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1
Introduction

Recently we have seen many successful applications of machine learning. For example face recogni-
tion, music recognition, object detection, and landmark detection are possible nowadays with high
accuracy. In these fields it is relatively easy to collect large labeled datasets, since it takes little
time to annotate faces, objects or landmarks in photos. There are many large music databases
that contain labeled music samples. If a lot of labeled data is available pattern recognition systems
typically perform better, explaining their success in these examples.

However, in some fields most collected data is unlabeled. This makes it difficult to train ac-
curate pattern recognition models for these applications. In fields such as speech recognition for
rare languages, computational biology, bio-informatics, drug discovery, video classification, text
categorization, relevance feedback, recommendation systems or medical diagnosis it can be expen-
sive, difficult or time consuming to annotate data [1]. In some of these settings labels can only
be provided by experts. For example if one wants to train a pattern recognition system to auto-
matically suggest medical diagnoses based on patient records or other medical data, much labeled
data is necessary to train this system. In this case the label is the diagnosis of a doctor. In speech
recognition for rare languages, trained linguists need to annotate speech samples which is a very
time consuming task. For computational biology, bio-informatics or drug discovery, biological or
chemical samples need to be evaluated to obtain labels which could require precious laboratory
time and materials. For recommendation systems, such as Netflix movie recommendations, user
feedback is costly to obtain, since users do not like to rate many movies. For relevance feedback
users need to indicate if a query returns relevant results, which is also a time consuming and
difficult task. For video classification and text categorization it is also costly to obtain labels, since
possibly lengthy videos need to be watched or lengthy texts needs to be studied to determine if
the video or text addresses a certain topic. Each of these examples illustrates it may be costly or
time consuming in practice to obtain large labeled datasets, and therefore for these settings it is
often hard or unpractical to use pattern recognition systems.

However, pattern recognition systems for these fields are highly desirable and relevant for soci-
ety and industry. Imagine a world where risk assessment of a medical condition could be performed
with the same ease and accuracy as a smartphone can recognize faces. Such developments could
be revolutionary for the health care industry. Furthermore, these pattern recognition models in
other fields can be used to automate costly, difficult or repetitive tasks to reduce the workload of
people.

Active learning aims to reduce labeling costs. Imagine we have trained a pattern recognition
model on a small labeled dataset. To improve the model we may be able to obtain more labeled
data. Generally, unlabeled samples are selected randomly from a large unlabeled dataset for la-
beling. Most predictive models even require that labeled data is selected randomly. In the active
learning setting, instead of selecting data randomly, an algorithm proposes which objects should be
labeled. In the words of B. Settles: “The key idea behind active learning is that a machine learning
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Figure 1.1: This figure illustrates when uncertainty sampling can query many irrelevant examples. The solid icons
are labeled examples, the outlined icons indicate unlabeled data. The positive and negative class are indicated by
blue triangles and red circles. Uncertainty sampling will select data near the current decision boundary for labeling.
Because of this the boundary will change little: the boundary will remain approximately horizontal. Because of
this strategy, it will take uncertainty sampling a long time before it discovers the remaining clusters. Observe that
uncertainty sampling constructs a very biased sample. In this work we look at active learning methods that try to
approximate the complete data distribution as fast as possible with labeled data. In this example these methods
will discover all clusters directly.

algorithm can perform better with less [labeled] training [data] if it is allowed to choose the data
from which it learns” [1]. Therefore, active learning could make it practical and economical to
train accurate pattern recognition systems in fields where labeled data is costly to acquire.

We examine sequential pool based active learning [1] for binary classification. In this setting we
are given a pool of unlabeled data, and the active learner can select objects one by one from this
pool for labeling. After labeling, the object is added to the training set and the model is retrained.
Our goal is to optimize the performance of the model with as little queries as possible.

We explore the use of generalization bound minimization for active learning. Generalization
bounds give an upper bound on the generalization error of the model: the error of the model on
previously unseen data. We study the performance of four active learning methods that minimize
generalization bounds.

The structure of this introduction from here on is the following. First we motivate generaliza-
tion bound minimization for active learning and we discuss the context in which we study these
methods. Then we give the main motivation for this work: two novel active learning algorithms
based on the minimization of a notion of discrepancy between empirical distributions. Finally we
pose several research questions to gain more insights in these active learning methods and list our
contributions.

We now motivate the usage of generalization bound minimization for active learning. Some
methods in active learning focus too much on ‘exploitation’. ‘Exploitation’ in the context of active
learning means selecting objects near to the decision boundary for labeling[1]. Intuitively, this
makes sense: the model is uncertain of the label for objects close to the decision boundary, thus
these objects are informative for refining the decision boundary. However, in some cases this
sampling method known as uncertainty sampling can can focus too much on querying irrelevant
samples [1]. See Figure 1.1 for an example where this occurs. Because of this behavior uncertainty
sampling may perform worse than random sampling. Note that this would be disastrous in a
real world active learning setting, since this means the small and costly labeling budget has been
wasted on irrelevant samples.

One of the reasons ‘exploitative’ strategies can perform worse than random sampling is that
these methods can induce a large sampling bias [2]. By actively selecting data we do not sample
from the original distribution but we obtain a biased sample. Because of this, the model obtained
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may not generalize well to the original distribution. In Figure 1.1 this is also illustrated: in this
example uncertainty sampling only samples from the two clusters in the center, and thus we obtain
a biased sample. To correct for sample bias data is typically reweighted [3, 4]. This reweighting
can be guided by minimizing a generalization bound.

In active learning most well known generalization bounds do not hold, because the training
sample is not independent and identically distributed (i.i.d) because the data is selected by an
active learner. A generalization bound originating from sample bias correction from [4] is applicable
to active learning because this bound does not assume i.i.d. data. Instead of reweighting our data
as in sample bias correction, we let the generalization bound guide the active learning process:
we query the object that minimizes the bound. We introduce an active learning algorithm that
minimizes this generalization bound and compare it to other methods that minimize generalization
bounds. Before we discuss these other generalization bounds we first discuss the advantages of using
bounds for active learning and the setting in more detail.

The generalization bounds that we study are non-probabilistic, meaning they always hold if
their assumptions are satisfied. These bounds even hold in a worst-case scenario. By minimizing
these bounds, we are assured we will not be too ‘exploitative’ or greedy like uncertainty sampling.
Furthermore, by explicitly accounting for worst-case scenarios we will likely perform better in such
scenarios. This is important since in active learning we could be in such a worst-case scenario with-
out knowing it — this is impossible to detect without additional labeled data. Another advantage
of minimizing a generalization bound is that the connection with the generalization performance
is explicit. For other active learning methods this connection is not always clear. Furthermore, the
bounds we study have assumptions which can be empirically verified.

All bounds we study do not require information of the labels, thus the obtained active learning
strategies are independent of the observed labels. We limit our study to these so called non-adaptive
active learners.

These label independent strategies have multiple advantages and one disadvantage. Because
these methods are label independent, we can generate a list of all samples that should be labeled
in advance. This speeds up the annotation process. The annotator in this setting does not have to
wait for the active learner to suggest which object should be labeled next. Another advantage is
that these active learners cannot be misled by incorrect labels, and are thus unaffected by label
noise. However, active learners that do use label information may perform better because they
have more information: this is the most important disadvantage of these methods.

We illustrate why these label independent strategies work for active learning. We explain the
trends observed in the learning curves of these methods and characterize when these methods can
improve upon random sampling.

The bounds we study give guarantees on the surrogate loss. This is the loss that the learning
algorithm minimizes. In classification we are usually interested in the performance in terms of zero-
one or misclassification loss. The zero-one loss measures whether or not the predicted class was
correct. Learning models minimize the surrogate loss since minimizing the zero-one loss induces an
NP-complete optimization problem [5]. The relation between the surrogate loss and the zero-one
loss is not straightforward, except for the fact that the surrogate loss always upper bounds the
zero-one loss. This upper bound may be very loose or the losses may be related in unexpected
ways.

Unlike other work [6–10], we measure the performance of active learning methods in terms of
the surrogate loss to exclude effects of the interaction between the zero-one loss and surrogate
loss. Because of this our comparison of the bounds for active learning is more straightforward:
we only see the effects caused by the bounds themselves. Also, when we chose our model, we
have given a preference for a specific surrogate loss function. Therefore it makes sense to study
performance in terms of this surrogate loss. For example when choosing the logistic regression
model, the surrogate loss quantifies how accurate the posterior probabilities are, and thus if the
logistic regression model is chosen it is sensible to measure performance in terms of the log loss.

The main quantities in the generalization bounds, the quantities that are minimized for active
learning, only capture all behavior in the realizable setting. The realizable setting is an artificial
scenario where the observed labels are generated by a model of our chosen model class (in this case
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there is no ‘model mismatch’). The realizable setting eliminates effects that arise due to model
mismatch, and therefore we study this artificial setting to gain more insights in the behavior of
these generalization bounds when they are used for active learning. Such an in depth comparison
in the realizable setting was not considered in other works that minimize generalization bounds
for active learning [6–10].

In this work we use the kernel ridge regression model which uses the squared loss as surrogate
loss. It has been shown that kernel ridge regression can achieve state-of-the-art results in classifi-
cation [5] and is computationally efficient for large datasets [11], and thus is a relevant model for
modern machine learning research. Furthermore, some of the bounds that we study are applicable
to any loss function. In future work these bounds may be applied to construct active learning
methods for other models that use other losses, such as logistic regression or SVM’s. All of our
results are straightforwardly applicable to regression since we use the squared loss.

Now we have discussed the setting in detail, we will introduce the active learners and their
generalization bounds that we will study and pose our research questions.

The first active learner we introduce minimizes the discrepancy. The discrepancy is a measure
which was introduced by [12] for sample bias correction. The discrepancy quantifies the difference
between empirical distributions. The discrepancy measure is related to another measure called
the maximum mean discrepancy (MMD) which is also used for sample bias correction[3] like the
discrepancy. Active learning based on minimization of the MMD has already been proposed [6, 9].
In [9] this strategy was motivated by the minimization of a generalization bound. We show their
bound may not hold in the active learning setting and we give a modified version of their bound
that does hold.

Recently it has been shown that sample bias correction based on discrepancy minimization
performs better or as good as sample bias correction based on minimization of the MMD [4]. In
[4] it is argued that the discrepancy performs better because its generalization bound takes the
loss function and the hypothesis set of the model into account while the MMD does not. The
hypothesis set in this context means the kernel used by the model. This is the main motivations of
this work: do these results from sample bias correction generalize to the active learning scenario?
In other words: can active learning based on the discrepancy improve upon the state-of-the-art
MMD active learner? This is our main research question.

We give an in depth theoretical analysis comparing the bounds of the MMD and the discrep-
ancy. We show that the MMD can be adapted to take the hypothesis set and loss into account like
the discrepancy. We investigate whether this is useful for active learning. The remaining difference
then between the MMD and the discrepancy is that the discrepancy takes the loss function of the
learning algorithm explicitly into account while the MMD does not. Our second novel theoretical
result is that the discrepancy generalization bound is always tighter than the MMD generalization
bound under the same assumptions.

Our theoretical analysis thus suggests the discrepancy indeed is a better bound. Since the
discrepancy bound is tighter it can estimate the generalization error more accurately. Does this
then guarantee better performance in active learning? We investigate this question, and we also
investigate if tighter generalization bounds translate to improved active learning performance in
general. To this end we also introduce a new quantity which we call the nuclear discrepancy. The
corresponding generalization bound of the nuclear discrepancy is looser, but we argue it might
perform better in active learning using a probabilistic analysis. More generally, we investigate
what features determine the success of generalization bounds for active learning.

Finally, we compare the performance of the MMD and our introduced discrepancy and nuclear
discrepancy active learners to the active learning method based on Transductive Experimental
Design (TED) [8]. This is a state-of-the-art label independent active learner that was shown to
minimize a generalization bound [7]. The TED bound is derived especially for the ridge regression
model, and thus takes loss and hypothesis set into account like the discrepancy. This bound is
however derived in a completely different way than the MMD and (nuclear) discrepancy bounds: it
depends on the analytical solution of the ridge regression model. The MMD and discrepancy bound
can be applied to any loss function while TED cannot. Therefore it is interesting to investigate if
the bound of TED is tighter and how the TED active learning strategy compares with the MMD
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and (nuclear) discrepancy active learning strategy. This can tell us whether model dependent
bounds can be more favorable for active learning in general.

Below we summarize our contributions:

• We give an in depth theoretical analysis of the discrepancy, MMD and TED generalization
bounds. Furthermore, we derive a novel generalization bound for TED which always holds
and which does not depend on any probabilistic assumptions.

• We derive a novel generalization bound for the MMD that is applicable to the active learning
setting. We also derive a novel MMD generalization bound that always holds.

• We show how the MMD bound can be adapted to take the hypothesis set and loss into
account like the discrepancy generalization bound.

• We show that this adapted MMD bound is comparable to the discrepancy bound, and that
the discrepancy bound is always tighter under the same assumptions.

• We define a new quantity called the nuclear discrepancy and give a novel generalization
bound in terms of this quantity.

• We introduce two novel active learning methods: the discrepancy active learner and the
nuclear discrepancy active learner.

• We give a comparison of the active learning methods in terms of the surrogate loss in the
realizable setting. Such a comparison was not considered in other works. This comparison
can give us more insight in the behavior of the generalization bounds when they are used for
active learning because we eliminate effects that do not originate from the bounds themselves.
This way we can find out what properties of these generalization bounds are important for
good active learning performance.

Besides this, we answer the following research questions:

Q1. Why and in what case can non-adaptive active learning methods improve upon random
sampling?

Q2. Is it beneficial to take the hypothesis set and the loss into account for active learning based
on the MMD?

Q3. Will our introduced discrepancy active learning strategy improve upon the MMD active
learning strategy as suggested by our theoretical analysis? (main question)

Q4. How does the model dependent TED active learner and its generalization bound compare
with the discrepancy and MMD active learners and bounds?

Q5. Is the tightness of a generalization bound related to performance in active learning?

1.1. Outline
First we describe the definitions, notation and setting in Section 1.2. Afterward, we discuss related
work that uses the Maximum Mean Discrepancy (MMD) quantity, the discrepancy quantity, and
the Transductive Experimental Design (TED) objective in Section 1.3. In particular we discuss
the state-of-the-art MMD and TED active learners. We also briefly discuss other methods that
minimize generalization bounds for active learning.

We discuss the MMD quantity, the discrepancy quantity, the TED objective, and the nuclear
discrepancy quantity and their generalization bounds in Chapter 2 in depth. In Section 2.1 we
describe the MMD quantity and derive a novel generalization bound in terms of the MMD that
always holds in the active learning scenario. At the end of this section we present the most
important result: we show how to adapt the MMD to take into account the hypothesis set and
the loss of the learning algorithm. In Section 2.2 we describe the discrepancy quantity. We show
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the similarities between the MMD and discrepancy, and present the generalization bound for the
discrepancy which is directly comparable to the MMD bound. The most important result of this
section is the comparison of these bounds: we show that in the realizable setting the discrepancy
always results in a tighter bound. TED is described in detail in Section 2.3. We discuss the TED
objective, its interpretation and generalization bound. We give an in depth comparison of the TED
bound and the discrepancy and MMD bound. We give a detailed description and motivation of
the novel nuclear discrepancy quantity in Section 2.4. We also give its novel generalization bound
in this section. At the end of the chapter, in Section 2.5, we give a summary of the bounds and
discuss how they are used to construct active learning algorithms.

We describe the experimental setup in Chapter 3. In Chapter 4 we perform extensive experi-
ments comparing the active learning strategies. Using these experiments we answer the research
questions posed in the introduction. The most important parts of this chapter are sections 4.3, 4.4
and 4.5. In Section 4.3 we compare the active learning methods on real world and artificial data
in the realizable setting. In Section 4.4 we study the differences between our proposed discrepancy
active learner and the existing MMD active learner. We show the shortcomings of the discrep-
ancy active learner, which motivates the introduction of the nuclear discrepancy active learner. In
Section 4.5 we compare the nuclear discrepancy active learner to the other active learners.

In Chapter 5 we revisit the research questions and answer them. We reflect on some choices
we have made in the experiments and discuss their influence on the results. Afterward we discuss
how the active learners discussed in this work could be improved. We also relate our results to
the setting of sample bias correction and discuss the implications of our findings for other fields.
Besides this we place our results in a broader context in the active learning research field and
discuss what barriers remain for practical applications of these active learning techniques.

The main conclusions of this work are given in Chapter 6.
In the appendices we give several derivations that were too long for the main text, additional

results, and additional details so all experiments are reproducible. The appendices also contain
the proofs of all generalization bounds. The most important proof is given in Appendix C, where
we show that the discrepancy bound is always tighter than the MMD generalization bound in the
realizable case. In this appendix we also describe how the MMD can be adapted to take the loss
and hypothesis set of the learning algorithm into account.

1.2. Definitions, Notation and Setting
Let Q̂ be the labeled sample that is constructed by the active learner, and let P̂ be the complete
dataset we have access to. Thus P̂ includes labeled and unlabeled data, and thus Q̂ ∈ P̂ . Both
are samples from an unknown distribution P over the input space X = Rd. We assume P̂ is an
identically distributed and independent (i.i.d.) sample from P , but Q̂ may be a non-i.i.d. sample
since these labeled objects may have been chosen by the active learner. This work focuses on
binary classification. We consider two settings: the realizable case, where the labels are generated
by a model of our model class (an artificial setting), and the agnostic case where this may not be
the case (this is a real world setting). For the agnostic setting we use the original binary labels of
the dataset and thus the output space is Y = {+1,−1}. In the realizable case the output space Y
is a subset of R since the model outputs are real numbers.

The active learner has access to both sets P̂ and Q̂. In this work we limit ourselves to non-
adaptive active learners, meaning that the active learners do not use label information from the
labeled set Q̂. We focus on sequential active learning: the active learner can select one sample for
labeling in each iteration of the active learning process. The sample will be labeled and added to
the training set Q̂. Afterward, the model will be retrained on Q̂ and is evaluated in terms of the
squared loss on an unseen test set. The goal is to minimize the mean squared error on the unseen
test set with as little queries as possible. This setting is summarized in Figure 1.2.

Batch selection methods might work better in practice than sequential selection: in such a
setting multiple objects are selected for labeling at once by the active learner. But these selection
strategies often select samples to minimize some (convex) relaxation of the original objective of
the active learner. In case we compare batch methods, it might be the case that one active learner
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Figure 1.2: Schematic overview of datasets and active learning setting. The dataset P̂ is the complete dataset the
active learner has access to which is unlabeled. The dataset Q̂ is the labeled dataset constructed by the active
learner.

outperforms the other, because its optimization method is better. We are more interested in
the underlying objectives instead of comparing optimization procedures of batch active learners.
In fact, in appendix I we show that the state-of-the-art batch active learner of the MMD of [6]
performs worse than the sequential MMD active learner in terms of the objective that is minimized:
the MMD. Therefore we only study sequential active learners in this work.

We choose to evaluate the model in terms of the mean squared error, since this is the surrogate
loss of our ridge regression model. We do not use the zero-one loss as is usual in classification,
since the generalization bounds we study only give direct guarantees on the surrogate loss on the
set P̂ . The surrogate loss upper bounds the zero-one loss but further the relation between this
bound is unclear: it may be very loose or related to each other in unexpected ways. We choose
to measure performance in the surrogate loss so we eliminate these effects that do not originate
from the generalization bounds we study. Furthermore, since we have chosen the ridge regression
model, it is also obvious to compare performance in terms of this loss, since this is the loss the
model aims to minimize. By choosing this model we have given the preference for this surrogate
loss to approximate the zero-one loss function.

We use the convention that all vectors are column vectors. xi is the feature vector of object
i. XP̂ and XQ̂ are the nP̂ by d and nQ̂ by d data matrices of the sets P̂ and Q̂. We assume
there exists a deterministic labeling function f : X → Y that determines the labels to derive the
generalization bounds. This assumption might seem restrictive since it does not allow label noise.
This assumption is however only explicitly violated in case a dataset contains objects with the
same feature vector x with different labels1. We use yi or f(xi) to indicate the label of object xi.

We choose the kernel ridge regression model without intercept term and we do not use class
priors. Since we work with kernel ridge regression we need to introduce some notation concerning
kernels. This work only considers positive definite symmetric (PSD) kernels K. For these kernels
a reproducing kernel Hilbert space (RKHS) exists and we indicate the RKHS by H. We require
PSD kernels since we require the RKHS of K to derive the generalization bounds. Figure 1.3 on
page 9 illustrates the used notation concerning kernels. Each object x in the input space X can
be mapped to the RKHS H using the function ψ. K(x, x′) is the kernel function between object

1Furthermore, we believe all generalization bounds can easily be adapted to a probabilistic setting.



8 1. Introduction

x and x′, this kernel function can be computed as an inner product in the RKHS of the kernel:

K(x, x′) = 〈ψ(x), ψ(x′)〉K

where 〈., .〉K denotes the inner product in the RKHS H of K. The norm of a vector h in the RKHS
is written as ||h||K and is given by ||h||K =

√
〈h, h〉

K
. K(x, x′) can typically be computed only

using x and x′ as well. In this work we use the linear kernel, the squared kernel and the Gaussian
kernel. For the linear kernel we compute K(x, x′) using:

K(x, x′) = xTx′

Note that for the linear kernel the RKHS H is equal to the input space X . For the squared kernel
we have that:

K(x, x′) = (xTx′)2

For the Gaussian kernel K(x, x′) is defined as:

K(x, x′) = exp
(
−||x

′ − x||22
2σ2

)
The parameter σ is a parameter the kernel. It determines the smoothness of the functions h ∈ H,
where H is the RKHS of the Gaussian kernel. If σ is larger, h evaluated over the input space X
will be smoother. The RKHS H of the Gaussian kernel can be shown to be infinite dimensional.
Furthermore the Gaussian kernel is a normalized kernel: each vector mapped from X to the RKHS
H of the kernel has norm one: ||ψ(x)||K = 1 for all x ∈ X (see [13, p. 96]).

Kernel ridge regression will give us a model h ∈ H. This hypothesis or model is linear in H,
the RKHS of K, but due to the mapping ψ can be nonlinear in the input space X . In case we
work in a linear kernel, we will write the hypothesis h as w, and the prediction of the model h on
x, h(x), is in this case given by wTx. In case we work in a different kernel K, the prediction h(x)
can be computed in the RKHS by h(x) = 〈h, ψ(x)〉K .

We write ||.||1, ||.||2 and ||.||∞ to indicate the l1 norm, the l2 norm and infinity norm of finite
dimensional vectors, respectively. For matrix norms we use the same notation: we use ||.||p to
indicate the operator norms for matrices, which are given by:

||A||p = max
||x||p=1

||Ax||p

In particular, the p = 1 operator matrix norm of a n by m matrix A is given by:

||A||1 = max
1≤j≤n

m∑
i=1
|aij |

For real symmetric matrices B the p = 2 operator norm is given by:

||B||2 = max
i
|λi|

Where λi are the eigenvalues of the matrix B. This norm is also known as the spectral norm. For
real symmetric matrices B the Frobenius matrix norm is given by:

||B||F =
√∑

i

λ2
i

Finally, the nuclear norm (also known as trace norm) of a real symmetric matrix B is given by:

||B||∗ =
∑
i

|λi|
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Figure 1.3: Illustration of the mapping a PSD kernel induces. Left the input space is shown, here a hypothesis h
(shown using dashed lines) can be nonlinear. In H, the RKHS of the kernel K, the hypothesis becomes a linear
function: thus h can be described by a vector in H. ψ is the mapping from the input space X to the RKHS H.

We denote a kernel matrix by KQ̂P̂ where each entry in the matrix is given by evaluating the
kernel function between the corresponding samples of Q̂ and P̂ , and is of size nQ̂ by nP̂ . For the
computations of the MMD we need a second kernel which is indicated with K ′ and we indicate
its RKHS by H′.

Kernel ridge regression minimizes the following objective for an hypothesis h ∈ H when trained
on the sample Q̂:

F(Q̂,f) = 1
nQ̂

nQ̂∑
i=1

(h(xi)− yi)2 + λ||h||2K = LQ̂(h, y) + λ||h||2K (1.1)

So kernel ridge regression minimizes LQ̂(h, y) — the average squared loss evaluated on the set Q̂
between the hypothesis h and the labels y. L with a subscript will always indicate the average loss
on the set denoted by the subscript. We may also use other arguments in L to indicate the losses
between different labeling functions or hypotheses. The notation L(h(x), f(x)) = (h(x) − f(x))2

will be used to indicate the squared loss on a particular example x. In Equation 1.1 the parameter
λ > 0 is a regularization parameter which controls the complexity of the obtained model. This
second term is added to avoid overfitting of the model. Furthermore, if the Gaussian kernel is used,
the parameter σ controls the complexity of the obtained solution as well. Since if σ is larger the
resulting function h(x) is smoother, and thus the resulting model is less complex. See Appendix
H to see how to compute h that minimizes the objective of Equation 1.1.

Observe that if we have trained our ridge regression model on the set Q̂ and we want to compute
the model outputs on the set P̂ , this can be done by computing:

hP̂ = H̄fQ̂

Where we write fQ̂ as the vector of labels of the set Q̂, and hP̂ as the vector of outputs of the
model h on the set P̂ . The matrix H̄ is the hat matrix2 of the ridge regression model. For the
definition of H̄ see Appendix H.

We choose a subset of H as our hypothesis set: H = {h ∈ H : ||h||K ≤ Λ = 1√
λ
}. The

hypothesis set H is the set of all functions that may be outputted by the training procedure of the
model. In appendix F it is shown3 that this does not constrain ridge regression in choosing any
hypothesis from H, thus we do not need to introduce any additional constraints when minimizing
2Note that we define the hat matrix differently than is standard in most statistics texts. Usually the hat matrix
places the ‘hat’ on the set that the model is trained on, however we are always interested in the predictions on the
set P̂ and therefore we redefined the hat matrix as above.

3In this appendix we also show that the proposed way of bounding the hypothesis space by [4] does not result in
an informative bound on Λ.
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Equation 1.1. This explicit determination of the hypothesis set H is necessary to compute the
generalization bounds in Chapter 2. Furthermore, we often explicitly need a constant C that
verifies L(h(x), f(x)) ≤ C for all h ∈ H and all x ∈ X in the generalization bounds that we study.
In Appendix F a value of C that verifies this condition is given as well.

1.3. Related Work
Several other works have proposed to minimize error bounds for pool based active learning. First,
we discuss related work which use the Maximum Mean Discrepancy (MMD) measure, the discrep-
ancy measure and the Transductive Experimental Design (TED) objective. In particular we discuss
the works that introduce the state-of-the-art MMD and TED active learners. Afterward we briefly
discuss three other directions of work that also minimize generalization bounds for active learning,
that are either incomparable to our work or for which we think the theoretical justification is not
entirely correct.

Originally the MMD was proposed for a statistical test to determine if two empirical samples
originate from the same distribution [14]. The MMD has also been used in transfer learning,
domain adaptation and sample bias correction to make training and test distributions more similar
by sample reweighting [3]. Active learning by minimization of the maximum mean discrepancy
(MMD) was first proposed by [6].

In [9] a generalization bound is given that motivates to minimize the MMD measure in active
learning. We now give several arguments why this bound does not hold in the active learning
setting. The bound assumes the labeled samples Q̂ come from a distribution Q. However, we
believe that strictly speaking the distribution Q may not exist in the active learning scenario.
If we use a probabilistic active learner we could define a probability distribution Q according to
which to sample, however this distribution will change every iteration. So in general we cannot
speak of a single distribution Q from which all empirical samples Q̂ are obtained. For deterministic
active learners it is even more difficult to see how the distribution Q can exist.

Furthermore, [9] proposes to minimize the MMD between the distributions Q and P , and use
empirical samples from Q̂ and P̂ to estimate the MMD between the probability distributions of
Q and P . The estimators for the MMD between probability distributions require i.i.d. samples4

from Q and P . Since the samples selected by the active learner depend on previously selected
samples, this i.i.d. assumption is violated. The bound derived in [9] is therefore not appropriate
for active learning. In Section 2.1 we prove a modified version of their bound for the MMD that
does hold for non-i.i.d. samples and is thus applicable to active learning. Furthermore our bound
is guaranteed to hold for deterministic labeling functions.

The works of [6] and [9] use batch active learning. In Appendix I we show that the batch active
learner of [6] performs worse than a simple sequential MMD active learner in terms of the MMD
objective, and therefore we only consider the sequential MMD active learner. The active learner
of [9] is not label independent and therefore we do not include it in our comparisons. Different
from this work, these works do not measure the performance in terms of the surrogate loss and
also use a different model. Therefore our results are not directly comparable with their results.

In [12] the discrepancy measure is introduced in the context of domain adaptation. In [4] it
is demonstrated empirically that the discrepancy improves upon MMD in sample bias correction
in terms of the mean squared error on some datasets, and on other datasets it matches the
performance of the MMD. In this work the discrepancy is also generalized to arbitrary kernels.
In [15] more bounds are introduced in terms of the discrepancy and the generalized discrepancy
measure is introduced for domain adaptation.

Transductive Experimental Design (TED) was introduced in [8] as an extension of methods of
experimental design. In [16] a batch active learner was proposed to minimize the TED objective,
however the proposed batch algorithm is only applicable to linear kernels. Because we mainly work
with the Gaussian kernel we do not include this batch active learner in our comparison.

In [7] active learning and semi-supervised learning are combined for a model similar to the
ridge regression model. They perform active learning by minimizing a generalization bound. This
4In the appendix of [9] they refer to Theorem 7 of [14] which assumes i.i.d. samples, see appendix A.2 of [14].
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generalization bound results in the same objective as TED when the semi-supervised part of the
model is ignored. Similar to the MMD and discrepancy, the generalization bound upper bounds
the surrogate loss of the trained model. We discuss their generalization bound and extend it to a
non-probabilistic setting. Our TED bound is guaranteed to always hold for deterministic labeling
functions.

Now we mention several other works for active learning using generalization bounds. We think
the following methods are not entirely theoretically justified, or these methods are not comparable
to our work.

A generalization bound based on the Transductive Rademacher complexity is minimized in [17]
to perform active learning. However, we believe the bound is used erroneously in this work and
we will now briefly argue why. In [17] the function class is chosen after observing the set Q̂ and
P̂ , while the bound only holds for function classes that are chosen after observing the full sample.
This means no knowledge of P̂ and Q̂ is allowed, only the set P̂+Q̂ may be known for choosing the
function class. See [18, Theorem 2] for details. In [17] the function class is chosen to depend on the
set Q̂, and therefore we believe the bound will not hold. We believe the Transductive Rademacher
complexity bound is not applicable to the active learning scenario. Their active learner however
does perform well, and one may wonder if it is possible to adapt this generalization bound to hold
in the active learning scenario.

Importance weighting error bounds from domain adaptation might seem attractive for active
learning. However, importance weighting is usually based on the ratio between the probability
densities of P and Q, while in active learning the probability density function Q does not strictly
exist as argued before. Furthermore we studied the importance weighting generalization bound of
[19] but found that the bounds given here do not apply to active learning since these bounds require
i.i.d. samples. Importance weighting for active learning has been proposed in [20], however this
strategy requires the use of the observed labels to determine the next query and this is therefore
not comparable to our work.

In [10] a generalization bound is derived for logistic regression and this bound is minimized for
active learning. However this generalization bound is not label independent and uses a different
model, and therefore is also incomparable with this work.





2
Theory

In this chapter we review the MMD measure, the discrepancy measure, the TED objective and the
nuclear discrepancy measure. We explain what these quantities mean, how they are computed and
we discuss their generalization bounds. We give in depth comparisons of the bounds and measures.
We first discuss the MMD measure and and follow up with the discrepancy, since the discrepancy
is similar to the MMD and can be considered a more refined version of the MMD quantity. We
discuss TED afterward so we can compare it in depth with the MMD and discrepancy. We note
some advantages of the TED bound, and this leads us to introduce a novel quantity called the
nuclear discrepancy. At the end of the chapter we summarize the measures, their bounds and their
assumptions, and explain how we use these bounds to construct active learning algorithms.

2.1. Maximum Mean Discrepancy (MMD)
In this section we discuss in detail what the MMD measure is and how it is computed. The work
of [9] uses the MMD measure for active learning but motivates this with a generalization bound
that may not hold in the active learning scenario as we have argued in Section 1.3. We give a novel
generalization bound in terms of the MMD that explicitly holds for the active learning scenario
using a similar technique as [15]. We describe in detail the qualitative features of the bound. To
compute the MMD a kernel K ′ has to be chosen. We discuss how the kernel is chosen in other
work. In the last subsection we give the most important theoretical result of this section: we
derive how the kernel of the MMD can be chosen depending on the kernel that is used by the
learning algorithm in case of the squared loss. Using this analysis we obtain a bound similar to
the discrepancy that takes the hypothesis set and the loss into account.

2.1.1. MMD Measure
In this subsection we discuss what the MMD measure means and how it is defined. We also look
at multiple examples to get a better understanding of the MMD measure.

We define the MMD as:

MMD(P̂ , Q̂) = max
g̃∈H′

 1
nP̂

∑
x∈P̂

g̃(x)− 1
nQ̂

∑
x∈Q̂

g̃(x)

 (2.1)

Here g̃ is the worst-case function from a set of functions H ′. The set H ′ is usually chosen as a
subset of functions in the RKHS H′ of a universal kernel K ′ such as the Gaussian kernel. Similar
to the hypothesis set we choose the set H ′ as H ′ = {h ∈ H : ||h||K′ ≤ Λ′}. In other works the
constant Λ′ is fixed as 1, we consider the more general case where Λ′ 6= 1. This is useful for our
comparison between the discrepancy and the MMD. Our definition of the MMD only differs by
a constant from the usual definition of the MMD. In particular this choice has no effect on the
active learning strategy, see Section 2.5.

13
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Figure 2.1: This figure illustrates the function g̃ maximizing Equation 2.1. This is the function where the means of
g̃ on P̂ and Q̂ are the most different. The Gaussian distributions remain the same except for the distance between
their means, which is decreased from a) to c). We see that if the (empirical) distributions are more similar, the mean
of g̃ will be more similar on both empirical samples P̂ and Q̂ due to the smoothness constraint of the Gaussian
kernel, and thus the MMD will be smaller.

Our estimator of the MMD coincides with the ‘biased MMD estimator’ from [14]. This estimator
is biased, since it has a bias when estimating the MMD between probability distributions. For
our purpose this estimator is not biased since it estimates the exact empirical quantity that is
required in our generalization bound that estimates the performance on empirical samples (which
we introduce in the next subsection).

We will now illustrate the behavior of the MMD quantity using three examples shown in
Figure 2.1. In this figure we see two probability distributions P and Q. In all examples P and Q
are Gaussian distributions, the only difference between the three examples is the distance between
the means of the Gaussian distributions. We sample an equal amount of samples from P and Q
to obtain the empirical datasets P̂ and Q̂. We compute the MMD between these two empirical
sets: we however don’t show the empirical sets, but instead display the probability distributions
since this is more convenient to display. The relative MMD quantities are shown in the title of the
figures. The function g̃ maximizing Equation 2.1 is shown in red, appendix A.2 explains how to
compute the function g̃. The Gaussian kernel was used to compute the MMD with σ = 0.5 which
imposes certain smoothness constraints on the function g̃.

We observe the following about the function g̃ in general in Figure 2.1. g̃ is as positive as
possible if P (x) > Q(x), and g̃ is as negative as possible if P (x) < Q(x). This is so that the
empirical means of g̃ differ as much as possible on the set P̂ and Q̂ to maximize Equation 2.1.
The amount of positivity and negativity g̃ can attain depends on the distributions P̂ and Q̂ and
the smoothness conditions on g̃.

In Figure 2.1a we observe that the function g̃ can become more positive on P̂ and more
negative on Q̂ since the distributions overlap little when compared to Figure 2.1c. In Figure 2.1c
we observe that the function g̃ can hardly become positive on P̂ and hardly negative on Q̂. Because
the distributions overlap more g̃ only has a small window to become positive when P (x) > Q(x).
The same argument holds for g̃ becoming negative. Figure 2.1b illustrates the intermediate scenario
where g̃ can become somewhat positive and negative.

