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De vlieger

Mijn vlieger gaat naar boven,
Wat heeft de wind veel kracht!
Wie zou het ooit gelooven,
Ik trok, met al mijn magt;

’k Heb zoo veel touw gekregen
En ’t is er aan besteed;
Hij is zoo hoog gestegen,

Dat ik hem naauwlijks weet.

Ik moet mijn’ vlieger binden,
Want anders reis ik meê;

Waar zal men mij dan vinden,
Hij trok mij wis in zee! -

’k Zal op mijn’ vader wachten,
Dat die hem naar zich trekt;
Ik heb mijn kleine krachten
Niet vruchteloos ontdekt. -

De wind heeft veel vermogen,
Wie kan hem tegen gaan? -

Wij zien hier, met onze oogen,
Toch niets van zijn bestaan! -

Dit is nooit aangewezen;
God geeft die kennis niet,

Wiens almagt elk moet vreezen,
Die ook den wind gebiedt. -

Johannes Hazeu Cornelisz

”Kinderspelen, in leerzame gedichtjes”
Ten Brink en De Vries, Amsterdam z.j.

2e druk, 1837.
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Preface

When I first heard of energy generation using large controlled kites that go up
thousands of feet, I was struck by a feeling of disbelief. It is simply hard to imagine
what such a system would entail. The mental picture I had of a kite was that
of a small, square shaped toy which was fragile and crashed every time the wind
changed. During the course of my master thesis and later, the work presented
in this dissertation, I came to realize the real potential of kites. If anything, my
hopes are to communicate this realization to the reader as much as I can.

The odd thing is that no one bats an eyelash at the large commercial aircraft
that land at Schiphol airport every three minutes with pinpoint precision. We have
become both accustomed and dependent to this sight that even a brief period of
stagnation in air transport seems to throw the whole world into disarray. It is
a testament to the phenomenal achievements of the aviation industry that we
have become so blase about our dependence on those planes landing every three
minutes. We simply assume they will. We can, because they always do!

But when you are at the beach, flying a kite with airplane controls, it doesn’t
take long for a crowd to gather and to look on in amazement. My personal
experiences at conferences were much the same. The concept of a kite hanging
in the sky while you steer it from left to right using a flightstick is something
most people have never seen. This very fact shows, with undenyable clarity, the
difference in public awareness with regard to airplanes and kites. I myself was a
victim of that discrepancy in awareness as well until I started to look at kites as
an engineer with an open mind.

During my work, I have found no reason why controlled kites should be so rare.
From an engineering point of view, a kite is a tethered airplane which adheres to
the same laws of physics as airplanes do. The applications for controlled kites are
abundantly clear and very diverse. As a result of my publications and videos on
the internet I have received a great deal of interest from not just kite companies,
but also other large companies who often inquired about the use of kites for a
particular application which I myself had never thought of. The potential for
kites is now more obvious to me than ever.
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As far as scientific research goes, kites have seen very little so far. This makes
the subject of this thesis somewhat of an odd duck. This has its advantages
and disadvantages. An advantage is that no matter what you do, it is almost
always new. Kites present a largely unexplored field with a lot of potential for
researchers. The disadvantage is that, during my work, almost no one was doing
similar work which creates an atmosphere of isolation. It makes it more difficult
to be accepted to conferences and to get papers published. It seemed that with
every presentation, I had to tell the story of the potential of kites all over again
in order to convince my audience. However, in all honesty I have to say that I
have greatly enjoyed doing so.

I am most grateful to my promotor, Prof. Dr. Wubbo J. Ockels, for the
opportunity to pursue this research project. His vision is what has made this
work possible in the first place and his input during the course of my PhD track
has been most valuable. I also would like to thank Dr. Roland Schmehl for his
patience in proof reading all that I wrote and his great insight which has helped
me a great deal. I am also most grateful to Prof. Dr. Ir. Bob Mulder for believing
in this, and I quote: ”exotic project” enough to be involved in such an intense
manner. His input has had a significant impact on this work. Lastly, without
the support and organizational skills of Nana Saaneh, management assistent at
ASSET, none of us at ASSET would be able to do what we do.

Much of this work has been made possible by the sponsorship of The Rotter-
dam Climate Initiative, the University of Groningen, the Town of Delft, Gasunie,
E-on, Fugro, Energy Delta Institute, Stichting Shell Research, Prolyte products,
the Town and Province of Groningen and Energy Valley. Without their support,
the Laddermill project would not even exist. I owe them my gratitude.

For providing support for MSC ADAMS, I am most thankful for Ir. Chris
Verheul of Sayfield International. I have thoroughly enjoyed working together
with Chris and I would like to thank him for all his effort. I am also thankful for
the help provided by Ir. Arend Schwab and Ir. Edwin de Vries on the multi-body
simulations. Furthermore, I am most appreciative for the excellent discussions
I have had with Peter Lynn of Peter Lynn Kites, Armin Harich from Flysurfer
and Dr. Henry Rebbeck of mutiny kites (formerly of FlexiFoil) for sharing their
knowledge and experience in the kite industry. Their insights have been most
helpful. I also owe a debt of gratitude to Mike Lam and Corneilla Lam of Lam
Sails in Hong Kong for producing some of the kite designs that were devised. I
would also like to thank Dr. Keith Alexander of the Canterbury University in
Christchurch, New Zealand for his hospitality and for sharing his insights with
me.

During my work I have had the good fortune to work together with a large
number of students. I have found the cooperation with students to be both inspi-
ring and enjoyable. I am especially grateful to the master students I was given the
opportunity to supervise. Edwin Terink, Stefan de Groot, Aart de Wachter, John
van den Heuvel, Joep Breuer and Gert-Jan Spierenburg have all made valuable
contributions to this thesis. I am also grateful for the cooperation with Lillian
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van Emden, Alberto Saez, Jan Muit, Thomas Frenkel and Rene Oudeman for all
their work during their graduation projects. Lastly I want to especially mention
Roland Verheul and express my gratitude for all his support during the course of
my thesis work.

I would like to thank both my parents Henk en Ineke Breukels for all their
incredible support during my time in Delft. Without them, everything would
have been different. The last words of gratitude go to my sweet girlfriend Judith,
for her love, her patience and her unending enthusiasm whilst listening to me
rambling on about the wonderful world of kites.

Jeroen Breukels 2010
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Summary

An Engineering Methodology for Kite Design

Kites have existed for nearly 3000 years [Fadul, 2009], yet they have seen little
serious attention from the scientific community. Kites have been of paramount
importance during the development of powered flight in the nineteenth century.
By the beginning of the twentieth century, the widespread attention of the scien-
tific community has made it possible for aeronautical science and technology to
grow into a serious field of study. The scientific approach to the development of
aircraft has enabled the technology to grow into what it is today. For kites, such
a growth has not taken place.

Kites are still designed mostly by a sort of trial-and-error process. For the
current application of kites such as kite surfing and other sports-related activities,
this development process has proven to produce good results. This is possible due
to a number of factors such as the availability of new materials and the fact that
kites are cheap to make. building a large number of prototypes and testing them
is not nearly as big of an investment as with conventional airplanes.

New industrial applications for kites have seen an increase in attention in the
last decade. Systems for energy generation and ship propulsion are now under
investigation at over 40 institutions and companies all over the world. Almost all
of these groups are using the conventional surf kites as their platform. But the
industrial application of kites puts far more stringent requirements on these kites.
Not only do they need to be light and cheap, requirements governing safety and
performance are far more complex than for the conventional kite surfing kites.

Using the old trial-and-error design method to design these industrial kites
would lead to an unstructured and uncontrolled process which would yield a large
amount of prototypes. This is undesirable. For industrial kites, an engineering
methodology for kite design is required. A structured design process akin to the
engineering of any other complex system.
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The methodology proposed in this thesis is comprised of the following items.

• Knowledge on the dynamics, structure and design of kites and kite-related
systems.

• Engineering tools for kite design. These tools are required to be intuitive
and resource-friendly.

• Reproducable measurements in order to both further the understanding of
kites and validate the design.

In order to build the basic knowledge of the dynamics of kites, first the most
simple representation is evaluated. The rigid body model of a kite neglects the kite
flexibility. Two rigid body models are developed and evaluated. The rigid body
models show show excellent agreement with regard to each other. Basic questions
of stability can be adressed using this type of model. Furthermore, these rigid
body models are comparable to the models for conventional aircraft. This in turn
allows for a comparison between kites and airplanes. Such a comparison is made
on the basis of the eigenmotions of both a conventional airplane and a kite.

The flexibility of a kite is one of the most important differences with regard
to conventional aircraft. The flexibility of a kite is something to be embraced. It
allows the kite to adjust and deform while in flight. Gusts and other disturbances
are compensated for by gentle deformation, not a sudden departure from equi-
librium. Therefore, for a highly flexible kite, the flexibility plays an important
role in its stability. The deformation allows the kite to deal with disturbancees
in a very elegant manner. The flexibility does, however, pose a challenge for the
designer. In order to simulate a flexible kite, a multi-body system based approach
is used.

The kite simulation toolbox is a numerical simulation tool for flexible kite
structures. The simulation tool is built as a toolbox which is easy and intuitive
to use. Keeping this tool accessable is an important requirement because current
kite companies do not have the financial resources to accommodate higly com-
plex software running on a super computer. The current state of fluid structure
interaction technology (coupling a finite element mesh to a computational fluid
dynamics mesh and simulating their interactions) is such that a simulation of a
complete kite is not feasible at this time (Groeneboom [2010]) due to the immense
complexity and the massive amount of computational resources it would require.

The kite simulation toolbox uses three building blocks to build kite models:
(1) Tethers, (2) inflatable beams and (3) Foils. These building blocks can be
used to build any kite configuration. The cables are discretized by using rigid
elements, joint together by hook joints. A general force on each element accounts
for the aerodynamic drag on the cable. The tubes are built out of rigid cylindrical
elements joint together by spherical joints. A three dimensional torque spring acts
on these joints. The stiffness of this spring is governed by an algorithm which
takes into account the beam radius, internal pressure and local deflection. The
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algorithm is based on data obtained through beam bending tests. The foils are
modelled as chordwise wires connecting every leading edge beam element with
a trailing edge wire element. Lift and drag forces act on this chordwise wire.
the aerodynamic forces are governed by an algorithm which takes into account
the angle of attack, airfoil thickness and camber and outputs the appropriate
aerodynamic coefficients. The algorithm is based on a CFD analysis of a database
of airfoils.

Model validation was performed. First, the three building blocks are valida-
ted individually. The 3D canopy shape is validated using the data from a wind
tunnel test at the University of Stuttgart. In a large 6.5m diameter windtunnel,
an inflated kite was tested. Using photogrammetry, the shape of the wing was
recorded. This shape was subsequently compared to the simulated shape. The
comparison showed good agreement. Lastly, a number of surf kites were flown in
loops and the forces on the lines, as well as the absolute velocity of the kite, were
measured and compared to the simulation. Again, the comparison showed good
agreement.

With the knowledge growing, the measurements stacking up and the simula-
tion tools in place, a number of case studies are presented to show the benefit
of this engineering methodology for kite design. First, the principle of effective
cable length is introduced, showing that for very long tethers, only the top part
directly influences the kite. Lateral motion of the kite results into lateral motion
in the tether which is dampened out downwards along the tether.

The second case is that of a cornering surf kite. Conventional surf kites are
flown on four lines: two power lines at the leading edge of the tips and two
steering lines at the trailing edge of the tips. Pulling one of the steering lines
makes the kite yaw (or corner). Exactly what mechanics are behind the reason
why it corners is the subject of a fierce debate among kite designers and kite
surfers. The engineering methodology of kite design presented in this thesis offers
a new perspective on this issue. By simulating a cornering kite, the resulting data
gives insight into a large array of parameters for every position on the kite. From
the simulation it is concluded that the yaw motion of a kite as a result of a force
on the steering line is the result from an asymmetric deformation of the entire
kite. This deformation results in a yawing moment. The case study continues
to explore what effects the cornering performance of a kite by comparison to an
adapted kite.

The third case study is an investigation to the existing kiteplane design using
the rigid body model. During flight testing, the kiteplane is found to have an
unstable pendulum motion. The relation between lateral area and pendulum
stability is investigated and from the analysis, a number of design changes are
proposed. These design changes eventually lead to a new design which is built and
tested. The flight tests of the new kiteplane show increased pendulum stability.

The thesis concludes that an engineering approach to the design of kites leads
to a greater understanding and a more structured design process. It was shown
that the engineering approach is capable of providing answers to existing questions
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in the kite world. Both the rigid- and multi-body models are applicable in the
design and analysis of kites. Furthermore, for a continued development of kites it
is essential that cooperation between academics and kite designers is intensified.
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Nomenclature

Latin Symbols

x State vector

c Mean aerodynamic cord length m

y Mean aerodynamic cord spanwise location m

R resultant aerodynamic force N

A inertial acceleration ms−2

a Azimuth angular velocity s−1

a scaling factor for airfoil moment [-]

B inertial angular momentum N·m·s
b Bridle angular velocity s−1

b Wing span m

c Cord length m

cc Center cord length m

CD Drag coefficient [-]

CL Lift coefficient [-]

Cm Pitching moment coefficient evaluated at center of gravity [-]

cr Root cord length m

ct Damping constant N·s/m
ct Tip cord length m

CDt
Tether drag coefficient [-]
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Cmac
Wing pitching moment coefficient evaluated at aerodynamic center [-]

CNα
Derivative of wing normal force coefficient with respect to α [-]

CNHTα
Derivative of horizontal tail normal force coefficient with respect to α [-]

CNHTδe
Derivative of horizontal tail normal force coefficient with respect δe [-]

D Drag N

Db dimensionless time [-]

Dc dimensionless time [-]

DT Tether drag force N

dT Tether diameter mm

DHT Horizontal tail plane drag N

DV T Vertical tail plane drag N

E E-modulus N/m2

EB Body reference frame [-]

EE Earth reference frame [-]

ES Stability reference frame [-]

ET Tether reference frame [-]

F Force N

F tether force along XS-axis N

f Frequency Hz

f Longitudinal tether velocity ms−1

fm Measured longitudinal tether velocity ms−1

Ftip Cantilever tip force N

FZ Gravity force N

Faxial Axial force on inflated tube N

Fext sum of external forces N

G tether force along YS-axis N

g Gravitational acceleration ms−2

H tether force along ZS-axis N

h Kite altitude m

I Inertia moment kgm2

iHT Horizontal tail plane angle of incidence with respect to Xa rad

kt Spring constant N/m

L Aerodynamic rolling moment about XS N·m
L Lift N

LT Tether lift force N

lT Tether length m
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lt tether length m

LHT Horizontal tail plane lift N

lHT Distance between acw and acht m

LV T Vertical tail plane lift N

lV T Distance between wing and vertical tail plane aerodynamic center m

M Aerodynamic pitching moment about YS N·m
M Bending moment Nm

M Mach number [-]

m Kite mass kg

mg Inertial kite mass excluding confined air kg

mk Inertial kite mass including confined air kg

Mw Wrinkling moment Nm

N Aerodynamic yawing moment about ZS N·m
P Motion period s

P Pendulum period s

P mechanical power N·ms−1

P tether moment about XS-axis N·m
p Pressure Nm−2

p Roll rate rad/s

peff Effective internal pressure Nm−2

Q tether moment about YS-axis N·m
q Pitch rate rad/s

qD Distributed drag force on tether Nm−1

qg Distributed gravity force on tether Nm−1

Qi Generalized force for generalized coordinate i N

qi Generalized coordinate i m

R Specific gas constant m2s−2K

R resultant aerodynamic force N

R tether moment about ZS-axis N·m
r Beam radius m

r Radius m

r Yaw rate rad/s

rt radius of tether cross section m

S Lifting surface area m2

s Coordinate along tether path m

s Laplace variable [-]
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Sw Wing surface area m2

SHT Surface area of horizontal tail plane m2

SV T Vertical tail plane surface area m2

T Kinetic energy J

T Temperature K

T Torsional moment Nm

t Time s

t membrane thickness m

TG Tether force at the ground N

Ti Tether force at element i N

TK Tether force at the kite N

Tw Wrinkling torsion moment Nm

T0.5 Time to damp to half the amplitude s

u velocity in XS-direction ms−1

V Airspeed of wing ms−1

V Potential energy J

v Deflection m

v velocity in YS-direction ms−1

V0 Undisturbed flow velocity ms−1

Va aerodynamic velocity ms−1

Vapp apparent velocity ms−1

VC Crosswind velocity ms−1

Vk Kinematic velocity ms−1

VL Tether roll-out velocity ms−1

VW Wind velocity ms−1

V∞ Undesturbed flow velocity ms−1

vcollapse Deflection at collapse m

VHT Airspeed of horizontal tail plane ms−1

VWeff
Effective wind velocity in crosswind motion ms−1

W Weight N

w velocity in ZS-direction ms−1

Wx wind in XE direction ms−1

Wy wind in YE direction ms−1

Wz wind in ZE direction ms−1

X Aerodynamic force in XS direction N

x Crosswind factor [-]
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x x coordinate m

xt x position of tether attachment in aerodynamic reference frame m

xta Position of tow point control mechanism in XS direction m

xac x position of aerodynamic center in aerodynamic reference frame m

Y Aerodynamic force in YS direction N

y Distance from the neutral line m

yta Position of tow point control mechanism in YS direction m

Z Aerodynamic force in ZS direction N

z Zenith angular velocity s−1

z z coordinate m

zt z position of tether attachment in aerodynamic reference frame m

zta Position of tow point control mechanism in ZS direction m

Greek Symbols

α Angle of attack rad

α0 Angle of attack at CL = 0 rad

αe Angle between XB and XS rad

αT Angle of apparent wind with respect to the tether orientation rad

β Elevation angle rad

βG Tether elevation angle at the ground rad

βi Elevation angle of tether element i rad

βK Tether elevation angle at the kite rad

χk kinematic yaw angle rad

χt Tether rotation angle around the tether longitudinal axis rad

δ Lift vector tilting angle rad

δe Elevator deflection angle rad

δr Rudder deflection angle rad

ǫ Downwash angle at the horizontal tail plane rad

Γ Circulation rad

Γ Dihedral angle rad

γ Path angle of apparent wind with horizontal rad

γa aerodynamic pitch angle rad

γk kinematic pitch angle rad

κ body pitch angle w.r.t. tether rad

λ Taper ratio [-]
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λ eigenvalue s−1

ΛLE Leading edge sweep angle rad

µ Poissons ratio [-]

µa aerodynamic roll angle rad

µb dimensionless mass [-]

µc dimensionless mass [-]

µk kinematic roll angle rad

Ω angular velocity rad/s

ω0 natural frequency Hz

φ Roll angle rad

φ Torsion angle rad

ψ Yaw angle rad

ψt tether azimuth angle rad

ρ Air density kgm−3

ρT Tether density kgm−3

τ Nondimensional time variable [-]

τ body roll angle w.r.t. tether rad

θ Bending angle rad

θ Pitch angle rad

θt Tether angle with respect to the vertical in pendulum motion rad

ε error m

ϑ Bridle angle rad

ξ body yaw angle w.r.t. tether rad

Abbreviations

2D Two Dimensional

3D Three Dimensional

ac Aerodynamic Center

ADAMS Automatic Dynamic Analysis of Mechanical Systems

AR Aspect Ratio

ASSET Aerospace for Sustainable Engineering and Technology

CFD Computational Fluid Dynamics

cg Center of Gravity

DOF Degrees of freedom

FEM Finite Element Method
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FSI Fluid Structure Interaction

GPS Global Positioning System

GUI Graphical User Interface

GUM General Use Macros

HAWP High Altitude Wind Power

KPT Kiteplane Toolbox

L/D Lift over Drag ratio

LEI Leading Edge Inflatable

LE Leading Edge

MAC Mean Aerodynamic Cord

ta Tether atachment points

TE Trailing Edge

TKC Toolkit Creator

UDE User Defined Entity

VLM Vortex Lattice Method

Other Symbols

TBA Transformation matrix from reference frame A to reference frame B

I mass matrix of inertia

rθ Position vector of the hinge line through the bridle attachment points

rcg Position vector of the center of gravity

rta position of the tether attachment point w.r.t. cg in body axes

Vcg Velocity vector of the center of gravity

Mext sum of external moments

FAa Aerodynamic force vector in reference frame A

Q Generalized forces vector

MA
a Aerodynamic moment vector in reference frame A

ωEB
Rotation vector of body reference frame

ωET
Rotation vector of tether reference frame
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CHAPTER 1

Introduction

1.1 Background

Compared to kites, airplanes (1903) and hot air balloons (1783) are recent inven-
tions. Today, when thinking of flying, one envisions a seat on a Boeing 747. But
in historical terms, these means of air travel have only just become available to us.
Kites date back around 3000 years. That means that in all the time humans are
able to create objects that fly, over 92% of that time kites were the only option.

In many respects, airplanes and gliders are all spin-off technology from kites.
Louis Ferber (1862 - 1909), aviation pioneer and french army officer, stated that
an airplane was nothing more than ”an unanchored kite”. The statement may
somewhat oversimplify the specifics, but in its essence he was right. Kites and
airplanes share many physics principles and challenges. Knowing this, one might
wonder why today, the design of airplanes is an exact and meticulous science while
the design of kites is mostly done by empirical data and rules of thumb.

The reason for this peculiarity appears mostly market driven and lies in the
neccesity of a design process. The design process of airplanes quickly became a
very costly endeavor. Suddenly, a market opened where more and more stringent
requirements were imposed upon on the system. This lead to an ever growing
complexity which made a well-planned design process a necessity. Especially
today, designing a new aircraft will cost many millions, if not billions of euros.
The application of airplanes quickly became very serious. Public- and freight
transport had put stringent requirements on aircraft and made the margins for
error extremely small. With such a system, close control over the design proces
is imperative in order to ensure the fulfilment of its requirements.
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For kites, the more industrial applications haven’t yet materialized on a large
commercial scale. Even though kites were used in war scenarios and scientific
experiments, most kites were simply flown for recreational purposes. Kite fabrics,
rods and lines were fairly cheap. One could easily afford to try out a large number
of different designs in order to find one that flew well. What exactly constituted
”flying well” was left largely undefined. However, for recreational purposes such
an approach may well still be favorable. It allows a natural evolution and is
by far the cheapest method. One might also say that, because most kites are
unmanned, there is no direct danger for loss of life in the event of a crash. But
such a statement quickly becomes a dangerous one. Large and powerful kites put
a large amount of tension in the lines. Careful consideration is required. With the
advent of sports such as kite surfing, more stringent requirements were introduced.
Materials became stronger and lighter which allowed for faster and more powerful
kites.

The development of kites as a research tool for aviation and war applications
in the 19th and early 20th century can be considered the first evolution of kites.
The advent of kite surfing with its fast and powerful kites was to be the second
kite evolution. And even though these kites have a much higher performance than
the first evolution kites, they are still mostly designed like they were in the first
kite evolution. The proces of itterative design benefitted from better materials
and other enabling technologies to yield better kites.

Nowadays, we find ourselves on the brink of the third kite evolution where
kites are being used for industrial applications. These kites are fast and high per-
formance designs which use computer control to fly them as if they were aircraft.
Applications range from energy production to transportation and they put very
stringent requirements on the design.

1.2 Thesis objective

This thesis proposes a scientific approach to the design of kites in order to have
more control over the proces and the eventual outcome. The objective of this
thesis is threefold.

• To build the knowledge on the dynamics, structure and design of kites and
kite-related systems.

• To develop the engineering tools for kite design. These tools are required to
be intuitive and resource-friendly.

• To advocate proper measurements in order to both further the understan-
ding of kites and validate the design.

The aim of this work is to benefit the kite designer directly. Kite companies
are not large multi-nationals. And therefore, overly complex and resource-intense
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software tools are avoided. The tools are designed to be easy to use and to run
on a conventional desktop computer1.. Furthermore, the knowledge on rigid body
kite dynamics leans heavily on existing airplane dynamics and the measurement
techniques are such that they do not require an enormous investment.

1.3 Thesis structure

The structure of the thesis is as follows. Chapter 2 contains the preliminaries to
the work in this thesis. It starts with a discussion on the development history of
the kite versus the conventional airplane. The chapter continues to explain the
current kite market and the nature of the research done in this industry. Next,
the subject of kites and energy generation is briefly explored. And lastly, Previous
research into kites and kite-related fields is concisely laid out.

Chapter 3 Explores the rigid body dynamics of kites. The outlines are sket-
ched of a kite model based on Newton’s second law and a kite model based on
Lagrangian equations of motion. Next, a comparison is made between tethered
and untethered flight, based on the resulting eigenmotions. Lastly, the effects of
cable length on the eigenmotions of tethered flight are investigated.

Chapter 4 outlines the specifics of a numerical kite model based on multi-
body system dynamics. The chapter explains the toolbox nature of the model
and outlines the three main building blocks: cables, inflated tubes and foils. The
chapter concludes with a brief discussion on building the complete model.

Chapter 5 is a model verification for the model proposed in chapter 4. First,
the three building block models are compared separately to measured data. Next,
the shape of a three dimensional canopy is simulated and compared to measured
data obtained by performing a photogrammetry analysis on an inflated kite in
a large wind tunnel at the University of Stuttgart. Lastly, the simulated and
measured flight performance of conventional surf kites are compared.

Chapter 6 presents a selection of case studies, using the knowledge and tools
developed within this thesis. The chapter starts with a brief analysis of cable
dynamics and introduces the concept of effective cable length. Next, the numerical
model is used to investigate why a surf kite turns and what influences the cornering
performance. The questions surrounding the cornering of surf kites has seen
extensive debate among kite users and kite designers. This thesis proposes a
new view on why a kite turns, based on the knowledge and tools which were
developed. Lastly, the kiteplane comes under investigation using the rigid body
model of chapter 3. The (then) current design (Kiteplane 3) is evaluated and its
stability issues investigated. The model shows the same pendulum instability of
the kite, which was also observed in flight testing. The chapter concludes with
a number of design changes in order to stabilize the kiteplane. A new design

1Computer technology changes rapidly. With ” current desktop computer” a configuration
is meant with a 3Ghz Dualcore CPU and 4GB of RAM memory, running Windows XP
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(Kiteplane 4) was built and tested. Flight testing shows increased lateral stability
of the new design.

Chapter 7 ends the thesis with summing the conclusions and recommendations
which were obtained through the course of the thesis work.
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CHAPTER 2

Preliminaries

The purpose of this chapter is to give a short overview of the current state of
research in the fields of kites and kite related applications. Section 2.1 asks the
question: what is a kite? and proposes a definition. Section 2.2 is a recount of
the historical context of kites, especially in their relation to airplanes. Section 2.3
gives an overview of the kite industry, in particular the design proces. Section 2.4
focusses on one of the main applications of industrial kites: Energy generation.
Section 2.5 touches on previous kite research and related fields of study, while
section 2.6 closes this chapter with concluding remarks.

2.1 What is a kite?

As was stated in the previous chapter, the goal of this thesis is to develop an en-
gineering methodology for kite design. But what is a kite? What is its definition?
The Cambridge Dictionary gives the following:

An object consisting of a frame covered with plastic, paper or cloth that
is flown in the air at the end of a long string, especially for pleasure.

This definition confirms some of the preconceptions on kites this thesis will try
to dismantle. Nowadays, high-performance kites are not just flown for pleasure.
This thesis will show industrial applications where kites fulfill a more serious role
than simple entertainment. The Oxford Dictionary expands on this definition and
gives:

5



[From its hovering in the air like the bird.] A toy consisting of a
light frame, usually of wood, with paper or other light thin material
stretched upon it; mostly in the form of an isosceles triangle with a
circular arc as base, or a quadrilateral symmetrical about the longer
diagonal; constructed (usually with a tail of some kind for the purpose
of balancing it) to be flown in a strong wind by means of a long string
attached. Also, a modification of the toy kite designed to support a
man in the air or to form part of an unpowered flying machine (cf.
AEROPLANE 1).

The Oxford Dictionary does acknowledge the fact that kites can be used for
other things than entertainment. However, like the definition before, the kite
is seen primarily as a toy. It speaks of a ”modification of the toy kite”, clearly
indicating the primary use of a kite as it is perceived. This thesis will aim to show
that kites are not just toys. Large 50m2 kites generate a pulling force of up to
600kg in the current 20kW Laddermill prototype (see section 2.4) and performance
sports kites are now responsible for some of the highest sailing speeds. kites such as
these can hardly be called toys. In the 1828 Noah Webster’s American Dictionary,
the definition of a kite was given as follows:

A light frame of wood and paper constructed for flying in the air for
the amusement of boys.

Suffice it to say that nowadays, girls enjoy the flying of kites as well.
From the survey of dictionaries as to the definition of a kite it became apparent

that, because of the current state of kites and kite technology, a new definition is
in order. This definition should not imply that a kite is only or mostly a toy. A
kite is a heavier-than-air device which stays aloft by generating an aerodynamic
force which is equal or greater than the combined mass of the kite and the tether,
as well as the vertical component of the tether drag. Another essential aspect of a
kite is that it is tethered to the ground. Its velocity vector is a vector sum of the
wind velocity vector and its own velocity vector with regard to the fixed anchor
point. Furthermore, a kite is able to achieve sustained flight for a certain period
of time. This period of time is dependent, amongst other things, on its stability.
The construction of a kite is not necessarily a frame with tensioned fabric, nor is
it usually made of wood and paper. Considering these points, a new definition
for kites could be formulated as:

A kite is a tethered heavier-than-air device which is able to achieve
flight by generating a resulting aerodynamic force which is countered
by the mass of the device and the tension force in the tether.

This definition is broader than the definitions obtained from the three afore-
mentioned dictionaries and includes the type of industrial and sports performance
kites which are covered in this thesis.
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2.2 A brief history of kites

Kites have been known to man for nearly 3000 years [Fadul, 2009]. Throughout
their history, kites have played a significant role in arts, religion and science. Kites
are believed to have been invented in Asia. The first Chinese stories of kites are
of Mo Tzu and his wooden kites amusing the crowd. Later tales tell of General
Han Hsin who used kites to measure the distance to enemy fortifications. The
invention of kites has an air of mystique to it. It is unknown how the invention
came to be. Peter Lynn, one of the leading kite designers in the world wrote
an interesting article in his newsletter of April 2005. Lynn states that for every
invention, there is a gradual path leading up to the discovery. For instance, a
boomerang was invented by aboriginals first throwing sticks at prey. They then
discovered that the shape of the stick had an effect on its flight path. Gradually,
the discovery was made that for certain shapes, the boomerang could actually
swoop back towards the person who threw it. Similar paths can be postulated for
other human inventions such as bows, needles and fishhooks. But for kites, such a
gradual path is unknown. A kite is subject to a delicate balance of aerodynamic
and gravitational effects. The system of forces is only stable for a limited number
of combinations of shape, flexibility and bridle line positions. Without a proper
understanding of its basic principles, the invention of a stable kite comes down to
blind luck. Lynn states that due to the immensely large amount of permutations,
it is somewhat of a miracle that kites were invented at all.

Kites only became known in the western world in the 13th century when
Marco Polo came back from the far-east and described devices made of cloth,
big enough to carry a man aloft. Man carrying kites were especially popular in
Japan, centuries before the invention of airplanes. In the period from the 15th
century to the beginning of the 20th century, kites became popular in the western
world as well. Next to balloons, they were the only flying objects available. Leo-
nardo DaVinci discovered in the 15th century how to span a river using a kite. In
1749, Scottish scientist Alexander Wilson used several kites, attached in a row, to
measure and compare air temperatures at different altitudes. Benjamin Franklin
used kites to pull boats and carriages and to experiment with electricity. And
in 1901, Gugliemo Marconi used a kite to help transmit the first trans-Atlantic
wireless telegraph message. Kites had become an important aerial platform for
a large number of scientists. But even though kites have been tools in a num-
ber of scientific endeavors, they were never really subject of close examination
themselves.

2.2.1 The development of the flying machine

The Wright brothers are often regarded as the first to invent the airplane. Even
the Wright brothers themselves would disagree with this notion. They were the
first to invent a successful airplane. But as they admitted themselves: ”We stood
on the shoulders of giants”. The invention of the airplane goes back as far as the
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work of Leonardo DaVinci. However, in that time, human flight was envisioned to
mimic bird flight. Large flapping wings were considered the way to carry a man
aloft. The first to ever consider a flying machine in the conventional configuration
as we know it today was sir George Cayley. In 1804, in a stroke of genius, Cayley
made a sketch of a hand-thrown glider which departed from the beating wing
vision and adopted the fixed-wing design. Interesting to note is that kites had
been using a fixed wing approach for centuries. But such a configuration was
simply not perceived for human flight. It is a testament to the fact that in the
minds of people at that time, kites were something entirely different than birds
and flying machines. We will see later on how they grow closer in the minds of the
aviation pioneers. Cayley’s design was a revolution in the creation of the flying
machine. Virtually every design henceforth adopted the fixed wing design.

Figure 2.1: Sir George Cayley’s glider (1804) [Co, 2006].

Alexander Mozhaiski, responsible for what is called ”the second powered hop”
was one of the first people to realize the value of kites in the design of a flying
machine. He was one of the first to experiment with kites in light of the deve-
lopment of human flight. Some of his kites were large enough to lift him off the
ground when pulled at high speed by a horse-drawn carriage. From this point on,
kites were considered a valuable research tool in understanding the mechanics of
powered flight. Lawrence Hargrave from Australia invented the box kite in 1893.
It was to play a vital role in de development of the flying machine. The box kite
provided tremendous lift capabilities and admirable stability. On one occasion
in 1894, Hargrave lifted himself more than 5 meters in the air in a mild wind
using four box kites in a train configuration. In the following years, Hargrave ex-
perimented with powered flight, using box kite designs and even using box kites
to carry the flying machine aloft before trying to fly it freely. But propulsion,
or better yet the lack of propulsion, ensured his failure to realize powered flight.
In 1899 Hargrave visited England with his family to make much needed contact
with likeminded individuals. In England, he wrote a paper on box kites which
was delivered to the Aeronautical Society in London. The head of this society
was Percy Pilcher. Pilcher incorporated some of the box kite designs into his own
triplane which he built in 1899.

Samuel F. Cody, who was a Klondike prospector, Wild West show-man and
aviation pioneer designed the now famous Cody War Kite, a type of box kite
which had excellent stability qualities. Patented in 1901, the British war office
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became interested in using the Cody Kite as a man-lifting device for observation
purposes. To convince the war office of his kite, he crossed the English Channel
in 1903 using a boat, pulled along by a kite. The Cody War Kite was the first kite
to be able to change its angle of attack, effectively powering and de-powering the
kite. In another instance in 1902, Cody’s kite is said to have reached a staggering
altitude of 14000ft. It would be another decade before an airplane would reach
that altitude. Research on the man-lifting Cody Kite was done between 1903 and
1906. Later on, Cody became interested in airplanes and used his kite knowledge
to design and build is own aircraft. He eventually died in 1913 in a crash landing
in one of his own inventions: the waterplane.

Otto Lilienthal had done extensive flight testing of gliders. The Wright bro-
thers were aware of his exploits. Lilienthal controlled his gliders by shifting his
weight and thereby changing the center of gravity. They started to investigate the
matter and came up with the need for lateral control. Before the Wright brothers,
only longitudinal control (pitch) and directional control (yaw) were identified to
be useful for controlling a flying machine. The Wrights were the first to identify
lateral control or roll as a necessary form of control by rotating the lift vector.
In July of 1899 the Wright brothers tested their theory of lateral control using a
kite, another instance where a kite played a crucial role in the development of the
flying machine.

Figure 2.2: The Wright brothers kite [Co, 2006].

Up until their first powered flight on December 17th 1903, the Wright brothers
continued to test many of their gliders as kites as well. The Wright brothers’
successful flyer was a collection of cutting edge technologies. Even though many
of these technologies were in their infancy, the Wrights’ meticulous persistence
forced a breakthrough. A breakthrough which was made possible through the use
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of kites as a research tool.

2.2.2 The great divide

With the exception of Otto Lilienthal, none of the aviation pioneers mentioned
in the previous section had an academic education. As a matter of fact, all these
people were self educated craftsmen. The designs they made borrowed little from
the scientific community in the nineteenth century. Lord Kelvin, a revered scien-
tist, stated at the end of the nineteenth century: ”I have not the smallest molecule
of faith in aerial navigation other than ballooning” This statement reflects the
views of the scientific community on the exploits to invent a flying machine. In
the nineteenth century, the advances in science were unprecedented. The atmos-
phere among scientists was that of supremacy. ”Almost everything is known!”
that was the sentiment of that day. Scientists were focussed on the physics and
the mathematics while practical applications, such as the flying machine, were
of little concern to them. This atmosphere of superiority stalled the scientific
community into formulating very little new questions. The craftsmen, however,
had plenty of questions. But a great divide existed between the scientists who
struggled to understand the physics and the craftsmen who tried to design and
build things, and make them work. This greatly hampered the development of
the flying machine.

