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Abstract

Driver assistance systems support drivers in operating vehicles in a safe, comfortable and efficient way, and thus may

induce changes in traffic flow characteristics. This paper puts forward a receding horizon control framework to model

driver assistance and cooperative systems. The accelerations of automated vehicles are controlled to optimise a cost

function, assuming other vehicles driving at stationary conditions over a prediction horizon. The flexibility of the

framework is demonstrated with controller design of Adaptive Cruise Control (ACC) and Cooperative ACC (C-ACC)

systems. The proposed ACC and C-ACC model characteristics are investigated analytically, with focus on equilibrium

solutions and stability properties. The proposed ACC model produces plausible human car-following behaviour and

is unconditionally locally stable. By careful tuning of parameters, the ACC model generates similar stability charac-

teristics as human driver models. The proposed C-ACC model results in convective downstream and absolute string

instability, but not convective upstream string instability observed in human-driven traffic and in the ACC model. The

control framework and analytical results provide insights into the influences of ACC and C-ACC systems on traffic flow

operations.
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1. Introduction

Advanced Driver Assistance Systems (ADAS) aim to support drivers or take over the driving tasks

to operate vehicles in a safe, comfortable and efficient way (Varaiya & Shladover, 1991). This includes

cooperative systems, where equipped vehicles are connected to and collaborate with each other through

Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communications (Williams, 1992). Consid-

erable efforts have been dedicated to ADAS control design and investigation of the resulting traffic flow

properties. Among them, Adaptive Cruise Control (ACC) systems attract most of the attention due to the

early availability in the market. The most widely reported ACC model is a proportional derivative (PD) con-

troller, where the vehicle acceleration is proportional to the gap (net distance headway) and relative speed

with respect to the preceding vehicle (derivative of gap) at car-following conditions. This controller has

been well examined (Swaroop, 1994; Godbole et al., 1999; VanderWerf et al., 2002), and is essentially a

Helly car-following model (Helly, 1959). Extensions of this controller class have been reported to include
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acceleration of the predecessor (VanderWerf et al., 2002; Van Arem et al., 2006) or multi-anticipative be-

haviour (Wilmink et al., 2007) in the controller. However, there is no safety mechanism in this model. Under

critical conditions, ACC systems have to be overruled by drivers and hard braking has to be performed to

avoid collision (Godbole et al., 1999). Some researchers (Hasebe et al., 2003) used the Optimal Velocity

Model (OVM) to describe the controlled vehicle behaviour and proposed a cooperative driving system under

which the desired speed is determined not only by the gap to the vehicle in front but also by the gap to the

vehicle behind. Unfortunately, the optimal velocity model is not collision free under realistic parameters

(Treiber et al., 2000). The Intelligent Driver Model (IDM) is used to design ACC controllers with a driving

strategy that varies parameters according to traffic situations to mitigate congestion at bottlenecks (Kesting

et al., 2008; Treiber & Kesting, 2010). Other controllers are reported by Swaroop (1994) and Ioannou &

Chien (1993). The resulting traffic flow characteristics of ADAS differ among the controller and parameter

settings. The increase of capacity is mainly a result of shorter time headways compared to human drivers

(Rao & Varaiya, 1993; Kesting et al., 2008), while choosing a larger time headway could cause negative

impacts on capacity (Minderhoud & Bovy, 1999; VanderWerf et al., 2002). Regarding the stability, some

authors provide evidence that ACC/CACC systems improve flow stability (Hasebe et al., 2003; Davis, 2004;

Van Arem et al., 2006; Naus et al., 2010), while others (Marsden et al., 2001) are more conservative on the

stabilisation effects of ACC systems.

ADAS and Cooperative Systems have a direct influence on the vehicular behaviour and consequently on

flow operations. The lack of clarity on aggregated impacts of ADAS in literature calls for new insights into

the model properties of ADAS and cooperative systems. Furthermore, the increasing public concerns on

traffic congestion and environment stimulate the need for development of driver assistance systems that can

fulfil multiple objectives, cooperate with each other and operate vehicles in an optimal way. It is however

difficult to use the existing phenomenological ADAS controllers to achieve all these objectives.

This contribution generalises previous work on driver behaviour (Hoogendoorn & Bovy, 2009) to a

control framework for driver assistance and cooperative systems. The framework is generic in such a way

that different control objectives, i.e. safety, comfort, efficiency and sustainability, can be optimised. It is

assumed that accelerations of ADAS vehicles are controlled to optimise a cost function reflecting multiple

control objectives. Under the framework, we propose a complete ACC controller, which produces plausible

human car-following behaviour at both microscopic and macroscopic level. The controller can be applied to

all traffic situations, i.e. not only car-following and free driving conditions, but also safety-critical conditions

such as approaching standstill vehicles with high speeds. The flexibility in the system and cost specification

allows modelling a Cooperative ACC (C-ACC) controller, where an equipped vehicle exhibits cooperative

behaviour by optimising the joint cost of both itself and its follower.

The aggregated flow characteristics of the ACC/C-ACC models are investigated analytically, with a

focus on equilibrium solutions and (linear) stability analysis. Analytical criteria to quantify the influence on

the model stability due to cooperative behaviour are derived.

The rest of the paper is structured as follows. Section 2 presents the modelling framework and solution

approach, with several examples showing the application of the framework. Section 3 gives the analytical

solutions at equilibrium conditions, criteria for string stability and the method for classification of string

instability types. Section 4 gives insights into the model characteristics of the example controllers. Conclu-

sions and future work are discussed in section 5.

2. Control framework for supported driving

In this section, we first present the underlying assumptions and mathematical formulation of the control

framework. The optimal control problem is solved using the dynamic programming approach, and the

framework is applied to design ACC and cooperative ACC controllers.

2.1. Design assumptions and control objectives

The controller framework is based on the following assumptions:
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1. A controlled vehicle adapts its speed or changes lanes to minimise a certain cost function, reflecting

the control objectives.

2. A controlled vehicle has all information regarding (relative) positions and speeds of other vehicles

influencing its control decisions.

3. Other vehicles influencing the control decisions are driving at stationary conditions within the predic-

tion horizon, i.e. accelerations equal zero.

4. Control decisions are updated at regular time intervals.

5. Longitudinal manoeuvres of ADAS equipped vehicles are under automated control.

For the sake of analytical tractability, we only consider deterministic cases without time delay in this con-

tribution, i.e. there is no noise in the information regarding other vehicles and the control decisions can be

executed immediately. The control framework is generic in that it allows one to include stochastic processes

and time lags in the controller (Wang et al., 2012).