Now we relate the function g̃ to the MMD quantity. We observed that if the empirical dis-
tributions P̂ and Q̂ are more similar, the empirical mean of g̃ on P̂ and Q̂ will be more similar,
because g̃ cannot attain large absolute values. Because of this nececarily the MMD quantity de-
fined by Equation 2.1 becomes smaller, as can also be observed in the title of the Figure 2.1c. If
the empirical distributions P̂ and Q̂ differ more, the difference between the means of g̃ under both
distributions can be larger and the MMD will become larger as seen in the title of Figure 2.1a. This
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example thus illustrates that the MMD measures the similarity between empirical distributions.
The MMD can also be interpreted in a different manner. It can be shown that the MMD is

equal to the distance between the means of P̂ and Q̂ in the RKHS of K ′:

MMD(P̂ , Q̂) = Λ′||µP̂ − µQ̂||K′

See appendix A.1 for the derivation of this equation. In this appendix it is also shown how to
compute the MMD using empirical quantities.

2.1.2. MMD Generalization Bound
In the previous subsection we have seen that the MMD quantity measures the difference between
the empirical distributions Q̂ and P̂ . In this subsection we discuss the generalization bound of the
MMD.

We use a similar technique to the one employed in [15] to derive a novel generalization bound
for the MMD that applies to the active learning scenario where the samples Q̂ may not be inde-
pendently and identically distributed (i.i.d.). The derivation of the generalization bound is given
in appendix A.1. We give the bound in the theorem below:

Theorem 1 (MMD Generalization bound) Given any hypothesis h ∈ H and any determin-
istic labeling function f(x) and given that the loss function g(x) = L(h(x), f(x)) ∈ H ′, where
H ′ = {h ∈ H : ||h||K′ ≤ Λ′}, we have that:

|LP̂ (h, f)− LQ̂(h, f)| ≤ MMD(P̂ , Q̂)

This bound indicates that the average squared loss of any h on P̂ and Q̂ is more similar if the
MMD is small between the empirical distributions P̂ and Q̂. Why would we want this? We give
two interpretations that explain why this is desirable. Note that in this context we train on Q̂,
the (small) labeled sample in active learning, and we evaluate on P̂ , the complete empirical data
distribution on which we want to perform well in terms of the squared loss.

Note that in the active learning setting it is useful that this bound holds for any h ∈ H, since
after selecting a new example we do not know which model h we will obtain since before selecting
this example we do not yet know its label.

The bound above upper bounds the following quantity for all h ∈ H:

|LP̂ (h, f)− LQ̂(h, f)| (2.2)

Why do we want this quantity to be small for all h ∈ H? Ideally, we want that training on the
dataset Q̂ and training on the dataset P̂ results in the same model, since training on P̂ is the best
we can do in active learning since this would correspond to labeling all samples. When the loss for
all h ∈ H is the same on the datasets P̂ and the Q̂, training on Q̂ is the same as training on P̂ ,
in which case the quantity in Equation 2.2 is zero for all h ∈ H. If the quantity in Equation 2.2 is
small for all h ∈ H, the difference in the training procedure will be small as well, since the losses
on Q̂ and P̂ will be similar for all h. Thus if the quantity in Equation 2.2 is small we will obtain
a similar model if we train on Q̂ and if we train on P̂ . Since Equation 2.2 is upperbounded by the
MMD quantity for all h ∈ H, we want the MMD to be small. This argument is also illustrated in
Figure 2.2 on page 16.

Now we consider the second interpretation of this bound, to this end we rewrite the bound in
Theorem 1 in a more familiar form:

LP̂ (h, f) ≤ LQ̂(h, f) + MMD(P̂ , Q̂) (2.3)

Here we directly relate the performance on P̂ to the empirical loss on Q̂ and the MMD measure.
From this point of view, we see that the training procedure minimizes the loss on Q̂, and if the
MMD is small, this low loss will generalize to P̂ . If we are more interested in the generalization
performance on the distribution P , we can combine Equation 2.3 with a standard generalization
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Figure 2.2: This illustrates the MMD generalization bound in one dimension for a linear kernel. We only look at the
loss functions — there is no corresponding dataset. Minimization of the loss on Q̂ results in the hypothesis where
the blue line is minimal, w = 5. We actually would want to train on P̂ since this corresponds training on the entire
dataset. If this were possible we would obtain the hypothesis where the red line is minimal: w = 10. We see that if
the bound is tighter, the difference between the red line (loss on P̂ ) and the blue line (loss on Q̂) becomes smaller.
Thus the tighter the bound, the more the minimization of the loss on Q̂ will result in a similar hypothesis as the
the minimization on the set P̂ . This is what we what we want: we want to obtain a hypothesis that is as close as
possible as the hypothesis that minimizes the loss on P̂ .

bound to relate the performance on P̂ to the performance on P , such as a Rademacher generaliza-
tion bound [13, Theorem 10.7]. Since the set P̂ is an i.i.d. sample from P , and since the set P̂ is
relatively large, the error on P̂ is a good estimate of the generalization error1. Therefore, a small
error on P̂ is desirable, since this would mean we likely obtain a model with good generalization
performance.

The main assumption in this bound is that the kernel K ′ is ‘rich’ enough so its set H ′ contains
the true loss function g = L(h(x), f(x)) for all h ∈ H and the labeling function f . This is required
because in deriving the bound we approximated the true loss function g by a worst-case function
g̃ ∈ H ′. It is possible to relax this assumption using a similar approach as [15]. The proof is given
in Appendix A.3, we give the novel bound below:

Theorem 2 (MMD Generalization bound that always holds) Define the set H ′ as: H ′ =
{h ∈ H : ||h||K′ ≤ Λ′}. This theorem applies to any loss function L. We assume the labeling
function f(x) is deterministic. Then for any hypothesis h ∈ H the following bound holds:

|LP̂ (h, f)− LQ̂(h, f)| ≤ MMD(P̂ , Q̂) + ηMMD(P̂ , Q̂, f, h)

Where ηMMD(P̂ , Q̂, f, h) is given by:

ηMMD(P̂ , Q̂, f, h) = min
g̃∈H′

 1
nP̂

∑
x∈P̂

|L(h(x), f(x))− g̃(x)|+ 1
nQ̂

∑
x∈Q̂

|L(h(x), f(x))− g̃(x)|


Observe that by relaxing the assumption g ∈ H ′ we get an additional term ηMMD(P̂ , Q̂, f, h).

This term measures the approximation error when approximating the true loss function g by a
loss function g̃ ∈ H ′. Observe that this term cannot be computed in a real world active learning
experiment, since it requires us to know all labels of the set P̂ .

One may wonder why there is an absolute value in the definition of the MMD. The reason is
twofold: because of this we obtain a bound on the absolute value of LP̂ (h, f)− LQ̂(h, f) which is
1Note that this may not be necessarily true since overfitting may occur. This can be accounted for by the complexity
term in the Rademacher generalization bound.
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useful as illustrated by the analysis accompanying Figure 2.2. Another reason this is useful is be-
cause in this case the approximation error ηMMD(P̂ , Q̂, f, h) becomes straightforward to compute.

Using Theorem 2 we can rewrite the bound in a similar form as Equation 2.3. In this case we
obtain the following equation:

LP̂ (h, f) ≤ LQ̂(h, f) + MMD(P̂ , Q̂) + ηMMD(P̂ , Q̂, f, h)

This illustrates that it is beneficial if the approximation error of the MMD is small or zero, since
in this case the bound on P̂ will be tighter as well.

In case g ∈ H ′ the approximation error becomes zero since g does not need to be approximated.
We may wonder when this is the case, this is however difficult to determine for the bound in this
form. In Section 2.1.4 we return to this question and give a clear example when this approximation
error vanishes.

2.1.3. How to Choose the Kernel of the MMD According to Literature
When comparing (empirical) distributions with the MMD measure the Gaussian kernel is used
in most works. We briefly discuss how these works determine the bandwidth σ of the Gaussian
kernel in this subsection.

In [14] the bandwidth σ is chosen as the median distance between all objects in the dataset.
For domain adaptation, sample bias correction and transfer learning it is usual to set σ to the
value of σ that is used by the Gaussian kernel used to train the model [3]. When the MMD is used
for active learning as in [6] and [9] likely the same σ was used as for the kernel of the MMD and
the learning algorithm, this is however not explicitly stated.

2.1.4. Choosing the Kernel of the MMD to Take the Hypothesis Set Into
Account

According to [4] it is beneficial to take into account the hypothesis set and the loss when deriving
generalization bounds like the MMD bound. This means that the quantities in the bound should
depend on the kernel K and the loss used by the learning algorithm. In case of the MMD, the
kernel K ′ of the MMD should depend on the kernel K and the loss of the learning algorithm. In
this section we discuss how we can take the hypothesis set and squared loss into account when
computing the MMD generalization bound.

Before we derive how to take the loss and kernel of the learning algorithm into account, we
discuss why it might be beneficial to do so. Generally, it is known that certain machine learning
models perform better than others for certain datasets. It is also generally known that certain
kernels work better for some datasets than others. This illustrates why it is beneficial if the
generalization bound takes the kernel and the model (or the surrogate loss of the model) into
account. This possibly will allow us to distinguish between different models and kernels for the
dataset at hand. In any case we know that the performance for different kernels and different
models is different, and therefore we may want this to be reflected in the generalization bound.
Including this information possibly will make the generalization bound tighter or more relevant
for the setting considered.

Now we move on to deriving how we can take the model (or the surrogate loss of the model) and
the kernel into account for the MMD. First we assume that we are in the realizable setting, and
then we extend our argument to the agnostic setting as well. In the realizable setting f is in the
hypothesis set of the learning algorithm: f ∈ H (where H depends on K). Given this assumption
we can derive which kernel K ′ should be chosen so that the assumption of the MMD bound in
Theorem 1 is satisfied: g ∈ H ′. Or in other words: given that we are in the realizable case and we
use the squared loss, how should we choose K ′ to assure that the approximation error of the MMD
ηMMD(P̂ , Q̂, f, h) is zero? In appendix C this derivation is given. We find that if we use a kernel
K for the learning algorithm, the MMD should be computed with the kernel K ′(x, y) = K(x, y)2

in case we use the squared loss. We also find under these assumptions that Λ′ = 4Λ2 should be
chosen to guarantee that g ∈ H ′.
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Of course, one is usually not in the realizable case. However, if one chooses a certain model class,
it is logical to assume that this is the model class that best approximates the labeling function f .
Since if one believes that a different model class can approximate f better, one should choose this
different model class instead. Therefore, if we choose the set H as hypothesis set, and one believes
this is the optimal model class for approximating f , then the model class H ′ should be chosen
as above. If one chooses a different model class H ′ to compute the MMD than the model class
prescribed above, then even in the realizable setting the approximation error may not be zero.

In case we use a linear kernel for the learning algorithm, the kernel K ′ should be chosen as a
quadratic kernel. In case we use a Gaussian kernel for our learning algorithm with bandwidth σ,
then the kernel K ′ corresponds to a Gaussian kernel with bandwidth σ′ = σ√

2 . This indicates that
we should not choose the same bandwidth for the learning algorithm and the computation of the
MMD, as is often done in other works as mentioned in the previous subsection. Since σ > σ√

2 , if
the Gaussian kernel with σ′ = σ is used to compute the MMD, we are using a function that is too
smooth to approximate the true loss function. Therefore, if one uses σ′ > σ√

2 , the approximation
error ηMMD(P̂ , Q̂, f, h) likely will not be zero, even in the realizable setting.

This thus prescribes how to choose K ′ depending on the hypothesis set and loss of the learning
algorithm, similar to the discrepancy measure defined in the next section. To indicate the difference
between both variants of the MMD, we will use ‘MMD HS’ to indicate the MMD quantity that
takes the hypothesis set and loss into account. The only difference then between MMD HS and
the discrepancy is that the discrepancy takes all aspects of the loss function into account, while
MMD HS does not, which we will discuss in the next section.

2.2. Discrepancy
In this section we first review the discrepancy measure. We describe how it is computed and
we indicate the similarities with the MMD measure. We give an easy to interpret bound of the
discrepancy measure. This bound is directly comparable with the MMD bound given in Section
2.1.2. We compare both bounds in the realizable setting where the approximation errors of both
bounds are equal to zero — this is the case where the MMD bound takes the hypothesis set
and loss into account. In this setting we show that the discrepancy bound is always tighter. This
theoretical result is novel and was not shown in other work concerning the discrepancy.

2.2.1. Discrepancy Measure
In this subsection we show how the discrepancy measure is defined, we illustrate what it measures
using artificial examples, and we compare it with the MMD measure.

The discrepancy is defined as:

disc(P̂ , Q̂) = max
h,h′∈H

|LP̂ (h′, h)− LQ̂(h′, h)|

Note that in this case LP̂ (h, h′) and LQ̂(h, h′) are defined as the average loss of h with respect
to h′ over the empirical samples P̂ and Q̂. The loss is the same loss as used by the learning
algorithm, and H indicates the hypothesis set of the learning algorithm. We thus observe that the
discrepancy measure explicitly depends on the hypothesis set and loss of the model. Because of
this the generalization bound of the discrepancy that depends on the discrepancy quantity also
takes the hypothesis set and loss of the model into account. Refer to the discussion in Subsection
2.1.4 for why this may be beneficial.

For the squared loss, we can rewrite the discrepancy as:

disc(P̂ , Q̂) = max
z̃∈H,||z̃||K≤2Λ

| 1
nP̂

∑
x∈P̂

z̃(x)2 − 1
nQ̂

∑
x∈Q̂

z̃(x)2| (2.4)

See appendix B.1 for the derivation. We can write the discrepancy in the same form as the MMD
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Figure 2.3: This figure illustrates the function g̃ maximizing Equation 2.1. This is the same example as was used
in Figure 2.1. We see that if the (empirical) distributions are more similar, the mean of g̃ will be more similar on
both empirical samples P̂ and Q̂ due to the smoothness constraint, and thus the discrepancy will be smaller.

quantity in Equation 2.1. To this end we define the function g̃(x) = z̃(x)2. Then we obtain:

disc(P̂ , Q̂) = max
z̃∈H,||z̃||K≤2Λ

| 1
nP̂

∑
x∈P̂

g̃(x)− 1
nQ̂

∑
x∈Q̂

g̃(x)| (2.5)

The difference with the MMD quantity is that for the discrepancy we have the constraint that
g̃(x) = z̃(x)2, and the maximization is over z̃ and not over g̃. The function g̃ plays the role of the
worst-case loss function in both bounds.

Similar to the MMD quantity, we study the function g̃ maximizing Equation 2.5. See Figure
2.3. This figure uses the same example that was used to illustrate the MMD (see Figure 2.1) and
was generated using the same approach. In particular note that we compute the discrepancy using
empirical samples. The computation of g̃ for the discrepancy is described in appendix B.1.

We observe that the function g̃ in Figure 2.3 becomes as positive as possible on one of the
distributions and as small as possible on the other. Because of this Equation 2.5 is maximized: the
mean of the worst-case loss function g̃ on one distribution will be very large while on the other
distribution it will be very small. Because of this the empirical average of g̃ will be as different as
possible on the sets P̂ and Q̂. The empirical distributions P̂ and Q̂ together with the smoothness
conditions on z̃ determine how large and small g̃ can become. Note that for this example which is
symmetric the discrepancy can become positive on one of both distributions: this explains why the
function g̃ sometimes is positive on the left distribution and sometimes on the right distribution
in Figure 2.3. On which it becomes positive depends on the empirical samples obtained from Q̂
and P̂ .

However, if one of the Gaussian distributions is broader than the other, the discrepancy will
become positive on this broader distribution, since g̃ can become more positive on these empirical
samples from this broader distribution since it has a larger window to increase and decrease (recall
it needs this window to increase and decrease because of the smoothness conditions on z̃). The
MMD can become positive or negative on either distribution. This is easy to show for the MMD,
since if the function g̃ maximizes Equation 2.1, (−g̃) will always maximize Equation 2.1 as well.
This is not the case for the discrepancy. If the function g̃ maximizes the discrepancy in Equation
2.5, the function (−g̃) for the discrepancy is instead not allowed, since the loss function cannot be
negative.

Now we relate the function g̃ to the discrepancy quantity. We observe in Figure 2.3a that the
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Figure 2.4: This figure illustrates the function g̃ maximizing Equation 2.5 for the discrepancy and the MMD.

function g̃ can become very large, this is because the distribution Q̂ is very far away from P̂ , and
thus g̃ can become as positive on P̂ as possible. The function g̃ has a large window to increase and
decrease. Therefore the empirical average of g̃ is very different on P̂ and Q̂ and consequently the
discrepancy is relative large, see Equation 2.5. In Figure 2.3c there is only a small window where the
density of P exceeds the density of Q, and thus g̃ has only a small window to increase. Because of
the smoothness conditions on z̃ it cannot become very large. Because of this the empirical average
of g̃ on P̂ and Q̂ is more similar, and the discrepancy quantity is smaller. Figure 2.3b illustrates
the intermediate case.

Similar to the MMD, if the empirical distributions are more similar, the discrepancy is smaller.
Thus like the MMD the discrepancy measures the difference between empirical distributions in
some sense.

In Figure 2.4 we compare the functions g̃ of the MMD and discrepancy. Observe that the loss
function g̃ of the MMD can become positive and negative, and because of this g̃ can possibly
obtain a larger difference between the empirical means on P̂ and Q̂. The discrepancy loss function
g̃ on the other hand must be positive since g̃(x) = z̃(x)2. Now we directly observe that the
discrepancy takes the squared loss more completely into account than the MMD: the worst-case
loss function g̃ considered by the discrepancy is non-negative, as we would expect from a L2 loss
function. The worst-case loss function of the MMD can become negative, and therefore the worst
case considered by the MMD might be overly pessimistic since the squared loss function can never
become negative.

In appendix B.1 we show that for the squared loss in the linear kernel the discrepancy is given
by:

disc(P̂ , Q̂) = 4Λ2|| 1
nP̂

XT
P̂
XP̂ −

1
nQ

XT
Q̂
XQ̂||2 = 4Λ2||M ||2 (2.6)

Here ||M ||2 is the spectral norm of the matrix M , which is the same as the largest absolute
eigenvalue of M since M is real and symmetric. Equation 2.6 indicates that if the covariance
matrices of P̂ and Q̂ are similar as measured by the spectral norm of the difference of the matrices,
the discrepancy measure will be small. In case kernels are used, the covariance matrices will be
computed in the RKHS of K. In this case it is possible to express the discrepancy in terms of the
kernel matrix, see appendix B.1.

We now discuss the meaning of Equation 2.6 in more detail using an artificial dataset where
we use a model with a linear kernel, see Figure 2.5a which indicates the empirical distributions
P̂ and Q̂. Typically the discrepancy is computed using a universal kernel such as the Gaussian
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Figure 2.5: a) Description of the dataset. b) The eigenvectors of the matrix M . The length of the eigenvector is
proportional to the squared eigenvalue. c) The eigenvector in the x-direction corresponds to the direction of z̃, from
which we can compute the quadratic worst-case loss function ˜g(x) = z̃(x)2. The functional values of g̃ are displayed
in this plot using shading.

kernel for reasons we will discuss in the next chapter, but for additional intuition as to what is
happening this is an useful additional example.

The covariance matrices of both the set P̂ and Q̂ are subtracted to obtain M in Equation
2.6. M characterizes in which areas Q̂ has a larger or smaller variance compared with P̂ . The
discrepancy can be understood better in terms of the eigenvalue decomposition of M . The eigen-
value decomposition of M is similar to the PCA decomposition of a data matrix, only eigenvalues
can be negative. Negative eigenvalues can occur because M is defined as the subtraction of two
(positive semi-definite) matrices.

Recall that in active learning the dataset Q̂ is the labeled set, and P̂ is the unlabeled set.
Ideally, we would want to train on P̂ , since this would correspond to labeling all data in the
active learning setting. However, we have to train on Q̂. The eigenvalues of M indicate ‘what is
wrong’ with the dataset Q̂ compared with the dataset P̂ . Positive eigenvalues of M indicate that
Q̂ has too little variance compared with P̂ in the direction of the corresponding eigenvector, and
negative eigenvalues indicate that Q̂ has a too large variance compared with P̂ in the direction of
the corresponding eigenvector. See Figure 2.5b which indicates the eigenvectors of the matrix M
for our artificial example.

We see that in the y-direction the variance of P̂ and Q̂ is almost equal causing the small
eigenvalue for the eigenvector in the y-direction, but in the x-direction the difference is large
indicated by the large absolute eigenvalue. We define the vector u as the eigenvector corresponding
to the largest absolute eigenvalue of the matrix M . Recall that the discrepancy is determined by
the spectral norm ofM , or in other words by the largest absolute eigenvalue ofM . In this example
the eigenvalue that determines the discrepancy is positive, since the variance in the x-direction is
larger for P̂ than Q̂.

The eigenvector u determines the function z̃(x): z̃(x) = uTx of Equation 2.4, see Appendix
B.1. z̃ is a linear function in this example since we use the linear kernel. From this function we
can compute the worst-case loss function g̃(x) = z̃(x)2 considered by the discrepancy, which is
displayed in Figure 2.5c by shading. From this we see why this direction was chosen for the function
z̃: in this direction the empirical average of g̃ on the set P̂ is much larger than the empirical average
on the set Q̂, and therefore this direction maximizes Equation 2.5.

We now relate this example in the linear kernel to the example in the Gaussian kernel. This
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discussion is quite technical, and may be skipped by the reader initially, since it is unnecessary to
understand the rest of this thesis. However, this discussion offers additional insights into what the
discrepancy is measuring if the Gaussian kernel is used.

In case we compute the discrepancy with a Gaussian kernel, this same process takes place in
the RKHS of the Gaussian kernel. Recall that for the Gaussian kernel, the vectors ψ(x) in the
RKHS always have norm one. Because of this, positive eigenvalues of M in the Gaussian kernel
indicate under sampling of Q̂ compared with P̂ in the RKHS in the direction of the vector z̃ (since
the norm plays no role in the Gaussian kernel, only the sample density plays a role). Negative
eigenvalues indicate oversampling of Q̂ with respect to P̂ in the RKHS in the direction of z̃. This
over- or undersampled direction is also indicated by the large values of g̃ for the samples that
are over- or undersampled. If we look back at the example in Figure 2.3 we can thus conclude
the following. In Figure 2.3a the eigenvalue determining the discrepancy was positive (too little
samples of Q̂ with respect to the number of samples P̂ near the distribution of P indicated by
large values of g̃ near the distribution P ), in Figure 2.3b it was negative (too many samples of Q̂
with respect to the number of samples of P̂ near the distribution of Q indicated by large values
of g̃ near the distribution of Q), in Figure 2.3c it was positive.

2.2.2. Discrepancy Generalization Bound
In the last subsection we illustrated how the discrepancy measures the similarity between two
empirical distributions and how it differs from the MMD measure. In this subsection we discuss
the discrepancy generalization bound.

Multiple bounds are given in [4] to motivate the use of the discrepancy. However, we choose to
give a generalization bound of [15] which is easier to derive and understand and which we found to
be tighter in all our active learning experiments. Furthermore this generalization bound is directly
comparable with the generalization bound of the MMD in the previous section. For a complete
discussion of why we chose this bound, see Appendix B.3.

The discrepancy bound given in this section upper bounds the same quantity as the MMD for
all h ∈ H:

|LP̂ (h, f)− LQ̂(h, f)| (2.7)
Refer to Subsection 2.1.2 for a detailed motivation why it is beneficial for this quantity to be small
for all h ∈ H. See also Figure 2.2 on page 16 which illustrated why it is desirable for this quantity
to be small.

It is relatively easy to derive the discrepancy bound in the realizable setting where the labeling
function f is in the hypothesis set H of our model, which we briefly do here. Before selecting the
next sample in active learning we don’t know the resulting model h after training, and we don’t
know the labeling function f . We assume that the labeling function f is in our hypothesis set:
f = h′ ∈ H. Now we can bound Equation 2.7 by taking the worst-case functions h and h′ in H:

|LP̂ (h, f)− LQ̂(h, f)| ≤ max
h,h′∈H

|LP̂ (h, h′)− LQ̂(h, h′)| = disc(P̂ , Q̂)

Here we obtain the definition of the discrepancy. This gives us the discrepancy generalization
bound for the realizable setting.

When we assumed f ∈ H, we may have made an approximation error. Taking this into account
we obtain the following generalization bound:

Theorem 3 (Discrepancy generalization bound[15]) Assume that for any x ∈ X and h ∈ H
that L(h(x), f(x)) ≤ C. Then given any hypothesis h ∈ H and a deterministic labeling function f
we have that:

|LP̂ (h, f)− LQ̂(h, f)| ≤ disc(P̂ , Q̂) + 2Cηdisc(P̂ , Q̂, f)

Where ηdisc(P̂ , Q̂, f) is given by:

ηdisc(P̂ , Q̂, f) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f̃(x)− f(x)|+ 1
nQ̂

∑
x∈Q̂

|f̃(x)− f(x)|
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This bound is slightly tighter than the bound given in [15] but is based on their derivations.
We give the proof of this bound in appendix B.2.

The approximation term ηdisc(P̂ , Q̂, f) is now included, since we have relaxed the assumption
f ∈ H. The quantity ηdisc(P̂ , Q̂, f) measures the error of approximating f by f̃ ∈ H on the
sets Q̂ and P̂ . In case we have that f ∈ H the term ηdisc(P̂ , Q̂, f) becomes zero and the bound
only depends on the discrepancy measure. In a real world active learning setting ηdisc(P̂ , Q̂, f) is
impossible to measure since it depends on the labels of P̂ . Observe that it is much clearer when
this approximation error vanishes, unlike the approximation error of the MMD in the bound of
Theorem 2.

Like the MMD bound, we can also rewrite this generalization bound in a more familiar form:

LP̂ (h, f) ≤ LQ̂(h, f) + disc(P̂ , Q̂) + 2Cηdisc(P̂ , Q̂, f)

Here we directly relate the performance on P̂ to the empirical loss on Q̂, the discrepancy measure
and the approximation term. The analysis that was given in Section 2.1.2 for the MMD bound also
holds for this bound which we will briefly repeat here. Assume f ∈ H and thus ηdisc(P̂ , Q̂, f) = 0.
The training algorithm will minimize the average loss on Q̂. If the discrepancy is small, this small
loss will generalize to the set P̂ . This equation also illustrates why we want the approximation
error ηdisc(P̂ , Q̂, f) to be small: if this approximation error is smaller the bound on the loss on P̂
is tighter.

We may wonder why the discrepancy bounds the quantity of Equation 2.7 in absolute value.
This allows the analysis of the bound that was given in Figure 2.2 in Subsection 2.1.2, and it
allows us to compute the approximation term ηdisc(P̂ , Q̂, f) for the discrepancy.

We can give a generalization bound on the generalization error on the distribution P with
the same method discussed at the end of Subsection 2.1.2 which we will not repeat here. In
this subsection we also argued why a small error on P̂ will likely result in good generalization
performance on the distribution P , which is the goal in our considered active learning setting.

2.2.3. Comparison with MMD Generalization Bound
The bound for the discrepancy given in the previous subsection is in the same form as the MMD
bound in Section 2.1.2, and therefore these bounds are comparable. To simplify our comparison
of the bounds we consider the realizable setting. The comparison between both bounds in this
setting is novel and has not been considered yet in works of the discrepancy and the MMD.

In the realizable setting the approximation error of the discrepancy vanishes. In this setting
if H ′ for the MMD is chosen to take into account the hypothesis set and the loss as described in
Subsection 2.1.4, we are sure that g ∈ H ′ and the approximation error of the MMD bound will be
zero as well. In this case the bounds only depend on the discrepancy measure and MMD measure,
and the bounds become easily comparable. In this case, we can rewrite the MMD measure as:

MMD(P̂ , Q̂) = 4Λ2||M ||F = 4Λ2
√∑

i

λ2
i (2.8)

See appendix C.4 for the derivation. Here λi are the eigenvalues of the matrix M . We have seen
in Subsection 2.2.1 that the discrepancy can be calculated using:

disc(P̂ , Q̂) = 4Λ2||M ||2 = 4Λ2 max
i
|λi|

Comparing both equations above, we can show that the discrepancy quantity is always smaller
or equal than the MMD quantity, and thus the discrepancy bound is always tighter than the
MMD bound in this setting. The discrepancy bound should be especially favorable if there are
many large absolute eigenvalues λi, since the MMD will become larger with each eigenvalue, while
the discrepancy only depends on the largest eigenvalue. This situation occurs for example if in
many directions the variances of P̂ and Q̂ are different.

Finally, we might wonder if the assumptions of the MMD are less strict than the assumptions
of the discrepancy. In appendix C.7 we show that the assumptions of both bounds are equivalent
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in this setting. Thus, from a theoretical standpoint, the bound of the discrepancy seems to be truly
better in the case of the squared loss in the realizable setting if the MMD takes the hypothesis
set and loss into account (which we argued is desirable), since under the same assumptions the
discrepancy bound is tighter. Only in the agnostic setting the approximation error of the MMD
might be smaller than the discrepancy approximation term, see our discussion in Appendix C.7.

Note that any bound in terms of the discrepancy can directly be generalized to a bound in
terms of the MMD since the MMD upper bounds the discrepancy if the kernel K ′ is chosen to
take the hypothesis set into account. Thus the discrepancy bound in Subsection 2.2.2 can directly
be extended to a MMD bound. We give this bound below for completeness:

Theorem 4 (MMD Generalization bound that always holds (2)) Assume that for any x ∈
X and h ∈ H that L(h(x), f(x)) ≤ C. Then given any hypothesis h ∈ H and a deterministic la-
beling function f we have that:

|LP̂ (h, f)− LQ̂(h, f)| ≤ MMD(P̂ , Q̂) + 2Cηdisc(f, Q̂, P̂ )

Where the MMD quantity is computed using the kernel K ′(x, x′) = K(x, x′)2, where K is the
kernel of the learning algorithm, and where Λ′ = 4Λ2, and ηdisc(f, Q̂, P̂ ) is given by:

ηdisc(f, Q̂, P̂ ) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f̃(x)− f(x)|+ 1
nQ̂

∑
x∈Q̂

|f̃(x)− f(x)|


The interpretation of the approximation term ηdisc in this bound is especially more straightforward
than the approximation term in the bound of Theorem 2, as we have discussed before.

2.3. Transductive Experimental Design (TED)
First we describe the objective of TED and review an interpretation of the TED objective that
was given in [8] to better understand what the TED objective means. We give multiple examples
to illustrate the TED objective. Then we discuss the generalization bound based on the TED
objective introduced in [7]. Finally we compare the generalization bound of TED with the bounds
of the discrepancy and the MMD and we highlight important differences that indicate that the
TED bound may be more informative than the discrepancy and MMD bound.

2.3.1. TED Objective
In this section we discuss the TED objective and show multiple examples to illustrate the meaning
of the TED objective.

TED uses a Bayesian linear regression framework and has as goal to minimize the prediction
variance of the trained model during active learning. A zero centered Gaussian prior is set on the
slope parameter w of the linear model and it is assumed labels are generated by a linear model
perturbed with Gaussian noise. From these assumptions a model can be derived that has the same
MAP (maximum a posteriori probability) predictions as the predictions of the ridge regression
model considered in this work. The variance of the prediction can be computed using the posterior
distribution of the model. The idea of TED is to select the examples that reduce the variance of
the predictions on the set P̂ the most. The criterion of TED can easily be extended to kernelized
models.

The objective of TED depends explicitly on the model: it uses the analytical form of the
solution of the model. If a ridge regression model with kernel K and regularization parameter λ
is used, the objective is given by[8]:

TED(P̂ , Q̂) = tr(KP̂ P̂ −KP̂ Q̂(KQ̂Q̂ + λnQ̂I)−1KT
P̂ Q̂

) (2.9)

This objective is minimized by the TED active learner. We can say the following about this
objective. The objective TED(P̂ , Q̂) is proportional to the variance of the predictions on the set
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P̂ given that the model is trained on the set Q̂ under the probabilistic assumptions listed above.
This objective is easily visualized, since it is straightforward to compute it over the entire input
space. To compute the objective value of a particular configuration of P̂ and Q̂, the variances of
the predictions at all positions of all samples P̂ need to be summed.

See Figure 2.6 on page 26 for an example where we plot the variance of the predictions over
the entire input space. To generate this figure a Gaussian kernel was used. The dataset consists of
two Gaussian distributed classes. In this figure three situations are shown: in the top two figures
we use a small value for σ of the Gaussian kernel, in the middle figures a larger σ is used. We
observe that the variance of the predictions is reduced in a larger area around labeled objects if a
larger σ is used: this is because a labeled object has a larger area of influence if σ is larger. In the
bottom figures a model is trained with the same value of σ as in the middle figures but a larger
value of λ is used. We observe that if λ is larger, the magnitude of the model output decreases,
and the reduction in prediction variance decreases as well.

Note that the objective value of TED is not simply the absolute value of the predictions: see the
middle situation of Figure 2.6. Here between the two Gaussian distributions the decision boundary
lies where the model output is zero. Observe that the prediction variance is not zero in the same
location.

From Figure 2.6 we can deduce that TED will cover as many samples in ‘black’ (in the right
plots). From this it follows that the TED active learner will aim to choose non-redundant samples
that are similar to as many samples in P̂ . We can recognize this in Equation 2.9. When minimizing
the TED objective for active learning, the factor (KQ̂Q̂ + λnQ̂)−1 ensures dissimilarity among
labeled samples, and the factors KP̂ Q̂ ensure similarity between the sets Q̂ and P̂ . Furthermore
the objective in this form is difficult to interpret mathematically.

In [8] the TED objective is rewritten as follows, making it easier to interpret:

1
λnQ̂

TED(P̂ , Q̂) = min
α

∑
i=1,...,nP̂

||xi − αiXQ̂||
2 + λnQ̂||αi||

2 (2.10)

This assumes a linear kernel K is used2. The first term in the objective is an approximation error,
and the second term arises due to the regularization of the ridge regression model. Studying the
first term, we see that TED tries to approximate each object of the dataset xi ∈ P̂ with a linear
combination of labeled objects Q̂. The linear combination is determined by the vector αi for each
object xi that is to be reconstructed. Thus note that this is a minimization over the matrix α, since
nP̂ objects need to be reconstructed with nQ̂ objects. The error in the approximation is weighed
by the l2 norm. In the second term each vector αi is regularized by the regularization parameter
λ used in the ridge regression model.

This indicates that the TED active learner will prefer samples a large norm, that point in the
direction of many samples of P̂ , so these samples can be reconstructed with small values of α.
In Figure 2.7 on page 27 an illustration is given of which samples will be selected by TED in a
linear kernel in 2D for samples generated by a single Gaussian distribution that is centered in the
origin. Observe that the chosen queries have large norm, and do not point in the same direction:
because of this they can be used to reconstruct the data P̂ by linear combinations with relative
small coefficients.

Note that we will perform most experiments in the Gaussian kernel. In a normalized kernel
such as the Gaussian kernel, the norm of each object is the same in the RKHS. Because of this
only the directions of the vectors in the RKHS will matter for the TED objective: TED will then
select the objects that point in the direction of many unlabeled samples.

2If a different kernel is used, this objective is still valid, but then the featurevectors and datamatrices will be in the
RKHS of the kernel K used for the learning algorithm.
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Figure 2.6: This figure illustrates the objective values of TED. The labeled objects are indicated by solid symbols
(which corresponds to the set Q̂), and unlabeled objects are indicated with outlines (P̂ ). The left plots show the
model output, the right plots show the variance of the prediction for each position. In the plot at the top a smaller
value of σ is used then in the middle plot. In the lowest plot the same σ is used as in the middle plot, but the
regularization parameter λ is increased. The TED active learner will choose samples in such a way the variance of
all samples of P̂ is as small as possible. In this figure this means as many samples should be ‘covered in black’ in
the plots at the right. From this we can deduce that the TED active learner will avoid similar samples in Q̂, and
that the TED active learner will select samples in Q̂ that are similar to many samples in P̂ .
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Figure 2.7: Illustration of chosen samples by TED in a linear kernel. These samples have the largest norm and are
(somewhat) orthogonal, and thus can be used to reconstruct the data most efficiently using linear combinations
according to Equation 2.10.

2.3.2. TED Generalization Bound
The bound in [7] assumes a Gaussian noise model. These assumptions are not appropriate for the
classification setting, since in this setting the labels are binary. Therefore in this chapter we give a
different novel bound that depends on the TED quantity. This bound is guaranteed to hold in the
agnostic setting and does not assume any specific noise model. This bound is more comparable to
the discrepancy and MMD bound. Before we give the theorem of this bound, we briefly discuss
the intuition behind the generalization bound.

