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Abstract
Measurements with variable system–detector interaction strength, ranging fromweak to strong, have
been recently reported in a number of electronic nanosystems. In several such instancesmany-body
effects play a significant role. Herewe consider theweak-to-strong crossover for a setup consisting of
an electronicMach–Zehnder interferometer, where a second interferometer is employed as a detector.
In the context of a conditional which-path protocol, we define a generalized conditional value (GCV),
and determine its full crossover between the regimes of weak and strong (projective)measurement.
Wefind that theGCVhas an oscillatory dependence on the system–detector interaction strength.
These oscillations are a genuinemany-body effect, and can be experimentally observed through the
voltage dependence of cross current correlations.

1. Introduction

Measurement in quantummechanics is inseparable from the dynamics of the system involved. The formal
framework to describe quantummeasurement, introduced by vonNeumann [1], allows to consider two limits:
in the limit of strong system (S)–detector (D) coupling, the detector’sfinal states are orthogonal. This is
associatedwith the evasive notion of quantum collapse. In the other limit, that of weak (continuous)
measurement of an observable (reflectingweak coupling between S andD [2]), the system is disturbed in a
minimal way, and only partial information on the state of the latter is provided [3].We note that this hindrance
can be overcome, by resorting to a large number of repeatedmeasurement (or a large ensemble of replica on
which the sameweakmeasurement is carried out).

Weakmeasurements, due to their vanishing back-action, can be exploited for quantum feedback schemes
[4, 5] and conditionalmeasurements. The latter is especially interesting for a two-stepmeasurement protocol
(whose outcome is calledweak value (WV) [6]), which consists of a weakmeasurement (of the observable Â),
followed by a strong one (of B̂), A B, 0.¹[ ˆ ˆ] The outcome of thefirst is conditional on the result of the second
(postselection).WVs have been observed in experiments [7–12]. Their unusual expectation values [6, 13–15]
may be utilized for various purposes, includingweak signal amplification [16–23], quantum state discrimination
[24–26], and non-collapsing observation of virtual states [27]. The particular features ofWVs rely onweak
measurement, and arewashed out in projectivemeasurements. Understanding the relation and the crossover
between these two tenets of quantummechanics is therefore an important issue on the conceptual level.

TheWVprotocol perfectly highlights the difference betweenweak and strong (projective)measurements,
thus providing a platform to study the crossover between the two. Indeed, within the two-stepmeasurement
protocol, it is possible to control the strength of the firstmeasurement. This allows to define a generalized
conditional value (GCV), interpolating betweenWVand (strong value) (SV). The latter, in similitude toWV,
refers to a two-stepmeasurement protocol. UnlikeWV, in a SV protocol both steps consist of a strong
measurement. Themathematical expression for GCV is depicted below in equation (1). It amounts to the
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average of thefirstmeasurement’s reading (whatever its strength is), conditional on the outcome of the second
measurement. This has been studied in the context of single-degree-of-freedom systems [28–31], where the
WV-to-SV crossover is quite straightforward and is a smooth function of the interaction strength.We note that
in experiments with electron nanostructures, interactions between electrons play a crucial role. Amany-body
theory of variable strength quantummeasurement is called for. Inmany cases, the interaction strength can be
controlled experimentally [10, 32].

In this letter, we demonstrate theoretically that interactions canmodify this weak-to-strong crossover in a
qualitative way, in particular,making it an oscillating function of the interaction strength. Conversely, these
oscillations serve as a smoking gunmanifestation of themany-body nature of the system at hand, and present
guidelines for observing them as function of experimentallymore accessible variables (e.g. the voltage bias). Our
analysis sheds light on the relation between two seemingly very different descriptions of quantummeasurement,
with emphasis on the context ofmany-body physics.

Motivated by the two stepWVprotocol, we define the (GCV) of the operator Â as an average shift of the
detector, q q q ,g 0d = - á ñ =ˆ ˆ ˆ ∣ during themeasurement process, projected onto a postselected subspace by the
projection operator, ,fP and normalized by the bare S–D interaction strength, g. TheGCV is given by

A
qU U

g U U

Tr

Tr
, 1

f

f

GCV
0

0

d r

r
á ñ =

P
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ˆ { ˆ ˆ ˆ }
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†

†

where ρ0 is the total densitymatrix which describes the initial state of S andD, and the time ordered operator

U e tdi SD

  ò= -
-¥

¥

ˆ describes the evolution in time of thewhole setup during themeasurement. Here, the
system–detector coupling, gw t pA,SD = - ( ) ˆ ˆ withw(t)—the timewindowof themeasurement; q̂ and p̂ are
the ‘position’ and ‘momentum’ operators of the detector ( q p, i=[ ˆ ˆ] ).We note that equation (1) provides the
correctWV [6] and SV [33] in the respective limits (g 1, g 1 ). Our approach here is in full agreementwith
earlier analyses of quantummeasurement in the context of single particle systems [28–31].

Our specific setup is depicted infigure 1. It consists of twoMach–Zehnder interferometers (MZIs), the
‘system’ and the ‘detector’ respectively, that are electrostatically coupled [32, 34]. It is possible to tune the
respective Aharonov–Bohm fluxes, SF and DF independently [32].

