
Method-Level Data in GitHub Pull Request Descriptions: Effects on Developers’
Prioritization and Facilitation of Fixing Vulnerable Dependencies

Tudor-Alexandru Popovici , Mehdi Keshani , Sebastian Proksch
TU Delft

Abstract
Modern software development involves the usage
of external third-party software projects as direct
dependencies. Nonetheless, developers of a de-
pendant project have no control over critical as-
pects such as development and testing of the depen-
dency. This can put the reliant repositories at risk
through vulnerabilities, which can be exploited by
malicious attackers. Automated dependency main-
tenance tools can mitigate the risks, but have an ob-
served shortcoming: they have decreased vulner-
ability detection accuracies due to their package-
level analysis approach.
In this study, a total of 6.717 active projects hosted
on GitHub have been analysed using a method-
level vulnerability analysis, discovering 24 projects
affected by 4 distinct exposures. The developers
have been notified through GitHub Pull Requests,
which contained the methods in their projects that
called vulnerable dependency methods. This was
done with the aim of finding answers to: (i) whether
the provided method call information makes devel-
opers prioritize the task of fixing vulnerabilities, (ii)
whether the fine-grained information facilitates the
exposures handling process. Developers’ reactions
to the method-level data were collected through
means of a survey. Collected data revealed that
the fine-grained information in the PRs did have a
positive effect on the developers’ prioritization of
fixing the vulnerable dependencies. Moreover, the
provided data also facilitated the maintainers’ fix
process to some extent. However, due to the lim-
ited amount of recorded responses, the answer to
the research question could not be concluded.
Keywords— Dependant, Dependency, Vulnerability, De-
pendency maintenance tools, Package-level, Method-
level, GitHub Pull Requests

1 Introduction
Most, if not all contemporary software projects make use of
third-party libraries, known as dependencies. Dependencies
can speed up the software development process, as all of the
potential developer’s workload in writing the code provided

by the dependency is outsourced to the developers of that
project [1].

Dependencies themselves are software projects and are
thus inherently prone to having bugs. In fact, it is reported
that half of the total time a developer allocates working on
a project is spent on fixing bugs [2]. Vulnerabilities, also
known as bugs, represent ”a big threat for the security of
software systems” [3], mainly due to the fact that malicious
attackers can exploit these exposures for their own benefit.

In order to mitigate the risks vulnerable dependencies can
impose on dependant projects, exposed packages must be up-
dated to versions which had their bugs fixed. Failure to update
vulnerable dependencies in time can result in serious conse-
quences on the projects. For example, more than 100.000
credit card user details were leaked by company Equifax [4],
due to the developers’ inability of promptly updating the vul-
nerable Apache Struts package. Such incidents can actively
be prevented by periodically practicing the process of depen-
dency maintenance.

Dependency maintenance, the process of identifying and
updating dependencies that are vulnerable or outdated has
nowadays been automatised. An example of a popular depen-
dency maintenance tool is Dependabot [5], which is available
for use for any project hosted on GitHub. Although the un-
contested benefits of Dependabot, it has been observed by
numerous developers that this type of maintenance tool gen-
erates a high amount of false positives (FPs) and low severity
alerts [6]. The developers have also suggested that these anal-
ysis tools could benefit from having this aspect improved.

The percentage of FP results (projects which are marked
as having vulnerable dependencies) has to do with the type of
analysis Dependabot is performing. Vulnerable dependencies
are searched in a project on the package-level. Nonetheless,
the actual vulnerable methods inside of the exposed packages
might not even be called from the reliant repositories, leading
to a FP result.

Several studies have shown the possibility of lowering the
amount of FPs through the use of call graph (CG) data struc-
tures [7][4]. The use of these data structures enables the map-
ping of method calls between the dependant project and vul-
nerable dependency methods. As a result, a more fine-grained
type of analysis, known as method-level analysis can be per-
formed on projects.

The main interest of the study is how the developers of a

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



repository that is affected by a vulnerability react to method-
level information (the set of methods from the dependant
repository which call vulnerable methods in the dependency)
provided in GitHub Pull Request (PR) descriptions. Specif-
ically, the following research question (RQ) will be answered:

What are the effects of method-level vulnerability infor-
mation, given in GitHub Pull Request descriptions, on the
prioritization and facilitation of the process of fixing the
vulnerable dependencies by the developers, in the scope of
their affected projects?

Primarily, it is of interest to see whether this type of vul-
nerability information has any effect on how developers pri-
oritize fixing the dependencies (when compared to past expo-
sure fixing behaviours). Moreover, it is relevant whether the
knowledge of which methods are at risk facilitates the devel-
opers’ process of fixing exposures. To the best of the writer’s
knowledge, no previous research has been conducted on the
effects of fine-grained vulnerability data on developers’ of af-
fected projects.

The structure of this research paper will be as follows.
Section 2 will discuss the background of the methods that
have been used in this study. Section 3 will introduce the
methodology that was followed in order to answer the re-
search question presented in the introduction. The 4th Sec-
tion will guide the reader through the experimental setup of
the research (how the methodology has been put into prac-
tice). Moreover, it will provide the results of the study, which
will give the answer to the RQ. Section 5 will provide insights
on the ethical aspects of the research. In addition, it will illus-
trate the extent of reproducibility of the research that has been
carried out. This section will be followed by a discussion of
the results, which will reflect and compare the results to other
relevant research studies. Lastly, Section 7 will provide the
conclusion and will discuss possible future work emerging
from this study.

2 Research Background
Vulnerabilities are defined as ”weaknesses or flaws present in
your code” [8]. These weaknesses are caused by incorrectly
written source code, causing program logic gaps that lead to
security exposures that can be exploited by malicious attack-
ers.

With the aim of minimizing the risks these exposures im-
pose on projects and their users, a collaborative process
between vulnerability researchers and project maintainers,
called vulnerability disclosure, is nowadays commonly prac-
ticed [9]. The main workflow of this process starts with the
security researchers that notify the maintainers of the found
vulnerabilities affecting their projects. This is followed by
the developers creating a corresponding patch and then noti-
fying all of the other repositories which might depend on their
project.