In our active learning setting our goal is to minimize the squared error on the set P̂ . If the
model h is trained on the set Q̂, we can write this quantity of interest as:

LP̂ (f, h) = 1
nP̂
||fP̂ − H̄fQ̂||

2
2 (2.11)

Here we use fP̂ to indicate the vector of labels on the set P̂ , and the vector fQ̂ as the vector of
labels on the set Q̂. Using the analytical solution of the ridge regression model, the outputs of the
model h on the set P̂ are given by the vector H̄fQ̂. Here H̄ is the so called hat matrix of the ridge
regression model, see also Appendix H.

In the active learning setting we however do not know the vector fP̂ , which makes it impossible
to calculate Equation 2.11 in practice during active learning. Therefore, we consider a worst-case
scenario over all possible f , and then we obtain the following bound on the mean squared error:

LP̂ (f, h) ≤ max
f

1
nP̂
||fP̂ − H̄fQ̂||

2
2

This quantity is difficult to compute, since this is a maximization over many vectors f . In the
binary classification setting, we know that the label of each object is either +1 or −1. Then even
if we only maximize over fP̂ we need to consider 2n possibilities, where n is the number of objects
in P̂ . Thus the number of candidates of f that we need to maximize over is exponential in the
number of objects in the set P̂ , and therefore this computation is difficult.

To make the computation easier, we may assume that we are in the realizable setting, thus
f ∈ H. In this setting we can use the bound given in [8] to show that:

LP̂ (f, h) ≤ max
f∈H

1
nP̂
||fP̂ − H̄fQ̂||

2
2 ≤

Λ2

nP̂
TED(P̂ , Q̂)
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The work of [8] considers a different setting than this work, in Appendix D.1 we show how we
have adapted their bound to our setting.

How is it possible to derive this bound, and where does it come from? Recall that since f ∈ H,
the labeling function f is smooth. Recall that f generates the labels on the sets Q̂ and P̂ , and
therefore if the sets Q̂ and P̂ are more similar, the labels of fP̂ and fQ̂ are necessarily more
similar as well because of the smoothness conditions on f . Using the analytical solution of the
ridge regression model and these smoothness constraints on f we can quantify how well the model
performs on the set P̂ in a worst-case scenario.

In the agnostic setting we may have that f /∈ H. Using the techniques of [15] we can relax the
TED bound to conform to this setting. This novel generalization bound is given below:

Theorem 5 (Non stochastic TED generalization bound) Assume that for any x ∈ X and
h′ ∈ H that L(h′(x), f(x)) ≤ C, where we assume that f is a deterministic labeling function. We
can give the following generalization bound for the ridge regression model h trained on the set Q̂
with regularization parameter λ:

LP̂ (h, f) ≤ Λ2

nP̂
TED(P̂ , Q̂) + 2CηTED(P̂ , Q̂, f)

Where ηTED(f, P̂ ) is given by:

ηTED(P̂ , Q̂, f) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)|+ 1
nP̂
||H̄||1

∑
x∈Q̂

|f(x)− f̃(x)|


Where |H̄|1 is the p = 1 operator matrix norm of the hat matrix used to compute the predic-
tions on the set P̂ of the model h trained on the set Q̂ (see Appendix H) given by ||H̄||1 =
max1≤j≤nQ̂

∑nP̂

k=1 |H̄kj |.

This theorem gives an upper bound on the expected squared loss on the set P̂ of the ridge regression
model h trained on the set Q̂ with regularization parameter λ. Here the term ηTED(P̂ , Q̂, f)
measures the approximation error when f is approximated by a hypothesis f̃ ∈ H, which is similar
to the approximation term of the discrepancy and MMD bounds. The approximation term of the
TED bound only differs by the factor |H̄|1. Therefore we expect that the TED approximation
error is comparable in size to the discrepancy approximation error3. In the realizable case we have
ηTED(P̂ , Q̂, f) = 0 since in that case f ∈ H and no approximation is required.

Finally, similar to the discrepancy and MMD, if one is more interested in the performance of
the model on the distribution P , a Rademacher generalization can be combined with the bound
above to derive a bound on the performance on the distribution P . Since the set P̂ is an i.i.d.
sample from P , and since the set P̂ is relatively large, the error on P̂ is a good estimate of the
generalization error. Therefore, a small error on P̂ is desirable, since in that case the model will
likely generalize well.

2.3.3. Comparison with Discrepancy and MMD
There are four key differences of the TED bound compared to the discrepancy and MMD bound,
we discuss them in this subsection.

The first key difference is the form of the TED bound and its derivation. We have seen that the
generalization bounds of the discrepancy and the MMD bound the difference between the average
loss on the set Q̂ and P̂ . TED does no such thing: it directly bounds the squared error of the model
on the set P̂ . This indicates a completely different method is used to derive this bound. Note that
the MMD and discrepancy bound are straightforward to adapt to models that use different loss
functions. For TED this is not straightforward at all. Most models do not admit an analytical
3This factor |H̄|1 is likely only large if the model is very complex, since this factor is very large if the model
predictions can become very large, see also the definition of this matrix norm in Section 1.2
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solution required for bounds of this type. Furthermore the TED bound is especially derived for
the ridge regression model, it might not be possible to use the techniques that are required to
derive this bound for other models. This illustrates that TED is a less general bound.

The second key difference is that the TED bound is only valid for the model obtained after
training on Q̂, while the discrepancy and MMD bound are valid for any h ∈ H. Because the
TED bound holds only for this model, it might be a tighter bound or more informative, since the
discrepancy and MMD seem to be more general since they are valid for any h ∈ H. Furthermore,
TED explicitly uses the analytical solution of the model, and therefore the TED criterion depends
non-trivially on λ. The discrepancy and MMD bound only contain λ as multiplicative constant.
Because of this the discrepancy and MMD bound result in active learners that do not depend on
λ, while the active learning strategy of TED does depend on λ (see also Section 2.5). Therefore
the TED bound might be more informative for active learning.

Furthermore, the TED bound is not symmetric with respect to Q̂ and P̂ while the discrepancy
and MMD are symmetric with respect to Q̂ and P̂ . Here we argue that the TED bound is therefore
more desirable. To illustrate this consider two scenarios. Scenario one: we train on Q̂ and evaluate
on P̂ , and Q̂ ∈ P̂ . In the second scenario we train on P̂ and evaluate on Q̂, while still Q̂ ∈ P̂ . Since
Q̂ ∈ P̂ , we would logically expect to perform better in the latter scenario since in that case the
evaluation set is in the training set. In these situations the TED bound can be different for both
scenarios since TED(Q̂, P̂ ) 6= TED(P̂ , Q̂), where the first argument indicates the set trained on
and the second argument indicates the set evaluated on. The MMD and discrepancy will for both
these scenarios however give the same bound since they are symmetric measures, while TED will
likely return a tighter bound when the model is trained on P̂ than when is trained on Q̂. Since
TED can differentiate between these different cases the TED bound may be more informative.

Another important difference is the following. Recall that in deriving the discrepancy and MMD
quantity, we essentially maximized over all h ∈ H and over all possible labeling functions f̃ ∈ H.
In particular, in the worst-case scenario it is considered that h = −f̃ by the discrepancy and the
MMD. This worst-case scenario considered by the discrepancy and the MMD is very conservative.
In fact, in the realizable setting this worst-case scenario is impossible. The TED bound instead
only maximizes over f̃ ∈ H. The model considered by TED is obtained by using the analytical
solution to train on f̃ . Therefore, TED considers that in the worst case f̃ ≈ h. This worst case is
much more probable to occur in the realizable setting than the worse case h = −f̃ . Therefore, the
worst case considered by TED may be more informative than the worst case considered by the
discrepancy and the MMD generalization bounds. Therefore, the active learning strategy of the
discrepancy and the MMD might be overly conservative in choosing samples.

Finally, one may wonder if it is possible to relate the TED quantity to the discrepancy or MMD
quantity. However, observe that the TED quantity depends on the eigenvalues of the product
of the covariance matrix of the set P̂ and the inverse covariance matrix of the set Q̂ with an
additional regularization matrix (see equation D.2). The discrepancy and MMD quantities can
be characterized in terms of the eigenvalues of the matrix M , which depends on the difference
between the covariance matrices of the sets Q̂ and P̂ . Therefore such a comparison is difficult and
we have not been able to show a relation between these quantities.

2.4. Nuclear Discrepancy
In the previous section we have studied the TED quantity and its generalization bound. We have
argued that the TED bound might be more informative for active learning, since it considers more
realistic worst-case scenarios than the MMD and the discrepancy.

Inspired by the TED generalization bound and our results in Section 4.4, we propose a novel
discrepancy measure: the nuclear discrepancy. We show using a probabilistic analysis that this
quantity weighs the realistic worst-case scenario considered by TED more than the discrepancy
and the MMD. Therefore a bound in terms of the nuclear discrepancy might be more informative
for active learning, since it assigns more weight to more likely scenarios. We also give a non-
probabilistic generalization bound in terms of the nuclear discrepancy, and show that this bound
is actually looser than the MMD and discrepancy bound. This in contrast with our proposed
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discrepancy active learner, which was motivated by a tighter generalization bound. Using the
nuclear discrepancy we can confirm whether or not tighter generalization bounds will perform
better for active learning.

2.4.1. Motivation
First, we derive a generalization bound that holds in expectation. We will argue in this section
that such a bound will consider more realistic scenarios than the MMD and the discrepancy. This
generalization bound shows us which quantity might be relevant to characterize the performance
in average cases. We use this quantity to define the nuclear discrepancy in the next section.

The discrepancy measure is derived by taking the worst-case scenario over the models w and
w′, where the model w is trained during active learning and the model w′ is assumed to generate
the labels. This is done by defining a vector u = w − w′, and maximizing with respect to u. The
MMD uses a similar approach to calculate the worst-case loss function.

With no prior knowledge on w and w′, we could assume that u is a random vector. Actually,
we know in the realizable case that w ≈ w′, since w is trained on the labels that are generated by
w′, however without using the analytical solution of w this is difficult to characterize. Using the
closed form solution of w is possible, then we will likely create an active learner that is very similar
to TED. We are however more interested in deriving a bound that does not explicitly depends on
the analytical solution, since such a bound might be more broadly applicable.

Thus we assume u is a random vector. We can define a probability density over u and compute
a probabilistic generalization bound that holds in expectation. We aim to bound the same quantity
as the discrepancy and the MMD. Recall that both bound the quantity:

|LP̂ (w,w′)− LQ̂(w,w′)|

We discussed the motivation behind bounding this quantity in detail in Section 2.1.2. We bound
the same quantity in expectation with respect to u:

E
u

[
|LP̂ (w,w′)− LQ̂(w,w′)|

]
To compute this we can define a probability distribution over u = w − w′ that is for example

concentrated around zero (to indicate that w ≈ w′), such as a centered Gaussian distribution.
Instead, we give a bound that holds for any distribution over u, making the bound more general.

However, to make the bound easy to compute we make one simplifying assumption. That is
that each component ūi is independently and identically distributed, where ūi is the projection of
u on the normalized eigenvector vi of M corresponding to the eigenvalue λi. Essentially, all ūi are
the components of u in the basis formed by the orthonormal eigenvectors of M . We indicate the
vector u with respect to this basis as ū. Note that ū is equal to u up to a rotation.

What does the assumption mean? It means that we assume that an error in estimating w′
by w in each direction given by the eigenvectors vi is distributed in the same way and that these
errors in these directions are independent. Since in practice w ≈ w′, we have that u is concentrated
around zero. However, without using the analytical solution of w we cannot characterize in which
direction u will point. Therefore, we assume instead that all directions are equally likely.

This way we are likely to account for the scenario that w ≈ w′. Recall that the MMD and
the discrepancy instead consider worst-case scenarios for u and the loss function, which may not
capture the behavior that w ≈ w′, since u then will not be concentrated around zero.

This analysis leads to the following novel probabilistic generalization bound:

Theorem 6 (Probabilistic nuclear discrepancy generalization bound) We assume we are
in the realizable setting where all labels are generated by a hypothesis w′ ∈ H. This bound holds
for the model w that is trained on the set Q̂. We define u as u = w − w′, and we define ūi as
the projection of u on the eigenvector vi of matrix M corresponding to eigenvalue λi. Assuming
that all components of ūi are independently and identically distributed according to a distribution
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p(ūi), the following generalization bound holds in expectation:

Ē
u

[
|LP̂ (w,w′)− LQ̂(w,w′)|

]
≤ C̄

∑
i

|λi|

Where λi are the eigenvalues of the matrix M , and C̄ is a constant given by:

C̄ =
∫
ū2

1p(ū1)dū1

The proof of this theorem is given in Appendix E. Our probabilistic generalization bound
indicates that we should minimize all absolute eigenvalues of M during active learning if we care
about the performance on average and if we want to account for the case w ≈ w′.

The probabilistic assumptions required to derrive this bound may seem very strong. For ex-
ample in the realizable setting we know that w ∈ H and w′ ∈ H, thus we know that the norm
of u cannot exceed 2Λ. The independence assumption of all components ūi is for example not
compatible with the previous fact. However, including the bound on the norm of u in our prob-
abilistic generalization bound is difficult, and therefore we have applied this approximation. Our
average-case analysis, while a rough simplification, is likely to include the case w ≈ w′ more often
than the worst-case scenario of the discrepancy and the MMD, and therefore may perform better.

Recall that the MMD HS active learner minimizes the quantity (see Equation 2.8):

MMD(P̂ , Q̂) = 4Λ2
√∑

i

λ2
i

If we were to derive this quantity using a probabilistic analysis as given above, this would mean
that we would assume that u is more likely to point in the direction of eigenvectors corresponding
to large eigenvectors of M . We do not see why this would be likely, probabilistically, and therefore
we think the average-case analysis considered above where the distribution of u is concentrated
around zero is more appropriate. A similar argument illustrating the advantage of this probabilistic
generalization bound can be given for the discrepancy. The discrepancy assumes that the vector u
only points in the direction of the eigenvector that correspond to the largest absolute eigenvalue
of M . This also therefore does not assume w ≈ w′.

2.4.2. Non-Probabilistic Nuclear Discrepancy Generalization Bound
Inspired by our probabilistic analysis, we introduce the nuclear discrepancy quantity in this subsec-
tion. We show that this quantity upper bounds the MMD and discrepancy quantities. Afterward
we introduce a novel non-probabilistic generalization in terms of the nuclear discrepancy, and we
compare this generalization bound with the other generalization bounds given in this work.

Recall that the definition of the discrepancy is given by:

disc(P̂ , Q̂) = 4Λ2 max
i

(|λi|)

It is straightforward to show that:

4Λ2 max
i

(|λi|) ≤ 4Λ2
∑
i

|λi| (2.12)

We define the quantity on the right hand side of Equation 2.12 as the nuclear discrepancy, or
discN (P̂ , Q̂):

discN (P̂ , Q̂) = 4Λ2
∑
i

|λi| (2.13)

Given the probabilistic analysis in the previous subsection we expect that minimization of the
nuclear discrepancy quantity can lead to better results for active learning.
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The name nuclear discrepancy comes from the fact that this quantity can be calculated using
the nuclear matrix norm of M :

discN (P̂ , Q̂) = 4Λ2||M ||∗
Recall that since M and MK (the kernel version of M) share the same eigenvalues (see Appendix
B.1), the nuclear discrepancy can be directly applied to any arbitrary kernel by replacing the
eigenvalues λi in 2.13 by the eigenvalues of the matrix MK .

Observe that this quantity upper bounds the discrepancy quantity (see Equation 2.12):

disc(P̂ , Q̂) ≤ discN (P̂ , Q̂)

This quantity also upper bounds the MMD quantity if the MMD quantity takes the hypothesis
set into account, since:

discN (P̂ , Q̂) = 4Λ2
∑
i

|λi| ≥ 4Λ2
√∑

i

λ2
i = MMD(P̂ , Q̂)

This follows from the fact we can consider the MMD quantity as the l2 norm of a vector containing
all eigenvalues of M and the nuclear discrepancy quantity as the l1 norm of a vector containing
all eigenvalues of M . Since the l2 norm for vectors is always smaller than or equal to the l1 of a
vector, the nuclear discrepancy upper bounds the MMD quantity.

Since the nuclear discrepancy upper bounds the discrepancy, we can directly give the following
novel generalization bound based on the discrepancy generalization bound in Theorem 3:

Theorem 7 (Nuclear discrepancy generalization bound) Assume that for any x ∈ X and
h ∈ H that L(h(x), f(x)) ≤ C. Then given any hypothesis h ∈ H and a deterministic labeling
function f we have that:

|LP̂ (h, f)− LQ̂(h, f)| ≤ discN (P̂ , Q̂) + 2Cηdisc(P̂ , Q̂, f)

Where ηdisc(P̂ , Q̂, f) is given by:

ηdisc(P̂ , Q̂, f) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f̃(x)− f(x)|+ 1
nQ̂

∑
x∈Q̂

|f̃(x)− f(x)|


Recall that ηdisc(P̂ , Q̂, f) is the approximation error which comes from the fact that we ap-

proximated the label function f by a function f̃ ∈ H. Observe that this generalization bound is
looser than the discrepancy generalization bound (Theorem 3) and MMD HS generalization bound
(Theorem 4), since the nuclear discrepancy upper bounds the discrepancy and MMD HS quantity
and since the nuclear discrepancy depends on the same approximation error. Just as for the dis-
crepancy bound, if we are in the realizable setting we have that f ∈ H and thus ηdisc(P̂ , Q̂, f) = 0.
During active learning we cannot compute ηdisc(P̂ , Q̂, f) since we require all labels of the dataset
P̂ .

A comparison of this generalization bound with TED is not straightforward, because like the
discrepancy and MMD HS bounds, the generalization bound given above depends on different
quantities than the TED generalization bound. However, considering our probabilistic analysis
in the previous subsection, we have argued that the nuclear discrepancy bound is more likely
to account for the fact that w ≈ w′. This is similar to TED, which also assumes that w ≈ w′.
Therefore, we may expect that the nuclear discrepancy active learner will perform more similar
to the TED active learner.

In this section, we have introduced a new quantity: the nuclear discrepancy. We have shown
using a probabilistic analysis that this quantity will weigh realistic scenarios more than the MMD
HS and discrepancy quantity, similar to the TED active learner. Therefore, we argue that mini-
mization of this quantity could be more desirable for active learning. Unlike the TED bound, the
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nuclear discrepancy does not dependent on the analytical solution of the model, making it a more
general quantity. We have introduced a generalization bound in terms of the nuclear discrepancy,
and we have shown that the MMD HS and the discrepancy bound are tighter. However, will the
nuclear discrepancy perform worse because its bound is looser, or will it perform better because
it considers more realistic average-case scenarios? We investigate this issue in Section 4.5.

2.5. Active Learning Algorithms
In this section we briefly discuss how the bounds in the previous sections can be used to construct
active learning algorithms. We compare the performance of five active learning methods based on
the following bounds: the MMD, the MMD HS, the discrepancy, the nuclear discrepancy and the
TED active learner. See Table 2.1 for a summary of the bounds, their features and assumptions.

Each active learner minimizes an objective of the form obj(P̂ , Q̂) sequentially. The discrepancy
active learner minimizes the discrepancy, the MMD active learner minimizes the MMD, etc. . . All
active learners ignore the approximation errors in the bounds since these quantities cannot be
estimated during active learning, since to compute these terms we require the labels of the set P̂ .

Sequential minimization of the objectives is performed as follows. The active learner can only
select a sample from the unlabeled pool Û = P̂ − Q̂. The labeled set Q̂ can be empty initially.
In each iteration each possible query is added to the set Q̂ and the objective is computed. The
sample s∗ which minimizes the objective is selected for labeling by the active learner:

s∗ = arg min
s∈Û

obj(P̂ , Q̂ ∪ s)

Note that for all active learners the constants Λ or Λ′ do not need to be known. This is because
these appear in front of the objectives as multiplicative constants and therefore in the equation
above can be moved in front of the arg min: they do not influence which object is chosen by an
active learner.

Bound / strategy takes these properties of
the learning algorithm into account

Active learner Hypothesis set Loss Training procedure and Assumptions(kernel of model) regularization parameter
MMD 2 2 2 loss function g ∈ H ′
MMD HS* 2� 2 2 label function f ∈ H
Discrepancy* 2� 2� 2 label function f ∈ H
Nuclear

2� 2� 2 label function f ∈ HDiscrepancy*
TED 2� 2� 2� label function f ∈ H

Table 2.1: Overview of the bounds used to construct active learners. Active learners with a star (*) are novel active
learning methods proposed in this work. Note that for the MMD HS, the discrepancy and the nuclear discrepancy
the value of λ is taken into account to compute the bounds, however the active learning strategy is independent of
λ, while the active learning strategy of TED does depend on λ.





3
Experimental Setup

In this chapter we discuss the experimental setup in detail that is used to perform the experiments
in the next chapter.

For an overview of the datasets used in the experiments also refer to Figure 1.2. In our exper-
iments we use a train set (65%) and test set (35%). The train set corresponds to the set P̂ , the
labeled part of the train set is the set Q̂ ∈ P̂ . The active learner has no knowledge of the test set.
The train and test set are drawn randomly, and thus can be assumed to be sampled i.i.d. from P .
Unless otherwise specified we consider the case where the labeled set Q̂ is initially empty. After
each query, the labeled set is updated and the model is trained and evaluated.

We generate learning curves where the performance is plotted against the number of queries.
The performance is measured in terms of the mean squared error on the test set. For each active
learning experiment new training and test sets are generated. The experiments are repeated 100
times and the resulting learning curve is generated by averaging. The random active learner is ran
1000 times since it is cheap to evaluate. Error bars in learning curves represent the 95% confidence
interval of the mean and is computed using the standard error. During one experiment the active
learners can be compared since they share the same train and test set.

Often we summarize our results using tables as is done often in active learning. We use the
same approach as [10]. In these tables we count the wins, ties and losses when several methods
are compared. We use a paired two tailed t-test with p = 0.05 to compare the results of active
learning methods. This is allowed because the active learners share the same training and test
set. If a method significantly performs better than another method, this is counted as a win,
if a method performs significantly worse this is counted as a loss, if the methods do not differ
significantly this is counted as a tie. We compare the active learners each time after five queries.

In our experiments we actually measure the generalization error on a testset (an unseen set that
is not P̂ ) that is sampled from P . The bounds however do not give performance guarantees directly
on the distribution P . However as discussed in the previous chapter, standard generalization
bounds can be used to relate the performance on P̂ to the performance of P . The relation between
the performance on P̂ and P is known: namely the performance on P̂ generalizes to performance
on P if the model complexity is chosen appropriately. In case the model is too complex or not
complex enough, the model can overfit or underfit. We choose the hyperparameters of the model
in such a way to avoid over and underfitting as detailed further on in this chapter.

The active learning methods are evaluated on artificial data and on the real world datasets
shown in Table 3.1 on page 36. Most datasets originate from the UCI Machine Learning repository2,
the other benchmark datasets were collected by Gunnar Raetsch and were repackaged by Gavin
Cawley and Nicola Talbot3. We limit ourselves to binary classification datasets. The datasets
1The original database of the Wisconsin Breast Cancer Databases from UCI
2Available at http://archive.ics.uci.edu/ml/
3Available at http://theoval.cmp.uea.ac.uk/~gcc/matlab/#benchmarks
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Dataset Objects Positive class Negative class Dimensionality Pool size
vehicles 435 218 217 18 283
heart 297 137 160 13 193
sonar 208 97 111 60 135
iris 100 50 50 4 65
thyroid 215 65 150 5 140
ringnorm 1000 503 497 20 650
ionosphere 351 126 225 33 228
diabetes 768 500 268 8 499
twonorm 1000 500 500 20 650
banana 1000 439 561 2 650
german 1000 700 300 20 650
splice 1000 541 459 60 650
breast1 699 458 241 9 454

Table 3.1: Characteristics of evaluation datasets.

vehicles and iris are actually multiclass datasets. We convert vehicles into a two class dataset
by only comparing the classes saab and bus. To convert iris to a binary dataset we took the
classes virginica and versicolor, since these classes are not linearly separable and therefore
pose a difficult classification problem. We use these multiclass datasets because they are either well
known or are used in other active learning works as well [6, 21, 22]. We subsampled the datasets
ringnorm, twonorm, banana and splice to contain 1000 objects. All datasets are preprocessed
so each feature has zero mean and a standard deviation of one. The active learners can request
up to 50 labels maximally, except for the dataset iris since the set P̂ is so small, we limit the
active learner to 40 samples. In case the pool P̂ is too small the differences between active learning
methods become harder to distinguish because they have less choice in selecting samples.

In case we use real world data we use the Gaussian kernel for the learning algorithm because for
these datasets it is unlikely f is well modeled by a linear function. The bounds in this study are the
strongest if the labeling function f is well approximated by the hypothesis set, and therefore we
use the Gaussian kernel since it is a universal kernel: it can approximate bounded and continuous
labeling functions up to arbitrary precision in the sense of the infinity norm[23]. See also the
discussion in Appendix G for more details.

We now describe how we set the hyperparameters. In most works such as [9] the parameters of
the model and kernel are chosen by cross validation on the whole dataset. We avoid this because
we have observed that if parameters are chosen in this way the model can overfit. This happens
because of the following. The number of samples on which the model is trained is much larger in
cross validation than in the active learning experiments. For example, when using 10-fold cross
validation the model on the dataset ringnorm is trained with 900 samples. However in our active
learning experiments we do not select more than 50 samples. Therefore these parameters might
not work optimally with much less labeled samples. Therefore we use the following procedure to
optimize the hyper parameters instead.

We repeat the following procedure multiple times. We randomly select 25 examples from the
dataset and label these. We train a model on these samples and evaluate the mean squared error
on all unselected objects.

The hyper parameters that give the best performance after averaging are used in the active
learning experiments. We use 25 examples since this corresponds with the mean number of samples
selected during an active learning experiment. In accordance with the popular LIBSVM [24] package
we choose the regularization parameter from the set λ ∈ {10−15, 10−14.6, 10−14.2, . . . , 105} and
we choose the kernel bandwidth from the set σ ∈ {10−5, 10−4.625, 10−4.25, . . . , 1010}. However,
according to [25] it is useful to use quartiles of ||xi − xj || to estimate σ as well. Therefore we also
include following sets of quartiles: {0.1, 0.2, . . . , 0.9} of ||xi − xj || for parameter selection of σ.
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The above procedure to select hyperparameters is impossible in practice when using active
learning since we start without any labeled data. Choosing the optimal parameters in active
learning remains an open problem. Our procedure at least ensures that during active learning
experiments no overfitting occurs.

To make the comparison between the active learners more meaningful, we often compare our
active learners in the realizable setting. In this setting the bounds do not depend on any approxi-
mation terms as was shown in the previous chapter, and therefore these approximation terms do
not influence our results. This way the bounds only depend on the quantities that are minimized
by the active learners, and because of this the comparison of the active learners based on these
quantities becomes more straightforward.

To make the datasets conform to the realizable setting, we fit a model to the whole dataset
and use the model output as labels (similar to the approach of [4]). Sometimes we will refer to
this model as the ‘oracle model’. The parameters of the oracle model were determined using the
procedure described above and are thus the same as the parameters used for the model that is
trained during the active learning experiments. The model trained during active learning and
the oracle model have to share the same parameters, otherwise we may not be in the realizable
setting. Since we optimized the parameters of this oracle model, this model will likely have a small
mean squared error, and thus the labeling function in the realizable setting remains similar to the
original labeling function of the agnostic setting. Effectively this turns the classification datasets
into a regression datasets without noise. In the agnostic setting we use the original binary labels
of the dataset.

We use (kernel) ridge regression as learning algorithm without intercept term and class priors.
We revisit the influence of this model choice in the discussion in Section 5.2. For all details and
settings on how to reproduce the experiments in the next chapter, see Appendix L. Especially
the experiments using artificial experiments may deviate from the experimental setup described
above. However all benchmark experiments on real world data conform to the settings described
above.





4
Experiments and Results

In this section we perform multiple experiments to answer the research questions posed in the
introduction. Below we give a preview of the experiments we will perform.

In Section 4.1 we illustrate why label independent active learners can perform better than
random sampling. We characterize when this is the case and explain the trends observed in the
active learning curves.

In Subsection 2.1.4 we showed how the MMD can be adapted to take the hypothesis set into
account. We investigate if this is useful for active learning in Section 4.2 using artificial and real
world data in both the realizable and agnostic setting.

In Section 4.3 we perform the most important experiments to answer three of our research
questions. We compare the performance of the MMD, the discrepancy and the TED active learner
in the realizable setting on real world and artificial data. This comparison is the most meaningful
since in this setting the approximation errors in all generalization bounds vanish.

First we investigate the differences between the query strategies of discrepancy, MMD and
TED using an artificial dataset. We show that the MMD and discrepancy active learners query
more redundant samples than TED. This generalizes to our benchmark datasets as well: TED
consistently outperforms these other methods in the realizable setting.

In this section we also investigate the question: does a tighter bound guarantee better active
learning performance? We compute and compare the bounds of all methods.

Furthermore, in this section we answer the main research question of this work: does the
discrepancy active learner improve upon the MMD active learner as suggested by our theoretical
analysis? In this setting we find the surprising result that the MMD active learner generally
outperforms or matches the performance of the discrepancy active learner, while we have shown
that the discrepancy generalization bound is tighter in the realizable setting.

In Section 4.4 we investigate these surprising results concerning the MMD and the discrepancy.
We show using two artificial datasets that the discrepancy active learner can have trouble selecting
non-redundant samples while the MMD does not suffer from this behavior. To explain this behavior
we investigate the worst-case scenarios that are considered by the MMD and the discrepancy. Using
this analysis we can explain the surprising results concerning the MMD and the discrepancy. These
insights also motivate the nuclear discrepancy active learner.

In Section 4.5 we benchmark the nuclear discrepancy on real world data in the realizable
setting. Recall that the nuclear discrepancy has a looser generalization bound. This section can
thus once more confirm that tighter generalization bounds do not relate to better results in active
learning.

In Section 4.6 we study all active learning strategies in the agnostic setting. We compare the
agnostic and the realizable setting and show that in most cases the performance in the realizable
setting is indicative for the performance in the agnostic setting.
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4.1. Why Do these Methods Work?
Why and in what case do these non-adaptive active learning methods work? This is the question
we aim to answer in this section. Furthermore we discuss the trends typically observed in active
learning curves and try to explain them.

We answer these questions using a one dimensional dataset, displayed in Figure 4.1a (top). The
dataset consists of 300 objects divided over N clusters. We use a Gaussian kernel for the learning
algorithm. It is extremely likely that random sampling chooses objects for labeling from the same
clusters multiple times, see Figure 4.1a (middle) for an example of queries made by random
sampling. For N = 9 the chance of random sampling discovering the 9 clusters with 9 samples is
8
9 ×

7
9 × . . . ×

1
9 ≈ 1 × 10−3, which is approximately a chance of 1 in 1000. The active learners

studied in this work try to approximate the empirical labeled distribution Q̂ with the empirical
distribution of the whole dataset P̂ in some sense. For this dataset, this leads these active learners
to select one sample from each cluster, see Figure 4.1a (bottom). For this experiment we used the
TED active learner, but using the discrepancy and MMD active learner gives similar results.

Another way to look at this result is the following. All active learners discussed in this work
assume the labels are generated by a model from the hypothesis class. Because of this, the labeling
function is assumed to be smooth. Therefore choosing one example from a cluster gives us a lot of
information about the labels of the neighboring objects in that cluster. The active learner therefore
chooses to sample all 9 clusters, since this will give the most information about all objects in all
clusters. Thus the active learners aim to sample influential samples first. Furthermore, the active
learners avoid choosing similar samples if possible: the active learners aim to avoid redundancy in
the labeled dataset Q̂.

Because of this behavior of the active learners, the performance of the active learners is initially
much better than random sampling until a point where all clusters are discovered, see the learning
curve in Figure 4.1b. After this point, the performance difference between random and active
learning will become smaller since random sampling will over time discover all clusters as well.
These trends (the initial dip in the learning curve) are observed for real world datasets as well.

We see that the dip in the curve depends on the value N , the number of clusters. Increasing
the number of clusters will benefit the active learner: because there are more clusters, it will take
random sampling longer to discover them all. The more clusters there are, the longer the initial
phase of the active learner where its performance is increasing with respect to random sampling,
because it will need more queries to discover all clusters. This indicates that if the distribution P
or its empirical sample has more modalities (in terms of the distance measure σ of the Gaussian
kernel) these active learners have a larger advantage over random sampling.

Finally, we illustrate what happens if there is non-influential data as well. We use the same
dataset as before, with N = 9 centers. However, now we distribute 300 samples over the first 3
clusters, and we distribute 30 samples over the last 6 clusters. The dataset is illustrated with the
histogram in Figure 4.2 (top). We examine the first 3 queries. What we observe is that random
sampling might sample one of the clusters with little samples, see Figure 4.2 (middle). The chance
that this happens is approximately 1−( 300

330 )3 ≈ 75% in this example. Selecting one of these samples
is undesirable, because if the sampled cluster has little samples, selecting a sample from one of
these clusters will give us little information about the majority of all unlabeled objects. Selecting
data from these small clusters therefore likely decreases the generalization error only little.

The active learners in this work sample will sample the most influential objects first, see Figure
4.2 (bottom). The active learners sample these dense clusters first, because these labeled samples
give the most information about all unlabeled objects.

These artificial experiments explain why active learning using these methods is beneficial. The
active learning methods in this work aim to find ‘influential’ examples and samples these first
and avoid selecting redundant samples. The influence of a labeled sample depends on the kernel
of the model: for the Gaussian kernel this means if samples are close (as measured by the kernel
bandwidth σ) they influence each other’s labels more. It however requires that the labeling function
of the dataset is well approximated by the hypothesis class of the model.
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Figure 4.1: a) Ncenters dataset, N indicates the amount of clusters (top). Circles and triangles indicate positive
and negative class, respectively. Grey crosses indicate unlabeled samples. Random sampling doesn’t always directly
find all relevant clusters (middle), while the studied active learning methods do (bottom). b) Learning curves of
active learner performance compared to random sampling with varying values of N.
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Figure 4.2: In this example we use the same dataset as in Figure 4.1a with N = 9, the number of samples in each
cluster is displayed in the histogram (top). Random sampling might query objects in clusters with little samples
and therefore gains little information about the labels of all unlabeled objects (middle). The studied active learners
choose the most influential examples first (bottom).
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4.2. Is It Useful to Take into Account the Hypothesis Set and
Loss of the Learning Algorithm?

In the last subsection we saw why these active learning methods provide benefits compared to
random sampling: in this section we will focus on the MMD active learning method. In Section
2.1.4 we showed how the MMD can be adapted to take the hypothesis set and loss into account:
meaning how the kernel for the computation of the MMD should be chosen based on the kernel
and loss of the learning algorithm. In this section we answer the question: is it useful to take the
hypothesis set and loss into account for active learning using the MMD? We first show using an
artificial example what can go wrong if we don’t take the hypothesis set and loss of the learning
algorithm into account when using MMD for active learning. Finally, we validate our hypothesis
that taking the hypothesis set and loss into account is beneficial on real world data in the realizable
setting and agnostic setting.

4.2.1. Artificial Dataset
To demonstrate the benefit of taking the hypothesis set and loss of the model into account we
use the artificial dataset in Figure 4.3a. We use a linear kernel for our learning algorithm and
we assume we are in the realizable setting. The majority of all samples are in the left and right
clusters. The selected samples should give our model some information about the labels of these
samples. There are 3 other samples in the middle of the dataset placed exactly on the line x = 0.
These samples are unimportant for learning our model since they all have a zero x-component,
thus will provide no information about the labels of the samples in the dense clusters.

We illustrate what can go wrong if the hypothesis set and loss is not taken into account by
looking at the first example that is chosen for labeling by all methods. We use two MMD active
learners. The first MMD active learner, MMD median, does not take the hypothesis set into
account. For MMD median we use a Gaussian kernel where σ is set to the median distance in the
dataset as suggested by [14]. For this dataset σmedian ≈ 2.2. The second MMD active learner, MMD
HS, uses a quadratic kernel and thus takes the hypothesis set and loss into account according to
our analysis in Subsection 2.1.4. We also compare with the discrepancy and TED active learners,
which both naturally take the hypothesis set and loss of the model into account.

