
Distributed Agent Platform for advanced logistics

Tamas Mahr a Mathijs de Weerdt b

aAlmende BV, Rotterdam, tamas@almende.com
bDelft University of Technology, M.M.deWeerdt@ewi.tudelft.nl

Introduction
The system that is demonstrated is an agent platform developed for the DEAL
(Distributed Engine for Advanced Logistics) project. The primary goal of this
project is to enhance the utilization of trucks for transportation companies. This
is to be realized by a distributed computer system that connects all trucks, orders,
planners, and customers. Each of these entities is modeled by an agent. In a
logistics setting, the main problem is to �nd the best truck for a container while
�nding appropriate routes for all trucks. In this project a feasible solution for
this problem is constructed by distributed, communicating agents. For example,
a container agent may request its transportation from a truck agent, and a truck
agent can refuse such a request if it may be able to construct a more e�cient route
without this container. A similar system is introduced in [FMPS95], with the
di�erence that they have not modeled the orders by agents, instead the company
and truck agents take care of all aspects.

The purpose of the agent platform is to study the e�ciency of communicating
agents. Coordination logic and processing logic in a component (agent) should be
separated [PA98]. In other words, the main logic of the agent should not contain
explicit references to whom it speaks to or from whom it receives messages. For
this we constructed a general purpose agent system(i) that can run in a distributed
manner to scale well when the number of agents grows,(ii) that has tight control
of system resources, and (iii) in which the coordination logic is separated from the
processing logic.

Technology
The agent platform has two layers: one to ensure scalability and another to pro-
vide support for asynchronous communication and coordination. The lower layer
(Abbey and monks) is responsible for the system not running out of resources (it
controls threads, distributes the load � ful�lling the scalability requirement), while
the upper layer (Agents) provides an environment to ensure the separation of coor-
dination and processing in the agent code, and provides support for asynchronous
communication.

In our vocabulary a monk is a 'blind worker', who runs a thread all the time.
Note that there is a one-to-one assignment between threads and monks. One can
dispatch an open task to a monk and it will execute it without having any idea

395



what it is about. When it has �nished the execution of the task, it sets the task
state to ready and looks for another open task.

An abbey consists of a number of monks and a task pool. The abbey creates
the monks, manages them and handles the task dispatching. On the one hand,
the abbey ensures that there are always enough monks to execute the tasks, and
on the other hand it prevents the system to be overloaded by numerous monks
(threads). If it is short of system resources it can decide to spawn a new abbey on
a di�erent machine and transfer some of the agents to ease the load of the current
system.

The services of an abbey implement a non-preemptive virtual-thread scheduling
of the methods of the agents. Methods are dispatched to monks when they are
to be executed and there is no way to interrupt their execution (non-preemptive).
A monk executes di�erent methods of di�erent agents subsequently, but from a
perspective of an agent it looks like it has its own (virtual) execution thread.

Agents communicate through asynchronous message sending. Messages are
called prayers and are delivered by the agents themselves. There is a queue for
every agent. If an agent is busy answering a prayer, the next prayer is queued.
There is a designated method in every agent to receive the prayer and call the
corresponding method of the agent. This organization helps to separate the coor-
dination from the processing in the agents.

Demonstration
The agent platform is demonstrated by simulating a situation within the logistics
domain. For this demonstration we need a beamer and projection screen. The
demonstration can be given either continuously for some time, or in a session of
about 15 minutes.

Acknowledgements The research partners in the project besides Almende are
the Erasmus University Rotterdam, the Vrije Universiteit Amsterdam (VU), and
the National Research Institute for Mathematics and Computer Science (CWI).
Our logistical partners are Vos Logistics and Post Kogeko.

References
[FMPS95] Klaus Fischer, Jörg P. Muller, Markus Pischel, and Darius Schier. A

model for cooperative transportation scheduling. InProceedings of the
First International Conference on Multiagent Systems., pages 109�116,
Menlo park, California, June 1995. AAAI Press / MIT Press.

[PA98] G.A. Papadopoulos and F. Arbab. Coordination models and languages.
Technical report, CWI, 1998.

396




