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"Americans only learn from catastrophe and not experience."
� Theodore ’Teddy’ Roosevelt �
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Abstract

By sampling �nancial correlation matrices over sliding windows, it has been shown in recent
work that the quantum majorization induced partial ordering on this space of correlation ma-
trices known as the "quantum Lorenz ordering" (QLO) can be used to characterize systemic risk
by clustering correlation matrices according to their degree centrality on the associated directed
graph called the "quantum majorization graph" (QMG). In this work, clusterings of the QMG are
used to construct an online Bayesian nonparametric alarm system for the prediction of stock mar-
ket crashes via the so-called "reinforced urn process" (RUP). To test the e�cacy of this modelling
methodology we exploit extreme value theory to systematically de�ne stock market crashes by
studying the tail of an appropriately �tted generalized pareto distribution (GPD) for stock market
drawdowns. This approach identi�ed 13 extreme drawdowns between 1985-2020, for which the
RUP was trained from 1986-2005 to predict the 8 extreme drawdowns from 2005-2020. Of the
three correlation metrics used to test this approach, the QLO corresponding to the set of upper
Tail-Dependence �U matrices was shown to outperform the others: Pearson’s � and the Gini
correlation 
G. Tail-Dependence was able to predict all 8 crashes with just 5 false alarms over a
12 month time horizon, all 8 with 7 false alarms over an 8 month time horizon, 7 out of 8 with 9
false alarms over a 4 time horizon, and 7 out of 8 with 17 false alarms over a 2 month time hori-
zon. This approach was then tested against the usage of the Log-Periodic Power Law Singularity
(LPPLS) model’s con�dence indicators with promising results. The quantum Lorenz ordering is
meant to rank a set of correlation matrices by the amount of dispersion re�ected in their spectra:
a true heterogeneity. We consider this dispersion from the standpoint of measurement error as
has been in the application of random matrix theory (RMT) to correlation matrices in portfolio
risk theory. We provide analytical relations between quantum majorization and random matrix
cleaning for a few RMT �ltering schemes posing quantum majorization as a desirable condition
for RMT �ltering. The RUP is tested using these RMT cleaned correlation matrices as well.
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1
Introduction

1.1 | Brief

In this thesis, we develop an Urn-Based Alarm System for Predicting Stock Market Crashes via

the usage of a recently developed methodology for the characterization of systemic risk based

on correlation matrices: quantum majorization. We explain how quantum majorization charac-

terizes systemic market risk, from the standpoint of Markowitz portfolio optimization schemes.

We then show that, by sampling Correlation Matrices for the constituents of major Stock Mar-

ket Indices over sliding windows, we are able to predict the "Black Monday" Cash of 1987, the

"Great Recession" of 2008, the "COVID-19" Crash of 2020, along with most other major stock mar-

ket events, by analyzing a Correlation Matrices position on the so-called Quantum Majorization

Graph (QMG), which associates to each correlation matrix a speci�cally coloured marble in an

Urn.

By representing the quantum lorenz ordering with the so-called quantum majorization Graph,

we show that we are able to develop an Alarm System for stock market crashes using the Rein-

forced Urn Process (RUP), with good results. In its own right, this application of the RUP extends

previous modelling methodologies utilized in Credit Risk and Epidemiology, into an entirely new

domain: the prediction of Stock Market Crashes. Using Extreme Value Theory (EVT), we identify

13 notable stock market crashes between the years of 1980-2020 including infamous crashes such

as "Black Monday", the "Tech Bubble", the "Sub-Prime Mortgage Crisis", "Corona", among other
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smaller events. We train and test our RUP from Jan 1, 1985 to Dec 31, 2020 in an online fashion

and show that our model is able to predict most crashes with relatively few "false alarms" on

3, 6, and 12 month time horizons. We permute these results across a wide variety of correlation

metrics including Pearson's� P , Gini's 
 G , and even the Upper ,and Lower, Tail-Dependencies� U

and� L , respectively. We show that the RUP based on� U outperforms other correlation metrics.

Furthermore, we believe that unifying the theory of portfolio risk, Random Matrix Theory

(RMT) "cleaning recipes", and quantum majorization will help make our Urn-Based Alarm Sys-

tem that much more intuitive, interpret-able, and robust in practice. Indeed, any alarm system,

that is based on the sequential sampling of correlation matrices, may be sensitive to the particular

type of correlation matrix the practitioner uses, which could easily be one of these RMT inspired

"cleaning recipes". Since RMT inspired "cleaning recipes" aim to reduce portfolio risk by narrow-

ing the dispersion of a correlation matrices eigenvalues, and quantum majorization characterizes

portfolio risk by ranking two di�erent correlation matrices based on how dispersed their eigan-

values are, their relationship needs to be explored, and accounted for, in the development, and

assessment of, our Urn-Based Alarm System.

Hence, the goal of this thesis is threefold: First, in Chapters 2 and 8, we discuss the relation-

ship between the dispersion of eigenvalues of a correlation matrix and portfolio risk through the

lens of RMT inspired correlation matrix "cleaning recipes". Second, in Chapter 6, we develop the

mathematical framework for our urn based alarm system. Third, in Chapter 8 we analyze the

results of our model in proper historical back-tests and permute said results over several of the

aforementioned "cleaning recipes" to see how they a�ect our results.

We hope to encourage the reader that correlation matrices are both an interesting and power-

ful tool for measuring, characterizing, and modelling systemic market risk. Additionally, as deep-

learning based methodologies for tackling such problems become more and more prevalent, we

hope to convince the reader that there is still a place for the development of pure mathematical

models in the modern world. And that the RUP is, for example, one of such approaches.

1.2 | Setting the Stage

The contents of this work are built on top of the so-called Quantum Majorization Graph (QMG),

developed by Fontanari et al. [2019], which represents the Quantum Lorenz Ordering (QLO) on

the space ofd � d correlation matrices in the form of a directed acyclic graph. By sequentially

sampling Correlation Matrices of the daily returns for the constituents of major Stock Market

3



Indices over sliding windows, Fontanari et al. [2019] showed we can characterize the temporal

evolution of market risk, over said windows, by analyzing a correlation matrices position on the

QMG via spectral clustering, as is common practice in machine learning and the study of complex

networks, in general. Using this clustering, we can choose an arbitrary number ofk-Clusters and

associate to each node in the QMG (correlation matrix) a level of riskl 2 f1, . . . ,kgbased on

which "cluster" a correlation matrix (node) belongs to according to the spectral clustering.