During the exploration of the flying machine in the nineteenth century, much
of the theory needed to design a successful airplane was already known. Ber-
noulli’s law, NavierŰStokes equations (not the solving), Vorticity (generation of
lift), principles of friction drag and theory of laminar and turbulent flow had all
been extensively explored. But unfortunately, the craftsmen attempting to design
and build the first aircraft had no knowledge of this. As a matter of fact, the ma-
ture state of fluid dynamics contributed almost nothing to the development of the
flying machine. Nowadays, aeronautical researchers in the academic community,
researchers in government laboratories and designers in the aerospace industry
all work closely together, optimizing the technology transfer between all parties
through conferences and scientific publications. Such a situation is still not in
place for kites. As a matter of fact, the community around kites more closely re-
sembles the situation as it was for airplanes at the end of the nineteenth century.
With regards to kites, a lot of applicable scientific theory and research tools are
already available. Cable mechanics, aero-elastics, computational fluid dynamics
and material sciences have reached a mature state. Yet, these powerful tools are
rarely used in the development of kites.

2.2.3 The turning point

At the end of the nineteenth century, researching flying machines was not a popu-
lar endeavor. It was viewed by the public as the exploits of mad men. Therefore,
one of the biggest hurdles in the development of the airplane was not so much
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the science, but the credibility. It is well known that credibility will pull people
of different specialties on board to contribute. The lack of credibility creates iso-
lation and makes existing expertise inaccessible. This was the situation for the
airplane during the nineteenth century, and it is the situation for kites today. The
craftsmen working on airplanes grew more and more disillusioned by the lack of
interest from the scientific community and grew more frustrated by the fragmen-
ted nature of the knowledge they developed. In order to establish credibility, they
employed the discipline of peer evaluation and widespread publishing of technical
journals. As the number of craftsmen working on flying machines grew, and as
the amount of knowledge grew, there was an increasing demand for a centralized
organization. The first was the Societe Aerostatique et Meteorologique de France,
founded in Paris in 1852. But by far the most important was the Aeronautical
Society of Great Britain, founded in London in 1866. With the formation of this
society, a formal mechanism for the establishment of technical credibility was in
place. Through the Aeronautical Society, many important discoveries such as the
effects of aspect ratio and the performance of cambered airfoils were available
for all who were studying human flight. The establishment of the Aeronautical
Society was a pivotal moment in the development of the flying machine. Through
this establishment, the occupation of aeronautical engineer was first formulated.
And even though nowadays, most aeronautical engineers are University educated,
their profession was not established by the academic world, but by craftsmen and
inventors of the late ninetieth century.

A similar establishment for kites is not in place today. Not even a sub-section
within existing scientific societies devoted to kite research exists. As a matter of
fact, searching for publications on kites within existing conferences and journals
will yield limited results. And even though today kites actually constitute a busi-
ness of significant size, within the scientific community there seems little interest
to pursue its development. A reason for this seems to be the lack of credibility.
Even today, kites are mostly seen as toys. Or at best, a means for adventurous
people to pull them along the shoreline on a surfboard. It is hardly seen as a
serious and valid research topic even though the mechanics behind a kite can be
considered a challenge, its applications seem only limited by imagination and a
market for existing applications is already in place.

2.2.4 The situation today

Today, we are at a pivotal point in the life of the kite. The advent of sports
such as kite surfing has created a surge in the application and research into kites.
At this point, a third evolution can be seen. This evolution carries the kite
from its current use to more industrial applications. Generation of clean energy
and propulsion of ships put new requirements on the design of kites. Evermore
sophisticated materials and construction principles allow the kite to grow to large
proportions and create the possibility unprecedented control.

The airplane owes its existence to the kite. From the moment the first powered
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airplane took off at Kitty Hawk, the kite took the backseat with regard to scientific
research. This situation has allowed the airplane to steam ahead at full throttle,
while the kite lagged behind. Hurt by a lack of direct applications, the kite slid
back into the realm of toys, its contribution to aviation almost forgotten. But a
hundred years after the invention of the airplane, the kite is back. In its future,
a number of serious applications which provide clean energy and transportation.
The kite is back and it is in dire need of attention from the scientific community
in order to make the next leap. A leap which aircraft took well over a century
ago.

1st evolution

2nd evolution

3rd evolution

Figure 2.3: The three kite evolutions.
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2.3 Current state of the kite industry

Currently, the kite industry focus is mostly on entertainment and sports. Kites
for entertainment include the toy kites for children and the large kites used for
exhibitions. Kites used for sports are designed less for visual appearance and more
for performance. These kites are used for applications such as kite buggying and
kite surfing and are roughly sized between 2m2 and 16m2. These performance
kites bear the most resemblence to the industrial kites needed for, e.g. energy
generation and therefore, the focus of this section lies with these performance
kites.

”Ram air inflated” or ”foil” kite Leading edge inflated kite

Figure 2.4: The two types of kites: the ram-air inflated or foil kite [www.Airxpress.nl,
n.d.] and the Leading edge inflated kite [Augustino, n.d.].

Kites used for kite surfing generally fall into two categories. The first are the
”foil”, or ”ram air inflated” kites. These kites are completely made out of slack
fabric and rely on ram air pressure to maintain their shape. They are extremely
flexible and quickly loose shape when their apparent velocity (the velocity of the
kite with respect to the surrounding air) becomes too low. The second group of
kites are the ”leading edge inflatable” kites. These kites use inflated bladders to
give their structure a certain amount of rigidity. This allows them to maintain
their shape at low velocities, but it also makes them heavier due to the internal
bladders.

The design of conventional surf kites today is not a highly structured design
process such as we see in the aerospace sector. This is not necessarily a bad thing.
Kites are cheap to build and simply trying out different configurations will yield
a solution faster than a detailed design process. The process of kite design today
bears a striking resemblence to a trial-and-error process. However, certain distinct
differences are to be noted. A trial and error process does not investigate why a
solution works. It shoots blindly and finds ”A” solution, not ”THE” solution. In
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the kite industry, solutions are studied and evaluated, albeit in a limited fashion.
The design of kites, therefore, more resembles a Darwinian process of evolution

by natural selection. Lets say, in the year N, a kite company starts its design of
the new kites for the year N+1. It takes a look at the feedback it got from the pre-
vious year (year N) and assesses what changes need to be made. Problems occur
due to the inconsistent nature of the feedback. Feedback is generated by profes-
sional testriders and customers who state their findings in an arbitrary and often
conflicting manner. This makes it difficult to formulate the new requirements.
Therefore, the changes (or ”mutations”, to stay with the Darwinian analogy) are
poorly structured and can lead the designer down the wrong path. In Darwinian
evolution by natural selection, the mutations occur randomly. In the kite indus-
try they are poorly structured. So there is a difference in how the mutations are
brought about. But in practice, they both tend to lead to an enormous diversity
of prototypes. These prototypes are then put through a natural selection type
of process. Professional riders take them out and test fly the kites. This process
eventually leaves the designer with a small number of kites from which the kites
of year N+1 are ”bred”. The crux is in the question: What design/mutation is
the ”fittest”? This is what drives the selection. For an engineering process, it is
where the objective is defined.

This type of process, although mostly unstructured, has allowed the kite in-
dustry to make remarkable progress. This progress has been possible due to the
fact that kites are cheap to build and prototyping is quickly done. Especially in
the early days of kite surfing, finding ”A” solution enabled a kite company to build
a new generation of kites. The realm of possibilities was mostly unexplored. No-
wadays, a trend is visible where more and more prototypes are needed to find ”A”
solution. Kites are becoming more complex, increasing the amount of variables.
In discussions with kite designers such as Peter Lynn, Henry Rebbeck and Don
Montague it became apparent that they have warehouses full of prototypes which
they simply don’t have time for to test and evaluate. This fact, together with
the poorly defined requirements resulting from ambiguous flight testing, has the
potential to stagnate the innovation in the kite industry.

In many respects, the surf kites are moving more towards the industrial kites
used for energy generation. These industrial kites already have to adhere to very
strict requirements, increasing the complexity of the design process. For these
types of kites, the conventional kite design process would lead to an unmana-
gable amount of prototypes. Furthermore, the lack of control over the output of
the design process increases the project risk and project cost beyond acceptable
limits. Therefore, an engineering methodology for kite design is required which
gives the designer more control over the outcome. This engineering approach re-
quires knowledge on the dynamics and structure of kites, simulation or virtual
prototyping capabilities and parameter measurements for model validation and
prototype evaluation. These three items are visualized in figure 2.5.

The arrows in figure 2.5 indicate the fact that the three items are closely
related. For instance: a better understanding of kites leads to better simulation
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Knowledge

Simulation Measurement

Figure 2.5: The three prerequisites for an engineering approach to kite design.

models. But also, good models can lead to a better understanding of kites (see
section 6.3). The interaction between these items is what makes this type of
engineering approach work. And in the continued development of the controlled
kite system, the items in figure 2.5 become absolutely essential.

2.4 Kites and energy generation

In this section, one of the most promising industrial applications of kites is explo-
red. In contrast to the past century where most of the generated energy comes
from a single type of technology (namely fossil fuel burning plants) the future
is expected to have a far more diverse energy mix using solar, wind, tidal and
biomass technologies, to name but a few. This increased diversity of technologies
is also expected to create a far more de-centralized energy generation infrastruc-
ture. The most extreme scenario projects energy generation on a per-zipcode or
even per-address basis. For instance, houses with solar panels which generate the
required energy for that particular house. In a far more diverse energy landscape
there is an increased potential for innovation. One of the innovative ideas is to
use the stronger winds at high altitude to generate electricity.

2.4.1 High altitude wind power

The winds at high altitude are far stronger and less turbulent than they are at
low altitude. This means that current wind turbine technology generates energy
using the worst possible conditions, namely those close to the ground. Archer
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& Caldeira [2009] analyzed 28 years of wind statistics at altitudes between 500m
and 12000m and established that there is an enormous amount of energy in the
winds at high altitude. A number of areas such as over eastern China and north-
eastern Africa were located where the mean value of the energy density at 10000m
altitude was greater than 10kW per square meter. Archer & Caldeira [2009] calls
this value ”Unthinkable near the ground”. Awareness of the value of the winds
at high altitude has been steadily growing over the last decade. The number of
organizations involved in high altitude wind power has grown from 3 in the year
2000 to more than 40 today (2010) [Furey, 2009]. The concepts under investigation
at different companies and Universities are extremely diverse. However, they all
share the same principle of ”some sort of lifting body tethered to the ground”.
The lifting body is required to reach the high altitude winds and the ground-
tethering is required in order to bring the energy down to the ground. These are
the basic prerequisites of high altitude wind power and they show their kinship
to conventional kites.

2.4.2 The Laddermill

The Laddermill [W. J. Ockels, 2001] is a novel concept which uses kites at high
altitude to generate energy. Kites generally ascend without effort. In order to get
them down, one has to physically pull them from the sky. For aircraft, the exact
opposite holds true. An aircraft needs large engines to climb but can glide down
under idle power. The kites in the Laddermill are a combination of kites and
airplanes. Ideally, they ascend as kites and decend as gliding airplanes. While the
kites ascend, they pull a cable off a drum, spinning the drum and the generator
attached, thereby generating electricity. On the downstroke, kites are reconfigured
for a lower pulling force and descend back towards the ground.

Initially, the Laddermill was envisioned as a large rotating loop of kites. The
kites on one side would fly as kites and pull hard on the line, the kites on the
other side of the loop would go into a gliding mode, minimizing their tug force
on the main line. Early on it was established [Lansdorp & Ockels, 2005a] that
the rotating loop, or rotating Laddermill, was an extremely complicated system
requiring a number of enabling technologies which were not available at that time.
The choice was made to start with the simplest kite power system and develop the
enabling technologies, such as controlled kites, from there. This simple system
became a single kite on a single line attached to a single ground station. This
system would generate energy as the kite ascended. When the maximum altitude
was reached, the kite would reconfigure for gliding and be pulled back down by
the ground station. This downstroke would cost energy, instead of generating it.
But because the tension in the main line was far less on the downstroke than it
was on the upstroke, a nett amount of energy was produced at the end of a cycle.
This intermittend kite power system was dubbed ”the pumping Laddermill” and
it has been the basis for the Laddermill project ever since. Figure 2.6 shows the
two Laddermill concepts side by side.
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The rotating Laddermill The pumping Laddermill

Figure 2.6: The two Laddermill concepts.

The pumping Laddermill has as a distinct disadvantage that it generates
energy in an intermittent fashion. During the downstroke, no energy is gene-
rated. This discontinuous character of the system makes it difficult to connect it
to the power grid. This problem can potentially be overcome by placing a num-
ber of these systems together and timing their operation in such a way that the
combined output is continuous, like it were a very large piston engine.

2.4.3 Principle of crosswind power

When a kite flies high and straight downwind, it is said to be in the zenith position.
In this position, the kite has no velocity with respect to the earth. It flies at a
relatively low flight path angle and its tug force is relatively low. This region
is where most toy kites will fly, gently coasting on the wind. For traction kites,
however, a large tug force is of great importance. The tug force of the kite can be
greatly increased by flying the kite from left to right through what is called ”the
wind window”, an imaginary quarter sphere, as indicated in yellow in figure 2.7,
where steady flight is possible.

The idea of using crosswind motion to increase the force in the tether stems
from Loyd [1980]. Moving in the plane normal to the wind vector allows the
apparent wind velocity to become larger than the wind velocity itself. Since the
force in the tether is more or less proportional to the square of the apparent wind
velocity, this crosswind motion causes a strong increase in tether force.

Figure 2.8 shows the forces and velocities on a weightless kite in crosswind
motion. This particular situation exists in the point of maximum power, indicated
in blue in figure 2.7. Equilibrium of forces is obtained by the lift L, the drag D
and the tether tension Tt. The velocities shown are the wind speed VW , the speed
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Figure 2.7: A graphic representation of the wind window and a crosswind pattern.

of the line VL, the crosswind velocity of the kite VC and the apparent velocity of
the kite Va.

VW

VC

Va

VW − VL

VL

L

D

Tt

Figure 2.8: Forces and velocities on a kite in crosswind motion.

In figure 2.8 VL is parallel to VW and Vc is perpendicular to VW . Because
Tt is parallel to VW , D is parallel to VA, L is perpendicular to D and VW is
perpendicular to VC , the following relation can be obtained for the apparent wind
velocity of the kite:

Va = (VW − VL)

(

L

D

)

K

(2.1)

where (L/D)K is the lift over drag ratio of the kite. because VA and VC are
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approximately equal in magnitude, the lift force can be defined as:

L = CL · 1
2
ρV 2

a S

= CL · 1
2
ρ (VW − VL)

2

(

L

D

)2

K

S (2.2)

where CL is the lift coefficient, ρ the air density and S the projected surface area
of the kite. From from equation (2.2) can be seen that the lift increases with
the square of the lift over drag ratio. Furthermore, Loyd [1980] assumes that Tt
is parallel to VL and that L and Tt are approximately equal in magnitude. The
power produced can now be given as:

P = CL
1

2
ρV 3

WS · F (2.3)

where F is a function describing the operational mode of the kite. In this case
the kite is flying in crosswind motion, which is thought of as a useful operational
mode for the Laddermill [Lansdorp & Ockels, 2005a]. Loyd [1980] assumes that
the inclination angle with the earth’s surface is zero and that the kite is in perfect
crosswind motion (indicated in blue in figure 2.7). The equation F for crosswind
motion is given by:

Fcrosswind =

(

L

D

)2

K

(

VL
VW

)(

1− VL
VW

)2

(2.4)

The maximum value of this relation is:

Fmax =
4

27

(

L

D

)2

K

(2.5)

which occurs at,

VL/VW = 1/3

Fmax is again dependent on the square of the lift over drag ratio of the kite. So
Loyd [1980] concludes that the (L/D)K is the parameter to maximize to extract
the most wind energy in crosswind motion.

2.4.4 Kite requirements

Using cross wind power allows the kite energy system to fly with the maximum al-
lowable wing loading, independent of the actual wind velocity (within operational
limits). For a wind turbine, this is not possible and therefore, a windturbine will
produce less power in lower wind speeds. The kite power system is far more flexi-
bility in that respect. It has the vertical freedom to seek out regions of high wind
velocities and it can supplement its power output by flying cross wind maneuvres.
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As was shown in the previous section, the effective lift over drag is lowered
as the cross wind factor is increased. This puts an important requirement on the
design of energy generating kites. In order for the effective lift over drag to not
become too small during cross wind sweeps, the kite needs to have a high lift over
drag during symmetric flight to start with.

Another important requirement stems from the reel-in phase. During the reel-
in phase, the kite should produce a low tug force on the main tether. A high tug
force translates directly into a loss of energy. The capability of a kite to fly at low
lift values is called the ”depower” capability. Ram air inflated kites are generally
unsuitable for high depower maneuvres because they rely on the tension in the
canopy to maintain their shape. A fully depowered kite has no tension in the
canopy and for a highly flexible structure like a ram air inflated kite, this means
a complete loss of shape and a potentially unrecoverable flight situation. Leading
edge inflatable kites are more suited for high depower flight due to their ability
to maintain their shape.

2.4.5 The kiteplane

From the realization that an ideal kite for energy generation can fly both as
an airplane and as a kite, the Kiteplane was first conceptualized in Breukels
[2003] and later evolved in Breukels & Ockels [2005] and Breukels [2005]. The
initial application of this type of kite was as a high-altitude kite. As part of
the KitEye project [Breukels, 2005] initial concepts were envisioned to break the
world altitude record for a single kite on a single line. The motivation behind this
project was to explore the field of high altitude kites as part of the Laddermill
project. The philosophy behind its topology was that a kite which can fly as a kite
and as an airplane needs the basic configuration of a conventional aircraft and the
low weight characteristics of a kite. Furthermore, its depowered flight required it
to exhibit a certain amount of rigidity, independent of the tension in the bridle
lines or the canopy. Lastly, in order to properly operate under high cross wind
conditions, its lift over drag should be high enough not to cause problems with
the magnitude of the resulting elevation angle. Initial tests were performed on
small foam models (Kiteplane 1) as presented in figure 2.9

The Kiteplane 1 from figure 2.9 was tested succesfully. Control surfaces were
added in the wingtips and on the horizontal stabilizer. Due to the low drag of
the kite it was very volitile therefore difficult to control [Breukels, 2005]. An error
in piloting the kite would quickly result in a crash. Any crash the kite endured
immediately caused significant damage. Furthermore, the continued use of a foam
structure would limit the ability to transport the scaled up versions of the kite.
The need for durability and stowability during transport quickly led towards the
principle of inflatable structures.

Subsequent versions of the Kiteplane were scaled up from the original foam
kite and built as inflatable structures. This allowed the kite to be deflated and
rolled up for transport. The first inflatable Kiteplane (Kiteplane 2) was built
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Figure 2.9: An ealy version of the Kiteplane made from Eperan PP (Poly-Propylene)
foam.

in-house at ASSET. It had a 4-meter wingspan and weighed between 2 and 2.5
kilograms, depending on bridle lines and control surfaces. Figure 2.10 shows this
kite in flight.

Figure 2.10: An early version of an inflatable Kiteplane.

Kiteplane 2 has a relatively large dihedral angle that provides roll stability in
sideslip. This is also the reason for the relatively small vertical tail planes, because
they prevent sideslip by pointing the nose in the apparent wind direction. Fur-
thermore, the camber in the airfoil is a direct result of the pressure distributions
on the upper and lower surface. This Kiteplane uses an inflated beam at the nose
of the airfoil and a single layer of fabric as the wing canopy. This configuration is
known as a ”single membrane airfoil” [Maughmer, 1972].
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In 2008, Kiteplane 2 was mounted in a windtunnel to investigate its aerodyna-
mic properties. The kite was hung upside down, because in this way gravity will
keep it in place when the windtunnel is turned off. During the test, the forces in
the lines are measured as well as the shape of the airfoil. Using photogrammetry
the shape of the airfoil can be reconstructed after the test by post processing the
data. The data was later used for model validation in section 5.5.2.

With increased complexity of the subsequent Kiteplane iteration, production
in-house was taking up too much time. Therefore, the production of experimen-
tal kites was outsourced to Hong-kong-based Lam Sails. Lam Sails has extensive
experience in the production of kites and parafoils and they indicated to be very
interested in producing new experimental configurations. The subsequent Kite-
plane 3 was scaled up to a wing area of 6 square meters and now had a double
canopy forming the top and the bottom of the airfoil. This configuration is known
as a ”Double membrane airfoil” and it drastcally reduces the pressure drag of the
wing [Maughmer, 1972]. Further analysis of Kiteplane 3 can be found in section
6.4. Figure 2.11 shows this Kiteplane in flight.

Figure 2.11: The double membrane airfoil Kiteplane in flight.

For high altitude kiting, the maximum lift coefficient and the maximum L/D
were regarded as most important [Breukels, 2003], as well as simplicity and ma-
nufacturing ease. It is for this reason that this concept with a straight but slender
wing was chosen for further development. Since no payload needed to be carried
in a fuselage, the two smaller diameter tail booms were preferred over a conventio-
nal fuselage because of better structural and aerodynamic properties. Structurally
the tail booms are superior in all tail loads except for the bending load caused by
the horizontal tail plane. Aerodynamically the tail booms interfere less with the
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main wing than a larger diameter fuselage would. Secondly, the tail booms act as
end plates for the horizontal tail plane and therefore increase the apparent aspect
ratio.

Another important motivation for the use of an airplane like kite was that
airplane theory is well developed, while kites were still not very well understood.
Because the kite needed to go through some research and development to beat
the altitude record, it was believed that airplane theory could help in the process.
However, to be able to use airplane theory for a kite, it needs to be as similar as
possible. Also for control it is convenient to have an airplane like kite, because of
the extensive knowledge and experience on airplane control. Moreover, to reach
high altitudes the kite should be connected to a single line, which means that
conventional kite control with control lines is not an option.

It recent years it has been realized that in essence the requirements for the
altitude record kite are not very dissimilar to the requirements for a lifting body
for the Laddermill. A single line, high lift and L/D, a safe and light inflatable
structure, all features that apply very well to the requirements for a lifting body
on a Laddermill. Because of this, the main focus of the Kiteplane today is to
become an efficient and effective lifting body for the Laddermill.

2.5 Previous research

Up to recently, limited research has been done on kites. No kite-specific research
journals exist and only recently the first conferences on kites have been held such
as the Kite Dynamics Conference 2009 held at the Faculty of Aerospace Enginee-
ring (TU Delft). Subsequently, publications with regard to kites are sparse, but
some notable contributions have been made. The following section gives a brief
overview of previous research on kites and kite related topics.

2.5.1 Materials and structures

Research on lightweight fabric materials and constructions has been extensive.
Although very little of that research is geared specifically towards kites. The
inflatable structures principle is often employed when designing and building kites
and it has seen a great deal of research effort.

Inflatable tubular structures are a subgroup of air-inflated structures. Air-
inflated structures, as opposed to air supported structures, consist of a closed
envelope of pressurized gas. The pressured gas introduces a pre-stress which allows
the membrane or thin shell structure to bear compressive loads. Veldman [2005a]
positioned inflatable tubular structures together with dual-wall cushion structures
as a high-pressure inflatable structure as opposed to air-supported structures,
which require continuously replenishment of the inflation gas and operates at a
lower pressure. This is not to say that a tubular structure can only function at high
pressure. Breuer & Ockels [2007] speaks of tensairity which is a tubular structure
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supported by a separate compression element and tension wires. The structure is
in fact an air-inflated structure as it has a closed envelope, but it operates at a
much lower pressure than a conventional tubular inflatable structure. Applications
for tubular inflatable structures range from inflatable wings [Veldman, 2005a]
[Brown et al., 2001] [Main, 1993] to habitats [Veldman, 2005a] and space-based
antennae and solar reflectors [Jenkins, 2001]. The decreasing cost of high-strength
materials allows the concept of tubular inflatable structures to expand to other
areas. Areas such as kite surfing have seen an enormous surge as a result of
modern materials science.

Mechanical behavior, in particular bending of inflated beams, has been subject
of study for the last several decades. Several models for bending behavior have
been published by Comer & Levi [1963], Main et al. [1995], Adler et al. [2000],
Fichter [1966], Stein & Hedgepeth [1961] and Webber [1982]. All these models
introduce three distinct states an inflatable structure can exist in.

The first state is the unwrinkled state in which the pre-stress, as a result of
inflation, is larger than the compressive stress due to bending or torsion in every
location of the inflatable structure.

The second state is that of the wrinkled state. In this state a location or
locations exist where the compressive stress due to the externally applied load has
become larger than the tensile pre-stress due to inflation. The different models
treat the transition from unwrinkled to wrinkled in different ways. Comer &
Levi [1963], Stein & Hedgepeth [1961] and Webber [1982] state that the wrinkling
threshold is passed as soon as the principle stress becomes zero. In this model,
the structure is treated purely as a membrane which has no capability to carry
compressive loads whatsoever. Main et al. [1995] treats the wrinkling threshold
based on a strain criterion, meaning that wrinkling will only occur as soon as
the principle strain has become zero. This factors in the effect of contraction
as a result of stresses in perpendicular direction. However, a problem occurs for
materials with a poisons ratio of 0.5. For these materials, the theory of Main et
al. [1995] gives a bending moment of zero.

The third and last state an inflatable structure can exist in is the collapsed
state. In this state, the wrinkles have grown from the point of the lowest principle
stress ([Comer & Levi, 1963], [Stein & Hedgepeth, 1961], [Webber, 1982]) or prin-
ciple strain [Main et al., 1995] to a point past the neutral line of the beam. In this
situation, a cross section exists within the structure where no more compressive
stresses can be carried. This results in a local collapse of the beam and a sudden
and large increase in deflection. Figure 2.12 shows the load-deflection curve of an
inflatable tube with the three states identified.

Materials for making lightweight tubular inflatable structures have to be both
light and durable when applied to kites. Furthermore, they have to be able to cope
with the stresses of inflation and flight and have to be flexible enough to be deflated
and stowed. [Verheul et al., 2009] takes a look at materials and joining methods
suitable for kite structures. Materials generally fall in two categories: woven
materials and laminates. Woven materials are cheap to make but cannot act as
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Figure 2.12: The three states of an inflatable structure.

a gas barrier for pressurized air. Tubular structures made out of woven materials
need an extra inner bladder, generally made from thermoplastic polyurethane, in
order to contain the inflation gas. Laminate materials consist of high tensile fibers
laminated in a film material such as Mylar. These type of materials are able to
fulfill both functions: structural integrity and gas containment.

Laminate materials are thus considered to enable lighter inflatable structures.
However, joining them together can only be done by welding or bonding. In the
kite industry, these types of joining techniques are rarely used. Woven materials
can also be stitched together. The kite industry leans heavily towards the stitching
process. Changing to a different joining process is a costly endeavour because
the production facilities in China, India and Vietnam have only experience with
sowing machines.

2.5.2 Kite aerodynamics

Leading edge inflatable kites all boast the same airfoil principle. The leading edge
consists of an inflated beam. from the top of this beam, a fabric canopy spans to
the trailing edge wire. This type of airfoil is commonly known as a sail wing. The
fabric canopy is flexible and the resulting airfoil camber is a function of the pres-
sure distribution over the upper and lower surface. Flexible sail wings have been
subject to extensive research for half a century [Sweeney, 1961]. Nielsen [1963]
Investigated the aerodynamic characteristics of two-dimensional flexible airfoils or
sails without a leading edge tube. He used thin-airfoil theory to obtain the shape
of the camber line as a function of angle of attack. Nielsen [1963] Found that
there are stable camber line shapes for which there is no stagnation point. Expe-
rimental results partly agreed with the theory and he attributes the discrepancies
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to fabric porosity and boundary-layer separation. Simultaneously Thwaites [1961]
published work which was comparable. Fink [1969] And Fink [1967] launched an
investigation into the aerodynamic characteristics of two full scale models with
double membrane airfoils: one with an aspect ratio of 5.9 and one with an aspect
ratio of 11.5. Tests were performed in the Langley wind tunnel facility in order to
analyze (1) lift and drag, (2) static longitudinal and lateral stability and (3) late-
ral control. They found that a sail wing is able to produce comparable lift-drag
ratios as a conventional hard wing. At low angles of attack, the sail wing obtained
unusually steep lift-curve slopes. Interestingly Fink [1969] found that the shape of
the leading edge nose only had a small effect on the characteristics of the wing. A
round leading edge attained slightly higher lift coefficients but had a lower lift over
drag ratio. At the Delft University of Technology, an experimental investigation
was started into the low speed aerodynamic characteristics of a two-dimensional
sail wing. Boer [1980] And Boer [1982] looked at airfoils with adjustable slack of
sail to analyze its influence. Furthermore, a numerical model is presented which
estimates the performance of both slightly and highly cambered double membrane
airfoils. One of the most prominent conclusions was that the sail wing obtained a
higher maximum lift over drag ratio than its rigid counterpart, which had a rigid
circular plate with a 10% camber instead of a flexible sail. It was established that
the higher lift over drag ratio can be attributed to the higher lift due to a higher
camber and not due to a lower drag. Lastly, Maughmer [1972] performed exten-
sive research into sail wings and presents a comparison between different sail wing
configurations. It is shown that sail wings have very competitive characteristics
compared to conventional hard wings, especially in low speed applications. Due to
the variable camber, a higher maximum lift over drag ratio can be attained. Fur-
thermore, it is concluded that sail wings have a fairly slow rise in drag coefficient,
and consequently a slow decrease in lift to drag ratio with increasing values of the
lift coefficient. The research also shows that double membrane airfoils exhibit a
maximum lift over drag ratio roughly twice that of single membrane airfoils.

2.5.3 Tether theory and models

Imagine a single kite on a single tether. The tether force on the ground (TG) is not
equal to the tether force near the kite (TK). The tether force near the kite is equal
to the resultant aerodynamic force of the kite. In order to find the tether force at
ground level, the aerodynamic forces (mostly drag) and gravitational forces on the
tether need to be added to TK . Figure 2.13 displays the problem, with distributed
tether forces qD and qg denoting respectively the aerodynamic and gravitational
forces. The path along the tether is described by coordinate s.

The force in the tether at ground level can be calculated using equation (2.6).

TG = −TK −
∫ l

0

(qg(s) + qD(s)) ds (2.6)
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Figure 2.13: Free body diagram of a tether.

The force TK is the tether force at the kite’s end and considered known in
this section, the force TG is the force at the bottom end and the one to solve for.
The distributed force qg denotes gravity and the aerodynamic forces are denoted
by qD. To be able to find expressions for these distributed forces, the tether is
discretized into a chain of rigid elements. Figure 2.14 displays an element of the
tether with the local orientation angles and the forces acting on it. The centripetal
acceleration necessary for the curved path of the tether when it rolls out, as well
as any elastic or bending resistance effects of the tether are neglected. Moreover,
it is assumed that the kite is flying straight downwind, so that the situation can
be evaluated in 2D.

With the relations in figure 2.14, TG can be found by stepwise integration over
the tether elements, starting at the kite’s end. The boundary conditions at the
top of the last element are:

Ti = TK
βi = βK
αT = arctan

(

L
D

)

However, these conditions do not completely define the tether. An additional
parameter is required to identify the end of the tether, or ground point. Parame-
ters suitable for identifying the ground point are: altitude of the kite, downwind
ground distance of the kite or the tether angle βG. Through βi all these parame-
ters can be linked to the tether path coordinate s. With either of these parameters
set, the tether is uniquely defined by βi for i = 1..N . Where βi−1 as well as Ti−1

are merely the result of the zero resultant force condition for element i (with
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Figure 2.14: Forces on tether element i.

centripetal acceleration neglected).
The incremental lift and drag forces in figure 2.14 are defined by Eqs. (2.7)

and (2.8).

dLT =
1

2
ρV 2

appCLT
dT ds (2.7)

dDT =
1

2
ρV 2

appCDT
dT ds (2.8)

According to Hoerner [1965b], the lift and drag coefficient on a tether at a
subcritical Reynolds numbers can accurately be approximated by Eqs. (2.9) and
(2.10) respectively.

CLT
= 1.1sin(αT (s))

2cos(αT (s)) (2.9)

CDT
= 1.1sin(αT (s))

3 + 0.02 (2.10)

The remaining incremental gravitational force is given by equation (2.11).

dFZ =
1

4
πd2T ρT gds (2.11)

Practical tether models are available in various complexities. The simplest one
is a rigid one dimensional massless rod, however this is a very crude representation
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of reality. On the other hand a continuum mechanics model of the tether adds
unnecessary complexity. The aim is for the least complex model that describes
all the relevant behavior.

The aspects of tether physics that are relevant for kites in general and the
Laddermill in particular are listed below.

• Variable length tether (for rolling in and out)

• Influence of aerodynamic forces

• Increased length due to sagging

• Inertia of the tether

A model that takes these aspects into account is the lumped mass model as
presented by Williams et al. [2007]. The basic idea of this model is displayed in
figure 2.15.

Figure 2.15: Lumped mass tether model by Williams et al. [2007].

In this model the tether consists of a series of point masses connected with
massless inelastic rods. The length of the tether is varied by adding or removing
elements, the length change is made continuous by resizing the first element.
The aerodynamic forces are calculated for the rods and then divided over the
two adjacent masses. These masses account for the inertia of the tether and
their motion follows from Newtons second law, with the inelastic rod connections
inserted as constraints in the equations.

2.5.4 Kite structure models

This section provides an overview of various kite models similar to Williams,
Lansdorp, Ruiterkamp & Ockels [2008]. The models are discussed in an order
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of increasing complexity. The equations of motion of the models are omitted
because the purpose of this section is to give a qualitative overview and comparison
between the models.

Point mass model. This is the simplest representation of a kite. It covers the
translational dynamics, but attitude changes are instant. This means all forces
act though the same point. The drag acts in the direction opposed to the apparent
velocity and the lift vector is normal to this apparent velocity. The tilt angle of
the lift vector is usually defined as a pseudo control variable. Point mass models
are suitable for rough trajectory and performance analysis, but not of much use
in control design of a flexible structure.

Rigid body model. In this model the point mass is replaced by a rigid body, which
includes attitude dynamics. For this reason it is often called the 6 Degree Of
Freedom (DOF) model, with 3 translational and 3 rotational degrees of freedom.
This type of model is used in most flight dynamics and control studies of regular
aircraft [Mulder et al., 2007]. The quality of these models depends strongly on
the implementation of aerodynamic forces. The equations of the rigid body model
are frequently linearized and converted to a state space representation, where the
aerodynamic forces are present in the form of stability derivatives [Mulder et al.,
2007].

Flexible body model. This model is an extension of the the rigid body model. It
allows the body to deform through several predetermined mode shapes. The total
deformation at a point comprises of the sum of the local values of the mode shape
functions multiplied with the according mode amplitudes. In general these mode
shapes are defined such that the mean inertia axes are equal to the principle inertia
axes of the rigid body. In that case, the inertia can be assumed to be constant.
If the structure is stiff enough, the flexible modes are separated from the rigid
body motion in the frequency domain, such that these are uncoupled. For these
structures, the flexibility modes have a signiticantly higher eigenfrequency than
the rigid body modes, which makes their decoupling a valid assumption. For a
kite however, the structure is presumably too flexible to uncouple these motions.
The flexible modes and rigid body modes have comparable eigenfrequencies.

Multi-plate flexible model. Figure 2.16 illustrates the idea of a discrete plate model.
Since kites in general twist their surface in response to a pull on the control
lines, it seems relevant to include this behavior in the model. The multi-plate
flexible model allows the plates to pitch and roll independently from each other
and thereby including twisting and jellyfish1 motion.

With the model able to describe deformation due to tether forces, the shape
based on tether forces can be investigated. This way natural control of kites can

1Harmonic arc shape bending.

30



Figure 2.16: Multiple flat plate kite model by Williams, Lansdorp, Ruiterkamp & Ockels
[2008].

be implemented in the model directly. A two plate model is in fact one of the
simplest ways to represent a kite that can be controlled directly by tether force
and tether attachment location [Williams, Lansdorp, Ruiterkamp & Ockels, 2008].

Lumped mass membrane model. Instead of adding a few sophisticated degrees of
freedom one can also describe a kite at a fundamental lower level to find higher
fidelity models. The membranes of the kite structure could for example be mo-
deled by lumped masses connected with springs. In principle, with appropriate
boundary conditions, a high fidelity kite model could be build out of these mode-
led membranes. Provot [1995] uses such a model to simulate a waving flag on a
pole.

FEM model. Another step in complexity are finite element method models. In
these models the distributed masses and connecting springs are replaced by elastic
solid elements. Visualizations of the results of a FEM analysis are displayed in
figure 2.17. However, it is much too extensive to find all the parameters and too
costly in terms of computing time for kite applications.

2.5.5 Flight dynamics of kites

The behavior of atmospheric vehicles is studied by flight dynamics. With regard
to flight dynamics for kites, some notable contributions have been made. Bryant
et al. [1942] reports on collected research of kites for the purpose of wartime
observation of enemy positions. It is stated that during the second world war,
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Figure 2.17: FEM model using a conforming, hierarchical, adaptive refinement method
to simulate a thin tube under compression, from Grinspun et al. [2002].

kites as a means of observation received increased attention. It was thought that
these kites required a ”high performance”, which was basically defined as a high
lift-over-drag. A mathematical model was developped using a tether model which
was largely empirical in nature and became singular for (nearly) straight tethers.
A wood-and-linnen model was constructed for wind tunnel testing. These tests
seemed to validate the model. However, flying in the turbulent conditions outside
resulted in unstable flight and eventually a crash.