Control decisions are made to fulfil some control objectives, which can be a subset of the following:

1. To maximise travel efficiency;

2. To minimise lane-changing manoeuvres;

3. To minimise risk;

4. To minimise fuel consumption and emissions;

5. To maximise smoothness and comfort.

The importance of each of these objectives can vary according to design preferences, traffic conditions, or

individual vehicles, e.g. some systems may give priority to safe driving, while others prefer travel efficiency,

accepting smaller headways and higher risk if other influencing factors (speed and relative speed) are kept

constant.

2.2. Supported driving as a receding control problem

The proposed framework formulates the movements of ADAS equipped vehicles as a receding horizon

control (also referred to as model predictive control) process, which entails solving an optimal control

problem subject to system dynamics and other constraints on system state and control input (Hoogendoorn

& Bovy, 2009). Fig. 1 shows the schematic graph of the receding horizon control process. At time instant

tk, the controller of equipped vehicle n receives the positions and speeds of other vehicles from (erroneous)

observations either made by its on-board sensors or transmitted from other sensors through V2V and/or V2I

communication. Based on this information and past state, the controller estimates the current state of the

system x, and uses a (system dynamics) model to predict the future state of the system in a time horizon

Tp, with the estimate of the system state at tk as the initial condition. The control input u, i.e. acceleration

or lane choice, is determined to minimise the cost J accumulated in the prediction horizon reflecting, for

instance, deviation of the future state from the desired state. The on-board actuators will execute the control

input u at time tk. As the vehicle manoeuvres, the system changes, and the optimal control signal u will

be recalculated with the newest information regarding the system state at regular time intervals, i.e. at time

tk+1 = tk + Δt.

2.3. Mathematical formulation of longitudinal control

2.3.1. State prediction model
The system state x from the perspective of ACC vehicle n is fully described by the gap (net distance head-

way) s, the relative speed Δv with respect to its predecessor and its own speed v, where x = (x1, x2, x3)T =

(sn,Δvn, vn)T with Δvn = vn−1 − vn. The system dynamics follow the deterministic kinematic equations:

d

dt
x =

d

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
sn

Δvn

vn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δvn

un−1 − un

un

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = f(x,u) (1)
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Fig. 1. Scheme of receding horizon control.

.

where un denotes the acceleration of vehicle n, which is the control input in this model. un−1 denotes the ac-

celeration of the predecessor, which equals zero within the prediction horizon based on our assumption. The

considered system is a time invariant system, i.e. the system dynamics model f does not depend explicitly

on time t.
Notice that when applying the controller, other vehicles may not travel at constant speed, which implies

a mismatch between the prediction model and the system due to the constant-speed heuristic. The feedback

nature of the receding horizon process, which entails reassessing the control input at regular time intervals

Δt with the newest information of other vehicles, is permanently corrected, and thus robust to the mismatch.

For Cooperative ACC (C-ACC) controllers, the system state for vehicle n is extended to include the

situation of its follower n+1, x = (sn,Δvn, vn, sn+1,Δvn+1, vn+1)T , where sn+1,Δvn+1 and vn+1 denote the gap,

relative speed and speed of the follower of the controlled vehicle respectively. The system dynamics now

follow:

d
dt

x =
d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
Δvn

vn

sn+1

Δvn+1

vn+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δvn

un−1 − un

un

Δvn+1

u − uv

un+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= f(x,u) (2)

with un+1 denoting the acceleration of the follower. un−1 and un+1 equal zero within the prediction horizon.

2.3.2. Cost formulation
We formulate the cost of car following, given that the control input u = {un(τ)|τ ≥ tk} is applied , using

the following functional:

J(tk, x|u) =

∫ tk+Tp

tk
e−ητL(x,u, τ)dτ + e−η(tk+Tp)φ(x(tk + Tp)) (3)

with Tp denoting the prediction horizon. The cost functional J(tk, x|u) describes the expected cost (or

disutility) given the current state of the system x(tk), the control input u and the evolution of the system,

starting from the current time tk to terminal time tk + Tp. In Eq. (3), L denotes the so-called running cost,
describing the cost incurred during an infinitesimal period [τ, τ+dτ), which are additive over time. φ denotes

the so-called terminal cost, which reflects the cost remaining at the terminal time.

The parameter η ≥ 0 with a unit of s−1 denotes the so-called discount factor (Fleming & Soner, 1993),

which reflects some trade-off between cost incurred in the near term and future cost. η = 0 implies that

the controller weighs the future cost similar to the current cost, which may be the case if the controller can

predict the dynamics of the predecessor behaviour fairly well. η >> 0 results in a short-sighted driving
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behaviour where the controller optimises the immediate situation and does not care too much about the

future. Particularly, the cost after a future horizon [0, 1
η
) decreases exponentially.

Notice that if η = 0 and Tp < ∞, the considered problem pertains to a finite horizon optimal con-

trol problem with un-discounted cost (e.g., Fleming & Soner, 1993). Solving this type of problem entails

choosing a terminal cost φ to ensure expected controller behaviour and computational feasibility, which is

not trivial (Chen & Allgower, 1998). An alternative is to set η > 0 and Tp = ∞, thus the weight for the

terminal cost e−ηTp equals zero. This removes the parameter Tp and relieves us from defining a terminal cost

φ. The considered problem becomes an infinite horizon optimal control problem with discounted cost (e.g.,

Fleming & Soner, 1993).

In the present work, we choose the infinite horizon problem with discounted cost. The optimal control

problem is now described by the following mathematical program:

u∗[tk ,∞) = arg min J(tk, x|u) = arg min

∫ ∞

tk
e−ητL(x,u)dτ (4)

subject to:
d

dt
x = f (x,u) (5)

The control input u will be re-assessed at regular time intervals Δt = tk+1 − tk using the most current

observations or estimates of the system state (at time tk+1).

Notice that in this contribution we consider multiple criteria for the optimisation, i.e. safety, efficiency,

and comfort, but transform the supported driving task into a single-objective mathematical optimisation

problem (Eqs (4, 5)) by assuming fixed weights for different criteria.

2.4. Solution approach based on Dynamic Programming

Here we briefly discuss the solution to the considered problem of Eqs. (4, 5), based on the well-known

dynamic programming approach.