Vulnerabilities are publicly disclosed through the use of
security advisories. Examples of such advisories are the Na-
tional Vulnerability Database [10], GitHub Security Advisory
[11] or the npm Security Advisory [12].

These are databases that include an extensive number of
vulnerability records, that are displayed to the developers in a
standardized Common Vulnerabilities and Exposures (CVE)
[13] format. These CVEs allow security reporters, reposi-
tory maintainers and other developers to communicate more
efficiently about a specific vulnerability. This is due to the
fact that each of these CVEs is assigned to a unique identi-
fication number (with format CVE-{YEAR}-{ID}, i.e. CVE-
2019-1234), that allows easy referral. Moreover, this format
includes information such as the version range of the linked
package that is affected, the severity level of the exposure
and a description of the actual vulnerability. The severity is
calculated using the Common Vulnerability Scoring System
(CVSS), which produces a base score that is mapped to one of
the 4 possible severity levels: LOW, MEDIUM, HIGH, CRIT-
ICAL [14].

Dependency management tools make extensive use of
these security advisories in order to keep projects secure. De-
pendabot is a popular example of such a tool, having over 7.5
million merged GitHub Pull Requests associated to vulnera-
bility fixes [5]. This tool aims to keep a project’s dependen-
cies up-to-date and vulnerability-free. To keep a project’s de-
pendencies secure, Dependabot pulls the dependency files of
that repository and checks whether any listed dependencies
matches any known vulnerabilities from GitHub’s Security
Advisory (dependency versions need to match vulnerability
affected ranges). If a match is found, Dependabot will open a
PR that bumps the dependency to the closest version that has
the vulnerability patched [15].

Dependabot’s strategy of finding vulnerabilities in a project
follows a package-level approach. This approach only analy-
ses whether vulnerable versions are in the dependency graph
of a project, but does not check whether any methods that
cause the vulnerability in the dependency package are actu-
ally called from the project. This can lead to situations where
a project is marked as having a vulnerable dependency, when
none of the vulnerable methods are called, producing a FP
result.

A viable solution to the problem of FPs would be perform-
ing method-level analysis on the projects. This analysis ex-
tends on the package-level one, by adding an extra check of
whether the vulnerable methods in the affected dependency
are called from the inspected repository. This approach re-
quires 2 main components in order to be carried out:

• There needs to be a way through which it can be de-
termined which methods have been chain-called from a
project.

• A data source containing the set of methods linked to
specific vulnerabilities needs to be used.

A pragmatic choice for the first component is represented
by the CG data structures. These are directed graphs that map
function calls both internally within a project and externally
between multiple projects.

Furthermore, a data source at the disposal of this study is
the Fine-Grained Analysis of Software Ecosystems as Net-
works (FASTEN) Project’s database [16], which includes a
vast amount of package-level and method-level vulnerability
data (including methods linked to exposures) collected on nu-



merous packages. These projects are all packages released on
the Maven Central Repository [17], which is a remote host of
Open Source Software (OSS) Java based libraries.

3 Methodology
This section will elaborate on the methodology that was used
in order to answer the research question. The goal is to collect
data on how developers react to vulnerable method-level in-
formation affecting their projects. With this aim in mind, the
scope of the study needs to be narrowed down to a finite set
of projects on which both package and method level analy-
ses can be performed. With the results from the method-level
analysis, GitHub PRs will be opened for the affected reposi-
tories. Surveys will then be sent to the developers in order to
gather data on how their vulnerability fix process experience
was influenced by the fine-grained data. In a more systematic
manner, the following steps describe the employed method-
ology:

1. Select the set of projects on which to perform the study.
2. Retrieve a set of vulnerable packages to look for as de-

pendencies in the selected projects.
3. Implement a vulnerability analyzer to perform package

and method-level analyses on selected projects.
4. Analyse the selected repositories for vulnerabilities on

the package-level.
5. Analyse the positive package-level repositories for vul-

nerabilities on the method-level.
6. Open PRs on GitHub for projects which are vulnerable

on the method-level.
7. Collect and process data on the reactions of the develop-

ers of the notified repositories through means of a sur-
vey.

3.1 Project Selection
The first step in being able to answer the research question
is to find the set of projects on which the study can be con-
ducted. With the use of the FASTEN database, these projects
can be extracted. In order to fit the needs of the study, multi-
ple filters are going to be applied on these packages:

• Projects have to be hosted on the GitHub platform.
• Projects have to have recent development activity.
• Projects have to be non-forked.

The first and primary filter that will be applied on the
projects is that they are hosted on the GitHub platform.
GitHub has been selected as a platform of choice because
it provides the Dependabot maintenance tool, which, nowa-
days is widely used by the projects hosted on this remote
repository host. As a result, projects hosted on this platform
are more likely to already use such dependency maintenance
tools and thus their developers have a higher likelihood of
being familiarized to the automatized process of dependency
maintenance.

Another filter to apply on the projects, that would help in
maximizing the number of responses that are recorded from
the developers is the activity of the repositories. Developers
of recently active projects have an increased probability to

respond to the vulnerability related opened PRs, as projects
showing activity well in the past could be linked to archived
or simply unmaintained projects. A good measure of recency
is the last update date of that repository, which has been cho-
sen not be more than 4 months old in order for the project to
be labeled as active.

3.2 Vulnerability Information Retrieval
Complementary to the set of projects, the vulnerable pack-
ages to look for in the dependencies of the selected reposi-
tories need to be gathered. Through the use of the FASTEN
database, it is also possible to extract this data. This data
source contains packages that are themselves flagged as vul-
nerable, along with the exposure information associated with
them. Essentially, this information includes the linked CVE
to the vulnerability and its associated data and the set of meth-
ods contributing to the vulnerability. This enables the possi-
bility of performing package and method-level analyses on
the projects.

3.3 Package-level Analysis
An analyzer was implemented to perform package-level in-
spection. This vulnerability finder performs the analysis on
the projects in a similar manner dependency management
tools such as Dependabot carry out their analysis of a repos-
itory: versioned dependencies are extracted from a project’s
dependency file and matched with known vulnerabilities.

The implemented inspector supports projects using any of
the 2 most popular build automation tools for Java based
projects: Maven [18] or Gradle [19]. Maven provides the
Project Object Model (POM) [20], which is an XML file
with name pom.xml that contains general information about
the project’s structure, including its list of dependencies. In a
similar manner, Gradle has an analogous representation of a
project’s composition through a file named build.gradle. Two
custom parsers have been implemented that extract the ver-
sioned dependencies listed in the dependency files provided
by these build automation tools.

When trying to determine whether a given dependency is
vulnerable, the inspector will try to match it to any CVE that
is linked to it. Afterwards, the given dependency version will
be checked whether it is included in the affected version range
from the CVE. If it is included, the repository is marked as
package-level vulnerable.

3.4 Method-level Analysis

Figure 1: CG call between a project and a vulnerable dependency

Method-level analysis is performed on the projects that were
deemed vulnerable by the package-level inspection. Realiza-



tion of this approach is enabled through the construction of
call graphs. Specifically, call graphs are generated between
the dependant project and each of the package-level vulnera-
ble dependencies.

The call graph will contain edges between two nodes that
represent methods, directed from the calling to the called
function respectively. Each node contains a Uniform Re-
source Identifier (URI) that precisely specifies the intra-
project location of the method represented by the node. As
an example, Figure 1 illustrates an edge between a method in
a project that calls a vulnerable method in one of its depen-
dencies.

Given a dependency which is marked as vulnerable by the
package-level analysis, the inspector will retrieve all of the
methods in the dependency which have caused the CVE to
be issued. Starting from these vulnerable methods, the graph
will be traversed in the direction of the dependant project,
looking for any nodes containing methods of this package.
If such a method is found, the repository is concluded to be
method-level vulnerable.

3.5 Opening Pull Requests
The method-level analysis will result in a number of different
graph path traces that start from the vulnerable methods in
the dependency and end at a method in the dependant project.
These path traces are part of what is referred to as method-
level or fine-grained information.

With all of the generated fine-grained data, the developers
of the affected projects need to be notified of the vulnerabil-
ities that put their projects at risk. GitHub PRs will be used,
which will bump the version of the vulnerable dependency to
a minimum version which has the exposure fixed, mimicking
the behaviour of Dependabot. The description of the PR will
include all of the method-level vulnerability information col-
lected, including CG traces, linked vulnerability CVE, sever-
ity level and release note links.

3.6 Collecting and Processing Developer
Responses

The reactions of the developers will be qualitatively analyzed
in order to bring answers to the research question. In rela-
tion to the effects of method-level data on the prioritization
of fixing the vulnerable dependencies, the merging times of
the opened PRs will be recorded and compared against the
past merging times of other dependency related PRs.

Moreover, developers will be asked to complete a survey,
containing both binary (Yes/No) and 5 point Likert Scale [21]
answer statements. These statements will cover the degree
to which the provided fine-grained data have contributed to
the facilitation and prioritization of their vulnerability fix pro-
cess.

4 Experimental Setup and Results
In this section, the details of the methodology steps laid out
in Section 3 will be described. This includes particularities
of the selection of the project and vulnerable package sets,
analyzer implementation, analysis results retrieval and veri-
fication and PR opening process respectively. Moreover, the
results of the experimental study will be presented.

4.1 Project Selection Query
For extracting the projects and vulnerable packages, 3 tables
provided by the FASTEN database schema [22] have been
used:

• packages: provides elementary project information,
such as the repository Uniform Resource Locator (URL)
at which the project is hosted and project name.

• package versions: provides information about the
package versions, along with a metadata JavaScript Ob-
ject Notation (JSON) field that contains a vulnerabilities
property. This latter field provides details about the vul-
nerabilities that are linked to a package version.

• dependencies: provides information on which package
depends on what other package, in the form of depen-
dant and dependency.

In order to retrieve the vulnerable projects, a query has
been executed, that matched on the dependencies listed in
the dependencies table having any vulnerable version. Even
though there is no explicit field indicating whether a version is
vulnerable, this has been checked by verifying that the meta-
data field in the package versions table had its vulnerabilities
field non-null.

The dependant repositories of these dependencies were
then selected, with the query returning a total of 7.638 dis-
tinct projects which had at least one vulnerability. Further
analysis on the selected projects revealed that 6.717 of these
packages had a repository URL that was linking to GitHub.

4.2 Vulnerability Information Retrieval
The Vulnerability Analyzer [23], part of FASTEN Project,
gathers vulnerability information from a multitude of secu-
rity advisory databases. Each retrieved exposure is periodi-
cally checked for having any patches being released. When
patch commits are detected, the analyzer processes these and
determines which methods have been changed. It is then as-
sumed that the changed methods are the ones that have caused
the vulnerability.

After the vulnerability is retrieved and a patch for it is
found, the data collected is summarized in a Vulnerability
Object Definition (VOD) [24] format. This format provides
numerous fields, but useful to this study are fields such as
linked CVE identifier, vulnerability severity and 2 lists re-
spectively:

• Vulnerable package URLs (purls) [25], which represent
a standardized format aimed at reliably locating pack-
ages within their package management system.

• Vulnerable method FASTEN URIs, which provide the
project path to the functions, including the file contain-
ing the method, the method definition, the parameter
types and return type respectively.

For each package version linked to a vulnerability, the col-
lected VOD data is then included in the metadata field of that
vulnerable version in the package versions table.

Using a similar query as the one for extracting the set of
projects having vulnerable dependencies, the packages for



which a CVE is issued are retrieved. A total of 211 pack-
ages, summing to an overall of 435 CVEs have been found,
out of which 393 were unique.

4.3 Analyzer Implementation
An analyzer that checks whether a given project is package
and method-level vulnerable has been implemented. It is im-
portant that the development version of a project is inspected,
as that is typically the most up-to-date version of the repos-
itory. Figure 2 illustrates a high level overview of the func-
tionality of the analyzer, splitting it into 7 different main com-
ponents.