Melkert [1992] later employed the theory of Bryant et al. [1942] for the Stratow
project in which a sailplane was towed behind a small powered aircraft using a
long tether. By towing the glider, the glider was able to reach altitudes up to 10
kilometers. Similar cases of related research can be identified such as launching
of gliders by towing, tethered aerostat dynamics, aerial-towed systems and even
tethered underwater rovers. Even though these subjects seem very similar, notable
differences to kites are present such as the buoyancy of aerostats and the larger
weigt and rigidity of gliders. Furthermore, because the kite remains tethered to
the ground and is not detached from the cable after launch such as with gliders,
different dynamic effects occur.

Alexander & Stevenson [2001] analyses the equilibrium points of single-line and
two-line kites. The paper shows that these equilibrium points can be determined
from the aerodynamic properties of the kite, the kite mass and the bridle lengths.
While several equilibrium points are found, not all of them turn out to be stable
equilibrium points. wind tunnel tests are shown to confirm the mathematical
model.

Sanchez [2006] derived the Lagrangian equations of motion for a single-line
kite for the purpose of control. The analysis is limited to symmetric motions.
the paper continues to develop an open-loop control system to keep the kite at a
constant altitude in changing atmospheric conditions.

Houska [2007] developped a 9 degree of freedom surf kite model to serve as a
basis for control design. The model assumes the inertial tensor to be zero because
the foil kites have such a low mass compared to the tether. Instead of deviding
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the kite into several pieces, the paper introduces a small number of effective
aerodynamic coefficients which can theoretically be obtained integrating over the
aerodynamic properties of the entire kite.

To gain more insight in the behavior of a Laddermill, Meijaard [1997] perfor-
med a static analysis of a Laddermill in several wind conditions. This research
was the starting point for Meijaard & Schwab [1999] that resulted in the Lad-
dermill dynamic simulation program O-Mill. The model of the Laddermill in
O-Mill is based on two types of elements, tether elements and wing elements.
The tether elements are defined as one dimensional continuum with stiffness and
damping in the normal direction, bending stiffness is neglected. Lift and drag
forces are defined per wing element. The wing elements are assumed to be ri-
gid and interference effects between them are neglected. The aerodynamic forces
are assumed to be quasi static and the wind velocity is a function of altitude.
Equations of motion are established for each element and the system is integrated
using a fourth order Runge-Kutta integration scheme. Because the elements are
parametric, the configuration and sizing of the Laddermill can easily be adjusted.
This is convenient for a sensitivity study of various parameters.

2.5.6 Kite measurements

As part of the trinity depicted in figure 2.5, kite measurements are of paramount
importance. Not only is it invaluable for model validation, measurements and
observations directly establish increased knowledge and understanding of kites.

The early wind tunnel tests of Bryant et al. [1942] were mentioned in the
previous section and seemed to concur with the theory which was developed.
Jackson [1942] launched an analysis of kite performance using a 24-ft. wind tunnel.
A total of six kites were tested in a wide range of wind velocities. These six kites
included (A) a 3-ft. Cody kite Mk-II, (B) a 3-ft. reversed Cody or Dyco kite,
(C) a 3-ft Haldon kite, (D) two 3-ft. Cody kites with lateral cross bracing, (E)
a 2-ft. Cody kite Mk-III with bifucated inner bridle and (F) a 2-ft. Cody kite
Mk-III with longitudinal bracing. It was concluded that the maximum value for
lift-over-drag was no more than 2.5 with a maximum value for the lift coefficient
of 0.9.

Wachter [2008] analized a ram-air inflated kite and its shape under loading.
Of particular interest was the presence of ballooning of the surface and defor-
mation of the original airfoil shapes. Their influences on the fow over the kite
was analized using computational fluid dynamics and wind tunnel tests. Wachter
[2008] employed two different techniques to capture the shape of the kite under
loading. The first method was a wind tunnel test where an array of camera’s
took pictures simultaneously of the kite which was outfitted with a dot-pattern
on its surface. Through photogrammetry the shape could be reconstructed as a
wire-frame model in a computer. The second method was a three dimensional
laser scanning technique which resulted in a large point-cloud, from which the
shape of the kite could be deduced. This method was later dropped due to the
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fact that the long cycle period of the laser scanner (over a minute long) gave rise
to distortions in the data because during the cycle, the kite would not be perfectly
still. The measurement using photogrammetry was instant and thus not subject
to such destortions.

Although wind tunnel tests are a means of obtaining reproducable data on
kites, there is a downside to its application. In contrast to conventional aircraft,
kites cannot be scaled down due to their flexibility. A scalled down kite will
deform dfferently than its full-scale counterpart. Therefore, only full-size kites
can be tested in a wind tunnel. This makes wind tunnel testing of kites an
expensive endeavor.

Stevenson et al. [2005] advocates a kite testing technique whereby the kite is
flown close to the gound in a circle. In this manner, lift-over-drag ratios of kites
can be determined. However, atmospheric conditions during the tests were critical
to its accuracy. Only in wind-still conditions would the test yield good results.

Vlugt [2009] launched an extensive test program on surf kites in order to
measure their performance. The work was part of an effort to optimize kite surfing
for speed. Vlugt [2009] flew the kite in fast sweeps from left to right, while keeping
the wind in his back. When the kite passed from upwind to downwind, dead-
center in the wind window, measurements were taken of the wind velocity, the kite
velocity and the line tension. Based on these parameters, the key aerodynamic
coefficients on the kite could be obtained. The resulting data showed a small
amount of scattering, but overall reasonably good results were obtained with this
testing method.

2.6 Concluding remarks

One could argue that it is quite remarkable that for a device with such a wide field
of applications, there has been so little interest from the scientific community.
This chapter established that kites have been around for a long time and that
they have been mostly ignored by scientists in the past, dispite their multitude of
applications and the scientific challenges posed by such a flexible flying craft. The
study of kites is an open field of research which awaits discovery. The purpose of
this thesis is to facilitate and inspire future research into this exciting field.
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CHAPTER 3

Rigid body kite dynamics

Two of the pylons on which the engineering methodology for kite design is based
are knowledge and simulation (see section 2.3). In order to be able to quan-
tify knowledge on kites and perform simulations, a calculation framework in the
form of a mathematical model is required. This chapter explores the application
of conventional rigid body flight dynamics to the modeling of kites. Section 3.1
gives a short introduction, section 3.2 and 3.3 formulate rigid body models for
kites based on Newtonian equations of motion and Lagrangian equations of mo-
tion respectively. Section 3.4 explores the differences and similarities of tethered
vs non-tethered flight based on the eigenmotions. Section 3.5 analyzes the effects
of cable length on the dynamics of tethered flight. Lastly, section 3.6 closes this
chapter with concluding remarks.

3.1 Introduction

In the previous chapter it was established that for an engineering approach to
the design of kites, simulation is one of the key components. Kite simulations
can contribute to the understanding of kites and can be a valuable design and
analysis tool for a kite designer. When modelling a kite, the question beckons:
Can we use conventional airplane theory to model a kite? Conventional airplanes
are often modelled as rigid bodies with six degrees of freedom while a kite is a
highly flexible structure which is tethered to the ground. The question therefore
becomes: can we model a kite as a rigid body? This chapter will make an attempt
at doing so.
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3.2 Newton-based kite model

In this section, a rigid body model is developed analogue to the theory of conven-
tional flight dynamics [Mulder et al., 2007]. Significant work on this model was
performed by Master Thesis student Stefan de Groot [Groot et al., 2010]. The
equations of motion are based on a rigid body attached to a straight tether. The
tether itself is modelled as a spring-damper between the ground and the cable at-
tachment point on the kite. For this model, the following assumptions are made:

• The earth is assumed flat and non-rotating.

• The kite is a rigid body and is symmetric in the XB − ZB-plane.

• The tether is assumed to be straight and have no drag and no weight.

The straight tether assumption deserves justification. Comparing the amount
of drag and weight of the tether to the tension in the tether forms the basis of
this assumption. For a single kite on a single tether, the tension in the tether is:

T =
1

2
ρV 2S

√

(CL)
2
+ (CD)

2
(3.1)

For the drag on the tether we can write:

Dt = CDt
1

2
ρV 2hdt (3.2)

In equation (3.2) h is the altitude above ground level of the kite and dt is the
diameter of the tether. CDt is the drag coefficient of the tether. Hoerner [1965a]
reports the tether drag coefficient to be 1.065. To evaluate the ratio between the
tether tension and the drag of the tether, we calculate:

Dt

T
=

CDt
√

(CL)
2
+ (CD)

2

hdt
S

(3.3)

For the type of kite under investigation here the lift- and drag coefficients
will be in the order of resp. 0.9 and 0.2. With the tether drag coefficient from
Hoerner [1965a] it becomes clear that the first quotient of equation (3.3) is close
to 1. The second quotient of equation (3.3) is different. for a kite on a 100m line,
the altitude h will be approximately 95 meters. The diameter of the cable is in
the order of 2mm. With a wing surface of the kite S in the order of 10 square
meters, the second quotient of equation (3.3), and therefore the ratio between
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the tether tension and the tether drag becomes approximately 0.02. This means
that the drag on the tether is only 2% of the tension in the tether. And with a
small length and diameter, the weight of the dyneema tether is an even smaller
portion of the tether tension. The sag of the tether was investigated using a
multi-body tether model [Breukels & Ockels, 2007b], and it was concluded that
the sag in these types of short cables with large kites attached is negligible. On
the basis of this evaluation it was decided that the tether in the rigid body models
would be represented by a massless and dragless straight rod stretching from the
ground to the tether attachment point on the kite. This rod however, is allowed
to extend and rotate freely about its longitudinal axis. A final remark to be made
concerns the compression characteristics of the real tether and the spring-damper
model. A tether is unable to sustain compression while a spring-damper can.
During simulations, the tether tension was monitored for compression. During all
simulations presented in this thesis, no compression occurred.

The definitions of the frames of reference, as well as the angle conventions can
be found in appendix A.

3.2.1 External forces and moments

Types of external forces act on a kite:

• Aerodynamic forces

• Tether forces

• Gravity

The distributed aerodynamic- and gravity forces are replaced by point forces
acting on particular points on the body, simplifying the equations of motion. The
tether forces are already point forces acting on the tether attachment point.

The apparent velocity Va is the result of the vertor sum of the wind velocity
vector Vw and the kinematic velocity vector Vk. When the tether force T, the
aerodynamic forces L and D and the weight W are in equilibrium the kite is not
accelerating with regard to the earth axis system. The aerodynamic force vector
in the body-fixed reference frame is given by:

RB = FB
aero =





X
Y
Z



 (3.4)

The tether force vector in the body-fixed reference frame is defined as:

TB = FB
tether =





F
G
H



 (3.5)
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Figure 3.1: Forces acting on the kite.

The gravity vector in the body-fixed reference frame is given by:

WB = m · TBEgE

= m · g





− sin θ
sinφ cos θ
cosφ cos θ



 (3.6)

In order to define the moments, a point of reference needs to be chosen. In
conventional aircraft theory, this point is often the center of gravity. By choosing
the center of gravity as the reference point, the gravity force is taken out of the
moment equation. For a kite, one might be inclined to take the tether attachment
point as the point of reference. For kite flyers, the cable attachment point has
more physical significance than the center of gravity. However, the position of the
cable attachment point can also be a control input for some of the more advanced
industrial kites. Furthermore, for a rigid kite, the center of gravity is a fixed
point. Therefore, the center of gravity is chosen as the point of reference around
which the moments are defined. The external forces generate external moments
about the center of gravity. The aerodynamic moment vector in the body-fixed
reference frame is defined as:
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M
B
aero,cg =





L
M
N



 (3.7)

The tether moment vector in the body-fixed reference frame is defined as:

M
B
tether,cg =





P
Q
R



 = rta × FB
tether (3.8)

where rta is the position of the tether attachment point relative to the center
of gravity in the body fixed reference frame. Figure 3.2 is a representation of the
kite with the frames of reference as indicated.
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Figure 3.2: Kite system with the assumptions.
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3.2.2 Equations of motion

In this section the equations of motion are derived. The general force and moment
equations expressed in the earth-fixed reference are (Newton’s second law):

mAE,cg = F ext (3.9)

dBE
cg

dt
= Mext,cg (3.10)

where AE,cg and
dBE

cg

dt
are the inertial translational acceleration and the de-

rivative of the inertial angular momentum respectively and F ext and Mext,cg

are the applied external forces and moments with respect to the cg respectively.
The inertial translational acceleration in the body-fixed reference frame can be
expressed as:

AB
E,cg =

dV B
E,rp

dt
+ΩB

BE × V B
E,rp =





u̇k
v̇k
ẇk



+





p
q
r



×





uk
vk
wk





=





u̇k + qwk − rvk
v̇k + ruk − pwk
ẇk + pvk − quk



 (3.11)

The derivative of the inertial angular momentum in the body-fixed reference
frame can be written as:

(

dBE
cg

dt

)B

=
B

B
cg

dt
+ΩB

BE ×B
B
cg

= I
B
cg

dΩB
BE

dt
+
dIBcg

dt
ΩB

BE +ΩB
BE ×

(

I
B
cgΩ

B
BE

)

(3.12)

where ΩB
BE and I

B
cg are the rotational velocity and the inertia tensor respecti-

vely given by:

ΩB
BE =





p
q
r



 (3.13)

I
B
cg =





Ixx −Jxy −Jxz
−Jyx Iyy −Jyz
−Jzx −Jzy Izz



 (3.14)
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For the assumption of rigid body the time derivative of the inertia tensor is
zero. The complete set of equations contains the equations of motion, kinematic
relations and wind relations. The equations of motion for the forces and moments
in the body-fixed reference frame are:

m





u̇k + qwk − rvk
v̇k + ruk − pwk
ẇk + pvk − quk



 = mgG





− sin θ
sinφ cos θ
cosφ cos θ



+





X
Y
Z



+





F
G
H



 (3.15)

I
B
cg

dΩB
BE

dt
+ΩB

BE ×
(

I
B
cgΩ

B
BE

)

=





L
M
N



+





P
Q
R



 (3.16)

The kinematic relations for the rotational rates of the body can be obtained
from equations A.11 and 3.13:





φ̇

θ̇

ψ̇



 =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ









p
q
r



 (3.17)

For the kinematic relations due to the tether, we write the position and velocity
of the tether attachment point out in spherical coordinates. If the kite is assumed
to be a rigid body the velocity of the end point of the tether expressed in the
tether-fixed reference frame 〈ẋtt, ẏtt , żtt〉 is determined from the kinematic velocity
and the rotational speed of the kite. From the theory of the planar motion of
rigid bodies [Török, 2000] the following equation is derived.





ẋBt
ẏBt
żBt



 =





uBk
vBk
wBk



+ΩB
BE × rta (3.18)

Where rBta is the position vector of the tether attachment point in the body-
fixed frame of reference. If the velocity of the end point of the tether in earth axes
is known, than the velocity of the end point of the tether can be transformed in
tether-fixed axes by equation (3.19):





ẋtt
ẏtt
żtt



 = TtB





ẋBt
ẏBt
żBt



 (3.19)
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The time derivative of 〈lt, θt, ψt〉 is than given by equation (3.20).

l̇t = −żtt

θ̇t = − ẋ
t
t

lt

ψ̇t = − ẏtt
lt sin θt

(3.20)

Equations 3.18, 3.19 and 3.20 now yield the kinematic relations due to the
tether:





ẋtt
ẏtt
żtt



 = TtB









uk
vk
wk



+ΩB
BE × rBta



 (3.21)





l̇t
θ̇t
ψ̇t



 =





0 0 −1
− 1
lt

0 0

0 − 1
lt sin θt

0









ẋtt
ẏtt
żtt



 (3.22)

The aerodynamic forces and moments are dependent on the apparent velocity
and acceleration. Since a kite flies under the influence of the wind, wind relations
are required which describe the influence of the wind on the apparent velocity and
acceleration. The apparent velocity Va i.e. the actual wind velocity experienced
by the kite, is given by the kinematic velocity of the kite Vk and the wind speed
VW . The wind velocity vector is defined as the velocity of an undisturbed air
particle W in the center of gravity cg expressed in the earth-fixed reference frame
EE for a flat and non-rotating earth:

V W = V W,cg =
dWE

cg

dt
=





Wx

Wy

Wz



 (3.23)

The kinematic velocity is the velocity of the kite relative to the earth, which
determines the actual displacements in x, y and z-direction. The apparent velocity
can be split up in the kinematic velocity and the wind velocity expressed in the
earth-fixed reference frame by:

V a = V k + V w

TEB





ua
va
wa



 = TEB





uk
vk
wk



+





Wx

Wy

Wz



 (3.24)
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The equations of motion are written in the body-fixed reference frame. The
apparent velocity in the body-fixed reference frame is given by:





ua
va
wa



 =





uk
vk
wk



+ TBE





Wx

Wy

Wz



 (3.25)

where the wind velocity in body-fixed reference frame is equivalent to:

V B
W = TBEV

E
W (3.26)

To derive the aerodynamic acceleration the time derivative of the wind velocity
in body axes needs to be known. Use is made of the theory of the transformation
of the derivative of a vector [Etkin, 1972]:

dV B
W

dt
=

d

dt

(

TBEV
E
W

)

V̇
B

W = TBE
dV E

W

dt
+
dTBE
dt

V E
W

V̇
B

W = TBE · V̇ E

W + TBE

(

ΩE
EB × V E

W

)

V̇
B

W = TBE · V̇ E

W −ΩB
BE × TBEV

E
W (3.27)

equation (3.25) can now be differentiated with respect to time to obtain the
expression for the aerodynamic acceleration vector in terms of the kinematic ve-
locity vector, the wind acceleration vector and the wind velocity vector:

dV B
a

dt
=
dV B

k

dt
+
d

dt

(

TBEV
E
W

)

V̇
B

a = V̇
B

k + TBE · V̇ E

W −ΩB
BE × TBEV

E
W (3.28)

Now the set of kinematic relations can be completed by adding the wind
relations describing the apparent velocity (3.25) and aerodynamic acceleration
(3.28):





ua
va
wa



 =





uk
vk
wk



+ TBE





Wx

Wy

Wz



 (3.29)
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u̇a
v̇a
ẇa



 =





u̇k
v̇k
ẇk



+ TBE ·





Ẇx

Ẇy

Ẇz



−





p
q
r



× TBE





Wx

Wy

Wz



 (3.30)

3.2.3 Control inputs

Conventional aircraft are outfitted with control surfaces. For kites such devices
are rare. Control of kites can be accomplished by changing the balance of forces
in the tethers. Or, for single line kites, shift the attachment points of the bridle
lines or tether to the kite. In this model, control can be established by shifting the
two cable attachment points in the direction of the XB axis (see figure 3.2). The
position of the attachment points are defined in the body fixed frame of reference
by:

rtaL =





xtaL
ytaL
ztaL



 rtaR =





xtaR
ytaR
ztaR



 (3.31)

Based on this definition it is possible to define an ‘average’ or central position.
This is convenient when the controls are moved symmetrically and only one control
variable has to be defined:

rta =







xtaL+xtaR

2
ytaL+ytaR

2
ztaL+ztaR

2






(3.32)

For simplicity it is assumed that xtaL and xtaR are the only varying para-
meters. This holds when the displacement of the control positions in Yb or Zb
direction is relatively small.

3.2.4 Tether model

The main tether force is modelled as a spring-damper and this is represented by
equation (3.33):

Tt

(

δlt(t), l̇t(t)
)

= kt · δlt(t) + ct · l̇t(t) (3.33)

where kt and ct are the spring and damper constants. The initial tether length at
‘t = 0 s’ is given by equation (3.34):

lt0 = lt,δlt=0 + δlt0 (3.34)

where lt,δlt=0 is the unstretched tether length and δlt0 the initial tether elongation.
A system of bridle lines attach the main tether to the kite. The bridle lines

constrain the kite in a mix of roll (p) and yaw (r) motion depending on the body
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pitch angle with respect to the tether. A detailed discussion of the tether model
can be found in appendix B. Figure 3.3 shows a graphical representation of the
tether and control parameters.

cg

VW

Xb

Yb

Zb

et,b

et,E

lt

r
R
ta

r
L
ta

OE

XE

YE

ZE

Figure 3.3: Definition of tether and control parameters.

3.2.5 Linearized equations of motion

In the previous sections a non-linear rigid body model of a kite was derived. This
section outlines the linearized equations of motion. Extensive use is made of the
linearization method for conventional aircraft flight dynamics which is described
extensively in Mulder et al. [2007]. A more detailed discussion on the linearization
of the equations of motion can be found in appendix C and D. A condensed
discussion is given here.

The flight condition to be linearized is a steady straight symmetric flight condi-
tion where the initial kinematic velocity of the kite is zero. The initial condition
is given by following parameters in the body-fixed reference frame, except for the
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wind velocity components:

ua 6= 0 uk = 0 u̇k = 0 Wx 6= 0 p = 0 ṗ = 0

va = 0 vk = 0 v̇k = 0 Wy = 0 q = 0 q̇ = 0

wa = 0 wk = 0 ẇk = 0 Wz = 0 r = 0 ṙ = 0

φ = 0 φ̇ = 0 δlt 6= 0 l̇t = 0 τ = 0 τ̇ = 0

θ 6= 0 θ̇ = 0 θt 6= 0 θ̇t = 0 κ 6= 0 κ̇ = 0

ψ = 0 ψ̇ = 0 ψt = 0 φ̇t = 0 ξ = 0 ξ̇ = 0

X 6= 0 F 6= 0 L = 0 P = 0

Y = 0 G = 0 M 6= 0 Q 6= 0

Z 6= 0 H 6= 0 N = 0 R = 0

The linearization of the states is done analogue to Mulder et al. [2007]. The
equations of motion can be written as:

Fx = f
(

u̇a, va, wa, q, r
)

Fy = f
(

v̇a, ua, wa, p, r
)

Fz = f
(

ẇa, ua, va, p, q
)

Mx = f
(

ṗ, ṙ, p, q, r
)

My = f
(

q̇, p, r
)

Mz = f
(

ṗ, ṙ, p, q, r
)

(3.35)

Linearization of the forces and moments is largely analogue to conventional
flight dynamics, except for the inclusion of the tether forces. The forces and
moments are a function of the following states:

Fx = f
(

θ,X, F
)

Fy = f
(

θ, φ, Y,G
)

Fz = f
(

θ, φ, Z,H
)

Mx = f
(

L, P
)

My = f
(

M,Q
)

Mz = f
(

N,R
)

(3.36)

With:
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W = f
(

θ
)

X = f
(

ua, wa, q
)

L = f
(

va, p, r
)

Y = f
(

va, v̇a, p, r
)

M = f
(

ua, wa, ẇa, q
)

Z = f
(

ua, wa, ẇa, q
)

N = f
(

va, v̇a, p, r
)

F = f
(

xta, lt, l̇t, κ
)

P = f
(

xLta, x
R
ta, τ

)

G = f
(

xLta, x
R
ta, τ

)

Q = f
(

xta, lt, l̇t, κ
)

H = f
(

xta, lt, l̇t, κ
)

R = f
(

xLta, x
R
ta, τ

)

(3.37)

The control quantities rLta and rRta consist both of three components xta, yta
and zta as explained in section 3.2.3. The only variable components are xLta and
xRta. Linearization of the control quantities will result in a dependency only of
∆xLta and ∆xRta. lt and l̇t are states concerning the length and the change of
length of the main tether. κ is the body pitch angle with respect to the tether
and τ is the body roll angle with respect to the tether. From here. linearization
of the forces and moments is analogue to Mulder et al. [2007]

Linearization of the kinematic relations relating to the body is analogue to
that for aircraft and is therefore omitted here. An extensive discussion can be
found in Mulder et al. [2007]. Linearization of the kinematic relations relating
to tether and the wind are done after applying the initial conditions in order to
keep the linearization concise. Details on the linearization of the symmetric and
asymmetric equations of motion and kinematic relations can be found in appendix
C and D.

3.2.6 Matrix notation of the symmetric equations of motion

In appendix C a more detailed discussion can be found on the linearization of
the equations of motion and the kinematic relations pertaining to the symmetric
case. Grouping these equations as a function of ∆X and dropping the ∆’s yields

47



the following set of equations:

−W cos θ0 · θ +Xua
· ua +Xwa

· wa +Xq · q
+Fxta

· xta + Flt · lt + Fl̇t · l̇t + Fκ · κ = m · u̇k

−W sin θ0 · θ + Zua
· ua + Zwa

· wa + Zẇa
· ẇa + Zq · q

+Hxta
· xta +Hlt · lt +Hl̇t

· l̇t +Hκ · κ = m · ẇk

Mua
· ua +Mwa

· wa +Mẇa
· ẇa +Mq · q

+Qxta
· xta +Qlt · lt +Ql̇t · l̇t +Qκ · κ = Iy · q̇

θ̇ = q

cosκ0 · uk + zta cosκ0 · q + sinκ0 · wk − xta0 sinκ0 · q = −lt0 · θ̇t

− sinκ0 · uk − zta sinκ0 · q + cosκ0 · wk − xta0 cosκ0 · q = −l̇t

κ̇+ θ̇t = q

uk + cos θ0 ·Wx −Wx0 sin θ0 · θ = ua

wk + sin θ0 ·Wx +Wx0 cos θ0 · θ = wa

u̇k −Wx0 sin θ0 · q = u̇a

ẇk +Wx0 cos θ0 · q = ẇa

(3.38)

These 11 equations can be reduced to 6 equations. The equations for ua and
wa can be used to replace the aerodynamic velocities in the force and moment
equations. The same holds for ẇa. Furthermore a relation between κ, θ and θt is
obtained by integrating κ̇+ θ̇t = q:

q = κ̇+ θ̇c

d

dt
· θ = d

dt
· κ+

d

dt
· θc

θ = κ+ θc

κ = θ − θc (3.39)

where the integration constant is omitted, because it is represented in the initial
state of equilibrium X0. By reducing the equations in (3.38) and collecting the
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terms the following set of equations is obtained:

Xua
· uk +Xwa

· wk
+(−W cos θ0 −Xua

Wx0 sin θ0 +Xwa
Wx0 cos θ0 + Fκ) · θ

+Xq · q + Flt · lt + Fl̇t · l̇t − Fκ · θt
+(Xwa

sin θ0 +Xua
cos θ0) ·Wx + Fxta

· xta = m · u̇k

Zua
· uk + Zwa

· wk + Zẇa
· ẇk

+(−W sin θ0 − Zua
Wx0 sin θ0 + Zwa

Wx0 cos θ0 +Hκ) · θ
+(Zq + Zẇa

·Wx0 cos θ0) · q +Hlt · lt +Hl̇t
· l̇t −Hκ · θt

+(Zwa
sin θ0 + Zua

cos θ0) ·Wx +Hxta
· xta = m · ẇk

Mua
· uk +Mwa

· wk +Mẇa
· ẇk

+(−Mua
Wx0 sin θ0 +Mwa

Wx0 cos θ0 +Qκ) · θ
+(Mq +Mẇa

·Wx0 cos θ0) · q +Qlt · lt +Ql̇t · l̇t −Qκ · θt
+(Mwa

sin θ0 +Mua
cos θ0) ·Wx +Qxta

· xta = Iy · q̇

q = θ̇

cosκ0 · uk + sinκ0 · wk + (zta cosκ0 − xta0 sinκ0) · q = −lt0 · θ̇t

− sinκ0 · uk + cosκ0 · wk − (zta sinκ0 + xta0 cosκ0) · q = −l̇t

(3.40)

The equations of motion are made dimensionless in order to facilitate the
posibility of comparison between different sized kites. The equations can be made
dimensionless according to the divisors given in table 3.1 for the symmetric and
asymmetric equations of motion.

Symmetric Asymmetric

motions motions

Length [l] c b
Velocity [lt−1] V0 V0
Mass [m] ρSc ρSb

Table 3.1: Divisors for the dimensionless linearized equations of motion.

49



In table 3.1 ρ is the air density, S the projected surface area, c the mean
aerodynamic chord and b the wing span. In the symmetric equations (3.40) the
force equations will be divided by 1

2ρV
2
0 S and the moment equation by 1

2ρV
2
0 Sc.

In this process the states as well as the derivatives become dimensionless. The
process is analogue to conventional flight dynamics [Mulder et al., 2007]

The resulting equations are:

CXu
· ûk + CXw

· ŵk
+(CZ0 + CH0 − CXu

Wx0 sin θ0
V0

+ CXw

Wx0 cos θ0
V0

+ CFκ
) · θ

+CXq
· qc
V0

+ CFl
· lt
c
+ CFl̇

· l̇t
V0

− CFκ
· θt

+(CXw
sin θ0 + CXu

cos θ0) · Wx

V0
+ CFxta

· xta = 2µcDc · ûk

CZu
· ûk + (CZw

+ CZẇ
Dc) · ŵk

+(−CX0 − CF0 − CZu

Wx0 sin θ0
V0

+ CZw

Wx0 cos θ0
V0

+ CHκ
) · θ

+(CZq
+ CZẇ

Wx0 cos θ0
V0

) · qc
V0

+ CHl
· lt
c
+ CHl̇

· l̇t
V0

− CHκ
· θt

+(CZw
sin θ0 + CZu

cos θ0) · Wx

V0
+ CHxta

· xta = 2µcDc · ŵk

Cmu
· ûk + (Cmw

+ Cmẇ
Dc) · ŵk

+(−Cmu

Wx0 sin θ0
V0

+ Cmw

Wx0 cos θ0
V0

+ CQκ
) · θ

+(Cmq
+ Cmẇ

Wx0 cos θ0
V0

) · qc
V0

+ CQl
· lt
c
+ CQl̇

· l̇t
V0

− CQκ
· θt

+(Cmw
sin θ0 + Cmu

cos θ0) · Wx

V0
+ CQxta

· xta = 2µcK
2
YDc · qcV0

qc
V0

= Dc · θ

cosκ0 · ûk + sinκ0 · ŵk + zta cosκ0−xta0 sinκ0

c
· qc
V0

= − lt0
c
Dc · θt

− sinκ0 · ûk + cosκ0 · ŵk − zta sinκ0+xta0 cosκ0

c
· qc
V0

= −Dc · ltc
(3.41)
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with:

ûk =
uk
V0

CZ0 + CH0 = −W cos θ0
1
2ρV

2
0 S

ŵk =
wk
V0

−CX0 − CF0 = −W sin θ0
1
2ρV

2
0 S

µc =
m

ρSc

µcK
2
Y =

Iy

ρSc3

Dc =
c

V0

d

dt

and

CFκ
= −CH0 CFl

= −ktc sinκ01
2ρV

2
0 S

(3.42)

CHκ
= CF0 CHl

=
ktc cosκ0
1
2ρV

2
0 S

(3.43)

CQκ
=
zta
c
CFκ

− xta0
c
CHκ

CQl
= −ztakt sinκ0 + xta0kt cosκ0

1
2ρV

2
0 S

(3.44)

CFl̇
= −ct sinκ01

2ρV0S
CFδ

= 0 (3.45)

CHl̇
=
ct cosκ0
1
2ρV0S

CHδ
= 0 (3.46)

CQl̇
= −ztact sinκ0 + xta0ct cosκ0

1
2ρV0Sc

CQδ
= −CH0 (3.47)

where the terms with the weight W come from the force equilibrium in the
nominal flight condition. CXu

, CXw
, CXq

, CZu
, CZw

, CZẇ
, CZq

, Cmu
, Cmw

, Cmẇ

and Cmq
are the so-called stability derivatives [Mulder et al., 2007]. CFκ

, CFl
,

CFl̇
, CHκ

, CHl
, CHl̇

, CQκ
, CQl

and CQl̇
are the derivatives related to the tether.

CFxta
, CHxta

and CQxta
denote the input derivatives of the control system.

The equations (3.41) can be written in matrix notation depending on the
dimensionless states ûk, ŵk, θ,

qc
V0
, θt and

lt
c
with Wx

V0
and xta

c
as inputs:
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A number of notable differences with the flight dynamics of conventional air-
craft can be observed. Most notable is the fact that the matrix in the previous
equation is a 6x6 matrix instead of the 4x4 matrix for conventional aircraft [Mul-
der et al., 2007]. The tether introduces new degrees of freedom (θt and lt) which
are responsible for the 6x6 matrix configuration. The contribution of the tether
can be found in the derivatives of the tether force coefficients CF , CH and the deri-
vatives of the tether moment coefficient CQ. Because the tether is a spring-damper
with known stiffness and damping, there is no need to measure the derivatives.
For this model they can be calculated as is indicated in equations (3.2.6).
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3.2.7 Matrix notation of the asymmetric equations of motion

In appendix D a more detailed discussion can be found on the linearization of
the equations of motion and the kinematic relations pertaining to the asymmetric
case. Grouping these equations as a function of ∆X and dropping the ∆’s yields
the following set of equations:

W cos θ0 · φ+ Yva · va + Yv̇a · v̇a + Yp · p+ Yr · r
+Gτ · τ +GxtaL

· xtaL +GxtaR
· xtaR = m · v̇k

Lva · va + Lp · p+ Lr · r
+Pτ · τ + PxtaL

· xtaL + PxtaR
· xtaR = Ix · ṗ− Jxz · ṙ

Nva · va +Nv̇a · v̇a +Np · p+Nr · r
+Rτ · τ +RxtaL

· xtaL +RxtaR
· xtaR = Iz · ṙ − Jxz · ṗ

p+ tan θ0 · r = φ̇

1
cos θ0

· r = ψ̇

−vk + zta · p− xta0 · r = lt0 sin θt0 · ψ̇t

τ̇ − sinκ0 · ξ̇ − (sin θt0 cosκ0 + cos θt0 sinκ0) · ψ̇t = p

cosκ0 · ξ̇ − (sin θt0 sinκ0 − cos θt0 cosκ0) · ψ̇t = r

vk +Wx0 sin θ0 · φ−Wx0 · ψ +Wy = va

v̇k +Wx0 sin θ0 · p−Wx0 · r = v̇a

(3.48)

These 10 relations can be reduced to a set of 6 equations, depending on the
states vk, φ, p, ψ, r and ψt.

A relation can be found for τ depending on φ, ψ and ψt by taking equations
4,5,7 and 8 of (3.48) together:

τ̇ = φ̇+ (− sin θ0 + tanκ0 cos θ0) · ψ̇ +
sin θt0
cosκ0

· ψ̇t
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and equation (3.49) can be integrated, which yields:

τ = φ+ (− sin θ0 + tanκ0 cos θ0) · ψ + (
sin θt0
cosκ0

) · ψt (3.49)

Reducing the 10 equations to 6 and collecting terms the following set of equations
is obtained:

Yva · vk + Yv̇a · v̇k + (W cos θ0 +Wx0 sin θ0Yva +Gτ ) · φ
+(Yp +Wx0 sin θ0Yv̇a) · p

+(−Wx0Yva +Gτ (− sin θ0 + tanκ0 cos θ0)) · ψ

+(−Wx0Yv̇a + Yr) · r +Gτ

(

sin θt0
cosκ0

)

· ψt
+Wy · Yva +GxtaL

· xtaL +GxtaR
· xtaR = m · v̇k

p+ tan θ0 · r = φ̇

Lva · vk + (Wx0 sin θ0Lva + Pτ ) · φ+ Lp · p
+(−Wx0Lva + Pτ (− sin θ0 + tanκ0 cos θ0)) · ψ + Lr · r

+Pτ

(

sin θt0
cosκ0

)

· ψt +Wy · Lva + PxtaL
· xtaL + PxtaR

· xtaR = Ix · ṗ− Jxz · ṙ

1
cos θ0

· r = ψ̇

Nva · vk +Nv̇a · v̇k + (Wx0 sin θ0Nva +Rτ ) · φ
+(Wx0 sin θ0Nv̇a +Np) · p

+(−Wx0Nva +Rτ (− sin θ0 + tanκ0 cos θ0)) · ψ

+(−Wx0Nv̇a +Nr) · r +Rτ

(

sin θt0
cosκ0

)

· ψt
+Wy ·Nva +RxtaL

· xtaL +RxtaR
· xtaR = Iz · ṙ − Jxz · ṗ

−vk + zta · p− xta0 · r = lt0 sin θt0 · ψ̇t
(3.50)

As for the symmetric equations of motion the asymmetric equations are made
dimensionless as well. The divisors are given in table 3.1. The forces are divided
by 1

2ρV
2
0 S and the moments by 1

2ρV
2
0 Sb. The dimensionless quantities of p and

r are pb
2V0

and rb
2V0

respectively, in accordance with conventional flight dynamics.
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The dimensionless equations of motion can be written as:

(CYv + CYv̇
Db) · v̂k + (−CZ0

− CH0
+ CYv

Wx0 sin θ0
V0

+ CGτ ) · φ

+(CYp + 2CYv̇

Wx0 sin θ0
V0

) · pb

2V0

+(−CYv

Wx
V0

+ CGτ (− sin θ0 + tan κ0 cos θ0)) · ψ

+(−2CYv̇

Wx0
V0

+ CYr ) ·
rb
2V0

+ CGτ (
sin θt0
cosκ0

) · ψt + CYv

·
Wy

V0
+ CGxtaL

· xtaL
b

+ CGxtaR
· xtaR

b
= 2µbDb · v̂k

2 pb
2V0

+ 2 tan θ0 · rb
2V0

= Db · φ

Clv · v̂k + (−Clv
Wx0 sin θ0

V0
+ CPτ ) · φ

+Clp · pb

2V0
+ (−Clv

Wx

V0
+ CPτ (− sin θ0 + tan κ0 cos θ0)) · ψ

+Clr · rb
2V0

+ CPτ (
sin θt0
cos κ0

) · ψt

+Clv ·
Wy

V0
+ CPxtaL

· xtaL
b

+ CPxtaR
· xtaR

b
= 4µbK

2

X
Db ·

pb

2V0

−4µbKXZDb ·
rb
2V0

2

cos θ0
· rb
2V0

= Db · ψ

(Cnv + Cnv̇Db) · v̂k + (Cnv
Wx0 sin θ0

V0
+ CRτ ) · φ

+(2Cnv̇

Wx0 sin θ0
V0

+ Cnp ) ·
pb

2V0

+(−Cnv
Wx

V0
+ CRτ (− sin θ0 + tan κ0 cos θ0)) · ψ

+(−2Cnv̇

Wx
V0

+ Cnr ) ·
rb
2V0

+ CRτ (
sin θt0
cosκ0

) · ψt +
Wy

V0
· Cnv

+CRxtaL
· xtaL

b
+ CRxtaR

= 4µbK
2

Z
Db ·

rb
2V0

−4µbKXZDb ·
pb

2V0

− vk
V0

+ 2 zta
b

· pb

2V0
− 2xta0

b
· rb
2V0

= lt0 sin θt0
b

Db · ψt

(3.51)

where W cos θ0 has been replaced by −Z0 −H0 as was done in the symmetric
equations. CYv

, CYv̇
, Cyp , Cyr , Clv , Clp , Clr , Cnv

, Cnv̇
, Cnp

and Cnr
are the

so-called stability derivatives [Mulder et al., 2007]. CGτ
, CPτ

and CRτ
are the

derivatives related to the tether. CGxtaL
, CGxtaR

, CPxtaL
, CPxtaR

, CRxtaL
and

CRxtaR
denote the input derivatives of the control system.

The next step is to write the equations in matrix notation depending on the

dimensionless states v̂k, φ,
pb
2V0

, ψ, rb
2V0

and ψt with
Wy

V0
,
xL
ta

b
and

xR
ta

b
as inputs:
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A number of notable differences with the flight dynamics of conventional air-
craft can be observed. Most notable is the fact that the matrix in the previous
equation is a 6x6 matrix instead of the 4x4 matrix for conventional aircraft [Mul-
der et al., 2007]. The tether introduces new degrees of freedom which are res-
ponsible for the 6x6 matrix configuration. The contribution of the tether can be
found in the derivatives of the tether force coefficient CG and the derivatives of
the tether moment coefficients CP and CR. Because the tether is a spring-damper
with known stiffness and damping, there is no need to measure the derivatives.
For this model they can be calculated as is indicated in section D.

The coefficients CGxtaL
, CGxtaR

, CPxtaL
, CPxtaR

, CRxtaL
and CRxtaR

deserve
deeper analysis. Appendix E presents a more thorough investigation on the in-
fluence of G, P and R as a result of an anti-symmetric control input.
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3.2.8 Simulation results

In order to build confidence in the validity of the Newton-based kite model, some
simulation results are presented and commented. The purpose of the analysis is
to provide a qualitative validation.

For the symmetric motions, the effects of the inputs on pitch angle θ is of
interest. Figure 3.4 shows the effect of one-second input pulses of different ma-
gnitudes.
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Figure 3.4: The effect of a symmetric control input ∆xta on pitch angle θ.

The input pulses consists of a shift in tow point along the XB-axis (xta). For
the first second of the simulation, the tow point is shifted forward instantly for
distances of resp. 5cm, 10cm and 15cm. This increases the moment arm of the
tether force and creates a pitch-down moment which can clearly be seen in the
resulting dip in pitch angle θ. After the first second, the tow point is shifted back
instantly to its original position, restoring the equilibrium of the initial conditions.
Due to the pitch stability of the kite, a converging oscillation returns the kite to
its original pitch angle.

In the second simulation, the kite is subjected to a wind gust ∆Wx in XE

direction. The wind gust starts at 1 second and ends at 3.5 seconds. Figure
fig:simresult2 shows the resulting effects on the pitch angle θ

Due to the temporarily increased wind velocity, the kite experiences an increa-
sed lift- and drag force. The resulting accelleration creates a decrease in angle of
attack. Due to the static stability characteristics of the kite, a decrease in angle
of attack results in a pitch-up moment. This in turn temporarily increases the

59



0 5 10 15
9

9.5

10

10.5

11

11.5

Time [s]

θ
[d
eg
]

∆Wx = 10m/s

∆Wx = 20m/s

∆Wx = 30m/s

∆Wx

Figure 3.5: The effect of a windgust input ∆Wx on pitch angle θ.

pitch angle θ as can be seen in figurefig:simresult2. Furthermore, the instantly
changing gust creates some hysteresis at t = 1s and t = 3.5s. After the gust has
passed, the kite converges back to its original pitch angle.

For the asymmetric motions, the tether angle ψt is of interest. In section
3.4.3, the eigenvalues of the equations of motion will be calculated. From this
calculation, it becomes clear that one of the asymmetric eigenmotions of the kite
is unstable. This instability is mostly manifested as a divergence in ψt. In figure
3.6 a 1-second anti-symmetric input pulse is introduced. This anti-symmetric
imput pulse consists of the right tow point (xtaR) shifting forwards and the left
tow point (xtaL) shifting backwards such that xtaR = −xtaL.

After the one second input pulse, the tow points instantly shift back to their
original position. As can be seen in figure fig:simresult3, the kite does not return
to its equilibrium. The input pulse has created a divergent motion. In this thesis,
this motion is called the asymmetric inverted pendulum motion, this particular
instability mode is often observed in kites. In the kite world, a stable asymmetric
inverted pendulum motion is called ”auto-zenith capability”. It is the ability of
the kite to return to its zenith position high in the sky when no further control
inputs are given. It is a characteristic favored by novice kite surfers.

Figure 3.7 shows the effects on tether angle ψt of an anti-symmetric control
input of ∆xtaR = −∆xtaL = 0.04m for different pulse lengths. The black line in
figure 3.7 represents a sustained control input of the same magnitude.

Even though a short 1-second control input makes the kite diverge slower,
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Figure 3.6: The effect of an asymmetric control input ∆xtaR = −∆xtaL on tether
angle ψt.

it diverges nonetheless. An interesting question is now how recoverable is this
motion? Lets assume a person trying to control this particular kite by using
instant control inputs of equal and opposing magnitude. Can this person keep
the kite in the sky? Figure 3.8 shows the effects on tether angle ψt of an anti-
symmetric control imput, which is superceded by an opposing control imput of
the same magnitude. Three curves are plotted for three different lengths of the
initial control input pulse.

When the kite controller reverses the control input after one second, the kite
returns to it’s zenith position and overshoots it to the other side. This maneuver
takes significantly longer for an initial control input pulse of 1.5 seconds. For a
initial control input pulse of 2 seconds, no recovery is possible with the prescribed
control input.

In reality, a kite controller is not limited to just one set of opposing control
inputs. Furthermore, the tow points do not shift instantly. And thus the analysis
here is mostly hypothetical. However, it can be seen that for slow shifting controls,
it becomes nearly impossible to control the kite. the kite flyer has to anticipate
the motion of the kite and make corrections before the kite starts to diverge.
This result agrees with the practical experience of controlling kites by shifting
tow points.
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3.3 Lagrange-based kite model

In this section, the equations of motion for the same kite system are derived. This
time, Lagrange’s equations of motion are used. Significant work on this model
was performed by Master Thesis student Edwin Terink [Terink et al., 2010].

3.3.1 Kite system kinematics

As was discussed in the previous section, the origin of the body reference frame is
located at the cg of the Kite. In order to define the center of gravity in the earth
frame of reference, the location of the cable attachment point with respect to the
center of gravity is needed. The location of this point in the body-fixed frame of
reference is denoted by rBta and defined as:

rBta =





xt
0
zt



EB (3.52)

The position vector of the center of gravity is now defined by equation (3.53):

rcg =





0
0
−lt



Et +





−xt
0

−zt



EB (3.53)

The velocity of the center of gravity is simply the time derivative of its position
and thus equal to equation (3.54).

V cg =





0
0

−̇lt



Et +





0
0
−lt



 Ėt +





˙−xt
0

−̇zt



EB +





−xt
0

−zt



 ĖB (3.54)

In fact the third term can be left out because the time derivatives of xt and
zt are zero. The time derivative of the tether length lt can be replaced by the
roll-out speed f . The velocity of the center of gravity can now be written as
equation (3.55).

V cg =





0
0
f



Et +





0
0
−lt



 Ėt +





−xt
0

−zt



 ĖB (3.55)
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What remains is to determine the derivatives ˙EE′′ and ĖB, or more precisely,
the derivatives of the unit vectors in these reference frames. However, a posi-
tion vector multiplied by the derivative of a reference frame is equivalent to the
crossproduct between the rotation vector of the reference frame and the position
vector. Thus, the velocity of the center of gravity is equal to equation (3.56).

V cg =





0
0
f



Et + ωTEt
×





0
0
−lt



Et + ωBEB
×





−xt
0

−zt



EB (3.56)

According to the definitions in appendix A, the reference frame Et rotates
with ψ̇t, θ̇t and χ̇t. These angular velocities are denoted by a, z and b respecti-
vely. Transforming the angular velocities to the Et reference frame results in the
rotation vector ωTEt

, as displayed in equation (3.57).

ω
T
Et

=





0
0
b



+ TTE′′





0
z

0



+ TTE′′TE′′E′





0
0
a



 =





− cos (χt) sin (θt) a+ sin (χt) z
sin (χt) sin (θt) a+ cos (χt) z

b+ cos (θt) a



 (3.57)

The rotation vector ωBEB
can be derived in a similar way, the result is displayed

in equation (3.58).

ωB
EB

=





0
p

0



+ TBT





0
0
b



+ TBTTTE′′





0
z

0



+ TBT fTE
′′
TE′′E′





0
0
a





=





− sin (θ) b+ cos (θ) sin (χt) z + (− cos (θ) cos (χt) sin (θt)− sin (θ) cos (θt)) a
p+ cos (χt) z + sin (χt) sin (θt) a

cos (θ) b+ sin (θ) sin (χt) z + (− sin (θ) cos (χt) sin (θt) + cos (θ) cos (θt)) a



 (3.58)

With the rotation vectors derived, equation (3.55) can be evaluated to find
the velocity vector. The reference frame in which the velocity vector yields the
shortest expression is the tether reference frame. The velocity vector in this
reference frame is given by equation (3.59).

VT
cg =

























− cos (χt) zlt − sin (χt) sin (θt) alt − cos (θ) (p+ cos (χt) z + sin (χt) sin (θt) a) zt+
sin (θ) (p+ cos (χt) z + sin (χt) sin (θt) a)xt

sin (χt) zlt − cos (χt) sin (θt) alt − (cos (θ) b+ sin (θ) sin (χt) z+
(− sin (θ) cos (χt) sin (θt) + cos (θ) cos (θt)) a)xt+

(− sin (θ) b+ cos (θ) sin (χt) z + (− cos (θ) cos (χt) sin (θt) − sin (θ) cos (θt)) a) zt

sin (θ) (p+ cos (χt) z − sin (χt) sin (θt) a) zt+
cos (θ) (p+ cos (χt) z + sin (χt) sin (θt) a)xt − f

























(3.59)

By using the transformation matrices of appendix A, the velocity vector can
be expressed in any of the other reference frames as well.
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3.3.2 Kinetic and potential energy

The total kinetic energy of the Kite system, which consists of translational and
rotational energy, is obtained from equation (3.60) by substituting equation (3.59)
for the velocity and equation (3.58) for the rotation vector.

T =
1

2
mkVcg ·Vcg +

1

2
ωT

cg · I · ωcg (3.60)

The potential energy of the Kite system is given by equation (3.62) using the
definition in equation (3.61).

V = mgg · rcg (3.61)

V = mgg (− cos(χt) sin(θt) (− cos(θ)xT − sin(θ)zT ) + cos(θt) (−lT + sin(θ)xT cos(θ)zT ))(3.62)

The gravitational acceleration vector is in the positive ZE direction, thus the
potential energy is simply the z-component of the position vector in the earth
reference frame multiplied by the gravitational mass and g. The gravitational
mass differs from the inertial mass, because it does not account for the confined
air. In a light inflatable structure this makes a difference and implementing it this
way avoids the inclusion of buoyancy forces. The calculated difference in center
of gravity between mk and mg needs evaluation on a per-kite basis wether or not
it can be neglected.

3.3.3 Generalized forces

Since the Kite model is subjected to nonconservative forces such as aerodynamic
and ground station loads, generalized forces need to be included in Lagrange’s
equations of motion to account for this. For now it is assumed that the resulting
aerodynamic loads can be expressed as a force vector and a moment vector that
act on the Kite center of gravity. In the body reference frame, these two vectors
are given by equations (3.63) and (3.64) respectively.

FBa =





X
Y
Z



 (3.63)

MB
a =





L
M
N



 (3.64)
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The force from the ground station acting on the tether in the tether reference
frame is defined in equation (3.65).

FTGS =





0
0

FGS



 (3.65)

With the nonconservative forces specified, the generalized force Qi for gene-
ralized coordinate qi can be derived using the principle of virtual work in Eq.
(3.66).

Qi =
∂ṙ

∂q̇i
·F+

∂ω̇

∂q̇i
·M, i = 1, . . . , 5 (3.66)

The results of applying Eqs. (3.66) to the generalized coordinates in the kite
system are displayed in Eqs. (3.67) through (3.71). Note that the nonconservative
forces are transformed to the reference frames corresponding to the generalized
coordinates.

Qθ =
∂

∂θ̇



MB
a ·





0

θ̇
0



+ FBa ·









0

θ̇
0



×





−xt
0

−zt











 (3.67)

Qχt
=

∂

∂χ̇t



MT
a ·





0
0
χ̇t



+ FTa ·
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0
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0
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 (3.68)

Qlt =
∂

∂l̇t





(

FTa + FTGS
)

·





0
0

−l̇t







 (3.69)

Qθt =
∂

∂θ̇t



ME′′

a ·





0

θ̇t
0



+ FE
′′

a ·









0

θ̇t
0



× rE
′′

cg







 (3.70)

Qψt
=

∂

∂ψ̇t



ME′

a ·





0
0

ψ̇t



+ FE
′

a ·









0
0

ψ̇t



× rE
′

cg







 (3.71)

3.3.4 Equations of motion

Lagrange’s equations of motion are defined by equation (3.72) and provide a
second order differential equation for each of the generalized coordinates.
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d

dt

∂T

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= Qi, i = 1, . . . , 5 (3.72)

With the previous equations, the Lagrangian equations of motion are known.
The forces on the kite can be calculated using conventional strip theory. For ins-
tance, for the Kiteplane the body is divided into components such as the left wing,
the right wing, the vertical fins and the horizontal tail surface. The aerodynamic
forces on these components are calculated locally. Using the transformation ma-
trix from the local component reference system to the body fixed reference system,
the contributions of the aerodynamic forces and moments of the component to
the body forces and moments are calculated. A more detailed derivation of this
model with regard to the kiteplane can be found in Terink et al. [2010].

The question now beckons how this model relates to the Newton based model
of section 3.2. Appendix F gives a comparison of the two models based on a
scenario where a Cessna Ce500 Citation is modeled as a kite, tethered to the
ground. The reason for choosing this scenario is that the stability derivatives of
this airplane are readily available [Mulder et al., 2007].

3.4 Tethered vs non-tethered flight

With the two rigid body models completed in the previous sections, it is now
possible to make a comparison between tethered and non-tethered flight. With
the question wether or not conventional airplane theory can be used to model a
kite, a new question gains significance. Exactly what happens to the dynamics of
a flying object when it is tethered to the ground? To answer this question, the
eigenmodes of a tethered and untethered Cessna CE500 Citation are compared.
An accurate model for this aircraft is available [Mulder et al., 2007], because this
particular aircraft is partly owned by the faculty of Aerospace Engineering and
used as a flying laboratory. In order to make this model suitable for flying as a
kite, a small change needs to be made. The mass of the tethered Citation is far
to large to allow it to fly as a kite in conventional wind speeds. Therefore, the
mass of the tethered Citation was reduced by 96%. Since the stability derivatives
are dimensionless, they remain the same for this adapted Citation model. In the
following text the reference ”airplane” relates to the non-tethered Citation and
the reference ”kite” relates to the tethered Citation. The tethered Citation kite
is bridled along the YB axis, inhibiting roll motion. The main cable is modeled as
a spring-damper.

3.4.1 Eigenmotions of non-tethered flight

Mulder et al. [2007] gives a detailed analysis of the dynamics of the untethered
Citation. Some of the results are repeated here for completeness. In the symmetric
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regime, the Citation exhibits two distinct eigenmodes: a phugoid motion with a
period of 32.1 seconds and a short period oscillation with a period of 5.6 seconds.
In the a-symmetric regime, the citation exhibits a periodic dutch-roll motion
with a period of 2 seconds and two a-periodic motions: a highly dampened roll
motion and a slightly dampened spiral motion. Table 3.2 gives an overview of the
symmetric eigenmotions of the non-tethered Citation.

Table 3.2: Symmetric eigenmotions of the untethered Cessna CE500 Citation.

Eigenmotion Period [s] Amplitude half-life [s]
Phugoid motion 32.1 81
Short period motion 5.6 0.6

Table 3.3 does the same for the asymmetric eigenmotions of the non-tethered
Citation.

Table 3.3: Asymmetric eigenmotions of the untethered Cessna CE500 Citation.

Eigenmotion Period [s] Amplitude half-life [s]
Dutch roll motion 2 2.34
A-periodic roll motion n/a 0.223
Spiral motion n/a 6.782

The eigenmotions found for the untethered Citation are characteristic for
conventional aircraft. The question now is how these eigenmotions change for
the tethered Citation. The tether itself is modelled as a spring-damper between
the ground and the cable attachment point on the kite and it is assumed to have
no mass and no aerodynamic drag. The tether introduces new degrees of freedom
which result in additional eigen values of the characteristic equation.

3.4.2 Symmetric eigenmotions of tethered flight

For the tethered Citation we find the following eigenvalues from the symmetric
characteristic equation:

Table 3.4: Eigenvalues from the symmetric characteristic equation.

λ1 -37.51
λ2 -5.41 + 38.44i
λ3 -5.41 - 38.44i
λ4 -0.097 + 1.67i
λ5 -0.097 - 1.67i
λ6 -1.02
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The eigenvalues in table 3.4 indicate the presence of two a-periodic eigenmo-
tions, corresponding to λ1 and λ6 and two periodic eigenmotions, corresponding
to λ2,3 and λ4,5. In order to determine in which degrees of freedom these eigen-
values are dominant, we compute the eigenvectors. The values of the components
of the eigenvectors can be found in table 3.4

Table 3.5: The eigenvectors corresponding to the eigenvalues of table 3.4.

States λ1 λ2,3 λ4,5 λ6
ûk 0.0429 -0.0573 ± 0.0286i -0.9314 ± 0.0000i -0.6523
ŵk -0.0415 0.7494 ± 0.0000i -0.0447 ± 0.0062i -0.0410
θ 0.6184 -0.1192 ± 0.1570i -0.0340 ± 0.0731i -0.6004
qc
V0

-0.7829 -0.1819 ± 0.1833i -0.0040 ± 0.0021i 0.0208

θt 0.0007 0.0004 ± 0.0004i -0.0194 ± 0.3336i -0.3816
lt
c

-0.0344 0.0788 ± 0.5679i -0.1080 ± 0.0249i -0.2575

In order to facilitate interpretation of the eigenvector matrix, the relative ma-
gnitude of the components are calculated. This method of interpretation of the
eigenvector matrix is described both by Mulder et al. [2007] and Cook [1997]. The
operation yields the amplitude of the components of the undampened characte-
ristic motions. The values are displayed in table 3.6.

Table 3.6: The relative magnitude of the components of the undampened characteristic,
symmetric motions.

States λ1 λ2,3 λ4,5 λ6
ûk 0.0429 0.0641 0.9314 0.6523
ŵk 0.0415 0.7494 0.0451 0.0410
θ 0.6184 0.1971 0.0806 0.6004
qc
V0

0.7829 0.2583 0.0045 0.0208

θt 0.0007 0.0005 0.3341 0.3816
lt
c

0.0344 0.5734 0.1108 0.5256

The eigenvector related to λ1 shows a strong dominance in pitch angle θ and
pitch rate q, which means this eigenmotion is mostly in pitch. The eigenvalue for
λ1 is strongly negative, indicating a high level of damping on this a-periodic mo-
tion. The airplane also sees a fast pitching eigenmotion, namely the short period
motion. For the kite it seems this motion is no longer periodic. It is plausible
this is caused by the strong decrease in mass. The kite has little rotational inertia
around its YB-axis while the flow over the kite offers ample damping.

The eigenvector related to λ2,3 shows a strong dominance in cable elongation
lt and velocity ŵ. This motion is a periodic motion which is relatively fast and
strongly dampened. The strong dominance in lt suggests this motion relates to
the elongation of the tether itself. The dominance in ŵ further supports this

69



conclusion because of the high lift over drag characteristics of the Cessna CE500
Citation kite. This high lift over drag of the kite will make it fly high at low tether
elevation angle θt, thus increasing the contribution of the vertical component to
the elongation of the tether. The period and damping properties of this motion is
directly related to the stiffness and damping values of the spring-damper which go-
verns the tether force. Obviously, this eigenmotion is not present in non-tethered
flight.

The eigenvector related to λ4,5 shows a strong dominance in û and a reduced
dominance in the tether zenith angle θt and cable length lt. This motion is a
relatively slow periodic motion and is only slightly dampened. The dominance in
û together with the reduced dominance in θt suggests this motion is a symmetric
inverted pendulum motion. In fact, it seems related to the phugoid motion for
aircraft. However, in the case of kites, the cable limits the motion in the XE-
ZE plane which thansforms the traditional phugoid motion into this symmetric
inverted pendulum motion. The elongation of the tether is a direct result of the
accelleration in û, generating a higher apparent velocity and thus a higher lift
force.

The eigenvector related to λ6 shows a strong dominance in û, lt and θ. This
motion is a slightly dampened a-periodic motion and seems related to the coupling
of forward velocity û, pitch and cable elongation. Its relation to the degrees of
freedom resembles that of the eigenmotion related to λ4,5. However, this eigen-
motion sees a much stronger dominance in θ which leads to the conclusion that
this a-periodic eigenmotion is related to the pitch of the kite and the resulting
position of the kite in the XB-ZB plane. This position is strongly governed my
the lift over drag of the kite and the resulting tether force.

3.4.3 Asymmetric eigenmotions of tethered flight

For the tethered Citation we find the following eigenvalues from the asymmetric
characteristic equation:

Table 3.7: Eigenvalues from the asymmetric characteristic equation.

λ1 -24.98 + 38.76i
λ2 -24.98 - 38.76i
λ3 -6.78 + 6.32i
λ4 -6.78 + 6.32i
λ5 0.45
λ6 -0.50

The eigenvalues in table 3.4 indicate the presence of two a-periodic eigenmo-
tions, corresponding to λ5 and λ6 and two periodic eigenmotions, corresponding to
λ1,2 and λ3,4. In order to determine in which degrees of freedom these eigenvalues
are dominant, we again compute the eigenvectors.
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Table 3.8: The eigenvectors corresponding to the eigenvalues of table 3.7.

States λ1,2 λ3,4 λ5 λ6
v̂k 0.0089 ± 0.0154i 0.2214 ± 0.1274i 0.1027 -0.0925
φ 0.1036 ± 0.1631i -0.0988 ± 0.1007i -0.1147 -0.1357
pb
2V0

-0.9555 ± 0.0000i 0.1205 ± 0.1458i 0.0072 -0.0059

ψ 0.0168 ± 0.0396i 0.4759 ± 0.4435i 0.0887 -0.1094
rb
2V0

-0.2147 ± 0.0374i -0.6622 ± 0.0000i -0.0049 -0.0054

ψt 0.0018 ± 0.0001i 0.1284 ± 0.4435i 0.9840 0.9803

In order to facilitate interpretation of the eigenvector matrix, the relative ma-
gnitude of the components are calculated. This method of interpretation of the
eigenvector matrix is described both by Mulder et al. [2007] and Cook [1997]. The
operation yields the amplitude of the components of the undampened characte-
ristic motions. The values are displayed in table 3.9.

Table 3.9: The relative magnitude of the components of the undampened characteristic,
asymmetric motions.

States λ1,2 λ3,4 λ5 λ6
v̂k 0.0178 0.2554 0.1027 0.0925
φ 0.1932 0.1411 0.1147 0.1357
pb
2V0

0.9555 0.1891 0.0072 0.0059

ψ 0.0430 0.6505 0.0887 0.1094
rb
2V0

0.2180 0.6622 0.0049 0.0054

ψt 0.0018 0.1318 0.9840 0.9803

The eigenvector related to λ1,2 shows a strong dominance in roll rate p and
almost no effect on the tether azimuth angle ψt. It is a very fast and highly
dampened periodic motion, most likely related to the bridle lines. The kite is
bridled in YB direction by two bridle lines. This motion is a fast rolling motion in
the bridle lines. It is related to the a-periodig roll motion of a conventional aircraft
which is severely limited due to the presence of the bridle lines. The frequency of
this periodic motion is strongly related to the stiffness of the bridle line spring-
damper system. In practice, the high amount of damping of this motion makes it
unlikely to significantly influence the stability of the kite.

The eigenvector related to λ3,4 shows a strong dominance in yaw angle ψ
and yaw rate r. Reduced influenced can be observed in all other states. This
eigenmotion is a relatively fast periodic motion, strongly resembling the dutch
roll motion of a conventional aircraft. For conventional aircraft, the dutch roll
motion is a combination of yaw and roll. For bridled kites the roll is severely
inhibited by the bridle lines, creating an eigenmotion which leans more to yaw
than to roll. This yawing motion can be observed in many kites. Empirical
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knowledge on kites suggests to add a long tail to the kite in order to overcome
stability issues in this eigenmotion. This long tail then acts as a damper in yaw,
increasing stability.

The eigenvectors related to λ5 and λ6 show a strong similarity. They both show
a strong dominance in the tether azimuth angle ψt with only a slight contribution
of roll angle φ and yaw angle ψ. This motion is an asymmetric inverted pendulum
motion and is related to the spiral motion of a conventional aircraft. Due to
the presence of the tether, the spiral motion is inhibited, creating an inverted
pendulum motion around the tether anchor point on the ground. In the case of
this Citation kite, the motion is a-periodic. For other kites it was observed that
this eigenmotion can also become either a stable or unstable periodic motion,
often coupled with a yawing motion of the kite. In section 6.4 such an unstable
periodic, asymmetric inverted pendulum motion is identified in the kiteplane.
Design changes are suggested to overcome this stability issue.

3.5 Effects of cable length

In the previous chapter a comparison was made between the eigenmotions of a kite
and an airplane. The cable for this model consists of a two-point force between
the anchor point on the ground and the cable attachment point on the kite. This
two-point force is modeled as a spring-damper to allow for cable elongation. As
a model, this is not far from how an actual cable behaves. A cable between the
ground and a kite will sag under gravitational and aerodynamic loads. The sagged
cable behaves as a spring-damper. Short cables have only a slight amount of lag,
making them act as a stiff spring with little damping. Long cables have a large
amount of sag, making them act as weak springs with a large amount of damping.
With these characteristics in mind for a real cable, we can now investigate the
consequences of cable length in the rigid body model by varying the stiffness and
damping of the modeled tether. Obviously, this comparison has its limits in that
the actual tether length is not varied. Thus, this analysis is only valid for very
short time intervals around equilibrium. By looking at the effects of stiffness and
damping of the tether on the eigenvalues of the system, we can, in principle, say
something about the effects of cable length on the stability of kites.

3.5.1 Effects of cable length on symmetric flight

In order to evaluate the effects of cable length on the symmetric eigenmotions
of a kite, we compute these eigenvalues for a number of different values of cable
stiffness and cable damping. Figure 3.9 shows the results of these computations.
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Figure 3.9: Values for the period P and time to damp to half the amplitude T0.5 of the
symmetric motions for different values of cable stiffness and damping.73



In figure 3.9 the values towards the top left of the figure are equivalent to a
shorter tether and the values towards the bottom right are equivalent to a longer
tether. For the a-periodic pitch motion, the eigenvalues in figure 3.9 show that
the damping of the motion is independent of the tether stiffness and damping.
This concurs with the earlier conclusion of section 3.4.2 that this motion is do-
minated by fast pitching motions and that is has little effect on the tether. The
cable elongation motion, however, shows a strong dependence on the stiffness and
damping of the main cable. The motion shows shorter periods for shorter cables
and the increased damping for long cables enlarges the time to damp to half the
amplitude. The symmetric inverted pendulum motion shows a more complex de-
pendency on tether stiffness and damning. The motion shows to have a shorter
period and is more dampened for stiffer cables. However, tether damping shows
to play only a marginal role. For the kite positioning motion, the dependency is
clear. The a-periodic motion is faster for longer cables.

3.5.2 Effects of cable length on asymmetric flight

In order to evaluate the effects of cable length on the asymmetric eigenmotions
of a kite, we compute these eigenvalues for a number of different values of cable
stiffness. In the model the cable damping has no effect on asymmetric motions
as it was neglected during lineraization of the equations of motion. Figure 3.10
shows the results of the eigenvalue computations.
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Figure 3.10: Values for the period P and time to damp to half the amplitude T0.5 of
the symmetric motions for different values of cable stiffness.

In figure 3.9 the values towards the top of the figure are equivalent to a shorter
tether and the values towards the bottom are equivalent to a longer tether. As
expected, both the bridle rolling motion and the dutch roll motion show little de-
pendency on cable length. The asymmetric inverted pendulum motion, however,
shows to converge faster for short tethers and slower for longer tethers. As can be
seen from the negative values for the time to damp to half the amplitude, one of
the asymmetric inverted pendulum motions is unstable. As a matter of fact, this
particular eigenmotion is often of great interest in new kite designs as it is often
the source of instability. This particular motion with regard to the kiteplane is
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further investigated in section 6.4.

3.6 Concluding remarks

The main goal of this chapter is to investigate wether or not conventional flight
dynamics theory could be used to model the dynamics of a kite. As was stated
earlier, conventional aircraft are often modeled as a rigid body, which transforms
the question into: can we model a kite as a rigid body? This chapter shows
that, with the proper assumptions concerning the main tether, such a model
is indeed possible. The two different models show excellent agreement and the
eigenmotions obtained from the Newton-based model seem to concur, in general,
with observations of flying kites in reality. However, the question remains: how
good are these models? Section 6.4 offers, to a certain extent, a comparison
between the Lagrangian model and the real world. For the newtonian model, one
would need to obtain the stability derivatives of a kite to perform this validation.
Securing these stability derivatives is where many difficulties lie. For conventional
aircraft, the stability derivatives are measured during controlled flight tests. For
kites, these measurements are more difficult. A kite is such a light structure that
the measurement equipment would account for a large part of the total mass of
the system. Furthermore, attaching rigid objects to a highly flexible structure
will make it deform severely. And thus, the kite fitted with the measurement
equipment will be a substantially different kite than one without. Other problems
arise from the slow flying nature of a kite. In conventional aircraft, small vanes
are used to measure the direction of the flow. The low speed at which the kite flies
generates too little aerodynamic force by which these vanes are aligned. Lastly,
the measurement equipment needed for these type of measurements represent a
significant financial investment. One which most kite companies are unable to
make.

From the comparison of tethered and non-tethered flight, based on the Cessna
CE500 Citation, a number of issues became clear. In symmetric flight, the fami-
liar short period motion becomes a-periodic due to a decreased rotational inertia
around the YB axis. The phugoid motion becomes a symmetric inverted pendu-
lum motion due to the presence of the tether. Extra eigenmotions occur as a
result of the tether. These motions seem highly dependent on the length of the
tether. For asymmetric flight, the dutch roll motion is largely dominated by yaw
due to the inhibiting effect of the bridle lines. The familiar spiral motion becomes
an asymmetric inverted pendulum motion under influence of the cable. A fast and
highly dampened extra eigenmotion occurs where the kite rolls in its own bridle.
In practice, this eigenmotion is of litte effect on the stability of the kite.
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CHAPTER 4

A Multi-body approach to kite simulations

The ability to simulate different kite designs is a vital part of the engineering-
approach to kite design. The ability to assess a design before its actually built
provides the designer with the ability to distinguish between concepts faster and
cheaper. Furthermore, simulations allow the designer to explore theoretical situa-
tions and configurations which are not desirable or even not possible in reality.
Theoretical cases such as cases where gravity is turned off or where the kite is
infinitely rigid can provide new insights into the dynamics of a kite. Section 4.1
gives a short introduction into the numerical model and explains some of the requi-
rements. Section 4.2 gives a concise overview of the multi-body dynamics theory.
Sections 4.3, 4.4 and 4.5 explain in detail the three building blocks which lay at the
foundation of the multi-body kite model. Lastly, section 4.6 outlines the building
of complete kite models from the aforementioned building blocks.

4.1 Introduction

The rigid body models presented in chapter 3 provide valuable insight. However,
they are limited in the sense that they do not take into account the flexibility of
the structure. With kites, flexibility is not simply a by-product of the loads on
the structure. The flexibility itself is used to give the kite certain atributes such
as cornering performance (section 6.3) or depower capability. A kite simulation
which can be used as a design tool will have to take this flexibility into account.

For a designer, a fast and intuitive simulation is a valuable tool. Long CPU
times create a long turn-around period for results on the latest design. This
drastically slows down the design process. But the requirement dictating a fast
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simulation can directly conflict with the requirement to include structural flexi-
bility. For structures of fabric and battens, one is easily inclined to call upon the
field of fluid-structure interaction, coupling computational fluid dynamics with a
finite element code for the structure. Such a highly comlex simulation requires an
enormous amount of preparation and processing power. Small kite design com-
panies often have no resources to invest in such simulations. Also, the question
beckons: Is such a complex simulation really needed? In other words, is all the
information such a simulation yields relevant? Many kite designers have indicated
not to be overly concerned with details such as: where do wrinkles occur and at
what angle and amplitude. They are interested in the general shape as a result
of a specific flight condition.

In this thesis the simulation for kite design is positioned somewhere in between
rigid models and complex fluid structure interaction models. Therefore, a choice
was made to use the principles of multi-body dynamics to approximate a kite
structure and dynamic behavior under load. Multi-body dynamics describes the
motions of an assembly of rigid and contrained bodies. This principle is the
backbone of the kite simulation presented in this chapter.

The kite simulation toolbox which was developed runs under MSC ADAMS,
a well-known multi-body dynamics software package by MSC Software. The tool-
box integrates into ADAMS and can be used from within the program. It consists
of three elements or building blocks with which different kite configurations can be
assembled. The building blocks are (1) cables, (2) inflatable beams and (3) foils.
For every kite configuration, a parameterized macro can be written which can
assemble the desired kite configuration from the aforementioned building blocks.
The parameterization of the macro allows the designer to quickly change pro-
perties such as chord length or wing span. This allows for exploration of many
different variations of a kite, without reprogramming the entire macro. The fol-
lowing three sections will outline the three main building blocks which lay at the
root of every simulated kite within the kite simulation toolbox.

4.2 The principles of multi-body dynamics

Dynamics is a fundamental discipline in science and engineering. Dynamics dis-
cribes the behavior of all things with time. And as such, the discipline of dynamics
can be found in many fields. From particles such as electrons, through fluids and
gasses, all the way to stars and galaxies are governed by the same principle laws of
dynamics. In one of the more simple dynamic analyses, called ”particle dynamics”,
mass and external forces are taken into account. A particle is considered to have
infinitesimal small dimensions, and therefore no rotation of the particle around
any body axis is considered. Rigid body dynamics governs the behavior of bodies
which have both mass and dimensions. Therefore mass, external forces, as well
as mass moments of inertia are accounted for.

Multi-body dynamics is the dynamic analysis of a collection of bodies connec-
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ted by constraints. Constraints introduce the reaction forces on the bodies needed
to enforce the constraints. They include joints such as revolute joints, spherical
joints and translational joints. More complex constraints include gears, bearings
and belt-drives. Rahnejat [1998] shows that these complex constraints are a com-
bination of a number of simple constraint primitives. Other constraints include
user imposed motions. These constraints prescribe a certain motion of a body or
”part” in the assembly of bodies, regardless of external forces that may act on
this particular body.