Let us denote W(tk, x) as the so-called value f unction, which is the optimal cost function under optimal

control u∗:
W(tk, x) = J(tk, x|u∗) (6)

Applying Bellman’s Principle of Optimality yields the Hamilton-Jacobi-Bellman (HJB) equation with

discount factor as (Fleming & Soner, 1993):

ηW(x) = H
(
x,u∗,

∂W(x)

∂x

)
(7)

whereH is the so-called Hamilton equation (Hamiltonian), which satisfies:

H
(
x,u∗,

∂W(x)

∂x

)
= min

u

(
L + ∂W(x)

∂x
· f

)
(8)

Let λ = ∂W(x)
∂x denote the so-called co-state or marginal cost of the state x, reflecting the relative extra

cost of W due to making a small change δx on the state x. Taking the partial derivative of Eq. (7) with

respect to state x gives:

λ =
1

η

∂H
∂x
=

1

η

∂L
∂x
+

1

η

∂(λ · f)
∂x

(9)

Using the Hamiltonian of Eq. (8), we can derive the following necessary condition for the optimal

control u∗:
H(x,u∗, λ) ≤ H(x,u, λ), ∀u (10)

In nearly all cases, this requirement will enable expressing the optimal control u∗ as a function of the state

x and the co-state λ.
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Taking the necessary condition of ∂H
∂u = 0 gives the following optimal control law for ACC vehicle n:

u∗ = λΔvn − λvn (11)

where λΔvn and λvn denote the co-state of relative speed and the co-state of speed respectively, and are given

by:

λΔvn =
1

η

∂L
∂Δvn

+
1

η2

∂L
∂sn

, λvn =
1

η

∂L
∂vn
− 1

η2

∂L
∂sn

(12)

The optimal acceleration control law (11) states that the automated vehicle will increase its speed when the

marginal cost of relative speed is larger than the marginal cost of speed, and decelerate when vice versa.

For the C-ACC controller, the change in the system state and dynamics results in the following optimal

control law when applying the same solution approach:

u∗ = λΔvn − λvn − λΔvn+1 (13)

with λΔvn and λvn given in (12) and

λΔvn+1 =
1

η

∂L
∂Δvn+1

+
1

η2

∂L
∂sn+1

(14)

Equation (13) shows that the optimal acceleration for a C-ACC vehicle is determined by the marginal costs

of its relative speed and speed, as well as the marginal cost of the relative speed of its follower. Clearly, the

inclusion of marginal cost of the follower’s speed in the optimal control law captures the cooperative nature
of the C-ACC controller.

We emphasise that the control input u is not limited to the control of a single vehicle. The framework

allows simultaneous control of multiple vehicles, i.e. two controlled vehicles in a cooperative system.

2.5. Example 1: ACC model

As a first example, we present an ACC model that is collision-free and can generate plausible human

driving behaviour using the proposed control framework.

2.5.1. Cost specification and optimal acceleration
We distinguish between cruising (free driving) mode and following mode for the proposed ACC system.

In cruising mode, ACC vehicles try to travel at a user defined free speed v0. In following mode, ACC

vehicles try to maintain a gap-dependent desired speed vd while at the same time avoiding driving too close

to the predecessor. For the sake of notation simplicity, we will drop the index n in the ACC controller.

Mathematically, the two-regime running cost function can be formulated as:

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1e
s0
s Δv2 · Θ(Δv)︸���������������︷︷���������������︸

sa f ety

+ c2(vd(s) − v)2︸����������︷︷����������︸
e f f iciency

+
1

2
u2

︸︷︷︸
com f ort

if s ≤ s f = v0 · td + s0

c3(v0 − v)2︸������︷︷������︸
e f f iciency

+
1

2
u2

︸︷︷︸
com f ort

if s > s f = v0 · td + s0

(15)

where s f is the gap threshold to distinguish cruising mode (s > s f ) from following mode (s ≤ s f ) and

is calculated with s f = v0 · td + s0, where v0 is the free speed and s0 is the distance between two cars

at completely congested (standstill) conditions. td denotes the user-defined desired time gap. vd(s) is the

so-called desired speed in following mode and is determined by :

vd(s) =
s − s0

td
(16)
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Θ is a delta function which follows the form:

Θ(Δv) =

{
1 if Δv ≤ 0

0 if Δv > 0
(17)

Equation (15) implies that the controller makes some trade-off among the safety cost, efficiency cost and

comfort cost when following a preceding vehicle:

• The safety cost only incurs when approaching the preceding vehicle, i.e. Δv < 0; c1 > 0 is a constant

weight factor. The exponential term e
s0
s of the safety cost ensures a large penalty when driving too

close to the predecessor, i.e. s ≤ s0. The safety cost is a monotonic decreasing function of gap

s, reflecting the fact that the sensitivity to the relative speed tends to decrease with the increase of

following distance. There is no safety cost in cruising mode.

• The efficiency cost term in following mode incurs deviating from the desired speed; c2 > 0 is a

constant weight factor. The user-set desired time gap td reflects driver preference and driving style,

i.e. a smaller td tends to an aggressive driving style, while a larger one means more timid driving

behaviour. This cost also stems from the interaction with the predecessor, and will not appear in the

cruising mode.

• The travel efficiency cost in cruising mode stems from not driving at free speed v0, with a constant

weight c3 > 0.

• The comfort cost is represented by penalising accelerating or decelerating behaviour.

Employing the solution of Eq. (11) arrives at the following optimal control law:

u∗ =

⎧⎪⎪⎨⎪⎪⎩
2c1e

s0
s

η

(
Δv − s0Δv2

ηs2

)
· Θ(Δv) + 2c2

η

(
1 + 2

ηtd

)
(vd(s) − v) if s ≤ s f

2c3

η
(v0 − v) if s > s f

(18)

Equation (18) shows that the optimal acceleration is a function of the state x = (s,Δv, v)T . The first term

in following mode (when s ≤ s f ) describes the tendency to decelerate when approaching the predecessor,

while the second term describes the tendency to accelerate when the vehicle speed is lower than the desired

speed and the tendency to decelerate when vice versa. In cruising mode ACC vehicles adjust their speed

towards the free speed v0 to minimise the efficiency cost, with an acceleration proportional to the speed

difference with respect to the free speed.