2. A two-particle analysis

As a prelude to our analysis of a truly interactingmany-body system, we briefly present an analysis of the same
systemon the level of a single particle in the system, interactingwith a single particle in the detector. According
to this (over)simplified picture, particles going simultaneously through the interacting arms 2 and 3 (see
figure 1), gain an extra phase eig [35, 36], where γ takes values in the range 0, .p[ ] First, we consider the intra-
MZI operators, defined in a two-state single particle space, m ,ñ{∣ } withm= 1, 2 for the ‘system’ (an electron
propagating in arm1 or 2) and similarlym= 3, 4 for the ‘detector’. The dimensionless charge operator
(measuring the charge between the corresponding quantumpoint contacts (QPCs)), in this basis has a form

Q m m .m = ñá∣ ∣ The transition through the pthQPC is described by the scatteringmatrix
r t

t r
,p

p p

p p

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟*

 =
-

Figure 1.TwoMZIs, the ‘system’ and the ‘detector’, coupled through an electrostatic interaction (wiggly lines). The sources S1 and S4
are biased by voltageV and the sources S2 and S3 are grounded. SF and DF are themagnetic fluxes through the respectiveMZIs. The
lengths of the arms 1 and 2 between SQPC1 and SQPC2 are La and L, respectively, and similarly for the detector’s arms 3 and 4, as is
shown in thefigure. In the present analysis 1.a =

2
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p 1 , 2 , 1 , 2s s d d= [37]. The entries rp and tp encompass information about the respective Aharonov–Bohmflux
and for p 2 , 2 ,s d= about the orbital phase gained between the twoQPCs. The dimensionless current operators

at the source S S1, 2( ) and the drain D D1, 2( ) terminals of the system-MZI are given by I QSm m1 1s s
 = † and

I QDm m2 2s s
 = † respectively, with m 1, 2,= and similarly for the detector withm= 3, 4 and employing the

matrices 1d
 and .2d


In view of equation (1), the initial state of the setup, which is described by the injection of two particles into

terminals S1 and S4 respectively, can bewritten as the densitymatrix I I0 S1 S4r = Ä operating in the two-particle
product space, m nñ Ä ñ∣ ∣ (m 1, 2,= n= 3, 4). The corresponding dynamics is that of two particles propagating
simultaneously through armsm and n. The interaction between the particles is described by the operator
U e .Q Qi 2 3= g Äˆ Apositive reading of the projectivemeasurement consists of the detection of a particle at D2, and
is described by the projection operator I .f D2P = Ä  The detector reads the current at D3 ( qd of equation (1)
corresponds to ID3dÄ ). Plugging these quantities into equation (1) yields an expression for the two-particle
GCV (see appendix A)

Q
I I

I
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I I

I2 GCV
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d
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dá ñ =
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= á ñ + áá ññ

á ñ( ) ( )

The averages are calculatedwith respect to the total densitymatrix after themeasurement,
O OU UTr .0rá ñ =ˆ { ˆ ˆ ˆ }†

Wehave defined I I I ,D3 D3 D3 0d - á ñ g= ∣ and I I I I I ID2 D3 D2 D3 D2 D3áá ññ á ñ - á ñá ñ is the
irreducible current–current correlator. A straightforward calculation (see appendix B) yields
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where O OTr0 0rá ñ ˆ { ˆ } is an averagewith respect to the non-interacting setup, I QD3 3dá ñ
I Q I QD3 3 0 D3 0 3 0á ñ - á ñ á ñ and Q I Q Q I Q I Q .3 D3 3 3 D3 3 0 D3 0 3

2
0dá ñ á ñ - á ñ á ñ This result shows a smooth and

trivial crossover between theweak ( 0g  ) and strong (g p ) limits. The specific formdepends on the
parameters of S andD (themagnitude of the inter-edge tunneling; the value of the Aharonov–Bohmflux). For
some range of values (e.g., t t t t 0.1,1 2 1 2s s d d

= = = = 0.99 ,S 0 pF F = 0DF = ) the function is non-monotonic
(but non-oscillatory), while for other values it ismonotonic.

Figure 2.The relevant Feynman–Keldysh diagrams for the quantities in equations (7) and (8) to leading order in tunnelingmatrix
elements. ‘Semi-classical’ paths of the particles aremarked by solid lines (red) and dashed lines (blue), corresponding to forward and
backward propagation in time (see equation (10)). (a)The average current (equation (7)), O .2G( ) Only the systempart of the setup (see
figure 1), while all degrees of freedomof the detector part have been integrated out. (b)The reducible current–current correlator
(equation (8)), O .4G( ) Only the twomost contributing diagrams out of 16 are shown (fourwere included in calculations).

3
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3. A fullmany-body analysis

TheHamiltonian S D SD   = + + describes the system, the detector, and their interaction. The system’s
Hamiltonian consists of ,T

S
0
S S

int
S   = + + with

v x x x ai d : , 4
m

m m m x m m0
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1

2

m òå= - Y ¶ Y
=

( ) ( ) ( )†

x x x x bh. c., 4T
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1 1 1
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2 2
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2 1 1
2

2 2
2

s
s s

s
s s = G Y Y + G Y Y +( ) ( ) ( ) ( ) ( )† †

g x x x cd : : . 4
m

m m m m mint
S

1

2
2 òå= Y Y

=
 ( ( ) ( )) ( )†

HereΓp is the tunneling amplitude atQPC p and xm
p is the coordinate atQPC p on armm. A similar expression

holds for the ‘detector’MZI, S D, with a summation over the chiral arms m 3, 4.= Wenext assume that the
lengths of the interacting arms are equal, x x x x .2

2
2
1

3
2

3
1s s d d- = - The S–D interactionHamiltonian is

g x x x x x x x xd d : :: : , 5SD
2 3 2 3 2 2 2 2 3 3 3 3 ò ò d= - Y Y Y Y^ ( ) ( ) ( ) ( ) ( ) ( )† †

where the normal orderingwith respect to the equilibrium (no voltage bias) state is defined
as : : 0 0Y Y Y Y - á Y Y ñ ∣ ∣† † † .