The objective values for all active learners for all samples are shown in Figure 4.3b1. The active
learners will select the sample with the lowest objective. Because the samples on the line x = 0
are relatively close to all samples, these samples are judged to be most informative for MMD
median. However, this fails to take into account the informativeness of these samples in the kernel
of our learning algorithm. Therefore the sample selected by MMD median in the first iteration
is suboptimal. The other methods, MMD HS, discrepancy and TED, that do take into account
the hypothesis set and loss of the learning algorithm, do detect that these central samples are not
informative.

It is possible to perform a similar experiment with this dataset with a model that uses a
Gaussian kernel, but where the MMD uses a different value of σ than σ√

2 as suggested by our
theoretical analysis in Subsection 2.1.4. If for example the MMD is calculated with a too large
value of σ (such as the median considered here), it would sample the objects on the y-axis. If our
model instead uses a value of σ which is much smaller, this query might not be informative at all
since it’s too far away from the clusters.

The reverse is also true: for a model with a large σ the objects on the y-axis are informative
for both clusters and in this case these would be the best objects to query. If in this case a small
σ is used to compute the MMD the MMD will prefer samples from the clusters themselves, while
a central example would be more informative for the whole dataset.

In conclusion: we have illustrated using this artificial example what can go wrong if the hy-
pothesis set and loss is not taken into account for the MMD in active learning.

1Note that the TED objective values are capped, originally the two longest bars extended to objective values of 80
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Figure 4.3: a) Artificial dataset. The labels are irrelevant for this example. The samples in the center are exactly
placed on the line x = 0. b) The objective values for the active learners. The active learners all select the object
with the smallest objective value. All methods prefer an informative sample from one of the clusters, except MMD
median, which does not take the hypothesis set into account, and therefore does not notice the samples in the center
are not informative for the model.

4.2.2. Real World Data
We now will evaluate whether taking into account the hypothesis set and loss is useful for active
learning on real world data. We consider two settings: the realizable case, where f ∈ H, and
the agnostic case, where f /∈ H. We evaluate on the datasets listed in Table 3.1 and we use the
Gaussian kernel for the learning algorithm and the MMD.

Our theoretical analysis in Section 2.1.4 suggests to set σMMD = σRR√
2 in order to take the

hypothesis set and loss into account, where σRR is the kernel width used by the learning algorithm.
We call this active learner MMD HS for hypothesis set. A different obvious choice is to choose
σMMD = σRR as discussed in Section 2.1.3, we call this active learning method MMD RR, since
here the same bandwidth is used for the MMD and the ridge regression model. We also use an
MMD active learner where we set σMMD to the median distance between all samples in the dataset
as suggested by [14], we call this active learner MMD median. This active learner does not take
the hypothesis set and loss into account at all.

First we compare these three methods in the realizable case where f ∈ H. We use the method
described in Chapter 3 to make the datasets conform to this setting. In this case the assumptions
of the bound for MMD HS are satisfied. For all datasets we have σRR > σRR√

2 and σmedian >
σRR√

2 ,
and therefore the assumptions of the MMD bound may not be satisfied if σRR or σmedian are used
to compute the MMD since these bounds assume that the loss function is too smooth. Therefore
these methods may perform worse.

Some illustrative learning curves are shown in Figure 4.4 on page 46, for all learning curves
see Figure K.1 in the appendix. To summarize the results on all datasets we use a paired two
tailed t-test with p = 0.05. We count the number of wins, ties, and losses for the method MMD
HS compared to MMD median and MMD RR, the results are shown in Table 4.1 on page 45.

In these experiments the active learner MMD HS seems to perform better on most datasets
than the other MMD active learners: on vehicles, sonar, ringnorm, diabetis, twonorm, banana,
german and breast it almost always has a lower mean squared error, see Table 4.1. Only on the
datasets thyroid and ionosphere in the beginning MMD HS performs worse, but later in the
active learning process it matches the performance of the other methods, see also Figure 4.4. MMD
HS seems to have a slightly larger advantage over MMD median than over MMD RR. This is to be
expected, since MMD RR has a value of σ which is generally closer to the value of σ used by MMD
HS, and therefore MMD RR may make smaller errors when approximating the true loss function.
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We find it quite surprising that MMD HS actually can outperform MMD RR significantly, given
that the values of σ are so close.

However, it may be expected that MMD HS performs better, since in this experiment its
assumptions are exactly satisfied. To verify that taking the hypothesis set and loss into account
is also useful on real world data we perform the same experiment in the agnostic case where we
use the original binary labels of the datasets. Some resulting learning curves are shown in Figure
4.5 on page 47 and we use the same method to summarize the results on all datasets in Table 4.2.
For all learning curves see Figure K.2 in the appendix.

In the agnostic case we see that the advantage of MMD HS is generally smaller, which is to
be expected since in this case the assumptions of the MMD bound do not strictly hold anymore.
Yet it still clearly outperforms the other methods on the ringnorm and banana dataset — even
when compared to MMD RR which uses a value of σ that is very similar. MMD HS still performs
slightly worse on ionosphere and thyroid in the beginning of the active learning experiments as
in the realizable case. On most other datasets MMD HS has largely lost its advantage and now
performs similar to the other methods as can be seen in Table 4.2. This can be seen in the learning
curves as well. For example on sonar MMD HS loses a little of its advantage, and on the dataset
german it completely loses its edge, to see this compare Figure 4.4 and 4.5.

We can conclude the following. Taking the hypothesis set and loss into account is more im-
portant on some datasets and less important for others in a real world setting. The advantage of
taking the hypothesis set into account is the largest in the realizable setting. Even in case the same
value of σ is used for the model and the MMD, it is more beneficial to choose σMMD according to
our theoretical analysis as σMMD = σRR√

2 .
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Dataset MMD HS vs MMD median MMD HS vs MMD RR σRR σmedian
vehicles 2/8/0 2/8/0 5.3 5.3

heart 5/5/0 10/0/0 5.9 5.0
sonar 10/0/0 9/1/0 7.1 10.2
iris 4/4/0 4/4/0 2.3 2.3

thyroid 0/8/2 0/8/2 1.7 1.7
ringnorm 10/0/0 10/0/0 1.8 6.2

ionosphere 0/6/4 0/6/4 4.7 7.8
diabetes 10/0/0 6/4/0 3.0 3.6
twonorm 10/0/0 8/2/0 5.3 6.2
banana 10/0/0 10/0/0 0.6 1.8
german 10/0/0 9/1/0 4.2 6.0
splice 0/9/1 0/10/0 9.5 10.9
breast 9/1/0 10/0/0 4.2 3.6

Table 4.1: Win / tie / loss counts for MMD HS versus MMD median and MMD RR during the whole active learning
process in the realizable setting where f ∈ H.

Dataset MMD HS vs MMD median MMD HS vs MMD RR σRR σmedian
vehicles 1/9/0 1/9/0 5.3 5.3

heart 0/10/0 1/9/0 5.9 5.0
sonar 4/6/0 6/4/0 7.1 10.2
iris 1/6/1 1/6/1 2.3 2.3

thyroid 0/8/2 0/8/2 1.7 1.7
ringnorm 10/0/0 10/0/0 1.8 6.2

ionosphere 0/6/4 0/6/4 4.7 7.8
diabetes 2/8/0 1/9/0 3.0 3.6
twonorm 2/8/0 2/8/0 5.3 6.2
banana 9/1/0 10/0/0 0.6 1.8
german 0/10/0 0/10/0 4.2 6.0
splice 0/9/1 0/9/1 9.5 10.9
breast 0/8/2 6/4/0 4.2 3.6

Table 4.2: Win / tie / loss counts for MMD HS versus MMD median and MMD RR during the whole active learning
process in the agnostic setting where f /∈ H.
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Figure 4.4: Comparison between MMD HS which takes the hypothesis set into account according to our theoretical
analysis and MMD median and MMD RR which do not on six benchmark datasets in the realizable setting
where f ∈ H. For all learning curves see Figure K.1 in the appendix.
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Figure 4.5: Comparison between MMD HS which takes the hypothesis set into account according to our theoretical
analysis and MMD median and MMD RR which do not on six benchmark datasets in the agnostic setting where
f /∈ H. For all learning curves see Figure K.2 in the appendix.
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4.3. Performance Comparison in the Realizable Setting
In the last section we focused on the individual active learning method of the MMD. In this section
we move on towards comparing the performance of the MMD, the discrepancy and the TED active
learner. We defer the comparison with the nuclear discrepancy to Section 4.5. We perform this
comparison in the realizable setting since this is the most meaningful setting to study the behavior
of the generalization bounds, since in this setting the approximation errors of all bounds vanish
and all behavior is captured by the main term of the bounds which is minimized by the active
learners. We answer three of our posed research questions including the main research question of
this work. In the next section we introduce the nuclear discrepancy active learner.

We begin our investigation on an artificial dataset, where we illustrate the differences in the
sampling strategy of the discrepancy and MMD compared to TED. Afterward we compare their
performance on real world data in the realizable setting. We perform these experiments to gain
insight in how the MMD and discrepancy compare with the TED active learning strategy. Using
this experiment we answer our main research question: will our introduced discrepancy active
learning strategy improve upon MMD active learning as suggested by our theoretical analysis?
Finally we explicitly compute the values of the generalization bounds and we investigate if a
tighter bound guarantees better active learning performance.

4.3.1. Artificial Dataset
To illustrate the differences between the discrepancy and the MMD compared to TED we use an
artificial dataset. We first describe the dataset and setting and afterward discuss the results.

In this setting we use a linear kernel. The artificial dataset is eight dimensional and contains
eight clusters. The location of cluster one is given by [1, 0, 0, 0, 0, 0, 0, 0], the location of cluster
two is given by [0, 1, 0, 0, 0, 0, 0, 0], etc. . .. All objects within a cluster share the same label and
position. The dataset contains 510 objects, and the number of objects in cluster i is 2i. This dataset
is illustrated in Table 4.3. We call this dataset the ‘ratio dataset’.

We consider the realizable setting where the labeling function f ∈ H. For this dataset, MMD
HS (using a quadratic kernel) and the discrepancy choose exactly the same objects. Therefore in
our results we only display the performance of the discrepancy active learner and the TED active
learner.

We use a small regularization parameter. To perform optimally on this dataset, with the
knowledge that f ∈ H (as all methods assume), an active learner should sample each cluster once,
because then it can reconstruct f (almost2) perfectly.

This corresponds exactly to the strategy of TED: in the first eight iterations all eight clusters
are sampled, in order of the number of objects in each cluster. Thus the first eight selected objects
are in the clusters: 8,7,6,5,4,3,2,1. Therefore TED performs optimal on this artificial dataset.
See also Figure 4.6a on page 50 for the selected samples of TED after eight iterations and the
learning curve of TED in Figure 4.6b.
2Because of the small regularization term it is impossible to reconstruct f perfectly.

Cluster Number of objects Relative frequency
1 2 0.0039
2 4 0.0078
3 8 0.0157
4 16 0.0314
5 32 0.0627
6 64 0.1255
7 128 0.2510
8 256 0.5020

Table 4.3: Description of the ratio dataset.
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To understand the behavior of TED, we interpret the TED objective using Equation 2.10 given
in Subsection 2.3.1. For small values of λ, the approximation error will play the largest role in the
TED objective, determining which object will be labeled. Initially when starting with an empty
labeled set none of the objects in P̂ can be reconstructed. The reconstruction error for objects in
cluster eight will be the largest (since these objects are in the majority), so first one of these objects
will be sampled. After this query, the objects in cluster eight can be reconstructed perfectly and
thus the TED objective is decreased the most. After this, TED will request the label of an object
from cluster seven (since these objects are now in the majority and since these objects cannot be
approximated), and so on.

In Figure 4.6a and Figure 4.6b we observe that the discrepancy (and thus also the MMD)
perform suboptimal, we now explain this behavior. Recall that the discrepancy active learner will
try to make the covariance matrices 1

nX
TX of the sets P̂ and Q̂ similar, see Equation 2.6 in

Subsection 2.2.1. Recall that the MMD active learner also aims to accomplish this, see Equation
2.8 in Subsection 2.2.3. To make the covariance matrices similar, the discrepancy and MMD active
learner will try to select queries so that the ratios of the clusters in Q̂ are equal to the ratios of P̂
as displayed in Table 4.3. This can be observed in Figure 4.6a and Figure 4.6c by noting that the
histogram of the discrepancy resembles the histogram of the dataset. Therefore the discrepancy
and the MMD will sample clusters with many objects multiple times before sampling all clusters.
In the realizable setting, these samples are redundant since the label is deterministic (as also
assumed by the discrepancy and MMD bound). Therefore, the discrepancy and the MMD active
learner perform suboptimal on this artificial dataset.

TED thus samples the feature space more aggressively and therefore is likely to perform better
in the realizable setting. It is noteworthy that the discrepancy and MMD active learner query
redundant samples given that both corresponding generalization bounds assume the labels are
deterministic. This experiment suggests that approximating the sampling ratios of P̂ may not be
important in the realizable setting.

Now we briefly comment on the behavior of TED after eight queries. After selecting eight
examples TED will focus on minimizing the regularization term in Equation 2.10, since the ap-
proximation term will be small since all objects can be reconstructed perfectly. Because cluster
eight is in the majority it has the biggest influence on the regularization term. To reduce the
regularization term TED samples another object from cluster eight, since then the objects in clus-
ter eight can be reconstructed using two objects from Q̂ and thus the regularization term will
be smaller. In the end this will cause TED to also select objects somewhat proportionally to the
ratios of the whole dataset just like the discrepancy, as can be seen in Figure 4.6c.

For larger values of λ the ratios in the selected sample Q̂ of TED change. The larger the regu-
larization parameter, the more important dense clusters become. This is because the regularization
term in the TED objective will play a larger role. This is illustrated in Figure 4.6d. So for larger λ
TED queries more redundant samples, and in these cases the discrepancy active or MMD active
learner can perform better in the realizable setting. However λ is typically quite small in practice,
and therefore it is more likely that the discrepancy active learner will choose more redundant
samples than the TED active learner.
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Figure 4.6: Results on the ratio dataset.
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4.3.2. Real World Data
In the artificial example in previous subsection we saw that TED outperforms the discrepancy and
the MMD because it samples the feature space more aggressively. In this subsection we benchmark
their performance on real world data in the realizable setting to see if this holds for real world data
as well. We also compare the MMD and discrepancy and answer our main research question: can
the discrepancy improve upon the MMD as suggested by our theoretical analysis? Furthermore,
since in this setting the approximation errors vanish and all bounds are guaranteed to hold, we
look at the explicit values of the generalization bounds to see which bounds are tighter. Finally
we investigate if the tightness of the bounds can tell us something about which active learner
performs better.

Since we found that taking the hypothesis set and loss into account is generally favorable, we
only compare the MMD HS active learner with the other methods and do not include the other
MMD active learners (discussed in Section 4.2) in this comparison.

Some illustrating learning curves are shown in Figure 4.7 on page 52, all learning curves can
be found in Figure K.3 in the appendix. We summarize the results using a paired two tailed t-test
with p = 0.05 in Table 4.4.

Dataset TED vs Disc TED vs MMD HS Disc vs MMD HS
vehicles 9/1/0 9/1/0 0/10/0

heart 5/5/0 4/5/1 0/3/7
sonar 9/1/0 3/7/0 0/1/9
iris 8/0/0 8/0/0 0/8/0

thyroid 10/0/0 10/0/0 0/10/0
ringnorm 10/0/0 10/0/0 0/0/10

ionosphere 10/0/0 10/0/0 0/0/10
diabetes 9/1/0 8/2/0 0/9/1
twonorm 10/0/0 3/4/3 0/1/9
banana 9/1/0 9/0/1 0/3/7
german 10/0/0 10/0/0 0/1/9
splice 9/1/0 9/1/0 1/9/0
breast 10/0/0 10/0/0 1/0/9

Table 4.4: Win / tie / loss counts comparing MMD HS, discrepancy and TED. We see TED performs the best in
the majority of all experiments and the discrepancy performs the worst.

Observe that for some datasets the performance with little labeled samples seems very unstable,
see for example the active learning curves on the datasets german and ionosphere. It is unclear
what causes this behavior which seems to be consistent, since these results remain after averaging.

We observe that TED outperforms the discrepancy and MMD HS active learner consistently
for all datasets: if we look at the learning curves we observe that the TED learning curve is
almost without exception lower than the other learning curves. From the table we observe that
TED outperforms the discrepancy significantly for all datasets except the dataset heart, and
TED outperforms the MMD HS significantly for all datasets except heart and twonorm. TED
is almost never outperformed significantly by other methods. We can explain this behavior using
the artificial experiment we performed in the previous subsection: TED chooses samples more
aggressively, and the discrepancy and the MMD HS query more redundant samples.

Surprisingly we observe that the discrepancy performs significantly worse for 8 out of the 13
datasets compared to the MMD HS active learner. For other datasets it matches the performance
of MMD HS, but it almost never obtains better performance. The most notable example is the
performance of the discrepancy on the ringnorm dataset where it even performs significantly worse
than random sampling for queries 10 to 25, while other methods perform significantly better than
random sampling. In Section 2.2.3 we showed that the discrepancy always results in a tighter
generalization bound. Surprisingly, this does not imply better active learning performance. We
revisit these surprising results later in this subsection.
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Figure 4.7: Results on six benchmark datasets for the realizable case where f ∈ H. TED often performs the best
while the discrepancy often performs the worst. See Figure K.3 in the appendix for all learning curves.
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Figure 4.8: The values of the generalization bounds on the performance of the trained model during active learning
on the set P̂ for the realizable setting where f ∈ H for three illustrating datasets. In this setting the bounds are
guaranteed to hold. See Figure K.4 in the appendix for the results on all datasets.

How about the bounds for TED, MMD HS and the discrepancy? Which bounds are tighter
and is this informative? The average value of the bounds for all active learners during some of the
active learning experiments are shown in Figure 4.8, for all results see Figure K.4 in the appendix.
Observe that the discrepancy bound is tighter than the MMD HS bound as expected. Surprisingly
the TED bound is not always tighter than the discrepancy or MMD HS bound. We expected that
the TED bound would be tighter, since it is less general bound: it only holds for the trained model,
and takes the loss, hypothesis set and regularization parameter into account. TED also samples
more aggressively but this is also not reflected in the tightness of the bound. Which bound is
tighter seems to be dataset dependent and dependent on the amount of queries. The general trend
is that the TED bound is tighter for a small amount of labeled examples, while the discrepancy
bound seems to be tighter for a large number of labeled examples. This behavior remains difficult
to explain, since the TED and MMD HS bounds are difficult to compare since they depend on
different quantities, see also our discussion in Subsection 2.3.3.

This once more confirms that tightness of the bound does not correlate well to performance
in active learning. While for many datasets the TED bound is not the tightest, the TED active
learner performs best for most datasets.

Observe that the bound on the mean squared error are quite loose. For all datasets the bounds
are much larger than 1, while the mean squared error is typically smaller than 1 on the testset
for all datasets for all number of queries. The bounds are loose because the value of λ is typically
small, and therefore the bounds become quite weak because of their dependence on Λ2 = 1

λ . This
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Figure 4.9: The average value of the discrepancy between the sets P̂ and Q̂ during active learning for the MMD
HS and discrepancy active learner. We see that on average it’s possible for the MMD HS active learner to obtain a
lower discrepancy on these datasets, while MMD HS does not aim to minimize the discrepancy.

may explain why a tighter bound does not guarantee better performance: the bounds are too loose
for their relative ‘tightness’ to matter.

Finally, to gain more insight in our surprising results concerning the MMD HS and the dis-
crepancy active learners, we can compare the value of the discrepancy between the sets P̂ and
Q̂ for both active learners. We would expect that the discrepancy active learner will obtain a
minimal discrepancy, since this is explicitly minimized by this active learner. On the datasets
sonar, thyroid, ionosphere and breast we observe however that the MMD HS active learner
actually can attain a lower discrepancy value, see Figure 4.9. In the next section we investigate
the differences between the MMD HS and discrepancy active learner in more detail and explain
this behavior. Most importantly: we explain why the discrepancy performs worse than MMD HS
while the discrepancy generalization bound is tighter.

4.4. Why Does the Discrepancy Perform Worse than the
MMD HS Active Learner?

In the last section we found surprising results: the discrepancy performs worse compared to MMD
HS in general on real world data in the realizable setting, while our theoretical results indicate
the discrepancy generalization bound can estimate the generalization error more accurately since
it is a tighter bound. Furthermore we found that the MMD HS can obtain a lower discrepancy
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value during active learning, while the discrepancy active learner actually aims to minimize this
and MMD HS does not.

In this section we show using two artificial examples that the discrepancy in certain cases
can choose non-informative examples. The first artificial example is shown in the linear kernel for
simplicity, afterward we show that the same behavior is observed in the Gaussian kernel. In the
third subsection we show that this can happen because the discrepancy only considers a worst-case
scenario which is extremely unlikely in practice. We show that the MMD HS minimizes a quantity
that is related to the generalization error in the worst case but also in the average case. Using these
insights we explain why the discrepancy performs worse than MMD HS in the previous subsection.

4.4.1. Artificial Example in the Linear Kernel
First we explain the artificial dataset and the setting. Afterward, we calculate by hand which sam-
ples are chosen by the discrepancy and MMD HS active learner, and illustrate by this calculation
why the discrepancy can choose suboptimal examples for labeling.

For the linear kernel we choose a four dimensional dataset which contains four clusters. The
dataset is illustrated in Table 4.5 on page 56 and is similar to the previous artificial dataset
in Section 4.3.1. All objects within a cluster share the same label and the same position. The
covariance matrix of this dataset is diagonal, and therefore the discrepancy and MMD HS active
learners are easy to analyze, since the matrix M will be diagonal. We assume the regularization
parameter is small and that we are in the realizable case, so the assumption of both bounds are
satisfied and the approximation errors vanish.

To investigate the differences between MMD HS and the discrepancy, we exploit their differ-
ence. The discrepancy only evaluates the largest absolute eigenvalue, while MMD HS takes all
eigenvalues into account. We create an artificial situation where the largest absolute eigenvalue
is not informative for choosing samples, by starting the active learning process with an initially
biased sample. We take an initial biased sample that contains 38 objects from cluster one, and
one object from cluster two. Now we examine which sample is selected next by the discrepancy
and MMD HS. To perform optimally in this scenario, the active learner should either query an
object from cluster three or four, and afterward should query the remaining cluster. Since then we
obtain four linearly independent samples, and f can (almost, ignoring regularization) be uniquely
determined.

To compute which object is selected, we compute M = CP̂ − CQ̂, where CP̂ and CQ̂ are the
covariance matrices of P̂ and Q̂, respectively. The computation is illustrated in Table 4.6 on page
56. Because the matrices are diagonal we only write down the diagonal. We directly compute the
absolute values of the diagonal matrix M , since only the absolute values are needed to compute
the MMD HS objective and the discrepancy. Recall that the discrepancy is given by the largest
absolute eigenvalue of M , or in this case the largest absolute value on the diagonal. The MMD
HS objective is given by the Frobenius norm of the matrix M , since M is diagonal this is equal to
the euclidean norm of the vector representing the diagonal.

As can be seen, the discrepancy cannot differentiate between querying cluster two, three and
four. The MMD HS active learner however can, and will query cluster three or four. Thus the
discrepancy active learner might sample cluster two again, while this will not give the learning
algorithm new information about the remaining unlabeled clusters. The same happens when mul-
tiple queries are selected afterward in this scenario: the discrepancy will rank all clusters except
cluster one equally. In this example, MMD HS therefore will perform better, since on average, it
will query all three clusters faster than the discrepancy.

This happens because the discrepancy only looks at the largest eigenvalue of M . The largest
eigenvalue in this case characterizes the oversampling of cluster one. The discrepancy will only
want to decrease this oversampling and ignores the other eigenvalues. MMD HS does take the other
eigenvalues into account as well, and therefore can distinguish between sampling from clusters
two, three and four. Thus the discrepancy bound is indeed tighter as can be seen in this example,
because the discrepancy is lower than the MMD HS value in all cases, but actually the MMD HS
bound is more informative for choosing the next query in this example.
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Cluster number Cluster center Amount of objects
1 [1, 0, 0, 0] 250
2 [0, 1, 0, 0] 250
3 [0, 0, 1, 0] 250
4 [0, 0, 0, 1] 250

Table 4.5: Sample bias correction dataset

Query from cluster 1 cluster 2 cluster 3 cluster 4

Diagonal of CP̂
1
40 [10, 10, 10, 10] 1

40 [10, 10, 10, 10] 1
40 [10, 10, 10, 10] 1

40 [10, 10, 10, 10]

Diagonal of CQ̂
1
40 [39, 1, 0, 0] 1

40 [38, 2, 0, 0] 1
40 [38, 1, 1, 0] 1

40 [38, 1, 0, 1]

Absolute diagonal of M 1
40 [29, 9, 10, 10] 1

40 [28, 8, 10, 10] 1
40 [28, 9, 9, 10] 1

40 [28, 9, 10, 9]

Discrepancy objective 29
40

28
40

28
40

28
40

MMD HS objective 0.8374 0.8093 0.8085 0.8085

Table 4.6: Computation of the discrepancy and MMD for the next sample to query for the sample bias correction
dataset where a biased sample is used at the beginning of the active learning experiment: 38 samples from cluster
one, and one object from cluster two.

This indicates a fundamental problem with the discrepancy in sequential active learning. Be-
cause it only focuses on minimizing the largest absolute eigenvalue in the current situation, other
eigenvalues may actually increase. In later iterations these eigenvalues that became larger may
start dominating the bound. Thus the discrepancy is in some sense greedy: in later iterations
other eigenvalues may dominate the bound, thus it might be wiser to minimize all eigenvalues
like MMD HS. Therefore the behavior of MMD HS can be better in the sequential setting: this
explains why in the previous subsection we saw that MMD HS can obtain a lower discrepancy
value: because it is less greedy it possibly can minimize the discrepancy more effectively. Note that
this analysis holds in general (also for non-biased initial samples) for sequential active learning
using MMD HS and the discrepancy. However, this greedy behavior of the discrepancy does not
completely explain all our surprising results where MMD HS outperforms the discrepancy, since
in that case we would expect MMD HS to obtain lower discrepancy values more often.

However, observe that the discrepancy only focuses on minimizing the largest absolute eigen-
value. This is because the discrepancy assumes a worst-case scenario. MMD HS however performs
better in this artificial example since it minimizes all eigenvalues. This suggests the worst-case
analysis of the discrepancy, that is based on the largest absolute eigenvalue, may not always be
informative. We investigate this in depth in Subsection 4.4.3.

4.4.2. Artificial Example in the Gaussian Kernel
First, we show in this subsection that the behavior observed in the previous subsection also applies
to the Gaussian kernel. We briefly explain the dataset and setting, afterward we show the learning
curves that indicate MMD HS outperforms the discrepancy.

We use the dataset displayed in Figure 4.10a. We use a Gaussian kernel with σ = 0.1 so the
labels of one cluster hardly influence the labels in other clusters similar to the linear dataset in the
previous subsection. We begin each active learning experiment with an initial labeled set given by
30 objects in the bottom left cluster. The resulting learning curves are shown in Figure 4.10b.

We observe that the MMD HS active learner clearly and significantly outperforms the dis-
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Figure 4.10: a) Biased artificial dataset for the RBF kernel. Circles and squares indicate positive and negative class,
respectively. The initially labeled sample is indicated with solid circles and is located in the bottom left corner. b)
Learning curves. MMD HS obtains a significantly lower mean squared error than the discrepancy. The point of zero
queries corresponds to the initially labeled sample.

crepancy active learner. The discrepancy learner more or less samples randomly from all clusters
except the bottom left cluster as expected. As in the linear artificial dataset it does not choose
diverse examples. This is because the discrepancy only focuses on minimizing the absolute largest
eigenvalue, which indicates oversampling of the bottom left cluster. Thus the discrepancy only aims
to minimize this oversampling, and therefore chooses samples randomly from the other clusters.

This illustrates that the conclusions from the previous subsection also generalize to experiments
performed using the Gaussian kernel.

4.4.3. The Worst-Case Analysis of the Discrepancy Is Too Unlikely
In the previous subsections we have shown that the discrepancy can choose non-diverse samples
in case of an initial biased sample while MMD HS does not suffer from this. This suggests the
discrepancy is somehow considering a less informative worst-case scenario than MMD HS. In this
subsection we examine the worst-case scenario considered by the discrepancy, and we argue that
this worst-case scenario is very unlikely to occur in the agnostic setting and even impossible in the
realizable case. We verify this empirically using our experiments in the realizable scenario on the
benchmark datasets. We show that the MMD HS minimizes a quantity that is more relevant in
practice. Finally, we use these insights to explain the surprising results observed on the benchmark
datasets in the realizable setting.

We have already discussed that the worst-case scenario of the discrepancy might be unlikely
in Section 2.4. In this section we make this more concrete and we verify this empirically. We also
show in this section that the scenarios considered by MMD HS are more likely to occur than
the worst scenario of the discrepancy, to explain why the discrepancy does not improve upon the
MMD HS active learner.

To this end, we perform a brief theoretical analysis in terms of the matrix M . We perform this
analysis in the realizable setting and consider a linear kernel for simplicity. In that case we indicate
our learned model by w, and the model generating the labels by w′. Following the derivation of
the discrepancy in Section B.1, observe it is straightforward to show that for the squared loss the
following holds for any w and w′ ∈ H:

LP̂ (w,w′) = LQ̂(w,w′) + uTMu = LQ̂(w,w′) +
∑
i

ū2
iλi (4.1)

Observe that this equality strictly holds in the realizable setting and is not an approximation.
Here u = w′ −w and ūi is the projection of u on the (normalized) eigenvector vi of the matrix M
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corresponding to the eigenvalue λi. Essentially, ūi are the components of u in the basis formed by
the orthonormal eigenvectors of M . We indicate the vector u with respect to this basis as ū. Note
that ū is equal to u up to a rotation.

As mentioned earlier, equation 4.1 holds for any w and w′ ∈ H. However, we are especially
interested in the case where w is obtained by training on the set Q̂ with labels generated by w′,
since this is the model we use in practice. Therefore, from here on, w will refer to the model
trained on Q̂ with labels generated by w′. This will also be reflected in the definition of u = w′−w
and ū = w̄′ − w̄. Furthermore, we indicate the vectors w and w′ with respect to the basis of the
orthonormal eigenvectors of M by the vector w̄ and w̄′.

In the realizable case the loss on the set Q̂ will be relatively small after training (assuming a
small regularization parameter is used), thus we can approximate Equation 4.1 by:

LP̂ (w,w′) ≈
∑
i

ū2
iλi (4.2)

From here on out, we assume the eigenvalues of M are sorted in descending order by absolute
value, thus:

|λ1| ≥ |λ2| ≥ |λ3| ≥ . . .

Note that λ1 refers to the absolute largest eigenvalue. Recall that the discrepancy is given by:

disc(P̂ , Q̂) = max
||u||≤2Λ

|uTMu| = max
||ū||≤2Λ

|
∑
i

ū2
iλi| = 4Λ2|λ1|

Observe that the discrepancy maximizes over all vectors ū with norm smaller than ||ū|| ≤ 2Λ.
Essentially, the discrepancy maximizes over all w and w′ ∈ H. The advantage of this approach is
that the discrepancy quantity is independent of the used training procedure and the labels of the
set Q̂.

The discrepancy thus considers that the vector ū points in the worst direction possible: in the
direction of the eigenvector that has the largest absolute eigenvalue |λ1|. Thus the discrepancy
assumes ū ∝ (1, 0, 0, . . . , 0)T . In this case, the error on P̂ is completely determined by the largest
absolute eigenvalue, and the other eigenvalues do not influence the error on P̂ at all3.

However, if we assume we are in the realizable case, than it is extremely unlikely that w′
does not point in a similar direction as w. in other words it is likely that w ≈ w′, which we will
make more concrete here using an artificial example. For this example we will use the orthonormal
eigenvectors of M as basis. If we have a labeled sample given by x̄ = (1, 0, 0, . . . , 0)T , we can
determine w̄1 perfectly (ignoring regularization). Thus in this case we can say that w̄1 ≈ w̄′1 or in
other words that ū1 ≈ 0 after this sample has been labeled. The discrepancy however, even in this
case where w̄1 is (almost, ignoring regularization) known perfectly, still only considers the worst
case4 for ū1. Since ū1 ≈ 0 in this example, it would be more meaningful to instead consider the
worst case for other components of ū.

Furthermore, the discrepancy assumes that ||u|| is maximal, in other words that w = −w′.
This is impossible in the realizable case if w′ 6= 0 and extremely unlikely in the agnostic case.

To verify that this worst-case scenario of the discrepancy is very rare in practice, and that
the worst case considered by the discrepancy contributes little to the error on P̂ , we compute the
component ū1. We can do this computation in the realizable setting since here we have access to
w and w′ during the active learning experiments. The computation of ū1 is not straightforward
in case kernels are used, see Appendix J for details. We show that the component ū1 is relatively

3Note that if λ1 < 0, λ1 actually decreases the error on P̂ . We will revisit this point later in this subsection.
Why is this then a worst-case scenario? Or in other words, why is there an absolute value in the definition of the
discrepancy? This is because the discrepancy considers the worst-case scenario where the losses on Q̂ and P̂ differ
the most, see Subsection 2.2.2.

4Note that by sampling x̄ the matrix M will change, however even if x̄ has been sampled the discrepancy may still
consider this worst case for ū1 if λ1 remains the absolute largest eigenvalue, see also Subsection 4.3.1 or Subsection
4.4.1.
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small by comparing it with the other components of ū. To this end we compute the fraction R
defined as:

R = |ū1|∑
i |ūi|

If R = 1 we are in the worst-case scenario of the discrepancy. If R is closer to zero the worst case
of the discrepancy plays a smaller role in causing the mean squared error on P̂ . In Figure 4.11 we
show a summary of all values of R observed during all experiments on the benchmark datasets
of Section 4.3.2. Observe that the maximum value of R observed is 0.25. Only a small fraction of
0.02 of all observed values of R is larger than 0.05. This indicates that the worst-case scenario of
the discrepancy indeed is very rare and contributes little to the error on P̂ . Only if R = 1 we truly
are in this worst-case scenario which we have never observed.
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Figure 4.11: Histogram of all observed values of R during all active learning experiments.

Furthermore, observe that the influence of ū1 and λ1 on the mean squared on P̂ can be measured
directly through the quantity:

ū2
1λ1

See also equation 4.2. To characterize the influence of ū1 and λ1 on the mean squared error on
P̂ we plot ū2

1λ1 and uTMu for the discrepancy active learner during some of the active learning
experiments in Figure 4.12 on page 60. The results for other active learners and datasets is similar.
Observe that the contribution of ū2

1λ1 is often small and sometimes even negative (in that case,
ū2

1λ1 actually decreases the mean squared error on P̂ ).
Thus we have seen that only little of the mean squared error on P̂ is caused by the absolute

largest eigenvalue in practice. This indicates that other eigenvalues are more to blame for the error
on P̂ . This suggests other eigenvalues should be minimized as well. This is exactly what MMD HS
does, since it minimizes the following objective:

4Λ2
√∑

i

λ2
i

Thus MMD HS focuses on minimizing all eigenvalues, and therefore likely performs better, since
the case considered by MMD HS where all components of ū play a role in causing the error on P̂ is
much more likely than the worst-case analysis of the discrepancy. Thus we can say that the MMD
HS active learner minimizes a quantity that is more relevant in practice, since this quantity also
accounts for non-worst-case scenarios. Observe that MMD HS does prefer minimizing large eigen-
values, since it minimizes the squared sum of the eigenvalues. This suggests that MMD HS weighs
worst-case scenarios more than average-case scenarios, which may be a questionable assumption.
We address this with our proposed nuclear discrepancy active learner introduced in Section 2.4
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Figure 4.12: We plot the contribution of ū2
1λ1, the contribution of ū1 and λ1 to the error on P̂ , along with the

complete error on P̂ that is given by uTMu.

which we evaluate in the next subsection. However, first we address why the discrepancy learner
sometimes does perform well, and in what cases the MMD HS active learner might especially
improve upon the discrepancy.