In this work, we exploit the QMG formalism from Fontanari et al. [2019] to develop an Urn-

Based Alarm System for Stock Market Crashes by associating to each cluster, mentioned earlier,

a speci�cally coloured marble in a Polya urn. In this way, we are able to follow the approach

of Cirillo and Hüsler [2011] and develop an Alarm System as a so-called Reinforced Urn Process

(RUP) in true "Bayesian" and "Online" fashion along the lines of the framework developed by

Antunes M and FK [2003].

By "correlation matrix", we consider a UniverseSof d Financial AssetsS = fS1, . . . ,Sd gthat we

observe at (daily) frequencies, emphasizing that we could also consider weekly, or even monthly

frequencies. We sample a vector of (log) Daily-ReturnsR� (Si ) for AssetSi over the time interval

� = [ t m , t n ]

R� (Si ) =

0

B
B
@

Rt m (Si )
...

Rt n (Si )

1

C
C
A , Rt (Si ) = log (

Si ,t

Si ,t - 1
) 8t 2 � = [ t m , t n ] (1.1)

where� = [ t m , t n ] can be thought of as a "Sliding-Window" within a (much) larger Time-Interval

I = [ 0,T] where 06 t n < t m 6 T. Here, we de�ne ad � d correlation matrix� = � � whose

elements are sampled over the interval�

� � (i , j ) =

8
<

:

� (R� (Si ),R� (Sj )) , if i 6= j

1, otherwise
(1.2)

for some Correlation or Dependence Metric� (X,Y) 2 [- 1, 1].

1.2.1 | Portfolio Risk & the �antum Lorenz Ordering

More generally, by "correlation matrix" we mean ad � d positive-semidefnite (PSD) hermitian

operator � de�ned on a Hilbert spaceH d of dimensiond = dim (H d ) with diag (� ) = j1i

4



ones down the diagonal, exclusively. That is to say,� 2 PSD(H d ), for the set of PSD Matrices

PSD(H d ), whereTr[� ] = d. As such, any correlation matrix� 2 PSD(H ) can be decomposed

into

� =
dX

i = 1

� i (� )j i ih i j (1.3)

with eigenvalues� (� ) := f� i (� ) : i = 1, . . . ,dgand eigenbasisfj i i gd
i = 1, by the spectral theorem

of hermitian operators. Hence, since� 2 PSD(H d ), andTr[� ] = d, we knowf� i (� ) > 0gd
i = 1

de�nes a (discrete) distribution on� (� ) 2 Rd
+ . Thus, a correlation matrix� can be referred to as

a "density operator". This "eigen"-distribution, if you will, is the central object of this work.

The so-called "Lorenz Ordering" is a partial-ordering on the space of probability distribution

functions (PDF). Here, one PDFp is "higher up", on the Lorenz Ordering, than another PDF, say

p� , if p "majorizes"p� , written asp � p� . The "majorization condition"p � p� implies

�X

i = 1

p#
i >

�X

i = 1

p�#
i 8� = 1, . . . ,d

Z�

- 1
xp(x)dx >

Z�

- 1
xp � (x)dx 8� 6 1

(1.4)

for discrete and continuous PDF's, respectively. The reason we call this the "Lorenz" Ordering is

because 1.4 happens to correspond to the "Lorenz Curve" of a PDF

L� (p) =
�X

i = 1

p#
i

L� (p(� )) = � - 1
Z�

- 1
xp(x)dx

(1.5)

for the discrete and continuous case with corresponding "majorization condition(s)"

p � p� ,

8
<

:

L� (p) > L� (p� ) 8� 2 f1, . . . ,dg

L� (p(� )) > L� (p� (� )) 8� 2 f1, . . . ,dg
(1.6)

for discrete and continuous PDF's, respectively. Aptly so, applying this "majorization condition"

to the eigenvalues� (� ) and� (� � ) of density operators (or quantum states),� and� � , gives us the

5



de�nition of "quantum majorization"

� � � � ,
�X

i = 1

� #
i (� ) >

�X

i = 1

� #
i (� � ) 8� 2 f1, . . . ,dg (1.7)

and the subsequent "quantum lorenz ordering" (QLO) which can be equivalently expressed ac-

cording to the de�nition of the so-called "quantum lorenz curve" (QLC)

L� (� ) :=
1
d

dX

i = 1

� #
i (� )

� � � � ,
�X

i = 1

L� (� ) >
�X

i = 1

L� (� � ) 8� 2 f1, . . . ,dg

(1.8)

de�ned on the space of density operators, and thus, correlation m matrices.

1.2.2 | �antum Majorization & Random Matrix Theory

Max Otto Lorenz [1905] �rst invented the lorenz curve to study the distribution of wealth among

the members of a society. Thus, the Lorenz curveL� (�) has become synonymous with the study

of statistical variability, in general contexts. Furthermore, in their seminal work, Fontanari et al.

[2019] alluded to the distinction, originally made by Gini [1912], between the two di�erent types

of statistical variability;

1. Measurement Error

2. Socioeconomic Variability

Socioeconomic variability re�ects a true heterogeneity (distribution of wealth within a society)

whereas measurement error re�ects a sort of ignorance for the true underlying value (precise

height of a mountain). Gini [1912] argued that the amount of Statistical Variability ought to be

measured di�erently when dealing with the two di�erent types of statistical variability. Speci�-

cally, Fontanari et al. [2019] considered the Lorenz CurveL� (� ), of a correlation matrix� , within

the context of the 2nd variety: socioeconomic variability. As fruitful and sound as that line of rea-

soning may be, we believe that studying the Lorenz CurveL� (� ) in the context of the 1st variety,

measurement error, reveals a novel connection between quantum majorization and the "Random

Matrix Theory" (RMT) inspired correlation matrix "cleaning recipes" as extensively analyzed by
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the likes of, for instance, Bouchaud and Potters [2009] and Bun et al. [2017].