We are now at the position to construct theGCV for the actualmany-body setup.We employ equation (2) to
define themany-bodyGCVofQ2

Q
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g
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where the current operator is given by, I x t v x t x t, e : , , : .F= Y Y( ) ( ) ( )† Weaverage over time .L

vF
t  The

problem is now reduced to the calculation of average currents and a current–current correlator. This is done
perturbatively in the tunneling strength, but at arbitrary interaction parameter, employing theKeldysh
formalism. In this limit expectation values are takenwith respect to tunneling decoupled edge states. The current
is,
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and the irreducible current–current correlator (see appendix C)
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Here ...{ } reproduces thefirst part of the rhs, with 2w  p
t

¯ replaced by ,2w  - p
t

¯ the summation is over

p q, 1 , 2 ,s s= ( ) r s, 1 , 2d d= ( ) and repeating indices; 1 0
0 1

clg =
-( )ˆ and 1 0

0 1
qg = ( )ˆ are theKeldysh ĝ

matrices.Gm is the fermionic propagator on themth arm (see equation (10)), and

M M G G, , . 92 3 2 3 2 2 3 3w w w w w w¢ -˜ ( ) ˜ ( ) ( ) ( ) ( )
Here M r r r r r r r r, , ,4 3 2 1 3, 4 3, 3 2, 2 2, 1- á Y Y Y Y ñdgba d g b a˜ ( ) ( ) ¯ ( ) ( ) ¯ ( ) is the collisionmatrix of two electrons in
arms 2 and 3 (see appendixD).

The expressions for the expectation values of equations (7) and (8) can be represented diagrammatically in
terms of the contributing processes. In these Feynman–Keldysh diagrams, each line corresponds to a propagator
G (see equation (10)), and the vertices represent tunneling. The diagrams (to leading order in tunnelingmatrix
elements) are depicted infigure 2. There are 16 diagrams contributing to the irreducible current–current
correlator. The leading diagrams (figure 2(b)) correspond to an electron in the system (going through arm2) that
maximally interacts with an electron in the detector (going through arm3)5.

5
For these diagrams the time of the two particles being inside the interaction region ismaximal; the other diagrams are almost reducible (i.e.,

decoupled from each other), and are thus neglected.

4
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Explicit evaluation ofGCV requires the calculation of the single electronGm and the collisionmatrix6 M̃ .
Wefirst compute the propagators on arms 2 (G2) and 3 (G3), where both the inter- and the intra-channel
interaction is present. This yields

G x
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,
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2
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where , 1a b =  are theKeldysh indices (in forward/backward basis), x andω are the distance traveled by and
the energy of the particle, andT is the temperature.We define the renormalized interaction

,
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w = w( )( ) xQ( ) is theHeaviside function, ,2
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( )

and A s, .A

A s A ssinh 1 sinh 1
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p p- +
( )

[ ( )] [ ( )]
The propagators in channels 1 (G1) and 4 (G4) are obtained by substituting g 0=^ in equation (10). This result

recovers the simple non-interactingGreen functionwith a renormalized velocity u vF
g2

= +
p
 due to intra-

channel interaction. Themaximal interaction between channel 2 and 3 is at g u
2

=p
^ (instability point). Similarly

to the two-particle analysis, here too the SV limit is reached at afinite value of the inter-channel interaction.

4. Results

Plugging equations (10) and equation (D.14) to equations (7) and (8), we obtain thefinal expression for theGCV
in equation (6). The result is depicted infigure 3.We identify a high temperature regime, k TFL B t  ( FLt is the
time offlight through the interacting armofMZI, L

uFLt = ), where theGCV is exponentially suppressed by the

factor e
k TFL B
-t

due to averaging over an energywindow T .~ In the opposite, low temperature limit, the phase
diagram shows novel oscillatory behavior.We plot the phase diagramofGCV in a parameter space spanned by
the applied voltage normalized by the temperature eV k TB( ) and the renormalized interaction strength (λ) (see
figure 3). In the low voltage limit (eV k TB ) the size of the injectedwave function is large comparedwith L. In
this limit interaction effects should be less significant. Theweak-to-strong crossover is smooth in similitude to
the two particle result (see equation (3)). For eV k T ,B> multiple particle interaction effects become important,
and three different regimes are obtained as function ofλ. Here, as function of increasing ,l oscillatory behavior

( J ,eV
0

FL


~ l t( ) where J0 is the 0th order Bessel function) of the crossover fromWV to SV is predicted. The

behavior of theGCV in the different regimes is summarized in a phase diagram infigure 3(a), alongwith the
dependence of theGCVon the interaction strength (figures 3(b)–(d)) and voltage bias (figure 3(e)).

5.Discussion

The oscillations found here and the physics of visibility lobes that was found experimentally [38] and studied
theoretically [39–41] in the context of coherent transport through aMZI, are both related to interaction effects
in an interferometry setup. To understand this similarity we employ a caricature semi-classical picture: a single
particle wave-packet, whose energy components are in the interval eV0, ,[ ] is injected into the systemMZI (arm
1 offigure 1). During its propagation through the interacting arm, its dynamics is affected byCoulomb
interactionwith the entire out-of-equilibriumFermi sea of electrons inside the interaction region of the detector
MZI (arm3 offigure 1), producing a phase shift of the systemswave-packet.When this single particle wave-
packet interacts with a single electron in the detector (see the discussion preceding equation (2)), its phase shift is
0 . g p If the detector ’s arm consists ofN electrons, a phase shift of Ng is produced, giving rise to
oscillations as function of the interaction strength orN.More qualitatively: the number of background non-
equilibrium electrons inside the detectorMZI, N LeV

u2
á ñ =

p
[39–41], splits into n and N ná ñ - in arms 3 and 4

respectively, with probability P n T R
N

n
,n N n

⎛
⎝⎜

⎞
⎠⎟=

á ñá ñ-( ) R r ,1
2

d
= ∣ ∣ T t .1

2
d

= ∣ ∣

Neglecting, for the sake of this caricature, time dependent quantumfluctuations in the number of particles
(we have treated those in full), the incremental addition to the (system)wave packet action due to an electron in

arm2 interactingwith n background electrons in arm3 is S n t n t t, d .
g

L t

t

0
0

0 FL

òD =
t+

^( ) ( ) Here t eV0,0 Î [ ] is

the injection time of an electronwave packet. The added phase to the single particle wave-function is:

6
As each channel is only slightly perturbed out of equilibrium,methods of equilibriumbosonizationmay be employed.

5
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e .Siy y D It follows that the current atD2 per a specific n is

I n t R T RT, 2 e e .e V

h
S n t

D2 0
2 2 2 i i ,

2 S
0 0Re= + + p DF

F( ){ }( ) · ( ) Themean current is a weighted average over all

n{ }and t0, leading to a lobe structure. For example, when N 1,á ñ  then S n ,
g n

L

FLD = t^( ) and the total current

is I R T RT D2 e ,e V

h
2 2 2 i i

2 S
0 DRe= + + p h+F

F( ){ }· where D R Te e ,i D
g N

L
i FL

= +h t^ á ñ
which is periodic in ĝ

with a period of .u

eV

2 2

FL

p
t
( ) Wecan repeat the same argument for the detectorMZI and obtain the same lobe

structure dependence there.
Measurements on setups consisting of two electrostatically coupledMZI have been reported [32], albeit not

in the context of the present work. Bymeans of external gates onemay control themagnitude of the coupling .l
More accessible experimentally would be tofix the distance between theMZIs and observe oscillations withV at
moderately low values of .l

The present analysis interpolates between two conceptually distinct views ofmeasurement in quantum
mechanics: the vonNeumann projection postulate, and the continuous time evolution in theweak system–

detector coupling limit. Admittedly these two views could be obtained as limiting cases of the same formalism.
The analysis presented here demonstrates that the interpolation between the two is non-trivial. Oscillatory
crossover is a unique feature of ourmany-body analysis. The setup chosen to demonstrate this SV-to-WV
crossover consists of two coupledMZIs (the ‘system’ and the ‘detector’).Measurements on such a setup have

Figure 3. (a)The phase diagram in the low temperature regime, k T .FL B t  Regionswith different qualitative behavior are depicted
by different colors. The transition betweenweak and strong values in the high-voltage regime goes through an intermediate phase
where theGCVdisplays oscillations as a function of the coupling constant. The latter feature is not present in the two-particle

treatment ofGCV (see equation (3)). (b) and (c)The normalizedGCV, ,
Q

e V h

MB2 GCV
2

á ñ
along the cuts A (eV k T 100B = ), B

(eV k T 0.001B = ) in (a). The zoom in (c)highlights the oscillatory behavior. (d)The oscillatory regime alongA for various
temperatures keeping eV 1.FL t = (e)The normalizedGCV along the cuts C (λ=10) andD ( 1000l = ) of (a)with a zoomon the
relevant oscillatory regime. All the plots are for 0.99 ,S 0 pF F = 0DF = at the low temperature phase, k T 0.01B FL t = except of
(d)where the temperatures are specified explicitly.
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been reported in the literature (see e.g., [32]), with a considerable latitude of controlling the system–detector
coupling.We conclude that our predictions are, then, within the realmof experimental verification.
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AppendixA.Derivation of the formula for two-particle GCV in terms of the irreducible
correlation function

Herewe present an extended derivation of equation (2). The two-particle GCVofQ2 is defined by,

Q
I I

I

I I I

I
. A.1TP

2 GCV
D2 D3

D2

D2 D3 D3 0

D2

d
g g

á ñ =
á ñ

á ñ
=

á - á ñ ñ
á ñ

( ) ( )

This can be rewritten as,

I I I I I I I I

I
A.2D2 D3 D2 D3 0 D2 D3 D2 D3

D2g
á ñá ñ - á ñá ñ + á ñ - á ñá ñ

á ñ
( )

which yields equation (2)

Q I
I I

I

1
. A.3TP

2 GCV D3
D2 D3

D2

⎛
⎝⎜

⎞
⎠⎟g

dá ñ = á ñ +
áá ññ

á ñ
( )

Appendix B. Strong-to-weak crossover of GCV for twoparticle system

Herewe present the derivation ofGCV for two particle system (i.e. equation (3)). In accordance with
equation (A.1)we compute the current–current correlator I ID2 D3á ñand the average current I ,D2á ñ definedwith
respect to the densitymatrix I Ie e ,Q Q

S S
Q Qi

1 4
i2 3 2 3r = Äg g-

I I I I I I

I I Q Q I I Q Q

Tr e e

Tr 1 e 1 1 e 1 , B.1

Q Q
S S

Q Q

S S

D2 D3 D2 D3
i

1 4
i

D2 D3
i

2 3 1 4
i

2 3

2 3 2 3á ñ =

= + - + -

g g

g g

-

-

{ }
{ ( ( ) ) ( ( ) )} ( )

where in the last stepwe employed Q Qe 1 e 1Q Q i
2 3

2 3 = + -g g( ) because the eigenvalues ofQi are only 0 or 1.
Then

I I I I

I Q I Q Q I Q Q I Q

I I
1

4 sin ie 4 sin
, B.2

D2 D3 D2 0 D3 0

2 D2 2 0 D3 3 0
2

2 2 D2 2 0 3 D3 3 0

D2 0 D3 0

i
2Re

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

á ñ = á ñ á ñ

´ +
á ñ á ñ + á ñ á ñ

á ñ á ñ

g gg{ }( ) ( )
( )

where 0áñ denotes averagewith respect to the noninteracting setup ( 0g  ). Similar calculation for ID2á ñyields

I I Q
I Q Q I Q

I
1

4 sin ie 4 sin
. B.3D2 D2 0 3 0

2 D2 2 0
2

2 2 D2 2 0

D2 0

i
2Re

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟á ñ = á ñ + á ñ

á ñ + á ñ

á ñ

g gg{ }( ) ( )
( )

Plugging equations (B.2) and (B.3) in equation (A.1) yields an expression for a two particle GCV

Q
I Q I Q Q I Q Q I Q

I I Q Q Q I Q Q

4 sin ie sin

4 sin ie 4 sin
. B.4TP

2 GCV
2 D2 2 0 D3 3 2 2 D2 2 0 3 D3 3

D2 0 2 D2 2 0 3 0
2

2 2 D2 2 0 3 0

i
2

i
2

Re

Reg

d d
á ñ =

á ñ á ñ + á ñ á ñ

á ñ + á ñ á ñ + á ñ á ñ

g g

g g

g

g

{ }
{ }

( ) ( )
( ) ( )

( )

In theweak limit ( 0g  ) this expression simplifies to

Q
I Q I Q

I
lim 2

i
B.5TP

0
2 GCV

D2 2 0 D3 3

D2 0

Re
⎧⎨⎩

⎫⎬⎭
d

á ñ =
á ñ á ñ

á ñg
( )
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and in the strong limit (g p )

Q
Q I Q Q I Q I Q I Q

I I Q Q Q I Q Q
lim

4

4 4
. B.6TP

2 GCV
2 D2 2 0 3 D3 3 D2 2 0 D3 3

D2 0 D2 2 0 3 0 2 D2 2 0 3 0

Re

Rep
d d

á ñ =
á ñ á ñ - á ñ á ñ

á ñ - á ñ á ñ + á ñ á ñg¥

{ }
{ }

( )

AppendixC. Perturbative calculation of expectation values

In this sectionwe derive the expression for expectation values of the current and the current–current correlator.
Employing a path integral formalism, a general formula for the expectation value of an operator O ,Y Yˆ [ ]† is

O
O

,
, , e

, e
, C.1

S

S

i ,

i ,

D

D

ò
ò

á Y Y ñ =
Y Y Y Y

Y Y

Y Y

Y Y
ˆ [ ]

[ ¯ ] ˆ [ ¯ ]

[ ¯ ]
( )†

[ ¯ ]

[ ¯ ]

where S S S S0 int T= + + is the full action over the Schwinger–Keldysh contourwith

S r r r G r r r, d d , C.2
m

m m m0
1

4

, ,
1

,òåY Y = ¢Y - ¢ Y ¢a ab b
=

-[ ¯ ] ¯ ( ) ( ) ( ) ( )

S r r g r, d C.3
m n

m mn
cl

nint
, 1

4

, ,òå r h rY Y = a ab b
=

[ ¯ ] ( ) ˆ ( ) ( )

and

S r r r r r r, d d , , C.4T
m n

m mn
cl

n
, 1

4

, ,òå gY Y = ¢Y G ¢ Y ¢a ab b
=

[ ¯ ] ¯ ( ) ( ) ˆ ( ) ( )

where ,a b are theKeldysh indices in forward/backward basis,m, n are thewire indices, r denotes the spacial
two-vector (r= (x, t)), r r rm m m, , ,r = Y Ya a a( ) ¯ ( ) ( ) is the density of the particles, clhabˆ is theKeldyshmatrix (see
table C2)

g

g

g g

g g

g

0 0 0

0 0

0 0

0 0 0

, C.5mn

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=

^

^









( )

r r

x x

x x

x x

x x

t t,

0 , 0 0

, 0 0 0

0 0 0 ,

0 0 , 0

C.6mn

s

s

d

d

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

*

*
dG ¢ =

G ¢

G ¢

G ¢

G ¢

- ¢( )

( )
( )

( )
( )

( ) ( )

and x x x x x x x x x x,s 1 1
1

2
1

2 1
2

2
2

s
s s

s
s sd d d dG ¢ = G - ¢ - + G - ¢ -( ) ( ) ( ) ( ) ( ) and x x,d 1d

dG ¢ = G( )
x x x x3

1
4
1

2
d d

d
d d- ¢ - + G( ) ( ) x x3

2d d-( ) x x .4
2d¢ -( ) G k,m,

1
wab

- ( ) is the inverse of the fermionic Green function

for particles whose dynamics is described by ,0
S

0
D + which in k, w( ) representation is given by [42]

G k
F

v k

F

v k
,

1

2 i i
. C.7m,

F F

⎡
⎣⎢

⎤
⎦⎥ 

w
w a

w
w b

w
=

+
- +

-
-

- -
ba ( ) ( ) ( ) ( )

Herewe assume the setupwas in thermal equilibriumwith a temperatureT (described by the fermionic

population function F tanh
T2

w = w( )( ) at the time t  -¥, when the tunneling ,G and the interaction gwere

adiabatically turned on. By assuming small tunneling the action can be expanded in power series to desired order
in ,G then equation (C.1) gets a form

O

O S

S
,

, i ,

i ,
, C.8n

n
n

n
n

n

1
T

1
T

å

å
á Y Y ñ =

á Y Y Y Y ñ

á Y Y ñ

W

W

ˆ [ ]

ˆ [ ¯ ]( [ ¯ ])

( [ ¯ ])
( )†

!

!

where áñW denotes averagingwith respect to the action S S .0 int+
The current in a chiral systemwith linear dispersion is linearly proportional to the density ( I evF rá ñ = á ñ).

The expectation value of the density is obtained byweakly perturbing the systemby a quantumpotential probe
Vq, which should be taken to zero at the end to restore causality [42]. Therefore, we obtain an expression for the
currentmeasured atDm (m 1, 2, 3, 4= ) (see figure 1)
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I x t
v

G x t x t,
ie

2
Tr , ; , ,Dm m

qF gá ñ = -( ) { ˜ ( ) ˆ }

where G x t x t x t x t, ; , i , ,m m m, , ,= - á Y Y ñba b a˜ ( ) ( ) ¯ ( ) is the fermionic Green function of the system (averaged
with respect to the full action, S) at point (x,t) of themth arm. The trace is over theKeldysh indices, where qĝ is
the Keldyshmatrix (see table C1 ). For the sake of simplicity we compute first I x t,D1á ñ( ) by expanding it to
second (leading) order in .G We then employ the current conservation tofind I ,D2á ñ
I x t I I x t, , ,DD2 0 1á ñ = - á ñ( ) ( ) where I V .e

h0
2

= To this order, particle tunnels twice.We employ equation (C.8)
to expand G̃ in SΓ. This yields

I x t
v

t t

G x x t t G x x t t G x x t t

,
ie

2
d d

, , , . C.9

p q

p q
p cl p q cl q

D2
F

1 2
, 1 ,2

1, 1 1 2, 1 2 1 2 1, 1 1

s s

*  

ò å

g g g

á ñ =

´ G G - - - - - -ab bg gd d z za

=

( )

{ ( ) ˆ ( ) ˆ ( ) ˆ } ( )
{ }

Here

G x t x t, i , 0, 0 C.10m m m, ,= - á Y Y ñba b a( ) ( ) ¯ ( ) ( )

is the fermionic Green function averagedwith respect to the interacting action, S S .0 int+ WeperformFourier
transformover the time variable to obtain

I x
v

G x x G x x G x x, 0
ie

2
, , , .

C.11
p q

p q
p cl p q cl q

D2
F d

2
, 1 ,2

1, 1 2, 1 2 1, 1

s s

*  ò å w g w g w gá ñ = G G - - -w
p ab bg gd d z za

=

( ) ( ) ˆ ( ) ˆ ( ) ˆ

( )
{ }

Tofind the current–current correlator, we generalize the last procedure, employing

I I I I ,D DD2 D3 1 4áá ññ = áá ññ to obtain

Table C1.A list of Keldysh gab
cˆ matrices (for fer-

mions) in different bases of bosonic (χ) indices and
fermionic indices ( ,a b ).

,a b

χ + -( ) (cl/q)

+ 1 0
0 0

g =ab
+ ( )ˆ 1 1

1 1
1

2
g =ab
+ ( )ˆ

− 0 0
0 1

g
-ab

- ( )ˆ 1 1
1 1

1

2
g = -

-ab
- ( )ˆ

cl 1 0
0 1

clg =
-ab ( )ˆ 1 0

0 1
clg =ab ( )ˆ

q 1 0
0 1

qg =ab ( )ˆ 0 1
1 0

qg =ab ( )ˆ

Table C2.A list of Keldysh hab
cˆ matrices (for bosons)

in different bases of bosonic ,c a and b indices.

,a b

χ + -( ) (cl/q)

+ 1 0
0 0

h =ab
+ ( )ˆ 1 1

1 1
1

2
h =ab
+ ( )ˆ

− 0 0
0 1

h
-ab

- ( )ˆ 1 1
1 1

1

2
h = -

-ab
- ( )ˆ

cl 1 0
0 1

clh =
-ab ( )ˆ 0 1

1 0
clh =ab ( )ˆ

q 1 0
0 1

qh =ab ( )ˆ 1 0
0 1

qh =ab ( )ˆ
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t I x t I x

v
t t t t t

G x x t t G x x t M x x x x t t t t

G x x t G x x t t
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d d d d d
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M r r r r r r r r, , , C.134 3 2 1 3, 4 3, 3 2, 2 2, 1-á Y Y Y Y ñdgba d g b a˜ ( ) ( ) ¯ ( ) ( ) ¯ ( ) ( )

is the collisionmatrix.We performFourier transformover the time differences, such thatω2 corresponds to
t t ,2 1- ω3 to t t4 3- and w̄ to t t t t .1

2 3 4
1

2 1 2+ - +( ) ( ) Finally, it yields
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t

t

t

t
w

ab bg hq qi ikgd

kl lm d z za mh

- -
( ) ( ) ¯

( )

¯ ˆ ¯ ˆ ˜ ( ¯ )

ˆ ¯ ˆ ¯ ˆ ˆ ( )

¯

In order tofind a simpler expression for the time integral over ,t we denote the current–current correlator
by F t :( ) F t I x t I x, , 0 ,D2 D3= áá ¢ ññ( ) ( ) ( ) and its Fourier transform F .w( ¯ ) Equation (C.14) can bewritten in
these terms as

F tF t t F
1

d
1

d
d

2
e . C.15t

2

2

2

2
iò ò òt t

w
p

w=
t

t

t

t
w

- -
¯ ( ) ¯ ( ¯ ) ( )¯

It is easy tofind an expression for F w( ¯ ) by comparing equations (C.14) and (C.15). First, wewrite

F F F t F t te e d .t t1

2

1

4
i iòw w+ - = + - +

t t
w w

-¥

¥
-[ ( ¯ ) ( ¯ )] [ ( ) ( )]( )¯ ¯ From the other handwe approximate the

average by,

F F t F t t
1

2
e d ,t 2

òt
» + - p t

-¥

¥
-¯ [ ( ) ( )] ( )

wherewe have assumed that F(t) growsmuch slower than e ,t 2p t( ) and the antisymmetric part of F(t) is cancelled
by the averaging. By comparing the exponentials in the two equations we obtain .2w = p

t
¯

Then F F F .1

2

2 2⎡⎣ ⎤⎦= + -
t

p
t

p
t

¯ ( ) ( )

AppendixD. Calculation of the fermionic correlators

Herewe derive the expressions for the fermionic propagator (see equation (C.10)) and the collisionmatrix (see
equation (C.13)) averagedwith respect to the action S S ,0 int+ within an interacting arms (2, 3) ofMZI (the
propagator in arms 1 and 4 can be found by taking g 0^ ). In this calculationwe employ the functional
bosonization approach for systemout of equilibrium [43, 44].We apply theHubbard–Stratonovich
transformation, and introduce the bosonic auxiliary field ,F writing an action S S0 int+ as [45]

S S G g, ;
1

4
, D.10 int

1 1+ Y Y F = Y Y + F FF
- -[ ¯ ] ¯ ( )[ ]

with the notation

G r r r G r r rd d ,
m

m m m
1

2,3
, ,

1
,òåY Y = ¢Y - ¢ Y ¢a ab bF

-

=
F
-¯ ¯ ( ) ( ) ( )[ ] [ ]

where

G r r G r r r r rm m m,
1

,
1

,g d- ¢ = - ¢ - F - ¢ab ab ab
c

cF
- -( ) ( ) ˆ ( ) ( )[ ]

and

g r r g rd ,
m n

m mn
cl

n
1

, 2,3
,

1
,òå hF F = F Fa ab b

-

=

-( ) ˆ ( )

wherewe implicitely sumover theKeldysh indices , , 1a b c =  (in forward/backward basis) and g
mn

1- is the
inverse of them, n= 2, 3 submatrix of gmn (see equation (C.5)). Following the functional bosonization procedure
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[45], we obtain a general expression for an n-fermion correlator

r q r q e , D.2
i
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a i b i
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( ) ( )

where a b m, ,a= ( ) denote theKeldysh and thewire indices, r q x t, , ,= ( ) 0áñ is the fermionic correlator with
respect to the free action

S G, , D.30
1Y Y = Y Y-[ ¯ ] ¯ ( )

and áñF is theΦ-field correlator with respect to the action

S g
1

4
D.41F = F F + FPFF
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respectively. Here
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i

2
Tr , D.5m m m, g gP - ¢ = - ¢ ¢ -ab

a b ˆ ( ) { ˆ ( ) ˆ ( )} ( )

where the trace is taken over theKeldysh fermionic indices [42]. The θ field is defined by

r r G r r ri d , D.6m m
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m,
1

,
B

,òåq h= - ¢ - ¢ F ¢a
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ab bg g
=

( ) ( ) ˆ ( ) ( )

whereGB is the bosonic freeGreen functionwith linearized spectrum,
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B
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v k
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w
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+
- +

-
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- -ba ( ) ( ) ( ) ( )

The action for theΦfield (see equation (D.4)) is quadratic due to Larkin–Dzyaloshinskii [46] theorem, therefore
an exact expression for theΦ-field correlator is

Q r r r r g r r r ri i .mn m n mn
cl

mn m, , ,
1

, , ,
1 h d d- ¢ á F F ¢ ñ = - ¢ + P - ¢ab a b a b a bF

- - ( ) ( ) ( ) ( ˆ ( ) ˆ ( ))

We reduce the problemoffinding an inverse of an infinite-dimensionsmatrix, inverting it to the finite (4)
dimensions by Fourier-transforming it to a diagonal k, w( ) basis. Employing equation (D.6)we obtain the θ-
field correlator

K r r r r

q q G r q Q q q G q r

i

i d d , D.8

mn m n

cl cl
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wherewe implicitly sumover theKeldysh and thewire indices. This yields,
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r
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Here, v u ,
g2= +r p
^ v u ,

g2= -s p
^ with u v .

g
F

2
= +

p
 Weplug this result in equation (D.2) to compute the

Green function (equation (C.10)) and the collisionmatrix of the particles in arms 2 and 3 (equation (C.13)). The
calculation requires transformation of equations (D.10) and (D.11) to real (x , t) space. Herewe present thefinal
result,
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Fourier-transforming the time coordinate yields,
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And

the collisionmatrix reads

M x x x x G x G x x x x x, , ,4 3 2 1 3, 43 2, 21
1

31
1

42
2

32
2

41z z z z=dgba dg ba ga db gb da
˜ ( ) ( ) ( ) ˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )( ) ( ) ( ) ( )

where, x t,
T t t t

T t t t

1
sinh

sinh

x

v

x

v

i

i

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

z =ba

p a b

p a b

- + Q - Q -

- + Q - Q -

r

s

L

L( )
˜ ( )( )

[ ( ) ( )]

[ ( ) ( )]
and x t x t, , .

2 1 1z z=ba ba
-˜ ( ) (˜ ( ))( ) ( )

Fourier-transforming the

time coordinates yields,
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wherewe have used the short notation x x x ;ij i j= - G is the single particle propagator given by

equation (D.13), and x x Z x, 2 cosh 2 , ,Tx

u

1 2 1 2z w pd w l w= -ba
p l

ba( )˜ ( ) ( ) ˜ ( )( ) ( )
where Z

1 2
ba

˜ ( )
is given by

FigureD1.The collisionmatrix M̃ (see equation (D.14)). A diagrammatic representation of the renormalized inelastic collision
between two chiral fermions inside the interacting region. Straight lines correspond to fermionic Green functions (gray- outside the
interacting region and black- inside).Wavy lines correspond to bosonicGreen functions (red and blue for the two different types of
bosons, see equation (D.15)). The vertices x1, x3 (x2, x4) correspond to the two entry (exit)points of the interaction region on the edges.
TheKeldysh indices ( ± ) at these points are indicated by , , , .a b g d Electrons enter the interacting regionwith energies 2

1

2
w w+

and 3
1

2
w w- and exit with energies 2

1

2
w w- and 3

1

2
w w+ respectively, exchanging energyω via four possible different bosons.
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Equation (D.14) has a

pictorial interpretation, presented infigureD1 , according towhich, the Z̃ particles are the dressed bosons that
carry the interaction between the electrons.

Appendix E. Passage of the electron through theMZI: a semiclassical picture

Herewe present the propagation of a localizedwave packet (according to a semiclassical picture) through an
interacting armofMZI, and derive the condition to be in the semiclassical regime.We assume semiclassically a

propagating rectangular shapedwave packet with awidth
eV

~ in time domain (see figure E1 ). The propagation
of the single particle wave function can be derived by convolving the initial state with the retardedGreen
function,

x t G x x t x x, i , , 0 d . E.1R *òY = - ¢ Y ¢ ¢( ) ( ) ( ) ( )

An expression for the zero temperature retardedGreen function is (this is simply derived from equation (10))
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where x x
o w

1 1 1
0 . .

P = - < <{( ) is a rectangle function. Thewave packet at four different points is shown in

figure E1.We observe, thewave packet has been broadened as a result of the interaction, its width in time at
different space points is given by t x .

eV

x

u0
2 0D = + l( ) The center ofmass of thewave packet then propagates

with velocity v .u
CM =

x l( )
Consistent with the semiclassical picture, we require thewidth of thewave packet to be

much smaller comparedwith the propagation time through theMZI, t L L v .CMD ( ) From this conditionwe
deduce, eV u

L

 and 1.l 

Appendix F. General GCV for anN-state system

Herewe present a derivation ofGCV for a general systemwithN-states beingmeasured by aGaussian detector.
We show that theweak-to-strong crossover in such a casemay be oscillatory with a bounded number of periods
of the order of O N .2( ) The initial state of the system is amixed state, which is represented by the densitymatrix

R .s n m nm n n,år a a= ñá∣ ∣ The detector is initialized in the zeroth coherent state (we denote the sa¢ coherent

state by añ∣ ˜ ) such that its densitymatrix is 0 0 .dr = ñá∣ ˜ ˜ ∣ Weneglect the dynamics of the system and the detector
assuming themeasurement process was short in time compared to the typical timescales of the system and the
detector. The couplingHamiltonian is w t gA b bI = +( ) ˆ ( )† with b b, † are the ladder operators of the

Figure E1.Apropagation of thewave packet through an interacting armof theMZI, at zero temperature, for 1l = for different

points (a) x 0,0 = (b) x ,u

eV0
= (c) x 2 ,u

eV0
= (d) x 3 .u

eV0
= As can be derived from equation (E.2), thewidth of thewave packet is

given by, t .
eV

x

u

2 0D = + l
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detector, A a
n n n nå a a= ñáˆ ∣ ∣andw(t) is a window function around the time of themeasurement. The post-

selection is represented by the projection operator, P .f n m nm n n,å a aP = ñá∣ ∣ Plugging into equation (1) and
considering, s dtotr r r= Ä and q b,d = yields

A
a R P

R P

e

e
. F.1n m n nm mn

a a

n m nm mn
a a

GCV
,

,

g
n m

g
n m

2

2
2

2

2
2

å

å
á ñ =

- -

- -
ˆ ( )

( )

( )

The numerator and the denominator consist of sums ofGaussian (in g) functions, with different coefficients and
prefactors. EachGaussian is amonotonic function (for g 0> ), thus themaximal number of extremas in the
weak-to-strong crossover (g 0,Î ¥[ )) is of the order of O N ,2( ) whereN is the number of system’s states.

AppendixG. A full list of diagrams

FigureG1 depicts a full list of irreducible diagrams to fourth (leading) order in tunnelingwhich should be taken
in account for the current–current correlator. It is divided to diagramswith noflux dependence (see
figureG1(a)), diagramswhich are dependent on either SF or DF (see figures G1(b) and (c)), and diagramswhich
are depend on both SF and ,DF see figureG1(d).
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