The discrepancy can perform well, since minimizing the largest absolute eigenvalue tends to
decrease the size of other eigenvalues as well. However in examples where the discrepancy places all
of its efforts on minimizing the absolute largest eigenvalue and this has little effect on the absolute
size of other eigenvalues, the performance of the discrepancy may suffer. This is because the error
on P̂ is caused by these other eigenvalues as well which are in that case hardly minimized. This
behavior is illustrated by the observed eigenvalues during the active learning experiment of the
discrepancy on the dataset ringnorm in Figure 4.13. In this case, minimizing the absolute largest
eigenvalue hardly influences the other eigenvalues until these eigenvalues become the absolute
largest. In Figure 4.13 we see that MMD HS decreases all eigenvalues simultaneously, instead of
focusing only on the absolute largest eigenvalue. Because the eigenvalues in this case are quite
small the effect seems small, however note that for the ringnorm dataset the matrix M has 650
nonzero eigenvalues!

To illustrate this for all datasets more clearly, we compute the sum of absolute eigenvalues,
where we do not include the largest absolute eigenvalue. We call this quantity E:

E =
∑
i 6=1
|λi|

We expect that the MMD HS active learner obtains lower values of E than the discrepancy, since
MMD HS focuses on minimizing all eigenvalues and the discrepancy only focuses on minimizing
|λ1|. In cases where E is much larger for the discrepancy than MMD HS the performance of
the discrepancy may degrade compared with the performance of MMD HS because the other
eigenvalues also contribute to the squared error on P̂ .

Plots of the average value of E during some of the active learning experiments of Section 4.3.2
are shown in Figure 4.14 and Figure 4.15 on pages 62 and 63. For results on all benchmark datasets
see Figure K.5 in the appendix. Observe that for the datasets sonar, ringnorm, ionosphere,
twonorm, slice and german the quantity E is much larger for the discrepancy active learner
compared to the value of E obtained by the MMD active learner. For these datasets except the
splice dataset we observe a performance degradation for the discrepancy, see Table 4.4 and
the active learning curves in Figure K.3 in the appendix. The value of E for the discrepancy is
sometimes even larger than E for random sampling. This is especially clear for the ringnorm
dataset, where the discrepancy performs worse than random sampling, see also the learning curves
in Figure 4.7 on page 52. We may conclude that the quantity E gives a good indication of the
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Figure 4.13: The minimization of eigenvalues by the discrepancy versus the MMD. ‘EV1’ indicates the absolute
largest eigenvalue, ‘EV2’ indicates the second largest absolute eigenvalue, etc. . . We plot the absolute values of all
eigenvalues. Observe that for the ringnorm dataset the discrepancy needs to minimize the absolute largest eigenvalue
in order to minimize other eigenvalues, and therefore it takes longer before these other eigenvalues are minimized.
The MMD HS active learner instead minimizes all eigenvalues simultaneously.

performance of the active learning methods, confirming our analysis that all eigenvalues λi are
relevant for the performance on the set P̂ and not only the absolute largest eigenvalue is the most
important.

One may wonder why the discrepancy performs worse than MMDHS, yet both consider a worst-
case scenario and use the same assumptions. What happened is the following. Since MMD HS has
incomplete knowledge of the loss (since the MMD considers a worst-case where the loss can become
negative), it considers a more approximate worst-case scenario. Because the discrepancy takes the
loss into account, it can more accurately characterize the worst case given the assumptions. The
discrepancy worst case is therefore much more specific. However, because of this specificity, it
considers a more unlikely scenario.

This all also has to do with the assumptions of both methods: both assume that it is possible
to obtain any model w ∈ H and any oracle model in w′ ∈ H and consider the worst case for these
models. If these assumptions in fact were true, the discrepancy would perform better than the
MMD HS in a worst-case scenario (by definition). These assumptions are however too conservative,
since in practice it is more likely that w ≈ w′. MMD HS performs better than the discrepancy since
it considers a less specific worst-case scenario. Because of this, MMD HS minimizes a quantity
that is more relevant, since this quantity also accounts for non-worst-case scenarios as well which
are more likely to occur in practice.

Interestingly, observe in Figure 4.14 and 4.15 that TED may not minimize all eigenvalues. This
is likely because TED, since it has knowledge of w−w′ due to the analytical solution of w, is able
to estimate which ûi will be large. Because of this, TED can focus on minimizing the eigenvalues of
M that matter most for generalization performance on P̂ , and thus can obtain good performance
without minimizing all eigenvalues.

In this section we have shown that generally all eigenvalues ofM contribute towards causing the
mean squared error on P̂ , and we have shown that the absolute largest eigenvalue only contributes
little in practice. The discrepancy considers a specific worst-case scenario where the error on P̂
is caused only by the largest absolute eigenvalue of M . MMD HS, which considers a more broad
worst-case scenario since it has no knowledge of the specific loss used, minimizes all eigenvalues
of M . Because of this MMD HS also accounts for non-worst-case scenarios. worst-case scenarios
almost never occur due to the fact that the underlying assumptions of both methods are too
conservative. Because of this MMD HS performs better in practice. This explains our surprising
results observed in the previous section.
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Figure 4.14: We plot the quantity E during the active learning experiments in the realizable setting for four
illustrative datasets. Observe that in some cases the value of E is much larger for the discrepancy than the MMD,
and sometimes E of the discrepancy becomes even larger than E of random sampling. See Figure K.5 in the
appendix for the results on all datasets.
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Figure 4.15: We plot the quantity E during the active learning experiments in the realizable setting for four more
illustrative datasets. Observe that in some cases the value of E is much larger for the discrepancy than the MMD,
and sometimes E of the discrepancy becomes even larger than E of random sampling. See Figure K.5 in the
appendix for the results on all datasets.
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4.5. Performance Comparison with the Nuclear Discrepancy
in the Realizable Setting on Real World Data

The previous section has demonstrated that the worst-case analysis of the discrepancy is very
unlikely to occur in practice. This is our motivation for the introduction of the nuclear discrepancy
in Section 2.4. In this section we have argued that the nuclear discrepancy will likely perform better
in practical scenarios. In view of our results in the previous subsection, where we have seen that
worst-case scenarios considered by the discrepancy are unlikely, we therefore expect the nuclear
discrepancy to improve upon the discrepancy active learner. In Section 2.4 we have also argued
that the nuclear discrepancy weighs realistic scenarios more than the MMD HS active learner,
and therefore likely performs better than the MMD HS active learner as well. In this section we
validate this hypothesis by repeating the experiments on the benchmark datasets of the realizable
setting with the nuclear discrepancy.

The nuclear discrepancy will be able to perform well in the artificial experiments of Subsection
4.4.1 and 4.4.2, since the nuclear discrepancy takes into account all eigenvalues during active
learning, unlike the discrepancy. Furthermore, we found that the nuclear discrepancy performs
similar to the discrepancy and MMD HS in the artificial experiment of Section 4.3.1. Therefore
we do not repeat these experiments here. Instead, we directly evaluate the nuclear discrepancy on
the benchmark datasets in the realizable setting.

The results on the benchmark datasets in the realizable setting are shown in Figure 4.16. All
learning curves are given in Figure K.6 in the appendix. We summarize all results in Table 4.7 on
page 66 using a two-tailed paired t-test with p = 0.05. Observe that the nuclear discrepancy for
most datasets seems to improve upon the MMD HS and discrepancy active learners significantly.
Note that especially it is almost never outperformed by both methods: it either improves upon
them or matches their performance. Especially the performance improvement on the ringnorm
dataset is spectacular, where the nuclear discrepancy performs on par with TED. Furthermore
note that for some datasets the learning curves of the nuclear discrepancy seems to resemble the
learning curves of TED a lot, indicating that the nuclear discrepancy minimizes a quantity that
is more similar to the TED quantity. This is likely because the nuclear discrepancy accounts more
often for the scenario where w ≈ w′ like TED, as argued in the Subsection 2.4.1.

Furthermore we observe that TED does outperform the nuclear discrepancy in most cases.
This is however to be expected, since TED can more accurately estimate which eigenvalues of M
should be minimized, since TED can use the analytical solution of the model to estimate which
eigenvalues contribute the most to the generalization error. This behavior of TED that it only
minimizes certain eigenvalues of M was also observed in the previous section. Furthermore, TED
has an advantage since it has knowledge about the regularization parameter λ of the model, which
the nuclear discrepancy does not use for its active learning strategy.

Finally, we must conclude that tighter generalization bounds truly do not imply better ac-
tive learning performance, as illustrated by the nuclear discrepancy generalization bound. The
nuclear discrepancy generalization bound is looser than the MMD HS and discrepancy general-
ization bound in the realizable setting, yet performs better in the realizable setting where the
approximation errors of all bounds vanish. What instead seems to matter is that the quantity that
is being minimized for active learning needs to be relevant to the generalization error in as many
scenarios as possible that are likely to occur during active learning experiments.



4.5. Performance Comparison with the Nuclear Discrepancy in the Realizable Setting
on Real World Data 65

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

heart dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

sonar dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

ringnorm dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

ionosphere dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

thyroid dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

Queries

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

german dataset

 

 

TED

Disc

Disc nuclear

MMD HS

Random

Figure 4.16: Comparison of the nuclear discrepancy active learner with the other active learning methods on some
of the benchmark datasets for the realizable case where f ∈ H. Observe that the nuclear discrepancy improves a lot
upon the discrepancy and sometimes upon the MMD HS active learner. In particular, on the ringnorm dataset the
nuclear discrepancy performs much better than the discrepancy and matches the performance of TED. See Figure
K.6 for the results on all datasets.
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Dataset ND vs TED ND vs MMD HS ND vs Disc
vehicles 0/1/9 0/10/0 0/10/0

heart 6/2/2 7/3/0 10/0/0
sonar 2/7/1 4/6/0 10/0/0
iris 0/0/8 4/4/0 0/7/1

thyroid 0/0/10 1/9/0 1/9/0
ringnorm 2/8/0 10/0/0 10/0/0

ionosphere 0/1/9 10/0/0 10/0/0
diabetes 0/1/9 5/3/2 4/6/0
twonorm 8/0/2 10/0/0 10/0/0
banana 1/0/9 0/10/0 7/3/0
german 0/1/9 10/0/0 10/0/0
splice 0/9/1 8/2/0 9/1/0
breast 0/0/10 10/0/0 10/0/0

Table 4.7: Win / tie / loss counts comparing nuclear discrepancy (ND) with TED, MMD HS and the discrepancy.
Observe that the nuclear discrepancy often performs better than the MMD HS and the discrepancy, but only
in exceptional cases can improve significantly upon TED, and TED outperforms the nuclear discrepancy for the
majority of the datasets.

4.6. Performance Comparison in the Agnostic Setting
In the last sections we have compared the behaviors of all active learners and investigated their
differences in the realizable setting. Now we investigate if the behavior observed in the realizable
setting generalizes to real world data where the labeling function f might not be in the hypothesis
set (the agnostic case). First we illustrate on an artificial example why TED in this case might
not be optimal compared to the MMD and the (nuclear) discrepancy.

4.6.1. Artificial Dataset
We use the artificial dataset from Subsection 4.3.1 to illustrate why TED might not be optimal
in case f /∈ H. The dataset is kept the same, only we add gaussian noise to the labels5. If there is
much noise, it will be better to query clusters multiple times in order to average out the noise, and
therefore in this artificial example we use a large standard deviation of σnoise = 1.5. In this case
the ‘redundant’ sampling of the (nuclear) discrepancy and the MMD HS can thus be beneficial.

The resulting learning curves are shown in Figure 4.17. For this dataset the nuclear discrepancy,
the discrepancy and MMD HS choose exactly the same samples, and therefore for clarity we only
show the discrepancy in the results. In the first iteration TED explores all clusters, however,
because the labels are so noisy these first labeled objects actually increase the mean squared error.
The (nuclear) discrepancy and MMD HS active learner directly sample multiple objects from the
most dense cluster, and therefore its performance in these first iterations is better than TED.
Because this cluster contains the majority of the samples of the dataset, by choosing multiple
samples of this cluster, the noise on this most important cluster is averaged out as fast as possible.
In later iterations TED will also sample the most important clusters multiple times to reduce its
regularization term, and thus will catch up to the discrepancy active learner in terms of the mean
squared error. Note that in this case the performance of the discrepancy active learner is similar
to the performance of the random active learner, and that TED performs worse than random
sampling at the beginning of the active learning experiment.

In conclusion, if f /∈ H, the (nuclear) discrepancy active learner and the MMD HS active
learner can perform better than TED due to their sampling of ‘redundant’ samples, for example
in cases where there is much label noise.

5For binary classification Gaussian noise is actually inappropriate, however we only use this example to illustrate
what can happen in the agnostic setting in general.
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Figure 4.17: Results on ratio dataset where the labels were perturbed with Gaussian noise with σ = 1.5.

4.6.2. Real World Data
In the last subsection we saw an example that illustrates TED might not always be better than
the MMD HS or the (nuclear) discrepancy active learner in the agnostic case. In this section
we compare the performance of the active learners on the benchmark datasets using the original
binary labels — thus note that this comparison is not artificial unlike our previous experiments.
This corresponds to the agnostic case where f /∈ H. We compare the results in this setting with
the results of the realizable setting.

We evaluate the active learners on the datasets shown in Table 3.1. Some illustrating learning
curves are shown in Figure 4.18 on page 69, and these results are summarized in Table 4.8 and
Table 4.9 on page 68 using two tailed paired t-tests with p = 0.05. See Figure K.7 in the appendix
for all learning curves.

We make three general observations in comparison with the realizable case. First, the learning
curves seem to be less smooth. This is likely the case because the label function f is less smooth
and more noisy in this scenario. The standard deviation also seem to increase, making it harder
to distinguish which active learning methods perform the best. The dataset german is an extreme
example of this, the error bars become an order of magnitude larger. Correspondingly this dataset
has the largest mean squared error if a model is fitted to the whole dataset compared with other
datasets which indicates f is not very well approximated by the hypothesis set.

Second, we observe smaller performance advantages of the active learners over random sampling
than in the realizable setting. This may be because the approximation errors in all bounds in this
setting are not zero. Because the active learners do not account for these approximation errors
(these terms are ignored altogether by all active learners), the advantages of the active learners
compared to random sampling become smaller.

Third, we see that the realizable case is a fair indicator of performance for performance in the
agnostic setting, but not a perfect indicator. TED in most cases still performs the best, however
it has lost its clear advantage observed in the realizable setting where its active learning curve
was consistently lower. This might be due to the effects described above. For the heart dataset
and ringnorm dataset (for large number of queries) TED actually seems to perform significantly
worse than the MMD HS and discrepancy active learner for some number of queries, illustrating
that indeed in the agnostic case it can happen that TED performs worse, as we also saw on the
artificial dataset.

The discrepancy and the MMD HS already performed similar in the realizable case. In this
setting the discrepancy and MMD HS active learners become even harder to compare. According
to the t-tests in the Table 4.8 both methods tie much more than in the realizable case. The MMD
HS only still shows a significant advantage for the datasets sonar, ringnorm and ionosphere.
In the realizable case we observed that the discrepancy performs significantly worse than random
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Dataset TED vs Disc TED vs MMD HS Disc vs MMD HS
vehicles 0/10/0 1/9/0 3/7/0

heart 1/6/3 0/3/7 0/10/0
sonar 4/6/0 2/8/0 0/3/7
iris 8/0/0 8/0/0 0/8/0

thyroid 10/0/0 10/0/0 0/10/0
ringnorm 7/0/3 1/1/8 0/1/9

ionosphere 7/3/0 8/2/0 1/3/6
diabetes 0/8/2 0/10/0 1/9/0
twonorm 3/7/0 2/8/0 0/7/3
banana 5/4/1 7/2/1 2/8/0
german 1/9/0 3/7/0 1/9/0
splice 10/0/0 9/1/0 0/8/2
breast 10/0/0 6/4/0 0/6/4

Table 4.8: Win / tie / loss counts comparing the MMD HS, the discrepancy and the TED active learner on the
benchmark datasets for the agnostic setting. We see TED performs the best in the majority of all experiments and
the discrepancy performs the worst. In particular, just like in the realizable setting, MMD HS often matches or
outperforms the discrepancy.

Dataset ND vs TED ND vs MMD HS ND vs Disc
vehicles 0/9/1 1/9/0 0/9/1

heart 3/7/0 0/10/0 0/10/0
sonar 0/10/0 3/7/0 8/2/0
iris 0/0/8 1/7/0 0/8/0

thyroid 0/0/10 2/8/0 2/8/0
ringnorm 0/10/0 1/1/8 7/0/3

ionosphere 0/0/10 0/7/3 0/8/2
diabetes 0/9/1 0/8/2 0/7/3
twonorm 3/6/1 7/3/0 5/5/0
banana 1/6/3 6/4/0 2/8/0
german 0/10/0 2/8/0 1/9/0
splice 0/6/4 3/7/0 6/4/0
breast 0/0/10 1/9/0 2/8/0

Table 4.9: Win / tie / loss counts comparing the nuclear discrepancy (ND) with TED, the MMD HS and the
discrepancy on the benchmark datasets for the agnostic setting. We see that the nuclear discrepancy often still
outperforms or matches the performance of MMD HS and the discrepancy. TED performs better than the nuclear
discrepancy in most cases, and the nuclear discrepancy almost never outperforms TED as in the realizable setting.
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Figure 4.18: Some illustrating learning curves of the active learners on real world data in the agnostic setting where
f /∈ H. Observe that the learning curves of TED and the nuclear discrepancy overlap for the ringnorm dataset. See
Figure K.7 for the results on all datasets.
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sampling on the ringnorm dataset, we observed this also for some number of queries in this setting
— however note that at the end of the active learning phase the discrepancy actually performs
better than TED. In some cases the performance of the discrepancy has increased but in many
cases it doesn’t outperform other methods significantly.

Finally, the nuclear discrepancy still seems to outperform the MMD HS and discrepancy on
most datasets, or at least matches their performance. The performance advantage of the nuclear
discrepancy however has become smaller as well. The nuclear discrepancy performs similar to TED
for some datasets as observed in the realizable setting. For example see the learning curve on the
ringnorm dataset in Figure 4.18, where the learning curves of TED and the nuclear discrepancy
overlap. Finally, the comparison of the nuclear discrepancy and TED in the agnostic setting is
similar to the realizable setting. TED often seems to improve upon the nuclear discrepancy, and is
almost never outperformed by the nuclear discrepancy. However also for the agnostic setting the
advantage of TED over the nuclear discrepancy is smaller than in the realizable setting.

In the previous subsection we found that TED performed worse since there was a lot of la-
bel noise everywhere. There are also two other options that can explain differences between the
agnostic and realizable setting, and we discuss them below. It is possible that because the approx-
imation errors for the different active learners are different, some active learners may have smaller
approximation than others, and therefore some active learners may work better than others in
the agnostic case. If the approximation error is smaller, the main quantity in the bound more
accurately describes the behavior in the agnostic setting. Therefore, this quantity is then more
informative for active learning. Another possibility is that there are different subgroups in the
dataset with different amounts of label noise. Some active learners could query consistently more
samples from these noisy regions (for example because this region is deemed informative by this
active learner) than others, and because of this these active learners may perform consistently
worse.

We conclude the realizable setting gives a fair indication of the performance in the realizable
setting. However, for some datasets the active learners perform quite different than in the realizable
setting. This could be caused by label noise or because the approximation errors start playing a
role in deciding which methods perform better. An in depth study of the approximation errors is
required to understand the behavior in the agnostic setting.



5
Discussion

In this section we first summarize the results found in the previous chapter by revisiting our
research questions. Afterward we discuss some choices we have made in our experiments and the
possible impact on our results. We also discuss interesting directions for future work, and the
implications of our theoretical results for other fields. Then we discuss our results in a broader
context in the active learning research field. Finally we note the obstacles that have to be overcome
before these methods are applicable to real world active learning settings.

5.1. Main Results
In this section we reflect on the main results of the experimental section by answering the research
questions posed in the introduction.

Q1. Why and in what case can non-adaptive active learning methods improve upon random
sampling?

A1. These methods exploit structure in the data together with the assumed smoothness condi-
tions on the labeling function. Influential examples are chosen first that largely determine
the labels of many other objects in the dataset and the selection of redundant samples is
avoided. The more structure there is in the data that corresponds to the model assumptions,
the more active learners can improve upon random sampling.

Q2. Is it beneficial to take the hypothesis set and the loss into account for active learning based
on the MMD?

A2. Yes. We show using an artificial example what can go wrong if we do not take the hypothesis
set and loss into account when using the MMD for active learning. We validated this claim
on real world data. We show that if the bandwidth σ of the Gaussian kernel is chosen
as described in our theoretical analysis in Section 2.1.4 this improves performance. This
can even improve performance compared to the situation where the same σ is taken for the
MMD and the learning algorithm, a similar choice which is often used in practice. Taking the
hypothesis set and loss into account for the MMD has the most advantages in the realizable
setting but also shows advantages on some real world datasets.

Q3. Will our introduced discrepancy active learning strategy improve upon the MMD active
learning strategy as suggested by our theoretical analysis? (main question)

A3. Surprisingly, this is not the case. Initially our hypothesis was that since the discrepancy active
learner has a tighter generalization bound, it would perform better than the MMD active
learner. The discrepancy active learner can estimate the generalization error more accurately,
and therefore we would expect that minimizing this bound would more accurately minimize
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the generalization error. However, the discrepancy in many cases performs worse than the
MMD, especially in the realizable case, a favorable setting for these methods. Using two
artificial examples we show that the MMD can make more informed choices compared to the
discrepancy in case an initially biased sample is used. This led us to believe the worst-case
scenario considered by the discrepancy is less informative than the worst case considered by
the MMD.
The discrepancy takes a very specific worst-case scenario into account which is extremely
unlikely to occur in practice. The discrepancy uses all of its resources to avoid bad general-
ization performance in this scenario that almost never occurs. Because of this it sometimes
performs poorly, since these queries do not always improve performance in practical scenar-
ios. The fault of the discrepancy is that it only weighs this extremely unlikely worst-case
scenario, and completely ignores other scenarios.
We show that the MMD takes a less specific worst-case scenario into account and because of
this weighs average-case scenarios more than the discrepancy. These average-case scenarios
occur more in practice. Therefore the MMD minimizes a quantity that is more relevant to
the generalization error in practice. That is why the discrepancy can perform worse than the
MMD in practice, yet the discrepancy generalization bound is tighter.
Our analysis suggests that worst-case scenarios assumed by the MMD and the discrepancy
are too conservative. This is our motivation for the introduction of a new discrepancy mea-
sure, the nuclear discrepancy. This quantity weighs all scenarios equally (worst, average and
best cases) unlike the MMD which weighs worst cases more than average cases. Our analysis
suggests that the nuclear discrepancy weighs scenarios that are likely to occur in practice
more than the MMD and the discrepancy. The proposed nuclear discrepancy active learner
improves significantly upon both the discrepancy and the MMD active learner. The gener-
alization bound of the nuclear discrepancy is looser than the discrepancy and MMD bound,
underscoring that the tightness of a generalization bound is not relevant for active learning
performance.
In summary, the discrepancy is too conservative: the worst case considered by the discrepancy
is extremely unlikely to occur in practice. Because the MMD considers more likely scenarios
it performs better in practice. Therefore the discrepancy does not improve upon the MMD,
even though the discrepancy generalization bound is tighter. Finally, the nuclear discrepancy,
which weighs all cases equally, outperforms both the MMD and the discrepancy. This is
because the nuclear discrepancy weighs scenarios that are more likely to occur in practice
more than the MMD and the discrepancy. Yet the nuclear discrepancy bound is looser than
both the MMD and discrepancy bound.

Q4. How does the model-dependent TED active learner and its generalization bound compare
with the discrepancy and MMD active learners and bounds?

A4. TED performs consistently better than the discrepancy and MMD active learner in the re-
alizable case on real world data in terms of the squared loss. Using an artificial example we
show that the MMD and (nuclear) discrepancy are more likely to choose redundant samples.
Specifically the MMD and (nuclear) discrepancy try to match the sampling ratio’s of the
empirical distribution of the complete unlabeled dataset. Therefore the MMD and the (nu-
clear) discrepancy sample dense regions more often, which is unnecessary in the realizable
case where there is no noise. TED does not show this behavior because using the analytical
solution of the model it can consider more realistic worst-case scenarios. The performance
advantage of TED is smaller in the agnostic case. In this setting TED is sometimes out-
performed by other methods, however overall it performs the best. In most cases the TED
bound is tightest when little labeled examples are available. Which bound is tighter depends
on the dataset.

Q5. Is the tightness of a generalization bound related to performance in active learning?
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A5. TED consistently outperforms all other methods in the realizable case, however its bound
is not tightest in most cases. The same holds for the MMD and the discrepancy. The dis-
crepancy bound is almost always tighter, yet the MMD active learner almost consistently
outperforms the discrepancy active learner. Furthermore, the nuclear discrepancy generaliza-
tion bound is looser than both the MMD and discrepancy bound, yet the nuclear discrepancy
both outperforms the discrepancy and the MMD active learners. Thus the tightness of a gen-
eralization bound is not be indicative for active learning performance. Instead it is important
that the scenarios taken into account by the generalization bounds should be realistic.

The reader might be wondering: is a worst-case analysis the correct way to address active
learning? This depends on the goal: is one interested in playing it safe so active learning is beneficial
even in a worst-case scenario, or is the goal to perform good on average? Given that active learning
is used in case labeled data is very costly to acquire, a worst-case analysis is likely desirable in a
real world setting, since if a ‘greedy’ active learning method fails to deliver good active learning
performance in the real world, it is very costly to repeat the active learning procedure.

Furthermore, the inferior performance of the discrepancy is not a dent in the coffin of worst-
case analysis for active learning. The problem is that the discrepancy only considers a very unlikely
worst-case scenario which is either extremely unlikely or impossible. TED also uses a worst-case
analysis and is very successful, this is because the worst-case considered by TED is much more
likely to occur in practice.

5.2. Influence of Model Choices
In this section we briefly discuss our model choice and the possible impact on the results. We use
kernel ridge regression without intercept and class priors. We choose this model since for this model
all bounds are straightforward to compute. We leave the incorporation of priors and intercept into
these generalization bounds for future work.

The most important comparison of the active learners takes place in the realizable case where
no intercept is required, since the model that generates the labels uses no intercept term. Thus in
these most important experiments the missing intercept is no issue.

Furthermore, we believe that the intercept will likely influence the active learning strategies
little. The intercept can be incorporated by a feature that is the same for each sample in the RKHS
of K. Since the active learners minimize the difference between the empirical distributions P̂ and
Q̂ in some sense, we expect that such a constant feature will influence this comparison between P̂
and Q̂ little. Therefore we expect the active learning strategies will change little with the addition
of an intercept term.

The intercept can improve performance of the model when unbalanced datasets are used in the
agnostic case, because the average model output over the entire input space can be nonzero when
an intercept term is added. However, since all active learners use the same model all methods have
the same model mismatch. Therefore this comparison can be considered ‘fair’, and thus we expect
if the experiments were repeated with intercept the results will be similar.

Class priors can be integrated in multiple ways in the ridge regression model. Since we measure
performance in terms of the mean squared error, and this is exactly what is minimized by our
learning algorithm, we do not expect class priors will change our results much. Improvement can
only be made if our active learners somehow do not retain the original sampling ratio of both
classes, but since our active learners aim to minimize sampling bias this is unlikely. Furthermore,
all active learners suffer from this thus again the comparison can be considered ‘fair’.

Finally, may the non-standard objective of the ridge regression model influence our results?
We think that our results will change little if the standard ridge regression model is used. For
details see Appendix H for the (non-)standard ridge regression model formulation. We choose this
non-standard training procedure so the hypothesis set remains constant during active learning.
This is important for our artificial experiments, otherwise for some training set sizes we could be in
the realizable setting and not for other training set sizes. In appendix H it is shown that our non-
standard training procedure can be incorporated by multiplying the regularization parameter of the
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standard ridge regression number by the amount of samples in the training set. Since the strategy
of the (nuclear) discrepancy and MMD active learners does not depend on the regularization
parameter, these active learners will likely perform similar for different regularization parameters
and thus also for the regular ridge regression model formulation. In the next section we discuss
the influence of the regularization parameter on our results in the realizable setting. In particular,
we show that a small change in the regularization parameter influences our results generally little.
Therefore we expect that a different training procedure will influence our results little as well.
However the theoretical analysis of such a different training procedure would be needlessly more
complicated.

5.3. Influence of the Regularization Parameter on the Per-
formance of TED

One of the advantages of TED is that it can take the regularization parameter of the learning
algorithm into account in its active learning strategy. In our experiments in the realizable setting
we set the regularization parameter of the model trained during active learning to the same value as
the regularization parameter of the oracle model generating the labels. Thus TED has knowledge
about the regularization parameter of the oracle model that generates the labels. Therefore we
could wonder if TED has an unfair advantage: can it also outperform the other methods in the
realizable setting if it does not have perfect information about this regularization parameter? Using
the TED active learner we also investigate if taking the regularization parameter into account for
active learning is beneficial in general.

First we introduce some notation and we clarify some things about the TED active learner. The
discussion in this section involves three parameters. We have the regularization parameter of the
oracle model that generates the labels, λoracle, the regularization parameter of the model that is
trained during active learning, λmodel, and the regularization parameter used in the TED objective,
λTED. In the experiments of the realizable setting in Section 4.3 we use λoracle = λmodel = λTED.
This to ensure we are in the realizable setting and that the TED bound holds. In this section
we study the case when there is model mismatch with respect to the regularization parameter,
so λoracle 6= λmodel. In this case the TED bound still holds, however the TED bounds requires us
to set λTED = λmodel, otherwise the bound does not hold. The actual value of λoracle, if it were
known during active learning, does not influence the active learning strategy of TED through the
TED bound1.

We repeat the experiments of Section 4.3. We change the regularization parameter of the
model trained during active learning, we set this parameter to λmodel = aλoracle. We repeat the
experiments with four values of a: a ∈ {100, 10, 0.1, 0.01}. We rerun all experiments with two
TED active learners. The first TED active learner uses λTED = λmodel, which is the proper
choice of the regularization parameter for the TED objective. The second TED active learner uses
λTED = λoracle. This is an improper choice of λTED for this setting as argued above since in this
case the TED bound may not hold. Observe that this active learner selects the same samples as
the TED active learner used in Section 4.3, since these methods share the same regularization
parameter.

Why do we include this ‘improper’ TED active learner? If we compare these two active learners,
we can see if setting the correct value of λTED influences the active learning strategy. For example, if
these two active learners perform similar, we may conclude that the TED active learning strategy
does not change much if λTED is changed. This would suggest that taking the regularization
parameter into account for active learning is unnecessary. However, if these two active learners
perform different, we may conclude that TED really uses information of the parameter λTED to
change (and perhaps improve) its active learning strategy. This can thus shed light upon whether
or not it is useful to construct active learning algorithms that take the regularization parameter
into account.
1This is because the TED bound depends on λoracle through the parameter Λ, which does not influence the TED
active learning strategy as discussed in Section 2.5
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We must make the following remark. In case λmodel < λoracle we are in the realizable scenario,
since the hypothesis set of the model becomes larger than the hypothesis set of the oracle model,
and thus must contain the oracle model. However, in case we use λmodel > λoracle, we may not
be in the realizable setting. This is because the hypothesis set used by the model in this case is
smaller than the hypothesis set used by the oracle model. In this case the approximation error in
the bounds may not be zero. Furthermore, we consider the setting where the labels are generated
by an oracle model, and therefore in this setting no regularization might be necessary, since there
is no noise. So various factors are in play that complicate the interpretation of the results in
this section. However, this comparison can still give us insight into whether or not regularization
parameter (in)dependent active learners are desirable in case of model mismatch with respect to
the regularization parameter.

First we discuss the results for the case λmodel < λoracle. These results are very similar to
the results in the realizable setting, and therefore we defer these results to the appendix. The
learning curves can be found in Figure K.8 and Figure K.9 on page 137 and page 138. Both TED
active learners perform very similar. The TED active learner that uses the proper regularization
parameter (λmodel) outperforms or matches the performance of the TED active learner with the
improper regularization parameter (λoracle). The observations of the realizable setting still hold: the
TED active learner in almost all cases outperforms all other methods. Furthermore, the nuclear
discrepancy in general performs the second best and obtains similar learning curves as TED.
The MMD also outperforms the discrepancy or matches its performance. We conclude the relative
performances of the methods changes little when making λmodel smaller than λoracle in this setting2.

For λmodel > λoracle we obtain more interesting results. We first review the results for λmodel =
10λoracle. Some illustrating learning curves are given in Figure 5.1 on page 76, all learning curves
can be found in the appendix in Figure K.10. TED with the proper regularization parameter
(λmodel) clearly changes its strategy in this case, and because of this it performs significantly
better in almost all cases than TED with the improper regularization parameter (λoracle). See for
example the learning curves on the datasets heart, ionosphere, diabetis, twonorm, breast and
german. The active learning strategy of TED which uses the improper regularization parameter
performs significantly worse than other methods on some datasets, see for example the learning
curves on sonar, twonorm, ionosphere, diabetis, german and diabetis. Sometimes TED with
the improper regularization parameter can even perform worse than random sampling, see the
learning curves on the datasets ionosphere, diabetis and breast. As in the realizable setting,
the TED active learner with the proper regularization parameter outperforms the other active
learning methods almost consistently or matches their performance. Furthermore, the same trends
as in the realizable setting are observed for the other active learners. These results suggest that it
is beneficial to take the regularization parameter into account when designing an active learning
strategy.

Now we review the results for λmodel = 100λoracle. Some illustrating learning curves are given
in Figure 5.2 on page 77, all learning curves can be found in the appendix in Figure K.11. In
this case TED with the proper regularization parameter (λmodel) sometimes improves upon the
performance of the TED active learner with an improper regularization parameter (λoracle) and
the other active learning methods, see the learning curves on the datasets thyroid, ionosphere,
german, banana, breast and diabetes. However TED with the proper regularization parameter
(λmodel) can perform significantly worse as well, see the learning curves on the datasets splice,
twonorm, thyroid and iris where it performs worse than the other active learning methods and
in some cases worse than random sampling.

This behavior could have two causes. Since λTED = λmodel is so large, TED might sample too
many redundant samples as was observed in Sections 2.3.1 and 4.3.1. Also, the TED quantity
becomes larger3 if a larger value of λmodel is used, and thus the TED bound becomes weaker. This
in contrast with the MMD and (nuclear) discrepancy bounds which become stronger if a larger
value of λmodel is used.
2This also indicates that in this scenario no overfitting occurs since noise is absent as noted before, otherwise we
would have seen this reflected in the (absolute) learning curves.

3For this argument we ignore the parameter Λ for TED, since this parameter corresponds to the oracle model.
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Figure 5.1: Some illustrative learning curves for the setting where there is model mismatch with respect to the
regularization parameter. Here we set λmodel = 10λoracle. In this case we are not in the realizable setting. Ob-
serve that TED with the proper regularization parameter (λmodel) generally outperforms all other active learning
methods as in the realizable setting. Furthermore, observe that TED with the proper regularization parameter
(λmodel) performs significantly better than TED with an improper regularization parameter (λoracle). TED with
an improper regularization parameter can even perform worse than random sampling. This shows that TED adapts
its active learning strategy in a meaningful way based on the regularization parameter, and suggests that taking
the regularization parameter of the model into account is beneficial for active learning. All learning curves are given
in Figure K.10 in the appendix.
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Figure 5.2: Some illustrative learning curves for the setting where there is model mismatch with respect to the
regularization parameter. Here we set λmodel = 100λoracle. In this case we are not in the realizable setting. Observe
that TED with the proper regularization parameter (λmodel) sometimes performs better than other methods, but
in some cases also performs much worse, even worse than random sampling. This shows that TED cannot deal
with a too large model misspecification or large regularization parameter. Observe that the MMD HS and nuclear
discrepancy active learners are relatively robust to model misspecification and in all cases perform better than
random sampling. For all learning curves see Figure K.11
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Another explanation is that the model mismatch has become so large that the approximation
error of TED might have increased significantly compared with the approximation errors of the
other active learner methods. Because of this the TED generalization bound can become weaker.
To investigate this an in depth analysis of the approximation errors of the active learners has to
be done which is outside the scope of this work.

Observe that in some cases it is more desirable to choose the improper regularization parameter
(λoracle), see for example the learning curves on splice and twonorm in Figure K.11. This is quite
counterintuitive, since the TED bound in this case should not hold at all.

The performance of the active learning methods that are regularization parameter independent
is quite consistent across different values of λmodel. Just like in the realizable setting the nuclear
discrepancy generally outperforms or matches the performance of the MMD HS active learner,
except for the splice dataset. In particular, both the MMD HS and nuclear discrepancy consis-
tently perform better than random sampling even if there is model mismatch with respect to the
regularization parameter. These methods may be more robust because they simply do not depend
on the regularization parameter. Therefore these active learners are especially preferable if the
optimal regularization parameter is unknown, as is the case in a real world active learning setting.

Now we come back to the main question of this section: does TED outperform the other
methods because it has knowledge of the oracle regularization parameter? Likely, yes. If the reg-
ularization parameter somewhat matches the regularization parameter of the oracle model, TED
outperforms the other methods and adjusts its strategy in a meaningful way. However if the reg-
ularization parameter is chosen more than an order too large compared to the oracle model, TED
can perform worse than the other methods and even worse than random sampling. This might
be the consequence of a large approximation error in the TED bound, or might be an indication
that TED only works well with a small regularization parameter. If the regularization parameter
is chosen too small, this affects the performance of the TED active learner little in our setting.

Our results indicate that the MMD HS and the nuclear discrepancy active learners are more
robust to model misspecification with respect to the regularization parameter: both consistently
perform better than random sampling unlike TED. This indicates that in a real world active
learning setting, where we do not know the optimal regularization parameter, the MMD HS
and nuclear discrepancy might be preferred over the TED active learner. Especially the nuclear
discrepancy is preferable since in most cases it performs better or matches the performance of
MMD HS. However, if we know the optimal regularization parameter approximately, TED is more
preferable since it can use this information to improve its active learning strategy4.

5.4. Sample Reweighting During Active Learning
In this section we consider if sample reweighting can improve performance of the discrepancy and
the MMD during active learning. This question naturally follows from the fact that algorithms
exist from the field of sample bias correction to reweight training data to minimize the MMD and
discrepancy.

In case sample reweighting is used, for each sample different weights can be chosen: because of
this the definition of the MMD and the discrepancy will change. We propose to reweight samples
to minimize the MMD and discrepancy in each iteration of the active learning process, and to
reweight samples in each set that is constructed to evaluate queries as described in Section 2.5.
The ridge regression model has to be adapted to take the weights into account. See [4] and [3] for
details.

In Section 4.3.1 it was shown that TED can perform better than the (nuclear) discrepancy
and the MMD in the realizable setting because it avoids redundant samples. The MMD and
discrepancy will only need one sample per cluster in this artificial example if sample reweighting is
used, since they will use sample reweighting to exactly match the ratios of the unlabeled dataset.
Thus sample reweighting can make the MMD and (nuclear) discrepancy more aggressively sample
the feature space like TED.
4Unless perhaps the regularization parameter of the oracle model is quite large, in which case TED might select
too much redundant samples. However, we did not evaluate this and defer this to future work.
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However, we believe that even if the discrepancy and MMD are used in combination with
sample reweighting, TED will likely still perform better. Because TED has more knowledge of
w − w′, it can consider more likely worst-case scenarios as argued in Section 4.4.3. Furthermore,
since the active learners already aim to minimize the MMD and discrepancy by choosing samples,
reweighting in practice will likely have little effect: since the samples are already chosen to minimize
sampling bias, reweighting to correct sample bias will likely be unnecessary in most cases.

Sample reweighting will likely make the discrepancy less greedy compared to the MMD. For
example if sample reweighting had been used in the artificial example of Section 4.4 the discrepancy
would reweight the oversampled cluster. Because of this the discrepancy would be able to focus
on minimizing more relevant eigenvalues of the matrix M as well, and will likely match the
performance of the MMD in this artificial example.

Even if both the MMD and discrepancy active learners are combined with sample reweighting,
the MMD still likely will perform better in the active learning scenario. This is because in that case
our analysis in Section 4.4.3 still holds: the discrepancy will only consider an unlikely worst-case
scenario while the MMD considers a more likely average-case scenario as well. Therefore the MMD
will likely perform better even if reweighting is used.

Finally, reweighting data in combination with active learning is computationally expensive. We
believe reweighting is only justified if active learning is combined with transfer learning, sample
bias correction or domain adaptation. In the regular active learning setting reweighting likely only
provides marginal benefits with great computational cost.

5.5. Extension to Non-Adaptive Strategy
In this section we discuss how the active learners in this work can be extended to take the labels
of Q̂ into account to make label dependent active learners. We believe adaptive extensions of these
active learners could be a very promising direction for future work.

An adaptive active learning strategy is proposed for the MMD in [9]. The discrepancy active
learner can be adapted in a straightforward way to take into account labeled data using the same
approach. However, this requires a parameter β that balances minimizing the empirical loss and
the discrepancy (or in other words: to balance exploitation and exploration). It is unclear how to
set β without performing multiple active learning experiments on the same dataset. We believe
that the active learning strategies in this work can be adapted in a more meaningful way, and we
discuss these proposed approaches below for each active learner.

First we discuss how to adapt the discrepancy. Recall that the discrepancy maximizes over
u = w′ − w, where w is the model trained during active learning and w′ is the model generating
the labels of the dataset. The discrepancy generalization bound can be adapted to maximize only
over w′, since w is known (or can be approximated) during the active learning process if we
have knowledge about the labels. In that case, it is desirable to constrain w′ so that w ≈ w′,
so the discrepancy active learner becomes less conservative and considers more likely worst-case
scenarios. For example, the function set {∀w′|LQ̂(w′, f) ≤ r2 ∧ ||w′||K ≤ Λ2} could be used as
suggested by [15]. The parameter r in this case controls the conservativeness of the active learning
algorithm. The involved optimization problem for choosing a sample is then however NP-hard
even in a sequential setting. However, [15] proposes a sampling-based approximation that turns
the corresponding domain adaptation algorithm into a simple quadratic program. Perhaps such a
strategy is applicable to the proposed active learning strategy as well.

We believe this analysis could be a very promising direction for future work, since it addresses
the weakness of the discrepancy active learner. If r is chosen small, this active learner assumes
w and w′ are more similar, and the active learner becomes less conservative. The only difficulty
in this case is to tune the parameter r for active learning. In [15] cross validation is used to tune
this parameter, which is impossible in the active learning setting, since this would require multiple
active learning experiments in practice.

This strategy to improve the discrepancy can also be applied to the TED active learner.
TED, like the discrepancy, maximizes over all possible w′ ∈ H, see Equation D.3. Instead of
maximizing over all w′ ∈ H, TED can be similarly adapted to maximize over the function set
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{∀w′|LQ̂(w′, f) ≤ r2 ∧ ||w′||K ≤ Λ2}. However, the corresponding optimization problem is NP-
hard for TED as well. Possibly a sampling based approach is also possible to apply here.

A similar strategy is also directly applicable to the MMD. The MMD approximates the true loss
function g by a loss function g̃ ∈ H. After the training procedure we know the true loss function
on the set Q̂. Using linear constraints we can force g̃ to be similar to the true loss function g on the
set Q̂. Because of this, the MMD will consider more realistic scenarios. These linear constraints
will necessarily depend on a parameter r that needs to be tuned. The resulting maximization
over g̃ ∈ H has a linear objective function for the MMD, and only convex quadratic and linear
constraints, and is thus convex. Perhaps therefore an initial investigation using the MMD should
be preferred, since it would be easy to implement.

Finally, such an analysis for the nuclear discrepancy does not seem straightforward. This is
because the nuclear discrepancy does not have an interpretation where the labeling function or
loss function is approximated by a function of the hypothesis set.

5.6. Implications of our Results for Other Fields
In this section we briefly describe the implications of our results for other fields.

We have shown the benefits of our theoretical analysis that describes how to adapt the MMD
bound to take the hypothesis set and loss into account. In the experiments of [4] where the
discrepancy and the MMD are compared for sample bias correction, the authors used σMMD = σRR.
We have shown that in active learning that this choice can lead to suboptimal results. A comparison
of the MMD and the discrepancy when the MMD takes the hypothesis set and loss into account
in sample bias correction would therefore be very interesting, since in that case the MMD might
outperform the discrepancy as in active learning.

Furthermore any comparison between MMD and discrepancy becomes more insightful when
the MMD takes the hypothesis set and loss into account, because the assumptions of both bounds
are then comparable. Our comparison of the MMD bound and discrepancy bound in terms of
the eigenvalues of the matrix M can possibly be used to understand the differences between the
performance of both methods in other fields.

Finally, we believe the nuclear discrepancy may perform better than the discrepancy or the
MMD in domain adaptation, since it also performs better in the active learning scenario. In
general our results describe desirable properties of non-probabilistic generalization bounds for
active learning: in particular that the bounds should account for likely scenarios. These properties
might be beneficial to consider for other fields which use generalization bounds as well.

5.7. TED for Domain Adaptation
Considering that we found that TED generally performs the best in active learning, we might
wonder if TED can also be extended to domain adaptation, sample bias correction or transfer
learning.Especially if one is interested in the squared loss TED is appropriate.

Possibly TED can improve upon the MMD and the discrepancy in these fields. Especially since
in these fields it is possible to optimize the hyper parameters of the model using cross validation
since labeled data is available (of the source distribution and perhaps even the target distribution).
Then TED can use its information of the optimal regularization parameter to gain an advantage
over the MMD and discrepancy which ignore the regularization parameter.

We must make an important observation: TED assumes that all labels of all samples are
generated by f ∈ H. However, in other fields, it is not uncommon to assume that only samples
near the target distribution are generated by a hypothesis f ∈ H, and for other samples it may be
that f /∈ H. We illustrate what can go wrong if TED is used in this case for domain adaptation
using the artificial example in Figure 5.3 from [3]. Here the target function is linear, while the
source function is a polynomial. Since the target function is linear the linear kernel is used for
this example. In the linear kernel the TED objective favors objects with large norm when used
for active learning. Similarly, TED will likely assign the objects with the largest norm the largest
weights in domain adaptation. In this example TED will thus weight the blue objects on the right
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Figure 5.3: Example from domain adaptation where f ∈ H for the target sample, but where f /∈ H for the source
sample. We expect if TED is used on this artificial example it will reweight the objects with the largest norm the
most, and thus fails to recover the target function.

the most. Using these reweighted samples the linear target function cannot be learned well. This
might be less problematic in the Gaussian kernel where the norm of each sample is constant.
Through artificial examples it is shown that the MMD and the discrepancy can take the situation
into account where f /∈ H for the source distribution [3, 15].

In [3] it is suggested that reweighting should be done according to the ratio P
Q , which is known

as importance weighting. However, as we have seen in Section 4.3.1, TED does not select samples
in active learning to obtain similar ratio’s between the datasets P̂ and Q̂. Therefore, TED will
likely not perform reweighting according to the ratio P

Q in domain adaptation. Because of this
reason, it is especially interesting to know if TED performs well in domain adaptation. This could
show the benefits of not reweighting according to the ratio P

Q as also suggested by [15] and [19].
We wonder if TED can match the performance of the complicated domain adaptation algorithm
proposed by [15], since both methods assume w ≈ w′ and both optimize the weights for the specific
hypothesis under consideration. However, the optimization of the TED objective combined with
reweighting could prove to be a difficult optimization problem.

We conclude TED possibly needs to be adapted to accommodate the assumption that f /∈ H
for the source distribution if it were to be successfully applied in other fields such as domain
adaptation, sample bias correction or transfer learning. Since TED can use knowledge of λ it can
possibly outperform the MMD and discrepancy in these fields as was also shown in our active
learning experiments. Especially it is interesting to see if TED can outperform the generalized
discrepancy domain adaptation algorithm of [15], since both rely on similar assumptions.

5.8. Active Learning for Different Models
In this section we briefly discuss active learning for different models, or in other words, for different
loss functions.

Our results suggest that model dependent bounds such as the TED bound can be desirable
for active learning. Possibly such a model dependent bound can be more informative since it can
depend on the regularization parameter of the model and it can take the training procedure into
account. However, often these bounds are hard to derive for more complex models. In these cases
the MMD bound can be used to easily create a non-adaptive active learning algorithm. Our results
suggest it would be best to take the hypothesis set and loss into account when using the MMD
for active learning. Therefore it would be interesting to investigate which kernel should be used to
take the hypothesis set and loss into account for other models, such as SVM’s or logistic regression.

For the squared loss the discrepancy performs worse than the MMD for active learning, but
has a tighter bound. It remains unclear whether or not for other losses an active learning strategy
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based on the discrepancy can improve upon the MMD. Likely our analysis that the discrepancy
considers a too unlikely worst-case scenario holds for other losses as well. However, computing
the discrepancy for other losses seems to be computationally challenging, since these optimization
problems seem to be non-convex. Therefore, an analysis in terms of the MMD which can also take
the hypothesis set and loss into account could be more promising for future work, also in view of
our negative results for the discrepancy.

Finally, unlike the discrepancy the nuclear discrepancy is not straightforward to generalize to
other losses. However, perhaps the following quantity:

E
u

[
|LP̂ (w,w′)− LQ̂(w,w′)|

]
in combination with proper probabilistic assumptions on u = w−w′ can be used to derive similar
(probabilistic or non-probabilistic) generalization bounds for other losses as well. Likely such an
analysis could lead to active learning algorithms that improve upon the MMD and discrepancy
for other models as well.

5.9. Obstacles to Real World Application
In this section we discuss which obstacles need to be tackled in order to make the methods
in this work applicable to real world scenarios. We discuss the agnostic setting, how to evaluate
active learners, setting hyper parameters, the zero-one loss, and the performance of active learning
methods compared with random sampling.

TED and the nuclear discrepancy are superior in the realizable case compared to the MMD and
the discrepancy. Yet sometimes both were outperformed in the agnostic case. It remains unclear
on what this is dependent. Possibly redundant samples chosen by the discrepancy and the MMD
average out noise as suggested in Section 4.6.1. How can we adapt the active learning methods to
account for this? We believe an in depth study of the approximation error of the generalization
bounds is necessary. A good place to start would be a scenario where the labels are generated by a
model of a different hypothesis class. For example what happens if a different kernel bandwidth is
used for the oracle model that generates the labels? Perhaps it is possible to predict or bound the
approximation error in this case. Studying the approximation error of all methods can be used to
determine which bounds are appropriate in which scenarios. Possibly an extension to probabilistic
labeling functions could be useful to this end as well.

We have looked at learning curves mostly qualitatively. However, for real world application it
might be desirable that the active learning method performs well after x queries. For example, if
the labeling budget is 50 samples, it might not matter how the active learner performs after 10
queries. We however looked at the performance of all active learners for all number of queries.
This suggests that for some settings a different method of measuring performance is necessary.
One could characterize if active learning methods are better for large or small number of queries.
Furthermore, the size of the labeling budget might be important for determining the optimal active
learning strategy. We have ignored these aspects altogether, but these aspects are important for
the applicability and comparison of active learning methods.

It remains an open problem how to set the hyper parameters in a real world active learning
setting. This is closely related to the analysis of the approximation errors of the bounds. There
is a trade-off: the smaller λ, the larger the hypothesis class. A larger hypothesis class results in a
smaller approximation error in the generalization bounds, but a larger chance of overfitting the
model. Furthermore, for larger hypothesis classes the larger the (nuclear) discrepancy quantity, the
MMD quantity and the TED objective and thus the larger the main term in these generalization
bounds. The bandwidth of the Gaussian kernel has a similar trade off: the larger the bandwidth, the
smaller the (nuclear) discrepancy quantity, the MMD quantity and the TED objective. However
the larger kernel bandwidth the larger the approximation error: the model predictions might be too
smooth and underfitting can occur. Possibly these generalization bounds (including the estimation
of approximation error) can be used to gain more insight in how to tune the hyper parameters of
the model during active learning.
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We have investigated the active learning methods in this work in terms of the surrogate loss
of the model. While the squared loss is appropriate for regression, for classification we are gen-
erally more interested in the misclassification or zero-one loss. A bound in terms of zero-one loss
would be most desirable for classification. It is possible to plug the zero-one loss directly in the
definition of the discrepancy since the discrepancy is compatible with any loss function. Or it can
be studied which kernel corresponds to the loss function for the zero-one loss to use the MMD
HS active learning strategy. However the involved maximization will likely be difficult to solve. A
different approach is to study the relation between surrogate losses and the zero-one loss. This is
an important open question for machine learning in general. Observe however that if one is only
interested in the surrogate loss (for example if one is interested in regression with the squared
loss) all our methods are directly applicable.

Finally, one piece of the puzzle is missing. We have characterized qualitatively in which cases
the methods studied in this work can improve upon random sampling. However, it remains unclear
if the active learners will be able to improve upon random sampling and by how much, even in
the realizable setting. A probabilistic interpretation is likely required to analyze this. Perhaps
the generalization bounds in this work can be adapted to generalization bounds that hold with a
certain probability. Such an analysis may be able to provide a probability quantifying how likely
it is an active learning method can improve over random sampling. This would be extremely
desirable if these methods are to be applied in practice.





6
Conclusion

We compared four active learning strategies that are based on generalization bound minimization:
the state-of-the-art TED and state-of-the-art MMD active learner and our introduced discrepancy
and nuclear discrepancy active learners. We have shown why these label independent active learn-
ing techniques are generally useful for active learning and we explained the trends observed in
the learning curves. We gave a qualitative characterization of the conditions in which these active
learners can improve upon random sampling.

An in depth theoretical analysis of the generalization bounds was given. Our first theoretical
result describes how to take the hypothesis set and loss into account for the MMD measure.
Empirical evidence on real world data suggests taking into account the hypothesis set and loss for
the MMD active learner is beneficial. These results have implications for other fields where the
MMD is used as well.

We compared the MMD and discrepancy generalization bound for the squared loss. We have
shown the relation between these bounds. Our second novel theoretical result is that the discrep-
ancy generalization bound is always tighter than the MMD bound under the same assumptions.

Our theoretical results indicate the discrepancy bound is a more accurate estimator of the
generalization error since the bound is tighter. Surprisingly, our introduced discrepancy active
learner performs worse than the MMD in most experiments and rarely performs better. This is a
counter intuitive result that suggests tighter generalization bounds do not guarantee better active
learning performance.

We found that the worst-case scenario considered by the discrepancy is extremely unlikely to
occur in practice. The MMD instead considers average-case scenarios as well which are much more
likely to occur in practice. Because of this the MMD performs better even though its bound is
looser.

However, the MMD weighs worst-case scenarios more than average and best-case scenarios.
Instead, we have shown that in practice all scenarios contribute equally to the generalization
error. We underscored this issue by introducing a novel active learning algorithm based on the
nuclear discrepancy, a novel quantity to estimate the differences between empirical distributions.
The nuclear discrepancy weighs all scenarios equally. We have shown the nuclear discrepancy
active learner outperforms both the MMD and the discrepancy active learner significantly in
the realizable setting. Yet the bound of the nuclear discrepancy is looser than the discrepancy
and MMD bound, confirming that the tightness of a generalization bound is not of importance
for active learning performance. Instead it is important that the generalization bound considers
realistic scenarios that are likely to occur in practice, instead of focusing too much on unlikely
scenarios.

85
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Furthermore we have shown that the model dependent TED bound leads to an active learning
algorithm that almost consistently outperforms the MMD and (nuclear) discrepancy active learners
in the realizable setting. This illustrates the power of model dependent generalization bounds for
active learning. The performance advantage of TED can be explained by the fact it has knowledge
of the training procedure and of the regularization parameter. Therefore TED can consider more
realistic scenarios.

Even though TED performs the best, its bound is not always the tightest, once more confirming
that the tightness of the generalization bound is not important for active learning performance.
Since TED performs the best in our active learning setting, we conclude that the TED criterion
can possibly be successful in other fields as well when the squared loss is the loss of interest.

We performed most experiments in the realizable setting where it is most meaningful to com-
pare the bounds. This setting is meaningful since in this case the approximation errors of the
generalization bounds which cannot be minimized vanish. We have demonstrated that the re-
sults of the realizable setting do not always generalize to the agnostic setting but do give a good
indication of performance.

We found preliminary results suggesting that the MMD and nuclear discrepancy active learn-
ers might be more robust to large model misspecification in terms of the regularization parameter
than the TED strategy; in all of our experiments with model misspecification these methods con-
sistently performed better than random sampling unlike TED. Since in real world active learning
applications one does not know the optimal regularization parameter, the nuclear discrepancy
strategy which performs generally the best is more desirable in such a setting.

A more in depth study is required to diagnose why TED does not perform well in case of
model misspecification with respect to the regularization parameter. More research is necessary
to understand the agnostic case in general which is important for real world applications of these
active learning methods. Perhaps such an investigation can lead to improved active learners or
can shed light on how to tune hyperparameters during active learning.

It will be interesting to apply the analysis of [15] to the active learners in this work. This way,
label dependent active learning strategies can be constructed that consider more realistic scenarios.
Because we have shown that active learners that consider more relevant scenarios perform better,
we expect that this will be a fruitful direction for future work.

In conclusion, we found that the discrepancy generalization bound when used for the squared
loss, while tighter, does not improve active learning performance compared to the MMD active
learning strategy. Instead we found that it is important that active learners take realistic sce-
narios into account. The more likely the scenarios considered by the active learners the better
they perform. Our described generalization bound based on our novel quantity called the nuclear
discrepancy confirms these results. The nuclear discrepancy bound is looser than the MMD and
discrepancy bound, yet the active learner performs better in the realizable setting. In particular
we found preliminary results that the nuclear discrepancy generally performs the best under large
model misspecification with respect to the regularization parameter, even better than the state-of-
the-art TED and MMD active learners. Finally, our qualitative description of desirable properties
for generalization bounds can be very useful for designing new active learning algorithms based
on generalization bound minimization, and may also apply to other fields that use generalization
bound minimization.
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A
MMD

A.1. Derivation of the MMD Generalization Bound
In this section we derive a MMD bound that depends on the assumption that g ∈ H ′. In appendix
A.3 we give the derivation of the MMD bound where this assumption is relaxed. This bound does
not assume i.i.d. samples and thus can be applied to the active learning scenario. At the end of
this section we show how to compute the MMD quantity.

The MMD bound can be derived as follows:

LP̂ (h, f)− LQ̂(h, f) = 1
nP̂

∑
x∈P̂

L(h(x), f(x))− 1
nQ̂

∑
x∈Q̂

L(h(x), f(x))

= 1
nP̂

∑
x∈P̂

g(x)− 1
nQ̂

∑
x∈Q̂

g(x) (A.1)

≤max
g̃∈H′

1
nP̂

∑
x∈P̂

g̃(x)− 1
nQ̂

∑
x∈Q̂

g̃(x) (A.2)

= max
g̃∈H′

1
nP̂

∑
x∈P̂

〈g̃, ψ(x)〉K′ − 1
nQ̂

∑
x∈Q̂

〈g̃, ψ(x)〉K′ (A.3)

= max
g̃∈H′
〈g̃, 1

nP̂

∑
x∈P̂

ψ(x)〉K′ − 〈g̃,
∑
x∈Q̂

1
nQ̂

ψ(x)〉K′

= max
g̃∈H′
〈g̃, µP̂ − µQ̂〉K′ (A.4)

=Λ′||µP̂ − µQ̂||K′ (A.5)

In Equation A.1 we took g(x) = L(h(x), f(x)) = (h(x)− f(x))2. In Equation A.2 we upper bound
the expression of the unknown function g by the worst-case function g̃ ∈ H ′ — for this step to
hold we have to assume g ∈ H ′, otherwise the maximization over g̃ may not contain g. Note that
g̃(x) = 〈g̃, ψ(x)〉K′ due to the reproducing property [13, p. 96]. Equations A.3 to A.4 follow from
the linearity of the inner product. In Equation A.4 we defined µP̂ = 1

nP̂

∑
x∈P̂ ψ(x) and similarly

for µQ̂, note that these are vectors in the RKHS of K ′. The last step follows from the fact that
the vector in H ′ maximizing the term in Equation A.4 is:

g̃ =
µP̂ − µQ̂

||µP̂ − µQ̂||K′
Λ′ (A.6)

This follows from the fact that the inner product between two vectors is maximum if the vectors
point in the same direction.
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Because of the symmetry of ||µP̂ − µQ̂||K′ with respect to P̂ and Q̂, it’s straightforward to
show that this derivation also holds if we switch P̂ and Q̂:

LQ̂(h, f)− LP̂ (h, f) ≤ Λ′||µP̂ − µQ̂||K′ (A.7)

Combining Equation A.5 and A.7 we obtain:

|LP̂ (h, f)− LQ̂(h, f)| ≤ Λ′||µP̂ − µQ̂||K′

This bound is in exactly the same form as the discrepancy bound in Section 2.2.2 and therefore
these bounds can be directly compared. This comparison is given in Appendix C.

A.2. MMD Computation
We can compute the MMD quantity by working out the norm with kernel products:

Λ′||µQ̂ − µP̂ || =Λ′
√
〈µQ̂, µQ̂〉K′ − 2〈µP̂ , µQ̂〉K′ + 〈µQ̂, µP̂ 〉K′

=Λ′
√√√√ 1
n2
Q̂

∑
x,x′∈Q̂

K ′(x, x′)− 2 1
nP̂nQ̂

∑
x∈P̂

∑
x′∈Q̂

K ′(x, x′) + 1
n2
P̂

∑
x,x′∈P̂

K ′(x, x′) (A.8)

We only compute g̃ for illustration purposes. To compute g̃ we simplify Equation A.6:

g̃ =
µP̂ − µQ̂

||µP̂ − µQ̂||H′
Λ ∝ µP̂ − µQ̂

Now we can compute g̃(x) by working out the inner products using kernel matrices:

g̃(x) = 〈g̃, ψ(x)〉 ∝ 〈µP̂ − µQ̂, ψ(x)〉 = 1
nP̂

∑
x′∈P̂

K(x, x′)− 1
nQ̂

∑
x′∈Q̂

K(x, x′)

A.3. Agnostic MMD Generalization Bound
In this section we show how the MMD bound can be extended to the agnostic scenario, where g̃ /∈
H ′. This bound will be similar to the discrepancy generalization bound, only here we approximate
the true loss function g with the loss function g̃.

We aim to bound the quantity:

|LP̂ (h, f)− LQ̂(h, f)|

In terms of g(x) this is equal to:

|LP̂ (h, f)− LQ̂(h, f)| = | 1
nP̂

∑
x∈P̂

g(x)− 1
nQ̂

∑
x∈P̂

g(x)|

To ease notation, we introduce the quantity gQ̂ as the empirical average of g on the set Q̂:

gQ̂ = 1
nQ̂

∑
x∈P̂

g(x)

This notation can also be used to indicate the empirical average of g on the set P̂ , as gP̂ . Fur-
thermore, we also use this notation for the empirical average of g̃ on the sets P̂ and Q̂. In this
notation, we aim to bound:

|LP̂ (h, f)− LQ̂(h, f)| = |gP̂ − gQ̂|
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Observe that:
|gP̂ − gQ̂| = |gP̂ − gQ̂ + g̃P̂ − g̃P̂ + g̃Q̂ − g̃Q̂|

Where g̃ can be any function in H ′. By reordering the terms and applying the triangle inequality
we can show that:

|gP̂ − gQ̂| ≤ |g̃P̂ − g̃Q̂|+ |gP̂ − gQ̂ − g̃P̂ + g̃Q̂|

Now we can bound the first term using the MMD, since we are sure that the loss function that is
to be bounded in this case is in the set H ′ (see also the bound in Appendix A.1):

|g̃P̂ − g̃Q̂| ≤ max
g̃∈H′

|g̃P̂ − g̃Q̂| = MMD(P̂ , Q̂)

Thus we obtain:
|gP̂ − gQ̂| ≤ MMD(P̂ , Q̂) + |gP̂ − gQ̂ − g̃P̂ + g̃Q̂|

Now this equation holds for any g̃ ∈ H ′. To make the bound tight, we can minimize the right hand
side over all g̃ ∈ H ′:

|gP̂ − gQ̂| ≤ MMD(P̂ , Q̂) + min
g̃∈H′

|gP̂ − gQ̂ − g̃P̂ + g̃Q̂|

The term on the right hand side now plays the role of the approximation error of approximating
g by g̃. Note that this term is easy to compute, since this can be rewritten as a convex minimiza-
tion problem (if the labels of Q̂ and P̂ are known), unlike the discrepancy approximation term
which involves a non-convex optimization problem. To make this term more comparable with the
discrepancy approximation term, we can rewrite this term using the triangle inequality as:

|gP̂ − gQ̂ − g̃P̂ + g̃Q̂| ≤ |gP̂ − g̃P̂ |+ |gQ̂ − g̃Q̂|

Plugging in the definitions of gP̂ , gQ̂, etc. . . we have that:

|gP̂ − gQ̂ − g̃P̂ + g̃Q̂| ≤ |
1
nP̂

∑
x∈P̂

g(x)− 1
nP̂

∑
x∈P̂

g̃(x)|+ | 1
nQ̂

∑
x∈Q̂

g(x)− 1
nQ̂

∑
x∈Q̂

g̃(x)|

Using the triangle inequality we can show that:

|gP̂ − gQ̂ − g̃P̂ + g̃Q̂| ≤
1
nP̂

∑
x∈P̂

|g(x)− g̃(x)|+ 1
nQ̂

∑
x∈Q̂

|g(x)− g̃(x)|

Thus we find the generalization bound:

|LP̂ (h, f)− LQ̂(h, f)| ≤ MMD(P̂ , Q̂) + min
g̃∈H′

 1
nP̂

∑
x∈P̂

|g(x)− g̃(x)|+ 1
nQ̂

∑
x∈Q̂

|g(x)− g̃(x)|







B
Discrepancy

B.1. Computation of the Discrepancy
In this section we calculate the discrepancy analytically for the L2 loss in the linear kernel (following
the derivation of [12] page 8). At the end of this section we extend the computation to any arbitrary
kernel (following the derivation of [4] Section 5.2). Note that all vectors are column vectors, and
X is a data matrix where each row vector is an object and is thus of size n× d. We consider the
setting where Q̂ ∈ P̂ and where all samples have equal weights, therefore this derivation is slightly
adapted from [12] and [4]. We first rewrite the discrepancy for the linear kernel:

disc(P̂ , Q̂) = max
h,h′∈H

|LP̂ (h′, h)− LQ̂(h′, h)|

= max
h,h′∈H

| 1
nP

∑
x∈P̂

(h′(x)− h(x))2 − 1
nQ̂

∑
x∈Q̂

(h′(x)− h(x))2|

= max
||w||≤Λ,||w′||≤Λ

| 1
nP̂

∑
x∈P̂

((w′ − w)Tx)2 − 1
nQ̂

∑
x∈Q̂

((w′ − w)Tx)2|

= max
||u||≤2Λ

| 1
nP̂

∑
x∈P̂

(uTx)2 − 1
nQ̂

∑
x∈Q̂

(uTx)2| (B.1)

So note we can compute the discrepancy for the squared loss using the following formula:

disc(P̂ , Q̂) = max
z̃∈H,||z̃||K≤2Λ

| 1
nP̂

∑
x∈P̂

z̃(x)2 − 1
nQ̂

∑
x∈Q̂

z̃(x)2|

Where we took z̃ = uTx. This generalization to any arbitrary kernel holds since we could do this
derivation in the RKHS of K, and use z̃ = 〈ψ(x), u〉2. We can call the worst-case loss function
g̃(x) = z̃(x)2. Then we can write the discrepancy in the same form as the MMD quantity in
Equation A.2:

disc(P̂ , Q̂) = | 1
nP̂

∑
x∈P̂

g̃(x)− 1
nQ̂

∑
x∈Q̂

g̃(x)|

Only for the discrepancy we have the constraint that g̃(x) = z̃(x)2, and the maximization is over
z̃ and not over g̃. See also Equation A.2.
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We rewrite Equation B.1 further to compute the discrepancy:

disc(P̂ , Q̂) = max
||u||≤2Λ

| 1
nP̂

∑
x∈P̂

uTxxTu− 1
nQ̂

∑
x∈Q̂

uTxxTu|

= max
||u||≤2Λ

| 1
nP̂

uTXT
P̂
XP̂u−

1
nQ̂

uTXT
Q̂
XQ̂u|

= max
||u||≤2Λ

|uTMu|

Where we defined the d× d matrix M as:

M = 1
nP̂

XT
P̂
XP̂ −

1
nQ̂

XT
Q̂
XQ̂

The absolute value results in two terms we need to maximize over:

disc(P̂ , Q̂) = max
(

max
||u||≤2Λ

uTMu, max
||u||≤2Λ

uT (−M)u
)

(B.2)

We first compute the first term. Since M is a real symmetric matrix, M is a normal matrix and
admits an orthonormal eigendecomposition with real eigenvalues. We can solve this maximization
by using this eigendecomposition of M :

max
||u||≤2Λ

uTMu = max
||u||≤2Λ

uT
∑
i

eiλie
T
i u (B.3)

Here ei are the eigenvectors of M and λi are the corresponding eigenvalues. Since M is a normal
matrix its orthonormal eigenvectors span the entire space Rd, and thus form an orthonormal basis
for Rd. Because of this we can express the vector u in terms of the eigenvectors of M :

u =
d∑
i

uiei

We can use this to solve the maximization:

max
||u||≤2Λ

uTMu = max
||u||≤2Λ

d∑
i

uie
T
i

∑
i

eiλie
T
i

d∑
i

uiei

= max
||u||≤2Λ

d∑
i

uie
T
i eiλie

T
i uiei

= max
||u||≤2Λ

d∑
i

u2
iλi

Where we used orthonormality of the eigenvectors of M . Observe that the components of u each
weight an eigenvalue of M . To maximize this quantity, we thus need to weight the maximal eigen-
value maximally. Thus the vector u that maximizes this is given by a multiple of the eigenvector
emax corresponding to the maximum eigenvalue λmax:

u = emax2Λ

Note ||u|| = 2Λ (since the eigenvector emax is orthonormal) to maximize the quantity in Equation
B.3. Substituting the solution of u and using that the eigendecomposition is orthogonal we obtain:

max
||u||≤2Λ

uTMu = 4Λ2eTmax
∑
i

eiλie
T
i emax

= 4Λ2eTmaxemaxλmaxe
T
maxemax

= 4Λ2λmax
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Now for the maximization of the second term of Equation B.2, we can use that the matrix
(−M) has the same eigenvalues as M only with the sign reversed, so we obtain the same solution
except with the smallest eigenvalue λmin and a change of sign. Thus we find that the discrepancy
is given by:

disc(P̂ , Q̂) = 4Λ2 max(λmax,−λmin)
= 4Λ2 max

i
|λi| = 4Λ2λ∗

= 4Λ2||M ||2

Where ||M ||2 is also known as the spectral norm of the matrix M , which is given by the largest
absolute eigenvalue λ∗.

Now we can compute the discrepancy in a linear kernel. In an arbitrary kernel we cannot easily
compute the covariance matrices of the sets P̂ and Q̂, since the RKHS of K may be very large or
infinite. In the following we rewrite the spectral norm of M in terms of kernel innerproducts, so
the discrepancy can be computed in any arbitrary kernel.

First we introduce the set Û = P̂ − Q̂. We assume in the following that the matrix XP̂ is
structured as:

XP̂ =
[
XQ̂

XÛ

]
It can be shown that M can be rewritten as[4]:

M = XT
P̂
DXP̂

Where D is an nP̂ × nP̂ diagonal matrix. The matrix D reweights all objects and is given by:

D =
[

( 1
nP̂
− 1

nQ̂
)I 0

0 1
nP̂
I

]

Where ( 1
nP̂
− 1

nQ̂
)I is a diagonal matrix of size nQ̂ × nQ̂, and

1
nP̂
I is a diagonal matrix of size

nÛ × nÛ .
Since the matrix product AB and BA have the same eigenvalues[4], and since ||M ||2 only

depends on the eigenvalues, we can permute the matrices in M to obtain a new matrix MK while
||M ||2 = ||MK ||2:

M = (XT
P̂
D)XP̂

MK = XP̂ (XT
P̂
D) = KP̂ P̂D (B.4)

Now MK only depends on the kernel matrix of P̂ . Note that the kernel matrix should be ordered
the same as XP̂ , thus the kernel matrix is given by:

KP̂ =
[
KQ̂Q̂ KQ̂Û

KÛQ̂ KÛÛ

]
Now the discrepancy can be computed in any arbitrary kernel using:

disc(P̂ , Q̂) = 4Λ2||MK ||2

Now we discuss how to compute g̃. The computation of the function g̃ is straightforward
in the linear kernel: take the eigenvector ũ that maximizes Equation B.2. Then by definition
g̃(x) = (ũTx)2.

The works concerning the discrepancy do not provide a way to compute g̃ for an arbitrary
kernel, here we describe a method to do so. To obtain g̃(x) we require the the values of z̃(x). From
here on, we write z̃ as a vector indicating the outputs of z̃ on all objects in P̂ . In the linear kernel
we have that:

z̃ = XP̂ ũ
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Note that ũ is the eigenvector corresponding to the largest absolute eigenvalue λ∗ of M . Now we
show that the vector z̃ is the eigenvector of MK corresponding to the largest absolute eigenvalue
λ∗ of MK :

MK z̃ = MKXP̂ ũ = XP̂X
T
P̂
DXP̂ ũ = XP̂Mũ = λ∗XP̂ ũ = λ∗z̃

This shows that we can compute z̃ by computing the eigenvector corresponding to the largest
absolute eigenvalue λ∗ of MK . Since MK can be computed in any arbitrary kernel, we can now
compute z̃ in any arbitrary kernel. Then g̃(x) is simply given by g̃(x) = z̃(x)2. However observe that
unlike the MMD where it is straightforward to compute g̃(x) for any x ∈ X , for the discrepancy
we can only compute g̃(x) for objects x ∈ P̂ .

B.2. Proof of the Agnostic Discrepancy Bound
In this section we show how to derive the agnostic discrepancy generalization bound:

|LP̂ (h, f)− LQ̂(h, f)| ≤ disc(P̂ , Q̂) + 2C min
f̃∈H

 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)|+ 1
nQ̂

∑
x∈Q̂

|f(x)− f̃(x)|


Which holds for any deterministic labeling function f(x) and any h ∈ H. We assume that for any
h and f that: L(h(x), f(x)) ≤ C. This proof is slightly adapted from the proof in [15]. Recall that
the discrepancy term already gives a bound on this quantity in the realizable case f ∈ H:

|LP̂ (h, f)− LQ̂(h, f)| ≤ max
h,f∈H

|LP̂ (h, f)− LQ̂(h, f)| = disc(P̂ , Q̂)

To extend this bound to the agnostic case this will require us to approximate the agnostic function
f by a function f̃ ∈ H. We give the proof below.

Observe that the following equation holds for all f̃ ∈ H:

|LP̂ (h, f)− LQ̂(h, f)| = |LP̂ (h, f)− LQ̂(h, f) + LP̂ (h, f̃)− LP̂ (h, f̃)− LQ̂(h, f̃) + LQ̂(h, f̃)|

If we rearrange the terms on the right hand side and apply the triangle inequality, we can show
that:

|LP̂ (h, f)− LQ̂(h, f)| ≤ |LP̂ (h, f̃)− LQ̂(h, f̃)|+ |LP̂ (h, f)− LP̂ (h, f̃) + LQ̂(h, f̃)− LQ̂(h, f)|

Now we can bound the first term on the right hand side by maximizing over all h and f̃ ∈ H:

|LP̂ (h, f̃)− LQ̂(h, f̃)| ≤ max
h,f̃∈H

|LP̂ (h, f̃)− LQ̂(h, f̃)| = disc(P̂ , Q̂)

Then we obtain the following generalization bound which holds for all f̃ ∈ H:

|LP̂ (h, f)− LQ̂(h, f)| ≤ disc(P̂ , Q̂) + |LP̂ (h, f)− LP̂ (h, f̃) + LQ̂(h, f̃)− LQ̂(h, f)|

Since this bound holds for all f̃ ∈ H, so we can choose to minimize with respect to f̃ to get a
bound that is as tight as possible:

|LP̂ (h, f)− LQ̂(h, f)| ≤ disc(P̂ , Q̂) + min
f̃∈H
|LP̂ (h, f)− LP̂ (h, f̃) + LQ̂(h, f̃)− LQ̂(h, f)| (B.5)

Observe that the second term on the right hand side plays the role of an approximation error: here
the function f̃ approximates the function f on the sets Q̂ and P̂ . The better f̃ can approximate
f , the tighter the bound. However, this term is difficult to compute, since it is a non-convex
optimization problem in f̃ due to the absolute value. Therefore, in [15] they bound this quantity
as follows. Observe that due to the triangle inequality:

|LP̂ (h, f)−LP̂ (h, f̃)+LQ̂(h, f̃)−LQ̂(h, f)| ≤ |LP̂ (h, f)−LP̂ (h, f̃)|+ |LQ̂(h, f̃)−LQ̂(h, f)| (B.6)
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The two terms on the right hand side of this equation are still non-convex in terms of f̃ . Now we
can use the µ-admissibility of the squared loss to bound both terms on the right in terms that are
convex in f̃ . For the squared loss we have that µ = 2C, where L(h(x), f(x)) ≤ C for all x ∈ X
and h ∈ H, see appendix C of [15]. Then by the µ-admissibility of the squared loss we have (see
also [15]):

|LP̂ (h, f)− LP̂ (h, f̃)| ≤ 2C 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)| (B.7)

And:
|LQ̂(h, f)− LQ̂(h, f̃)| ≤ 2C 1

nQ̂

∑
x∈Q̂

|f(x)− f̃(x)| (B.8)

Combining Equation B.6 with Equation B.7 and Equation B.8 we find that:

|LP̂ (h, f)−LP̂ (h, f̃)+LQ̂(h, f̃)−LQ̂(h, f)| ≤ 2C

 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)|+ 1
nQ̂

∑
x∈Q̂

|f(x)− f̃(x)|


Combining with Equation B.5 we find our final result:

|LP̂ (h, f)− LQ̂(h, f)| ≤ disc(P̂ , Q̂) + 2C min
f̃∈H

 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)|+ 1
nQ̂

∑
x∈Q̂

|f(x)− f̃(x)|


Introducing the approximation error ηdisc(P̂ , Q̂, f):

ηdisc(P̂ , Q̂, f) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f̃(x)− f(x)|+ 1
nQ̂

∑
x∈Q̂

|f̃(x)− f(x)|


We find that:

|LP̂ (h, f)− LQ̂(h, f)| ≤ disc(P̂ , Q̂) + 2Cηdisc(P̂ , Q̂, f)

B.3. Why Did We Consider this Discrepancy Generalization
Bound

Multiple bounds are given in [4] to motivate the use of the discrepancy. These bounds differ from
other bounds in domain adaptation. In domain adaptation the bounds are typically derived by
considering the density ratios of Q and P . The bounds in [4] compare the performance of the
model trained on Q̂ compared with the model trained on P̂ . These bounds are quite novel, but
actually can be derived for the MMD as well if the MMD is adapted to take into account the
hypothesis set (see Subsection 2.2.3). They thus do not contribute truly to explaining why the
discrepancy is a more desirable bound than the MMD.

Furthermore, we found that typically these bounds from [4] in terms of the model trained on
P̂ are looser than a simpler bound from [15]. Only in case λ > 1 or if the discrepancy is very large
the bounds of [4] may be tighter. We computed both bounds in all our experiments and found
that in all cases the bounds of [15] were tighter, since in our experiments we typically set λ < 1.
For more details see appendix B.4. Therefore, we instead study the bound from [15] that is easier
to derive and understand. This bound is also directly comparable with the MMD bound derived
in Subsection 2.1.2.

B.4. Discrepancy Bounds in Terms of the Oracle Hypothesis
In [4] several bounds are given in terms of the loss when the hypothesis trained on Q̂ is compared
to the oracle hypothesis, meaning the hypothesis that is obtained when training on P̂ . In this
section we show that these bounds are typically weaker then the bound given in Section 2.2.2. For
example consider the bound:
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Theorem 8 (General pointwise bound for the squared loss[4]) Let L be the squared loss
and assume that for all (x, y) ∈ X × Y, L(h(x), y) ≤ C and K(x, x) ≤ r2 for some C > 0 and
r > 0. Let h′ be the hypothesis returned by kernel ridge regression when minimizing F(P̂ ,f) and h
the one when minimizing F(Q̂,f). Then for all x ∈ X and y ∈ Y,

|L(h′(x), y)− L(h(x), y)| ≤ r
√
C

λ
(δH(f, Q̂, P̂ ) +

√
δH(f, Q̂, P̂ )2 + 4λdisc(P̂ , Q̂)) (B.9)

Where δH(fP , fQ) is the weighted feature discrepancy given by:

δH(f, Q̂, P̂ ) = inf
h∈H
|| 1
nP̂

∑
x∈P̂

[(h(x)− f(x))ψK(x)]− 1
nQ̂

∑
x∈Q̂

[(h(x)− f(x))ψK(x)]||K

The weighted feature discrepancy is similar to the term ηdisc(f, Q̂, P̂ ) we have seen earlier in
the bound in Section 2.2.2, it measures the approximation error we make when we approximate f
by a hypothesis h ∈ H. In the realizable setting ηdisc(f, P̂ , Q̂) = 0 and δH(fP , fQ) = 0.

This bound is derived as follows. It can be shown that:

|L(h′(x), y)− L(h(x), y)| ≤ µr||h′ − h||K

Where µ = 2C. The last term can be bounded by the right hand side of Equation B.9. See [4] for
the full derivation. Note that this bound thus aims to minimize the distance to the oracle classifier
h′ in the RKHS of the kernel K.

Now we compare this bound to the bound in Section 2.2.2. For the realizable case the bound
is given by:

|LP̂ (h′(x), f)− LP̂ (h(x), f)| ≤ r
√
C

λ

√
4λdisc(P̂ , Q̂)

We consider the Gaussian kernel where r = 1, we use Λ =
√

1
λ and C = (Λr + 1)2 as derived in

appendix F. After rewriting we can show that:

LP̂ (h(x), y) ≤ LP̂ (h′(x), y) + (Λ + 1)Λ24
√
||M ||2

Thus the last term in this bound is in the order of Λ3. Since λ is typically very small, Λ = 1√
λ
>> 1,

and therefore this bound is typically weaker than the bound derived in Section 2.2.2 which has a
term that is in the order of Λ2. The bound here can be tighter if ||M ||2 is very large, since it is in
the square root in this equation while it is not in a square root in the bound of Section 2.2.2, or if
Λ < 1. Note that this bound compares the performance of h and h′ on the set P̂ and is therefore a
different kind of bound than the one derived in Section 2.2.2. We computed both bounds explicitly
and found that the bound of Section 2.2.2 was typically tighter in our experiments, since in our
experiments Λ >> 1.

The bound of Theorem 2 in [4] can be shown to be even weaker, it has a dependence of Λ4.
The bound in Theorem 4 of [4] is incomparable with the bound in Section 2.2.2 since it instead
considers the root mean squared error instead of the mean squared error.



C
Comparison between Discrepancy

and MMD
In this appendix we show that the bound of the discrepancy derived in Section 2.2.2 is always
tighter or as tight as the bound of the MMD derived in Section 2.1 for the squared loss in the
realizable setting where f ∈ H. This is our main theoretical result. To this end we also show how
to choose the kernel K ′ and the corresponding set H ′ for the MMD to satisfy the assumptions
of the bound in the realizable setting. This describes how to choose the kernel K ′ to take the
hypothesis set of the learning algorithm into account for the MMD, and is our second important
theoretical result.

First we review some notation and give a brief recap of the bounds of the discrepancy and
the MMD and their assumptions. To keep matters simple we first only consider the linear kernel
as the kernel for our learning algorithm. We show that choosing the kernel for the MMD as the
squared kernel K ′(x, x′) = K(x, x′)2 guarantees the MMD bound to hold in the realizable setting.
We give a small example in 2 dimensions to illustrate this. Then we show why the bound of the
discrepancy in this setting is always tighter than the MMD bound for d = 2 dimensions, this is
our first main result. Afterward we extend this to an arbitrary number of dimensions, and then
we argue that this proof can be extended to any arbitrary kernel K: we show that K ′ is the
squared kernel as well for any arbitrary kernel K. One may wonder whether the assumptions of
the MMD are in some sense less restrictive, since the bound is looser. In the last subsection we
show that the assumptions of the discrepancy and MMD are equivalent. In view of these results,
one may conclude that the discrepancy bound is always preferable theoretically. Finally, we give
a generalization bound for the MMD that always holds in the agnostic case as well as long as the
function f deterministically determines the label.

C.1. Recap of Bounds and Notation
For simplicity we choose K as the linear kernel, thus K(x, x′) = xTx′. h(x) is the evaluation of
h on object x, in the linear kernel this is simply h(x) = hTx where h is in this case the vector
describing the linear model. We consider the realizable setting where we assume f ∈ H, where H
is the hypothesis set of our chosen model.

For the MMD we choose the set H ′ as H ′ = {∀h ∈ H′ : ||h||K′ ≤ Λ′ = 4Λ2}, where K ′ is the
squared kernel of K, meaning K ′(x, x′) = K(x, x′)2. H′ is the RKHS of the kernel K ′. This choice
of H ′ guarantees that the MMD bound of Theorem 1 will hold as will be shown later.

For a function g ∈ H ′, g(x) can be computed as: g(x) = 〈g, ψ(x)〉K′ . Here ψ(x) is the fea-
turemap of x which maps objects from the input space X to the RKHS H′ of kernel K ′. ψ(x) and
g are vectors in the RKHS H′ of K ′. Here we only use ψ(x) to denote featuremaps of K ′ since the
featuremap of K is given by the identity since for simplicity we use the linear kernel as hypothesis
set and thus X = H.

99
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The discrepancy is computed as the spectral norm of matrix M , which is the difference of the
two covariance matrices between sets P̂ and Q̂:

M = 1
nP̂

XT
P̂
XP̂ −

1
nQ̂

XT
Q̂
XQ̂

The discrepancy bound for the realizable setting is given by:

|LP̂ (h, f)− LQ̂(h, f)| ≤ 4Λ2||M ||2 = 4Λ2 max
i
|λi| = disc(P̂ , Q̂)

Where λi are the eigenvalues of the matrix M . Note in the realizable setting ηdisc(f, Q̂, P̂ ) = 0
which is the reason the approximation term is not included in the bound above.

The MMD bound is given by:

|LP̂ (h, f)− LQ̂(h, f)| ≤ Λ′||µP̂ − µQ̂||K′ = MMD(P̂ , Q̂)

Recall that the MMD can be computed using:

MMD(P̂ , Q̂) = max
g̃∈H′

 1
nP̂

∑
x∈P̂

g̃(x)− 1
nQ̂

∑
x∈Q̂

g̃(x)


The key assumption for the MMD bound to hold was that the loss function g(x) = L(h(x), f(x)) =
(h(x)− f(x))2 is contained in the set H ′. Now we first determine the set H ′.

C.2. Determining the Function Set for the MMD
In this section we show that the kernel K ′ should be chosen as the squared kernel of K in the
realizable setting to satisfy the assumptions of the MMD bound that g(x) = (h(x) − f(x))2 is
contained in the set H ′. We can find H ′ as follows. First we define the function z(x) = h(x)−f(x).
The function ||z||K = ||h− f ||K ≤ 2Λ, since ||h||K ≤ Λ and ||f ||K ≤ Λ. Note that g(x) = z(x)2 =
(h(x)− f(x))2. We define the squared kernel of K as K ′(x, x′) = 〈x, x′〉2K = (xTx′)2 = K(x, x′)2.
The featuremap ψ of K ′ that maps from X = H to H′ is given by [26, chap. 9.1]1:

ψ(x) = (x2
1, . . . , x

2
n,
√

2x1x2, . . . ,
√

2x1xn,
√

2x2x3, . . . ,
√

2x2xn, . . . ,
√

2xn−1xn) (C.1)

Note the kernel K ′ is a PSD kernel since its featuremap exists. The function z(x) can be described
as z(x) = 〈z, x〉K = zTx. Thus the function g(x) = z(x)2 = 〈z, x〉2K = K ′(z, x) = 〈ψ(z), ψ(x)〉K′ ,
thus g ∈ H ′ with g = ψ(z).

This is more complicated to show when K is any arbitrary kernel and we defer this discussion
to Subsection C.6.

Furthermore we have that ||g||K′ = 〈ψ(z), ψ(z)〉K′ = K ′(z, z) = 〈z, z〉2K = ||z||2K ≤ 4Λ2, since
||z||K ≤ 2Λ. Thus we have shown that ||g||K′ ≤ 4Λ2. Thus in the realizable setting to satisfy the
assumptions of the MMD we need to choose the set H ′ as H ′ = {∀h ∈ H′ | ||h||K′ ≤ Λ′ = 4Λ2}
in case we use a linear kernel K for the learning algorithm.

C.3. Illustrating Example
This example illustrates the derivation of the previous subsection and can be skipped if this is
clear. For simplicity we take d = 2 dimensions. The function z(x) is a linear function: z(x) =
f(x)− h(x) = zTx = x1z1 + x2z2. The norm of z is bounded by 2Λ:

||z||K =
√
z2

1 + z2
2 ≤ 2Λ

1Note that actually in [26] this kernel is defined as a polynomial kernel. In our case for this polynomial kernel we
have that R = 0 and d = 2, resulting in the featuremap given in Equation C.1. This is often referred to as the
squared kernel.
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Now if we square the function z(x) we obtain the function g(x):

g(x) = z(x)2 = (x1z1 + x2z2)2 = x2
1z

2
1 +
√

2
√

2x1x2z1z2 + x2
2z

2
2

Note that for the squared kernel for d = 2 the featuremap is given by: ψ(x) = (x2
1, x

2
2,
√

2x1x2) =
(p1, p2, p3). Here we have chosen {p1, p2, p3} as the basis for the RKHS of K ′. We have that:

g(x) = z(x)2 = z2
1p1 + z2

2p2 +
√

2z1z2p3

We directly see that ψ(z) = (z2
1 , z

2
2 ,
√

2z1z2)TH′ with respect to the basis of the RKHS of K ′, which
was to be expected since this corresponds exactly with the mapping of ψ. Furthermore we observe
g(x) = 〈ψ(z), ψ(x)〉H′ , thus g ∈ H′. Now in the squared kernel K ′, the norm of g(x) becomes:

||g||K′ = ||z2||K′ = ||

 z2
1
z2

2√
2z1z2

 || = √z4
1 + 2z2

1z
2
2 + z4

2 =
√

(z2
1 + z2

2)2 = (z2
1 + z2

2) ≤ 4Λ2

We can show this as well using:

||z2||K′ = 〈ψ(z), ψ(z)〉K′ = (zT z)2 = ||z||2K ≤ 4Λ2

Thus we find that indeed Λ′ = 4Λ2.
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C.4. Proof that the Discrepancy Bound is Tighter (Main Re-
sult)

Now we will relate the discrepancy to the MMD for d = 2 dimensions. The goal of this section is
to show that we can compute the MMD with the matrix M as follows:

MMD(P̂ , Q̂) = 4Λ2||µP̂ − µQ̂||K′ = 4Λ2||M ||F

We first will show this result. In this form the discrepancy and MMD bounds become comparable.
At the end of this section we compare both bounds and show the discrepancy bound is always
tighter or as tight as the MMD bound.

Let us introduce some notation. The jth component of object i will be denoted by xij . The
covariance matrix for set P̂ becomes:

1
nP̂

XT
P̂
XP̂ = 1

nP̂

( ∑
i∈P̂ x

2
1i

∑
i∈P̂ x1ix2i∑

i∈P̂ x1ix2i
∑
i∈P̂ x

2
2i

)
The matrix M is given by:

M = 1
nP̂

XT
P̂
XP̂ −

1
nQ̂

XT
Q̂
XQ̂

=
( 1

nP̂

∑
i∈P̂ x

2
1i − 1

nQ̂

∑
i∈Q̂ x

2
1i

1
nP̂

∑
i∈P̂ x1ix2i − 1

nQ̂

∑
i∈Q̂ x1ix2i

1
nP̂

∑
i∈P̂ x1ix2i − 1

nQ̂

∑
i∈Q̂ x1ix2i

1
nP̂

∑
i∈P̂ x

2
2i − 1

nQ̂

∑
i∈Q̂ x

2
2i

)

=
(

∆11 ∆12
∆21 ∆22

)
(C.2)

We define ∆kl to ease notation:

∆kl ≡
1
nP̂

∑
i∈P̂

xkixli −
1
nQ̂

∑
i∈Q̂

xkixli

Note that ∆kl = ∆lk. Recall that the MMD is given by the norm of the difference of the means
of the sets P̂ and Q̂ in the RKHS of the kernel K ′. Earlier we have shown that K ′ is the squared
kernel of K. Now we explicitly calculate these means. The mean of P̂ in the RKHS of K ′ is given
by:

µP̂ = 1
nP̂

 ∑
i∈P̂ x

2
1i∑

i∈P̂ x
2
2i∑

i∈P̂
√

2x1ix2i


Note that this is in 3 dimensions, where we obtained these x values by using the featuremap of
the quadratic kernel: ψ(x) = (x2

1, x
2
2,
√

2x1x2). The difference between the means µP − µQ can be
written as:

µP̂ − µQ̂ =


1
nP̂

∑
i∈P̂ x

2
1i − 1

nQ̂

∑
i∈Q̂ x

2
1i

1
nP̂

∑
i∈P̂ x

2
2i − 1

nQ̂

∑
i∈P̂ x

2
2i√

2( 1
nP̂

∑
i∈P̂ x1ix2i − 1

nQ̂

∑
i∈Q̂ x1ix2i)

 =

 ∆11
∆22√
2∆12


The norm of µP̂ − µQ̂ is given by:

||µP̂ − µQ̂||
2
K′ = ∆2

11 + ∆2
22 + 2∆2

12

Note that the Frobenius norm of M is given by the same expression (see Equation C.2, and note
that ∆12 = ∆21):

||M ||2F = ∆2
11 + 2∆2

12 + ∆2
22 = ||µP̂ − µQ̂||

2
K′
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Thus the MMD bound can be written as:

MMD(P̂ , Q̂) = 4Λ2||µP̂ − µQ̂||K′ = 4Λ2||M ||F

Which was what we set out to show. Now we compare the discrepancy and MMD bound, but first
we slightly rewrite the MMD quantity.

It can be shown that the Frobenius norm is equal to the square root of the sum of squared
singular values. However, since M is a real symmetric matrix, the singular values σi of M are
equal (except for the sign) to the eigenvalues λi of M , and therefore here the Frobenius norm is
equal to the square root of the sum of squared eigenvalues of M :

MMD(P̂ , Q̂) = 4Λ2||M ||F = 4Λ2
√∑

i

σ2
i = 4Λ2

√∑
i

λ2
i

The bound for the discrepancy was given by:

disc(P̂ , Q̂) = 4Λ2||M ||2 = 4Λ2 max
i

(|λi|)

By comparing both expressions, we see that the discrepancy bound is always tighter or as tight
as the MMD in this setting:

disc(P̂ , Q̂) = 4Λ2||M ||2 ≤ 4Λ2||M ||F = MMD(P̂ , Q̂)

C.5. Extension to Arbitrary Number of Dimensions
This can be generalized to any arbitrary number of dimensions as follows. In d dimensions, the
entries of the matrix M become Mkl = ∆kl. Therefore the Frobenius norm of M is given by:

||M ||2F =
∑
i=1...d

∑
j=1...d

∆2
ij =

∑
i=1...d

∆2
ii +

∑
j=i+1,...,d

2∆2
ij

Correspondingly, the vector µP̂ − µQ̂ becomes:

µP̂ − µQ̂ =



∆11
∆22
...

∆dd√
2∆12
...√

2∆1d√
2∆23
...√

2∆2d
...√

2∆(d−1)d


The norm is given by:

||µP̂ − µQ̂||
2
K′ =

∑
i=1,...,d

∆2
ii +

∑
i=1,...,d

∑
j=i+1,...,d

2∆2
ij

=
∑

i=1,...,d
∆2
ii +

∑
i 6=j

∆2
ij

=
∑
i=1...d

∑
j=1...d

∆2
ij = ||M ||2F
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And thus in this case it still holds that:

||M ||F = ||µP̂ − µQ̂||K′

Thus our analysis in the previous section holds for any arbitrary number of dimensions.

C.6. Extension to any Arbitrary Kernel
In this section we generalize these results to any arbitrary kernel K. The most difficult part in
this derivation is showing that g ∈ H ′ = {∀h ∈ H′ : ||h||K′ ≤ Λ′ = 4Λ2} as we did in Section C.2
for the linear kernel K. Before we do this we introduce some notation to work with two kernels
and we briefly repeat some results from Section C.2. Afterward we first show that g ∈ H′ and
then show that g ∈ H ′. Then we argue that the results from Section C.4 still hold: this was our
main result that the discrepancy bound is always tighter than the MMD bound. We first do these
derivations using the kernel K ′ since this is most easiest to show using this kernel. Then we show
that this also holds for a kernel K ′′ which we can use to compute the MMD. This analysis shows
how to choose the kernel of the MMD to take the hypothesis set into account for any arbitrary
kernel K.

First we introduce some notation. We define the squared kernel K ′ as:

K ′(f, h) = 〈f, h〉2K (C.3)

Where f ∈ H and g ∈ H, where H is the RKHS of K. We indicate H′ as the RKHS of K ′. We
assume K is a PSD kernel. By definition of K ′ the kernel K ′ is a PSD kernel since a squared kernel
is known to be PSD[13, Theorem 5.3]. Now we have two kernels we have two featuremaps: ψK(x)
which maps the input space X to the RKHS of K (this map exists since we assume K is a PSD
kernel), and ψK′(h) which maps a vector from the RKHS of K to the RKHS of K ′. Note that the
second featuremap ψK′(h) remains the same quadratic featuremap as before but now maps from
H to H′. See Table C.1 for an overview of the notation used.

Recall that because K is a PSD kernel we have that:

K(x, x′) = 〈ψK(x), ψK(x′)〉K (C.4)

For x, x′ ∈ X . Similarly for the kernel K ′ which is also PSD we have that:

K ′(f, g′) = 〈ψK′(f), ψK′(g)〉K′ (C.5)

For f, g ∈ H.
Now we briefly repeat a part of the derivation of C.2. We define z as:

z = h− f

The function g is given by:
g(x) = z(x)2

As in Section C.2 we have that ||h||K ≤ Λ and ||f ||K ≤ Λ since we assumed the realizable setting.
Then it is straightforward to show that:

||z||K = ||h− f ||K ≤ 2Λ (C.6)

Transformation ψK ψK′

Space X → H → H′
Kernel K K ′

Table C.1: This table illustrates the notation used when 2 kernels are involved.
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Since h and f are in the RKHS of K, z is also in the RKHS of K. Thus we can write z as an
innerproduct in the RKHS of K:

z(x) = 〈z, ψK(x)〉K

Now we show that the function g ∈ H′, in other words we show that g is in the RKHS of K ′.
By definition we have that:

g(x) = z(x)2 = 〈z, ψK(x)〉2K
Now we can easily recognize our definition of K ′ in this equation (compare with Equation C.3),
thus we note that:

g(x) = K ′(z, ψK(x))

Now since K ′ is a PSD kernel, each kernel product corresponds to an innerproduct in its RKHS.
Note that the vectors z and ψK(x) are vectors in H. To map these vectors to the RKHS of K ′ we
need to use the featuremap ψK′ . We thus apply Equation C.5 resulting in:

g(x) = 〈ψK′(z), ψK′(ψK(x))〉K′

We observe that g corresponds to the vector ψK′(z) ∈ H′, and thus we have that g ∈ H′.
Now we show that ||g||K′ ≤ 4Λ2 to show that g ∈ H ′. Since g = ψK′(z) ∈ H′ the norm of g in

K ′ is given by:
||g||K′ = 〈ψK′(z), ψK′(z)〉K′

Now we can use Equation C.5 to rewrite this in terms of K ′. We obtain:

||g||K′ = K ′(z, z) (C.7)

Using the definition of K ′ we find:

K ′(z, z) = 〈z, z〉2K = ||z||2K (C.8)

Now recall we showed earlier in Equation C.6 that ||z||K ≤ 2Λ. Combining this with Equations
C.7 and C.8 we find that:

||g||K′ = ||z||2K ≤ 4Λ2

Thus we have shown that for any arbitrary kernelK that g ∈ H ′ = {∀h ∈ H′ : ||h||K′ ≤ Λ′ = 4Λ2}.
Now the proof that the discrepancy bound is tighter than the MMD bound can be shown in

the exact same way as in Section C.4, only we have to work in the RKHS of K, thus everywhere
x needs to be replaced by ψ(x)K . Furthermore xij will become the jth component of ψ(xi)K ,
where xi will be object i. This proof still holds, since the featuremap ψ(x)K′ is still given by the
featuremap of the squared kernel, however in this case the featuremap is with respect to the RKHS
of K: this does not influence the proof. We showed that this holds for any arbitrary dimension,
thus our results hold for a kernel with arbitrary dimension of the RKHS of K.

Finally, we show that to compute the MMD we can use the kernel K ′′(x, x′) = K(x, x′)2.
Since we require that kernel products are computed between objects in X to compute the MMD
(see Equation A.8). As of now we defined the kernel K ′(f, h) so that it operates on f, g ∈ H and
therefore we cannot use it to compute the MMD empirically using Equation A.8. To this end we
show that g ∈ H ′′ = {∀h ∈ H′′ : ||h||K′′ ≤ Λ′ = 4Λ2} by showing that H′ = H′′, where H′′ is the
RKHS of K ′′. Then we can use K ′′ to compute the MMD using Equation A.8 since K ′′ satisfies
the assumptions of the MMD bound and K ′′ operates on objects in X .

By definition of K ′′ we have that:

K ′′(x, x′) = K(x, x′)2

Now using Equation C.4 we can show that:

K ′′(x, x′) = K(x, x′)2 = 〈ψK(x), ψK(x′)〉2K
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Observe that this coincides with the definition of K ′ (Equation C.3), thus we can write this as:

K ′′(x, x′) = 〈ψK(x), ψK(x′)〉2K = K ′(ψK(x), ψK(x′))

Now using Equation C.5 we can write this as:

K ′′(x, x′) = K ′(ψK(x), ψK(x′)) = 〈ψK′(ψK(x)), ψK′(ψK(x′))〉K′

in other words, we see that the kernel product of K ′′ can be computed in the RKHS of the kernel
K ′. Thus, the RKHS of K ′ and K ′′ coincide! Thus we have that H′ = H′′ and we can generalize all
results in terms of K ′ to the kernel K ′′. Therefore, g is also in the RKHS of K ′′, and in particular
we have that g ∈ H ′′ = {∀h ∈ H′′ : ||h||K′′ ≤ Λ′ = 4Λ2}. This could also be observed by noting
that the featuremap of K ′′ is given by ψK′′(x) = ψK′(ψK(x)) and thus maps to the space H′, and
from this it follows that H′ = H′′. So we can compute the MMD with this kernel K ′′ empirically
using Equation A.8 when we want to take the hypothesis set into account, and the derivation of
A.1 now holds for the kernel K ′′ in the realizable case.

Now we review to which kernel the kernel K ′′ corresponds in case we use a linear kernel for K
and a Gaussian kernel for K. In the case of the linear kernel this is straightforward:

K ′′(x, x′) = K(x, x′)2 = (xTx′)2

thus K ′′ is the squared kernel. If we use a Gaussian kernel with bandwidth σ for the learning
algorithm:

K(x, x′) = exp
(
−||x− x

′||2

2σ2

)
We obtain for the kernel K ′′ that:

K ′′(x, x′) = K(x, x′)2 = exp
(
−2||x− x′||2

2σ2

)
= exp

(
−||x− x

′||2

2σ′2

)
Where we absorbed the factor of 2 in the exponent in σ′, we obtain another Gaussian kernel with
σ′ = σ√

2 . Thus, if one uses a Gaussian kernel with bandwidth σ for the learning algorithm, σ′ = σ√
2

should be used for the kernel of the MMD if we wish to take into account the hypothesis set.

C.7. Comparison of the Assumptions of the MMD and the
Discrepancy

We have shown that the bounds are comparable and that the discrepancy bound is always tighter.
Does this then mean that the assumptions of the MMD are weaker — in other words, are there
situations where the MMD bound can hold but where the discrepancy bound does not hold? We
believe this is not the case in the realizable setting and thus that the assumptions are exactly the
same, which we will argue below. Afterward also discuss the agnostic setting — in this setting we
believe the MMD bound may have a smaller approximation error.

Assume that we are in the realizable setting. We may propose that the MMD considers more
loss functions then the discrepancy. However, all loss functions z that are considered by the MMD
are constructed by considering all possible h ∈ H and f ∈ H and taking their difference resulting
in the function g and squaring this function. Since the mapping of the RKHS of K to the RKHS
of kernel K ′ is one to one, the same functions are considered in the RKHS of K and K ′. Since the
discrepancy considers all possible h ∈ H and all possible labeling functions f ∈ H, they thus take
into account the same functions. So both methods take into account the same functions for f and
h, and therefore the assumption exactly coincide.

Only in the agnostic setting may the MMD bound be more general. Since the MMD bound
approximates the loss function g by a function g̃ ∈ H ′ (see also Appendix A.3), this loss function
may be tighter, since the MMD does for example not constrain this loss function to be positive
like the discrepancy. Therefore in the agnostic setting the MMD bound may have a smaller ap-
proximation error, or may the approximation error of the MMD vanish while the approximation
term of the discrepancy may not vanish.
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C.8. Agnostic MMD Bound that Always Holds
Since we have shown that if we take the hypothesis set into account for the MMD the MMD upper
bounds the discrepancy, we can directly generalize the discrepancy bound given in Section 2.2.2
to the MMD quantity. This bound will then always hold, also in the agnostic case, as long as f
is a deterministic labeling function similar to the discrepancy bound. This MMD bound has an
extra term that measures the approximation error of approximating the function f by a function
h ∈ H similar to the discrepancy bound. The bound is given below:

Theorem 9 (Agnostic MMD Generalization bound) Assume that for any x ∈ X and h ∈
H that L(h(x), f(x)) ≤ C. Then given any hypothesis h ∈ H and a deterministic labeling function
f we have that:

|LP̂ (h, f)− LQ̂(h, f)| ≤ MMD(P̂ , Q̂) + 2Cηdisc(f, Q̂, P̂ )

Where the MMD is computed using the kernel K ′(x, x′) = K(x, x′)2, where K is the kernel of the
learning algorithm, and ηdisc(f, Q̂, P̂ ) is given by:

ηdisc(f, Q̂, P̂ ) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f̃(x)− f(x)|+ 1
nQ̂

∑
x∈Q̂

|f̃(x)− f(x)|


Note that using this technique we can generalize any bound in terms of the discrepancy to an
MMD bound.





D
TED

D.1. Derivation of Stochastic TED Bound
In this appendix we briefly discuss how the bound from [7] is adapted to conform to our setting.
This adaptation is required because we consider the supervised ridge regression model, and in [7]
the sum of squared errors is minimized while our learning algorithm minimizes the mean squared
error, see also appendix H.

Because of our different function class we find that:

λA = λT = λnQ̂

λI = 0

Using the function class they consider (see [7, Equation 4]) we can compute the constant B for
our setting. We have that:

||w||22λA + λIw
TXT

P̂
LXP̂w = ||w||22λT = ||w||22λnQ̂ ≤ B

Using our usual assumption that w ∈ H, we have that:

||w||22 ≤ Λ2

Multiplying both sides by λnQ̂ we find:

λnQ̂||w||
2
2 ≤ λnQ̂Λ2 = B

Note that in the resulting bound λA depends on the model trained during active learning, and
that Λ is used to bound the norm of the oracle hypothesis. For more detail see [7].

In [7] the following bound is given in Theorem 2:

E
[
||XP̂w −XP̂wo||

2
2
]
≤ (B + σ2)tr(XP̂ (XT

Q̂
XQ̂ + λAI + λIX

T
P̂
LXP̂ )−1XT

P̂
)

Where wo is the oracle hypothesis that generates the labels y according to yi = wTo x+ εi and ε is
a random variable with zero mean and standard deviation σ, and w is the hypothesis trained on
the set XQ̂.

Now using λT = λnQ, λA = 0 and B = λnQ̂Λ2 we obtain for our setting:

E
[
||XP̂w −XP̂wo||

2
2
]
≤ (λnQ̂Λ2 + σ2)tr(XP̂ (XT

Q̂
XQ̂ + λnQ̂I)−1XT

P̂
)

Now we divide by the number of samples to get the average loss on the set P̂ of w with respect to
wo:

E
[
LP̂ (w,wo)

]
≤

(λnQ̂Λ2 + σ2)
nP̂

tr(XP̂ (XT
Q̂
XQ̂ + λnQ̂I)−1XT

P̂
) (D.1)
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Observe that since the trace is invariant under cyclic permutations we have that:

E
[
LP̂ (w,wo)

]
≤

(λnQ̂Λ2 + σ2)
nP̂

tr(XT
P̂
XP̂ (XT

Q̂
XQ̂ + λnQ̂I)−1) (D.2)

This way we can express the TED objective in terms of the covariance matrices of the sets P̂ and
Q̂.

Now we apply a trick from [8] to derive the kernel version of this bound. Using the Woodbury
matrix identity it can be shown that (see also [8, Equation 7]):

XP̂ (XT
Q̂
XQ̂ + λT I)−1XT

P̂
= 1
λT

(XP̂X
T
P̂
−XP̂X

T
Q̂

(XQ̂X
T
Q̂

+ λT I)−1XQ̂X
T
P̂

)

= 1
λT

(KP̂ P̂ −KP̂ Q̂(KQ̂Q̂ + λT I)−1KT
P̂ Q̂

)

Substituting in the bound of Equation D.1 we obtain:

E
[
LP̂ (w,wo)

]
≤

(λnQ̂Λ2 + σ2)
nP̂nQ̂λ

tr(KP̂ P̂ −KP̂ Q̂(KQ̂Q̂ + λnQ̂I)−1KT
P̂ Q̂

)

=
(Λ2 + σ2

nQ̂λ
)

nP̂
tr(KP̂ P̂ −KP̂ Q̂(KQ̂Q̂ + λnQ̂I)−1KT

P̂ Q̂
)

Now we introduce our usual notation. Equivalently we can consider that the labels f are generated
by fi = f ′i + εi, where wo = f ′ ∈ H and w = hQ̂ is the hypothesis trained on the set Q̂. We obtain
the bound:

Theorem 10 (Generalization bound TED [7]) We assume the labels are generated by the
process f(xi) = f ′(xi) + εi, where ε is a random variable with zero mean and standard deviation
σ. The observations of εi are assumed to be independent. Furthermore assume that f ′ ∈ H. For
the ridge regression model hQ̂ trained on the set Q̂ with regularization parameter λ we can give
the following generalization bound:

E
[
LP̂ (hQ̂, f

′)
]
≤

(Λ2 + σ2

nQ̂λ
)

nP̂
tr(KP̂ P̂ −KP̂ Q̂(KQ̂Q̂ + λnQ̂I)−1KT

P̂ Q̂
)

=
(Λ2 + σ2

nQ̂λ
)

nP̂
TED(P̂ , Q̂)

D.2. Derivation of Non-Stochastic TED Bound
In this section we take a similar approach as [15] to obtain a TED bound that holds in the agnostic
setting. We will prove that in this section the following bound holds in the agnostic setting:

LP̂ (h, f) ≤ Λ2

nP̂
TED(P̂ , Q̂) + 2CηTED(P̂ , Q̂, f)

Where h is the ridge regression model trained on the set Q̂. Furthermore we require that f is
a deterministic labeling function and we assume that for all h′ ∈ H and x ∈ X it holds that:
L(h′(x), f(x)) ≤ C. In this bound the approximation error of TED is defined as:

ηTED(P̂ , Q̂, f) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)|+ 1
nP̂
||H̄||1

∑
x∈Q̂

|f(x)− f̃(x)|


Note that this approximation term is similar to the approximation term of the discrepancy. First
we will give the proof of this bound and afterwards we compare the approximation error of the
TED generalization bound with the approximation error of the discrepancy generalization bound.
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Recall that the realizable TED generalization bound can only be applied if all labels are
generated by a model of our hypothesis class. The quantity LP̂ (h, f) that we aim to bound does
not obey these assumptions, since f is not in H, and the model h is trained on the labels fQ̂,
which are also not the outputs of a model in H. Therefore, we need to approximate f by a f̃ ∈ H.
Also, the model h needs to be approximated by a model h̃ that is trained on the labels outputted
by f̃ on the set Q̂. This is because the TED bound only holds if the labels that are to be predicted
and the input labels are both the outputs of the same model that is generating the labels.

From here on we adopt the following notation. f̃ is a model in H, and h̃ is the model obtained
by training on the set Q̂ with labels supplied by f̃ . h is the model trained on the set Q̂ with the
labels supplied by f .

Observe that:
LP̂ (h, f) = |LP̂ (h, f) + LP̂ (h̃, f̃)− LP̂ (h̃, f̃)|

By rearranging the terms and applying the triangle inequality we can show that:

LP̂ (h, f) = |LP̂ (h̃, f̃)|+ |LP̂ (h, f)− LP̂ (h̃, f̃)|

Now we can apply the TED bound to bound the first term, since this term obeys all assumptions
of the TED bound: all labels in this case are generated by f̃ ∈ H, and h̃ is the model trained on
the labels generated by f̃ . Thus:

LP̂ (h̃, f̃) ≤ max
f̃∈H

LP̂ (h̃, f̃) ≤ Λ2

nP̂
TED(P̂ , Q̂) (D.3)

Then we obtain the following bound which holds for any f̃ ∈ H:

LP̂ (h, f) = Λ2

nP̂
TED(P̂ , Q̂) + |LP̂ (h, f)− LP̂ (h̃, f̃)|

Since this bound holds for any f̃ ∈ H, we can choose f̃ to minimize the bound, resulting in:

LP̂ (h, f) = Λ2

nP̂
TED(P̂ , Q̂) + min

f̃∈H
|LP̂ (h, f)− LP̂ (h̃, f̃)| (D.4)

The term on the right hand side plays the role of approximation error. It measures how well f̃
approximates f on the set P̂ , and how well h̃ approximates h on the set P̂ . This term is however
difficult to compute since it is non-convex in f̃ , and is difficult compare with the discrepancy
approximation error. Therefore, we bound this term. Observe that:

|LP̂ (h, f)− LP̂ (h̃, f̃)| = |LP̂ (h, f)− LP̂ (h̃, f̃) + LP̂ (h̃, f)− LP̂ (h̃, f)|

Rearranging the terms on the right hand side and applying the triangle inequality, we find that:

|LP̂ (h, f)− LP̂ (h̃, f̃) + LP̂ (h̃, f)− LP̂ (h̃, f)| ≤ |LP̂ (h, f)− LP̂ (h̃, f)|+ |LP̂ (h̃, f)− LP̂ (h̃f̃)|

Thus observe that:

|LP̂ (h, f)− LP̂ (h̃, f̃)| ≤ |LP̂ (h, f)− LP̂ (h̃, f)|+ |LP̂ (h̃, f)− LP̂ (h̃f̃)| (D.5)

Now we can use the µ-admissibility of the squared loss to bound both terms on the right in terms
that are convex in f̃ . For the squared loss we have that µ = 2C, where L(h(x), f(x)) ≤ C for all
x ∈ X and all h ∈ H, see appendix C of [15]. Then by the µ-admissibility of the squared loss we
have (see also [15]):

|LP̂ (h̃, f)− LP̂ (h̃, f̃)| ≤ 2C 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)| (D.6)
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And:
|LP̂ (h, f)− LP̂ (h̃, f)| ≤ 2C 1

nP̂

∑
x∈P̂

|h(x)− h̃(x)| (D.7)

Now we aim to rewrite the term above, since this term does not occur in the discrepancy bound.
We need to introduce some notation to bound this term. Recall that h is the model trained on
the labels f and h̃ is the model trained on the labels of f̃ . We write hP̂ and h̃P̂ as the vector of
model outputs on the set P̂ of models h and h̃, respectively. Furthermore, we write fQ̂ as the label
vector on the set Q̂, and f̃Q̂ as the outputs of the model f̃ on the set Q̂. For ridge regression we
can define a hat matrix H̄. In terms of H̄ we have that:

hP̂ =H̄fQ̂
h̃P̂ =H̄f̃Q̂

Observe that we can bound the right hand side of Equation D.7 as follows:

2C 1
nP̂

∑
x∈P̂

|h(x)− h̃(x)| =2C 1
nP̂
||H̄fQ̂ − H̄f̃Q̂||1

≤2C 1
nP̂
||H̄||1||fQ̂ − f̃Q̂||1 (D.8)

The last step to obtain Equation D.8 was allowed due to the subordinance property of the p = 1
operator matrix norm. Rewriting the right hand side of Equation D.8 we obtain:

2C 1
nP̂
|H̄|1|fQ̂ − f̃Q̂|1 = 2C 1

nP̂
||H̄||1

∑
x∈Q̂

|f(x)− f̃(x)|

Therefore we have that:

|LP̂ (h, f)− LP̂ (h̃, f)| ≤ 2C 1
nP̂
||H̄||1

∑
x∈Q̂

|f(x)− f̃(x)| (D.9)

Combining Equation D.5 with Equation D.6 and D.9 we obtain:

|LP̂ (h, f)− LP̂ (h̃, f̃)| ≤ 2C 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)|+ 2C 1
nP̂
||H̄||1

∑
x∈Q̂

|f(x)− f̃(x)|

Now combining this result with Equation D.4 we obtain our final result:

|LP̂ (h, f)| ≤ Λ2

nP̂
TED(P̂ , Q̂) + min

f̃∈H
2C

 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)|+ 1
nP̂
||H̄||1

∑
x∈Q̂

|f(x)− f̃(x)|


This concludes our proof.

Now we define the approximation error ηTED(P̂ , Q̂, f) as:

ηTED(P̂ , Q̂, f) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f(x)− f̃(x)|+ 1
nP̂
||H̄||1

∑
x∈Q̂

|f(x)− f̃(x)|

 (D.10)

Resulting in the following generalization bound:

LP̂ (h, f) ≤ Λ2

nP̂
TED(P̂ , Q̂) + 2CηTED(P̂ , Q̂, f)
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Now we will compare the approximation error of TED and the discrepancy. For the discrepancy
the approximation error is given by:

ηdisc(f, Q̂, P̂ ) = min
f̃∈H

 1
nP̂

∑
x∈P̂

|f̃(x)− f(x)|+ 1
nQ̂

∑
x∈Q̂

|f̃(x)− f(x)|


Comparing with Equation D.10, observe that the TED approximation error will be guaranteed to
be smaller if:

1
nP̂
||H̄||1 ≤

1
nQ̂

However, in deriving this approximation term for TED we have made the bound looser to turn the
computation of the approximation term into a convex optimization problem. The same holds for
the discrepancy approximation term which can also be bounded tighter. An in depth comparison
of Equation D.4 which is the tightest bound for TED and Equation B.5 which is the tightest
bound for the discrepancy is needed to conclude which bound is truly tighter. This result in any
case indicates that the bound on the TED approximation error is comparable in size to the bound
on the discrepancy approximation error.





E
Probabilistic Nuclear Discrepancy

Generalization Bound
We can compute the probabilistic generalization bound using the fact that:

E
u

[
|LP̂ (w,w′)− LQ̂(w,w′)|

]
= E

u

[
|uTMu|

]
= Ē

u

[
|
∑
i

ū2
iλi|

]
(E.1)

This equation can be derrived by following the derrivation in Appendix B.1 where not the maxi-
mum is taken over u but by taking the expectation with respect to u.

Here the vector ūi is the projection of u on the eigenvector vi corresponding to the eigenvalue
λi of M . This expectation is difficult to compute. Therefore we assume for simplicity that all ūi
are independent and identically distributed according to some distribution p(ūi). Even in this case
the expectation remains difficult to compute, therefore we bound the term on the right hand side
of Equation E.1 using the triangle inequality:

Ē
u

[
|
∑
i

ū2
iλi|

]
≤ Ē

u

[∑
i

|ū2
iλi|

]
≈

(∑
i

|λi|
∫
ū2
i p(ūi)dūi

)
(E.2)

Where the approximately equal sign comes from the i.i.d. assumption on the components of ū.
Now it is straightforward to show that the right hand side of Equation E.2 can be rewritten as:(∑

i

|λi|
∫
ū2
i p(ūi)dūi

)
=
(∫

ū2
1p(ū1)dū1

)∑
i

|λi| ∝
∑
i

|λi|

Thus we find that a probabilistic generalization bound is given by:

Ē
u

[
|LP̂ (w,w′)− LQ̂(w,w′)|

]
≤
(∫

ū2
1p(ū1)dū1

)∑
i

|λi| ∝
∑
i

|λi|

115





F
Bounding the Hypothesis Set

In this section we show how to bound the hypothesis space of the ridge regression model. We
require this so given a λ and the ridge regression algorithm, we know in which set the resulting ridge
regression model h will be. We denote this set by the hypothesis set H = {h ∈ H : ||h||K ≤ Λ}. In
this section we aim to find the constant Λ. We consider two techniques to bound the hypothesis
set, one from [13] and one from [4]. In [4] a new technique is used to bound Λ which can possibly
result in tighter bounds than the technique of [13]. However we show that this bound on Λ is not
informative in Section F.1. Afterward, we review the technique from [13] in Section F.2 to bound
Λ, resulting in Λ =

√
1
λ .

F.1. New Bound that is Uninformative in Most Practical
Cases

In lemma 1 of [4] the bound on the hypothesis set is chosen as:

||h||K ≤
√
µr

λ

However, after careful studying of lemma 1 we have determined that the square root is a mistake,
the bound should be:

||h||K ≤
µr

λ
= Λ

In these bounds, r is defined as: K(x, x) ≤ r2, and µ is the µ admissibility of the loss (see [4] for
the definition). For the squared loss, µ = 2C [4], where L(h(x), f(x)) ≤ C for any x ∈ X and any
h ∈ H and f1. For simplicity we take the Gaussian kernel where r = 1. To explicitly calculate Λ,
we need to know C. We can fix C as:

max
h∈H

max
f∈{−1,+1}

max
x∈X

L(h(x), f) ≤ max
h∈H

max
x∈X

(|h(x)|+ 1)2 ≤ (Λr + 1)2 = C (F.1)

Since for this choice of C it is guaranteed that L(h(x), f(x)) ≤ C. We relax the assumption
f ∈ {−1,+1} later. In Equation F.1 we used that for any x ∈ X and any h ∈ H:

|h(x)| ≤ Λr

Since:
|h(x)| = | < ψ(x), h >K | ≤ ||ψ(x)||K ||h(x)||K (F.2)

1Observe we use the notation C for the constant for which µ = 2C. [4] uses the constant M . We use C to avoid
confusion with the matrix M .
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Where we used the Cauchy-Schwarz inequality in Equation F.2. We can rewrite the right hand
side of Equation F.2 as:

||ψ(x)||K ||h(x)||K =
√
ψ(x)Tψ(x)||h(x)||K =

√
K(x, x)||h(x)||K ≤ Λr

We can now construct the quadratic inequality for Λ. We obtain:

||h||K ≤ Λ = µr

λ
= 2(Λ + 1)2

λ

We can solve this quadratic equation for Λ, in case we have equality we find:

Λ2 + (2− λ

2 )Λ + 1 = 0

The discriminant is:
D = (2− λ

2 )2 − 4

We find the solution for Λ in the equality case is only positive and real if λ ≥ 8, since for this case
D ≥ 0 (we don’t consider the case λ ≤ 0). Thus it is only possible to bound Λ if λ ≥ 8. However,
typically λ << 1, and thus this bound on Λ is not applicable in many cases.

F.2. Informative Bound
Following [13, Lemma 11.1] we can bound the hypothesis space as Λ = 1√

λ
. We give a summary

of the proof here.
The kernel ridge regression algorithm minimizes the following objective with respect to h ∈ H:

1
m

∑
x∈Ŝ

L(h(x), f(x)) + λ||h||2K (F.3)

Where Ŝ is any empirical dataset. Consider any arbitrary element h∗ ∈ H returned by our KRR
algorithm. In the minimization of Equation F.3, the element h′ = 0 is also considered since h′ is
included in any set H since Λ > 0. Therefore, since h′ is considered in the minimization, h′ is
either the best hypothesis (h∗ = h′) or a different hypothesis h∗ has a smaller objective value than
h′. Thus:

1
m

∑
x

L(h∗(x), f(x)) + λ||h∗||2K ≤
1
m

∑
x

L(0, f(x)) + λ0

1
m

∑
x

L(h∗(x), f(x)) + λ||h∗||2K ≤
1
m

∑
x

L(0, f(x))

1
m

∑
x

L(h∗(x), f(x)) + λ||h∗||2K ≤ 1

Here we used that the losses for h′ = 0 cannot be larger than 1 since f ∈ {−1,+1}, we relax this
assumption later. Since the squared loss is non negative, we have as well that:

λ||h∗||2K ≤ 1 (F.4)

Note that by the same argument it holds that:
1
m

∑
x

L(h∗(x), f(x)) ≤ 1

Rewriting Equation F.4 we find that:

||h∗||2K ≤
1
λ

||h∗||K ≤
√

1
λ

= Λ
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Thus for any empirical dataset, we obtain h∗ after training with ||h∗||K ≤
√

1
λ using the KRR

algorithm, so we can choose our hypothesis set as: H = {∀h ∈ H| ||h||K ≤ Λ = 1√
λ
}. In case

f(x) /∈ {+1,−1} we can adapt the bound as follows. Take |f(x)| ≤ fmax. Then it is straightforward
to show that for any h∗ obtained from the RR optimization obeys:

||h∗||K ≤
fmax√
λ

And we can bound the hypothesis set with Λ = fmax√
λ
.





G
Why Did We Use the Gaussian

Kernel?
This appendix addresses the question: why did we use the Gaussian kernel in the experiments
with the benchmark datasets? We especially adress why we did not use the simpler linear kernel.
We answer this using two theoretical arguments.

First and foremost, these active learning techniques were constructed to work in both the
agnostic and realizable scenario. First we briefly discuss the realizeable setting. If we for example
use a linear kernel to convert the benchmark datasets to the realizeable setting, the active learning
problem becomes too easy to be informative. In this case we only approximately need to select the
number of samples equal to the dimensionality. One may wonder, why did we then not use more
high-dimensional linear datasets? Well, since if we use the Gaussian kernel, we essentially convert
the datasets to a very high dimensional dataset. In this case the samples may be in a subspace
of the Hilbert space with the number of dimensions equal to the number of samples. For example
for the ringnorm dataset this was the case with our settings of the hyperparameters. So these
experiments are also very informative for the performance in high-dimensional datasets.

In the agnostic scenario it is important for all bounds to approximate the labeling function
reasonably well by a function from the hypothesis set. We use the Gaussian kernel since it is a
universal appropriator. We briefly argue why in this case the approximation errors will be small.

All bounds share the following common term in the approximation error:

min
h∈H

1
nP̂

∑
x∈P̂

|h(x)− f(x)|

This term can be rewritten as:

min
h∈H

1
nP̂

∑
x∈P̂

|h(x)− f(x)| = min
h∈H

1
nP̂
||h− f ||1

Where we use the notation h and f to indicate the vector of outputs of the model and labeling
function on the set P̂ . It is straightforward to show that:

min
h∈H

1
nP̂
||h− f ||1 ≤ min

h∈H
||h− f ||∞

Now if we assume that the regularization parameter λ is small, we have that:

min
h∈H
||h− f ||∞ ≈ min

h∈H
||h− f ||∞

121



122 G. Why Did We Use the Gaussian Kernel?

Where H is the entire RKHS associated with the kernel K of the hypothesis set. Now since the
Gaussian kernel is universal, it can be shown that if f is bounded [23]:

min
h∈H
||h− f ||∞ < ε

For any ε > 0. Therefore if we choose ε small we have that:

min
h∈H
||h− f ||∞ ≈ 0

Thus if the regularization parameter is sufficiently small, we have that:

min
h∈H

1
nP̂

∑
x∈P̂

|h(x)− f(x)| ≈ 0

For the other approximation terms in all bounds this can be shown similarly. For non-universal
kernels, even if the regularization parameter is small (or zero), we may have that this approximation
error will not vanish. For example for the linear kernel it is very unlikely that the approximation
error will vanish. Note that we have assumed that the regularization parameter sufficiently small.
This may not be the case in general, also not in our experiments, and therefore the approximation
errors in the agnostic setting may not be zero, however they will likely be small.

This is also another argument why we used the Gaussian kernel for the benchmark datasets in
the realizeable setting. Since the Gaussian kernel likely can model the labels better, if we use the
Gaussian kernel to approximate the labels for the realizeable setting, the labeling function likely
more accurately approximates the labeling function of the agnostic case. Therefore, performance
in this realizeable setting will be more informative for performance in the agnostic setting.

We have another theoretical argument to justify the use of a universal kernel when the MMD
and discrepancy are used. In [4] and [27] it is shown that only and only if P̂ = Q̂, the discrepancy
and MMD quantities are equal to zero. For non-universal kernels, for example in the linear kernel,
we have that the discrepancy or MMD quantities are equal to zero while the P̂ 6= Q̂. In particular,
if the covariance matrices in the linear kernel are equal for the sets P̂ and Q̂ the MMD HS
and the discrepancy will be zero. This indicates that these measures cannot fully characterize the
difference between empirical distributions that for example have different means or different higher
order moments. The MMD and the discrepancy are motivated by the fact they can measure the
difference between empirical distributions, to this end this comparison should include all moments
of the empirical distribution. For more details see the discussion in [4].

In this Appendix we have given a brief theoretical argumentation for our choice of the Gaussian
kernel that we use in our experiments on the benchmark datasets.



H
Ridge Regression

We choose the learning algorithm that minimizes the following objective for h ∈ H:

F(Q̂,f) = 1
nQ̂

nQ̂∑
i=1

(h(xi)− f(xi))2 + λ||h||2K

This is the training algorithm required for the derivation of the discrepancy bound to hold. How-
ever, note that Ridge Regression typically minimizes:

F ′(Q̂,f) =
nQ̂∑
i=1

(h(xi)− f(xi))2 + λT ||h||2K

Where we use a different regularization λT to indicate that this is the traditional formulation. It
can be shown that if λ = λT

nQ̂
minimizing F(Q̂,f) and F ′(Q̂,f) results in the same model h. The closed

form solution of w minimizing F ′ is given in the linear kernel by:

w = (XT
Q̂
XQ̂ + λT I)−1XT

Q̂
yQ̂

Where we adopted the notation yQ̂ to indicate the label vector of the objects in the set Q̂. When
a kernel K is used we have that the prediction of h on an object x is given by:

h(x) =
∑
i

αiK(xi, x)

In this case, the vector α is given by:

α = (KQ̂Q̂ + λT I)−1yQ̂

See also [13]. If we want to compute the predictions on all objects in P̂ by the model trained on
Q̂, we can use the equation:

hP̂ = H̄yQ̂

Where hP̂ is used to indicate the vector of predictions on the set P̂ . The matrix H̄ is called the
hat matrix, and is given by:

H̄ = KPQ(KQQ + λT I)−1

Using the substitution λT = λnQ̂ we can now compute the hypothesis h or w that minimizes
F(Q̂,f) in a straightforward manner.
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I
Comparison with Batch MMD

Active Learner
In this work we focus on sequential active learners instead of batch active learners because we
are more interested in the underlying objectives of these active learners than their optimization
procedure. In this section we show that the state-of-the-art MMD batch active learner of [6]
actually performs worse than the sequential active learner in terms of the MMD objective.

We used the ‘quadprog’ function of MATLAB to solve the quadratic programming problem
described in [6] for batch active learning. For the optimization we used the following settings: we
limited the optimization to 1000 iterations, and we set the function, constraint and x difference
tolerances to 10−6. We used a batch size of 5 samples. We compute the MMD between the sets
P̂ and Q̂ of the selected examples by the MMD batch learner and the MMD sequential active
learner on the datasets listed in Table 3.1. We repeated the experiment 100 times and averaged
the resulting MMD values.

The results are shown in Figure I.1. We see from the results that the objective of MMD HS
sequential is consistently lower. Thus the batch optimization fails to achieve a lower MMD value,
and therefore the sequential active learner is actually preferable in terms of the underlying objec-
tive. This likely occurs because the convex relaxation of the constraints change the optimization
objective significantly.
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Figure I.1: Comparison between the sequential MMD HS and batch MMD HS active learner. We observe the
objective value for the sequential active learner is consistently lower and thus the batch optimization does not seem
beneficial in terms of the MMD objective.



J
Computing the Projection of u on

the Eigenvectors of M

The computation of ūi, the projection of u onto the eigenvector vi of M is non-trivial. Observe
that here vi is a vector and not a component. We give a detailed description in this appendix how
to compute ūi. The equation for ūi is:

ūi = uT vi√
vTi vi

(J.1)

The difficulty in this derivation is finding the vector vi in case kernels are used. In that case we
need to find vi expressed in terms of the datamatrix X. Then we can apply the ‘kernel trick’ to
compute Equation J.1.

Note that in the linear kernel we have:

Mvi = λivi (J.2)

In case of the linear kernel it is straightforward to compute vi. To compute vi when kernels are
used, first we show that vi can be expressed in terms of the datamatrix X, and afterward we find
this expression of vi in terms of X. Note that:

Mvi =
nP̂∑
j=1

djxjx
T
j vi =

nP̂∑
j=1

(xTj vi)djxj = λivi

Thus we have that:
nP̂∑
j=1

(xTj vi)dj
λi

xj = vi

Thus we have that each eigenvector vi is a linear combination of the vectors xj . Here the sum is
taken over all objects x ∈ P̂ . Since Q̂ ∈ P̂ , this includes all data the active learner has access to.
Then we can write each eigenvector vi as:

vi = XT
P̂
αi (J.3)

Thus we can express each vector vi using the datamatrix XP̂ . Now we will have to find the vector
αi to find vi. We substitute the equation above in equation J.2 to obtain:

MXT
P̂
αi = λiX

T
P̂
αi
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Now we multiply left with DXP̂ on both sides to obtain:

DXP̂MXT
P̂
αi = λiDXP̂X

T
P̂
αi

Observe that this is equal to:
MT
KM

T
Kαi = λiM

T
Kαi

Where MK was defined in Equation B.4. Now we define βi = MT
Kαi. Then we find:

MT
Kβi = λiβi (J.4)

We can compute the eigenvectors β by computing the eigendecomposition of MT
K . This is possible

even when using kernels, since MK is expressed in terms of the kernel matrix. However we require
the vector αi to compute the eigenvector vi. Thus now we will aim to express αi in terms of βi.
Observe that if we multiply equation J.4 by (MT

K)−1 on both sides we obtain:

βi = λi(MT
K)−1βi (J.5)

Now observe that due to the definition of βi we have that:

βi(MT
K)−1 = αi (J.6)

Combining equation J.5 and J.6 we find that:

αi = βi
λ

Substituting this in equation J.3 we find the vector vi:

vi = XT
P̂

βi
λ

(J.7)

Now we have found vi. Now we can proceed to compute ui.
Note that due to the representer theorem we have that:

u = w′ − w = XT
D̂
c′ −XT

Q̂
c = XT

D̂
c̃ (J.8)

Here w′ is given as a linear combination of XD̂, which we define as the complete datamatrix.
This datamatrix includes the training and testset, since w′ can be (for example) be obtained by
training on the whole dataset where the original binary labels of the dataset are used. However
note that for any w′ ∈ H the model w′ can be written in this way. Similarly, since w is trained on
the dataset Q̂, we can write w as a linear combination of objects in Q̂. Combining equation J.7
and J.8 with equation J.1 we find that:

ui =
c̃XD̂X

T
P̂

βi

λi√
βT

i

λi
XP̂X

T
P̂

βi

λi

=
c̃KD̂P̂βi√
βiKP̂ P̂βi



K
Additional Results

In most sections we did not include all learning curves and results, since most of the time we
summarized the results using illustrative learning curves or tables. However, these of course do
not tell the whole story. In this appendix all results that were not printed in the main matter are
shown. Observe that on each page all results on all benchmark datasets are always shown in the
same order. Therefore, one can easily compare methods across different settings.
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Figure K.1: Comparison between MMD HS which takes the hypothesis set into account according to our theoretical
analysis and MMD median and MMD RR which do not on all benchmark datasets in the realizable setting where
f ∈ H.
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Figure K.2: Comparison between MMD HS which takes the hypothesis set into account according to our theoretical
analysis and MMD median and MMD RR which do not on all benchmark datasets in the agnostic setting where
f /∈ H



132 K. Additional Results

0 5 10 15 20 25 30 35 40 45 50
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

vehicles dataset

 

 

TED

Disc

MMD HS

Random

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

heart dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

sonar dataset

 

 

0 5 10 15 20 25 30 35 40
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

iris dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

thyroid dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

ringnorm dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

ionosphere dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

diabetes dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

twonorm dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

banana dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

Queries

M
S

E
 d

if
fe

re
n

c
e

 o
n

 t
e

s
ts

e
t

german dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

splice dataset

 

 

0 5 10 15 20 25 30 35 40 45 50
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Queries

M
S

E
 d

if
fe

re
n
c
e
 o

n
 t
e
s
ts

e
t

breast dataset

 

 

Figure K.3: Results on all benchmark datasets for the realizable case where f ∈ H. TED often performs the best
while the discrepancy often performs the worst.
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Figure K.4: The values of the generalization bounds on the performance of the trained model during active learning
on the set P̂ for the realizable setting where f ∈ H. In this setting the bounds are guaranteed to hold.
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Figure K.5: We plot the quantity E during the active learning experiments. Observe that in some cases the value
of E is much larger for the discrepancy than the MMD, and sometimes E of the discrepancy becomes even larger
than E of random sampling.
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Figure K.6: Comparison of the nuclear discrepancy active learner with the other active learning methods on some
of the benchmark datasets for the realizable case where f ∈ H. Observe that the nuclear discrepancy improves a
lot upon the discrepancy and sometimes upon the MMD HS active learner. In particular, on the ringnorm dataset
the nuclear discrepancy performs much better than the discrepancy and matches the performance of TED.
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Figure K.7: Some illustrating learning curves of the active learners on real world data in the agnostic setting where
f /∈ H. Observe that the learning curves of TED and the nuclear discrepancy overlap for the ringnorm dataset.
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Figure K.8: Setting where there is model mismatch with respect to the regularization parameter. Here we set
λmodel = 0.01λoracle. In this case we are still in the realizable setting. Observe that the learning curves are very
similar to the regular realizable setting.
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Figure K.9: Setting where there is model mismatch with respect to the regularization parameter. Here we set
λmodel = 0.1λoracle. In this case we are still in the realizable setting. Observe that the learning curves are very
similar to the regular realizable setting.
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Figure K.10: All learning curves for the setting where there is model mismatch with respect to the regularization
parameter. Here we set λmodel = 10λoracle. In this case we are not in the realizable setting. Observe that TED
with the proper regularization parameter (λmodel) generally outperforms all other active learning methods as in
the realizable setting. Furthermore, observe that TED with the proper regularization parameter (λmodel) performs
significantly better than TED with an improper regularization parameter (λoracle). TED with an improper regular-
ization parameter can even perform worse than random sampling. This shows that TED adapts its active learning
strategy in a meaningful way based on the regularization parameter, and suggests that taking the regularization
parameter of the model into account is beneficial for active learning.
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Figure K.11: All learning curves for the setting where there is model mismatch with respect to the regularization
parameter. Here we set λmodel = 100λoracle. In this case we are not in the realizable setting. Observe that TED
with the proper regularization parameter (λmodel) sometimes performs better than other methods, but in some
cases also performs much worse, even worse than random sampling. This shows that TED cannot deal with a too
large model misspecification or large regularization parameter. Observe that the MMD HS and nuclear discrepancy
active learners are relatively robust to model misspecification and in all cases perform better than random sampling.



L
Detailed Experimental Settings

In this appendix we give all detailed settings used in all experiments ensuring everything can be
reproduced.

First, note that always when computing the ridge regression model its model outputs, we use
the Cholesky decomposition instead of computing the inverse matrix (KQ̂Q̂+λI), since computing
the inverse explicitly can be inaccurate. The Cholesky decomposition is very stable even when this
matrix is ill-conditioned.

First we give additional information how to reproduce the results in Section 4.1. The dataset
consists of 300 objects divided over N clusters. The separation between each cluster is 2 units, and
samples in each cluster are uniformly distributed with length 1. We use a Gaussian kernel with
σ = 0.5 and set the regularization parameter to 10−3. The labeling function follows a checkerboard
pattern. We use a training and test set as described in Chapter 3, and also pre-process the data
as described in Chapter 3 to make this data conform to the realizable setting.

Here we give additional information how to reproduce the results in Section 4.2.1. The three
fixed samples are located at (0, 1),(0, 0) and (0,−1). The clusters are generated by uniformly
distributed objects. The cluster centers are (0,−2) and (0, 2). The uniform distributions have
height 0.2 and width 0.2. In Figure 4.3b we display the minimum objective of each method for the
considered samples. We used a small regularization parameter of λ = 0.01 to compute the TED
objective. Note that it does not matter which λ is chosen for TED, it always orders the objects in
the same way, however if λ is chosen too large TED will have numerical difficulty in choosing the
best sample.

Here we gives additional information how to reproduce the results in Section 4.3.1. For simplic-
ity, we set all labels to 1, meaning each dimension is ‘equally’ important. We could also randomly
choose f from H where each f would be equally likely, but ultimately this will be averaged out
and we will obtain the same results. When performing experiments, we do not sample from this
distribution but simply take this exact dataset, and we evaluate on the same dataset. This way
the distribution of the data is always the same, and we can compare the empirical samples selected
by TED and the discrepancy with the distribution of the complete dataset (otherwise we could
not generate Figure 4.6a). When using a training and test set we will obtain similar results. We
set the regularization parameter to a small value of λ = 10−5. The performance of the random
active learner is the mean performance over 1000 runs. Since the dataset is fixed, TED and the
discrepancy have deterministic performance, and so these results are not averaged.

Here we give additional information how to reproduce the results in Section 4.4.2. This 2D
dataset has 16 Gaussian distributed clusters with means on a grid. The distance between the means
of two neighboring clusters is always 2 in the horizontal or vertical dimension. Each Gaussian has
a covariance matrix of 0.07I and contains 40 objects. We use a Gaussian kernel with σ = 0.1 so the
labels of one cluster hardly influence the labels in other clusters similar to the linear dataset in the
previous subsection. We use λ = 0.01. For the MMD active learner we use a value of σ = 0.01√
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take the hypothesis set into account. The labels in this dataset were generated by a checkerboard
pattern. A ridge regression model with above parameters was fitted to the complete dataset, and
the outputs of the model were used as labels in the experiment. This assures that we are in the
realizable setting where f ∈ H, and thus the assumptions of the bounds are satisfied. We split the
data in a training set (65%) and test set (35%). The initial labeled set is given by 30 objects in
the bottom left corner. We repeat the experiment 100 times.

Here we give additional information how to reproduce the results in Section 4.6.1. We use the
same dataset and settings as described for Subsection 4.3.1, the differences are described below.
We generate the labels by f = 1 + ε, where ε is zero mean Gaussian noise, with σ = 1.5. We
performed this experiment with λ = 10−2.5, repeating the experiments 1000 times for each active
learner. We again always use the full dataset (no train / test split). We however generate ‘fresh’
labels to evaluate the active learner, so we can accurately estimate the generalization error. Even
though the TED and discrepancy active learner choose deterministic samples, since the labels
are noisy, each experiment needs to be repeated multiple times. For higher values of σ the result
are similar. For σ < 1 the effect of the noise is too small, and the performance of TED becomes
better. For larger values of λ the difference between both methods will become harder to observe,
since TED will also select samples more according to their proportions as was observed in the
Subsection 4.3.1.

For any experiment using the benchmark datasets (experiments of sections 4.2.2, 4.3.2, 4.6.2
and 4.5) the parameter settings used are displayed in Table L.1. The experimental setup is further
completely described in Chapter 3 for both the realizable and agnostic setting. Finally, note that
for all experiments concerning the dataset banana we used only 50 repeats instead of 100 due to
excessive computational times.

Dataset σ log10(λ)
vehicles 5.270 -3.0
heart 5.906 -1.8
sonar 7.084 -2.6
iris 2.313 -2.2
thyroid 1.720 -2.6
ringnorm 1.778 -3.0
ionosphere 4.655 -2.2
diabetes 2.955 -1.4
twonorm 5.299 -2.2
banana 0.645 -2.2
german 4.217 -1.4
splice 9.481 -2.6
breast 4.217 -1.8

Table L.1: Table with parameters used for the benchmark datasets
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