In reality, the accelerations of vehicles are usually limited by the power train, i.e. u ≤ 2m/s2. For

the optimal acceleration function (18), it achieves its maximum u∗max, f in following mode when s = s f ,

v = 0km/h, and Δv ≥ 0km/h and achieves its maximum u∗max,c in cruising mode when v = 0km/h for all

s > s f and Δv:

u∗max, f = u(s f ,Δv, 0) =
2c2v0

η
(1 +

2

ηtd
) , for Δv ≥ 0 (19)

and

u∗max,c = a∗(s,Δv, 0) =
2c3v0

η
, for s > s f (20)

To smooth the transition from following mode to cruising mode, we let u∗max, f = u∗max,c, which leads to

the following relationship between the two weights:

c3 = c2(1 +
2

ηtd
) (21)

In doing so, the total number of parameters in the model has been reduced. The default parameters of the

model are shown in Table 1.
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Table 1. Model parameters

Parameter Physical meaning Default value Unit

v0 free speed 120 km/h
c1 weight on safety cost 0.1 s−2

c2 weight on efficiency cost 0.001 s−2

η discount factor 0.25 s−1

td desired time gap 1.0 s
s0 desired gap at standstill 1 m
l vehicle length 5 m

2.5.2. Verification of the ACC model
To verify whether the proposed ACC model generates plausible human car-following behaviour, we

check the mathematical property of the acceleration function (18) and perform a face validation of the ACC

model. Several authors have provided basic requirements for plausible car-following models (Treiber &

Kesting, 2011; Wilson & Ward, 2011). Let umic(s,Δv, v) denote a general class of car-following models

where the acceleration is a function of gap s, relative speed Δv and speed v. The basic requirements for

car-following models can be summarised with:

1. The acceleration is an increasing function of the gap to the predecessor ∂umic(s,Δv,v)
∂s ≥ 0 and is not

influenced by the gap when the predecessor is far in front: lims→∞ ∂umic(s,Δv,v)
∂s = 0.

2. The acceleration is an increasing function of relative speed with respect to the preceding vehicle
∂umic(s,Δv,v)
∂Δv ≥ 0, and is not influenced by the relative speed at very large gaps lims→∞ ∂umic(s,Δv,v)

∂Δv = 0.

3. The acceleration is a strictly decreasing function of speed ∂umic(s,Δv,v)
∂v < 0, and equals zero when

vehicles travel with free speed at very large gaps lims→∞ umic(s,Δv, v0) = 0.

It can be shown that the proposed optimal ACC control law of Eq. (18) satisfies the three basic require-

ments.

Fig. 2(a) shows the contour plot of the optimal acceleration for different gaps and relative speeds when

following a predecessor driving constantly with a speed of 54km/h using default parameters. Clearly we

can see the two regimes of following mode and cruising mode distinguished at the gap of around 35m. At

cruising mode, the acceleration is above zero, because all the possible speeds (between 36km/h and 72km/h)

in the contour plot are below the free speed of 120km/h. In following mode, the acceleration increases with

the increase of headway and relative speed, and consequently decreases with the increase of vehicle speed.

The thick line between the green and yellow area shows the neutral line where the accelerations equal zero.

Most of the left plane in following mode show a negative acceleration, as a result of the safety cost. This

asymmetric property of the optimal acceleration prevents vehicles from driving too close to the leader.

Fig. 2(b) shows how the system evolves from a high cost area to a low cost area of an ACC vehicle

following a predecessor driving constantly with a speed of 54km/h. The initial state is s = 15m and Δv =
−14km/h (v = 68km/h), denoted with ’O’ in the figure, using the default parameters. The contour lines

show the cost, while the dark star line shows the trajectory of the vehicle, with the optimal acceleration

evaluated every 0.25s. At the start, the ACC controller incurred safety cost due to approaching the leader

and travel efficiency cost due to driving higher than the desired speed of around 47km/h. The vehicle starts

to decelerate until the relative speed is 0km/h. Then it continues to decelerate because driving at 54km/h is

still higher than the desired speed, which has changed to around 36km/h (at the gap of 12m). As a result, the

vehicle will travel with a lower speed and the gap to the predecessor will increase, leading to an increase of

the desired speed. The vehicle starts to accelerate when the desired speed is higher than the vehicle speed.

The trade-off between the travel efficiency and safety cost will finally lead to the behaviour as shown in the

figure, ending with ’D’ in the figure after a simulation period of 50s.
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Fig. 2. (a) Contour plot of optimal acceleration when following a vehicle driving at 54km/h; (b) Contour plot of optimal cost with a

vehicle trajectory.

.

2.6. Example 2: Cooperative-ACC model
As a second example, we apply the control framework to design Cooperative-ACC (C-ACC) systems

where the controlled vehicle does not only consider its own situation but also the situation of its follower

when making control decisions. The cooperation mechanism is applied when one C-ACC vehicle is followed

by another C-ACC vehicle. In that situation, the two C-ACC vehicles exchange their gaps and relative

speeds with each other through V2V communications and they collaborate to minimise a joint cost function,

reflecting the situation of both C-ACC vehicles.

2.6.1. Joint running cost function for C-ACC
The cooperative behaviour entails minimising a joint cost. Since there is no interaction in cruising mode,

we assume that the cooperative behaviour only occurs when both the controlled vehicle and its follower are

operating in following mode. Thus we only change the running cost at following mode, which becomes:

L = c1

n+1∑
j=n

e
s0
s j Δv2

j · Θ(Δv j) + c2

n+1∑
j=n

(v j − vd(s j))
2 +

1

2

n+1∑
j=n

u2
j (22)

The running cost function (22) shows that in following mode, the cooperative controller aims to minimising

the acceleration, safety cost due to approaching the preceding vehicle and efficiency cost due to not driving

at desired speed of the C-ACC vehicle and its follower.

2.6.2. Optimal control of C-ACC vehicles
Following solution (13), we arrive at:

u∗ =
2c1e

s0
sn

η

(
Δvn − s0Δv2

n

ηs2
n

)
· Θ(Δvn) +

2c2

η
(1 +

2

ηtd
) (vd(sn) − vn)

− 2c1e
s0

sn+1

η

⎛⎜⎜⎜⎜⎝Δvn+1 −
s0Δv2

n+1

2ηs2
n+1

⎞⎟⎟⎟⎟⎠ · Θ(Δvn+1) − 2c2

η2td
(vd(sn+1) − vn+1) (23)

In Eq. (23), the optimal acceleration of a C-ACC vehicle n is a function of gap, relative speed and speed of

both itself and its follower (vehicle n+ 1). The first two terms in Eq. (23) correspond to the non-cooperative

ACC model in Eq. (18). The third term shows that the C-ACC vehicle will accelerate when its follower

is approaching. The fourth term implies that the C-ACC vehicle tends to decelerate when the follower
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is travelling below the desired speed and tends to accelerate when vice versa. In doing so, the joint cost

function (22) is optimised. The backward-looking behaviour in the third and fourth term shows how the

follower’s situation affects the optimal control.