As noted by Bouchaud and Potters [2009], the "Modern Portfolio Theory" (MPT) of Markowitz

[1952] shows us how Measurement Error can (potentially) e�ect the "optimally" obtained weights

of a Portfolio
 � = 
 � (S) for a set of Financial AssetsS = fS1, . . . ,Sd g. Indeed, the whole point

of MPT 1952 is to minimize the risk� 2 = � 2(
 S) of a portfolio 
 = 
 S

� 2(
 S) =
dX

i = 1

dX

j = 1

! i � i � i ,j � i ! i (1.9)

to �nd a set of "optimal" weights


 �
S = f! �

1, . . . ,! �
d g (1.10)

noting that the � i ,j 's of equation 1.9 denote the elements of thed � d correlation matrix� for

the (daily) returns on the set of �nancial assetsS = fS1, . . . ,Sd g. Here, we see that the "optimal"

Weights
 �
S = f! �

1, . . . ,! �
d gtake the form

! �
i / � i +

dX

j = 1

dX

k = 1

(� - 1
j (� ) - 1) j ,i  j ,k � j (1.11)

for the eigenvalues� i (� ) of the correlation matrix� , with  i ,j denoting thej th element of the

i th eigenvectorj i i and expected return� i = � (Si ) for the �nancial assetSi . Since each! �
i is

a function of the inverse� - 1
i (� ) of the eigenvalues of� , such a strategy tends to allocate large

! �
i to �nancial assetsSi associated with� 's smallest eigenvalues. However, the measurement

of these small eigenvalues may entirely be dominated by measurement error, meaning, that our


 �
S = f! �

1, . . . ,! �
d gmay not be optimal at all. Hence, such a portfolio's "realized" (future) risk, is

directly related to how "dispersed" our eigenvalues� (� ) are. Which is exactly what the Lorenz

curve Š� (� ) is meant to study.

In fact, the RMT "cleaning recipes" of Bouchaud and Potters [2009] and Bun et al. [2016] in-

tend to "distort" the distribution of� (� ) in a manner that "lowers" ("raises") the large (small)

eigenvalues. Hence, these RMT "cleaning recipes" can be seen as an attempt to �lter out the mea-

surement error, and get to the "true" Spectrum� (� ) that honestly re�ects the heterogeneity in

the relationships between the �nancial assetsS = fS1, . . . ,Sd g: socioeconomic variability. For

this reason, we �nd it important to build the upcoming Alarm System with a perspective that

respects this intermediate attempt to "clean" correlation matrices that accounts for measurement
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error and socioeconomic variability.

1.2.3 | �antum Majorization Graph

By considering the constituent �nancial assetsS = fS1, . . . ,Sd gof major stock market indices,

we can track the temporal evolution of market risk by treating the index itself as a portfolio we

wish to hedge. From the standpoint of correlation matrices, we can measure said market risk

by sequentially sampling correlation matrices over sliding-windows with windows and shifts of

arbitrary size, forming a collection of correlation matrices� = f� 1, . . . ,� n gover the Time-Interval

I := [ t 0,T] of interest. Hence, each� i 2 � corresponds to its own time-interval� i 2 I. In this

way, any risk-measure, de�ned on a particular correlation matrix� i = � � i 2 � , characterizes the

risk of the market over the time interval� i spanned by the samples used to construct� i = � � i .

Using this collection� = f� 1, . . . ,� n g, we can represent the corresponding QLO on the so-

called quantum majorization Graph (QMG), as per the work of Fontanari et al. [2019]. In short,

the adjacency matrixA 2 f0, 1gn � n , associated to the QMGG = ( V,E), is de�ned according to

A = 	 - I n such that 	 i ,j =

8
<

:

1 if � i � � j

0 otherwise
(1.12)

with "Quantum Majorization Matrix" (QMM)	 and edge-setE � A, corresponding toA, to

remove self-directed loops, along with vertex-setV � � corresponding to the set of correlation

matrices� = f� 1, . . . ,� n gof cardinality jVj = n. Trivially, such a QMGG = ( V,E) is a special

kind of directed acyclic graph (DAG). "Directed" because the quantum lorenz ordering "ranks"

two di�erent correlation matrices� i and� j and "acyclic" because the QLO is, well, an ordering.

As is common practice in Machine Learning and the study of complex networks, in general,

Fontanari et al. [2019] clustered the Vertex-SetV � � using the spectral clustering algorithm. By

choosingk = f2, 3g-Clusters, Fontanari et al. [2019] showed that these clusters corresponded to

appropriately chosen discriminating thresholds for the in-out degree centrality� (vi ) of a Vertex

vi 2 V

� (vi ) =
1
2

+
1

2n
(deg+ (vi ) - deg- (vi )) 2 [0, 1] (1.13)

with deg+ (vi ) anddeg- (vi ) denoting the "out", and "in", "degrees" of the Vertexvi 2 V where

� = 1 corresponds to the "riskiest" correlation matrix (time-interval), and� = 0 the "safest". Intu-
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itively enough, fork = 2-clusters, the appropriate discriminating thresholdd� , for distinguishing

between "risky" and "safe" time periods, turns out to bed� = 0.54. Whereas fork = 3-Clusters,

we have discriminating thresholdsfd1,d2g= f0.38, 0.64g, distinguishing between "safe", "moder-

ate", and "risky" time periods in the market.

1.2.4 | Reinforced Urn Alarm System

Interestingly, we can use the QMG to construct a so-called "Reinforced Urn Process" (RUP). Using

the spectral clustering, discussed earlier, we can associate a speci�c correlation matrix� i 2 � to

one of thek-Clusters� i 2 fC1, . . . ,Ck g. With a little imagination, we can associate a ColourCi to

each of thesek-ClustersfC1, . . . ,Ck gand model the temporal evolution of risk, as characterized by

quantum majorization, using an Urn model, such as the RUP. In this way, we think of observing a

new� i the same way as drawing a coloured marble out of a Polya urn. For instance, by choosing

k = 3-Clusters, we can associate any� i 2 � to � i 2 fC1,C2,C3gbelonging to "Safe", "Moderate",

and "Risky" regions for coloursC = fC1,C2,C3g, respectively, depending on� i 's position on the

G = ( V,E) QMG as per the spectral clustering.