In the multi-body dynamic analysis, the Lagrange equations can be used to
obtain the equations of motion of the entire assembly of bodies. However, for large
assemblies with a large number of degrees of freedom, this can become a daunting
task because one would have to consider the effects of all the system motions
on all the bodies. Therefore, according to Rahnejat [1998], in large multi-body
systems all parts are modelled seperately, still using the Lagrange equations of
motion. no coupling exists between the equations of motion of the different parts.
A mathematical definition of the constraints is necessary to ensure the integrity
of the multi-body system as a whole. Rahnejat [1998] gives an excellent summary
of the multi-body dynamics methodology which is re-iterated here for clarity.

For each rigid body with 6 generalized coordinates we write:

[q] = [x, y, z, ψ, θ, φ]
T

(4.1)

With the rotational and translational components of q:

[qt] = [x, y, z]
T

(4.2)

[qr] = [ψ, θ, φ]
T

(4.3)

Lagrange’s equation for each body yields:

Fj (q̈, q̇, q, λ, t) = 0, j = 1, ..., 6 (4.4a)

Fk (Mq, q̇, q) = 0, k = 1, ..., 6 (4.4b)

Where the later term gives the generalized moments. Because the translational
components of Fk are already given by the translational velocities, Fk can be
reduced to:

79



Fk (Mr, q̇r, qr) = 0, k = 4, 5, 6 (4.5)

Furthermore:

[M ] = [Mt,Mr]
T
= [Mx,My,Mz,Mψ,Mθ,Mphi]

T
(4.6)

Thusfar we have 6 equations of motion and 3 equations of angular momen-
tum for each body in the assembly. Rahnejat [1998] continues to introduce the
additional variables:

[v] = [q̇t, q̇r]
T

(4.7)

Rahnejat [1998] continues to state that: ”This satisfies the implicit formulation
of the translational components of momenta as well as reducing the second order
problem at hand to one of a first order. Therefore, there are six more equations
specified by the vector, [v]”. In the previous equation the following relation holds:

[q̈] = [v̇] (4.8)

Now there are 15 equations for each body. these equations Fj = 0, Fk = 0
and [v] = [q̇] are represented in a condensed format:

F
(

ξ̇, ξ, λ, t
)

= 0 (4.9)

With

[

ξ̇
]

=
[

v̇, q̇, Ṁr

]

(4.10a)

[ξ] = [v, q,Mr] (4.10b)

At this point, the constraint equations need to be included. The reaction
forces which the constraints introduce on the bodies are represented by Lagrange
multipliers. These Lagrange multipliers can be obtained from the constraint func-
tions.
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ci (qt, qr) = 0, i = 1, ..., 6 (4.11)

Or in terms of ξ:

c (ξ) = 0 (4.12)

The set of equations for a constrained multi-body system are now:

F
(

ξ̇, ξ, λ, t
)

= 0 (4.13)

c (ξ) = 0 (4.14)

Equation (4.13) is a partial differential equation and equation (4.14) is an
algebraic equation. The solution to the set of equation is obtained through implicit
integration such that:

J
(

ξ, λ,
s

dt

)

· [δξ, δλ]T = − [F ] (4.15)

In equation (4.15), [δξ, δλ]
T
is the solution matrix, dt is the integration step

size and s is the dimensionless scaling factor. J
(

ξ, λ, s
dt

)

is the Jacobian matrix
defined as:

[J ] =

[[

(

s
dt

)

∂F

∂ξ̇
+ ∂F

∂ξ

]

∂c
∂λ

∂c
∂λ

0

]

(4.16)

The jacobian is a sparse matrix. Furthermore, it contains a mix of linear-
and non-linear algebraic equations, as well as partial differential equations. A
solution method for such a set of equations is given by Orlandea et al. [1978].
This method is in fact used in the multi-body simulation software package MSC
ADAMS, Which will be used extensively in the next chapters.

The remainder of this chapter outlines a model for flexible kites using a multi-
body dynamics approach. This model uses existing multi-body dynamics theory.
Therefore, the focus of the remainder of this chapter will be on the specifics of the
model and the developed toolbox for MSC ADAMS, and not on the underlying
conventional multi-body dynamics theory.
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4.3 Building block 1: Cables

Cable dynamics is an important issue in the simulation of kites. The cable has
a significant impact on the behavior of the kite and introduces modes of motion
which are not present in free flying objects. Especially long cables exhibit a large
amount of inertia. So much, in fact, that for a very long cable, one can consider
the cable to have a memory of past motions and excitations. Modelling the cable
force on the kite as a constant force vector would exclude the dynamic behavior
of the cable. A proper dynamic simulation of the cable is required.

4.3.1 Cable model definition

Generally, the modes of motion in a cable can be divided into fast motions and
slow motions. The fast motions are the longitudinal motions which are usually
related to the high modulus of elasticity of the cable material. They are small in
amplitude and travel through the cable very fast. Yen et al. [2009] investigated
strain wave propagation velocities in steel cables and found these waves to travel
through the cable with velocities in excess of 5000 m/s. The slow motions are the
transversal motions which generally show a significant amount of inertia. They
include waves that travel through the cable as a result of a lateral excitation. In
modelling the flight behaviour of kites, the fast axial motions are of far lesser
interest. Especially for cables made out of stiff materials such as Dyneema or
Aramid, the fast motions are too fast and too short to have a significant impact
on the stability of the kite. There are notable exceptions to this statement which
will be dealt with in section 4.3.2(Cable Strain). The slow motions are able to tilt
the cable force vector on the kite for a significant amount of time and therefore
they have a larger impact on the stability of the kite. Subsequently, taking the
fast motions into account would mean that the time integration step would have
to be small. This would result in large calculation times and yield very little
added value.

The cable model proposed in this thesis consists of a chain of discrete elements.
These elements have a mass and they are infinitely stiff. Due to their infinite
stiffness, they do not exhibit any strain under loading. In reality, a cable will
elongate under stress. The maximum strain for cables made of high-tension fibers
such as Dyneema and Aramid is approximately 2% to 4%. For short cables this
strain amounts to an insignificant elongation. For long cables, however, strain
can become more significant. An adaptation of this current model, which does
take strain into account, is presented in section section 4.3.2(Cable Strain) The
cable elements are hinged together using two hook joints on each end, allowing it
to hinge in every direction but preventing it from twisting.

The reason for using the two hook joints and not a single spherical joint is
because the fast oscilations that can occur around the axial direction of the cable
element has little physical meaning. Furthermore,they have little effect on the
flight dynamics of the kite. Therefore, it is taken out of the equation to speed up
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Figure 4.1: Cable elements hinged by hook joints.

the simulation process.
Damping of the cable motions comes in two forms. Material-based damping

and Aerodynamic damping. Material-based damping is the dissipation of kinetic
energy through heat, created by fibers rubbing against each other as the cable is
bent and flexed. The material-based damping is dependent on the tension in the
cable. The tension in the cable is a result of gravitational forces on the cable and
the lift of the kite. Evaluating the damping using a simple analytical pendulum
model is not possible due to the pretension which greatly effects the material
based damping in the cable. For a cable we can say that the spring constant
is equivalent to the tension divided by the element length. Therefore, the cable
element equation of motion becomes:

ẍ+
c

m
ẋ+

T

ml
x = 0 (4.17)

This means that

2βω0 =
c

m
(4.18)

and

ω2
0 =

T

ml
(4.19)

This results in the following equation:
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c = 2β

√

TM

l
(4.20)

For rotational damping we divide by l

c = 2β

√

TM

l3
(4.21)

In equation (4.21) we see that the damping is dependent on the element length
l, the element mass m and tension T in the element. The factor β is in the order
of 1% to 5%, which is representative value for cable dynamics. In the model, the
damping is introduced in the joints using torsion springs which have no stiffness,
only damping. This is schematically represented in figure 4.2.

Figure 4.2: The inclusion of rotational dampers on the hinge joints.

The second damping effect the cable experiences is due to aerodynamic forces.
The aerodynamic drag is one of the most prominent forces on the cable and it
consists of two velocity components. The first is the wind speed. The wind speed
vector does not necessarily have to be horizontal and constant with altitude. With
increasing altitude, the wind velocity will increase as well. The second velocity
component is that of the motion of the cable itself with respect to the earth axis
frame of reference. While the cable moves, it experiences drag in the opposite
direction. For the apparent velocity vector of a cable element we can write:

V Ecable =





V Ex,wind + V Ex,element
V Ey,wind + V Ey,element
V Ez,wind + V Ez,element



 (4.22)
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We can transform this vector to the local tether frame of reference using the
definitions from section A.2:

V Tcable = TTEV
E
cable (4.23)

For the drag force in the tether frame of reference we can write:

DT
cable =













CD,cable
1
2ρ

(

V Tx,cable

)2

ddl

CD,cable
1
2ρ

(

V Ty,cable

)2

ddl

Cf,cable
1
2ρ

(

V Tx,cable

)2

πddl













(4.24)

In equation (4.24), CD,cable is equal to 1.065 and Cf,cable is equal to 0.0017
[Hoerner, 1965a]. x, y and z are the coordinates of the endpoints of the element.
d is the cable radius and ρ is the air density. In the model, the aerodynamic drag
on the kite is simulated as a three-axis force which acts on the center of the cable
element. Figure 4.3 shows the final cable model.

Figure 4.3: The inclusion of aerodynamic drag using a force vector on the center of
the element.

4.3.2 Cable strain

In the previous section the distinction was made between fast motions and slow
motions in the cable. It was stated that the fast motions are of lesser importance
to the simulation of kites and, therefore, it was disregarded. There is a notable
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exception to this statement with regard to the elongation of the cable due to strain.
With varying wind conditions and gusts, the cable will constantly experience a
varying strain in the cable. When, for instance, the kite experiences a wind gust,
its temporary lift increase sends a wave of increased strain through the cable to
the ground. The strain peaks can be of significant magnitude to break the cable,
especially in situations where the cable is very long. During the attempts by
Richard Synergy to break the world altitude record for a single kite on a single
line, both the fruitless attempts he discribes in his book Synergy [1994] failed
due to a break in the line. For a static situation one would assume (and assume
correctly) that the line would break at the kite where the gravitational component
of the tension force is the largest. But in practice, a gust on the kite can create
a strain wave in the cable which travels all the way down to the ground. If the
cable is rigidly fixed to the ground, the strain wave will reflect and travel back
up the cable. This can cause interference which can lead to tension peaks at the
ground attachment point, which can easily result in cable failure.

Figure 4.4: The complete cable model incorporating elasticity.

The model that was proposed thusfar is an infinitely rigid model which does
not experience any strain. This results in a situation where strain waves due to a
wind gust travel down the cable instantaneously. Large strain peaks are the result
which are unrealistic. Especially for long cables, a certain amount of elasticity is
required to obtain a more realistic simulation. In order to incorporate axial elastic
flexibility in the cable, the elements which make up the cable have been divided
into two parts. In the middle, they are joint by a translational joint which only
allows axial motion. A spring-damper provides the correct amount of elasticity.
Figure 4.4 shows the final cable model incorporating cable elasticity.
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4.3.3 The cable toolbox implementation

As part of a larger kite simulation toolbox, the cable simulation is implemented
as a tool which is accessable from a toolbar. The the cable tool is able to quickly
generate cables of the desired number of elements in between two markers. Mar-
kers are points in 3D space fixed on either the background or other elements such
as rigid bodies, joints or force elements. This allows the designer to quickly test,
for instance, different bridle systems by simply selecting the begin- and endpoint
of a line and letting the cable tool generate the cable model in between. Figure
4.5 shows the GUI of the cable toolbox.

Figure 4.5: The interface of the cable tool.

At the top of this interface the choice can be made between the rigid and
elastic cable models. Even though the rigid cable model is less realistic, it is still
maintained within the toolbox because for short cables such as bridles, the extra
complexity of elasticity has very little to no advantages. ”Marker begin” and
”Marker end” are the begin and end nodes of the cable. ”Segments” indicates the
number of cable elements used. ”Cable material” indicates the material which
the cable consists of. The material is important for determining its weight and
elasticity. A choice can be made ranging from dyneema to steel and nylon. ”Wind
direction” states the direction of the wind velocity vector and ”Altitude model”
selects the wind velocity profile with altitude. A choice can be made between
constant and KNMI. Constant assumes a constant wind velocity with altitude.
Its magnitude is governed by a design variable which can be altered within the
simulation. KNMI is a model based on measurements done by the Royal Dutch
Meteorological Institute over the period of 20 years [W. J. Ockels, 2001]. It
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assumes a steadily increasing wind velocity with increasing altitude. ”Marker
altitude” indicates the marker at ground level. This marker is important for cables
which start at altitudes other than the ground and experience wind velocities
governed by the KNMI model. Lastly, ”Altitude direction” governs the direction
of increasing altitude from the altitude marker.

4.4 Building block 2: Inflatable tubes

Even though wind speeds can be large, they are still relatively low when they are
compared to minimum flight speeds of conventional aircraft. Kites are therefore
very slow flying objects. In order to be able to fly the weight of the kite needs
to be sufficiently low. Conventional kite structures were traditionally made from
thin sticks and fabric. For small kites, such a structure is more than adequate. For
larger kite structures, sticks tend to be too fragile. A more robust way of building
kite structures is by using the principle of inflatable structures. Pressurized tubes
provide rigidity whilst keeping the weight of the structure low. Furthermore,
Inflatable structures are very durable and do not easily break during impact.
An inflatable structure needs no hard parts. Once the pressure is released, all
that is left is a soft fabric which can do no harm. For a structure which flies
over populated areas, such a property is vital as it secures its position as a safe
structure. In case of loss of control, all that needs to be done is release the pressure
and the kite will gently fall to the ground like a flag which came loose from its
pole.

4.4.1 The mechanical behavior of inflatable structures

A quick overview of previous research on inflated tubular structures was outlined
in section 2.5.1. The section continues to identify the three different states in
which an inflated beam under loading can exist in: ”unwrinkled”, ”wrinkled”
and ”collapsed”. Especially in the wrinkled and collapsed state, an inflated beam
exhibits non-linear bending behavior.

For engineering purposes of current and future applications of inflated tubular
structures there is a need for simulation of designs and concepts. The models
mentioned in section 2.5.1 are applicable to simple cantilever beam type structures
but not for more complex structures. Numerical codes are available for a finite
element analysis approach to inflatable structures. Veldman [2005a] uses existing
ABAQUS code to evaluate a straight and a tapered cantilever beam. In the
unwrinkled state, the model produced good correlation with the experimental
data. The wrinkling load was only 1.3% larger than the experimentally determined
wrinkling load. Once wrinkles occur, the structure behaves non-linearly and the
FEM model starts to significantly over-estimate the stiffness of the structure.
Furthermore, it must be noted that mesh density plays a large role on the accuracy
of the simulation. A coarse mesh will yield poor results while a fine mesh will

88



increase calculation time. Veldman [2005a] creates a fine mesh in the location
where wrinkles are expected to occur. For simulations of more complex tubular
structures, the location where wrinkles will occur is not obvious beforehand. Also,
wrinkles may form in different locations under different loads. This means that
the mesh would have to be fine everywhere which greatly increases the calculation
time.

From discussions with kite designers such as Peter Lynn (Peter Lynn Kites)
and Dr. Henry Rebbeck (Mutiny kites) it became apparent that these designers
are not necessarily interested in the level of detail a FEM analysis will yield. The
exact location, size, amplitude and angle of wrinkles are of lesser interest. Kite
designers are more interested in general flexible behavior of more complex tubular
structures. The next section outlines a simulation of inflatable structures as the
second building block of the kite simulation tool.

4.4.2 Inflatable beam model definition

The state in which an inflatable structure finds itself is governed by geometry and
internal pressure, as well as the externally applied loads. The model proposed in
this thesis approximates a continuous inflated tubular beam as a linked chain of
rigid elements. Consider a straight cantilever beam. The rigid sections are joint
together using spherical joints. (See figure 4.6)

Figure 4.6: An inflatable beam approximated by rigid elements joint by spherical joints.

The spherical joints allow rotation along three axis. Two of these rotations can
be considered as bending and one of these rotations can be considered as torsion.
This beam is now nothing more than a chain of rigid bodies which exhibit no
stiffness and no damping. The behavior of the structure is introduced by means
of reaction forces which act on the joints themselves. In the case of these tubular
structures, its behavior is modeled by introducing a three dimensional torque
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vector on each of the joints. Figure 4.7 shows a close-up representation of the
three dimensional torque vector.

Figure 4.7: A graphical representation of the 3D torque vector.

In figure 4.7, Ty and Tz are the torque vectors which govern the bending
behavior of the beam. The torque vectors act as springs which give the beam its
bending rigidity. Tx is the torque vector which governs the torque of the beam.
It acts as a torque spring, giving the beam its torsional stiffness. The stiffness of
these springs determines the behavior of the inflatable beam. When the beam is
in the unwrinkled state and both bending and torsion can be considered linear
(for isotropic materials), the spring stiffness is a constant. In the wrinkled state,
the stiffness of the springs starts to decrease with increasing deflection. Once the
point of collapse is passed, the stiffness in the springs reduces to a value close to
zero.

As was stated earlier, the algorithms governing the torque vectors determine
the bending and torsion behavior of the beam. For a linear elastic beam, the stiff-
ness would be a simple constant. In the case of an inflatable tube, the algorithm
is far more complex. The goal of this simulation is to simulate the structural
behavior of a kite which is made of a number of different fabrics. The tubular
structure of the kite consists of a Dacron outer shell and a thermoplastic po-
lyurethane (TPU) inner bladder. This constitutes a combination of anisotropic
materials. Furthermore, in the theory proposed by Comer & Levi [1963], Stein &
Hedgepeth [1961] and Webber [1982] the material of the inflatable tube is consi-
dered to be a membrane. This is a theoretical material which cannot carry any
compressive loads. Main et al. [1995] introduces the possibility for a shell-type
material but treats only isotropic materials. In order to come to a correct al-
gorithm for the torque vectors, it was chosen to approach the solution from a
venue of experimental data. Bending and torsional data will be obtained from
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test beams which consist of the same Dacron/TPU materials. These experimental
results will form a basis on which the algorithms for the torque vectors are based.

4.4.3 Bending

In order to determine the algorithms for the torque vectors which govern bending,
a number of bending experiments were conducted. A set of three beams were built
with diameters of 8cm, 13cm and 18cm. The beams were clamped on one end
creating a cantilever setup. The beams were 1.20 meters long and loaded by a
single force at 1 meter from the clamped end. Figure 4.8 shows the test setup.

Figure 4.8: The test setup for the bending test.

The internal pressure in the beam is kept constant by use of a calibrated
manometer and release valve. The load on the beam is measured using a load
cell and the deflection of the tip is measured using a laser sensor, ensuring a
zero-contact measurement of the deflection. Loads were introduced by hanging
different weights on the attachment point. After the load was measured by the
load cell, the deflection was recorded using the laser sensor. The weight of the
load cell and wires were taken into account. During the test, it was observed that
the pressure stayed relatively constant. A change of no more than 10 to 15 pascal
was observed. The tests were conducted on all three beams at different internal
pressures. Figure 4.9 shows a selection of the resulting load deflection curves.

For the simulation itself, an experimental data-fitting method was chosen for
the governing torque vectors. Much in the same way tires are simulated ([Pacejka
& Bakker, 1992]), this approach leads to an algorithm which is low CPU intensive,
allowing the inflated tube simulation to run almost real time. Furthermore, an
empirical data fit can yield accurate results, even with complicated multi-variable
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Figure 4.9: The resulting load-deflection curves.

systems.
The bending curve of an inflatable beam starts in the origin and continues at

an angle, consistent with linear bending theory. However, once wrinkles start to
occur, the curve arcs away from the initial stiffness due to the increased flexure
introduced by the wrinkles. This characteristic leads to the proposition of a
function which correlates to the data. This function acts as a basis to approximate
the test data.

Ftip = λ1
(

1− e−λ2v
)

(4.25)

In order to determine the dependency of λ1 and λ2 with regard to internal
pressure and beam radius, a fit was made on a variable-by-variable basis. The
goal of this method is to determine the topology of the function and to obtain a
valid set of starting values for the coefficients. With these coefficients, an overall
fit is made using the least squares method. This approach allows to carefully
explore the function topology and locate any pitfalls early in the analysis. It
greatly reduces the time spent during the actual final fit due to the fact that the
dependencies of the different coefficients on the variables p (pressure), r (beam
radius) and v (tip deflection) become more obvious during the procedure described
in the following section. For instance: one can quickly see when a coefficient turns
from positive to negative in a specific function topology. This change in sign can
ultimately lead to a negative stiffness for some pressures or radii. Such problems
are far less obvious during the final overall fit.

First, by using a least squares method, the values of λ1 and λ2 are determined
for every combination of internal pressure and beam radius. The values of λ1 and
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λ2 which relate to the same beam radius are plotted in a graph against internal
pressure and a set of functions is created through another least squares method
which relates internal pressure to the values of λ1 and λ2.

λ1 = S1p
2 + S2 (4.26a)

λ2 = S3p
2 + S4 (4.26b)

The form of the equations (4.26) have been obtained through an iterative
process such that they yielded a close match to the experimental results. For
both functions, the R2-value (coefficient of determination) was over 0.99, which
is very close to the ideal value of 1. Equations (4.26) yield four new coefficients
S1, S2, S3 and S4. These coefficients are plotted in a graph as a function of beam
radius and a new least squares operation is used to find functions that relate the
values of S1 through S4 to the beam radius r.

S1 = C1r + C2 (4.27a)

S2 = C3r
3 + C4 (4.27b)

S3 = C5r
5 + C6 (4.27c)

S4 = C7r + C8 (4.27d)

The values of C1 through C8 are numeric values which are determined in this
operation. The R2-values of the functions all lay above 0.99. By substitution
of equations (4.26) and (4.27) into equation (4.25), a single equation is created
which relates pressure, beam radius and deflection to a tip force.

Ftip = f (p, r, v) =
[

(C1r + C2) p
2 +

(

C3r
3 + C4

)]

[

1− e
−
(C5r5+C6)p+(C7r+C8)

(C1r+C2)p2+(C3r3+C4)
v

]

(4.28)

This gives the topology and coefficients for a direct and complete fit of the
test data. In this final fit, the error is defined as:

error =
norm (∆Ftip)

norm (Ftip)
(4.29)

The final fit yielded a set of coefficients C1 through C8 which can be substituted
into equation (4.28). The values of these coefficients are given in appendix A.
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Figure 4.10 shows a comparison between measured and fitted data for a beam
with a diameter of 13cm. The resulting error for this fit, defined in equation
(4.29), was 1.91%.

p = 0.3 bar (measured)
p = 0.4 bar (measured)
p = 0.5 bar (measured)
p = 0.3 bar (fitted)
p = 0.4 bar (fitted)
p = 0.5 bar (fitted)

0
0

5

10

15

20

25

30

35

20 40 60 80 100 120

Deflection [mm]

T
ip

fo
rc
e
[N

]

Figure 4.10: The resulting load-deflection curves for a beam with a 13cm diameter.

Looking at the curves in figure 4.10 one can immediately see that the transition
from unwrinkled to wrinkled is not as pronounced in the experimental data as it is
in the theoretical bending behavior depicted in figure 2.12. The different theories
by Comer & Levi [1963], Main et al. [1995], Adler et al. [2000], Fichter [1966],
Stein & Hedgepeth [1961] andWebber [1982] show a clear point at which wrinkling
occurs and devoted a great deal of attention to this threshold. The matched data
curves made in equation (4.28) don’t indicate a wrinkling threshold at all. It
simply approximates the smooth curves of figure 4.9. For a designer of kites and
tents, the exact wrinkling load is less important than the overall shape of the load
deflection curve.

A point which does require special attention is the point of collapse. The mat-
ched data curves made in equation (4.28) do not include the collapse behavior and
simply extrapolate the curve for an increasing bending load. In the simulation,
collapse is included by lowering the bending stiffness by a large factor after the
collapse deflection is reached. It is therefore necessary to create a function which
relates beam radius and internal pressure to a collapse deflection. In this function,
the collapse deflection is the deflection of the beam right before the beam tran-
sitions from the wrinkled state to the collapsed state. During the experiments,
collapse loads and collapse deflections were measured. All collapse deflections
relating to the same beam radius r were plotted in a graph and a function was
created to approximate the relation between internal pressure p and the collapse
deflection.
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vcollapse = T1p+ T2 (4.30)

Analogue to the bending match, functions were created to relate the values of
the coefficients T1 and T2 to the beam radius r.

T1 = C9r
4 + C10 (4.31a)

T2 = C11r
2 + C12 (4.31b)

The values of C9 through C12 are numerical values obtained from the matching
operation. The numerical values can be found in appendix G. By substituting
equations (4.31) into equation (4.30), we obtain an equation for the collapse de-
flection as a function of internal pressure and beam radius.

vcollapse =
(

C9r
4 + C10

)

p+ C11r
2 + C12 (4.32)

At this point, the entire load-deflection curve is mapped out. It is now possible
to write an equation for the bending stiffness as a function of internal pressure p,
beam radius r and deflection v. Conventional beam bending theory states [Gere
& Timoshenko, 1991]:

d2v

dx2
=
M

EI
=

1

ρ
= κ (4.33)

With:

θ =
l

ρ
(4.34)

The theory is only valid for small deflections. Deflections expected in an
inflatable tube are much larger. But by dividing the beam into smaller elements,
the deflections per element are much smaller, enabling the use of classical bending
theory. For a beam divided into n elements we can write:

n =
l

∆l
(4.35)
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∆θ =
θ

n
(4.36)

Substitution of equations (4.35) and (4.36) into equation (4.34) yields:

∆θ =
∆l

ρ
(4.37)

For the rotational spring stiffness in the joint between two elements we can
write:

k∆θ =M =
EI

ρ
(4.38)

k∆θ = k
∆l

ρ
(4.39)

Combining equations (4.38) and (4.39) yields:

k =
EI

∆l
(4.40)

Equation (4.40) gives us a relation between spring stiffness k and bending
stiffness EI for an element length of ∆l. We now include the experimental data.
For a cantilever beam, conventional beam bending theory yields:

v =
Ftipl

3

3EI
(4.41)

In case of an inflatable beam, the term EI is not a constant numeric value.
It is a function of internal pressure p, beam radius r and bending deflection v.
Equation (4.28) gives tip force Ftip as a function of p, r and v and the beam
length l equaled 1 meter in the experiments. This now allows the formulation of
an equation which gives EI as a function of p, r and v.
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EI (p, r, v) =
Ftip (p, r, v, ) l

3

3v
(4.42)

Substitution of equation (4.42) into equation (4.40) yields an expression for
the spring stiffness:

k (p, r, v) =
Ftip (p, r, v, ) l

3

3v∆l
(4.43)

The collapse deflection of equation (4.32) is used to determine at what de-
flection the stiffness should reduce to a minimal value. This is done through
multiplication of the stiffness with a step function which equals 1 at values of
deflection lower than the collapse deflection, and 0.001 for values of deflection
higher than the collapse deflection. 1. This method was chosen above the option
to simply reduce the stiffness to a constant small value for deflections greater than
the collapse deflection because in this situation, a single and small value for the
stiffness would have a range of large deflections. This is numerically undesirable.
Because the initial stiffness creates a constant slope of the load deflection curve,
multiplication by a small factor would reduce the stiffness considerably, and allow
the stiffness to climb only marginally after collapse, ensuring only one stiffness
relates to only one deflection.

With the functions for the coefficients of the polynomials, the simulation is
complete. Figure 4.11 shows the measured and simulated data in a graph. The
largest measured value in each of the bending experiments in this graph indicate
the maximum tip force before collapse occurs.

4.4.4 Torsion

In order to write an algorithm for the torsion vector governing the torsion of the
beam, the same beams that were tested in bending were also tested in torsion.
For this purpose, a beam torsion device was created to apply the torque loads
on the beam and measure the angular deflection. The test setup clamps the test
beam on one end and rotates the other end around the longitudinal axis of the
test beam through the use of a double rotating arm. The first arm is rotated by
a spindle. The second arm rests on the first arm and introduces the torque loads
into the beam. Between the first and second rotation arm, a load cell measures
the force. The maximum dimensions of the pressurized tubes are 2 m long and
0.3 m diameter. The shorter test beams were tested by placing the end fixture
and the rotating arm closer together. Figure 4.12 shows the torsion setup.

1Within MSC ADAMS, a step function is a continuous and smooth transition from one value
to another.
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Figure 4.11: A comparison of measured and simulated bending data for different pres-
sures and different beam diameters.

The 30 mm axis of the rotating arm is supported by 2 ball bearings on a
distance of 200 mm. To prevent side ways forces on the load cell. The spindle
rotates the first arm which then introduces the load through the load cell into
the second arm. The second arm introduces the moment into the tube via 2 pins.
The central axis of the load cell is aligned with the pins and the 30 mm axis. The
distance between the load cell and the 30 mm axis is 500 mm.

The deflection angle is measured using a digital inclinometer and the pressure
is regulated using a digital manometer and a release valve. The beams were tested
at different internal pressures up to deflection angles of at least 40 degrees. Figure
4.14 shows some of the torsion test results.

From the torsion test it became clear that for the first part of the torsional
rotation, the behavior of the beam was only marginally dependent on internal
pressure. The curves with the same beam diameters are very close and seem to
have the same slope. Once wrinkles are formed, the lines start to deviate from
each other, with the highest pressures reaching the highest torque loads. Unlike
the bending behavior, the stiffness does not rapidly drop. It simply levels out. In
torsion, the beam knows only two states, unlike beams in bending which can exist
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Figure 4.12: The torsion test setup.

in three states [Breuer, 2007]. The two states are ”unwrinkled” and ”wrinkled”.
According to Adler et al. [2000] wrinkles form perpendicular to the direction of
the lowest principle stress. In the unwrinkled state, the lowest principle stress
has a positive value. This means that compressive stress due to torsion is smaller
in absolute value than the tension in that same direction. In the wrinkled state,
the lowest principle stress is equal to zero. Theory suggests that the wrinkling
threshold is a distinct point which leads to a clear shift in the slope of the tor-
sion deflection curve. Figure 4.14 shows that the transition from unwrinkled to
wrinkled is a more gradual process. For the purpose of the simulation proposed
in this thesis, an approach similar to the one taken for bending in section 4.4.3
was chosen for torsion as well. In order to approximate the experimental results,
the following function was proposed.

T = λ3arctan (λ4ϕ) (4.44)

As with the bending analysis, function topology and initial values for the
coefficients were found by fitting the data in a variable-by-variable method. First,
by using a least squares method, the values of λ3 and λ4 are determined for every
combination of internal pressure and beam radius. The values of λ3 and λ4 which
relate to the same beam radius are plotted in a graph against internal pressure
and a set of functions is created through another least squares method which
relates internal pressure to the values of λ3 and λ4.

λ3 = S5p+ S6 (4.45a)

λ4 = S7ln(p) + S8 (4.45b)
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Figure 4.13: A schematic representation of the torsion test apparatus [Breuer, 2007].

The form of the equations (4.45) have been chosen as such due to the fact that
they yielded the closest match to the experimental results. For both functions,
the R2-value was over 0.99. Equations (4.45) yield new coefficients S5, S6, S7 and
S8. These coefficients are plotted in a graph as a function of beam radius and a
new least squares operation is used to find functions that relate the values of S5

through S8 to the beam radius r.

S5 = C13r + C14 (4.46a)

S6 = C15r + C16 (4.46b)

S7 = C17r
4 (4.46c)

S8 = C18r
3 + C19 (4.46d)

The values of C13 through C20 are numeric values which are determined in
this operation. The R2-values of the functions all lay above 0.99. By substitution
of equations (4.45) and (4.46) into equation (4.44), a single equation is created
which relates pressure p, beam radius r and deflection angle ϕ to a torque moment
T.

T = f (p, r, v) = [(C13r + C14) p+ (C15r + C16)]

arctan
[(

C17r
4
)

ln(p) +
(

C18r
3 + C19

)]

(4.47)
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Figure 4.14: Test results from the torsion tests on inflatable beams.

As was done for bending in the previous section, the values found for the
coefficients C13 through C19 can now be used to perform an overall fit of the test
data to equation (4.47). This yields a new set of values for constants C13 through
C19 which can be found in appendix A. The error for this final fit is defined as:

error =
norm (∆T )

norm (T )
(4.48)

The error for the best fit turned out to be 2.78%. Figure 4.15 shows a com-
parison between measured and fitted data.

For the torsion spring stiffness we can use the angular form of Hooke’s law:

T = −kϕ (4.49)

Substitution of equation (4.47) into equation (4.49) yields an expression for
the torsional spring stiffness. This expression is now only valid for beam elements
with a length of 1 meter because it was directly derived from the experimental
tests on the 1 meter long test beams. But because the torsion angle increases
linearly with increasing beam length, we can write the following expression for a
beam element with length ∆l.
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Figure 4.15: A comparison of measured and fitted torsion data for a beam with a
diameter of 18cm.

k = −T
ϕ

1

∆l
(4.50)

With equation (4.50), the torsion algorithm is complete and ready for imple-
mentation in the simulation.

4.4.5 The combination of bending and torsion

Up until this point, bending and torsion in inflatable tubular beams have been
considered independent of each other. In reality, this is not the case. Webber
[1982] analyzed cantilever inflatable beams under bending and torsion. In his
paper, he assumed the material to behave as a membrane. Veldman [2005a] later
showed that assuming the material to behave as a thin shell yields better correla-
tion with the experimental data on wrinkling loads. Veldman [2005b] investigates
the interaction of torsion and bending and their effect on the wrinkling load.
A comparison between analytical theory and numerical FE simulation is made.
For the interaction between the wrinkling torque and the bending moments, the
following expression was derived in Veldman [2005a]:
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M

Mw

+

[

T

Tw

]2

= 1 (4.51)

with:

(Mw)T=0 =
π

2
pr3 (4.52)

(Tw)M=0 =
√
2πpr3 (4.53)

The equations (4.52) and (4.53) are the wrinkling loads in resp. pure bending
and pure torsion situations. Webber [1982] found similar expressions. Equation
(4.52) is only valid if the material is considered to be a membrane (wrinkling crite-
rion based on stress, Comer & Levi [1963], Webber [1982] and Stein & Hedgepeth
[1961]). Gerard & Becker [1957] and Donell [1933] have each derived their own
equations for wrinkling loads in thin-walled tubes in torsion which consider the
material to be a shell. These tubes contained no overpressure. Crate et al. [1944]
first published a theory on the interaction between wrinkling in thin walled shells
and internal overpressure. He derived the following expression:

[

Tw
(Tw)p=0

]2

+
p

(pw)T=0

= 1 (4.54)

With an empirically determined expression for (pw)T=0:

(pw)T=0 = −2.6E
2r

l

(

t

2r

)2.5

(4.55)

Veldman [2005b] makes a combination between membrane and shell theory to
write an expression for the torque wrinkling load.

(Tw)M=0 =
√
2πpr3+0.544πErt2

√

t

r

1

(1− ν2)
0.75

√

1 + 4.35
p

E

r

l

(r

t

)2.5

(4.56)
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The interaction of bending and torsion is implemented into the simulation by
creating a scaling factor which is based on the wrinkling load in pure bending
(Mw)T=0 or torsion (Tw)M=0 and the wrinkling load during a combination of
bending Mw and torque Tw. With Tw obtained from equation (4.54) and Mw

obtained from equation (4.51).

Kbending =
Mw

(Mw)T=0

(4.57)

Ktorsion =
Tw

(Tw)M=0

(4.58)

In the simulation, the spring stiffness algorithm of the torque vectors which
govern the bending and torsion behavior are multiplied by the scaling factors in
equations (4.57) and (4.58).

4.4.6 The inflatable beam toolbox implementation

The simulation is set up within MSC ADAMS. In order to create an intuitive
interface, a toolbox was created with which beam models can easily be produced.
For every beam element, the radius and internal pressure are automatically sub-
stituted into the equations. This ensures that the bending stiffness of every joint
is only dependent on the variable bending deflection and the equations reduce
in complexity before the simulation starts. On every joint, the angles between
the adjacent elements are constantly measured and values are related back to the
stiffness algorithm. This creates a loop during the simulation where every joint
allows for the correct deflection at a specific local bending moment. This allows
the simulation to function in loading situations other than a cantilever beam as
well. The experimental data is only used to formulate a general stiffness algorithm
which relates the local bending moment, the local internal pressure and the local
beam radius to a local bending angle between the elements. Figure 4.16 shows
the beam toolbox user interface.

In the beam toolbox ”Tube Props” indicates the location of the beam pro-
perties file. This file contains data such as the fitted coefficients and beam radii.
By switching tube property files one can load in other inflatable beams as well,
consisting of different materials or different sizes. ”Marker Beg” and ”Part Beg”
indicates respectively the marker at the beam start and the part to which it
is connected. The same goes for ”Marker End” and ”Part End” but then for
the other end of the beam. ”Marker XY” governs the orientation of the beam.
Usually, its X-axis is directed from the beginning marker to the end marker. The
last two options, ”Conn Beg” and ”Conn End” is where the type of connections at
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Figure 4.16: The inflatable beam toolbox.

the beginning and end of the beam are chosen. Wether it is a free end, a flexible
end or a rigid end. After the model has been generated, the properties above
remain changable. In this way it is relatively simple for a designer to change the
radius of a specific beam in the kite without regenerating the entire model.

4.4.7 Complex inflatable structures

The simulation was set up from the outset to be able to simulate structures which
consist of more than just one simple beam. Building complex inflatable tubular
structures is a simple task using the inflatables toolkit which was created. The user
simply draws out the nodes of the structure and connects them using inflatable
beams. However, a few remarks on more complex inflatable structures need to be
made.

Up until now, only bending and torsion have been considered. For simple
cantilever beams loaded by torques or tip forces, bending and torsion are the
only loads on the elements which are of significance. In more complex inflatable
structures, beams may also come under pure compression in axial direction. Axial
compression is a load which works in the exact opposite direction of the longitudi-
nal tension as a result of the internal overpressure. In essence, axial compression
lowers the effective internal overpressure. The axial compression can be obtained
from the joints between the elements. For the effective internal pressure at that
location we can write:
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peff = p+
Faxial
2πrt

(4.59)

In equation (4.59), Faxial is negative for compression and positive for ten-
sion. Axial tension creates an increased pre-tension in the skin of the beam in
longitudinal direction, increasing the effective pressure.

The second remark that needs to be made concerns the connections between
the individual beams. As long as beams are connected in each others longitudinal
direction, the algorithm governing that joint is no different than the algorithms
governing the joint between the individual elements. But when beams are connec-
ted at an angle, stress concentrations occur which need to be taken into account.
This means that the algorithms governing the connections of the individual beams
need to be adjusted to take into account the stress concentration factor. This can
be done by multiplying the local stiffness by the reciprocal of the stress concen-
tration factor. The stress concentration factor is dependent on geometry and has
been investigated intensively. Yakup et al. [1978] has conducted a number of
experiments and determined the stress concentration factor for a T-joint to be
between 2.6 and 3. For each joint between beams, the stress concentration factor
can be determined and incorporated in the model.

4.5 Building block 3: Foils

With the two previously discussed building blocks, cables and tubes, it is possible
to build the backbone of a kite. What is missing is the fabric that makes up
the airfoil and introduces the aerodynamic forces. Kites that are supported by
inflatable tubes obtain their lift and drag from an airfoil which is, in essence, a
sail wing. Sail wings are a particular type of wing structure which consist of a
(semi)-rigid leading edge nose and a flexible fabric surface. Figure 4.17 shows two
variations of the sailwing. A single and a double membrane airfoil.

Flexible sailwings have been subject to extensive research ever since their
invention at Princeton University in the 1960s [Sweeney, 1961]. An overview of
previous research into the behavior of sail wings was given in section 2.5.2.

4.5.1 Airfoil model definition

From previous research it has become apparent that the change in camber has
a significant effect on the aerodynamic performance of the sail wing. Simply as-
suming constant camber results in a performance which greatly differs from the
performance of a flexible foil (Fink [1969] and Fink [1969]). In the kite simulation
tool, the wing is divided into a number of chordwise wing elements. The aero-
dynamic forces on these elements are summed and superimposed onto a leading
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Figure 4.17: A schematic representation of a single and a double membrane airfoil.

edge to trailing edge wire which replaces the actual foil. Figure 4.18 shows the
simplification

In the actual sail wing, lift is produced as a result of the pressure difference
between upper and lower surface. the actual aerodynamic force is a distributed
force on the canopy surface. In the model, the aerodynamic force is summed
in spanwise direction and superimposed on the chordwise wire as a chordwise
distributed force. The chordwise wire itself is modelled in the same manner as the
cables in the previous section. it consists of five elements from leading to trailing
edge and connects the trailing edge wire to the leading edge beam. The elements
are joint together by hook joints allowing all rotations except axial rotation. The
aerodynamic force on the wing element is introduced as force vectors which act
on the four joints between the chordwise wire elements. Figure 4.19 shows the
wing model in MSC ADAMS with the chordwise wires and local aerodynamic
force vectors.

The last element required is the connection between the different chordwise
wires. Up to now, they remain unconnected. In reality The canopy fabric itself
has a negligable bending stiffness, but it does act as a shear web between arbi-
trary nodes on the canopy. This function in the model is fulfilled by cross-wires
connecting the chordwise wires. The cross wires consist of a spring connecting
the nodes. The spring stiffness is a measure for the shear modulus of the fabric.
Figure 4.20 shows the complete wing model, including the cross wires.

The model depicted in figure 4.20 is a single membrane airfoil with a canopy as
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Actual wing element Simplified model

Airfoil canopy Chordwise wire

Figure 4.18: Schematic representation of an actual sail wing and its modelled counter-
part.

the upper surface of the wing. It is important to realize that the structural model
and aerodynamic forces are only indirectly coupled, in contrast to conventional
fluid structure interaction simulations. The canopy created by the cross wires acts
as a structural member in the flexible camber behavior of the wing under the load
introduced by the local force vectors. The local force vectors are governed by a
lift and drag coefficient which is dependent, among other parameters, on the local
camber of the wing. The algorithm which determins the lift and drag coefficients
has the local camber as an input parameter. The model finds itself constantly
striving for equilibrium between parameters such as camber, aerodynamic forces,
trailing edge wire tension and deformations of the inflatable beams. Adding a
lower surface in the model only affects its structural flexibility. as long as the
aerodynamic coefficient algorithm doesn’t change, the extra lower surface has no
direct aerodynamic implications.

4.5.2 The aerodynamic forces

As was stated in the previous section, the aerodynamic properties are introduced
through an algorithm which takes into account a number of parameters to obtain
its local lift, drag and moment coefficients. These input parameters consist of
camber, angle of attack and airfoil thickness. The camber of the airfoil changes
the aerodynamic characteristics. The angle of attack for every section is measured
locally, taking into account the wind direction, flexture of the trailing edge wire
in vertical direction (body axis) and velocity vector of the local wing section. The
airfoil thickness introduces the effects of tube radius and the changes in chord-
length due to the flexture of the training edge wire in horizontal direction (body
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Figure 4.19: The sail wing model showing the chordwise wire elements.

axis). When the trailing edge wire moves towards the leading edge, the chord
length is reduced. For the sail wings modelled here, this equals to a subsequent
increase of the airfoil thickness (in percentage).

In order for the model to use the correct aerodynamic coefficients, an algo-
rithm is developed which produces these coefficients as a function of aforemen-
tioned camber, angle of attack and airfoil thickness. previous research by e.g.
Nielsen [1963] and Boer [1982] yielded rudimentary numerical models. however,
its application within the scope of this simulation proved to be difficult. None
of the models were suited for the type of wings and airfoils which are of prime
interest. Furthermore, some of the models require itterative operations which
are resource. It was therefore decided to employ the same approach as was done
with the bending of tubular inflatable beams. But instead of obtaining data ex-
perimentally, a computational fluid dynamics (CFD) analysis was used to obtain
the aerodynamic coefficients of a number of airfoils with differing thicknesses and
camber values at different angles of attack. It was also attempted to obtain the
data using a simpler approach using software such as xfoil, but it was quickly
concluded that the high amount of turbulent flow on the sail wing airfoil created
large discremancies with reality.

As was stated earlier, the algorithm for the aerodynamic coefficients determins
the aerodynamic properties of the simulated wing. Therefore, this algorithm is
where characteristics such as single or double membrane, leading edge nose shape
and fabric roughness effects on the boundary layer can be found. The different
wing configurations exist within the simulation as different aerodynamic coefficient
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Cross wire springs

Figure 4.20: The sail wing model showing the cross wires between the chordwise wire
elements.

algorithm packages which can be selected at will. The type of wing discussed in
this section is a single membrane airfoil with a circular leading edge tube. This
airfoil is most commonly used in surf kites and functions as a base for further
investigations.

The CFD analysis was performed on three sets of airfoils with 15%, 20% and
25% thicknesses. The airfoils within each set ranged in camber from 0% to 12%.
To obtain the airfoil polars, a two-dimensional grid was created. Figure 4.21 shows
the grid of a 20% thick airfoil with a 4% camber.

Figure 4.21: A zoomed in view of the two-dimensional grid used.

The airfoil analysis uses a one meter chord airfoil. Around the airfoil there is
a 20-cell thick boundary layer which amounts to an absolute thickness of 18mm.
The airfoil is encompassed in a density box with a maximum cell size of 10mm.
The outer edges of the grid model is a box of 10 meters long and 8 meters high.
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The size of this box agrees with the common rule for airfoil CFD analyses. This
rule states the boundary box should be 10 times as wide as the chord of the airfoil.
While this rule is hardly substantiated by scientific evidence, the fact that this
rule is common practice will secure analogy with other airfoil CFD analyses. The
maximum cell size is 50mm at the outer edges of the grid. The grid model was
imported into Fluent from the ICEM grid program. The left end and bottom of
the outer box is defined as a pressure inlet and the right side and top of the outer
box is defined as a pressure outlet. The solver was configured as pressure-based,
steady and two-dimensional with a Green-Gauss node based gradient option. For
the viscous effects a K-Omega SST model was chosen incorporating transitional
flows. for the solution, the SIMPLEC pressure-velocity coupling was chosen, as
well as a second order discretization of pressure, momentum and turbulent kinetic
energy. The specific dissipation rate was left on first order. Calculations were
done with under-relaxation factors of 0.5 for pressure, 0.7 for momentum, 0.7
for turbulent kinetic energy and 0.7 for specific dissipation rate. The case was
iterated for angles of attack ranging from 0 degrees to 25 degrees and aerodynamic
coefficients were recorded for each angle of attack step. As an example, figure
4.22 shows the turbulence intensity around an airfoil with an 8% camber and at
0 degrees angle of attack.

As can be seen in figure 4.22 even at a low angle of attack there is a considerable
amount of turbulence intensity around the airfoil, most of which is concentrated
below the canpoy of the airfoil. The presence of this amount of turbulent flow is
why codes such as x-foil produce poor and inconsistent results for these type of
airfoils.

Figure 4.23 shows the same airfoil at an angle of attack of 8 degrees. An
increased turbulence intensity can be observed above the canopy at the trailing
edge where flow separation starts to occur. A reasonable amount of turbulence is
also still present on the lower side of the canopy.

Figure 4.24 shows the same airfoil at 20 degrees angle of attack. The flow
has separated from the top of the canopy and a large wake is formed as a result.
At this angle of attack, the airfoil has stalled and the steady CFD case does not
converge. Unsteady analysis of this case reveiled that a Von Karmann vortex
street is formed behind the airfoil. From figures 4.22 through 4.24 it is clear that
the amount of turbulence intensity rules out the use of panel codes to base the
aerodynamic model of the kite on. Therefore, the CFD analysis is used for this
purpose.

For all large number of combinations of different airfoil thicknesses and cam-
bers, the aerodynamic coefficients were plotted against angle of attack. Figure
4.25 shows the lift coefficients for the 15% thich sail wing at different values of
camber.

Figure 4.25 shows an increasing lift coefficient with increasing camber. Also,
the zero lift angle of attack becomes more and more negative. Figure 4.26 shows
the drag of the same airfoil with angle of attack.

Increasing camber shows an increase in drag on the airfoil as well. Figure 4.27
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0 degrees angle of attack

Figure 4.22: Plot of turbulence intensity at 0 degrees angle of attack.

8 degrees angle of attack

Figure 4.23: Plot of turbulence intensity at 8 degrees angle of attack.

shows the moment coefficient of the same airfoil.

Again, one can see that a change in camber has significant effects. The moment
coefficient rapidly becomes more negative with increasing camber. Because of the
highly flexible nature of the wing, the camber is closely linked to the pressure
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20 degrees angle of attack

Figure 4.24: Plot of turbulence intensity at 20 degrees angle of attack.

difference between the top side and the bottom side of the airfoil. During flight,
one can expect to see a range of cambers occuring with all the differences in
aerodynamic performance that figures 4.25, 4.26 and 4.27 indicate.

In the previous sections it was shown how the camber flexibility was simulated
from a structural point of view. In order to have the correct aerodynamic per-
formance to go with the flexible wing, an algorithm is divised which looks at the
momentary airfoil thickness, camber and angle of attack and gives a lift- drag-
and moment coefficient to match that particular configuration. This algorithm is
established in the same manner as was used for the bending and torsion of the
inflatable tubular structures.

In order to approximate the lift curve with respect to angle of attack, a third
order polynomial is chosen. The characteristic shape of the Cl-alpha curve bet-
ween -20 degrees and 20 degrees is such that the choice for a third order polynomial
is shown to be a good starting point for the approximation. For the lift coefficient
as a function of angle of attack, we write:

Cl = λ5α
3 + λ6α

2 + λ7α+ λ8 (4.60)

This yields different values for λ5 through λ8 which can be plotted with regard
to camber.
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Figure 4.25: Cl - alpha curves for a 15% thick sail wing airfoil at different values of
camber.

λ5 = S9κ+ S10 (4.61a)

λ6 = S11κ+ S12 (4.61b)

λ7 = S13κ+ S14 (4.61c)

λ8 = S15κ+ S16 (4.61d)

The first order polynomial was chosen here because, once plotted, the data
appeared to fall onto a straight line. Therefore, a first order polynomial was
deemed as a good starting point. From the equations (2) a new set of coefficients
S1 through S8 is obtained. The new coefficients S9 through S15 are plotted in a
graph as a function of airfoil thickness. This yields:

S9 = C20t
2 + C21t+ C22 (4.62a)

S10 = C23t
2 + C24t+ C25 (4.62b)

S11 = C26t
2 + C27t+ C28 (4.62c)

S12 = C29t
2 + C30t+ C31 (4.62d)

S13 = C32t
2 + C33t+ C34 (4.62e)

S14 = C35t
2 + C36t+ C37 (4.62f)

S15 = C38t
2 + C39t+ C40 (4.62g)

S16 = C41t
2 + C42t+ C43 (4.62h)
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Figure 4.26: Cd - alpha curves for a 15% thick sail wing airfoil at different values of
camber.

In order to make a best fit, a Matlab program was written to take the data
and make a fit based on the least squares method. This resulted in numerical
values for the coefficients C20 through C43. The numerical values are given in
appendix A

The error introduced by this fitting procedure deserves special attention. The
error under investigation here is the error between the data obtained through the
CFD analysis and the data resulting from the fitted algorithm. The fit error is
defined as the square root of the sum of all the squared differences between the
CFD and matched algorithm data, divided by the square root of the sum of the
squared CFD data. In essence, the values of the differences between CFD and
fitted data are used as components of a large 1xn vector. This vector is then
normalized. The same is done with the coefficient values of the CFD data and the
quotient between the two are a measure for the error made in the fit procedure:

error =
norm (Cl,fit − Cl,CFD)

norm (Cl,CFD)
(4.63)

For this fit this yielded an error of 5.5%. With the values C20 through C43

known, the algorithm for the lift coefficient is known. To be more precise, it
is known for a range of angles of attack from -20 degrees to 20 degrees. The
simulation, however, also requires values for all the other angles of attack from
-180 degrees to -20 degrees and from 20 degrees to 180 degrees. At these angles of
attack, the flow is highly turbulent and a steady CFD analysis does not converge
with risiduals small enough to be considered reliable. Therefore, a more empirical
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Figure 4.27: Cm - alpha curves for a 15% thick sail wing airfoil at different values of
camber.

approach is taken in these ranges of angles of attack by assuming the aerodynamic
properties to be close to that of a flat plate. For the range of angles of attack
from -180 degrees to -20 degrees and from 20 degrees to 180 degrees we assume
the lift coefficient to equal [Spierenburg, 2005]:

Clhighaoa = 2cos (α) sin2 (α) (4.64)

For a numerical simulation it is imperative to create functions which are conti-
nuous differentiable. If they are not, numerical integration problems can occur.
Therefore, in order to continuously switch between the lift algorithm for low angles
of attack and equation (4.64) for high angles of attack, a step function is used to
create a smooth transition. 2.

For the drag and moment coefficients, a very similar method is used to ob-
tain an algorithm which uses camber, airfoil thickness and angle of attack as an
input and produces resp. a drag and a moment coefficient. For conciseness, the
derivation is omitted here. The algorithm for drag yields:

Cd =
[

(C44t+ C45)κ
2 + (C46t+ C47)κ+ (C48t+ C49)

]

α2

+
[

(C50t+ C51)κ+
(

C52t
2 + C53t+ C54

)]

(4.65)

2Within MSC ADAMS, a step function is a continuous and smooth transition from one value
or function to another.
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The numerical values of C44 through C54 can be found in appendix A. For
the airfoil moment the same method yields:

Cm = [(C55t+ C56)κ+ (C57t+ C58)]α
2

+ [(C59t+ C60) κ+ (C61t+ C62)] (4.66)

Flat plate theory for high angles of attack yield for Cd:

Cdhighaoa = 2sin3 (α) (4.67)

As with the previous coefficients the numerical values of C55 through C62 can
be found in appendix A.

With the coefficients C20 through C62 known, the entire behavior of the aero-
dynamic forces as a function of angle of attack, airfoil thickness and camber are
known. This approach allows for a modular simulation. One could quite easily
apply the entire procedure with regard to a different airfoil and in the process
obtain a different set of coefficients. Within the kite simulation toolbox, these
different airfoil models are then selectable. This approach allows the use of ex-
perimental data, as well as numerical data giving it added flexibility and new
avenues of analysis.

4.5.3 The airfoil moment

Up to this point, we now have three functions which approximate the lift-, drag-
and moment coefficients as a function of angle of attack, thickness and camber.
But this is not the only information which was obtained from the CFD analysis.
The CFD data also gives us the pressure distribution over the chord of the airfoil.
In this section we will make use of that information to distribute the lift force
over the nodes of the airfoil model.

In section 4.5.1 it was shown that the lift and drag forces are introduced in
the model as resultant forces on the nodes between the chordwise wire elements.
Each vector depicted in figure 4.19 is a resultant force vector of the local lift- and
drag fraction. Adding the fractions would yield the total resultant force vector
for that particular sliver of wing. The aerodynamic moment of an airfoil is the
result of the moment introduced by the pressure distributions on the upper and
lower surface. These pressure distributions are a result of the flow over the airfoil.
With changing angle of attack, airfoil thickness or camber, the force fractions on
the nodes also change, not just in absolute sense but with respect to each other
as well. The objective is to distribute the total aerodynamic force over the nodes
and maintain the same airfoil moment. Figure 4.28 shows a schematic view of a
single airfoil as it is represented in the model.
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Figure 4.28: A schematic representation of the airfoil model.

A method of introducing the aerodynamic forces and moments to the struc-
ture is to make separate fits for each force component. Figure 4.29 shows this
procedure. In this figure and arbitrary pressure difference between the upper and
lower airfoil surface is defined to serve the purpose of this example.

By taking the mean average of the intervals it is possible to obtain the aero-
dynamic force components:

Fi =

∫ i+1

i
∆p

(

x
c

)

d
(

x
c

)

(

xi+1

c

)

−
(

xi

c

) (4.68)

With equation (4.68), the airfoil moment becomes:

M = Fi

( xi+1

c
− xi

c

2
+
xi
c

)

(4.69)

This procedure, in essence, gives us the weight factors with which the total
lift force is distributed over the airfoil. For these weight factors wi we can write:

n
∑

i=1

wi = 1 (4.70)
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Figure 4.29: A schematic representation using the mean average of the intervals de-
picted to calculate the aerodynamic force components.

Figure 4.30 Shows these weight factors.
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Figure 4.30: The weight factors for distribution of the aerodynamic lift force over the
nodes.

The airfoil moment, however, is not necessarily equivalent to the airfoil mo-
ment obtained from the continuous pressure distribution. Due to the coarse dis-
cretization, the contributions from the forces Fi to the airfoil moment will be
different from the contribution of the distributed force in interval

(

xi

c
, xi+1

c

)

. This
difference is the result of the variation of the gradient of the curve within the inter-
val which creates a different ”center of effort” than the mid point of the interval.
This discrepancy reduces with increasing resolution of the discretization.

At this point, the number of nodes is limited by currently available processing
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power. To stay within the requirements for this simulation with regard to pro-
cessing capabilities a low amount of nodes is required to approximate the actual
airfoil moment as well. Therefore a different approach is suggested.

Changing flight conditions will vary the airfoil lift and moment. This variation
is represented by a variation of the weight factors. The rate of variation of the
weight factors on the nodes is governed by ui. Figure 4.31 shows the weight factors
wi and the variation of the weight factors ui.

w1

w2 w3

w4

w5

u1a
u2a

u3a

u4a

u5a

Figure 4.31: A schematic representation the changing lift force components.

We now seek to develop a class of discrete functions with which to approximate
the distribution of pressure on the airfoil surface. For the factors ui we can write
the following condition:

n
∑

i=1

ui = 0 (4.71)

The actual variation of the force components is introduced by variable a. The
distribution is now written as a function of one single variable a using the constant
coefficients wi and ui. For the lift we can now write:

L =

n
∑

i=1

L(wi + uia) (4.72)

The variation of a does not change the sum of the aerodynamic forces, it only
changes their distribution and thus only the airfoil moment. The aerodynamic
moment is obtained from the moment algorithm derived in the previous section.
It is therefore known for every combination of angle of attack, airfoil thickness
and camber. This moment is taken around the quarter chord point of the airfoil.
For the airfoil moment we can write:
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M =

n
∑

i=1

L(wi + uia)(0.25c− ci) (4.73)

For a set of coefficients wi and ui which satisfy equations (4.70) and (4.71) we
can solve for the variable a.

a =

M − L(0.25c−
n
∑

i=1

(wiui))

−L(
n
∑

i=1

(uici))

(4.74)

In the simulation, the lift fractions can now be determined at every time step.
In this approach, only the lift force varies in order to incorporate the correct ae-
rodynamic moment. In reality, due to the camber of the airfoil, the drag force
fractions also introduce a moment with regard to the quarter chord point. Ho-
wever, the moment arm of the drag force is small compared to the moment arm
of the lift force. Furthermore, the drag force itself is also significantly lower than
the lift force. Therefore, the moment introduced by the drag force fractions is
much smaller than the moment of the lift force fractions and therefore it has been
neglected.

The crux of this procedure lies within the coefficients wi and ui. It must
be noted that for given boundary conditions of L and M there are an infinite
amount of coefficient sets wi and ui possible which satisfy equations (4.70) and
(4.71). Figure 4.32 shows for a given value of L and M and for a number of
arbitrary sets of coefficients wi and ui the resulting force distributions.

The numerical values of the series in figure 4.32 can be found in table 4.1

i 1 2 3 4 5
Series 1 wi 0.2 0.2 0.2 0.2 0.2

ui 0.5 0.5 -0.4 -0.4 -0.2
Series 2 wi 0.4 0.3 0.1 0.1 0.1

ui 0.2 0.1 -0.1 -0.1 -0.1
Series 3 wi 0.7 0.1 0.1 0.05 0.05

ui 0.4 -0.1 -0.1 -0.1 -0.1
Series 4 wi 0.3 0.2 0.2 0.2 0.1

ui 0.2 0.1 -0.1 -0.1 -0.1
Series 5 wi 0.4 0.2 0.2 0.1 0.1

ui 0.1 0.1 0 -0.1 -0.1

Table 4.1: Arbitrary values for coefficients wi and ui.
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Figure 4.32: The distribution of aerodynamic force components in terms of weight
factor (wi + uia) as a result of arbitrary sets of values for wi and ui.

For each of the series in table 4.1 the conditions of equations (4.70) and (4.71)
are met. Furthermore, the sum of the forces all equal the same value for L and the
moment introduced in the airfoil all equal the same value forM . What is left is an
undetermined distribution. In order to come to a set of coefficients wi and ui, a
comparison is made with the original CFD data. Through an iterative procedure,
a set of coefficients wi and ui is determined which satisfies the aforementioned
conditions and results in force components which are comparable to the result of
the averaged CFD data as depicted in figure 4.29. Table 4.2 displays the chosen
coefficients.

i 1 2 3 4 5
wi 0.4 0.2 0.2 0.1 0.1
ui 0.1 0.1 0 -0.1 -0.1

Table 4.2: Values for coefficients wi and ui.

We now have reduced the distribution of the lift force components to a one
dimensional operation. A particular airfoil moment results in a single value of a,
which is then used to determine the distribution weight factors wi + uia. The
assumption of the shape of the pressure distribution is contained within the coef-
ficients wi and ui. Figure 4.33 depicts the values for the weight factors wi + uia
for different values of airfoil moment coefficient CM .

The question is now: How good is this choice? To evaluate the validity of
these values, a set of five lift fractions are directly obtained from the CFD data
for a certain airfoil shape and angle of attack and compared to the outcome
of the procedure described in this section. Figure 4.34 shows the resulting lift
force fractions for both the values obtained directly from the CFD data and the
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Figure 4.33: The values for the weight factors (wi + uia) for different values of airfoil
moment coefficient CM .

approximation method described in this section for an airfoil with a 15% thickness
and a 4% camber, at an angle of attack of 10.2 degrees.
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Figure 4.34: A comparison of lift fractions for the approximated and direct CFD based
values for an airfoil with a thickness of 15%, a camber of 4% and at an angle of attack
of 10.2 degrees.

Some discrepancies can be seen in figure 4.34, but overall the two methods
show good agreement. Figure 4.35 shows a similar comparison for a 20% thick
airfoil with a 4% camber at an angle of attack of 8 degrees

Figure 4.35 shows the same level of agreement between the values obtained
using the method described in this section and the values obtained directly from
the CFD analysis. Note that an exact agreement between measured and simulated
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Figure 4.35: A comparison of lift fractions for the approximated and direct CFD based
values for an airfoil with a thickness of 20%, a camber of 4% and at an angle of attack
of 8.0 degrees.

values is not sought. For reasons explained in the beginning of this section, some
discrepancies are to be expected as a result of the center of effort position of
the distributed aerodynamic force within the intervals (see figure 4.29). The
comparison of figures 4.34 and 4.35 only serves as a check wether or not the force
components are comparable to the CFD data.

Another critical note must be made concerning this approach. From the CFD
analysis of section 4.5.2 a pressure distribution over the airfoil is obtained. This
pressure distribution consists of close to 140 discrete values in chordwise direction.
This amount of values is a direct result of the coarseness of the CFD mesh. These
140 values are then condensed into one single value for aerodynamic lift, drag and
moment. This section proposes to expand the single value of lift into n values
again (where n is larger than 1). This expansion step makes use of an assumed
shape for the pressure distribution. This assumed shape is contained within the
wi and ui coefficients. This is a somewhat odd procedure. Why reduce the data
to single values only to continue to increase the number of values again.

The desire to keep the number of chordwise nodes variable is also responsible
for the choice to employ the method described in this section. During the de-
velopment of this method, the flexibility of the number of chordwise nodes was
essential in assessing the limits of current hardware. The pre-processed nature of
the fitting procedure ensured that the procedure described in this section resulted
in more analythical flexibility than a procedure where every number of chordwise
nodes required new fitting and new sets of coefficients. It was therefore concluded
that the fitted method of this section provides an adequate amount of accuracy
and serves the purpose of the simulation.
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4.5.4 The airfoil toolbox implementation

Building these models by hand is extremely laborious and introduces a high chance
of errors due to bad construction. Therefore, a toolbox was created to generate
the model. The airfoil tool is a building block in a larger kite simulation toolbox.
Figure 4.36 shows the airfoil tool.

Figure 4.36: The airfoil toolbox.

”Foil props” reverts to the data file containing the coefficients which govern the
lift, drag and moment coefficients. This is where different airfoils can be selected
in the simulation. It is therefore possible to have multiple wings with different
airfoils operating within the same model. The airfoil model requires an inflatable
beam as a base from which it is built. This is indicated in the field next to ”LE
Tube”. ”Beg Segment” and ”End Segment” are indicators for the beginning and
the end of the foil. ”Beg object” and ”End Object” indicate to what object the
beginning and the end of the foil are attached. This could be another inflatable
tube, a rigid rod or another foil. ”Beg Stations” and ”End Stations” indicate
the specific markers on the objects where the foils are attached. For instance,
the foil can be attached along the top of an inflatable strut or on the side of the
strut. Lastly, ”Fluid speed” indicates which wind model the airfoil adheres to. For
instance, a wind model which introduces a constant wind with increasing altitude
or a wind model which introduces a steadily increasing wind as the kite gains
altitude. The wind within the simulation is a separate module so that changing
the wind properly affects all aspects of the simulation.
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4.6 Building the complete model

With the three building blocks of section 4.3, 4.4 and 4.5 in place it is now possible
to build complex kite models. From within the toolbox, the building blocks can
be directly accessed to build a model on the fly. For more complex models it
is advisable to build these models from an assembly file. An assembly file is a
macro which accesses the building blocks and any other ADAMS-specific items
to build the model. This method has the advantage that it is faster and quickly
repeatable. It also makes the building process more transparent which lowers the
chance of building errors. Figure 4.37 shows a schematic representation of the
model building process.

Assembly

Backbone

Tubes

Foils

Cables

Inputs

Model properties

Tube properties

Foil properties

Cable properties

Model

Figure 4.37: A schematic representation of the model generation process.

Using the structure in figure 4.37 a fully parametric model can be constructed.
The inputs are data files with properties belonging to the assembly or the building
blocks themselves. They are called within the assembly and define the model. The
model properties has geometric and visualization properties. These properties
include items such as wing span, chord lengths, tube diameters, internal pressures
and cable attachments. From these properties, a backbone is generated. The
backbone of the model is a collection of coordinates indicated by dummy parts
which make up the nodes of the model. These nodes indicate where parts such
as tubes or cables begin and end. Once the backbone is completed, the model
is filled in by calling the three building blocks and building these components.
Cable, tube and foil properties govern the specific behavior of these components.
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The generation process has been set up like this so that changes made after the
model is generated are correctly implemented. This is crucial for a design tool.
In this way, changes to properties such as chord length or tube diameter are
quickly implemented and simulated. Figure 4.38 shows the resulting model for an
airplane-like kite called a ”Kiteplane”.

Figure 4.38: A completed model of a ”Kiteplane”.

4.7 Concluding remarks

This chapter proposes a numerical simulation of kites based on multi-body dy-
namics. The nature of this simulation is strongly governed by the requirements
which were set in section 4.1. Requirements on resource intensity and intuitive use
are brought forth by the current state of the kite industry. One could argue that
for industrial kites, the industry is expected to be far bigger and thus the need for
a simple tool less important over detail. First of all, leaving out the current kite
industry would be an enormous mistake. There is a wealth of knowledge available
in this industry. Fast and intuitive simulation tools will allow this industry to fo-
cus on further improvement by quantifying their knowledge and designs. Second,
A fast and intuitive tool is a powerful tool during the conceptual stage of any
design effort.
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CHAPTER 5

Multi-body kite simulation verification

This chapter provides a validation for the flexible kite model outlined in Chapter
4. In sections 5.2, 5.3 and 5.4 evidence is presented for the validity of the three
building blocks in the simulation: The cables of section 4.3, the Inflated tubes of
section 4.4 and the airfoils of section 4.5 respectively. Next, section 5.5 presents
the results of a windtunnel test where the shape of the three dimensional canopy is
measured using photogrammetry and compared with the simulated canopy shape.
Lastly, in section 5.6 measurement are presented of the flight performance of a
number of surf kites and the results are compared to their simulated counterparts.

5.1 Introduction

Verification performed in this chapter is done mostly on the basis of measurements.
In the first three sections the building blocks of the kite simulation toolbox are
validated individually. This establishes the validity of the building blocks on
their own, but it says little on the validity of combining these building blocks.
A kite model integrates these three building blocks into a single model. The
validity of this integration of models into a bigger single model is validated in two
cases. These two cases are designed to validate the two important results from
the simulation, shape under load and flight performance. The first case validates
the resulting 3D shape of a canopy under aerodynamic load. The second case
validates the flight performance of surf kites.
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5.2 Cable model verification

In order to verify the physics, an analytically solvable situation and a real world
measured situation are compared with their modelled counterpart.

5.2.1 Simple pendulum

The first situation is a simple pendulum. For the period of a rod pendulum, we
can write:

P = 2π

√

1
3ml

2

1
2mgl

= 2π
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2l

3g
(5.1)

For a pendulum with a length of 1 meter, this results in a period of 1.638
seconds. Modelling this in ADAMS creates the following graph.
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Figure 5.1: Excitation graph of a simulated pendulum.

As can be seen in figure 5.1, the period of the motion closely resembles the
analytical value.

5.2.2 Wave propagation

The second case is a real world measured case where a 32-meter long tether was
hung from the faculty building on a breezeless day. The tether had a radius of
4mm. The top of the tether was exitated and the time was measured which it took
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for the maximum of the first wave to travel down to the other end of the tether.
A large number of experiments were done which led to an average of 3.3 seconds
with a standard deviation of 0.25 seconds. The same situation was modelled in
ADAMS using the proposed cable model. In this model, 32 elements were used
with a length of 1 meter. At the top, the tether was exitated with the function:

F = 4sin

(

8t+
1

2
π

)

(5.2)

Figure 5.2 shows the excitation graph for the top and bottom node.
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Figure 5.2: Excitation graph of top and bottom node.

As can be seen, the time for the first wave to travel down the tether is 3.12
seconds, which is close to the measured 3.3 seconds and falls within the standard
deviation of 0.25 seconds.

5.2.3 Model convergence

The number of elements used in the model is of great influence on the speed
with which the calculations can be made. In order to evaluate the sensitivity of
the model to the number of elements used, several simulations were conducted
with models of the same length (25 meters) but with ever increasing number of
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elements. The cable was fixed at the bottom node and a force is introduced on
the top node, pulling that end straight up. The cable is simulated and finds an
equilibrium between cable mass, external force and aerodynamic drag. Figure 5.3
shows the X and Y coordinates of the top node at equilibrium for cables consisting
of different numbers of elements.
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Figure 5.3: Convergence of the cable model.

As can be seen in figure 5.3, the model will quickly converge with increasing
number of elements. For this model, no more than 10 elements would be enough
to describe the cable equilibrium with an error smaller than 5%.

5.3 Inflatable beam verification

The inflatable beam simulation uses fitted functions to interpolate and extrapo-
late the experimental data to fit beams of all manner of diameters and internal
pressures. One must therefore be aware that such an approach is dependent on
the test data itself. The simulation can only be considered valid for beams which
have comparable dimensions. Extrapolation of the data is possible, but there are
limits to the extent. It can be expected that the validity will suffer under ex-
tended extrapolation. The simulation proposed in this thesis is meant as a basis
for the simulation of inflatable kites which have a tubular inflatable structure.
Such tubes have comparable dimensions as the test beams and consist of the
same combination of Dacron fabric and inner TPU bladders. The same materials
and dimensions are used in tent structures, making the simulation valid for such
structures as well. This is not to say that a simulation with other dimensions and
materials is not possible. In such a case, bending and torsion tests of comparable
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dimensions and materials would have to be conducted and the resulting test data
would have to be used to obtain the constants C1 through C19.

On the other hand, this simulation is far less resource intensive than a FE
analysis. Setting up the simulation is a matter of minutes using the toolbox. One
simply dictates the nodes and the toolbox will create the model automatically.
Parameters such as diameter and internal pressure can be changed in an instant.
The simulation runs almost real time on a conventional desktop, making it an
intuitive tool for designers of e.g. kites.

5.3.1 Tapered beam comparison

Up until this point, only straight cylindrical beams have been discussed. In the
simulation, conical beams are approximated by varying the radius of each of the
elements linearly over the length of the beam. Because the local three dimen-
sional torque vector determines the local bending and local torsion behavior, co-
nical beams are a simple extension of straight cylindrical beams. To compare
the performance of conical beams in the simulation with the analytical theory,
the location of collapse along the length of the beam is compared. For conical
cantilever beams, wrinkling will not necessarily occur at the root of the beam,
as is the case with straight cylindrical beams. The location of wrinkling is the
result of the balance between local beam radius and local bending moment. For
this comparison, we use the wrinkling theory of Comer and Levi ([Comer & Levi,
1963]) which is based on stress. It is also important to note that the location
where the first wrinkles occur is also the location where collapse will occur due to
the nature of both wrinkling and collapse and their dependence on the principle
stress [Veldman, 2005a]. Consider a conical beam with a radius r1 at the root and
a radius r2 at the tip. For the radius r(x) along the length of the beam we write:

r (x) =

(

r2 − r1
l

)

x+ r2 (5.3)

For the bending moment we write:

M (x) = Ftipx (5.4)

Using the stress criterion ([Comer & Levi, 1963]), we combine conventional
beam theory with the boiler formula for stress in a pressure vessel in longitudinal
direction [Gere & Timoshenko, 1991]. The stress criterion dictates that wrinkles
will occur as soon as the compressive stress due to bending becomes equal to the
tensile stress due to the internal pressure.
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For the conical beam with a radius which is a function of coordinate x, we
write:

Ftip (l − x)

πr3 (x)
=
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2
(5.6)

Or:
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)3
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The value for x which results in the lowest value for Ftip is determined. This is
the location at which wrinkles will occur first since it requires the lowest external
load for wrinkles to form. In order to obtain the location of the first wrinkles
(and thus the location where collapse will occur), we differentiate equation 39
with respect to x. For each taper ratio we solve for:

dFtip
dx

= 0 (5.8)

Figure 5.4 shows the correlation between collapse location determined by the
analytical theory and the simulation for different taper ratios.

Figure 5.4 shows there is a clear correlation between the measured and cal-
culated data. Some discrepancies occur which can be attributed to the discrete
nature of the model. The beam can only collapse between two elements. The
point of this comparison is to show that while the test beams were straight cylin-
drical beams, a simulation for conical beams can still be derived from them with
a reasonable measure of accuracy.

5.3.2 Beam bending comparison

As was stated earlier, this simulation is tailored particularly with the materials
of the test beams in mind. A comparison between bending data from the inflated
beams and the simulation can be found in figure 4.11. The simulation makes use
of the experimental data these tubes yielded. We now compare the simulation
to bending in beams made from a different material to assess the applicability
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Figure 5.4: A comparison of the location of collapse for different taper ratios.

of different materials with respect to its bending behavior. Figure 5.5 shows
the bending deflection curves of a beam with a radius of 5 centimeters at three
different pressures.

For the beam tested in figure 5.5 a polyester fiber cloth was used, which was
coated in soft PVC. This made for an airtight fabric. The beam was built slightly
differently as the other Dacron/TPU beams. Two 1 meter long strips were cut
and glued together to form a sleeve. This resulted in not one but two seams, one
on each side of the beam. The seams are in the plane of the neutral axis to limit
their influence on the bending behavior. The radius was chosen to be 5cm. The
cloth was bonded using a PVC adhesive, which would remain somewhat elastic
after curing. Most PVC adhesives cure to a hard substance. Such bonds would
rip loose in a ”breathing” structure such as an inflatable beam. The elastic PVC
adhesive is able to move with the beam as it is inflated and deflated. The polyester
fiber/PVC material of the beam has a thickness of approximately 1mm, making
it twice as thick as the Dacron/TPU material. The simulation underestimates the
experimental data by approximately 10%. This can be attributed to the thicker
material which makes the collapse of the beam a less sudden event. The thick
material allows the wrinkled area to carry a small compressive load. Also, the
double seams in the plane of the neutral line can delay collapse as well.

Comparing the simulation to a beam with a larger radius and a less thick
material is expected to yield better results. The beam used for this comparison
is (again) a straight, untapered beam, fully enclosed on one end and loaded by a
single tip force on the other end. The beam consists of Plexiglas caps. Plexiglas
was used because of its transparency, letting in enough light enabling the tester
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Figure 5.5: A comparison of bending data for a measured and simulated polyester fiber
cloth beam.

to see inside the beam during testing. The enclosed end cap was glued onto a
larger Plexiglas plate, which was subsequently attached to the back plate of a
fixture. The free end cap was outfitted with an aluminum bracket. This bracket
functioned as an attachment of the load cell. The inner bladder consists of a single
layer of nylon 6 flat cast film (Capran 980). Two strips bonded on the long edges
form a tube. The two seams are present along the sides of the beam to maintain
symmetry. The diameter of the beam was chosen to be 15 cm and the length of
the beam is 100cm. A glass-fiber braid was applied over the gas barrier. The
braid was clamped into place by a hose clamp on both ends of the beam. This
clamp fixed the fibers in place. The fibers are only fixed at the ends of the beam.
Between the ends the fibers are not attached to the nylon bladder. The beam was
tested in bending for different internal pressures. Figure 5.6 shows a comparison
between the tested beam and the simulation results.

As can be seen there is a clear correlation between experimental and simu-
lated data for this beam. The most notable difference is the point of collapse,
which the simulation predicts to happen at a lower value of the tip force. This
comparison shows that for materials of comparable thickness, the simulation still
gives a reasonable prediction of bending behavior. At low bending moments, the
simulation is accurate within a few percent. With increasing bending moment,
the error increases as well to approximately 5% to 10% at the collapse load. Even
though the results are not as detailed as a FE analysis, the results are considered
accurate enough for a designer to predict the general shape of a beam under load.
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Figure 5.6: A comparison of bending data for a measured and simulated glass-fiber
braid beam.

5.4 Airfoil verification

In this section the model is compared to existing wind tunnel tests on the basis
of the shape and forces.

5.4.1 Comparison of aerodynamic forces

For the comparison, the measurements of [Boer, 1980] are used. Experimental
data on single membrane airfoils is scarce. [Boer, 1980] gives good data on the
particular airfoil used in kites. In [Boer, 1980] a two dimensional sail wing has
been tested at different angles of attack and different values for slack of sail. The
model consisted of a round metal bar with a fabric wrapped around it. The other
end of the fabric was stretched backwards to create a sail wing. The airfoil of that
wing had a 9.33% thickness. By rotating the bar, it was possible to add a slack of
sail to the airfoil. For this comparison, only the results with no slack of sail are
used for comparison since slack of sail is not included in the present simulation
as such.

In order to do a comparison, a model was created with the same dimensions
and properties as the wind tunnel model of Boer [1980]. The model is a rectangular
sailwing with a wingspan of 1.2m and a chord of 0.325m. The diameter of the
leading edge beam was 3.25cm bringing the thickness of the airfoil to 10%. In
the tests of Boer [1980], the canopy of the wing was made from dacron with a
weight of 150 grams per square meter. The porosity of the material was measured
using a Gurley meter and was considered to be neglidgible. Figure 5.7 show
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a comparison between measured and simulated lift coefficients at two different
Reynolds Numbers (0.195 ∗ 106 and 0.295 ∗ 106)
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Figure 5.7: A comparison of measured and simulated lift coefficients.

At Re = 0.195 * 106 the simulated data shows the same slope as the measured
data at low angles of attack, but stall occurs earlier for the simulated data. At
Re = 0.295 * 106 the simulated slope agrees less with the measured slope. The
discrepancy in stall behavior is likely the result of the CFD data used to build
the lift coefficient algorithm. The CFD analysis is notorious for delayed stall
and inaccurate drag predictions when significant turbulent flow is present. The
single membrane airfoil has such a significant amount of turbulent flow, especially
at higher angles of attack. From this consideration, it is worth looking at a
comparison between measured and simulated drag. A discrepancy is expected.

From figure 5.8 it can be seen that the simulation overestimates the amount
of drag, especially for higher angles of attack.

5.4.2 Comparison of 2D canopy shape

The interesting question is now whether or not the discrepancy observed in section
5.4.1is indeed the result of poor CFD results or whether it is the result of the
simulation itself and the resulting shape of the airfoil. To evaluate this, the
shapes of the measured and simulated airfoils are compared. [Boer, 1980] Gives
the airfoil shapes for different values for the slack of sail. Only the plots with
zero slack of sail are useful in this comparison. [Boer, 1980] gives the shape of
the airfoil for two Reynolds numbers (Re = 0.195 ∗ 106 and Re = 0.295 ∗ 106) an
angle of attack of 7 degrees. At this angle of attack, the lift coefficients of both
the measured and simulated airfoil are comparable, as can be seen in figure 5.7.
The question now is whether or not the airfoils have a comparable shape under
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Figure 5.8: A comparison of measured and simulated drag coefficients.

this equal aerodynamic load. Figure 5.9 shows the comparison between simulated
and measured shape.
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Figure 5.9: A comparison of measured ([Boer, 1980]) and simulated airfoil shapes at
7 degrees angle of attack.

Figure 5.9 was composed by overlaying the coordinates of the simulated airfoil
onto the plot of the measured airfoil shape from [Boer, 1980]. It can be seen that
the simulated and measured airfoil shapes are very close. This gives rise to the
idea that the deviation between simulated and measured airfoil shapes at high
angle of attack is the result of the data on which the aerodynamic coefficients are
based.
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5.5 3D canopy verification

In this section, a comparison will be made between the simulated three dimensio-
nal canopy shape of a Kiteplane and a measured dataset which was obtained using
a photogrammetry analysis in the Boen wind kanal at the University of Stuttgart.
The aim of this section is to verify the canopy shape and resulting aerodynamic
force.

5.5.1 3D aerodynamic coefficients

Up to now, the chords of the wing make use of aerodynamic coefficients which
have been obtained by analysis of two dimensional airfoil sections. In reality,
downwash and tip vortices influence the lift distribution of the wing in such a way
that the actual local lift coefficients are slightly lower than their two dimensional
counterparts. This effect on the aerodynamic properties of a wing has been subject
of extensive research since the 1910s. There are several models to choose from
to incorporate this effect. In light of the nature of this simulation, a model was
required which gave reasonable results at low computation cost. Due to the fact
that this computation would have to be done for every wing chord and at every
time step, Prandtl’s lifting line theory [Anderson, 1991] was selected. Prandtl’s
lifting line theory is relatively simple to compute and produces excellent results
for planar wings [Anderson, 1991].

Figure 5.10: A schematic representation of Prandtl’s lifting line theory.

According to [Anderson, 1991], Prandtl proposes a vortex sheet with a circu-
lation as a function of angle θ.

Γ (θ) = Γ0sin (θ) (5.9)

140



We can write equation (5.9) as a Fourier sine series:

Γ (θ) = 2bV∞

N
∑

n=1

Ansin (nθ) (5.10)

With n = (1, 2, Ě, N) and N can be as many as is required for accuracy. The
coefficients A1 through AN are unknowns. However, they have to satisfy Prandtl’s
fundamental equation of the lifting line theory [Anderson, 1991]. Differentiating
equation (5.10) with respect to y, we obtain:

∂Γ

∂y
=
∂Γ

∂θ

∂θ

∂y
= 2bV∞

N
∑

n=1

nAncos (nθ)
∂θ

∂y
(5.11)

Substitution of equations (5.10) and (5.11) into the fundamental equation of
Prandtl’s lifting line theory yields:

α (θ0) =
2b

πc (θ)

N
∑

n=1

Ansin (nθ)+αL=0 (θ0)+
1

π

∫ π

0

∑N
n=1Ancos (nθ)

cos (θ)− cos (θ0)
∂θ (5.12)

According to [Karamcheti, 1966], the integral in equation (5.12) can be rewrit-
ten to form:

α (θ0) =
2b

πc (θ)

N
∑

n=1

Ansin (nθ) + αL=0 (θ0) +
N
∑

n=1

An
sin (nθ0)

sin (θ0)
(5.13)

For any arbitrary span wise location, specified by θ0, the only unknowns in
equation (5.13) are the coefficients A1 through AN . By evaluating equation (5.13)
at N different stations on the wing (and therefore N different values of θ0), a system
of N equations with N unknowns is created which can be solved. We are left with
values of effective angle of attack α (θ0) for every wing station. These values
for effective angle of attack are then used to determine the local aerodynamic
coefficients using the algorithms of chapter 4.

5.5.2 Comparison of canopy shape

A series of wind tunnel tests were performed on a full-scale inflatable sail wing.
Tests were performed at the Boënwindkanal of the University of Stuttgart in
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Germany. The Boënwindkanal is a suction tunnel with a circular test section
diameter of 6.3 meters and a maximum velocity of 17 m/s. The kite was positioned
in the tunnel upside down and suspended by attaching the bridle lines to the load
cells in the ceiling of the tunnel. The shape of the canopy was recorded using
photogrammetry. The surface of the canopy and part of the leading edge tube
were covered in 300 equidistantly spaced dots with a diameter of 12mm. By taking
photographs of these dot patterns from different angles, photogrammetry software
is able to orient the cameras and the dots in three-dimensional space. This allows
for a construction of a wireframe model of the sail wing canopy. Figure 5.11 shows
the actual kite in the tunnel and its wireframe model from the same vantage point.

Figure 5.11: Side-by-side view of the actual wing in the tunnel and the wireframe
model.

In order to build an accurate wireframe model, each dot needs to be clearly
visible on photographs taken from at least two different angles. Dots that are
only visible on one photograph can not be oriented in 3D space. In order to
have all these dots photographed, 14 different pictures were taken from different
angles. For a completely stationary object, these 14 pictures can be taken by a
single camera. By moving around the object and making pictures one can end
up with enough photographic material to build the wireframe model. In the case
of the kite in the tunnel, this posed a number of problems. Moving about in the
tunnel during a test disturbs the flow in such a degree that its influence taints the
measurement. Furthermore, the kite in the tunnel is never perfectly still. This
would lead to different photographs of different shapes which result in an error in
the final wireframe model. In order to capture the shape of the wing, an array
of 14 Nikon D300 digital cameras was installed in the tunnel to take photographs
simultaneously from 14 different angles. All cameras were connected to a single
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shutter switch allowing for all 14 cameras to snap simultaneously, and thereby
instantly capture the shape of the wing. This yielded models with an X- Y- and
Z-precision error of no more than 1.7mm.

In the determination of the angle of attack the assumption was made that
the flow in the tunnel is parallel to the longitudinal axis of the tunnel. This
assumption was made for other research projects in the tunnel as well and was
deemed reasonable for a tunnel of such configuration. In the floor of the tunnel
there is a square panel with markers on it which are used to create a line parallel
to the longitudinal wind tunnel axis. These markers were imported into the
photogrammetry model as well which allowed an accurate reconstruction of the
angle of attack.

During the test phase the wing was placed under different angles of attack
and in flows of different velocities. For each combination of angle of attack and
flow velocity, the load on the load cells was recorded and three different series
of 14 simultaneously taken photographs were stored. During the post processing
phase very little difference was observed between the three series of pictures taken,
giving rise to the belief that the kite was stable during the tests and that very
little vibration occurred. All test data was post-processed into wireframe models
of the shape of the wing.

5.5.3 Canopy shape comparison

In order to perform a comparison, a model was created using the toolkit with the
same geometry as the kite tested in the wind tunnel. The model was suspended
in the same manner as was done in the tunnel and the same flow conditions were
introduced. The forces were obtained by measuring the tension in the bridle
lines and the shape of the wing was recorded by exporting the deformed model
to a 3D CAD program (Rhino 4) where the simulated model could be overlaid
with the wireframe model obtained through photogrammetry. In the simulation,
the model achieved equilibrium and displayed no significant vibrations. All runs
were done on a conventional desktop computer and required approximately two
minutes to achieve five hundred 0.01s time steps, resulting in a total run length of
5 seconds. All simulations managed to reach equilibrium within the first 2 seconds
of simulated time. After the first two seconds, the displacement of the simulated
components was negligible.

The first case to be discussed is a case where the free stream velocity equals
5.3 m/s and the angle of attack equals 12 degrees. This angle of attack is taken
at one of the tail booms. It is a reference angle of attack based on the angle
between the longitudinal axis of the tunnel and the longitudinal axis of the tail
boom. The local angle of attack along the span of the wing can differ greatly from
this reference angle of attack. The angle meant here is only used to reference the
measured model to the simulated model and it is not used for any calculation of
aerodynamic coefficients. Only local angles of attack are used for that purpose.
Figure 9 shows the resulting measured shape in red and the simulated shape in
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black.

A

B
C

Figure 5.12: A comparison between the measured (red) and simulated (black) shape at
a wind velocity of 5.3m/s and a reference angle of attack of 12 degrees.

To get a better view of the differences between the simulated and measured
shape, three different airfoil cut-outs are made at the location indicated in figure
5.12 by the letters A, B and C. Figure 5.13 shows those cut-outs.

A B C

Figure 5.13: A comparison between the measured (red) and simulated (black) shape at
the three wing stations (Vwind = 5.3m/s).

The difference in shape between the measured and simulated model are quite
significant. A possible reason could be that this measurement was taken at a
low velocity and a resulting low wing loading. The wing which was placed in the
wind tunnel was hand-made and had a reasonable amount of flights under its belt
prior to wind tunnel testing. As a result, the fabric was not perfectly taut as the
simulated model assumes. Therefore, initially only a very small amount of force
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is required to exhibit quite a significant camber in the canopy. This slack in the
sail is possibly the cause of this discrepancy in canopy shape. The force on the
bridle was measured to be 39.6N. The simulated model registers 35.25N, which is
comparable to the measured value.

For second case to be discussed the wind velocity is 8 m/s and the reference
angle of attack is 11 degrees. Figure 5.14 shows the cross sections.

A B C

Figure 5.14: A comparison between the measured (red) and simulated (black) shape at
the three wing stations (Vwind = 8m/s).

This case sees a higher pressure in the canopy and a closer correlation between
the simulated and measured shapes. Especially cross section B shows an improved
match. This can be explained by the fact that the strut which exists there keeps
the trailing edge in place as much as it can. Only flexure or torsion of the strut or
leading edge beam can displace the trailing edge in that location. A discrepancy
does exist at cross section C where the trailing edge displacement of the simulated
and measured model shows a significant difference. Due to the fact that this
discrepancy increases towards the tip, it is plausible that this is caused due to
increased torsion of the leading edge beam. This idea is further substantiated
by the fact that the outer most strut of the measured model exhibits a slightly
decreased angle of attack with respect to the same strut on the simulated model.
A local weakness or production fault in the inflated tube could be the cause
of this phenomenon. Which of the two might become apparent when models
of higher wing loading are compared. If the discrepancy in tip angle of attack
stays relatively constant with increasing wing loading, it is more likely the result
of a fault in production whereby the leading edge beam has a slight twist. If
the discrepancy grows with increasing wing loading a local weakness lowering the
torsional stiffness is more plausible. The resulting force in the beam was measured
in the wind tunnel to be 75.28N. The simulation showed a value of 69.43N, a value
comparable to the measured bridle force.

The third case was measured at a wind speed of 12 m/s and at a reference
angle of attack of 22 degrees. Figure 5.15 shows the cross sections.

In this case, the wing is close to CL,max and the pressure in the canopy is
considerable. At this configuration the wing introduced a total force in the bridle
lines of 173.97N in the bridle lines. The simulated force in the bridle lines was
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A B C

Figure 5.15: A comparison between the measured (red) and simulated (black) shape at
the three wing stations (Vwind = 12m/s).

169.8N, a value very close to the measured bridle force. In this high canopy stress
case the measured and simulated model show good correlation at cross sections
A and B. For cross section C the same discrepancy is visible as was observed in
the previous two cases.

The last case was taken at close to the maximum tunnel speed of 16m/s and
at a reference angle of attack of 21.5 degrees. Figure 5.16 shows the resulting
cross sections.

A B C

Figure 5.16: A comparison between the measured (red) and simulated (black) shape at
the three wing stations (Vwind = 16m/s).

Again, at this high canopy stress case, good agreement is shown between the
measured and simulated models. This seems to substantiate the hypothesis that
the larger discrepancies seen in the first two cases are indeed the result of initial
slack in the foil. As the tension increases and the displacements grow larger, the
relative contribution of the initial slack becomes smaller. Better shape correlation
is reached and more accurate bridle force values present themselves. For this case,
the bridle force was measured in the wind tunnel to be 262.28N, the simulated
value turned out to be 257.7N. Furthermore, the discrepancy in cross section C
seems to remain equal for whatever wing loading acts on the canopy. This further
substantiates the idea that the wing indeed has a slight twist in the outer area
of the inflated leading edge tube. Such a twist could have easily come about as
the result of a production fault or due to damage sustained during flight testing.
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One last issue that requires attention is the kink which is present in the measured
canopy at station B. At about 30% chord from the trailing edge the canopy has a
bend downwards. This bend is clearly visible in figure Figure 5.16 at 16m/s but
was also beginning to become visible in figure Figure 5.15 at 12m/s. A possible
explanation of this kink is that at this station, due to the increasing tension,
wrinkles start to form in the canopy fabric. These wrinkles were clearly observed
during testing. These wrinkles may have disturbed the flow to such a degree that
an area of turbulence occurs. The simulated model does not take into account
such local effects and therefore the kink does not show itself.

5.6 Surf kite comparison

To evaluate the simulation, a comparison is made with measured data using exis-
ting surf kites. These kites are flown and the forces in the lines are measured,
as well as the absolute velocity of the kite using a GPS Doppler based velocity
estimation .

5.6.1 3D aerodynamic coefficients of an arc wing

The aerodynamic coefficients determined in section 4.5.2 are obtained by a two di-
mensional CFD analysis. Therefore, these coefficients are purely two dimensional
coefficients. On finite wings, effects as span wise flow and tip vortices cause the
aerodynamic coefficients of a three dimensional wing to be substantially different.
For straight tapered wings, Prandtl’s lifting line theory produces good correlation
between calculated and measured values of the 3D aerodynamic coefficients in
relation to their 2D counterparts. However, for an arc-shaped wing such as a surf
kite, Prandtl’s lifting line theory does not hold ([Anderson, 1991]). To investi-
gate the lift distribution on an arc-shaped surf kite, the Tornado vortex-lattice
method ([Stockholm Sweden & Bristol, 2008]) was used. The vortex-lattice me-
thod approximates a lifting surface as an infinitely thin sheet of discrete vortices
in order to calculate the lift and induced drag. The influences of viscosity and
thickness are neglected. A model was created using a total of 1000 panels which
was subsequently used to calculate the lift distribution on the arc shaped kite at
different angles of attack and slip angles. Figure 5.17 shows the 2D and calculated
3D lift distribution graph. In this graph, the horizontal axis has the coordinate
along the arc of the kite. It is the coordinate along the wetted surface, not the
projected surface. The lift coefficient depicted in figure 5.17 represents the lift
perpendicular to the local wing surface, not the body axis.

At 0 degrees slip angle, the curves of figure 5.17 are symmetrical with respect
to the vertical axis at span coordinate = 0. A significant difference can be observed
between the 2D and 3D coefficients. In contrast to the center, towards the tips
the 3D coefficient is larger than its 2D counterpart. [Lowson, 1990] reports an
increased efficiency towards the tips for arc shaped wings. It is plausible that span
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Figure 5.17: 2D and 3D lift distribution on a surf kite at different angles of attack (0
degrees slip angle).

wise flow along the arc of the wing from center to the tips results in an increased
pressure which subsequently results in increased lift. At the tips, the lift drops
to zero for both the 2D and 3D curves. This is due to the fact that the angle of
attack at the tips is zero for a zero degree slip angle. Figure 5.18 shows a similar
set of curves for a kite at a slip angle of 5 degrees.
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Figure 5.18: 2D and 3D lift distribution on a surf kite at different angles of attack (5
degrees slip angle).

In figure 5.18, the curves are no longer symmetrical with regard to the vertical
axis. The same differences can be observed between the 2D and 3D lift distribution
curves. The slip angle of 5 degrees shifts the local angle of attack along the arc
wing. In order to get a better understanding, the arc shaped wing is subjected
to a range of different angles of attack and slip angles. These variations create
different local angles of attack along the arc. For this analysis, the wing is assumed
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to be rigid. The procedure has been repeated for the same wing with a number of
different airfoils. These airfoils all had the same single membrane characteristics,
but differed in airfoil thickness and camber. We can now plot the lift coefficients
obtained at a certain location of the arc as a result of varying local angle of attack.
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Figure 5.19: Lift coefficients and their corresponding angles of attack for two locations
along the arc.

Figure 5.19 shows the lift coefficients at two locations along the arc wing with
a single membrane airfoil with 15% thickness and 4% camber. The anhedral angle
indicates the coordinate of the two locations. An anhedral angle of 90 degrees
indicates the tip of the kite and an anhedral angle of 0 degrees indicates the top of
the kite. With a degree of error, indicated in figure 5.19 as the R2-value, the lift
coefficients at the locations on the arc wing can be approximated using a fitted
linear function. Although the error at certain angles of attack can be clearly
visible in figure 5.19, the approximation is deemed acceptable in regard to the
fidelity of the entire model. With the linear functions fitted at different locations
along the arc wing, it is now possible to determine a constant local lift curve slope
dCL/dα. Figure 5.20 is a plot of these slopes as a function of dihedral.

Figure 5.20 shows a relatively constant dCL/dα for the center wing locations.
Towards the tips, the dCL/dα values increase slightly, only to drop sharply at
the edge of the tips. Very little variation is observed in the curves for different
airfoils. With the largest difference only resulting in marginal differences in the lift
coefficients, the relation between lift curve slope and anhedral angle is assumed
to be independent of airfoil shape. With this relation between dihedral angle
and dCL/dα known, we can now determine the local 3D lift coefficient for any
location and any angle of attack where the lift curve is linear. The simulation
uses a 10-step procedure to come from a 2D coefficient to a 3D coefficient.

Step 1: Each location on the arc has its own angle of attack, camber and
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Figure 5.20: Lift curve slope dCL

dα
as a function of anhedral angle.

airfoil thickness. Based on these parameters, a 2D coefficient is determined as was
explained in section 4.5.2. Along with this coefficient, two other 2D coefficients
are determined as is indicated in fig 5.21.

Using the fitted algorithm, two other points on the curve are determined. Clα,0
is the lift coefficient at angle of attack zero and Clα,x is the lift coefficient close
to the end of the linear part of the lift curve.

Step 2: The values obtained in step 1 are used to create a linear function for
the linear part of the lift curve.

Cl =
Clα,x − Clα,0

αx
α+ Clα,0 (5.14)

Step 3: Equation (5.14) is now used to obtain the zero lift angle αlift,0

αlift,0 = − αxClα,0
Clα,x − Clα,0

(5.15)

Step 4: Determine the dCL/dα from the relation as indicated in figure 5.20.

150



Clα,x

Clα,2D

Clα,0

0 α2D αx Angle of attack

Lift coefficient

Figure 5.21: Step 1: determine Clα,2D, Clα,0 and Clα,x using the fitted algorithm.

Step 5: For both the 2D and 3D lift angle, the zero lift angle of attack is the
same (figure 5.21 from [Anderson, 1991]). With the lift curve slope dCL/dα we
can now determine a linear function for the linear part of the 3D lift curve.

CL =
dCL

dα
(α− αlift,o) (5.16)

Step 6: With equation 4 it is now possible to determine CLα,x.

CLα,x =
dCL

dα
(αx − αlift,o) (5.17)

Step 7: At this juncture, it is possible to obtain the effective angle of attack
belonging to CLα,x. The effective angle of attack is the angle of attack which the
airfoil ”feels” as opposed to the actual angle of attack. The difference between
these two angles is created by the losses induced by the 3D flow effects such as
span wise flow and the tip vortices. Figure 12 shows the effective angle of attack
for CLα,x.

αeff,x can be obtained by solving the fitted algorithm equation from section
4.5.2:

CLα,x = λ1 (αeff,x)
3
+ λ2 (αeff,x)

2
+ λ3 (αeff,x) + λ4 (5.18)
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Figure 5.22: Step 7: determine αeff,x.

Solving for αeff,x involves solving the 3rd order polynomial. This can yield
up to three roots and thus three different values for αeff,x. Moreover, the occur-
rence of complex numbers is more than likely. Complex numbers are a problem
for MSC ADAMS code. There are no provisions for solving equations with com-
plex numbers in MSC ADAMS. It is therefore imperative to obtain αeff,x from
equation (5.18) without the use of complex numbers. For this purpose, Cardano’s
method is used. More on Cardano’s method can be obtained in [Bronstein &
Semendjajew, 1991]. αeff,x, Cardano’s method states:

αeff,x =

[

2 (Xi)
1
3 cos

(

φ

3
− 4

3
π

)]

− λ2
3λ1

(5.19)

With:

Xi = −
λ3

λ1
+

λ2
2

3λ2
1

27
(5.20)

And:

φ = −
λ4−CLα,x

λ1
+

2
λ3
2

λ3
1

−9
λ2λ3
λ2
1

3λ2
1

2Xi

(5.21)
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With equations (5.19), (5.20) and (5.21) it is possible to obtain the value of
αeff,x.

Step 8: With αeff,x and αlift,0 known, it is possible to determine (α-αeff )
as a function of α:

∆α = (α− αeff ) =

[

αx − αeff,x
αx − αlift,0

]

(α− αlift,0) (5.22)

Step 9: With equation (5.22), it is now possible to calculate the effective
angle of attack at which the airfoil is flying.

αeff = α−∆α (5.23)

Step 9: With the effective angle of attack of the local airfoil known, we can
obtain the value of the 3D lift coefficient by substituting this effective angle of
attack into the lift coefficient algorithm.

CL = λ1 (αeff )
3
+ λ2 (αeff )

2
+ λ3 (αeff ) + λ4 (5.24)

At this point, CL has been determined and is used for calculation of lift forces
in the model.

5.6.2 Surf kite measurements

In order to determine the validity of the simulation, its performance is compared
to measured data. Several flight tests were undertaken, using a variety of kites
ranging from 6m2 to 16m2. Tube kites are generally flown on four lines. Figure
5.23 is a simplified representation of the lines on a common tube kite.

The power lines support most of the pulling force of the kite. The steering
lines allow the kite to be steered in both pitch and yaw. Pulling on a steering line
will shift the resultant force on the particular tip from the leading edge towards
the trailing edge. If the entire bar is pulled towards the rider, both steering
lines are equally loaded. The resultant cable force on each tip shifts towards the
trailing edge equally. This makes the kite fly at a higher angle of attack. In other
words: it ”powers” the kite. If the bar is rotated, only one of the steering lines is
tensioned and therefore only on one tip does the resultant cable force shift towards
the trailing edge. This induces a yawing motion in the kite. More on steering the
kite will be presented in chapter 6
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Right power line

Right steering line

Left power line

Left steering line

Figure 5.23: The line plan of a conventional tube kite.

For the comparison with the model, surf kites of different sizes were flown. A
set of four load cells were placed in the four lines, measuring the line tension. The
load cells were connected to a small logging unit and time-stamped using GPS
time. To measure the velocity of the kite, a small GPS receiver was placed on the
top-center strut in the kite. The velocity used for the comparison is a Doppler-
based velocity measurement which gives the velocity as a scalar. There is also an
option to determine the velocity vector by integration of the GPS position, but this
data proved to be too inaccurate for a proper determination of the velocity vector.
The Doppler-based velocity measurement uses the slightly changing frequency of
the GPS D-band carrier signals to determine a velocity scalar. The accuracy of
such a measurement is reported to be within 0.2m/s ([Zhang et al., 2006]). Lastly,
wind measurements were used from a local weather station which measures wind
speed at an altitude of 10 meters above MSL in 10 second intervals. The test was
performed at the beach with calm conditions and a steady breeze from the sea
between 5m/s and 7m/s. 3 second interval gusts were reported to be no larger
than 2m/s above the average value.

At the start of a measurement, the kite was brought into its zenith position
in the top of the wind window. This means the kite is flying center and level,
high above the kite flyer. In this position, the steering lines are slack and the tug
force is fully supported by the power lines. Once the kite is in this position, a
control input is given by rotating the bar to one side and tensioning one of the
steering lines. This makes the kite yaw and dive. During this dive, the kite picks
up speed rapidly. Because of this speed and the still tensioned steering line, the
kite keeps yawing and loops until it is facing nose up again. If the steering line is
kept under tension, the kite will continue to loop. This maneuver was performed
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on a number of kites of different sizes to both the left and the right. Figure 5.24
shows the resulting line forces for a North Rhino 16m2 kite.
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Figure 5.24: The line force of a North Rhino 16m2 kite while performing a loop.

Figure 5.24 shows a turn to the right. At 16:43.3 the right steering line is
tensioned and the kite begins its turn. As the velocity increases it makes one
loop after which the tension on the right steering line is released. Once both the
steering lines are slack, the velocity reduces and the kite flies back to its zenith
position. It is interesting to note that during the turn, this particular kite hangs
almost completely by its left power line and its right steering line. The forces on
the other lines are significantly lower.

5.6.3 Comparison between measured and simulated data

In order to make a comparison between the measured data, as represented in figure
5.24, and the data obtained from the simulation model it was first attempted to
reproduce the steering inputs at the bar during the flight test into the simulation
model. This procedure leads to unsatisfactory results due to the fact that a correct
representation could not be guaranteed. The exact position and angle of the bar
is difficult to measure. The person flying the kite is not always able to perform
perfect block-shaped control inputs. The body of the person flying the kite is
flexible as well and the bar is not rigidly attached to the kite flyer. Some thought
went into making a rigid ground station with a carefully controlled bar. This idea
was abandoned for the simple fact that connecting a kite to a rigid point on the
ground can be dangerous. When the kite accelerates it can easily rip itself to
pieces.
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Ultimately, it was decided to use the forces on the steering lines as control
input for the model and make a comparison based on the forces in the power lines
and the absolute velocity of the kite. This circumvents the practical problems
involving the measurements of the bar and allow for a solid comparison where the
only uncertainty in the validity of the control inputs lie with the accuracy of the
load cells.
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Figure 5.25: Comparison of power line forces between the measured and simulated data
of the 16m2 North Rhino.

Figure 5.25 shows a comparison between the forces in the power lines of the
model and the measurement for a 16m2 North Rhino kite. The forces on the
steering lines were used as control inputs and the force on the power lines, as
well as the absolute velocity were recorded. The model anatomy is such that it
represents the actual kite as close as possible. The model consists of a kite and
four lines. The power lines are attached in a rigid point. Force vectors act on the
end of the steering lines and are directed towards the ground attachment point of
the power lines. The physical inclusion of the steering lines is done because the
measurement of the steering line force is done close to the ground. Due to drag
on the line and its inertia both the direction and the magnitude of the steering
line force can be expected to differ between the end of the steering line and at the
kite tip.

Figure 5.25 shows a Left hand loop performed from a zenith position. As
the kite starts to turn, its velocity increases and the kite starts to pull. For
this particular kite we see a discrepancy in line force in the first second. This
is the result of the fact that it is difficult to keep the kite completely still at the
beginning of the maneuver due to fluctuating winds. And with a large surface area
such as this North Rhino has, these small variations in wind quickly translate to
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line forces. Apart from the initial discrepancy, figure 5.25 shows good correlation
between the flight test and the simulation. Figure 5.26 shows the comparison
between measured and simulated velocities.
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Figure 5.26: A comparison between measured and simulated velocities of the 16m2

North Rhino.

Figure 5.26 shows good correlation between simulated and measured data.
The initial discrepancy in line force in the first second of figure 5.25 seems to
agree with the fact that the initial velocity in that first second is higher for the
measured data. This is due the aforementioned issue with keeping a large kite
still in varying winds.

A far smaller kite is the Naish Aero 6. This kite is far less susceptible to wind
variations and is able to fly much faster than the big North Rhino. This smaller
kite was tested in the same manner, figure 5.27 shows the resulting line forces of
the measured and simulated kite.

Figure 5.27 represents a right-hand turn of the kite from a stable zenith posi-
tion. In this figure some differences can be seen clearly, most notably in the data
for the right steering line. The force in the line seems to pick up faster and reach
a higher value. The left power line shows good correlation between the model and
the test. Lastly, the model shows an oscillation at the peak tug force that is not
present in the test. This coupled with the fact that the force buildup is faster in
the model suggests the model is under-dampened.

Figure 5.28 shows a comparison of absolute velocity of the measured and simu-
lated 6m2 Naish Aero kite. The figure shows that the simulated kite accelerates
slightly faster and obtains a higher top velocity during the loop. This observation
is in line with the earlier statement that the kite is slightly under-dampened. It
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Figure 5.27: Comparison of power line forces between the measured and simulated data
of the 6m2 Naish Aero.
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Figure 5.28: A comparison between measured and simulated velocities of the 6m2 Naish
Aero.

is possible that this stems from an under-estimated drag coefficient.
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5.7 Concluding remarks

From the comparisons presented in the previous sections it can be concluded that
the kite simulation toolbox produces models which show acceptable agreement
with actual measured kites. The response to manual (operational) input is slower
than predicted by the simulation. It is plausible that this is a result from the
under-estimated drag force on the kite as can be seen in figure 4.26.
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CHAPTER 6

Casestudies

With the models of chapters 3 and 4 in place, the question arises: how useful
are these models? In order to show the benefit of an engineering approach to kite
design, a number of case studies will be done. Section 6.2 deals with the issue of
effective cable length. It has been known in kiting that for a long cable only the
top part of that cable is directly influenced by small pertubations of the kite. This
section will quantify this effect. Section 6.3 addresses a heated debate within the
kite community. In this section, the multi-body model of chapter 4 is used to find
an answer to the question: what makes a surf kite corner. The multi-body model
offers new insight into this issue and proposes modifications which influence the
cornering behavior. Lastly, section 6.4 uses the Lagrangian equations of motion of
section 3.3 to investigate an unstable eigenmotion of the kiteplane. Modifications
are proposed and tested in the field.

6.1 Introduction

The aim of this thesis is to complement the engineering methodology to the design
of kites with accurate and workable models. Once these models are in place,
they can be an invaluable tool in the design of a kite to a large set of stringent
requirements. The models also allow to study the kite in its behavior, bringing
about a deeper understanding. This chapter presents a number of case studies
which show the benefit of the models developed in this thesis.
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6.2 Effective cable length

A long tether exhibits a large amount of inertia. For a kite on a long tether, this
means that the motions of the kite do not necessarily travel all the way down the
cable. The damping effect of the aerodynamic drag and the internal damping of
the cable will ensure that only the top part of the cable will actually experience the
motions of the kite. This holds true for small motions such as the motions a kite
would exhibit when it experiences a wind gust. This effected length of the cable
is called ”effective cable length”. It is important to notice that the effective cable
length is applicable to large out-of-plane motions of the cable. The axial strain
wave phenomenon mentioned in section 4.3.2 is a different phenomenon altogether
which travels through the cable much faster than the wave propagation effects as
a result of large displacements of cable nodes.

In order to grasp the effective cable length, the cable model proposed in this
thesis is used. A 50 element, 500 meter non-elastic cable is generated using the
cable toolbox. The bottom of this cable is attached to the ground and at the top
of the cable a constant lift and drag force are introduced. Perpendicular to both
the lift and drag force, a disturbance is introduced by a force which is governed
by a step function. The force generates a one second pulse of 20 newtons. This
pulls the cable out of its plane of symmetry and results in a three-dimensional,
transient cable shape. In this simulation, the deflection of the cable in the direction
perpendicular to the lift and drag force vectors are measured at different positions
along the cable. Figure 6.1 shows the results for three different values of damping
in the joints between the cable elements (internal structural damping).

As one can see, the excitation quickly dissipates along the length of the cable.
After 200 meters, the maximum amplitude in the cable is less than 20% of the
amplitude in the top. What is interesting to note is that the different values of
damping coefficient c seem to have no effect on the dissipation of the original exci-
tation. The maximum amplitude at the top, as well as the maximum amplitudes
along the cable are equal for all three values of c. At low values of damping c,
the cable moves in a more erratic way. The internal structural damping seems to
merely dampen the faster, erratic motions and not the slower motions.

To study the effect of external aerodynamic damping only, the same expe-
riment is conducted, but now at a constant value of damping c (c = 0.1). To
vary the effect of the external aerodynamic damping, the air density is varied. At
ρ = 0, the experiment is effectively conducted in a vacuum and no aerodynamic
drag exists. In this situation, there is also no external aerodynamic damping.
The more interesting figures are presented in figure 6.2 which show the excitation
curves at ρ = 0.4kg/m3, ρ = 0.8kg/m3 and ρ = 1.225kg/m3.

Figure 6.2 shows that the peaks in the graphs still occur at the same points
in time. The velocity at which the wave travels through the cable is constant.
But the amount of dissipation varies quite significantly. At ρ = 0.4kg/m3, the
maximum amplitude of the cable at 100m altitude is still about 15% of the maxi-
mum amplitude at the top of the cable. With increasing air density, the external
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Figure 6.1: Excitation of the cable for different values of internal structural damping.

aerodynamic damping effect also quickly increases.

The two evaluations of external aerodynamic damping and internal structural
damping show that it is the external aerodynamic damping which has the most
effect on the effective cable length. The internal structural damping has more
effect on the small, fast vibrations which occur as a result of numerical instability.
For kite dynamics, it is the external aerodynamic dampening which is of most
interest. It determines the effective cable length and therefore has a large impact
in the flight dynamics of the kite.
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Figure 6.2: Excitation of the cable for different values of external aerodynamic damping.

6.3 A cornering surf kite

The cornering of a surf kite has been subject of great debate amongst kite de-
signers and enthusiasts. The cornering ability of a kite plays a large role in its
attractiveness as a traction kite. A professional kite surfer with years of expe-
rience would want his kite to turn fast. Controlling such a volatile kite would be
a daunting task for a beginner. Safety-wise, there is also much to be gained with
regard to the cornering ability of a kite. With cornering comes acceleration. And
acceleration leads to a large increase in tug force of the kite. For these reasons, a
kite designer benefits significantly from his knowledge on what makes a kite turn.
In order to ”dial in” the correct cornering speed for a particular type of kite, a
thorough understanding of the mechanics of a cornering kite is required. This is
why cornering of kites has been such a heated debate. When talking to designers
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it becomes clear that there are a large number of conjectures as to what makes
a kite corner. One such conjecture states that an increase of steering line force
on one side of the kite increases its local angle of attack. This angle of attack
increase leads to a local lift increase which then turns the kite. Others speak of an
increased drag due to an increase in steering line force. The resulting asymmetric
drag force on the arc is then believed to turn the kite.

6.3.1 The model

With the model presented in chapter 4, it is possible to formulate a new hypothesis
on the mechanics of a turning kite. The model allows for detailed step-by-step
study of all the forces, velocities and shape changes of the kite while it is turning.
For this analysis, we use the following model.

Xb

Zb

Power lines

Steering lines

Steering line forceXe

Ze

Figure 6.3: The kite model used for cornering analysis.

The model of figure 6.3 is based on the Naish Aero 6 kite. It is connected to
the ground by the same line plan as was given by figure 5.23 with a length of 27
meters. The power lines are directly connected to the ground; the steering lines
are one meter shorter and are only slightly pulled towards the cable attachment
point to the ground by a 5N force. This is done to approximate the real case
where the kite pulls on the power lines and the steering lines are kept slack. The
kite is brought into its zenith position, keeping both steering lines loaded with
only the 5N force. At a certain moment in time, henceforth called t0, a steering
input is generated by shifting the lower end of the right steering line downwards
over a distance in the direction of the cable attachment point to the ground. This
is done by increasing the right steering line force to 30N. Figure 6.4 shows the
resulting displacement of the lower end of the right steering line.
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Figure 6.4: The absolute displacement of the lower end of the right steering line as a
result of a steering line force increase from 5N to 30N.

The increase in steering force results in a displacement of approximately 35cm,
which is consistent with what is to be expected during actual kite surfing.

6.3.2 Cornering of a kite in detail

Figure 6.5 shows the displacement of the upper end of both steering lines at the
kite. In this figure, the zenith position of the kite is taken as the origin; all
displacements are measured from this initial position.

The simulation shows a delay in the control input reaching the kite. This is a
direct result of the fact that a sagged cable acts like a spring-damper. The more
sag the cable has, the more it dampens the steering input. This phenomenon also
puts a limit on the maximum length of a steering line. Whilst a kite surfer might
want to go higher with his kite to use stronger winds, the damping effect of the
steering lines inhibits his ability to steer de kite. To overcome this issue it was
suggested by W. J. Ockels [n.d.] to guide the steering lines along the power lines.
The power lines are in higher tension and therefore less prone to sagging due to
aerodynamic drag. This configuration, however, is outside of the scope of this
case study.

As the right steering line is tensioned, the kite starts to move to the right
as can be seen from the Ye displacement in figure 6.5. This motion in negative
Ye direction is brought about by the fact that with an increased tension in the
right steering line, the kite deforms. This deformation results in a slightly larger
tip surface on the right and a slightly smaller tip surface on the left. Also, the
increased tension in the right steering line shifts the resultant force of the right
power- and steering lines towards the trailing edge of the tip. This creates an
asymmetric loading and therefore an asymmetric deformation of the kite structure.
Because the center of elasticity of the canopy cross-section is located forward,
approximately in the center of the leading edge tube, a resultant line force shifting
towards the trailing edge creates a component of that force in Yb-direction. This
component creates a moment around the center of elasticity of the airfoil cross
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Figure 6.5: The displacement of the top end of both steering lines in the earth axis
frame of reference.

section which results in an increased angle of attack. Figure 6.6 shows the angles
of attack of the left- and right tips.

The difference in tip surfaces and angles of attack lead to a larger lift force
on the right, pulling the kite to the right. It is important to note that at this
point, there is no reason for the kite to yaw, other than a difference in drag forces
on the left and right tip caused by the difference in angle of attack. This drag
force difference has often been cited by kite designers and enthusiasts as the main
contributor to the cornering ability of a surf kite. Figure 6.7 shows the drag forces
on the left and right wing tips. The results in this figure are composed of the sum
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Figure 6.6: The angle of attack of the left- and right tips.

of the drag forces on the left and right last 30% of half the kite arc.
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Figure 6.7: The drag at the tips of the kite.

The asymmetry in the drag forces on both tips is clearly visible. But the
magnitude of the difference is small and cannot be solely responsible for the fast
cornering of a surf kite. The asymmetric loading of the kite by the resultant
forces of the power lines on the left and the right side deform the kite in a distinct
manner. The asymmetric loading causes the right tip to bend forwards and the
left tip to bend backwards. Figure 6.8 shows the kite structure from the side along
the Yb-axis before and after the control input.

Figure 6.8 shows the shape of the kite before the control input (A) and one
second after the control input is introduced (B). The kite shows a skewing de-
formation as a result of the asymmetric cable loads. This skewing deformation
creates an offset in the lift forces in Yb direction. Figure 24 shows the lift forces
on the left and right wing tips. The results in this figure are composed of the sum
of the drag forces on the left and right last 30% of half the kite arc.

The control input not only increases the lift forces, it also offsets the tips with
respect to each other. Especially the right tip is pushed forward of the center of
gravity and introduces an increased lift force. This results in a yaw moment which
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Figure 6.8: The shape of the kite before the control input (A) and after (B).

Left tip

Right tip

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

L
if
t
fo
rc
e
[N

]

Figure 6.9: The lift at the tips of the kite in Yb direction.

makes the kite corner. Furthermore, the left tip moves slightly aft with respect
of the center of gravity, further increasing the yaw moment of the kite.

6.3.3 The contribution of flexibility

From the analysis of this model it can be concluded that the flexibility of the
kite model plays a large role in its ability to corner. Its deformation under an
asymmetric cable load creates an asymmetric aerodynamic load which allows the
kite to turn. The model allows taking the flexibility out of the equation by making
the kite completely rigid. If the previous statement on the importance of flexibility
on a cornering kite holds, this hypothetical kite should not corner, or corner much
less rapid. Figure 6.10 shows the yaw angle of the flexible and rigid kite with
respect to the earth axis frame of reference.
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Figure 6.10: Yaw angle of the flexible and the rigid kite.

Figure 6.10 seems to concur with the statement that a rigid kite is barely able
to corner. While the flexible kite is able to corner a full 90 degrees in little over
two seconds, the rigid kite is barely able reach a yaw angle of 15 degrees. This
inability to yaw also makes it hard to steer the kite from left to right along the Ye
axis. Figure 6.11 shows the YE displacement of both the flexible and rigid kites.
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Figure 6.11: Ye displacement of the flexible and the rigid kite.

It can be seen that the rigid kite is hard to move along the Ye axis. This
inability of the kite to fly rapidly from left to right along the Ye axis seriously
inhibits its capability to use crosswind power [Loyd, 1980]. Crosswind power is
a maneuver whereby the kite flies figure eight patterns and greatly increases its
velocity and therefore its tug force. It is an essential maneuver used in kite surfing
and a kite’s inability to perform this maneuver will render it practically useless.
A fast cornering kite is of special interest to professional kite surfers. The quick
change in direction gives the rider a more responsive tug force with which he can
perform his various jumps and stunts.
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6.3.4 Influencing cornering performance

Now that the model established that rigidity is detrimental to the cornering per-
formance, the question beckons: What makes cornering performance increase?
Based on the model it was established that the main contribution to the cor-
nering of a surf kite comes from the skewing deformation of the kite structure
creating an offset in the lift forces on the left and right side of the kite. Increasing
cornering performance could possibly be established by simply increasing the lift
force and/or increasing the skewing deformation. Increasing the lift force in the
tips would require a better airfoil or simply more tip surface. The latter also
allows for a larger deformation if the increase in surface area is established by
increasing the tip chord. A larger tip chord creates a larger distance between
the power and steering line attachments. This larger distance will ensure a more
asymmetric loading of the kite when one of the steering lines is tensioned. In
order to investigate this claim, a new model is generated with a 100% increase in
the chord length in the tips. Figure 6.12 shows the resulting deformation while
cornering for the original and adapted kite.

Original kite Adapted kite

Figure 6.12: Skewed deformation of the original and adapted kite while cornering.

Figure 6.12 shows a clear increase in deformation of the adapted kite. This
increased deformation is responsible for an enlarged moment arm the offset lift
forces have with respect to the yawing pivot point. The increased chord in the
tip not only increases this moment arm, it also increases the surface area at the
tip, and with it the lift generated by the tip. Figure 6.13 shows the resulting lift
forces of both tips for the original and adjusted kite.

Figure 6.13 indeed shows a significant increase in the lift at both the left and
the right tip of the adjusted kite. This increase in lift, combined with the enlarged
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Figure 6.13: Lift at both the left and right tip of the original and adjusted kite.

moment arm is expected to increase the cornering velocity of the kite. In order to
evaluate this claim, the yaw angles of the original and adapted kites are plotted
against time in figure 6.14.
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Figure 6.14: Yaw angle of the original kite and an adapted kite with a 50% chord length
increase.

Figure 6.14 confirms the reasoning of the previous paragraph. A larger lift force
in the tips, together with a larger deformation increases the cornering velocity of
the surf kite significantly. This result further establishes confidence in the notion
that the cornering velocity of a kite is dependent on the flexibility of the kite
structure and the lift in the tips.
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6.4 Kiteplane stability

Section 2.4.5, the concept of the kiteplane was introduced. The kiteplane is a
kite with the configuration of a conventional twin-boom aircraft. The reason for
this design stems from the desire to create a kite with a high lift-over-drag which
is able to fly both as a kite on a tether and as an airplane with a slack tether.
The need for an airplane-like flight regime came forth from the desire to minimize
the energy loss resulting from the retraction phase of the pumping laddermill.
Earlier kiteplane prototypes such as depicted in figure 2.9 and 2.10 were mainly a
structural technology testbed. The kiteplane depicted in figure 2.11 was the first
kiteplane whose design was based on a number of rudimentary static stability
rules. this particular kiteplane, henceforth called ”kiteplane 3”, was the first
kiteplane which was meant as a testbed to analyze the flight dynamics of tethered
flight. The properties of kiteplane 3 can be found in appendix H.

Flight testing of kiteplane 3 reveiled that the kite was longitudinally stable.
Laterally, however, an a-periodic unstable inverted pendulum motion occured.
The kite launched with ease, but would fall to either the left or the right side
after a short period of flight. Figure 6.15 gives a representation of this unstable
motion.

Figure 6.15: A composite representation of the unstable a-symmetric inverted pendulum
motion of kiteplane 3.
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This particular instability mode, either periodic or a-periodic, often plagues
kites. In the kite world, the ability of a kite to remain at a 12 o’clock position in
the sky is called its ”auto-zentih capability”. Some kites are auto-zenith, others
are not. The reasons for auto-zenith capability are subject of intense debate
amoung kite flyers. Conventional wisdom in the kite world dictates that adding a
long tail can overcome this type of instability. For the kiteplane, however, this is
undesirable because a long tail would add a significant amount of drag. The added
drag would have a detrimental effect on the lift-over-drag of the kite. Another
rule-of-thumb in the kite world is that increased dihedral can help elleviate this
type of instability. For a kite which is bridled only in its XB-ZB plane, dihedral
in the wing will result in static roll stability as a result of slipping flight which
occurs as the kite falls to the side. The static roll stability then rotates the lift
vector of the kite such that the kite moves back into the zenith position. The
Kiteplane, however, is bridled in spanwise direction in order to support the wing.
Therefore it is limited in roll.

In this section, the kite model based on Lagrangian equations of motion (sec-
tion 3.3) is used to investigate the asymmetric inverted pendulum instability cha-
racteristics of Kiteplane 3. A more detailed derivation of this model with respect
to the kiteplane can be found in Terink et al. [2010]

6.4.1 Asymmetric inverted pendulum stability

In this section, the stability of the path that results from revolving the tether
endpoint in equilibrium position about the XE-axis is investigated. For this in-
verted pendulum motion, the tether is assumed to have a fixed length so that
the indicated path projected on the YE -ZE plane describes a circle. A second
simplification states that the pitch angle is fixed as well. The state of Kiteplane 3
on this path is now completely defined by the bridle rotation angle and an angle
that defines the location on the projected circle. This latter angle is called θt and
equal to zero in the uppermost (zenith) position. The situation for this case study
is visualized in figure 6.16.

Pendulum stability requires Kiteplane 3 to converge to the situation displayed
in figure 6.16 from a disturbance in θt. The disturbances θ̇t and b correspond to
sideslip stability and the ḃ disturbance to stability of angular velocity about the
tether longitudinal axis. Nevertheless, if these disturbances are combined with a
nonzero θt, gravity can no longer be neglected and its effect may destabilize the
system. Also, the wind power in the operating space provides more than enough
energy to make an oscillating motion diverging.

To investigate the pendulum stability, a case study is performed on the situa-
tion in figure 6.17. This is the typical scenario where, for the observer, Kiteplane
3 is located on the left side, falling to the left side and pointing to the left side.
Initial body axis rotational velocities are set to zero for convenience. The sum
of the lateral forces is given by equation (6.2), the sum of moments about XB is
given by equation (6.3) and the sum of moments about ZB is given by equation
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Figure 6.16: Kiteplane 3 pendulum motion.

(6.4).

∑

FYB
= −2 (Lf cos(β) +Df sin(β)) − Yrw + Ylw (6.1)

+FZ sin(θt) sin(β) (6.2)
∑

MXB
= (Llw − Lrw) yw − 2 (Lf cos(β) +Df sin(β)) yV T +

FZ sin(θt)zt + (TKr
− TKl

) yb cos(δ) (6.3)
∑

MZt
= (Xrw −Xlw) yw cos(Γ) + 2 (Lf cos(β) +Df sin(β)) lV T −

FZ sin(θt)xt (6.4)

Sufficient conditions for static pendulum stability in the case displayed in figure
6.17 are displayed below.

dFYB
/dθt < 0

dFYB
/dβ < 0

dMXB
/dθt < 0

dMXB
/dβ < 0

dMZB
/dθt < 0

dMZB
/dβ > 0
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Figure 6.17: Top view of Kiteplane 3 in pendulum motion.

Necessary conditions are difficult to define, because the pendulum motion is
a combination of θt and χt. However, by using equation (6.5), the six sufficient
conditions above can be translated to the four conditions below.

MZt
=MZB

cos(θ) +MXB
sin(−θ) (6.5)

dFYB
/dθt < 0

dFYB
/dβ < 0

dMZt
/dθt < 0

dMZt
/dβ > 0

In order to evaluate equations (6.2) through (6.4), the following relations are
needed:
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α (6.8)
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(6.12)
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= CD0HT
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πARHT eHT
(6.13)

Mac =
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appSwcCmac
(6.14)

ǫ =
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α (6.15)

θt = α− θ (6.16)

FZ = mgg (6.17)
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(6.20)

Df =
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CDV T
(6.21)

CLV T
= CLV Tα

β (6.22)

CDV T
= CD0V T

+
C2
LV T

πAV T eV T
(6.23)

By substituting the relations (6.6) through (6.23)and constants from appendix
H in equations (6.2) through (6.4), and using equation (6.5), equations for the force
in YB and the moment about Zt are obtained. The resulting equations depend on
β, θt, θ, V and α only. For the variables θ, V , and α, the following representative
constants are substituted.
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θ = −5 Deg
V = 6 ms−1

α = 5 Deg

With these values substituted, FYB
and MZt

can be plotted as functions of
β and θt. Figure 6.18 displays the lines FYB

= 0 and MZt
= 0 in θt-β space.

The lines in fact represent the equilibrium condition for YB and Zt. The only
equilibrium condition for the pendulum motion is the point (0,0) in figure 6.18.
The arrows in figure 6.18 indicate in which direction Kiteplane 3 is accelerated.
They are, if aerodynamic effects of roll and yaw velocity can be neglected, a
measure for the acceleration vector in θt-β space with x-component θ̈t and y-
component β̈.
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Figure 6.18: Pendulum stability space with θt equilibrium — and β equilibrium −−.

The variation in magnitude of the arrows is approximately linear, which can
be observed in figure 6.19 that displays horizontal and vertical slices of figure
6.18. Figure 6.19 displays a horizontal slice at β = 10◦ (left) and a vertical slice
at θt = 20◦ (right) to get an impression of the gradients dFYB

/dβ and dMZt
/dβ.

As stated before, the sufficient conditions for static pendulum stability equals
dFYB

/dθt < 0, dMZt
/dθt < 0, dFYB

/dβ < 0 and dMZt
/dβ > 0. However, the

derivative dFYB
/dθt is positive as can be observed from figure 6.19 (left). The

sufficient conditions for static stability are therefore not met.
However, if the equilibrium β is sufficiently stable and yields a negative value

for FYB
, the system may still be stable. This means that in figure 6.18 the dashed

MZt
line should be above the solid FYB

line for θt > 0, but observation of figure
6.18 quickly learns that this is neither the case. Similar conclusions can be drawn
from following the arrows in figure 6.18, which results in either diverging to the
left or the right.
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Figure 6.19: FYB — and MZt −− gradients at β = 10◦ and θt = 20◦.

The analysis in this section shows that the Kiteplane restricted to pendulum
motion is unstable. By means of this analysis this cannot be guaranteed for the
unrestricted Kiteplane system. However, as was shown in figure 6.15, field tests
reveiled a similar instability mode. In sections 6.4.2 and onwards the analysis in
this section is extended to a parameter analysis to determine how the pendulum
motion can be stabilized. The results obtained in this section are summarized
below.

Pendulum stability

Sideslip: Statically and dynamically stable
Tether pendulum angle: Statically unstable

Figure 6.20 shows the simulated unstable inverted pendulum motion of kite-
plane 3.

6.4.2 The effects of geometrical parameters

Inspection of Table H.1 yields many geometrical parameters to investigate, but
only the ones with the largest impact on the geometry are interesting for the
scope of this text. For the lateral stability the interesting parameters are vertical
tail surface area SV T , vertical tail distance lV T and dihedral Γ. Next to these
parameters, the inclusion of an additional lateral surface on top or below the
wing is regarded interesting as well. The main effect of such a surface can be
achieved with dihedral as well, but secondary effects are inherently different. The
most noticeable difference is the effect of dihedral on the yaw moment, which is
absent for a single vertical surface in the middle of the Kiteplane.

Nevertheless, the parameters SV T and Γ are selected for the initial lateral
stability investigation. Keeping the tail boom length constant avoids side effects
on longitudinal stability and adjusting Γ is simply found more elegant than the
addition of a vertical surface. The impact of variations in SV T and Γ on the inertia
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Figure 6.20: 3D path of diverging motion with asymmetric initial conditions: θ = −10◦,
χt = −60◦, lt = 25 m, θt = 25◦, ψt = 45◦, ẋ0 = 0 and a final time of 17 s.

is neglected to keep the results depending on geometry only. Indirect effects due
to changing inertia is assessed at a later stage.

The stability is assessed based on simulation results in the range −10◦ < Γ <
40◦ and 0 < SV T

SV T0
<8 for two different wind velocities. The arrangement of the

stability domains for VW = 6 ms−1 and VW = 10 ms−1 are displayed in figure
6.21.

Small vertical tail planes seem to cause diverging oscillations and low dihedral
angles seem to cause aperiodic divergence. Stability requires a large dihedral angle
and a vertical tail plane of about 1 to 3 times the original size. Furthermore, the
stable region increases with increasing wind velocity.

For low dihedral angles and low wind velocities, increasing the vertical tail
size quickly leads from unstable oscillations to aperiodic divergence, but if the
dihedral angle and wind velocity are large enough, a stable region emerges in
between. The stable region itself consists of three domains. The first, for the
smallest vertical tail plane, is the stable oscillation. The second, for a larger
vertical tail plane, is the converging oscillation. For very large vertical tail planes
and low dihedral angles, a domain of aperiodic convergence exists. For higher
wind velocities the aperiodic convergence domain increases in size at the cost of
the size of the converging oscillation domain.

At the boundary of diverging oscillation and stable oscillation something pe-
culiar happens, for this reason Figure 6.22 zooms in on this particular area.

At a vertical tail plane size slightly too small for stable oscillation, there seems
to be a small band of Γ values that still yield a stable oscillation. When the
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VW = 6 ms−1 VW = 10 ms−1

Figure 6.21: Stability chart depending on SV T

SV T0
and Γ for VW = 6 ms−1 and VW = 10

ms−1.

VW = 6 ms−1 VW = 10 ms−1

Figure 6.22: Stability chart depending on SV T

SV T0
and Γ for VW = 6 ms−1 and VW = 10

ms−1.

vertical tail plane area is reduced sightly from stable oscillation, the stable figure-
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eight pattern starts to oscillate itself. This behavior can be compared with the
precession of the rotation axis of a spinning top. For most cases, the crossing of
the figure-eight starts to move in YE direction, one circle becomes larger than the
other and eventually Kiteplane 3 crashes into the ground.

Another feature that is invisible in Figures 6.21 and 6.22 are the roots of the
different stable domains. These figures reveal that there is always a converging
oscillation domain below the stable oscillation domain and that the arrangement
of the aperiodic convergence domain is depending a lot on wind velocity.

The pendulum stability spaces according to the five stability domains with a
sample trajectory are displayed in figure 6.23. In fact, the shown stability spaces
are based on average values of the sample trajectories and therefore loose accuracy
if the motion is erratic.

The first thing to notice is that small changes in the stability space have a
large impact on the resulting behavior that indicated by the red line. Another
interesting aspect is the similarity between the stability spaces of the two unstable
domains, even while the behavior and geometry is significantly different. It ap-
pears that if the difference between the slope of the solid and dashed line becomes
too large, the system becomes unstable. In these cases the acceleration arrows are
more or less vertical, which means that the θt motion is dominated by gravity.

The stable oscillation domain displayed in figure 6.23b is the desired stability
space according to the analysis in Section 6.4.1. The dashed line is steeper than
the solid line, which means that Kiteplane 3 converges to a sideslip angle that ge-
nerates a resultant force towards θt = 0. However, it seems that this configuration
lacks damping at small θt angles because of the continued oscillations.

At the border of stable oscillation and converging oscillation, the dashed line
is on top of the solid line. From the sole pendulum motion point of view, this
is the border to unstable behavior. However, the longitudinal stability improves
lateral stability and is in fact essential in the entire converging domain [Terink et
al., 2010].

If the solid line is only slightly steeper than the dashed line the motion is
still oscillatory, but if the difference in slope becomes slightly larger, the oscilla-
tions disappear. This is the domain of aperiodic convergence and illustrates the
improved apparent lateral stability very clearly. According to the acceleration ar-
rows the motion should diverge instead of converge, but evidently the longitudinal
stabilization is able to overcome the pendulum instability.

Nevertheless, if the lateral instability becomes too large for the longitudinal
stabilization, the motion finally diverges as displayed in figure 6.23e. The absolute
difference in slope in Figs. 6.23d and 6.23e are about equal, but the relative
difference is larger because the slopes in figure 6.23e are shallower.

6.4.3 Operational stability requirements

During flight the Kiteplane system encounters various operational conditions.
Also the model is a simplification of reality based on assumptions that have an
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Figure 6.23: Pendulum stability space with θt equilibrium — and β equilibrium −−

according to the five different stability domains.

impact on accuracy. For these reasons, it is important that stability holds for
both varying conditions and small design variations.
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To determine the impact of these variations on stability, the following range
of operating conditions are simulated.

• Design variations

– Mass and Inertia tensor ± 20%

– Γ ± 20%

– SV T

SV T0
± 20%

• Operational variations

– xt ranging from 0 to 0.6 m

– lt ranging from 10 to 100 m

• External condition variations

– VW ranging from 4 to 16 ms−1

– Instantaneous lateral wind gusts of 50% VW

On the basis of this list, a series of simulations was performed where each si-
mulation varies a single parameter. The results of these simulations are compared
to the converging oscillation reference case with the following parameter values:

• Γ = 20◦

• SV T

SV T0
=1.5

• VW = 8 ms−1

• lt = 25 m

• xt = 0.3 m

All other parameters are equal to the original design values. The simulation
results are summarized in Table 6.1.

The stability of the reference case seems robust, since only one of the variations
leads to unstable behavior. If Kiteplane 3 is properly trimmed in pitch, only the
case that increases xt to 0.6 m leads to unstable behavior. To find out if the
robustness holds for combined variations, the following cases are assessed.

1. Inertia +30%, Γ +30% and SV T

SV T0
−30%

2. Inertia −30%, Γ −30% and SV T

SV T0
+30%

Both the first case that leans towards diverging oscillations and the second case
that leans towards aperiodic divergence are in fact still converging. Although the
latter is on the verge of aperiodic divergence, these results are promoting the idea
of a configuration that is stable in the entire operating domain. In Section 6.4.4
this idea is explored.
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Table 6.1: Impact of operating conditions on stability.

Parameter variation Asymmetric initial condi-
tions

Lateral step gust of 0.5VW

Reference Converging oscillation Converging oscillation

Inertia
−30% More damped oscillation More damped oscillation
+30% Less damped oscillation Less damped oscillation

Γ
−30% Aperiodic convergence Aperiodic convergence
+30% Less damped oscillation Less damped oscillation

SV T

SV T0

−30% Less damped oscillation Less damped oscillation
+30% More damped oscillation More damped oscillation

xt

0.0 m More damped oscillation More damped oscillation1

0.55 m Aperiodic convergence Aperiodic convergence
0.6 m Aperiodic divergence Aperiodic divergence

lt
10 m More damped oscillation More damped oscillation
100 m Equal damping, longer

period
Equal damping, longer
period and lower ampli-
tude

VW
4 ms−1 Less damped oscillation1 Less damped oscillation1

16 ms−1 More damped oscillation1 More damped oscillation1

1 Requires new trim setting for proper longitudinal equilibrium in α.

6.4.4 Proposed design changes for stability

From the flight tests, the conclusion that the Kiteplane 3 design is unstable quickly
arises. A first idea of the cause of this behavior was formed in section 6.4.1 were
the pendulum motion is analyzed. Then in Section 6.4.2 the simulations finally
yield the conclusion that lateral stability is closely related to the amount and
distribution of lateral area.

This result can now be used to improve the stability of Kiteplane 3 and come
up with some design changes. Due to the requirement for control, it is preferred
that the lateral stability is sufficiently susceptible to oscillations. The preferable
features and requirements of the new Kiteplane design are listed below.

• Converging oscillation in worst case scenario

• Minimize non-lifting surface area (vertical tail plane, dihedral angle)

• Low weight (reduces effective L/D, improves stability and decreases minimal
VW )

• Quick longitudinal convergence
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The listed features are partly conflicting on the design parameters and thus
a compromise is required. Nevertheless, Terink et al. [2010] indicates that shor-
tening the tail booms improves longitudinal stability. A similar result can be
obtained by a smaller horizontal tail plane. Since the vertical tail plane size is not
particularly large and shorter tail booms certainly require a larger vertical tail
plane, the option of horizontal tail plane reduction is preferred over a decrease in
tail boom length.

For lateral stability, values for Γ and SV T need to found that (a) ensure sta-
bility in the worst case scenario and (b) provide sufficient susceptibility to oscil-
lations. Looking at Figure 6.21, while keeping in mind that the lateral area and
dihedral angle should be minimized for performance, a dihedral angle of 20◦ and
a SV T of 1.5 times the original size are deemed appropriate values. The proposed
design changes are summarized below.

• Equivalent dihedral angle of 20◦.

• Vertical tail plane area enlarged by 50%

• Horizontal tail plane area reduced by by 25%

These changes do have an effect on the inertia of the Kiteplane, but the increase
in vertical tail plane weight is approximately canceled out by the decrease in
horizontal tail plane weight. Furthermore, for the purpose of this analysis it is
assumed that the effect of the increase in Γ on the inertia can be neglected.

To assess the stability of the new design, the changes are incorporated in the
Simulink model and subjected to the simulations listed in Table 6.1. The results
are equal or better for each of the cases in Table 6.1.

After the simulations were completed, the new design features were incorpora-
ted into a new kiteplane design, henceforth called ”Kiteplane 4”. This kiteplane
was to be a new design from the ground up and not simply an adapted old kite.
Adapting Kiteplane 3 from figure H.1 presented a number of practical issues such
as maintaining symmetry while increasing the dihedral. The Kiteplane 4 design
will take the new knowledge of kiteplanes into account. The choice was made, for
simplicity of construction, to have the dihedral originate from the center of the
wing and not have a horizontal part of the wing in the center like the old design
of figure H.1. By reducing the the number of kinks in the wing to one, it is easier
to build the wing symmetrical. Furthermore, the increased amount of lateral area
will be beneficial to the stability of the kite.

Another change which was incorporated was to move the fins to the underside
of the tailbooms. The fins on top resulted from the desire to have the kiteplane
design analogue to conventional aircraft. However, the fins on top have a des-
tabilizing effect. While in yaw motion, the fins on top introduce a destabilizing
roll moment which is usually overcome by the dihedral of the main wing. Moving
the fins to the bottom introduces a stabilizing moment while yawing. In essence,
this design change increases the effective dihedral of the kite, making the stability
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derivative Clv more negative (see section 3.2). For conventional aircraft, ground
clearance ensures that the vertical fins have to be on top. For a kiteplane, a
ground clearance requirement like that for conventional aircraft does not exist.

The new kiteplane 4 design is visualized in figure 6.24.

Figure 6.24: A 3D rendering of Kiteplane 4.

6.4.5 Flight test results of the new Kiteplane 4 design

Like Kiteplane 3, the new Kiteplane 4 was built at the production facility of Hong-
Kong based Lam sails. Initial tests were performed on a short, 4 meter tether to
safely assess the flight characteristics of the new design. These early tests quickly
showed a dramatic improvement in lateral stability behavior. Where Kiteplane 3
would oscillate and diverge, the new Kiteplane 4 showed to correct itself into the
zenith position. Results from these early tests inspired confidence to fly the new
kite on a longer tether.

Later flight tests saw the kite fly on a 20-meter long tether. The initial launch
phase through the center of the wind window does not pose any problems. Any
lateral disturbance during launch quickly converges while the kite ascends up into
the zenith position. Once in this position, gusts in the wind pushes the kite into
an asymmetric inverted pendulum motion. For Kiteplane 3 this would result in
a diverging oscillation which quickly led to a crash. The new Kiteplane 4 shows
significantly improved lateral stability. The new kite is able to correct the lateral
disturbance and convert back towards the zenith position. Even when θt becomes
as much as 30 to 40 degrees due to a large disturbance, the new Kiteplane 4 is able
to make use of the extra room the longer 20-meter tether provides and converge
back to the zenith position.

Figure 6.25 shows a composite picture from the launch of the new Kiteplane
4. Notice how the initial lateral divergence during launch quickly converges as
the kite flies to the zenith position.

187



Figure 6.25: A composite representation of the new kiteplane 4 in flight.

6.5 Concluding remarks

The main purpose of this chapter is to demonstrate the benefit of an engineering
approach to the design of kites. The case studies done in this chapter aim to
show a structured path the initial question to the resulting answer. The first
question is posed in section 6.2. What are the characteristics of the effective cable
length and what parameters influence it. The analysis shows a strong relation
to the aerodynamic drag of the cable. The second case in section 6.3 addresses
a heated issue within the kite community: What makes a kite corner. In this
section, the benefit of an intuitive multi-body kite simulation is demonstrated by
carefully piecing together the chain of events following a tension increase in one
of the steering lines. The simulation reveils that the cornering of a surf kite is
strongly related to its ability to deform. The simulation also shows to be useful in
simulating kites which are impossible in real life, such as the fully rigid surf kite.
Lastly, the simulation allows to make adaptations to the existing configuration and
quickly simulate the kite in flight to obtain the resulting changes in performance.
This loop is traditionally done in real life by cutting and stitching the real kite.
The multi-body simulation allows for the same design loop within a much shorter
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timeframe. Lastly, section 6.4 demonstrates the power of a rigid body model by
addressing an instability mode in the Kiteplane 3 design. The model, based on
lagrangian equations of motion, allows to analyse in detail the parameters which
influence the unstable behavior. The analysis results in a nomber of design changes
which are incorporated into a new Kiteplane design (Kiteplane 4) which was tested
and found to be free of the unstable lateral motion. The cases presented in this
chapter all lead to a greater understanding of kites. This increased understanding
lies at the basis of the engineering methodology for kite design and allows for a
structured design process.
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CHAPTER 7

Conclusions and recommendations

This chapter presents the conclusions from the work done in this thesis and conti-
nues to give a number of recommendations to both kite designers and the scientific
community.

7.1 Conclusions

The goal of this thesis is to develop an engineering methodology for kite design.
This methodology is based on the trinity presented in figure 2.5, which is repeated
below for clarity. Chapter 2 starts of by sketching the current situation in the
kite industry and touches on the current state of research. chapter 3 introduces
rigid body modelling for kites. Chapter 4 discribes the numerical modelling of
flexible kites using the principles of multi-body dynamics. Chapter 5 performs a
model validation on the model presented in chapter 4. Finally, chapter 6 presents a
number of case studies in order to show the benefit of an engineering methodology
for kite design.

Chapter 2 shows the state of kite design. currently, kites are designed using
trial-and-error approach. This chapter states that for more complex industrial
applications, a more controlled design methodology is needed. Furthermore, the
current kite industry stands to gain from such an approach as well.

Chapter 3 presents two rigid body models for kites, one based on conventio-
nal flight dynamics and one based on Lagrangian equations of motion. In these
models, the kite is assumed to be rigid and the tether is assumed to be a stiff
rod. The rigid body models show to be very useful in building understanding
of basic kite dynamics. Especially the rigid body model based on conventional
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Figure 7.1: The three prerequisites for an engineering approach to kite design.

flight dynamics shows the difference between kites and airplanes. Due to the fact
that a kite is tethered to the ground, eigenmodes are present which only occur
with kites. Especially the pendulum eigenmode seems to be of interest due to its
relation with the lateral surface of the kite and its likelyhood to become unstable.

The high flexibility of a kite, which was neglected in the models of chapter
3 warranted further investigation. