

Hypervolume in N-Objective TCP. For more than three test-
ing criteria the objective space dominated by a set of cumu-
lative points is called a hypervolume and represents a

generalization of the area for a higher dimensional space.
Without loss of generality, let T ¼ t1; t2; t3; . . . ; tnf g be a
test suite of size n and F ¼ cost; Cov1; . . . ; Covmf g a set of
testing criteria used to prioritize the test cases in T , where
cost denotes the execution cost of each test case while
Cov1; . . . ; Covm are the remaining m testing criteria to
maximize. Given a permutation t of test cases in T we can
compute the corresponding set of cumulative points P ðtÞ ¼
p1; . . . ; pnf g obtained by cumulating the scores cost;
Cov1; . . . ; Covm achieved by each test case in t.

Definition 7. The hypervolume dominated by a permutation
P ðtÞ of test cases can be computed as follows:

IHðtÞ ¼
Xn�1

i¼1

�
½costðpiþ1Þ � costðpiÞ� � jCov1ðpiÞj � � � � � jCovmðpiÞj

�
;

(6)

where ½costðpiþ1Þ � costðpiÞ� � jCov1ðpiÞj � � � � � jCovmðpiÞj
measures the hypervolume dominated by a generic
cumulative point pi, but non-dominated by the next point
piþ1 in the ordering t. Since in test case prioritization the
maximum values of all the testing criteria are known
(e.g., the maximum execution cost or the maximum state-
ment coverage are already known), we can express the
hypervolume as a fraction of the whole objective space as
follows:

Definition 8. The fraction of the hypervolume dominated by a
permutation P ðtÞ of test cases is

IHP ðtÞ ¼
Pðn�1Þ

i¼1

�
½costðpiþ1Þ � costðpiÞ� � jCov1ðpiÞj � � � � � jCovmðpiÞj

�

costðpnÞ � jCovmax
1 j � . . . jCovmax

m j ;

(7)

where costðpnÞ is the execution cost of the whole test suite T
and jCovmax

i j denotes the maximum values for the ith cover-
age criterion. Such a metric ranges in the interval ½0; 1�. It is
equal to +1 in the ideal case where the test case ordering
allows to reach the maximum test criteria scores indepen-
dently from the execution cost value costðpiÞ. A higher

Fig. 1. Cumulative points in two- and three-objective test case prioritization. The gray area (or volume) denotes the portion of objective space domi-
nated by the cumulative points P ðtÞ.

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 679

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

IHP ðtÞmirrors a higher ability of the prioritization t in max-
imizing the testing criteria with lower cost.

3.1.1 Hypervolume Complexity

As pointed out by Auger et al. [13], the computation of the
hypervolume indicator is usually not a trivial task and it is
strongly impacted by the choice of the reference points and
the distribution of solutions on the Pareto front. Despite
this, it is worth noting that in the case of Test Case Prioriti-
zation a candidate test case ordering corresponds to a set of
monotonically increasing cumulative scores. For this reason,
we can use Equation (7) to compute the dominated hyper-
volume instead of the more expensive algorithm proposed
by Auger et al. [13]. Indeed, the IHP ðtÞ metric sums up the
slices of dominated hypervolume delimited by two subse-
quent cumulative points. Thus, let m be the number of the
testing criteria and let n be the number of cumulative points
(corresponding to the size of the test suite), IHP ðtÞ requires
to sum the n hypervolume slices, each one computed as the
multiplication of m test criteria scores. Thus, the overall
computational time is Oðn�mÞ. Conversely, in traditional
many-objective optimization the points delimiting the non-
dominated hypervolume are non-monotonically increasing
and thus, the computation of the hypervolume metric
requires a more complex algorithm which is exponential
with respect to the number of objectives m [13], or testing
criteria for TCP.

3.1.2 Efficient Hypervolume Computation

To speed up the computation of the hypervolume metric,
we use Algorithm 1. Given a permutation of test cases t, the
corresponding execution cost array cost, and a set of testing
criteria to maximize Cov1; . . . ; Covm; the algorithm initial-
izes the cumulative coverage scores (line 3 of Algorithm 1).
Such scores are then incrementally updated for each test
case in the given order t (main loop in lines 4-11). In particu-
lar, for each test t in t, the algorithm computes the cumula-
tive cost (line 5) and cumulative coverage scores (lines 6-7),
one cumulative coverage score for each testing criterion
Covi 2 F . Then, the cumulative scores are used to compute
the actual IHP ðtÞ (lines 8-9). If the maximum coverage is
reached earlier for all Covi 2 F (i.e., before iterating over
all t 2 t), the loop is terminated (lines 10-11). The remain-
ing portion of the IHP ðtÞ metric is added in lines 12-13 of
Algorithm 1: it corresponds to the hypervolume of
size ðcostmax � cumCostÞ � jCovmax

1 j � � � � � jCovmax
m j. Finally,

IHP ðtÞ is normalized in lines 14-16. The core idea of
Algorithm 1 is to reduce the number of iterations needed to

compute IHP ðtÞ given the fact that the remaining portion of
the hypervolume is known a priori when the maximum
cumulative coverage is reached for all testing criteria in F .

Algorithm 1.Hypervolume Computation

Input: Permutation of test cases t ¼ ht1; . . . ; tni
Execution cost vector Cost ¼ c1; . . . ; cnf g
Testing criteria to maximize F ¼ Cov1; . . . ; Covmf g
Result:Hypervolume score for t
1 begin

/ * Initialization */

2 IHP ðtÞ ¼ 0
3 cumCost = 0, cumCov1 ¼ ;; . . .; cumCovn ¼ ;
4 for each i ¼ 1 . . .(m-1) do
5 cumCost = cumCost + ci
6 for each fi 2 F do
7 cumCovi = cumCovi [CoviðtiÞ
8 slice = ciþ1 � jcumCov1j � � � � � jcumCovmj
9 IHP ðtÞ ¼ IHP ðtÞ + slice

/* The loop ends when the maximum

coverage is reached */

10 if 8Covi 2 F , cumCovi ¼¼ Covmax
i then

11 break
/* Adding the remaining portion of

hypervolume */

12 slice = (costmax - cumCost) �jCovmax
1 j � � � � � jCovmax

m j
13 IHP ðtÞ = IHP ðtÞ + slice

/* Normalizing the

hypervolume */

14 for each fi 2 F do
15 IHP ðtÞ = IHP ðtÞ / jCovmax

i j
16 IHP ðtÞ = IHðtÞ / costmax

To better understand how Algorithm 1 works, let us con-
sider the example of the test suite shown in Table 1. The
test suite contains five test cases, whose execution time and
coverage information are also shown in the table. Table 2
shows how the hypervolume is computed in each step of
Algorithm 1 for the prioritization t ¼ ht5; t3; t4; t2; t1i. First,
the hypervolume and the cumulative scores are initialized
as specified in line 3 of Algorithm 1. In the first iteration of
the algorithm, the cumulative scores are updated based on
t5, which is the first test case in the permutation. t5 covers
four branches, five statements, and its cost is 14s. Therefore,
the hypervolume score is updated according to Equation (7)
as IHP ðtÞ = (61s-14s) � 4 (branches) � 5 (statements) = 940.
In the second iteration, the coverage scores are updated by
considering the second test in the permutation t, i.e., t3.
Such a test covers two additional branches and six addi-
tional statements compared to t5. Therefore, the new

TABLE 1
An Example of Test Suite T ¼ t1; t2; t3; t4; t5f g for a Small Program with Eight Branches, 13 Statements

Tests
Branches Statements Cost

b1 b2 b3 b4 b5 b6 b7 b8 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

t1 X X X X X X 41
t2 X X X X X X X X 19
t3 X X X X X X X X X 47
t4 X X X X X X X X X 44
t5 X X X X X X X X X 14

For every test t, we specify which branches and statement are covered by t as well as its execution cost (time in s).

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

hypervolume is IHP ðtÞ = 940 (previous value) + (105s-61s)�
6 (branches) � 11 (statements) = 3,844. The third test case in
the permutation is t4, which covers two additional branches
and two additional statements with an additional cost of
44s. Thus, in the third iteration of Algorithm 1, the new
hypervolume value is computed as IHP ðtÞ = 3,844 (previous
value) + (124s-105s) � 8 (branches) � 13 (statements) =
5,820. The first three test cases already allow to reach
100 percent of branch and 100 percent of statement cover-
age; thus, the main loop in lines 4-11 of Algorithm 1 is termi-
nated without iterating over the remaining two test cases t1
and t2. In the second last row of Table 2, the hypervolume is
updated according to lines 12-13 of Algorithm 1. Specifi-
cally, IHP ðtÞ = 5,820 (previous value) + (165s-124s) � 8
(branches) � 13 (statements) = 10,084. Finally, the hypervo-
lume is normalized by diving IHP ðtÞ by the hypervolume of
the hyper-rectangle whose sides are equal to the overall cost
and coverage achievable by running all tests in t. Specifi-
cally, the final hypervolume score for the permutation t is
IHP ðtÞ = 10,084 / (165s � 8 � 13) � 0.5876.

3.2 Hypervolume-Based Genetic Algorithm

In this paper, we consider the IHP ðtÞ metric as a suitable fit-
ness function to guide search algorithms in finding the opti-
mal ordering t in multi-objective test case prioritization. In
particular, we applied the Genetic Algorithm (GA) [65], a
stochastic search technique based on the mechanism of nat-
ural selection and natural genetics. We selected this algo-
rithm because it has been used to solve a wide range of
optimization problems that are not solvable in polynomial
time. Moreover, with respect to other search algorithms, it
is highly parallelizable [66].

GA starts with a random population of solutions. Each
individual (i.e., chromosome) represents a solution of the
optimization problem. The population evolves through sub-
sequent generations where individuals are evaluated based
on a fitness function to be optimized. At each generation,
new individuals (i.e., offsprings) are created by applying
three operators: (i) a selection operator, based on the fitness
function, (ii) a crossover operator, that recombines two indi-
viduals from the current generation with a given probabil-
ity, and (iii) a mutation operator, which modifies the
individuals with a given probability.

We propose a new genetic algorithm named HGA (Hyper-
volume-based Genetic Algorithm), depicted in Algorithm 2.
Despite, GAs are commonly used for solving single-
objective problems, using the hypervolume indicator as fitness

function, it is possible to combinemultiple objectives in a sin-
gle one. Each solution is a permutation of integers in which
each element represents a test case to be executed and the
population is represented by a set of different test case per-
mutations. The selection operator is the binary tournament
selection (line 5), which randomly picks two individuals for
the tournament and selects the one with the better fitness
function. The crossover operator is the PMX-Crossover
(line 6), which swaps the permutation elements at a given
random crossover point. The mutation operator is the
SWAP-Mutation (line 7) that randomly swaps two chosen
permutation elements within each offspring. More details on
the parameter settings are reported in Section 4.1.4. The
fitness function that drives the GA evolution is the hypervo-
lume indicator described in Section 3.1. HGA can be briefly
summarized as (i) generating test cases orderings, (ii) evalu-
ating the permutations using the IHP ðtÞ metric, and
(iii) using this value to drive the GA evolution.

Algorithm 2.Hypervolume Genetic Algorithm

Input:
Solution representation: permutation of test cases
Fitness function: IHP ðtÞ
Result: the best permutation of test cases according to IHP ðtÞ

1 begin
2 initialize population with random candidate solutions
3 evaluate each candidate solution
4 while max # of generations has not been reached do
5 select best individuals based on IHP ðtÞ using binary

tournament selection
6 recombine pairs of individuals using PMX-Crossover
7 mutate individuals using SWAP-Mutation
8 evaluate each candidate solution

3.3 The Relationship Between Hypervolume
and AUC-Based Metrics

The IHP ðtÞ metric proposed in this paper can be viewed as a
generalization of the AUC-based metrics (e.g., APSC) used in
prior work on search-based test case prioritization. For exam-
ple, the APSC metric measures the average cumulative frac-
tion of statements coverage as the Area Under Curve
delimited by the test case orderingwith respect to the cumula-
tive statement coverage scores [3]. In light of the proposed
hypervolumemetric, APSC can be viewed as a simplified ver-
sion of IHP ðtÞwhere all test cases have execution cost equal to
one and only the statement coverage is considered as a testing
criterion. A similar consideration can bemade for all the other
cumulative fitness functions used in previous work on
search-based test case prioritization [3], [9], [10].

Finally, as explained in Section 2, despite the AUC metrics
being strictly dependent on each other, they are calculated
independently in test case prioritization based on multi-
objective Genetic Algorithms. Indeed, these values are projec-
tions of a manifold of cumulative points (e.g., a projection of a
volume into two areas). For example, let us consider again
the example of the test suite in Table 1. Fig. 2a depicts the
cumulative coverage and cost scores for the prioritization
t ¼ ht5; t3; t4; t2; t1i. Applying AUC-based metrics to assess
the fitness of t require us to compute two metrics, i.e., APBCc

and APSCc. These metrics correspond to the grey areas in

TABLE 2
Walkthrough of Algorithm 1 for the Test Suite in Table 1

and the Prioritization t ¼ ht5; t3; t4; t2; t1i

Steps Selected Cumulative scores
IHP

Tests Cost Branch Cov. Stmt Cov.

Initialization - 0 0 0 0
Iteration 1 t5 14 4 5 940
Iteration 2 t3 61 6 11 3,844
Iteration 3 t4 105 8 13 5,820

Adding the last
t1, t2 165 8 13 10,084

part of the volume
Normalization - - - - 0.5876

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 681

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 2, which correspond to the projections of the hypervo-
lume on the geometric plane Statement-Cost and Branch-
Cost. An important difference between the AUC-based met-
rics (e.g., APSC) and IHP ðtÞ lies in how theymeasure the area
dominated by a given test case permutation/ordering P ðtÞ.

The AUC-based metrics provide an over-estimation of the
area dominated by P ðtÞ using the trapezoidal rule [3] (see
Fig. 2). Instead, IHP ðtÞ uses the rectangular rule, thus, strictly
satisfying the definition of dominance in multi- and many-
objective optimization (see Definition 4 and Fig. 1).

3.3.1 Supporting the Decision Making

Prior studies focused on AUC-based metrics in a multi-
objective paradigm with the theoretical motivation that hav-
ing multiple Pareto optimal solutions helps to accommodate
for different views from decision-makers that may profit of
the variants to refine their views during the solution evalua-
tion process. In the following, we show, through an exam-
ple, that choosing trade-offs in the space of the AUC-based
metrics is different from choosing trade-offs among the
original testing criteria being condensed in these metrics. To
this aim, let us consider again the example of test suite
shown in Table 1. Let us suppose we are interested in find-
ing a test case prioritization that optimizes three testing cri-
teria: execution time, branch, and statement coverage. Let
us also assume we used the AUC-based metrics and multi-
objective optimization as suggested in prior studies. First,
we notice that the three original testing criteria correspond
to only two objectives: the cost-cognizant average percent-
age of branch coverage (APBCc) and the cost-cognizant
average percentage of statement coverage (APSCc).

Remark 1. In general, n testing criteria for the test case pri-
oritization problem correspond to n� 1 search objectives
when using the cost-cognizant AUC-based metrics.

In our example, there are 120 possible permutations and
we can use an exhaustive search to find the Pareto optimal
ones. Among these possible test permutations, there are
only three permutations that are Pareto optimal. The first
two optimal solutions are tB ¼ T5; T3; T4; T2; T1f g and tS ¼
T5; T2; T1; T3; T4f g. The former is the best permutation for
APBCc while the latter is the best solution for APSCc.
Graphically, the two permutations tB and tS correspond to
the two corners of the Pareto front as shown in Fig. 3a. The
third Pareto optimal solution is the permutation tH ¼
T5; T2; T3; T1; T4f g, which corresponds to the solutions with
the largest hypervolume score.

Fig. 2. Cumulative points in three-objective test case prioritization. The
gray areas denote the area under curve for the two projections of the
cumulative score for the permutation in Table 2 onto planes [Cost �
Branch Cov.] and [Cost � Statement Cov.].

Fig. 3. Comparison of the Pareto optimal solutions (test prioritizations) for the test suite in Table 1 and the solution with the best IHP score.

682 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

Let us assume that the decision-maker wants to give
higher priority to statement coverage over branch coverage
and therefore he/she chooses the solution tS with the largest
statement coverage rate. In theory, we may conclude that tS
is indeed the best test prioritization for statement coverage.
To refute this hypothesis, let us now look at the solution tS
projected in the space of the original coverage criteria (for
simplicity we consider only cost and statement coverage)
rather than in the objective space (i.e., the space of the AUC-
metrics). Fig. 3b depicts the statement coverage over execu-
tion cost achieved by tS compared to the solution with tH .
As we can observe, tS achieves the maximum statement cov-
erage earlier than tH (105s for the former compared to 121s
for the latter). However, tH achieves better statement cover-
age than tS during the first 60s of test execution time. Simi-
larly, the best permutation is tH if our goal is to reach higher
statement coverage in 100s of test execution time.

Remark 2. When not enough resources are available to run
the entire test suite, choosing a solution among the trade-
offs produced with AUC-based metrics can lead to sub-
optimal results.

Furthermore, we notice that any test case permutation is
by itself a set of trade-offs in the space of the original testing
criteria. Indeed, tS corresponds to six points/trade-offs
between execution cost and statement coverage as already
shown in Fig. 3. Similarly, tH corresponds to six trade-offs
in the space of the testing criteria. Decision-makers can, in
theory, choose not only which permutation to select but
also whether stopping the execution of the test suite earlier
(if he/she has not enough resources and time to run the
entire suite). In our example, analyzing the trade-offs in the
space of execution cost and statement coverage depicted in
Fig. 3 provides better insights about the pros and the cons
of the two permutations tS and tH when varying the
amount of resources (time) we want to spend on regression
testing.

Remark 3. Each test permutation is by definition a set of
trade-offs in the space of the testing criteria.

4 EVALUATING THE HYPERVOLUME GENETIC

ALGORITHM WITH LESS THAN THREE CRITERIA

We conduct a first empirical study to assess the performan-
ces of HGA. In particular, we investigate the following high-
level research question:

RQ1: What is the cost-effectiveness and efficiency of HGA, com-
pared to state-of-the-art test case prioritization techniques?

To better clarify it, we detailed it in two research
questions:

� RQ1:1:What is the cost-effectiveness of HGA, compared to
state-of-the-art test case prioritization techniques? This
research question aims at evaluating to what extent
the test case ordering obtained by HGA is able to
detect faults (effectiveness) earlier (lower execution
cost) in comparison with three state-of-the-art techni-
ques: a cost cognizant additional greedy algorithm
[5], [41], a single objective genetic algorithm based
on an AUC metric (GA) [3], and a multi-objective
search based algorithm namely NSGA-II [20] used
in prior test case prioritization [12], [14]. This reflects
the developers’ needs to discover regression faults
with minimum cost.

� RQ1:2: What is the efficiency of HGA, compared to
state-of-the-art test case prioritization techniques? With
this second research question, we are interested in
comparing the running time (efficiency) required by
HGA to find an optimal test ordering, in comparison
with the three experimented test case prioritization
techniques.

4.1 Study Design

This section describes the design of the study.

4.1.1 Context of the Study

The context consists of five GNU utilities—namely Bash,
Flex, Grep, GZip, Sed—from the Software-artifact Infra-
structure Repository (SIR) [67]. The characteristics of these
five programs are reported in Table 3, including their size (in
terms of lines of code), test suite size, and type of faults. In
total, the selected programs have a size ranging between 5,680
and 59,846 LOC, while the number of test cases varies
between 214 and 1,061.We selected these programs since they
have been used in previous work on regression testing [3],
[12], [14], [68], [69], [70]. Moreover, they have different size,
number of tests, and context applications. As faults, we con-
sider the seeded faults that are available in SIR. Please con-
sider that, when seeding the faults, the authors of the
repository assumed that the programmer that made the
changes inserted the faults. Thus, the seeded faults can be
located only within the changes between versions (calculated
with the assistance of a diff tool).1 More specifically, SIR pro-
vides a list of seeded faults with the corresponding test-fault
coverage information. In our study, we considered the non-
trivial faults, i.e., faults that can be exposed by a very few test
cases, as suggested in the SIR guidelines [67]. For the sake of
this analysis, we always selected the largest hardmatrices (i.e.,
matrices of faults that are killable by few tests) in case of mul-
tiple fault matrices available in the SIR repository.

TABLE 3
Programs Used in the Study

Program Description Version LOC # Tests # Faults Language Fault Type

Bash Shell Language Interpreter V2 59,846 1,061 5 C Seeded
Flex Fast Lexical Analyzer V2 10,459 567 15 C Seeded
Grep Regular Expression Utility V2 10,068 809 10 C Seeded
GZip Compression Tool V2 5,680 214 11 C Seeded
Sed Non Interactive Text Editor V2 14,427 360 5 C Seeded

1. https://sir.unl.edu/content/c-fault-seeding.php

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 683

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

https://sir.unl.edu/content/c-fault-seeding.php

4.1.2 Testing Criteria

To answer our research questions, we considered different
testing criteria widely used in previous test case prioritiza-
tion work [3], [12], [71]:

� Statement coverage criterion. We measured statement
coverage achieved by each test case using gcov, a pro-
filing tool that is part of the GNUC compiler (gcc).

� Execution cost criterion. To compute the execution
cost, we could just measure the test case execution
time. However, this measure depends on several
external factors such as different hardware, applica-
tion software, operating system, etc. In this paper,
we addressed this issue by counting the number of
executed instructions in the production code, instead
of measuring the actual execution time. To this aim,
we used gcov to measure the execution frequency of
each source code instruction for the programs from
the GNU. Notice that approximating the execution
cost as the number of executed instructions is a stan-
dard procedure in the related literature [2], [42].

� Past faults coverage criterion. We considered the previ-
ous versions of the programs with seeded faults
available in the SIR repository [67]. SIR also specifies
whether or not each test case is able to reveal these
faults. Such information can be used to assign a past
faults coverage value to each test case, computed as
the number of known past faults that each test is
able to reveal in the previous version.

Notice that the goal of our analysis is not to determine
which coverage criteria have the higher likelihood of reveal-
ing regression faults. Therefore, we selected those that have
been widely used in prior studies (e.g., [3], [12], [42], [71]).
Nevertheless, it is possible to formulate other criteria by
just providing a clear mapping between tests and coverage-
based requirements. The criteria used in this study serve
to illustrate how the Hypervolume-based metric can be
applied to any number and kind of testing criteria to be
satisfied, where further criteria just represent additional
axes to be considered when computing IHP ðtÞ. Using the
testing criteria described above, we examined two different
formulations of the TCP problem:

� Two-criteria (Single-objective). The goal is to find an
optimal ordering of test cases which (i) minimizes
the execution cost and (ii) maximizes the statement
coverage.

� Three-criteria (Two-objective). For this formulation, we
considered the past faults coverage as a third criterion
to be maximized.

4.1.3 Evaluated Algorithms

We compared HGA with three state-of-the-art algorithms,
namely (i) Additional Greedy [5], [14], [41], (ii) GA [3],
and (iii) NSGA-II [14], [20]. In particular, we compared
HGA with Additional Greedy and GA in the single objec-
tive formulation (two criteria) and with Additional

Greedy and NSGA-II in the two-objective formulation
(three criteria).

Additional Greedy. This algorithm instantiated for the TCP
problem [5], [14] considers coverage and cost at the same time

by maximizing the coverage per unit of time of the selected
test cases (cost cognizant additional greedy). Similarly, for
what concerns the three-criteria formulation of the problem,
we used the algorithm proposed by Yoo and Harman [?], [?],
[?], which conflates code coverage, execution cost and past
coverage in one objective function tominimize.

Additional Greedy is an iterative deterministic search
algorithm that starts with an empty order of test cases
t0 ¼ hi; then, it selects the test case tmax having the highest
value of code coverage per time unit (greedy step), i.e.,
t1 ¼ htmaxi. In each of the subsequent iterations, it selects the
test case yielding the largest (additional) increment of code
coverage per time unit compared to the order ti built in the
last previous iteration of the algorithm. The loop ends when
the highest coverage per time unit is reached, i.e., when add-
ing any un-selected test does not lead to an increment in cov-
erage. To complete the test order, the un-prioritized test
cases that do not contribute to the additional coverage could
be ordered using any strategy (e.g., using a random order).
In this work, we recursively re-applied the Additional

Greedy algorithm to the un-prioritized tests until all are
ordered, as done in previouswork [3].

When multiple coverage criteria are used (as for the
three-criteria formulation), the additional coverage per unit
time of each test t is computed using the following equation:

gðtÞ ¼ 1

m
� 1

costðtÞ �
Xi¼m

i¼1

fiðtÞ; (8)

where F ¼ f1; . . . ; fmf g is the set of coverage criteria to con-
sider and costðtÞ denotes the execution cost of the test t.

Genetic Algorithm. Genetic Algorithms (GAs) repre-
sent a class of search techniques based on the natural selec-
tion processes defined by Darwin’s theory of biological
evolution. A typical GA procedure starts with an initial pop-
ulation P of individuals. Selected pairs of individuals are
combined and mutated to generate new individuals that
will be part of the population of the next generation. A GA is
an approximated algorithm that does not guarantee to con-
verge. For this reason, the search continues for a number of
generations until a stop condition is reached. Individuals of
the population are represented by their chromosome (e.g.,
the sequences of their variables/parameters). We selected a
GA because it is one of the best single-objective algorithms
for the test case prioritization problem [3].

NSGA-II. The Non-dominated Sorting Genetic

Algorithm II [12] is a computationally fast and elitist
multi-objective evolutionary algorithm based on a non-
dominated sorting approach. As any population-based evolu-
tionary algorithms, NSGA-II starts with a set of solutions
(test case orderings in our case) randomly generated within
the solution space.At each generation, offsprings are generated
by combining pairs of fittest individuals through three genetic
operators: selection, crossover and mutation. To form the popu-
lation for the next generation, parents and offsprings are
ordered using the non-dominated sorting algorithm, which
assigns to each candidate solution a fitness score that com-
bines the non-dominance relation (see Equation (3)) and the
crowding distance. The individuals are sorted and the fittest
ones are selected to form the new population. The process is
repeated until a maximum number of iterations (also called

684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

generations) is reached. We selected NSGA-II because it has
been widely used in literature and for regression testing in
particular [12], [14], [69]. Moreover, our choice was guided by
the fact that NSGA-II has been proven to be particularly
suited for prioritization problems [11], [72], [73].

When applying Genetic Algorithm and NSGA-II to
the TCP problem [14], the objective functions to optimize
are AUC-based metrics. Therefore, each coverage criterion
is condensed with execution cost information by applying
Equation (2). This results in a single AUC-based metric per
each coverage (+cost) criterion. For example, the AUC-
based metric to optimize for statement coverage is the cost
cognizant variant of Average Percentage of Statements Cov-
erage (APSCc)

APSCc ¼
Pm

i¼1

Pn
j¼TSi

cj � 1
2 cTSi

� �
Pn

i¼1 ci �m
; (9)

where T ¼ t1; t2; . . . ; tnf g is the test suite to be optimized,
with cost C ¼ c1; c2; . . . ; cnf g, TSi is the first test case in an
ordering T 0 of T that is able to cover the statement i.

4.1.4 Implementation Details and Parameter Setting

All the algorithms have been implemented using JMetal [74], a
Java-based framework for multi-objective optimization with
meta-heuristics. To reduce the execution time needed to per-
form the experiments, we pre-processed the coverage data
using the lossless coverage compaction algorithm proposed by
Epitropakis et al. [12]. This technique improves the perfor-
mance of all the algorithms reducing the size of the coverage
matrices by a factor between 7 and 488 [12].

We used the default parameters values used in previous
studies on TCP [12], [14]. This is because previous stud-
ies [75], [76] demonstrated that default values are a reason-
able choice, even considering that parameter tuning is a
long and expensive process that in the context of search-
based software engineering does not assure better perform-
ances. In particular, we use the following (default) parame-
ter values:

� Population size: 250 individuals.
� Selection: binary tournament selection. It randomly

picks two individuals for the tournament and selects
the fittest one. The winner of each tournament is the
solution with the best IHP ðtÞ (Equation (7)) in HGA or
the permutation with the best AUC-based metric for
GA. For NSGA-II, the winner of the tournament is the
test case with the best non-dominance rank, or with
the highest crowding distance at the same level of non-
dominance rank.

� Crossover: PMX-Crossover with crossover probability
of pc ¼ 0:90. This operator swaps elements at a given
random crossover point.

� Mutation: SWAP-Mutation that randomly swaps two
chosen permutation elements within each offspring
with a mutation probability of pm ¼ 1=n, where n is
the number of test cases.

� Stopping criterion: 100 generations, corresponding to
25,000 fitness evaluations.

To account for the inherently random nature of search-
based algorithms [77], we performed 30 independent

runs for each program and for each search algorithm in
our study.

4.1.5 Evaluation Metrics

To address RQ1:1 we used the cost-cognizant Average Percent-
age of Faults Detected metric (APFDc) proposed by Elbaum
et al. [41]. This metric measures the ability of a test permu-
tation to reveal faults earlier [41]. The larger the APFDc, the
lower the average cost needed to detect the same number of
faults. Since we performed 30 independent runs, we report
the mean and the standard deviation of the APFDc scores
achieved for each program and for each formulation. It is
worth noting that for NSGA-II we report the mean and the
standard deviation of all the solutions in the Pareto set. The
cost-cognizant Average Percentage of Faults Detected per unit
cost can be computed as follows:

APFDc ¼
Pm

i¼1

Pn
j¼TFi

cj � 1
2 cTFi

� �
Pn

i¼1 ci �m
; (10)

where T ¼ t1; t2; . . . ; tnf g is the test suite to be optimized,
with cost C ¼ c1; c2; . . . ; cnf g and TFi is the first test case in
an ordering T 0 of T that reveals fault i.

To address RQ1:2, we compared the average running
time required by each algorithm to converge. The execution
time was measured using a machine with Intel Core i7 pro-
cessor running at 2.40 GHz with 12 GB RAM.

We statistically analyzed the results, to check whether
the differences between the APFDc scores (or the running
time) are statistically significant or not. To this aim, we used
two different statistical tests: (i) Welch’s t-test, and (ii) Wil-
coxon t-test [78]. In particular, we used the Welch’s t-test to
compare HGAwith Additional Greedy because the distri-
butions of the two groups have unequal variance. Instead,
we applied the Wilcoxon t-test when comparing HGA with
GA and NSGA-II. In both cases, we considered a p-value
threshold of 0.05. Significant p-values indicate that the cor-
responding null hypothesis can be rejected in favor of the
alternative ones. Other than testing the null hypothesis, we
used the Vargha-Delaney (Â12) statistical test [79] to mea-
sure the effect size. Â12 > 0:5 indicates the distribution by
HGA is larger than the distribution by a state-of-the-art
algorithm; Â12 < 0:5 means the opposite; and Â12 ¼ 0:5
means they are equal. For RQ1, Â12 > 0:5 is in favor of HGA
while Â12 < 0:5 are preferable for RQ2.

4.2 Results of the Empirical Study

This section discusses the results of our first study, thus,
answering the research questions.

4.2.1 Results for Two-Criteria (Single Objective)

Formulation

Table 4 reports the APFDc values and the running time
obtained by HGA and the state-of-the-art algorithms on the
five programs from the Software-artifact Infrastructure
Repository (SIR) [67].

Results for RQ1:1. From the comparison between HGA and
Additional Greedy, we observe that the former achieves
statistically higher APFDc scores than the latter in four out of
five programs (i.e., Â12 > 0:5 and p-value < 0:05).Moreover,

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 685

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

the Â12 statistics reveal that in all these cases the effect size is
large. The improvements range between a minimum of
+0.60 percent and a maximum of +41.10 percent achieved for
Sed and GZip, respectively. Instead, Additional Greedy

produced a significantly higher APFDc score for Bash

although the difference is quite small: -2.10 percent on aver-
age. Bash is a particular program since all algorithms almost
achieve an optimal APFDc, which is very close to one. This
is due to the fact that the fault-revealing tests are always run
early by the solutions generated by the search algorithms
despite the very large size of the test suite. Regression
faults in this program can be detected by only few test cases
(1.5 percent of tests on average), which have, however, very
large statement coverage and therefore are selected very
early. Therefore, while the difference between Additional

Greedy and HGA are statistically significant, they are negligi-
ble in practice as APFDc are very close to being optimal for
both the two algorithms.

When comparing HGA with GA, we notice that in none
of the programs we can reject the null hypothesis for
the Wilcoxon test. However, the Vargha-Delaney (Â12)
tests reveal that, although not significant, HGA is better
than GA with a small effect size in two programs. This
means that HGA is able to produce test permutations that
are competitive with those generated by GA. These results
are expected since, as explained in Section 3.3, the hyper-
volume and the AUC-based metric are equivalent. Their
difference lies in how the area under the curve is com-
puted: using the rectangular rule for HGA and the trape-
zoidal rule for GA.

Results for RQ1:2. The comparison between HGA and
Additional Greedy, shows that on in all the programs
considered from the SIR repository the Additional

Greedy algorithm is statistically faster (i.e., Â12 > 0:5 and
p-value < 0:05) than HGA, despite being less cost-effective
as demonstrated in RQ1:1. In all these cases, according to
the Â12 statistics the effect size is large. The improvements
range between a minimum of 2 times and a maximum of 8.5
times achieved for GZip and Bash, respectively. It is worth
noting that the performance of Additional Greedy is
strongly influenced by the number of test cases. Indeed, in

these programs, the number of test cases ranges between
214 for GZip and 1,061 for Bash.

To verify whether the (positive and negative) differences
between the execution time of the two algorithms signifi-
cantly interact with the test suite size, we applied the permuta-
tion test [80]. It corresponds to a non-parametric version of the
Analysis of Variance (ANOVA) test and, thus, it does not
require that the distributions under analysis are normally dis-
tributed. For the test, we used the implementation available in
R, and its package lmPerm in particular, with a large number

of iterations (108) to have stable results [16]. The permutation
test revealed that there is a statistically significant interaction
between the execution time of the two algorithms and the
number of the test cases to prioritize (p-value = 4:14� 10�4).
In other words, the larger the test suite, the more time Addi-
tionalGreedy needs in terms of execution time.

From the comparison between GA and HGA, we can notice
that for all the programs we can reject the null hypothesis of
the Wilcoxon t-test. Looking at the Vargha-Delaney (Â12)
statistics, in all programs, HGA outperforms (is more effi-
cient than) GA with large effect size. Indeed, GA requires
between 2.00 (e.g., GZip) to 3.20 times (e.g., Grep) the exe-
cution times required for HGA. On average HGA is 1.89 times
faster than GA. As we already noticed in the comparison
with Additional Greedy, the number of test cases
strongly influences the performance of GA. Indeed, as the
number of test cases increases the ratio between the time
required by GA and HGA increases. These observations are
also confirmed by the permutation test: the differences
(improvements/worsening) between the execution time of
HGA and GA significantly interacts with the test suite size
(p-value=2:90� 10�5).

4.2.2 Results for Three-Criteria (Two-Objective)

Formulation

Table 5 reports the APFDc values and the running time
obtained by HGA, Additional Greedy, and NSGA-II.

Results for RQ1:1. We observe that HGA outperforms Addi-
tional Greedy in four out of five programs with a large

effect size. HGA improves APFDc values up to +48.40 percent
with respect to Additional Greedy, while in the opposite

TABLE 4
Results for Two-Criteria (Single Objective) Formulation: APFDc and Running Time Achieved by Additional Greedy, GA, and HGA

Program Add. Greedy
GA HGA HGA 6¼ Add. Greedy HGA 6¼ GA

Median St. Dev. Median St. Dev. p-value Â12 Effect Size p-value Â12 Effect Size

Bash 0.948 (+0.021) " 0.920 (-0.007) 0.040 0.927 0.036 < 0.01 0.23 Large 0.51 0.55 Negligible
Flex 0.453 (-0.245) # 0.699 (+0.001) 0.001 0.698 0.001 < 0.01 1.00 Large 0.45 0.44 Negligible
Grep 0.476 (-0.010) # 0.485 (-0.004) 0.011 0.489 0.009 < 0.01 0.93 Large 0.11 0.62 Small
GZip 0.119 (-0.416) # 0.602 (-) 0.116 0.602 0.108 < 0.01 1.00 Large 0.20 0.43 Negligible
Sed 0.989 (-0.006) # 0.994 (-0.001) 0.001 0.995 0.001 < 0.01 1.00 Large 0.26 0.58 Small

Program Add. Greedy
GA HGA HGA 6¼ Add. Greedy HGA 6¼ GA

Mean St. Dev. Mean St. Dev. p-value Â12 Magnitude p-value Â12 Magnitude

Bash 2s " 25s # 1s 17s 2s < 0.01 1.00 Large < 0.01 0.00 Large
Flex 1s " 10s # < 1s 5s 1s < 0.01 1.00 Large < 0.01 0.00 Large
Grep 1s " 16s # 1s 5s < 1s < 0.01 1.00 Large < 0.01 0.00 Large
GZip < 1s " 1s # < 1s < 1s < 1s < 0.01 1.00 Large < 0.01 0.00 Large
Sed < 1s " 3s # < 1s 1s < 1s < 0.01 1.00 Large < 0.01 0.00 Large

For each baseline, in parenthesis is shown the median difference with respect to HGA. Results are highlighted with # when one algorithm is statistically worse
than HGA; " when the opposite is true.

686 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

case the difference is low (e.g., -2.00 percent on Bash). Look-
ing at the results obtained when comparing NSGA-II with
HGA, we notice that in four cases out of five we can reject the
null hypothesis. In three of those cases, HGA outperforms
NSGA-II: in two cases with a small effect size and in
another onewith a medium effect size.

Only for Bash, Additional Greedy produces a better
test permutation with respect to HGA with a medium effect
size. Furthermore, there is also only one program (i.e., Sed),
in which NSGA-II is better than HGAwith large effect size.
Both these two programs are characterized by very large
APFDc scores for all search algorithms (i.e., APFDc > 0.90).
To shed light on these close-to-being-optimal results, we
manually investigated the permutations generated by the
algorithms. While the regression faults are non-trivial for
both the two programs —they are detectable by 1.5 percent
of tests on Bash and 16 percent of tests in case of Sed— all
fault-revealing test case have very high statement coverage
and are, therefore, always selected very early. The differen-
ces in APFDc scores between the three algorithms are due to
very few test cases that differ in the corresponding test per-
mutations. Given the fact that all algorithms achieve very
high APFDc scores, these differences are negligible in prac-
tice although statistical significant.

Notice that for the comparison above we considered all
Pareto-optimal solutions produced by NSGA-II (between
nine and 50 solutions). However, different solutions in the
Pareto fronts may provide different APFDc scores. Fig. 4
compares the APFDc scores by HGA (single points) with
the boxplots of NSGA-II (i.e., the distributions of APFDc

scores of the entire Pareto front). The purpose of this com-
parison is two-fold: (i) we want to measure whether the
majority of the solutions by NSGA-II are better than the sin-
gle solution by HGA; and (ii) we want to measure the vari-
ability of the APFDc values by NSGA-II.

As we can observe, in four systems, the single solution
provided by HGA is better or equal to the median solution of
NSGA-II. For GZip, we observe a huge variation in the
APFDc distribution yielded by NSGA-II: it ranges between
0.40 and 1.00, with a median value of 0.400. For this project,
choosing a proper solution from the Pareto front is very crit-
ical since not all its solutions have better APFDc scores than
HGA. In particular, only 26 percent of the Pareto front is
more cost-effective than the single solution achieved by
HGA. Once again, no guideline exists that helps the testers

choosing the most cost-effective solutions in the Pareto front
as the APFDc scores can be computed only by executing all
test permutations.

To better understand how the three algorithms optimize
the selected testing criteria, Fig. 5 plots —for Grep and Sed—
the Pareto front produced by NSGA-II, and the single solu-
tions generated by Additional Greedy and HGA with
respect to the objectives optimized by NSGA-II (APSCc and
APPFDc). The complete set of plots for all the programs in our
study is available in our online appendix [21]. This compari-
son allows understandingwhether the solutions generated by
one algorithm dominate (i.e., are better than) the solutions
produced by an alternative algorithm in the space of the
AUC-metrics. It is possible to notice that in all the cases the
solutions generated by NSGA-II and HGA always dominate
the solutions produced by Additional Greedy.

Furthermore, we observe that the single solution yielded
by HGA is never dominated by the Pareto front generated by
NSGA-II. Vice versa, for Grep, the single solution by HGA

dominates the majority of the Pareto fronts produced by
NSGA-II. These results are very unexpected considering
that NSGA-II explicitly optimizes APSCc and APPFDc as
two contrasting objectives. Instead, HGA optimizes the
hypervolume indicator, which generalizes and combines
APSCc and APPFDc as discussed in Section 3.1.

TABLE 5
Results for Three-Criteria (Two-Objective) Formulation: APFDc and Running Time Achieved

by Additional Greedy, NSGA-II, and HGA

For each baseline, in parenthesis is shown the median difference with respect to HGA. Results are highlighted with # when one algorithm is statistically worse
than HGA; " when the opposite is true.

Fig. 4. APFDc scores achieved by additional greedy (tu), NSGA-II (box-
plots), and HGA (�) on the three-criteria (two-objective) formulation of
the TCP problem.

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 687

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

This program demonstrates that optimizing the AUC-
based metrics is not always directly related to having a bet-
ter hypervolume score and neither a better fault detection
capability. Considering that there are no guidelines to select
the best solution (permutation) from the Pareto front, this
result poses a question on whether it is worth at all to use
multi-objective algorithms for TCP.

Different observations can be made for Sed. More specifi-
cally, the single solution by HGA is one corner point of the
Pareto front produced by NSGA-II. This means that none
of the two algorithms dominated the other for this program.
However, the solution by HGA corresponds to the Pareto
optimal solution with the best APPFDc value (i.e., the one
with the highest rate of past fault coverage). Since the num-
ber of past faults is usually smaller than the number of
statements to cover, the hypervolume metric may prefer
solutions that overfit the past faults rather than optimizing
the overall structural coverage. This remark may explain
why the solutions by NSGA-II have higher fault detection
capability than HGA. Clearly, investigating different weight-
ing strategies for past-fault coverage in the computation of
the hypervolume is part of our future agenda.

Results for RQ1:2. For what regards the running time, the
results for the three-criteria formulation are in line with those
achieved for the two-criteria formulation. Indeed, Addi-

tional Greedy ismore efficient than HGA in all the programs
with a large effect size. Moreover, HGA is always statistically
more efficient than NSGA-IIwith a large effect size. The dif-
ferences between the two meta-heuristics are due to: (i) the
efficient algorithm for the hypervolume computation in HGA

and (ii) the different cost of their selection procedures as
explained in Section 2.2. Namely, the non-dominated sorting
in NSGA-II is more expensive than the environmental selec-
tion implemented HGA for single-objective algorithms.

Summary for RQ1. HGA outperforms Additional Greedy

in most of the cases in terms of cost-effectiveness but it is
less efficient. On the two-criteria formulation, as expected
from the theory, HGA and GA are equivalent in terms of
fault detection capability. However, the former is more
efficient than the latter thanks to our algorithm for the fast
computation of the hypervolume metric. On the three-cri-
teria formulation, HGA is often more effective and always
more efficient thanNSGA-II.

5 EVALUATING THE HYPERVOLUME GENETIC

ALGORITHM WITH UP TO FIVE CRITERIA

This section discusses the second empirical study we car-
ried out to assess the performances of HGA compared to
state-of-the-art many-objective algorithms when handling
up to five testing criteria. Thus, we formulated the addi-
tional following high-level research questions:

RQ2: How does HGA perform with respect to many-objective test
case prioritization techniques?

To better clarify it, we detailed it in two research
questions:

� RQ2:1: What is the cost-effectiveness of HGA, compared to
many-objective test case prioritization techniques? This
research question aims at evaluating the selective pres-
sure of HGA, that is “the degree to which the better
individuals are favored during the computation” [81].
In particular, similarly to RQ1:1, it analyses to what
extent the test case ordering obtained by HGA is able to
detect faults (effectiveness) earlier (lower execution cost)
in comparison to two state-of-the-art many-objective
algorithms, namely GDE3 and MOEA/D-DE.

� RQ2:2: What is the efficiency of HGA, compared to many-
objective test case prioritization techniques? Similarly to
RQ1:2, with this research question, we are interested,
in comparing the running time (efficiency) required
by HGA to find an optimal test ordering compared to
the alternative many-objective algorithms in cases
that require a strong selective pressure.

5.1 Study Design

5.1.1 Context of the Study and Testing Criteria

The context of the study is the same as that of the first
empirical study in Section 4. For the testing criteria, we
added two additional criteria with respect to the first study,
namely branch and function coverage criteria. In particular,
we considered the following criteria:

� Branch and function coverage criterion. Also, in this
case, we measured statement coverage achieved by
each test case using the gcov tool part of the GNU C
compiler (gcc).

With these additional testing criteria, we examined two
different many-objective formulations of the TCP problem:

Fig. 5. Pareto frontiers achieved for the three-criteria (two-objective) formulation of TCP.

688 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

� Four-criteria (Three-objective). The goal is to find an
optimal ordering of test cases which (i) minimizes
the execution cost, (ii) maximizes the statement cov-
erage, (iii) maximizes the past faults coverage, and
(iv) maximizes the branch coverage. We applied this
formulation for the ten programs from SIR [67].

� Five-criteria (Four-objective). For this formulation, we
considered the function coverage as a fifth criterion to
be maximized. We applied this formulation on the
same programs already used for the four-objective
formulation.

5.1.2 Evaluated Algorithms and Parameter Setting

We compared the results of HGA with the those achieved by
two algorithms, namely (i) GDE3 [18] and (ii) MOEA/D-DE

[19]. The former implements a diversity-based mechanism
to address the problem of selective resistance, while the latter
is a reference-point based mechanism to guarantee well dis-
tributed Pareto fronts for many-objective problems. These
two algorithms inspired many other many-objective meta-
heuristics and are representative for the two classes of algo-
rithms discussed in Section 2.2.1. As already highlighted in
the first study in Section 4, it is worth noting that for GDE3
and MOEA/D-DE the objective functions to optimize are AUC-
basedmetrics.

For GDE3 and MOEA/D-DE, we used their implementa-
tion available in JMetal [74] and preprocessed the coverage
data using the lossless coverage compaction algorithm pro-
posed by Epitropakis et al. [12]. For both algorithms, we
used their default parameters values [12], [14]:

� Population size: 250 individuals as for HGA.
� Selection: For GDE3 and MOEA-D/DE, the fittest indi-

viduals are selected using the differential evolution
selection operator.

� Crossover: we used the PMX-Crossoverwith crossover
probability pc ¼ 0:90 GDE3 and MOEA-D/DE need
also to set another parameter, namely CR. This
parameter indicates how single sub-problems are
separable (i.e., the lower the value, the more the
problems are separable). We applied the default val-
ues (e.g., 0.50 for GDE3 and 1.00 MOEA-D/DE).

� Mutation: as mutation operator, we used the SWAP-
Mutation with permutation probability pm ¼ 1=n,
where n is the number of test cases, i.e., the same oper-
ator used with the same probability used in the previ-
ous study. GDE3 and MOEA-D/DE need an additional

parameter F . This scaling factor controls the speed
and robustness of the search (i.e., with a lower value
the algorithm converges faster, but it has a higher risk
of stacking in a local optimum). Also, in this case, we
applied the default value (i.e., 0.50).

� Stopping criterion: the evolutionary algorithms end
when reaching 100 generations, corresponding to
25,000 fitness evaluations.

We used default parameters considering that previous
studies [75], [76] demonstrated that they are a reasonable
choice, even considering that parameter tuning is a long
and expensive process that in the context of search-based
software engineering does not assure better performance.

To account for the inherently random nature of search-
based algorithms [77], we performed 30 independents runs
for each program and for each search algorithm in our
study.

5.1.3 Evaluation Metrics

We used the same evaluation metrics used in Section 4. In
particular, for RQ2:1 we relied on the same evaluation met-
rics used for RQ1:1, while for RQ2:2 we relied on the same
evaluation metrics used for RQ1:2.

5.2 Results of the Empirical Study

This section discusses the results of our second study, thus,
answering the research questions.

5.2.1 Results for Four-Criteria (Three-Objective)

Formulation

Table 6 reports the APFDc values and the running time
obtained by HGA and the state-of-the-art algorithms for the
five programs from the Software-artifact Infrastructure
Repository (SIR) [67].

Results for RQ2:1. We observe that HGA achieves equal or
better APFDc values with respect to GDE3 and MOEA-D/DE.
In particular, the Wilcoxon t-test revealed that in three out of
five programs the differences between HGA and GDE3 are
statistically significant (in two cases with large effect size
and in one case with large effect size). Notice that GDE3
returns many solutions (test permutations), whose number
ranges between 20 (e.g., GZip) and 38 (e.g., Flex). Fig. 6
shows that the APFDc scores achieved by GDE3 may vary
across the solutions in the Pareto fronts. In all the programs,
the solution by HGA is more or equally cost-effective than
the median score yielded by all the solutions by GDE3. For

TABLE 6
Results for Four-Criteria (Three-Objective) Formulation: APFDc and Running Time Achieved by MOEA-D/DE, GDE3, and HGA

For each baseline, in parenthesis is shown the median difference with respect to HGA. Results are highlighted with # when one algorithm is statistically worse
than HGA; " when the opposite is true.

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 689

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

example, on Bash the APFDc scores by GDE3 vary between
0.65 and 0.98, with a median value of 0.875. On this project,
the solution by HGA outperforms 70 percent of the Pareto
optimal solutions obtained with GDE3.

When comparing HGAwith MOEA-D/DEwe notice that in
three out of five cases the null hypothesis cannot be rejected
according to the Wilcoxon t-test. For the remaining pro-
grams, HGA is better than MOEA-D/DE (in one case with
large effect size and in the other one with small effect
size). Moreover, not all Pareto efficient solutions yielded by
MOEA-D/DE achieve the same APFDc scores as shown in
Fig. 6. One exemplary case is observable for GZip: for this
project, the APFDc scores of the Pareto optimal solutions by
MOEA-D/DE range between 0.40 and 1.00, with a mean
value of 0.602. Instead, the single solution by HGA is better
than 75 percent of Pareto optimal solutions generated by
MOEA-D/DE.

Fig. 7 plots —for Flex and Sed— the Pareto fronts pro-
duced by GDE3 and MOEA-D/DE as well as the single solu-
tions generated by HGA with respect to the AUC-based
metrics. As we can observe, the solutions by GDE3 and
MOEA-D/DE do not dominate the solution generated by
HGA. Vice versa, the solution generated by HGA dominates a

large portion of the solutions by these algorithms. Using the
hypervolume indicator as fitness function, HGA is able to
optimize the AUC-based metrics even if the baselines use
such metrics as objectives to optimize. This further poses
the question of whether it is worth using multi-objective or
many-objective algorithms for the test case prioritization
problem, given the difficulty to discriminate the best solu-
tion among those produced by these algorithms. The com-
plete set of plots of all the programs is available in our
online appendix. [21].

Results for RQ2:2. In all the programs, the HGA is statisti-
cally faster (i.e., Â12 < 0:5 and p-value < 0:05) than the
GDE3 with large effect size. The improvements range
between a minimum of 1.65 times and a maximum of 3.00
times, achieved on Bash and Sed, respectively. On average,
HGA is 1.81 times faster than GDE3. Similarly to the results
achieved for NSGA-II, the number of test cases strongly
influences the performance of GDE3. Indeed, the ratio
between the execution time needed by GDE3 and the execu-
tion time required by HGA increases as the number of test
cases grows. This insight is further confirmed by the per-
mutation test: the differences (improvements/worsening)
between the execution time of HGA and GDE3 significantly
interacts with the test suite size (p-value=7:9� 10�5).

These results are confirmed when comparing HGA with
MOEA-D/DE. Indeed, for all the programs we can reject the
null hypothesis for the Wilcoxon t-test with large effect
size. MOEA-D/DE requires between 1.30 (e.g., Bash) to 3
times (e.g., Sed) the execution times required for HGA. On
average HGA is 1.49 times faster than MOEA-D/DE. To assess
the interaction between the number of test cases and the
performance gap between HGA and MOEA-D/DE, we per-
formed the permutation test achieving a p-value equal to
2:20� 10�16.

By comparing the running time of HGA across the differ-
ent programs, we can notice that HGA took more time to con-
verge on Bash (51s) and Grep (19s) with respect to the
other programs in our study. The computation cost of HGA
is polynomial to (i) the number of criteria, (ii) to the popula-
tion size, (iii) the cost of computing the hypervolume metric.
While the number of criteria and the population size is the
same for all programs, the cost of computing the hypervo-
lume metric varies. Indeed, the cost of computing such a

Fig. 6. APFDc scores achieved by GDE3 (boxplots), MOEA/D-DE (box-
plots), and HGA (�) on the four-criteria (three-objective) formulation of
the TCP problem.

Fig. 7. Pareto frontiers achieved for the four-criteria (three-objective) formulation of TCP.

690 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

metric depends on two factors: (1) the test suite size (i.e., the
total number of test cases) and (2) the percentage of test
cases in the test suite required to reach the maximum cover-
age. Compared to the other programs, Bash and Grep have
the largest test suites in our study. Furthermore, reaching
the maximum coverage scores requires to run almost all test
cases in their suites. In such a scenario, the algorithm for
computing the hypervolume metric (Algorithm 1) performs
a large number of iterations (equal to the number of test
cases needed to reach the maximum coverage score.

5.2.2 Results for Five-Criteria (Four-Objective)

Formulation

Table 7 reports the APFDc values and the running time
obtained by HGA and the state-of-the-art algorithms for the
five programs from the Software-artifact Infrastructure
Repository (SIR) [67].

Results for RQ2:1. The results are very similar to those
achieved in the four-criteria formulation. Indeed, when
comparing HGA and GDE3, we notice that on 4 out of 5 pro-
grams the former algorithm achieves statistically better
scores than the latter (three times with large effect size
and one time with medium effect size). Analyzing the
results for MOEA-D/DE, we observe that in all cases, we can-
not reject the null hypothesis and, thus, the results achieved
by HGA and MOEA-D/DE are comparable in terms of APFDc.

It is important to highlight that Table 6 reports the
median APFDc achieved by all the solutions and across all
the independent runs. However, the table does not describe
the distributions of the scores. To this aim, Fig. 8 compares
these distributions. We can notice that the solution by HGA

is more cost-effective than the solutions produced with
GDE3 and MOEA-D/DE. Moreover, the performance of these
algorithms has a large variation. For example, on GZip, the
scores for GDE3 vary between 0.20 and 1.00 while for MOEA-
D/DE they vary between 0.40 and 1.00. Choosing a proper
solution in these contexts is very hard. Indeed, for GZip

only four out of 144 solutions by MOEA-D/DE are more cost-
effective than the solution achieved by HGA. Moreover, there
is no guideline that helps in choosing the most cost-effective
solutions in the Pareto front as the fault detection capability
can be computed only a posteriori.

Results for RQ2:2. The comparison between HGA and GDE3

shows that, in all the programs, the former algorithm is sta-
tistically faster (i.e., Â12 < 0:5 and p-value < 0:05) than the
latter with large effect size. The improvements range

between a minimum of 1.49 times and a maximum of
3.50 times, achieved on Bash and on Sed respectively. On
average, HGA is 1.75 times faster than GDE3.

When comparing HGA and MOEA-D/DE, we notice that
for all the programs we can reject the null hypothesis.
According to the Vargha-Delaney (Â12) statistics, in all
cases, HGA is more efficient than MOEA-D/DE with large

effect size. MOEA-D/DE requires between 1.42 (e.g., Grep)
to 3 times (e.g., Sed) the execution times required for HGA.
On average HGA is 1.53 times faster than MOEA-D/DE.

Summary for RQ2. HGA often outperforms GDE3 and
MOEA-D/DE in terms of cost-effectiveness. The single
solution provided by HGA is not dominated in the objec-
tives space by those generated by the many-objective
algorithms. Finally, HGA is more efficient than GDE3 (up
to 1.65 and 1.75 times for four and five criteria formula-
tions) and MOEA-D/DE (up to 3 and 3.50 times depend-
ing on the formulation).

6 EVALUATING THE HYPERVOLUME GENETIC

ALGORITHM ON A LARGE SOFTWARE SYSTEM

We conduct a third empirical study to assess the performan-
ces of HGA, partially replicating a previous study [12]. In
particular, we investigate the following research questions:

TABLE 7
Results for Five-Criteria (Four-Objective) Formulation: APFDc and Running Time Achieved by MOEA-D/DE, GDE3, and HGA

For each baseline, in parenthesis is shown the mean difference with respect to HGA. Results are highlighted with # when one algorithm is statistically worse than
HGA; " when the opposite is true.

Fig. 8. APFDc scores achieved by GDE3 (boxplots), MOEA/D-DE (box-
plots), and HGA (�) on the five-criteria (four-objective) formulation of
TCP problem.

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 691

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

RQ3: How does HGA perform on a large software system with
real faults?

To better clarify it, we detailed it in two research questions:

� RQ3:1: What is the cost-effectiveness of HGA on a large
software system with real faults? This research question
aims at evaluating to what extent the test case order-
ing obtained by HGA is able to detect faults (effective-
ness) earlier (lower execution cost) in comparison
with two state-of-the-art techniques: a cost cognizant
additional greedy algorithm [5], [41], a single objec-
tive genetic algorithm based on an AUC metric (GA)
[3], and a multi-objective search based algorithm
namely NSGA-II [20] used in prior test case prioriti-
zation [12], [14] on a large software system, namely
MySQL, containing real faults.

� RQ3:2: What is the efficiency of HGA on a large software
system with real faults? With this second research
question, we are interested in comparing the running
time (efficiency) required by HGA to find an optimal
test ordering, in comparison with the three experi-
mented test case prioritization techniques on a large
software system, namely MySQL, containing real
faults.

6.1 Study Design

The context consists of MySQL, a large real-world system that
has been previously studied by Epitropakis et al. [12].
MySQL is developed in Java. It comprises 1,283,433 LOC
and has 2,005 test cases. We used the same real faults from
the original study [12], where the authors collected 20 real
faults from issue tracker of the software system with
“closed” status and available fix patches.

We considered the same testing criteria used by
Epitropakis et al. [12]. In particular, we considered statement
coverage, D-coverage, past faults coverage, and execution cost.
We evaluated three formulations of the TCP problem:

� Two-criteria (Single-objective) that (i) minimizes the
execution cost and (ii) maximizes the statement
coverage.

� Three-criteria (Two-objective) that considers the past
faults coverage as a third criterion to be maximized.

� Four-criteria (Three-objective) that considers D-coverage
as a fourth criterion to be maximized.

In particular, we used the statement coverage matrix and
the execution cost array provided by Epitropakis et al. [12]
and built using the software profiling tool Valgrind. The
D-coverage criterion represents the difference of statement
coverage between two consecutive versions of a program.

The conjecture behind the use of this information is that
changed lines of code are more likely to introduce faults in
the system. It was calculated by applying the diff program
between two consecutive coverage matrices. It is worth to
notice that Epitropakis et al. [12] considered only the Four-
criteria formulation and that we added the Two- and Three-
criteria formulations for sake of completeness.

We compared the results of HGA with those achieved by
Additional Greedy [5], [14], [41], (ii) GA [3], and (iii)
NSGA-II [14], [20]. More details on these algorithms are
provided in Section 4.

As done for our previous studies, we implemented these
algorithms using JMetal [74]. Moreover, as in the original
study [12], we pre-processed the coverage data using the loss-
less coverage compaction algorithm proposed by Epitropakis
et al. [12].

We set up the parameters of the algorithms using the
same values as the original study [12]. In particular, with
respect to our two previous studies, we ran the algorithm
for 200 generations (i.e., 50,000 fitness evaluations). We per-
formed 30 independents runs for each program and for
each search algorithm. Finally, we used the same evaluation
metrics used in Sections 4 and 5.

6.2 Results of the Empirical Study

This section discusses the results of our third study, thus,
answering the research question.

Results for RQ3:1. Table 8 reports the APFDc values and
the running time obtained by HGA and the state-of-the-art
algorithms on MySQL. In all the formulations, HGA achieves
a higher AFDPc with respect to Additional Greedy. This
difference is statistically significant (p-value< 0:05) with a
large effect size. Looking at the two-criteria formulation,
we can notice that there is no statistically significant differ-
ence between HGA and GA. This result is expected since,
as explained in Section 2 and empirically evaluated in
Section 4, the hypervolume and the AUC-based metric are
equivalent. More interesting are the comparisons on the
three- and four-criteria formulations between HGA and
NSGA-II. Even in these cases there are no statistically sig-
nificant differences in terms of cost-effectiveness demon-
strating that even on a large software system, despite using
only one fitness function (i.e., the hypervolume indicator),
HGA is competitive with NSGA-II.

Since NSGA-II produces multiple solutions, Fig. 9 com-
pares the APFDc values of NSGA-II with those of HGA and
Additional Greedy for the three- and four-criteria for-
mulations. As we can observe, the single solution produced
by Additional Greedy is worse than all solutions

TABLE 8
Results for Two- (Single Objective), Three- (Two Objectives), and Four-Criteria (Three Objectives) Formulation on

MySQL: APFDc and Running Time Achieved by Additional Greedy, NSGA-II, GA (for Two-Criteria), and HGA

For each baseline, in parenthesis is shown the median difference with respect to HGA. Results are highlighted with # when one algorithm is statistically worse
than HGA; " when the opposite is true.

692 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

generated by NSGA-II as well as the one produced by HGA.
In both the formulations, the distribution of APFDc scores
by NSGA-II presents a large variation with a median value
that is very close to the value obtained by HGA.

Fig. 10 plots, the Pareto front produced by NSGA-II and
the solutions generated by Additional Greedy and HGA

on the four-criteria formulation with respect to APSCc,
APDCc and APPFDc, (i.e., the objectives optimized by
NSGA-II). The solution by HGA is able to dominate the
whole Pareto front of NSGA-II and the solution of Addi-
tional Greedy. Even on this large systems, we can notice
that the better results produced by NSGA-II in terms of
cost-effectiveness (Fig. 9) are not always related to the AUC
metrics that are optimized.

Results for RQ3:2. Table 8 reports the results in terms of effi-
ciency. More specifically, for all the formulations, the com-
parison between HGA and Additional Greedy shows that
Additional Greedy algorithm is statistically faster (i.e.,
Â12 > 0:5 and p-value < 0:05) with large effect size than
HGA, despite being less cost-effective as already shown. Even
when comparing HGA with GA and NSGA-II, we can reject
the null hypothesis of theWilcoxon t-test. In particular, on the
four-criteria formulation, NSGA-II requires 87 percent more
execution time than HGA.

Summary for RQ3. HGA is more cost-effective than
Additional Greedy. The solution provided by HGA

is not dominated by those generated by NSGA-II.
Additional Greedy is statistically more efficient than
NSGA-II and HGA, while HGA is faster than GA and
NSGA-II.

7 THREATS TO VALIDITY

This section discusses the threats to the validity of our
empirical evaluation, classifying them into construct, inter-
nal, external, and conclusion validity.

Construct Validity. In this study, they are mainly related
to the choice of the metrics used to evaluate the characteris-
tics of the different test case prioritization algorithms. To
evaluate the optimality of the experimented algorithms

(e.g., HGA, Additional Greedy, GA, NSGA-II, GDE3, and
MOEA-D/DE) we used the APFDc [41], a well-known metric
used in previous work on multi-objective test case prioriti-
zation [24], [82]. Another construct validity threat involves
the correctness of the measures used as test criteria: state-
ment coverage, fault coverage and execution cost. To miti-
gate such a threat, the code coverage information was
collected using two open-source profiler/compiler tools
(GNU gcc and gcov). The execution cost has been mea-
sured by counting the number of source code blocks
expected to be executed by the test cases [2], [43], while the
original fault coverage information has been extracted from
the SIR repository [67].

Internal Validity. To address the random nature of the
GAs themselves [77], we run HGA, GA, NSGA-II, GDE3, and
MOEA-D/DE 30 times for each subject program (as done in
previous work [3], [14], [68]), and considered the median
APFDc scores. The tuning of the EA’s parameters is another
factor that can affect the internal validity of this work. In
this study, we use the same genetic operators and the same
parameters used in previous work on test case prioritization
[3], [10]. It is worth remarking that previous studies [75],
[76] demonstrated that default values are a reasonable
choice, even considering that parameter tuning is a long
and expensive process that in the context of search-based
software engineering does not assure better performances.

External Validity. We consider six open source and pro-
prietary programs, that were used in previous work on
regression testing [3], [12], [68], [69], [70], [83]. In details, we
first compared HGA on two different formulations of the
test case prioritization problem, with respect to three state-
of-the-art algorithms for test case prioritization (e.g.,
Additional Greedy, GA, and NSGA-II). Second, we look
at two new formulations of the problem considering more
criteria and comparing with two many-objective meta-heu-
ristic algorithms (i.e., GDE3 and MOEA/D-DE). Finally, we
partially replicated the study by Epitropakis et al. [12] on a
large software system (e.g., MySQL), comparing HGA with
Additional Greedy and NSGA-II

Conclusion Validity. We interpret our findings using
appropriate statistical tests. In particular, to test the signifi-
cance of the differences we used (i) Welch’s t-test [78] and
(ii) Wilcoxon t-test [78], while to estimate the magnitude and

Fig. 9. APFDc scores achieved by Additional Greedy (tu), GA (�), NSGA-
II (boxplots), and HGA (�) for MySQL.

Fig. 10. Pareto frontiers achieved for the four-criteria (three-objective)
formulation of the TCP on MySQL.

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 693

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

the effect size of the observed differences we used the Var-
gha-Delaney statistic [79]. Conclusions are based only on
statistically significant results.

8 CONCLUSION AND FUTURE WORK

This paper proposed a hypervolume-based genetic algo-
rithm (HGA) to improve multi-criteria test case prioritiza-
tion. Specifically, we use the concept of hypervolume [13],
which is widely investigated in many-objective optimiza-
tion, to generalize the traditional Area Under Curve (AUC)
metrics used in previous work on test case prioritization [3],
[9], [10], [11], [12]. Indeed, the hypervolume metric condenses
multiple testing criteria through the proportion of the objec-
tive space, while AUC based metrics can manage only one
cumulative code coverage criterion per time [3].

We performed three empirical studies with three main
goals. First of all, we aimed at evaluating the cost-effective-
ness and efficiency of HGA, compared to three state-of-the-art
algorithms for the Test Case Prioritization problem, namely
Additional Greedy [5], GA [3], and NSGA-II [14], [20].
Second,we intended to analyze the degree towhich they han-
dle the selective pressure as the number of objectives grows.
Thus we compared HGA with two many-objective evol-
utionary algorithms, i.e., GDE3 [18] and MOEA/D-DE [19].
Finally we aimed at analyzing the performance of HGA in
terms of cost-effectiveness and efficiency when dealing with
large software systems with respect to two state-of-the-art
algorithms such as Additional Greedy [5] and NSGA-

II [14], [20].
Our results show that HGA is more or equally cost-effective

than the state-of-the-art approaches in most cases. The single
solution provided by the algorithm is able to dominate
most of the solutions provided by NSGA-II in terms of cost-
effectiveness. Moreover, the performance of HGA does not
decrease when larger programs and more objectives are con-
sidered. Looking at the execution time we note that the effi-
ciency of Additional Greedy is strictly related to the
number of test cases, while HGA is faster than GA and NSGA-

II in all the considered programs and formulations. More-
over, we show that, in terms of cost-effectiveness, HGA is
equivalent or better than GDE3 and MOEA/D-DE, while being
muchmore efficient in terms of execution time.

As future work, we plan to incorporate diversity meas-
ures proposed in previous studies on multi-objective test
case selection [42], [68] to improve the performance of HGA
for software systems with highly redundant test suites,
where greedy algorithms are particularly competitive. We
plan to apply the proposed HGA also for other test case
optimization problems, such as Test Suite Minimization and
Test Case Selection. Finally, starting from the considerations
made in the empirical studies, we plan to perform a new
empirical study to investigate which testing criteria are
more able to discover new faults.

ACKNOWLEDGMENTS

This research was partially funded by the F.R.S.-FNRS and
FWO-Vlaanderen EOS Seco-Assist project, EU Project
STAMP ICT-16-10 No.731529, and the NWO TestRoots
project (016.133.324). We thank Epitropakis, Yoo, Harman,
and Burke for providing us the data needed for replicating

the study on the MySQL system. This paper is an extension
of “Hypervolume-based Search for Test Case Prioritization”
that appeared in the Proceedings of the Symposium on Search-
Based Software Engineering 2015 (SSBSE 2015), Bergamo, Italy,
pp. 157-172, 2015 [1].

REFERENCES

[1] D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“Hypervolume-based search for test case prioritization,” in Proc.
Symp. Search-Based Softw. Eng., 2015, pp. 157–172.

[2] S. Yoo and M. Harman, “Regression testing minimization, selec-
tion and prioritization: A survey,” Softw. Testing Verification Rel.,
vol. 22, no. 2, pp. 67–120, Mar. 2012.

[3] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Trans. Softw. Eng.,
vol. 33, no. 4, pp. 225–237, Apr. 2007.

[4] B. Beizer, Software Testing Techniques. New Delhi, India: Dream-
tech Press, 2003.

[5] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Prioritizing test
cases for regression testing,” IEEE Trans. Softw. Eng., vol. 27,
no. 10, pp. 929–948, Oct. 2001.

[6] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test
cases for regression testing,” in Proc. Int. Symp. Softw. Testing
Anal., 2000, pp. 102–112.

[7] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test
cases for regression testing,” Softw. Eng. Notes, vol. 25, pp. 102–
112, 2000.

[8] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified
test case prioritization approach,” ACM Trans. Softw. Eng. Method-
ology, vol. 24, no. 2, pp. 10:1–10:31, 2014.

[9] Z. Li, Y. Bian, R. Zhao, and J. Cheng, “A fine-grained parallel
multi-objective test case prioritization on GPU,” in Proc. Symp.
Search-Based Softw. Eng., 2013, pp. 111–125.

[10] M. Islam, A. Marchetto, A. Susi, and G. Scanniello, “A multi-
objective technique to prioritize test cases based on latent seman-
tic indexing,” in Proc. Eur. Conf. Softw. Maintenance Reeng., 2012,
pp. 21–30.

[11] A. Marchetto, M. M. Islam, W. Asghar, A. Susi, and G. Scanniello,
“A multi-objective technique to prioritize test cases,” IEEE Trans.
Softw. Eng., vol. 42, no. 10, pp. 918–940, Oct. 2016.

[12] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke,
“Empirical evaluation of pareto efficient multi-objective regres-
sion test case prioritisation,” in Proc. Int. Symp. Softw. Testing
Anal., 2015, pp. 234–245.

[13] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Theory of the
hypervolume indicator: Optimal m-distributions and the choice of
the reference point,” in Proc. SIGEVO Workshop Found. Genetic
Algorithms, 2009, pp. 87–102.

[14] S. Yoo and M. Harman, “Pareto efficient multi-objective test case
selection,” in Proc. Int. Symp. Softw. Testing Anal., 2007, pp. 140–150.

[15] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surveys, vol. 48, no. 1, 2015,
Art. no. 13.

[16] A. Panichella, F. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with
dynamic selection of the targets,” IEEE Trans. Softw. Eng., vol. 44,
no. 2, pp. 122–158, Feb. 2018.

[17] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch
coverage as a many-objective optimization problem,” in Proc. IEEE
8th Int. Conf. Softw. TestingVerification Validation, Apr. 2015, pp. 1–10.

[18] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step
of generalized differential evolution,” in Proc. IEEE Congr. Evol.
Comput., 2005, pp. 443–450.

[19] H. Li and Q. Zhang, “Multiobjective optimization problems with
complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Trans.
Evol. Comput., vol. 13, no. 2, pp. 284–302, Apr. 2009.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[21] D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “A test
case prioritization approach using genetic algorithm guided by
the hypervolume indicator,” 2017. [Online]. Available: https://
figshare.com/articles/A_Test_Case_Prioritization_Approach_
Using_Genetic_Algorithm_Guided_by_the_Hypervolume_
Indicator/5235427

694 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

https://figshare.com/articles/A_Test_Case_Prioritization_Approach_Using_Genetic_Algorithm_Guided_by_the_Hypervolume_Indicator/5235427
https://figshare.com/articles/A_Test_Case_Prioritization_Approach_Using_Genetic_Algorithm_Guided_by_the_Hypervolume_Indicator/5235427
https://figshare.com/articles/A_Test_Case_Prioritization_Approach_Using_Genetic_Algorithm_Guided_by_the_Hypervolume_Indicator/5235427
https://figshare.com/articles/A_Test_Case_Prioritization_Approach_Using_Genetic_Algorithm_Guided_by_the_Hypervolume_Indicator/5235427

[22] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon,
“Comparing white-box and black-box test prioritization,” in Proc.
IEEE/ACM 38th Int. Conf. Softw. Eng., 2016, pp. 523–534.

[23] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test
case prioritization in a JUnit testing environment,” in Proc. 15th
Int. Symp. Softw. Rel. Eng., 2004, pp. 113–124.

[24] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prior-
itization: A family of empirical studies,” IEEE Trans. Softw. Eng.,
vol. 28, no. 2, pp. 159–182, Feb. 2002.

[25] R. C. Bryce, C. J. Colbourn, and M. B. Cohen, “A framework of
greedy methods for constructing interaction test suites,” in Proc.
27th Int. Conf. Softw. Eng., 2005, pp. 146–155.

[26] M. Cohen, M. Dwyer, and J. Shi, “Constructing interaction test
suites for highly-configurable systems in the presence of con-
straints: A greedy approach,” IEEE Trans. Softw. Eng., vol. 34,
no. 5, pp. 633–650, Sep./Oct. 2008.

[27] H. Srikanth, L. Williams, and J. Osborne, “System test case priori-
tization of new and regression test cases,” in Proc. Int. Symp.
Empirical Softw. Eng., 2005, pp. 62–71.

[28] Z. Q. Zhou, A. Sinaga, and W. Susilo, “On the fault-detection
capabilities of adaptive random test case prioritization: Case stud-
ies with large test suites,” in Proc. 45th Hawaii Int. Conf. Syst. Sci.,
2012, pp. 5584–5593.

[29] Y. Cao, Z. Q. Zhou, and T. Y. Chen, “On the correlation between
the effectiveness of metamorphic relations and dissimilarities of
test case executions,” in Proc. 13th Int. Conf. Quality Softw., 2013,
pp. 153–162.

[30] M. Marr�e and A. Bertolino, “Using spanning sets for coverage
testing,” IEEE Trans. Softw. Eng., vol. 29, no. 11, pp. 974–984,
Nov. 2003.

[31] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for
pair-wise coverage with seeding and constraints,” Inf. Softw. Tech-
nol., vol. 48, no. 10, pp. 960–970, 2006.

[32] R. C. Bryce and A. M. Memon, “Test suite prioritization by inter-
action coverage,” in Proc. Workshop Domain Specific Approaches
Softw. Test Autom.: Conjunction 6th ESEC/FSE Joint Meet., 2007,
pp. 1–7.

[33] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency and
early fault detection with lower and higher strength combinatorial
interaction testing,” in Proc. 9th Joint Meet. Found. Softw. Eng., 2013,
pp. 26–36.

[34] E. Rogstad, L. Briand, and R. Torkar, “Test case selection for
black-box regression testing of database applications,” Inf. Softw.
Technol., vol. 55, no. 10, pp. 1781–1795, 2013.

[35] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon, “Bypassing the combinatorial explosion: Using
similarity to generate and prioritize T-wise test configurations
for software product lines,” IEEE Trans. Softw. Eng., vol. 40, no. 7,
pp. 650–670, Jul. 2014.

[36] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon,
“Assessing software product line testing via model-basedmutation:
An application to similarity testing,” in Proc. IEEE 6th Int. Conf.
Softw. Testing Verification ValidationWorkshops, 2013, pp. 188–197.

[37] H. Hemmati, A. Arcuri, and L. Briand, “Achieving scalable
model-based testing through test case diversity,” ACM Trans.
Softw. Eng. Methodology, vol. 22, no. 1, 2013, Art. no. 6.

[38] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran, “Prioritizing
test cases with string distances,” Automated Softw. Eng., vol. 19,
no. 1, pp. 65–95, 2012.

[39] M. Papadakis, C. Henard, and Y. Le Traon, “Sampling program
inputs with mutation analysis: Going beyond combinatorial inter-
action testing,” in Proc. IEEE 7th Int. Conf. Softw. Testing Verifica-
tion Validation, 2014, pp. 1–10.

[40] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging
the gap between the total and additional test-case prioritization
strategies,” in Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 192–201.

[41] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioritization,”
in Proc. 23rd Int. Conf. Softw. Eng., 2001, pp. 329–338.

[42] A. Panichella, R. Oliveto, M. Di Penta, and A. De Lucia,
“Improving multi-objective test case selection by injecting diver-
sity in genetic algorithms,” IEEE Trans. Softw. Eng., vol. 41, no. 4,
pp. 358–383, Apr. 2015.

[43] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based
cost-cognizant test case prioritization technique in regression
testing,” J. Syst. Softw., vol. 85, no. 3, pp. 626–637, 2012, novel app-
roaches in the design and implementation of systems/software
architecture.

[44] G. Rothermel, R. Untch, C. Chu, andM. Harrold, “Test case priori-
tization: An empirical study,” in Proc. IEEE Int. Conf. Softw. Main-
tenance, 1999, pp. 179–188.

[45] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary
algorithms in multiobjective optimization,” Evol. Comput., vol. 3,
pp. 1–16, 1995.

[46] K. E. Atkinson, An Introduction to Numerical Analysis. Hoboken,
NJ, USA: Wiley, 2008.

[47] E. Hughes, “Evolutionary many-objective optimisation: Many
once or one many?” in Proc. IEEE Congr. Evol. Comput., Sep. 2005,
pp. 222–227.

[48] M. Harman and L. Tratt, “Pareto optimal search based refactoring
at the design level,” in Proc. 9th Annu. Conf. Genetic Evol. Comput.,
2007, pp. 1106–1113.

[49] K. Lakhotia, M. Harman, and P. McMinn, “A multi-objective
approach to search-based test data generation,” in Proc. 9th Annu.
Conf. Genetic Evol. Comput., 2007, pp. 1098–1105.

[50] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, “Multi-objective cross-project defect prediction,” in
Proc. IEEE 6th Int. Conf. Softw. Testing Verification Validation, 2013,
pp. 252–261.

[51] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella,
and S. Panichella, “Defect prediction as a multiobjective optimiza-
tion problem,” Softw. Testing Verification Rel., vol. 25, no. 4,
pp. 426–459, 2015.

[52] M. Harman, “Making the case for MORTO: Multi objective regres-
sion test optimization,” in Proc. Int. Conf. Softw. Testing Verification
Validation Workshops, 2011, pp. 111–114.

[53] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm,” Comput. Eng. Netw.
Laboratory, Swiss Federal Inst. Technol., Zurich, Switzerland,
TIK-Rep. 103, 2001.

[54] S. Kukkonen and K. Deb, “A fast and effective method for prun-
ing of non-dominated solutions in many-objective problems,” in
Parallel Problem Solving from Nature-PPSN IX. Berlin, Germany:
Springer, 2006, pp. 553–562.

[55] K. Deb and H. Jain, “An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, Part I: Solving problems with box constraints,” IEEE
Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014.

[56] H. J. Moen, N. B. Hansen, H. Hovland, and J. Tørresen, “Many-
objective optimization using taxi-cab surface evolutionary algo-
rithm,” in Proc. Int. Conf. Evol. Multi-Criterion Optimization, 2013,
pp. 128–142.

[57] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition-based
evolutionary algorithm for many objective optimization,” IEEE
Trans. Evol. Comput., vol. 19, no. 3, pp. 445–460, Jun. 2015.

[58] E. Zitzler and S. K€unzli, “Indicator-based selection in multiobjec-
tive search,” in Proc. Int. Conf. Parallel Problem Solving Nature,
2004, pp. 832–842.

[59] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm
using the hypervolume measure as selection criterion,” in Proc.
Int. Conf. Evol. Multi-Criterion Optimization, 2005, pp. 62–76.

[60] S. Jiang, J. Zhang, Y.-S. Ong, A. N. Zhang, and P. S. Tan, “A simple
and fast hypervolume indicator-based multiobjective evolution-
ary algorithm,” IEEE Trans. Cybern., vol. 45, no. 10, pp. 2202–2213,
Oct. 2015.

[61] N. Beume, C. M. Fonseca, M. L�opez-Ib�a~nez, L. Paquete, and
J. Vahrenhold, “On the complexity of computing the hypervolume
indicator,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1075–1082,
Oct. 2009.

[62] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-
based many-objective optimization,” Evol. Comput., vol. 19, no. 1,
pp. 45–76, 2011.

[63] H. Ishibuchi, N. Tsukamoto, Y. Sakane, and Y. Nojima, “Indicator-
based evolutionary algorithm with hypervolume approximation
by achievement scalarizing functions,” in Proc. 12th Annu. Conf.
Genetic Evol. Comput., 2010, pp. 527–534.

[64] J. M. Bader, Hypervolume-Based Search for Multiobjective Optimiza-
tion: Theory and Methods. Paramount, CA, USA: CreateSpace, 2010.

[65] H. John, Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control and Artifi-
cial Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[66] G. Luque and E. Alba, Parallel Genetic Algorithms: Theory and Real
World Applications. Berlin, Germany: Springer, 2011.

[67] S. G. E. Hyunsook Do and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact,” Empirical Softw. Eng., vol. 10, pp. 405–435, 2005.

DI NUCCI ET AL.: A TEST CASE PRIORITIZATION GENETIC ALGORITHM GUIDED BY THE HYPERVOLUME INDICATOR 695

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

[68] A. De Lucia, M. Di Penta, R. Oliveto, and A. Panichella, “On the
role of diversity measures for multi-objective test case selection,”
in Proc. Int. Workshop Autom. Softw. Test, 2012, pp. 145–151.

[69] S. Yoo and M. Harman, “Using hybrid algorithm for Pareto effi-
cient multi-objective test suite minimisation,” J. Syst. Softw.,
vol. 83, no. 4, pp. 689–701, 2010.

[70] T. Y. Chen and M. F. Lau, “Dividing strategies for the optimiza-
tion of a test suite,” Inf. Process. Lett., vol. 60, no. 3, pp. 135–141,
Nov. 1996.

[71] Y.-C. Huang, C.-Y. Huang, J.-R. Chang, and T.-Y. Chen, “Design
and analysis of cost-cognizant test case prioritization using
genetic algorithm with test history,” in Proc. Annu. Comput. Softw.
Appl. Conf., 2010, pp. 413–418.

[72] A. Marchetto, C. Di Francescomarino, and P. Tonella, “Optimizing
the trade-off between complexity and conformance in process
reduction,” in Proc. Symp. Search-Based Softw. Eng., 2011, pp. 158–
172.

[73] Y. Zhang and M. Harman, “Search based optimization of require-
ments interaction management,” in Proc. Symp. Search-Based Softw.
Eng., 2010, pp. 47–56.

[74] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-
objective optimization,” Advances Eng. Softw., vol. 42, pp. 760–771,
2011.

[75] A. Arcuri and G. Fraser, “Parameter tuning or default values? An
empirical investigation in search-based software engineering,”
Empirical Softw. Eng., vol. 18, no. 3, pp. 594–623, 2013.

[76] A. S. Sayyad, K. Goseva-Popstojanova, T. Menzies, andH. Ammar,
“On parameter tuning in search based software engineering: A
replicated empirical study,” in Proc. 3rd Int. Workshop Replication
Empirical Softw. Eng. Res., 2013, pp. 84–90.

[77] A. Arcuri and L. C. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 1–10.

[78] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Hoboken,
NJ, USA: Wiley, 1998.

[79] A. Vargha and H. D. Delaney, “A critique and improvement of the
CL common language effect size statistics of McGraw andWong,”
J. Educational Behavioral Statist., vol. 25, no. 2, pp. 101–132, 2000.

[80] R. D. Baker, “Modern permutation test software,” in Randomiza-
tion Tests, E. Edgington, Ed. New York, NY, USA: Marcel Decker,
1995.

[81] B. L. Miller, D. E. Goldberg, et al., “Genetic algorithms, tourna-
ment selection, and the effects of noise,” Complex Syst., vol. 9,
no. 3, pp. 193–212, 1995.

[82] S. Elbaum, G. Rothermel, S. Kanduri, and A. Malishevsky,
“Selecting a cost-effective test case prioritization technique,”
Softw. Quality J., vol. 12, no. 3, pp. 185–210, 2004.

[83] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong,
“Empirical studies of test-suite reduction,” Softw. Testing Verifica-
tion Rel., vol. 12, pp. 219–249, 2002.

Dario Di Nucci received the PhD degree in man-
agement and information technology from the
University of Salerno, in 2018 advised by Prof.
Andrea De Lucia with a thesis entitled “Methods
and Tools for Focusing and Prioritizing the Test-
ing Effort”. He is a research fellow with the Soft-
ware Languages Lab, Vrije Universiteit Brussel in
Belgium. His research interests include within the
software engineering topic and include software
maintenance and evolution, software testing,
search based software engineering, green min-
ing, mining software repositories, and empirical
software engineering.

Annibale Panichella received the PhD degree
in software engineering from the University of
Salerno, in 2014 with the thesis entitled “Search-
based software maintenance and testing”. He is
an assistant professor with the Software Engi-
neering Research Group (SERG), Delft Univer-
sity of Technology (TU Delft) in The Netherlands.
He is also a research fellow with the Interdisci-
plinary Centre for Security, Reliability and Trust
(SnT), University of Luxembourg, where he
worked as a research associate until January

2018. His research interests include security testing, evolutionary test-
ing, search-based software engineering, textual analysis, and empirical
software engineering. He serves and has served as program committee
member of various international conference (e.g., ICSE, GECCO, ICST
and ICPC) and as reviewer for various international journals (e.g., the
IEEE Transactions on Software Engineering, the ACM Transactions on
Software Engineering and Methodology, the IEEE Transactions on Evo-
lutionary Computation, the Empirical Software Engineering Journal, the
Software Testing, Verification & Reliability) in the fields of software engi-
neering and evolutionary computation.

Andy Zaidman received the MSc and PhD
degrees in computer science from the University of
Antwerp, Belgium, in 2002 and 2006, respectively.
He is an associate professor with the Delft Univer-
sity of Technology, The Netherlands. His main
research interests include software evolution, pro-
gram comprehension, mining software reposito-
ries, and software testing. He is an active member
of the research community and involved in the
organization of numerous conferences (WCRE’08,
WCRE’09, VISSOFT’14 and MSR’18). In 2013 he

was the laureate of a prestigious Vidi career grant from the Dutch science
foundation NWO.

Andrea De Lucia received the Laurea degree in
computer science from the University of Salerno,
Italy, in 1991, theMSc degree in computer science
from the University of Durham, United Kingdom, in
1996, and the PhD degree in electronic engineer-
ing and computer science from the University of
Naples Federico II, Italy, in 1996. He is a full pro-
fessor of software engineering with the Depart-
ment of Computer Science, University of Salerno,
the head of the Software Engineering Lab, and the
director of the International Summer School on

Software Engineering. Previously, he was with the Department of Engi-
neering and the Research Centre on Software Technology, University of
Sannio, Italy. His research interests include software maintenance and
testing, reverse engineering and re-engineering, source code analysis,
code smell detection and refactoring, mining software repositories, defect
prediction, empirical software engineering, search-based software engi-
neering, traceability management, collaborative development, workflow
and document management, and visual languages. He has published
more than 250 papers on these topics in international journals, books,
and conference proceedings and has edited books and journal special
issues. He serves on the editorial boards of international journals and on
the organizing and program committees of several international conferen-
ces. He is a senior member of the IEEE Computer Society and was mem-
ber-at-large of the executive committee of the IEEE Technical Council on
Software Engineering.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

696 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 46, NO. 6, JUNE 2020

Authorized licensed use limited to: TU Delft Library. Downloaded on November 30,2020 at 07:21:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