It has been shown by Cirillo and Hüsler [2011], and Peluso et al. [2015], that the RUP may

be of practical interest for developing alarm systems and catastrophe models. The idea is simple:

De�ne a State-SpaceSwith elementss = ( n, l ) 2 Sthat denote the "level" of riskl at time-instant

n. The process evolves over time in such a way that

X0 = ( 0, 0) ! (1,l 1) ! (2,l 2) ! (3,l 3) ! � � � ! Xn � = ( n � ,L ) ! X0 = ( 0, 0) (1.14)

the process returns to the initial(0, 0)-State once the "catastrophic" LevelL is reached at the crit-

ical time-instantn � . Here, State-Transitions betweenXn = s = ( n, l ) ! Xn + 1 = ( n + 1,l n + 1)

are entirely characterized by the sampling of coloursC = fC1, . . . ,Ck gout of the "composition"

of the UrnU(s) according to the Rule-of-Motion (RoM)d : S� C ! S

d(s,Ci ) = ( n + 1,l (Ci )) , 8Ci 2 fC1, . . . ,Ck g (1.15)

where the new Risk-Levell = l (C) depends on which category of risk the newly sample corre-

lation matrix � i belongs to. This construction creates a sequence ofr stopping-times, which are
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denoted by� := f� 1, . . . ,� r g,

� s = inf fn > � s- 1 : Xn = ( 0, 0)g (1.16)

that signify when the processX su�ers a catastrophic failure.

Along the lines of Antunes M and FK [2003], an alarm system can be constructed using this

ProcessX. In general, we "cast" an "alarm"A t , at timet , for a "catastrophe"Ct + j , in j time-steps,

when we have

P[Ct + j j~X1] > 
 , 
 2 (0, 1) (1.17)

where ~X1 denotes the "Past"~X1 = fX1, . . . ,Xt - k ginformation for some arbitrarily chosenk > 0

that distinguishes~X1 from the "present"~X2 = fXt - k + 1, . . . ,Xt g. Here, it is said that the "Alarm"is

of "size"
 . Clearly, according to the RUP, a "catastrophe"Ct + j is nothing more than the event

Xn + j = ( n + j ,L ), or, in terms of our Stopping-Times

P[Ct + j j~X1] > 
 ! P[� r + 1 = n + j jf� 1, . . . ,� r g] > 
 (1.18)

which can be easily computed thanks to the underlying urnU(s) construction of the evolution

of the ProcessX. Indeed, all that needs to be computed are the total number of possible sampling

sequences out of the UrnsU(s) that result inXn + j = ( n + j ,L ).

1.3 | A Reader's Guide to this Thesis

The contents of this Thesis are collected into 2 Parts: Part II, and Part III. Part II State-of-the-Art

o�ers more detailed introductions to the core mathematical objects that we will be using to de-

velop our Urn-Based Alarm System for Stock Market Crashes. Part III Implementation discusses

the implementation details of the Urn-Based Alarm System. In particular, Part II contains Chap-

ters 2, 3, and 4. Whereas Part III consists of Chapters 6, 7, and 8.

In Chapter 2, we touch on the general theory of Portfolio Risk and build a stronger intuition

for as to why we should be interested in the statistical dispersion of a correlation matrices Eigen-

values from the lens of RMT inspired "cleaning recipes". In Chapter 3, we cover the key elements

from Fontanari et al. [2019] and build the quantum majorization graph (QMG), whose spectral

clustering essentially de�nes our urn model. Then, in Chapter 4, we cover the details of the Re-

inforced Urn Process (RUP), and bayesian alarm system of Antunes M and FK [2003], and outline

10



how they �t together using the Urn-Based Alarm System model of Cirillo and Hüsler [2011].

Then, in Part III, we begin with Chapter 6 where we discuss the Data we'll be using, the dif-

ferent measures of correlation we'll be considering, and quickly explain the methodology we'll

be using to precisely de�ne a Stock Market "Crash" using a novel approach based on Extreme

Value Theory (EVT). In Chapter??we rigorously de�ne the RUP, and corresponding alarm sys-

tem, we'll be implementing along with new analytical results on the relationship between the

quantum majorization and several prominent "cleaning recipes" inspired from RMT which we'll

be permuting our urn model over. Lastly, in Chapter 8, we analyze said results for the di�erent

correlation measures, and RMT "cleaning recipes".
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II
State of the Art
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2
Portfolio Risk & Random Matrix Theory

In this section, we outline the intimate relationship that the eigenvalues of an empirical corre-

lation Matrix � share with the "optimality" of �nancial portfolios, under the Modern Portfolio

Theory (MPT) framework of Markowitz [1952]. In particular, many authors including Bouchaud

and Potters [2009], comment on how the optimality criteria of MPT optimized portfolios are of-

ten compromised by measurement errors in the empirical correlation matrix itself. Interestingly

enough, Gini [1912] characterize statistical variability in two varieties:

1. Measurement Error

2. Socioeconomic Variability

Bouchaud and Potters [2009] show how measurement errors in the emprical correlation matrix

distort the "optimal" portfolio Weights towards small eigenvalues, which are often a�ected by

measurement error. Hence, several authors including Bouchaud and Potters [2009], Bun et al.

[2016], and Bun et al. [2017], have introduced "cleaning" techniques, inspired by Random Matrix

Theory (RMT) (see Mar£enko and Pastur [1967]), to narrow the distribution of a correlation ma-

trices spectrum. Later, in chapter??, we will see how the cleaning techniques of Bouchaud and

Potters [2009], Bun et al. [2016], and Bun et al. [2017] relate to the Quantum Lorenz Ordering

(QLO), but, for now, this chapter will be organized as follows: In section 2.1, we will brie�y re-

cap MPT and discuss the empirical correlation matrices role in portfolio optimization. Then, in
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section 2.2 we discuss how the so-called "Out-of-Sample" risk is related to how dispersed a corre-

lation matrices eigenvalues are. Lastly, in section 2.3, we will de�ne a handful of RMT "�ltering"

schemes for empirical correlation matrices that have intriguing relationships to the QLO, which

will be discussed later.

2.1 | Correlation Matrices & Portfolio Risk

Correlation matrices have always been used in the problem of minimizing the risk of a portfolio.