3. Equilibrium solutions and stability analysis

In this section, we present the method for analysing ADAS model characteristics, with a focus on equi-

librium solution and linear stability analysis. Particularly, we consider a more generalised expression of the

optimal controller with cooperative behaviour. The acceleration is expressed as a function of gap, relative

speed, and speed of the controlled vehicle n and its follower vehicle n + 1:

un(sn,Δvn, vn, sn+1,Δvn+1, vn+1).

3.1. Equilibrium solutions

At equilibria in homogeneous traffic, all vehicles travel at the same speed with the same gap and zero

acceleration. The equilibrium solutions are derived by the following equation:

un(se, 0, ve, se, 0, ve) = 0 (24)

which gives a unique equilibrium speed as a function of gap ve(se), or an equilibrium gap as a function of

speed se(ve).

3.2. Linear stability analysis

The stability analysis framework generalises the classic linear stability analyses approach (Holland,

1998; Treiber & Kesting, 2011; Wilson & Ward, 2011) to cooperative systems. Effects on string stability

of the cooperative behaviour can be analytically derived. Types of convective instability are classified using

signs of signal velocity with a simpler calculation procedure compared to the method of Ward & Wilson

(2011).

Let us assume a small deviation hn and gn of the nth vehicle in the homogeneous platoon from the

steady-state gap se and speed ve respectively, then the gap and speed of vehicle n can be written as:

sn = se + hn , vn = ve + gn (25)

The first and second order derivatives of hn give:

ḣn = Δvn = gn−1 − gn , ḧn = un−1 − un (26)

Approximating un−1 and un in Eq. (26) around equilibria using Taylor series to the first order arrives at:

ḧn = us(hn−1 − hn) + uΔv(ḣn−1 − ḣn) + uvḣn

+ usb (hn − hn+1) + uΔvb (ḣn − ḣn+1) + uvb ḣn+1 (27)

with the coefficients (gradients of acceleration) evaluated at equilibria:

us =
∂un

∂sn
|e , uΔv =

∂un

∂Δvn
|e , uv =

∂un

∂vn
|e , usb =

∂un

∂sn+1

|e , uΔvb =
∂un

∂Δvn+1

|e , uvb =
∂un

∂vn+1

|e

The equilibrium solutions ve(se) restrict the coefficients from being independent from each other. The

acceleration and relative speed along the equilibrium solutions should always be zero. This property leads

to the following relationship by approximating acceleration around equilibria with Taylor expansion to the

first order:

(us + usb ) = −v′e(se) · (uv + uvb ) (28)
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3.2.1. Local stability criteria
For local stability, we are primarily interested in a pair of vehicles, where the leader is driving constantly.

In this case, Eq. (27) will relax to:

ḧn + (uΔv − uv)ḣn + ushn = 0 (29)

Equation (29) is a harmonic damped oscillator which can be solved using the following ansatz:

h = h0eγt (30)

where γ = σ + iω (i =
√−1) is the complex growth rate and h0 reflects the amplitude of the initial distur-

bance. We can reformulate the damped oscillator as:

γ2 + (uΔv − uv) γ + us = 0 (31)

with solutions

γ1,2 =
−(uΔv − uv) ± √

(uΔv − uv)2 − 4us

2
(32)

Local stability requires both solutions of Eq. (31), γ1 and γ2, to have negative real parts, which is satisfied

by the following condition:

uΔv − uv > 0 (33)

3.2.2. String stability criteria
For string stability, we are interested in how a small disturbance propagates through the increasing index

of vehicles. We state the following theorem for string stability of generalised driver assistance system

controllers in the form of (24).

Theorem 1 If uv + uvb < 0, string stability is guaranteed by the inequality:

v′e(se)2 ≤ v′e(se)(uΔv + uΔvb − uvb ) +
us − usb

2
(34)

Proof The generalised disturbance dynamic equation of (27) can be solved using Fourier analysis with the

following ansatz:

hn = h0eγt+ink , gn = g0eγt+ink (35)

where γ = σ + iω ( i =
√−1) is the complex growth rate. The real part σ denotes the growth rate of

the oscillation amplitude while the imaginary part ω is the angular frequency from the perspective of the

vehicle. The dimensionless wave number k ∈ (−π, π) indicates the phase shift of the traffic waves from one

vehicle to the next at a given time instant, and the corresponding physical wavelength is 2π(se+ l)/k (Treiber

& Kesting, 2010).

To find the limit for string instability, we insert Eq. (35) into Eq. (27), which yields the following

quadratic equation of the eigenvalue γ:

γ2 + p(k)γ + q(k) = 0 (36)

for the complex growth rate γ given by

γ±(k) = − p(k)

2
±

√
p2(k) − 4q(k)

2
(37)

with coefficients:

p(k) = uΔv(1 − e−ik) − uv + uΔvb (eik − 1) − uvb eik , q(k) = us(1 − e−ik) + usb (eik − 1) (38)

For a given wave number k, only two complex growth rates γ+ and γ− are possible and Re(γ+) ≥ Re(γ−).

The model is string stable if Re(γ) < 0 for both solutions and for all wave numbers (relative phase shifts) in

the range k ∈ [−π, π].
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It can be proven that the first instability of time-continuous car-following models without explicit delay

always occurs for wave number k → 0 (Wilson, 2008). Thus we can expand coefficients of the p(k) and q(k)

with Taylor series around k = 0:

p(k) = p0 + p1k + O(k2) , q(k) = q1k + q2k2 + O(k3) (39)

with

p0 = p(0) = −uv − uvb , p1 = p′(0) = i(uΔv + uΔvb − uvb )

q1 = q′(0) = i(us + usb ) = iv′e(se)p0 , q2 =
q′′(0)

2
=

us − usb

2
(40)

Expanding root γ+ around k = 0 to second order of k and using the Taylor series of square root of√
1 − ε = 1 − ε/2 − ε2/8 + O(ε3) gives:

γ+ = − q1

p0

k +
⎛⎜⎜⎜⎜⎝q1 p1

p2
0

− q2

p0

− q2
1

p3
0

⎞⎟⎟⎟⎟⎠ k2 + O(k3) (41)

Notice that the first term in Eq. (41) is purely imaginary and the second term is a real number. String

stability is governed by the sign of the second term. For string stability, it is required that:

q1 p1

p2
0

− q2

p0

− q2
1

p3
0

≥ 0 (42)

If uv+uvb < 0, which implies p0 > 0, moving the last term in the inequality to the right side and multiply

p0 will give:
q2

1

p2
0

≤ q1 p1

p0

− q2 (43)

Replacing the coefficients with Eqs. (40) in the inequality (42) and divide by p2
0 will give:

v′e(se)2 ≤ v′e(se)(uΔv + uΔvb − uvb ) +
us − usb

2
(44)

Q.E.D.
For ACC systems that only reacts to the direct predecessor, the string stability criteria relax to:

v′e(se)2 ≤ v′e(se)uΔv +
us

2
(45)

When comparing Eq. (34) with Eq. (45), we can draw the following analytical criteria for stabilisation

effects of cooperative systems. If a cooperative system keeps the equilibrium speed-gap relationship and the

gradients of acceleration us, uΔv and uv the same as a non-cooperative system, the stabilisation effect of the

cooperative behaviour compared to the non-cooperative model, is determined with:

v′e(se)(uΔvb − uvb ) − usb

2
> 0, cooperative system is more stable;

v′e(se)(uΔvb − uvb ) − usb

2
= 0, model stability criteria remains unchanged;

v′e(se)(uΔvb − uvb ) − usb

2
< 0, cooperative system is more unstable. (46)
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3.2.3. Convective instability
Several authors discovered that the flow instability in traffic flow are of a convective type (Wilson &

Ward, 2011; Treiber & Kesting, 2011). Let Z(x, t) denote the spatio-temporal evolution of an initial pertur-

bation Z(x, 0). Traffic flow is convectively unstable if it is linearly unstable and if

lim
t→∞Z(0, t) = 0 (47)

Intuitively, Eq. (47) means that the perturbation will eventually convect out of the system after a sufficient

time (Wilson & Ward, 2011; Treiber & Kesting, 2011). Otherwise, if traffic flow is linearly unstable but

does not satisfy Eq. (47), then it is absolutely unstable.

To investigate the limits of convective instability, Treiber & Kesting (2010) proposed Fourier transform

of a linear response function, which enables one to determine the spatio-temporal evolution of the pertur-

bation Z(x, t). The approach involves finding the wave number corresponding to the maximum growth rate

and expanding the complex growth rate around the wave number. After solving a well-defined Gaussian

integral, one can obtain the spatio-temporal evolution of the perturbation as:

Z(x, t) = Re
Z0√

−2πγ′′(kp
0
)t

exp
[
i(kp

0
x − ωp

0
t)
]

exp

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝σ0 +

(cg − x
t )2

2(iωp
kk − σp

kk)

⎞⎟⎟⎟⎟⎠ t
⎤⎥⎥⎥⎥⎦ (48)

where kp
0

denotes the physical wave number with the maximum growth rate, and is determined by the

dimensionless wave number k0:

kp
0
=

k0

se + l
, k0 = arg max

k
(Re γ(k)) (49)

and

σ0 = Reγ(k0) , ω
p
0
=

vek0

se + l
+ Imγ(kp

0
) , σ

p
kk = (se + l)2Reγ′′(k0) , ω

p
kk = (se + l)2Imγ′′(k0)

cg = ve + (se + l)Imγ′(k0) , cp =
ω0

kp
0

= ve + (se + l)
Imγ(k0)

k0

(50)

For details, we refer to Treiber & Kesting (2010, 2011).

In Eq. (50), cp denotes the phase velocity, which is defined by the movement of points of constant

phase. It represents the propagation velocity of a single wave. For human-driven vehicular traffic, the

phase velocity cp is of the order of −15km/h in congested traffic (Treiber & Kesting, 2011). cg is the group

velocity, with which the overall shape of the wave amplitudes propagates through space (Lighthill, 1965).

More intuitively, the middle of a wave group (or perturbation) propagates with group velocity (Treiber &

Kesting, 2010). The group velocity can be influenced by several waves.

While group velocity represents the propagation of the centre of a wave group, signal velocity cs is more

representative in describing the spatio-temporal dynamics of disturbance in dissipative media like vehicular

traffic flow. The signal velocity represents the propagation of waves that neither grow nor decay. It can be

calculated using Eq. (48), by considering the growth rate of Z(x, t) along the trajectory of x = cst and setting

it to be zero, which gives:

σ0 − Re

(
(cg − cs)

2

2γ′′

)
:= σ0 − (cg − cs)

2

2D2

(51)

where D2 = −σp
kk

(
1 +

(ω
p
kk)2

(σ
p
kk)2

)
. If there is any string instability, we have two signal velocities:

c±s = vg ±
√

2D2σ0 (52)

Equation (52) shows that the perturbed region grows spatially at the constant rate of 2
√

2D2σ0. Convective

instability types can be classified as:
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• if c−s < 0 < c+s , traffic flow is absolutely string unstable.

• if c+s < 0, traffic flow is upstream convectively unstable.

• if c−s > 0, traffic flow is downstream convectively unstable.

Different from the classification method of using group velocity in Treiber & Kesting (2010), convective

instabilities are determined by the signs of signal velocities of disturbance, and the calculation procedure of

signal velocity is more approachable to traffic community than that in Ward & Wilson (2011).

4. ACC and C-ACC model characteristics

In this section, we use the model analysis framework described in the previous section to examine the

characteristics of ACC and C-ACC models. Since there is no interaction with other vehicles in the optimal

control input at cruising mode, we emphasize that both local stability and string stability are guaranteed in

cruising mode for both the ACC model and the C-ACC model. The stability analyses in the ensuing focus

on following mode.

4.1. Fundamental Diagram

For the ACC model (18), following the equilibrium solutions in the previous section (when Δv = 0 and

a∗ = 0) gives a unique relationship of equilibrium speed and gap:

ve =

{ se−s0

td
if se ≤ s f

v0 if se > s f
(53)

Assuming constant vehicle length l and using the relationship between gap and local density ρ: 1000
ρ
=

s+ l, we will get the classic triangular fundamental diagram of the steady-state flow-density relationship as:

q =

⎧⎪⎪⎨⎪⎪⎩
3.6v0ρ if ρ ≤ 1000

v0td+s0+l
1000−(s0+l)ρ

td
if ρ > 1000

v0td+s0+l
(54)

with q denoting traffic flow in the unit of veh/h and ρ in the unit of veh/km.

Fig. 3(a) shows the steady-state speed-gap relationship and Fig. 3(b) depicts the equilibrium flow-

density relation for two different desired time gaps. The two branches in each of the fundamental diagrams

are distinguished by the operating mode of the ACC controller. On the left branch ACC vehicles operate

in cruising mode, while at the right branch ACC vehicles operate in following mode. With the default

parameter td = 1.0s, the resulting flow reaches the capacity of 3050veh/h at a critical density of around

25veh/km, while a desired time gap of 1.5s leads to a capacity of 2142veh/h at a critical density of around

18veh/km. The critical density is determined by the gap threshold s f . The figures shows that the desired

time gap has a strong influence on the capacity.

The equilibrium solutions of the C-ACC model are the same as of the new ACC model, and both of them

display the fundamental diagram as Eq. (54) and Fig. 3.

4.2. Local stability of the ACC model

Local stability is only interesting for the ACC model. It can be shown with Eq. (18) that in following

mode u∗
Δv > 0 and u∗v < 0, thus the local stability condition (33) is always satisfied. This signifies that the

optimal acceleration model of (18) is unconditionally local-stable.

Fig. 4 shows the two roots of linear growth rate γ1 and γ2 calculated with solution (32). We can clearly

see from the figure that the real parts of the two roots are below zero.

4.3. String stability of the ACC model

String stability of the proposed ACC model is examined with the linear stability approach.



505 Meng Wang et al.  /  Procedia - Social and Behavioral Sciences   80  ( 2013 )  491 – 511 

0 20 40 60 80 100 120

20

40

60

80

100

120

140

Gap s (m)

S
pe

ed
 v

 (
km

/h
)

 

 

t
d
 = 1.0 s

t
d
 = 1.5 s

(a)

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

3500

Density ρ (veh/km)

F
lo

w
 q

 (
ve

h/
h)

 

 
t
d
 = 1.0 s

t
d
 = 1.5 s

(b)
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4.3.1. String stability threshold
To find the string stability threshold, we evaluate the gradients of u∗ (18) at equilibria and the derivative

of equilibrium speed in (53) as:

u∗s =
2c2(2 + ηtd)

η2t2
d

, u∗Δv =
2c1

η
e

s0
se , u∗v = −

2c2 (2 + ηtd)

η2td
, v′e(se) =

1

td
(55)

The stability condition (45) gives the following criteria to guarantee string stability:

2c1td
η

e
s0
se + c2(

2

η2
+

td
η

) ≥ 1 (56)

Equation (56) gives the following properties of model parameters on the string stability:

• Increasing safety cost weight c1 will stabilise homogeneous flows. Microscopically, a larger c1 leads

to a higher sensitivity to the relative speed and thus a more anticipative driving style, since relative

speed reflects future gaps, which is a simple form of anticipation (Treiber & Kesting, 2010). This

explains the stabilisation effects of increasing c1.

• Increasing efficiency cost weight c2 will stabilise homogeneous flows. A larger c2 means that the

controller has a higher sensitivity to the deviation from the desired speed. Notice that the maximum

acceleration is proportional to c2 in Eq. (19), a larger c2 means a more responsive agile driving style,

which tends to suppress string instabilities (Treiber & Kesting, 2010). However, physical constraints

of vehicles limit the choice of too large c2, i.e. increasing c1 from default value from 0.001s−2 to

0.002s−2 with other default parameters already changes the maximum acceleration from 2.5m/s2 to

5m/s2.

• Increasing the discount factor η will destabilise traffic. Notice that a larger η implies a shorter antic-

ipation horizon 1
η
, or in other words a more short-sighted driving style. A controller only optimising

its immediate situation favours string instability.

• Increasing the desired time gap td will increase the left hand side of the inequality (56), which implies

more stable flow. A larger td tends to suppress string instability by following with a larger distance at

equilibria.

Fig. 5 shows thresholds of stability and instability with different parameters in a two-dimensional pa-

rameter plane. The area above the line is string-stable under those parameter settings, while the area below

the lines is string-unstable. The stabilisation effects of the parameters are clearly seen.

4.3.2. Convective instability
With Eq. (38), the coefficients of the quadratic equation for the complex growth rate γ of the ACC model

are specified:

p(k) =
2c1

η
e

s0
se (1 − e−ik) +

2c2 (2 + ηtd)

η2td
, q(k) =

2c2(2 + ηtd)

η2t2
d

e−ik (57)

The first and second order derivatives of p(k) and q(k) can be obtained straightforwardly.

The linear stability analysis framework enables one to draw the linear growth rate and the propagation

velocities of disturbance for the ACC model as a function of wave number under equilibrium speed of 54

km/h, as depicted in Fig. 6. Numerically, we can find the dimensionless wave number k0 corresponding to

the maximum growth rate with the argument (49), which is 0.082 in this case. The physical wavelength is

(se + l)2π/k0 ≈ 1.5km and the number of vehicles per wave is around 2π/k ≈ 77 vehicles. The maximum

growth rate is 0.0028s−1 (the red point in the Fig. 6(a)), which is a slow growth implying that it may take

some time for an small disturbance grows to traffic breakdown (Treiber & Kesting, 2010). The phase and

group velocity corresponding to this maximum growth rate are −16km/h and −11km/h respectively, with
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Fig. 5. Stability region in a two-dimensional parameter plane of c1 and td with (a) different c2 and (b) different η, under equilibrium

speed of 72 km/h. Other parameters are default values.

negative sign indicating the propagation direction is against vehicle travelling direction, as depicted in Fig.

6(b).

Fig. 7(a) and 7(b) show the phase, group and signal velocities as a function of equilibrium speed and

density respectively. Since traffic is always string stable in cruising mode, traffic flow is always stable

below the critical density of ρc1 = 1000/(s f + l) ≈ 25veh/km. As long as the density is higher than the

critical density ρc1, traffic becomes absolutely unstable cs+ > 0 and cs− < 0, with disturbances travelling

both upstream and downstream. When the density increases to another critical density ρc2 ≈ 42veh/km,

the traffic becomes convectively upstream unstable, with disturbances travelling upstream only. When the

density increases further to above another critical density ρc3 ≈ 96veh/km, the traffic becomes stable again,

which is the so-called restabilisation effect (Treiber & Kesting, 2010). With the default parameters, the ACC

model displays absolute and convective upstream instability, which is different from human drivers (Treiber

& Kesting, 2010; Wilson & Ward, 2011).

Fig. 7(c) and 7(d) show the spatio-temporal evolution of the system using the analytical disturbance

function of 48 with different equilibrium speeds of 48km/h (density of 52veh/km) and 72km/h (density of

38veh/km). We can clearly see from the figure that:

• at equilibrium speed of 48km/h, the initial disturbance travels upstream, while at equilibrium speed

of 72km/h, disturbance travels both upstream and downstream.

• absolute instability grows faster in amplitude, which can be see from the ranges of the speeds contour

plots.

• the centre of the disturbance travels with group velocity and each signal wave travels with phase

velocity.

• two signal velocities limit the region of disturbance in the spatio-temporal plane.

When choosing different parameters, one can get different stability characteristics of the model. Fig. 8(a)

shows the one dimensional parameter safety cost weight c1 and the resulting stability at different equilibrium

speeds at following mode with other default parameters. If we increase c1 to a slightly higher value than the

default one, traffic will become convectively upstream stable and stable in following mode, which is similar

to human-driven vehicular traffic. When choosing c1 higher than 0.12s−2, the traffic is always stable, while

c1 lower than 0.06s−2 leads to co-existence of convective downstream, absolute and convective upstream

instability in the congested branch of the fundamental diagram.



508   Meng Wang et al.  /  Procedia - Social and Behavioral Sciences   80  ( 2013 )  491 – 511 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

−4

−2

0

2

4

6

x 10
−3

wavenumber k 

G
ro

w
th

 r
at

e 
R

e(
γ +

) 
(1

/s
)

Maximum growth rate

(a)

0 0.05 0.1 0.15 0.2 0.25
−22

−20

−18

−16

−14

−12

−10

−8

−6

wavenumber k

P
ro

pa
ga

tio
n 

ve
lo

ci
ty

 (
km

/h
)

 

 

c
p

c
g

k
0

(b)

Fig. 6. (a) Growth rate of the more unstable branch γ+ as a function of wave number under ve = 54km/h ; (b) phase and group velocity

as a function of wave number under ve = 54km/h of ACC model with default parameters.
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4.4. Destabilisation effect of the C-ACC model
The local stability is no longer of interest for the C-ACC controller, since we will consider at least three

vehicles in the analysis. For the optimal control of C-ACC controller (23), the gradients are given:

u∗sb
= −2c2(1 + ηtd)

η2t2
d

, u∗Δvb
= −2c1e

s0
se

η
, u∗vb
=

2c2

η2td
(58)

while u∗s, u∗
Δv, u∗v and v′e(se) remain the same as in Eq. (55).

Since u∗v + u∗vb
=< 0, condition (34) gives the following criteria for string stability of C-ACC controller:

c2

η2
(1 + ηtd) ≥ 1 (59)

The stabilisation effect of the C-ACC controller with reference to the ACC controller is governed by

(46). With the virtue of the gradients in Eq. (58) and the analytical criteria for the stabilisation effect of

cooperative systems (46), we found that:

• u∗sb
< 0, which stabilises traffic.

• u∗
Δvb
< 0, which destabilises traffic.

• u∗vb
> 0, which destabilises traffic.

The total stabilisation effect v′e(se)
(
u∗
Δvb
− u∗vb

)
− u∗s

2
= − 2c1

ηtd
e

s0
se − c2

η2t2
d
< 0, which implies that the C-ACC

controller destabilises homogeneous traffic flow compared to the ACC controller. With default parameters,

|u∗
Δvb
| is much larger |u∗sb

| and |u∗vb
|, thus this term deteriorates string stability most.

To classify the convective instability, we need to specify the coefficients of the quadratic equation (36)

as:

p(k) = u∗Δv(1 − e−ik) + u∗Δvb
(eik − 1) − u∗v − u∗vb

eik , q(k) = u∗s(1 − e−ik) + u∗sb
(eik − 1) (60)

The first and second order derivatives of p(k) and q(k) can be obtained straightforwardly.

The linear stability analysis framework enables us to calculate signal velocity at different equilibrium

speeds and different parameter settings. Fig. 8(b) shows the resulting stability/instability types of one

dimensional parameters. It is quite clear that the C-ACC controller (23) is much more unstable compared

to the ACC controller in Fig. 8(a). Homogeneous traffic flow is always unstable in following mode, and the

instability is of absolute and convective downstream type.

As a last remark, the analytical stabilisation effects of (46) give guidance on how to improve the stability

of C-ACC systems. If one can decrease u∗sb
and u∗vb

while increasing u∗
Δvb

, the string stability of the C-ACC

controller will be enhanced. This can be achieved by choosing a different joint cost function.

5. Conclusion

We have proposed a control framework to model driver support and cooperative systems, under which

the supported driving process is recast into a receding horizon optimisation problem. The control framework

is generic such that different objective functions can be minimised with flexible system state specifications.

To show the applicability of the model, we proposed an optimal ACC and an optimal C-ACC controller.

The ACC controller has an explicit safety mechanism to prevent collisions and generates plausible car

following behaviour.

To gain insights into the macroscopic behaviour of the driver assistance and cooperative systems, we

extended the linear stability analysis approach to a cooperative driving environment and derived the string

stability criteria for cooperative systems. We analytically quantified the stabilisation effect of cooperative

systems with reference to non-cooperative systems.

We found that the proposed ACC model is unconditionally local-stable, and with careful choice of pa-

rameters, the ACC model only displays convective upstream instability at following mode, which is similar
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Fig. 8. Stability plot with safety cost weight c1 and equilibrium speed of (a) ACC model; (b) C-ACC model. S: Stable region; U:

region with convective Upstream instability; A: region with Absolute instability; D: region with convective Downstream instability.

.

to human car-following models. Increasing safety cost weight, efficiency cost weight and desired time

gap will stabilise traffic, while increasing the cost discount factor (decreasing the anticipation horizon) will

destabilise traffic. The C-ACC model which optimises the situation of both the controlled vehicle and its fol-

lower results in convective downstream and absolute instability type, as opposed to the convective upstream

instability type observed in human-driven traffic and the ACC model.

The control framework and analytical results provide guidance in developing controllers for driver as-

sistance systems and give insights into the influence of ACC and C-ACC systems on traffic flow operations.

Future research is directed to investigation of the flow characteristics with different penetration rate of

driver assistance systems and the collective behaviour of platoon controller where multi-vehicle are con-

trolled simultaneously.
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