Figure 2: High level overview of the custom analyzer functionality

Scraping GitHub’s API and Downloading Repository
A module of the analyzer has been developed as a means of
scraping general information from GitHub’s API for the se-
lected projects. The data obtained from the API included in-
formation such as:

• Default branch name
• Repository user owner
• Repository name
• Total number of stars
• Date at which the repository has last been updated
• Boolean indicating whether the repository is a forked

version of another repository

Using the default branch name, the analyzer proceeds by
downloading from GitHub a zip file containing the source
code of the repository’s main branch (which is assumed to
correspond to the most up-to-date version of the project).
This file is then unzipped and added to a dedicated folder of
downloaded repositories.

Dependency File Vulnerability Check
The analyzer’s next step is represented by checking whether
the dependency file of the project under investigation con-
tains any package that is vulnerable. This step can be seen as
a package-level analysis implementation, as only the depen-
dency files are inspected for vulnerabilities.

With the aim of improving performance, the need of down-
loading a whole repository for inspecting a single dependency
file has been eliminated. This has been accomplished by indi-
vidually downloading the dependency files of the vulnerable
projects. By modifying the Dependabot Demonstration Script
[26] to return all of the dependency files reachable from the
root project directory, both parent and subproject files were
retrieved. A total of 17.142 pom.xml and 2.855 build.gradle
dependency files have been downloaded. Furthermore, infor-
mation such as the locally downloaded dependency file path,
the relative path of the dependency file from the root project
directory, the dependency file type (Maven or Gradle) and
the project in which the dependency file is located have been
stored in a file in a .csv format.

Using the locally downloaded dependency files, the ana-
lyzer can check whether the files contain any vulnerabilities.
Depending on the build management tool used by the project
(Maven or Gradle), different dependency file parsers have
been used. The inspector makes use of the parser to retrieve
the list of versioned dependencies, which are then matched
with the vulnerable packages extracted from the database.

Packaging the Repository
Packaging the inspected repository in a Java Archive (JAR)
[27] format is the next step of the analyzer. This is a format
that is widely accepted by the call graph generator used at
later stages of the analyzer.

In order to package the repositories into JAR files, each
project is built using its build management tool system. A
tool specific command is ran by the analyzer on the parent
pom.xml or build.gradle file of the project, which will create
JARs for all of the modules that are part of the repository.

Generating Call Graphs
The generation process of CGs has been facilitated and en-
abled through the use of the FASTEN OPAL plugin [28].
With this tool, internal call graphs for both the project and
its vulnerable dependencies were generated. The project CG
was straight-forwardly constructed by giving the repository
JAR file as input. Whereas for the vulnerable dependency,
its artifacts were downloaded from Maven Central through
the plugin code and given as input in a similar manner to the
generator. The 2 individual graphs were merged into a single
one, containing the method calls between the project and the
dependency, on top of the internal calls within the 2 packages.

In addition, Rapid Type Analysis (RTA) [29] was used as
a construction algorithm for both CGs. This algorithm is
faster and better performing than its Class Hierarchy Anal-
ysis (CHA) counterpart, which also has an implementation
provided by the plugin.

Graph Path Inspection
An adapted version of Breadth First Search (BFS) [30] traver-
sal algorithm has been run on the merged graph in order to
determine which vulnerable methods have been called from
the project. The graph is traversed individually for each of the
vulnerable functions of the dependency, using these as start-
ing points. The paths from these methods in the direction of
the dependant project are traversed and inspected. Each node
found traversing the path is checked for containing a URI that



includes the repository name. If a node of this type is found,
a vulnerability impact point on the project is discovered and
added to a global set of points. An impact point is defined to
be the last method in the project that called a function from
the vulnerable dependency, which internally chain-called one
of the vulnerable methods.

An impact point structure stores the caller method URI in
the dependant project. Additionally, it stores the calling and
origin vulnerable method URIs (that is, the function corre-
sponding to the starting point of traversal) in the dependency.
The set of impact points returned by the algorithm is logged
to an output file on a per project and per vulnerability basis.
As a result, the file will contain the 3 properties encapsulated
by the impact points, together with the CG path traces.

4.4 Running the Analyzer and Verifying Results
The analyzer found a total of 564 distinct recently active
projects that were vulnerable on the package-level. After
method-level analysis was performed on this found subset, a
total of 86 different CVE files dispersed over 62 unique repos-
itories were discovered.

The result files have been verified to determine the cor-
rectness of the analysis. The verification process included
inspecting whether:

• The mapping between the CVE and the methods from
the dependency which are labeled as vulnerable is cor-
rect.

• The affected version range given by the CVE includes
the version of the dependency.

• The resulting method calls between the project and the
vulnerable dependency are correct.

Inspection further narrowed the number of results to
25 files coming from 24 distinct projects. These files
were linked to 4 different CVEs: CVE-2019-14379 in the
jackson-databind package [31], HTTPCLIENT-1803 affect-
ing Apache httpclient [32], CVE-2017-9096 presenting secu-
rity risks in iText [33] and lastly, CVE-2016-6797 in Apache
Tomcat [34]. Table 1 illustrates a breakdown of the described
vulnerabilities, including the number of appearances of each.

Table 1: Table containing the types of vulnerabilities found from
running the analyzer and manually verifying the results

Vulnerability ID Severity Level No. appearances
CVE-2019-14379 CRITICAL 10

HTTPCLIENT-1803 HIGH 13
CVE-2017-9096 HIGH 1
CVE-2016-6797 HIGH 1

4.5 Pull Request Template
A GitHub PR has been manually opened for each of the 25
resulting method output files. A common template of the PR
has been created, in order to standardize its structure and fa-
cilitate the opening process respectively. This template in-
cludes information such as:

• Elementary exposure information: linked CVE, vulner-
ability severity level and dependency release notes.

• Backwards compatibility of the bumped version with the
current repository source code.

• Number of functions in the project calling vulnerable
methods.

• A table listing the impact points of the vulnerability in
the project.

4.6 Results
Out of the 25 opened Pull Requests, 4 (16%) have had devel-
opers react: 3 have been merged, while the other is still open.
An overview of the status of the PRs can be seen in the chart
of Figure 3.

Figure 3: Chart breaking down the status of the PRs

Additionally, particularities of the repositories that reacted
to the vulnerability fixes, such as popularity (given by number
of stars and forks), number of contributors, past experience
with dependency management tools, status of the PR in the
repository and the found CVE are given in Table 2.

It is of interest to compare the merge times of the 3 PRs
with the past merge times of older dependency related PRs
of each repository. Through these comparisons, a measure-
ment of PR prioritization can be quantified. To accomplish
this, the mean and median merge times of older PRs were
calculated, as well as the ratio of merged PRs (percentage
of PRs in merged state, out of 3 possible states: open, closed,
merged). Table 3 provides an overview of the aforementioned
metrics for each of the 4 projects that reacted (repository #2
has also been included in the statistics although no merging
was recorded, as the developers have indicated their will to
merge the PR in the near future).

Repository labeled #1 had a recorded merge time for the
PR opened by this study 30 times faster than the computed
average and 6 times faster when set side by side to the me-
dian. This repository also had all of its dependency related
PRs merged into the main branch. On the other hand, #2
merged 50% of all dependency related PRs in an average of
roughly 8 days and median of 2. For project #3, the recorded
time was equal to both the average and the median times.
It had one PR that was merged, while the other was closed.
Lastly, repository #4 had a slightly slower response than the
average and median, whilst having the ratio between merged
and open/closed PRs roughly evenly split.

Moreover, the developers of the 24 notified projects have
been asked to complete a survey. At the moment, only #1 and
#2 have filled it in. The survey included 6 statements, with



Project Status Stars Forks Contributors Uses Dependabot Affected by
#1 Merged 49 38 15 No CVE-2019-14379
#2 Open & reacted 34 49 108 Yes HTTPCLIENT-1803
#3 Merged 11 19 9 No CVE-2019-14379
#4 Merged 144 57 24 Yes HTTPCLIENT-1803

Table 2: Information about the reacting repositories’ backgrounds, status of PRs and found vulnerabilities.

Project No. dependency PRs PR merge time Ratio merged dependency PRsRecorded Average Median
#1 7 1d 30.8d 6.5d 100%
#2 10 - 7.8d 2d 50%
#3 2 1d 1d 1d 50%
#4 11 22d 15.1d 1d 54.5%

Table 3: Statistics of dependency related Pull Requests in the projects that reacted to the PRs opened by this study.

the aim of investigating the effects of the provided method-
level data on their prioritization and facilitation of fixing the
vulnerability.

Statement 1: I was aware of the vulnerability affecting my
project before being informed by the Pull Request.

Both of the repositories have answered that they were not
aware of the notified vulnerability. Interestingly, even though
#2 had a PR opened by Dependabot on the same vulnerable
dependency (which probably included this security update),
the information of this exposure did not reach the developers
through the means of the package-level tool.

Statement 2: I was convinced by the provided method call
data that the vulnerability indeed affects my project.

Project #1 has strongly agreed with the statement posed.
The provided fine-grained data, consisting of more than 10
method calls between their project and the vulnerable de-
pendency functions has thus contributed to their fast deci-
sion of merging the PR within 10 minutes. Moreover, #2 has
also agreed with this statement. Even though this repository
did not merge the PR, the given information (consisting of 1
method call) has persuaded them into giving attention to the
exposure (which was shown by their action of labeling the PR
within 1 day to elicit extra consideration from other develop-
ers).

Statement 3: I plan on merging the PR in the near future.
Both projects have responded positively to this state-

ment. Project #1 confirmed this statement with their actions,
whereas #2 still had the PR in an open state. The main rea-
son why they did not merge is that the bumped version of the
vulnerable dependency in the created PR was not backwards
compatible with their source code. This version was a minor
release in the same major as the previous one, but updating
caused several tests to fail during the Continuous Integration
(CI) pipeline run. This means that extra developer effort is
required in order to identify, locate and fix the reasons why
the tests break. However, the developers of this repository
indicated their will to resolve the issues and merge the PR in
the near future.

Statement 4: The provided method call information has
made my process of dealing with the vulnerable dependency
easier (when comparing with past experience).

Repository #1 strongly agreed with the statement. It can
be noted that using the provided data, they were able to locate

the vulnerability points of impact in their source code. Note-
worthy to mention is that this project did not use any depen-
dency management tool in the past and thus the maintenance
process has been done on a manual basis (with a history of 7
PRs related to package uplifts/downlifts). On the other hand,
#2’s response was neutral, arguing that the provided infor-
mation did not have any effect on facilitating their vulnera-
bility fix process. This repository did use Dependabot and
could thus provide a comparison between fixing exposures
with help from package-level and from method-level data re-
spectively.
Statement 5: I have given priority to the task of fixing the
vulnerability over other project tasks that are yet to be com-
pleted.

The two repositories responded Yes to this statement.
Based on the fact that both projects have been convinced by
the provided information that their repositories are at risk, it
can be said that incorporating this type of data in the PRs has
had an effect on them prioritizing the process of fixing the
vulnerability.

Statement 6: I would like the idea to receive this kind of
method information in future vulnerable dependency Pull Re-
quest descriptions.

Developers of #1 and #2 indicated their interest in receiv-
ing this type of data in future security related PRs. This likely
means that they find the provided information useful, believ-
ing that having it at their disposal could provide aidance in
fixing the vulnerabilities.

Summary of RQ: Although not having enough col-
lected data at the moment to be conclusive, it has
been observed that providing the developers the set
of method calls between their projects and vulnera-
ble dependencies makes them prioritize the task of
fixing vulnerabilities. Moreover, developers indicate
that their security fix process is to an extent facilitated
by the provided data.

5 Responsible Research
In this study, developers of projects containing vulnerable de-
pendencies are notified of the exposures found in their re-



liances. These vulnerabilities are already publicly disclosed
for the dependency project and have had patching versions
deployed. As a result, each found vulnerability is not novel
(a published CVE for it exists) and it could have been discov-
ered by any dependency maintenance tool running against the
project or by any interested individual.

The main intention of advising the developers is to improve
the safety and stability of the source code of their repositories,
by opening Pull Requests that fix the vulnerabilities. Along
with the benefits of the project, the users also have to gain
from having an overall safer user experience. For example,
the affected project could have stored sensitive user creden-
tials or data with the help of the vulnerable dependency. In
this case, the exposure would have had an impact on handling
sensitive user data and providing a fix for it would have thus
been critical.

In addition, the data collected through the surveys has been
processed and displayed in a completely anonymous manner
in the paper. No references in this report have been made to
the affected repositories, as they have been assigned a unique
number that was used as a label. This eliminates the threat of
disseminating the project vulnerabilities to the public.

The methodology described in Section 3 clearly lays out
the steps that have been taken in order to conduct this study,
along with the main motivations behind each. The FASTEN
Project database has been used as a data source for finding
the project selection set and the vulnerable packages to look
for as dependencies. The extraction process of these has been
explained in Section 4.

Furthermore, analysing the selected projects on the pack-
age and method levels constitutes a large part of the study. To
accomplish this, an analyzer has been implemented. A dia-
gram depicting a high level overview of the system, as well
as detailed implementation aspects of this analyzer have been
given in the Experimental Setup Section. Moreover, this an-
alyzer makes use of the OPAL plugin and of the Dependabot
Script, which are both open-source projects available for use.

It is important to note that future studies employing the
methodology described in this paper will most probably not
work with the same set of projects. This is because the
used repositories were extracted from the FASTEN database,
which is constantly being updated. Besides this aspect, the
methodology will work equally well on a different set of re-
trieved projects.

6 Discussion
The provided method-level information has been observed to
have a positive effect on the developers’ prioritization and
facilitation of fixing vulnerabilities. Observations were made
with aid from collected survey data and comparisons between
recorded PR merge times and past dependency related PRs
statistics. However, a couple more associations can be listed
out between the metrics that were previously presented.

Firstly, projects #2, #3 and #4 have a lower ratio of merged
dependency related PRs than #1. These are all projects hav-
ing their recorded PR merging time greater than or equal to
their computed past average and median times. Similarly, a
correlation between the high ratio of merged dependency PRs

and the vulnerability fix prioritization can be observed for #1.
Furthermore, the merging times could be differentiated

upon the vulnerability severity type affecting the projects.
Repositories #1 and #3, which both merged the PRs within
1 day, were affected by a CRITICAL level vulnerability. In
contrast, the remaining repositories were at risk due to an ex-
posure marked as HIGH, incurring longer merge times. This
finding contrasts with the observations of Alfadel et al. [35],
which found that Dependabot PR merging times were not
affected by vulnerability severity level. As such, there is a
possibility that the provided extra method-level information
makes the developers more conscientious towards the risk im-
posed by a vulnerability, as they can see that their projects are
actually affected.

Interestingly, based on the collected data until this moment,
no correlation between project popularity and security fix pri-
oritization has been recorded. Neither did the number of con-
tributors of a repository play a role in the fast merge times.

Only 12% of the developers have merged the PRs until this
time. For the rest of the repositories, the factors that could
have contributed to the lack of reactions have been analyzed.
As a result, the following motives have been identified:

1. Development activity follows an irregular trend. All
notified repositories are part of Open Source Software.
A study on commit frequency distribution in OSS [36]
revealed that the 95th percentile of median time inter-
val between 2 commits of the same author is 51.4 days.
This indicates that development activity often times goes
through larger pauses in these types of projects.

2. Developers did not react to Dependabot PRs. It has
been observed that many of the notified repositories have
older Dependabot PRs that are still in an open state. In-
terestingly, some of these are even opened to update the
vulnerable dependency found by this study.

3. Automated PR checks following dependency uplift
were not successful. Part of the projects have experi-
enced build failures following the dependency version
uplifts (due to backwards compatibility issues). As a re-
sult, overhead is likely incurred in these repositories, as
extra developer effort is required in identifying and fix-
ing the failures. This effort in testing a new version of
a dependency has been linked to cause maintainers trou-
bles in updating to it [37].

4. Bumped dependency version is not compatible with
the project requirements. A project having an older
Dependabot PR that uplifted the dependency found vul-
nerable also by this study was closed because of the
bumped version’s functional incompatibility with the
project’s requirements. The following comment was left
by one of the developers in the closed PR: ”This is in-
compatible with our encoding requirements”.

7 Conclusions and Future Work
This paper presented a qualitative study on how developers
react to method-level information provided in GitHub Pull
Request descriptions. Important factors that were analyzed
were the effects of this type of data on the developers’ priori-



tization and facilitation of the vulnerability fix process in the
scope of their affected repositories.

Concretely, 24 projects were notified through Pull Re-
quests of the exposures found in their source code, out of
which 4 reacted (3 merging them and 1 labeling it). Devel-
oper behaviour data was then collected through surveys. In
total 2 developers have filled in the provided survey. These
were maintainers of a project which merged the Pull Request
within 1 day and of a repository that labeled the Pull Request
and indicated their will of merging it in the near future.

Examining the background of the repositories that re-
sponded and analysing their answers, it has been observed
that the provided method-level data has had a positive effect
on the prioritization of fixing vulnerabilities in their repos-
itories. Moreover, the maintainers have found the provided
data useful, mentioning that they would be interested in re-
ceiving this type of information in future security related Pull
Requests. It has also been observed that the fine-grained data
has facilitated the developers’ exposure fix process to a cer-
tain degree.

Important to note is that insufficient data has been col-
lected, making it hard to support the observations and be
conclusive. Nonetheless, it is expected that more results will
emerge in the near future from the currently non-responding
repositories. The lack of reactions is assumed to be caused by
all target projects being part of Open-Source Software, which
typically have developers that contribute and monitor projects
sporadically.

A study improvement would be to expand the set of target
projects. Enlarging the set would give the possibility to scan
more repositories for vulnerabilities, which in turn would lead
to finding more affected projects that can be ultimately noti-
fied. Furthermore, a more reliable metric for labeling projects
as active could be used. This study has used the last update
date of a repository (not older than 4 months) as a distinguish-
able factor. A better suggested metric would be the commit
frequency distribution of a repository, as it covers the overall
development activity trend.

Future work can expand on the foundations laid by the ob-
servations discovered through this study. By means of gath-
ering more developer responses regarding their reactions to
fine-grained data provided in GitHub Pull Requests, definitive
conclusions will be reached with respect to the prioritization
and facilitation of fixing vulnerabilities through method-level
data aidance.



References
[1] R. Cox, “Surviving Software Dependencies,” Commun.

ACM, vol. 62, no. 9, p. 36–43, Aug. 2019. [Online].
Available: https://doi.org/10.1145/3347446

[2] T. LaToza, G. Venolia, and R. Deline, “Maintaining
mental models: A study of developer work habits,” vol.
2006, 01 2006, pp. 492–501.

[3] V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing
of Security Vulnerabilities in Open Source Projects: A
Case Study of Apache HTTP Server and Apache Tom-
cat,” 11 2019.

[4] J. Hejderup, A. v. Deursen, and G. Gousios, “Software
Ecosystem Call Graph for Dependency Management,”
in 2018 IEEE/ACM 40th International Conference on
Software Engineering: New Ideas and Emerging Tech-
nologies Results (ICSE-NIER), May 2018, pp. 101–104.

[5] “Dependabot,” Accessed on: Jun. 21, 2021. [Online].
Available: https://dependabot.com/

[6] D.-L. Vu, A Qualitative Study of Dependency Manage-
ment and Its Security Implications (To be appear in
ACM CCS 2020), 08 2020.

[7] P. Boldi and G. Gousios, “Fine-Grained Network
Analysis for Modern Software Ecosystems,” ACM
Transactions on Internet Technology, vol. 21, no. 1,
pp. 1:1–1:14, Dec. 2020. [Online]. Available: http:
//doi.org/10.1145/3418209

[8] S. Foster, “Vulnerabilities Definition: Top 10 Software
Vulnerabilities,” Jul. 2020, Accessed on: Jun. 21,
2021. [Online]. Available: https://www.perforce.com/
blog/kw/common-software-vulnerabilities

[9] GitHub Docs, “About coordinated disclo-
sure of security vulnerabilities,” Accessed
on: Jun. 21, 2021. [Online]. Available:
https://docs.github.com/en/code-security/security-
advisories/about-coordinated-disclosure-of-security-
vulnerabilities#about-disclosing-vulnerabilities-in-the-
industry

[10] National Vulnerability Database, “General Informa-
tion,” Accessed on: Jun. 21, 2021. [Online]. Available:
https://nvd.nist.gov/general

[11] GitHub Docs, “About github security advi-
sories,” Accessed on: Jun. 21, 2021. [Online].
Available: https://docs.github.com/en/code-security/
security-advisories/about-github-security-advisories

[12] npm, “npm Security Advisory,” Accessed on: Jun.
21, 2021. [Online]. Available: https://www.npmjs.com/
advisories

[13] A. T. Tunggal, “What is CVE? Common Vulnerabilities
and Exposures Explained,” Mar. 2021, Accessed
on: Jun. 21, 2021. [Online]. Available: https:
//www.upguard.com/blog/cve

[14] National Vulnerability Database, “Common Vulnerabil-
ity Scoring System,” Accessed on: Jun. 21, 2021. [On-
line]. Available: https://nvd.nist.gov/vuln-metrics/cvss

[15] GitHub Docs, “About Dependabot security updates,”
Accessed on: Jun. 21, 2021. [Online]. Avail-
able: https://docs.github.com/en/code-security/supply-
chain-security/managing-vulnerabilities-in-your-
projects-dependencies/about-dependabot-security-
updates#about-dependabot-security-updates

[16] FASTEN Project, “Fasten Project,” Jun. 2021, Accessed
on: Jun. 21, 2021. [Online]. Available: https:
//www.fasten-project.eu/view/Main/

[17] “What is a Maven Repository?” Ac-
cessed on: Jun. 21, 2021. [Online]. Avail-
able: https://www.tutorialspoint.com/maven/maven
repositories.htm

[18] Apache Maven Project, “Welcome to Apache Maven,”
Jun. 2021, Accessed on: Jun. 21, 2021. [Online].
Available: https://maven.apache.org/

[19] “Gradle Build Tool,” Accessed on: Jun. 21, 2021.
[Online]. Available: https://gradle.org/

[20] Apache Maven Project, “Introduction to the POM,”
Jun. 2021, Accessed on: Jun. 21, 2021. [Online]. Avail-
able: https://maven.apache.org/guides/introduction/
introduction-to-the-pom.html#what-is-a-pom

[21] S. McLeod, “Likert Scale Definition, Examples and
Analysis,” 2019, Accessed on: Jun. 21, 2021. [Online].
Available: https://www.simplypsychology.org/likert-
scale.html

[22] M. Sokolov, “Metadata Database Schema,” Feb.
2021, Accessed on: Jun. 21, 2021. [On-
line]. Available: https://github.com/fasten-project/
fasten/wiki/Metadata-Database-Schema

[23] E. Lanzini, “Vulnerability Analyzer,” Mar. 2021,
Accessed on: Jun. 21, 2021. [Online]. Avail-
able: https://github.com/fasten-project/fasten/wiki/
Vulnerability-Analyzer

[24] ——, “Vulnerability Object Definition,” Mar. 2021,
Accessed on: Jun. 21, 2021. [Online]. Avail-
able: https://github.com/fasten-project/fasten/wiki/
Vulnerability-Analyzer#vulnerability-object-definition

[25] “Package URLs,” Accessed on: Jun. 21, 2021.
[Online]. Available: https://github.com/package-url/
purl-spec#readme

[26] Dependabot, “Dependabot Script,” Accessed on: Jun.
21, 2021. [Online]. Available: https://github.com/
dependabot/dependabot-script

[27] “What is a JAR file?” Accessed on: Jun. 21,
2021. [Online]. Available: https://docs.fileformat.com/
programming/jar/#what-is-a-jar-file

[28] FASTEN Project, “JavaCG-OPAL,” Accessed on: Jun.
21, 2021. [Online]. Available: https://github.com/
fasten-project/fasten/tree/develop/analyzer/javacg-opal

[29] B. Holland, “Call Graph Construction Algorithms
Explained,” Mar. 2016, Accessed on: Jun. 21,
2021. [Online]. Available: https://ben-holland.com/
call-graph-construction-algorithms-explained/

https://doi.org/10.1145/3347446
https://dependabot.com/
http://doi.org/10.1145/3418209
http://doi.org/10.1145/3418209
https://www.perforce.com/blog/kw/common-software-vulnerabilities
https://www.perforce.com/blog/kw/common-software-vulnerabilities
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://nvd.nist.gov/general
https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories
https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories
https://www.npmjs.com/advisories
https://www.npmjs.com/advisories
https://www.upguard.com/blog/cve
https://www.upguard.com/blog/cve
https://nvd.nist.gov/vuln-metrics/cvss
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/about-dependabot-security-updates#about-dependabot-security-updates
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/about-dependabot-security-updates#about-dependabot-security-updates
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/about-dependabot-security-updates#about-dependabot-security-updates
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/about-dependabot-security-updates#about-dependabot-security-updates
https://www.fasten-project.eu/view/Main/
https://www.fasten-project.eu/view/Main/
https://www.tutorialspoint.com/maven/maven_repositories.htm
https://www.tutorialspoint.com/maven/maven_repositories.htm
https://maven.apache.org/
https://gradle.org/
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html#what-is-a-pom
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html#what-is-a-pom
https://www.simplypsychology.org/likert-scale.html
https://www.simplypsychology.org/likert-scale.html
https://github.com/fasten-project/fasten/wiki/Metadata-Database-Schema
https://github.com/fasten-project/fasten/wiki/Metadata-Database-Schema
https://github.com/fasten-project/fasten/wiki/Vulnerability-Analyzer
https://github.com/fasten-project/fasten/wiki/Vulnerability-Analyzer
https://github.com/fasten-project/fasten/wiki/Vulnerability-Analyzer#vulnerability-object-definition
https://github.com/fasten-project/fasten/wiki/Vulnerability-Analyzer#vulnerability-object-definition
https://github.com/package-url/purl-spec#readme
https://github.com/package-url/purl-spec#readme
https://github.com/dependabot/dependabot-script
https://github.com/dependabot/dependabot-script
https://docs.fileformat.com/programming/jar/#what-is-a-jar-file
https://docs.fileformat.com/programming/jar/#what-is-a-jar-file
https://github.com/fasten-project/fasten/tree/develop/analyzer/javacg-opal
https://github.com/fasten-project/fasten/tree/develop/analyzer/javacg-opal
https://ben-holland.com/call-graph-construction-algorithms-explained/
https://ben-holland.com/call-graph-construction-algorithms-explained/


[30] “Breadth First Search or BFS for a Graph,” Dec.
2020, Accessed on: Jun. 21, 2021. [Online].
Available: https://www.geeksforgeeks.org/breadth-
first-search-or-bfs-for-a-graph/

[31] National Vulnerability Database, “CVE-2019-14379
Detail,” Accessed on: Jun. 21, 2021. [Online].
Available: https://nvd.nist.gov/vuln/detail/cve-2019-
14379

[32] “HTTPCLIENT-1803: Malformed path not han-
dled well,” Accessed on: Jun. 21, 2021. [On-
line]. Available: https://issues.apache.org/jira/browse/
HTTPCLIENT-1803

[33] National Vulnerability Database, “CVE-2017-9096
Detail,” Accessed on: Jun. 21, 2021. [Online].
Available: https://nvd.nist.gov/vuln/detail/CVE-2017-
9096

[34] ——, “CVE-2016-6797 Detail,” Accessed on: Jun.
21, 2021. [Online]. Available: https://nvd.nist.gov/vuln/
detail/CVE-2016-6797

[35] M. Alfadel, D. Costa, E. Shihab, and M. Mkhallalati,
“On the Use of Dependabot Security Pull Requests,” 02
2021.

[36] C. Kolassa, D. Riehle, and M. Salim, “The Empir-
ical Commit Frequency Distribution of Open Source
Projects,” Proceedings of the 9th International Sym-
posium on Open Collaboration, WikiSym + OpenSym
2013, 08 2014.

[37] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser,
“Measuring Dependency Freshness in Software Sys-
tems,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2, 2015, pp.
109–118.

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://nvd.nist.gov/vuln/detail/cve-2019-14379
https://nvd.nist.gov/vuln/detail/cve-2019-14379
https://issues.apache.org/jira/browse/HTTPCLIENT-1803
https://issues.apache.org/jira/browse/HTTPCLIENT-1803
https://nvd.nist.gov/vuln/detail/CVE-2017-9096
https://nvd.nist.gov/vuln/detail/CVE-2017-9096
https://nvd.nist.gov/vuln/detail/CVE-2016-6797
https://nvd.nist.gov/vuln/detail/CVE-2016-6797

	Introduction
	Research Background
	Methodology
	Project Selection
	Vulnerability Information Retrieval
	Package-level Analysis
	Method-level Analysis
	Opening Pull Requests
	Collecting and Processing Developer Responses

	Experimental Setup and Results
	Project Selection Query
	Vulnerability Information Retrieval
	Analyzer Implementation
	Scraping GitHub's API and Downloading Repository
	Dependency File Vulnerability Check
	Packaging the Repository
	Generating Call Graphs
	Graph Path Inspection

	Running the Analyzer and Verifying Results
	Pull Request Template
	Results

	Responsible Research
	Discussion
	Conclusions and Future Work