Indeed, the correlation matrix� for a set ofd �nancial assetsS = fS1, . . . ,Sd gis of central impor-

tance in the "Modern Portfolio Theory" (MPT) of Markowitz [1952]. Under the MPT framework,

we consider the returnsR� (Si ) for each of thed �nancial assetsSi 2 fS1, . . . ,Sd g

R� (Si ) =

0

B
B
@

Rt m (Si )
...

Rt n (Si )

1

C
C
A , Rt (Si ) = log (

Si ,t

Si ,t - 1
) 8t 2 � = [ t m , t n ] (2.1)

whose samples are collected over the time-interval� = [ t m , t n ]. Using thesed vectors of returns

R = fR� (S1), . . . ,R� (Sd )g, we de�ne the "empirical" correlation Matrix� using equation

� � (i , j ) =

8
<

:

� (R� (Si ),R� (Sj )) , if i 6= j

1, otherwise
(2.2)

for an arbitrary correlation metric� (X,Y) 2 [- 1, 1]. Here, the aim of MPT is to �nd the set

of optimal weights
 � (S) = f! �
1, . . . ,! �

d gto assign to each �nancial asset by minimizing the

portfolio's � (S) = f! 1S1, . . . ,! d Sd grisk R2 = R2(� (S)) according to the program

min R2 =
dX

i ,j = 1

! i � i � i ,j � i ! i

s.t. � � =
dX

i = 1

! i � i , � i = E[R� (Si )]

(2.3)

subject to obtaining a desired return� � . Solving the quadratic program of equation(s) 2.3 provides

the optimal weights
 � (S) = f! �
1, . . . ,! �

d gcorresponding to the time period used to sample

individual asset volatilities� i and correlations� i ,j . However, the performance of the resulting
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"optimal" portfolio� � (S) = f! �
1S1, . . . ,! �

d Sd gwill be subject to the future time period for which

the samples� i and� i ,j were not used in the optimization program (we cannot predict the future).

To formalize this, we introduce the following three notions for the empirical correlation matrix

� , the "True" correlation matrix P andh �! � j = f! �
1� 1, . . . ,! �

1� 1gdenotes the optimal weights for

� :

ˆ "In-Sample" riskR2
in is the Risk for the optimal portfolio over the time period used to build

it.

R2
in = h �! � j� j �! � i (2.4)

ˆ "True" riskR2
true is the Risk in the ideal world where the true correlation matrix P is used.

R2
true = h �! PjPj �! Pi (2.5)

ˆ "Out-of-Sample" riskR2
out is the risk of the portfolio constructed using the empirical cor-

relation matrix � , but is observed in the next time period.

R2
out = h �! � j� - 1P� - 1j �! � i (2.6)

Interestingly, Bouchaud and Potters [2009] show that one can use a convexity argument to say

h �! � j� j �! � i 6 h �! PjPj �! Pi (2.7)

whereA denotes the long-run average for the matrixA, from which we notice

R2
in 6 R2

true (2.8)

as one might expect. By optimality, we can say something similar with respect to the "True" and

"Out-of-Sample" Risks

R2
true 6 R2

out (2.9)

and thus we have the full relation

R2
in 6 R2

true 6 R2
out (2.10)
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for "In", "True" and "Out-of-Sample" RisksR2
in , R2

true , andR2
out , respectively. Hence, the risk

that an "optimized" portfolio� � will be exposed to in the future will always be greater than, or

equal to, the risk suggested by the quadratic program used to construct� � in the �rst place. Since

this procedure relies on the empirical correlation matrix� , with spectral decomposition

� =
dX

i = 1

� i (� )� i � T
i (2.11)

it would be interesting to see how the "optimal" weights
 � (S) = f! �
1, . . . ,! �

d gare related to

the correlation matrices eigenvalues� i (� ). Reason being, the eigenvalues of a correlation matrix

turn out to have strong �nancial interpretations that allow us to characterize portfolio risk in an

interesting way. We explain this relationship next.

2.2 | Spectral Dispersion & Portfolio Risk

From the previous section we saw how Markowitz "optimized" portfolios are exposed to substan-

tial "out-of-sample" risk. In this Section, we want to see if we can use the Empirical Correlation

Matrix � to characterize the amount of "out-of-sample" riskR2
out a portfolio � � (S) might be ex-

posed to. We know that any correlation matrix� will have a spectral decomposition of the form

� =
dX

i = 1

� i (� )� i � T
i (2.12)

since correlation matrices are hermitian (symmetric). Hence, it might be interesting to see if we

relate the "optimality" of a portfolio� � (S) to the eigenvalues� (� ) of � .

We begin by solving the quadratic program of equation(s) 2.3. Using lagrange-multipliers, we

�nd that the optimal weights
 � (S) = f! �
1, . . . ,! �

d gobey the relation

! �
i � i = � �

P
j � - 1

i ,j
� j

� jP
i ,j

� i
� i

P
j � - 1

i ,j
� j

� j

(2.13)
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using individual asset volatility's� i = � (Si ) and correlation matrix elements� i ,j . We can sim-

plify the above expression for! �
i � i

! �
i / � i +

dX

j = 1

dX

k = 1

(� - 1
j (� ) - 1)� j ,i � j ,k � j (2.14)

for the eigenvalues� (� ) = f� 1(� ), . . . ,� d (� )gof � and Eigenbasisf� i gd
i = 1 where� i ,j denotes the

j th element of thei th eigenvector� i . Equation 2.14 reveals something interesting:

Markowitz optimization schemes tend to allocate large weights to small eigenvalues.

However, as alluded to in Bouchaud and Potters [2009], the measurement of small eigenvalues

may be entirely dominated by measurement error: the 1st variety of statistical variability. Hence,

since
 � (S) = f! �
1, . . . ,! �

d gis meant to minimize the risk of our portfolioR2 = R2(� S), our

entire notion of portfolio risk is directly related to the amount of dispersion in the distribution

of the eigenvalues� (� ) of the correlation matrix� . Thus, the amount of "out-of-sample" risk a

portfolio will be exposed to is potentially compromised by the shape of the Spectrum� (� ). For

this reason, the spectrum� (� ) of the empirical correlation matrix� , a core element of this thesis,

becomes an object of interest for the characterization of systemic market risk. For instance, we

can consider correlation matrices for the 30 constituents of the Dow Jones Industrial Average

(DJIA) and use� (� ) as means to measure systemic market risk.

To address all of this, several "Cleaning Recipes", inspired by Random Matrix Theory (RMT),

have been developed and studied in Bouchaud and Potters [2009] among others. We introduce a

few of these next in hopes they bear an interesting relationship with the quantum lorenz ordering

(QLO), later.

2.3 | Some Filtering Procedures

We will brie�y de�ne, and discuss, a few of the most prominent random matrix cleaning tech-

niques Bun et al. [2017]: The Basic Linear Shrinkage Estimator (BLS), Eigenvalue Clipping (CLP),

and the Rotationally Invariant Estimator (RIE). We denote with� BLS[� ], � CLP[� ], and� RIE[� ] their

respective cleaning operations� � [�]. For the remainder of this section, we will refer to the fol-
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lowing Spectral Decomposition for a cleaned �nancial correlation matrix� *[� ]

� � [� ] =
dX

k = 1

� �
k � i � T

i (2.15)

with "cleaned" eigenvaluesf� �
k gd

k = 1 2 � (� � [� ]) while preserving the original eigen-basisfj i k gd
k = 1

from the "raw" Correlation Matrix� with eigenvaluesf� k (� )gd
k = 1 2 � (� ). We begin with BLS.

De�nition 2.1 (Basic Linear Shrinkage). The Basic Linear Shrinkage, or Linear Shrinkage, es-

timator for the true correlation matrix� BLS[� ] is de�ned as,

� BLS[� ] :=
dX

i = 1

� BLS
i � i � T

i , � BLS
i = �� i (� ) + ( 1 - � ) (2.16)

that is, � BLS[� ] = �� + ( 1 - � )I d , for some constant� 2 [0, 1].

Though quite simple, this method proves to be di�cult to outperform in practice Bun et al. [2016].

It is not unreasonable to think that the e�ectiveness of this procedure may be related to the

e�ectiveness of the Talmudic "1N " allocation Duchin and Levy [2009]. Indeed,� BLS[� ] forms a

convex combination between� and I d , the identity matrix which corresponds to the Talmudic

" 1
N " allocation.

Remark 2.2. It has been shown in Bun et al. [2017] that an optimal choice for� is � := ( 1 +

2q� )- 1 whereq = d- 1T, d = dim(� ), and� a hyper-parameter for an Inverse-Wishart prior.

De�nition 2.3 (Eigenvalues Clipping). The Eigenvalues Clipping, Clipping, or Clipped, estima-

tor for the true correlation matrix� CLP[� ] is de�ned as,

� CLP[� ] :=
dX

i = 1

� CLP
i � i � T

i , � CLP
i :=

8
<

:

� i (� ), if i 6 dd� e


 , otherwise
(2.17)

where the topdd� eeigenvalues are untouched and
 is an appropriately chosen trace-preserving

constant such that Tr[� CLP[� ]] = Tr[� ] = 1.

Remark 2.4. A typical procedure is to choose� such that eigenvalues beyond the Marcenko-

Pastur upper edge (� i (� ) > (1 +
p

d=T)2, see Bouchaud and Potters [2009]) are kept (signals),

and normalize the rest (noise).
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Figure 2.1: RMT Cleaning recipes as functions of the Raw Spectrum

Plotting � i (� ) against� (� ) for the RMT �ltering schemes RIE, BLS, and CLP..

The idea with eigenvalue clipping is that, perhaps, the topdd� eeigenvalues represent a suf-

�cient rank- dd� e approximation to the true correlation matrix. Thus, normalizing the bottom

(d- dd� e)-eigenvalues, with (say) a trace-preserving constant
 , will suppress noisy �uctuations

in the spectra, while retaining the strong signals indicated with the topdd� e-eigenvalues.

De�nition 2.5 (Rotationally Invariant Estimator). The Rotationally Invariant, Nonlinear Shrink-

age, or Oracle Estimator for the true correlation matrix� RIE[� ] is de�ned as,

� RIE[� ] :=
dX

i = 1

� RIE
i � i � T

i , � RIE
i :=

� i (� )
j1 - q + qzi g� (zi )j2

(2.18)

for q = d- 1T, j � j the complex modulus of a complex number, andg� (zi ) the Stieljes transform,

the normalized trace of the ResolventG� (zi ), that isg� (zi ) = 1
d Tr[G� (z)], of � , de�ned below

G� (zk ) =
dX

i = 1

� k (� ) + i�
(� k (� ) - � i (� )) 2 + � 2

� i � T
i (2.19)

wherezk = � k (� ) - i� and� k (� ) an eigenvalue� k (� ) 2 � (� ).
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Similar to the Basic Linear Shrinkage estimator in 2.1, the RIE estimator in 2.5 "shrinks" the top

eigenvalues while "growing" the bottom ones. However, unlike the BLS estimator, it does so in

"nonlinear" fashion, shrinking and growing eigenvalues at a rate proportional to their relative

size. In Bun et al. [2017] it is shown how this induces a "systemic bias" towards small eigenvalues

� i (� ) ! 0, and thus, one needs to be careful when implementing the RIE estimator, especially

for smalld andT (as is usually the case with Financial Portfolios).
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3
A Naive Alarm-System using the

�antum Lorenz Order

Consider a Market consisting ofd �nancial assetsS := fS1, . . . ,Sd g. In Fontanari et al. [2019], a

novel approach to characterizing market risk was introduced: the Quantum Lorenz Order. The

Quantum Lorenz Order is a Partial Ordering between Hermitian Matrices of equal trace that

was originally developed for Quantum Statistical Mechanics to study the dynamics of Quantum

States (see Nielsen and Vidal [2001], and Sagawa [2020]). In a �nancial context, this ordering can

be used to rank Correlation Matrices based on the amount of risk embedded in the assets they

represent Fontanari et al. [2019]. Risk managers often use determinant-based, and physically

inspired risk measures like the Frobenius-Norm, and Entropy, to compare correlation matrices.

In Fontanari et al. [2019], it is shown that these measures are monotonic with respect to this

Ordering and de�ne a special sub-class of risk-measures: theM � -Class Fontanari et al. [2019].

Thus, if we sequentially sample Correlation Matrices over sliding windows, we can track the

temporal evolution ofM � risk-functionals with respect toS. If we takeS to be the (say) DOW

Jones Industrial Average, we are now, perhaps, in a position to build an alarm system for market

crashes using the Quantum Lorenz Ordering (QLO) of �nancial correlation matrices Cirillo and

Hüsler [2011]. In section 3.1, we introduce the central object used to de�ne the Quantum Lorenz

Ordering: the Quantum Lorenz Curve (QLC). and relate its interpretation to Markowitz' Modern

Portfolio Theory (MPT) Markowitz [1952], and modern Random Matrix cleaning techniques Bun

et al. [2017].
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3.1 | The �antum Lorenz Curve

Changing gears, we take a more general view of Financial Correlation Matrices. This perspective

reveals the appealing mathematical properties of Correlation Matrices that make the Quantum

Lorenz Curve such an interesting object to study. Here, we refer to a Correlation Matrix, in

the most general sense, according to Axiom 3.1 and display sample Correlation and Covariance

matrices, in Figure 3.1, for 25 constituents of the Dow Jones Industrial Average.

(a) Correlation Matrix � (b) Covariance Matrix�

Figure 3.1: DOW Jones Industrial Average Correlations

Correlation 3.1(a) and Covariance 3.1(b) Matrices for 27 of the 30 DJIA constituents.

Axiom 3.1 (General Properties of Correlation Matrices). We refer to the set ofd � d Correlation

Correlation Matrices� 2 P(S) on a marketS = fS1, . . . ,Sd gwith the following axioms:

ˆ � is a Positive Semi-De�nite Matrix on a Hilbert SpaceH = Rd , that is� 2 PSD(H ).

ˆ � is a Hermitian Matrix onH , that is� = � y.

ˆ � neceassrily has traced, with d necessarilyd = dim (H ), that is Tr[� ] = d,

ˆ � has entries between- 1 and 1 with 1's on the diagonal, that is� i ,j 2 [- 1, 1] with � i ,i = 1.

By the Spectral Theorem of Hermitian Matrices, we know any Correlation Matrix� 2 P(S)
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has the following spectral decomposition

� =
dX

k = 1

� k (� )� k � T
k (3.1)

with � (� ) := f� k gd
k = 1 denoting the spectrum of� with eigenbasisf� k gd

k = 1. Additionally, since

� has trace Tr[� ] = d, we know that
P d

k = 1 � k (� ) = d. Furthermore, since� 2 PSD(H ) is a

Positive Semi-De�nite Matrix, we also knowpk > 0,8� k 2 � (� ). Thus, the spectrum� (� ) of a

(Financial) Correlation Matrix� 2 P(S) de�nes a distribution onRd ! However, once normalized,

� (� ) de�nes a probability distribution. This is why we choose the letterp to de�ne the spectrum

� (� ) = f� k gd
k = 1.

Figure 3.2: Pareto Chart for a Financial Correlation Matrix

Sorted Eigenvalues� #
i (� ) from 3.1(a) with the corresponding Quantum Lorenz CurveL� (� ).

The extent to which the dispersion of the distribution� (� ) does indeed characterize a true

heterogeneity , and underlying Systemic Risk in the MarketS = fS1, . . . ,Sd g, a natural object to

consider is the Cumulative Distribution Function (CDF) of� (� ). We plot the example Spectrum

� (� ) from Figure 3.1 in Figure 3.2. In fact, this heterogeneity precisely corresponds to the so-called

"Lorenz-Curve" of Lorenz [1905], which Max Otto Lorenz invented to study wealth distributions
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of societies. When applied to the Spectra of Hermitian Matrices, and thus Financial Correlation

Matrices, we get the Quantum Lorenz Curve in De�ntion 3.2.

De�nition 3.2 (Quantum Lorenz Curve). Let A be a Hermitian Matrix on a Hilbert SpaceH .

The Quantum Lorenze CurveL� (A), of order� , for A is de�ned as

L� (A) :=
1

Tr[A]

�X

k = 1

� #
k (A), 8� 2 f1, . . . ,dg (3.2)

with � #
k (A) 2 � (A) denoting the sorted eigenvalues in descending order.

De�nition 3.2 precisely corresponds to the red -line depicted in Figure 3.2. Furthermore, the

Quantum Lorenz Curve, has an incredibly intuitive interpretation of risk:L� (� ) represents the

total percentage portfolio variance explained by the top� in�uential assets (top� eigenvalues).

This interpretation hints at the possibility of using the Quantum Lorenz Curve to order Corre-

lation Matrices. Indeed, supposeL� (� 2) > L� (� 1), 8� 2 f1, . . . ,dg. This would suggest that,

8� 2 f1, . . . ,dg, every rank-� approximation of� 2 is better than the corresponding rank-� ap-

proximation of � 1. In fact, this is exactly the de�nition of Quantum Majorization!

De�nition 3.3 (Quantum Majorization). LetA,B be Hermitian Matrices on a Hilbert SpaceH .

We sayB Quantum MajorizesA, written asB � A, if, and only if,

L� (B) > L� (A), 8� 2 f1, . . . ,dg (3.3)

with L� (�) denoting the Quantum Lorenz Curve.

Before calling Quantum Majorization an Ordering, it is important to verify a few properties.

The reader is encouraged to see Fontanari et al. [2019] for all of the details, but we will glance

over the main points with Axiom 3.4.

Axiom 3.4 (Order Conditions). To guarantee �nancial interpret-ability, an Order on Financial

Correlation Matrices should obey the following properties:

P1 Minimal Element: The least risky element is the Identity Matrix� = I d

P2 Maximal Element: The most risky element is the set of rank-1 matrices� = j ih j
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Figure 3.3: Pareto Chart for a Financial Correlation Matrix

Sorted eigenvalues� #
i (� ) from 3.1(a) with the corresponding Quantum Lorenz CurveL� (� ).

P3 Monotonic: The order should not increase in the rank of the Correlation Matrices.

P4Quasi-Convexity: A convex combination of two Correlation Matrices should not be less

risky than the riskiest of the originals.

Proposition 3.5. De�nition 3.3 satis�es propertiesP1- P4 stated in Axiom 3.4.

We state Proposition 3.5 without proof and refer the reader to Fontanari et al. [2019] for further

details, but note that the proof is immediate from the de�nition of the Quantum Lorenz Curve

3.2.

Though it is not obvious why De�nition 3.3 works, we refer the reader to Fontanari et al.

[2019] for the proof. Additionally, we refer the reader to Fontanari et al. [2019], Arnold and

Sarabia [2018], and Sagawa [2020] for complete discussions on the general theory of Majorization,

and Quantum Majorization, respectively, including proofs and alternative de�nitions. For our

purposes, this de�nition is clear, concise, and provides a nice geometric interpretation that is

easily exploitable for characterizing risk, especially from the standpoint of Bouchaud and Potters

[2009]. However, it is easy to see how the de�nition of Quantum Majorization simply applies

the notion of (Classical) Majorization Arnold and Sarabia [2018] to the spectrum of Hermitian
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Figure 3.4: �antum Lorenz Curve for a �antum Majorization Relation

Quantum Lorenz Curves depicting a� l � � k relation betweenL� (� � ) andL� (� ).

Matrices, and thus Financial Correlation Matrices.

Indeed, since we consider Financial Correlation Matrices� 2 P(S) of the same dimension

d = dim(� ), the Quantum Lorenz Curve 3.2 of a Financial Correlation Matrix� is

L� (� ) :=
1
d

�X

k = 1

� #
k (� ) (3.4)

with eigenvaluesf� #
k g. Thus, we say a Financial Correlation Matrix� majorizes another�� , that

is � � �� , if, and only if,
1
d

�X

k = 1

� #
k (� l ) >

1
d

�X

k = 1

� #
k (� k ) (3.5)

which precisely corresponds to the de�nition of the Classical Majorization of vectors*p, *q 2 Rd

Arnold and Sarabia [2018] since� (� k ), and� (� l ) are also vectors inRd , that is,� (� k ), � (� l ) 2

Rd . Thus, the Quantum Majorization of Hermitian Matrices (of equal trace) corresponds to the

Classical Majorization of their respective eigenvalues.
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3.2 | The �antum Majorization Graph

The question becomes, how can we use this characterization of Risk, the Quantum Lorenz Order-

ing, to measure Systemic Risk. Quantum Majorization allows us to compare the Risk embedded

in two di�erent Correlation Matrices, of the same size, but how can this characterize Systemic

Risk in the Market. To take advantage of the Quantum Lorenz Ordering, Fontanari et al. [2019]

sequentially sampled Correlation Matrices, for the constituents of major Financial Indices, over

sliding windows. For convenience, we capture this with De�nition 3.6 below.

De�nition 3.6 (Temporal State Space of Financial Correlations). For a Market ofd �nancial

assetsS := fS1, . . . ,Sd g, and a sliding-window� = ( h,m, I ), corresponding to the time-interval

I = [ t 0,T], we de�ne the Temporal State Space of Financial CorrelationsP� (S; I) as

P� (S; I) := f� k = � � k (S) : �k = [ kh ,kh + m] 2 I ,8k 2 f0, . . . ,n - 1gg (3.6)

wheren = jP� (S)j is the cardinality ofP� (S) and is explicitly calculable:n =
�

T
h

�
-

�
m - h

h

�
.

Example 3.7. Suppose we want to sample correlation matrices for the DOW Jones Industrial

Average constituents over theT = 252-day trading period for the year 2019. We can de�ne a

Sliding-Window� = ( 10, 100,[0, 252]) with m = 100-day windows andh = 10-day shifts. Then

� 0 would correspond to the time-interval�0 = [ 0, 100], and� 1 to �1 = [ 10, 110], so on so forth,

until we have a collection ofn = 16 Financial Correlation Matricesf� � k gn - 1
k = 0 = P� (S) 2 P(S).

The Temporal State-SpaceP� (S; I) creates a temporal sequence of Correlation Matrices that

can be used to track Systemic Risk when those Correlation Matrices represent the constituents

S = fS1, . . . ,Sd gof a major Financial Index, such as the Dow Jones. Using this collection, we can

build the Quantum Lorenz Ordering by checking which Correlation Matrices� i , � j 2 P� (S; I)

Quantum Majorize each other. Fontanari et al. [2019] embedded the Quantum Lorenz Ordering

into a f0, 1gn � n Matrix for n = jP� (S; I)j the number of Correlation Matrices inP� (S; I). We

introduce the so-called Quantum Majorization Matrix next with De�nition 3.8.

De�nition 3.8 (Quantum Majorization Matrix). Given a Temporal State SpaceP� (S; I), the so-
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called Quantum Majorization Matrix	 = 	 (P� (S)) has entries

	 k ,l :=

8
<

:

1, if � l � � k 8� k , � l 2 P� (S)

0, otherwise
(3.7)

We display the Quantum Majorization Matrix, for the Quantum Lorenz Ordering, built using

the 30 constituents of the Dow Jones sampled between January 1, 1990 until December 31, 2020

using 100-day Windows, and 10-day Shifts in Figure 3.5(b). The thick horizontal bands in the

Quantum Majorization Matrix of Figure 3.5(b) correspond to major Stock Market Events. For an

in depth analysis on this object, we direct the reader to Fontanari et al. [2019] for all the details. In

short, the reader can check, by de�nition 3.8, that Correlation Matrices in these bands Quantum

Majorize more Correlation Matrices than other Correlation Matrices Quantum Majorize them.

Hence, they are "Riskier". Referring to the Quantum Majorization Matrix on the left, in Figure

3.5(b), the black cell in positionf3, 1gstates that Correlation Matrix� 3 � � 1.

Fontanari et al. [2019] then used a directed acyclic graph (DAG) to represent the QLO aptly

named, the Quantum Majorization Graph (QMG). Representing this information in a graph has

many advantages as graphs have become very popular Data-Structures in the study of complex

networks. We introduce the QMG next.

(a) Jan 1, 1990 - Nov 1, 1990 (b) Jan 1, 1990 - Dec 6, 2020

Figure 3.5: Sample �antum Majorization Graphs

Quantum Majorization Graphs withblack-entries representing some majorization relation� l � � k .
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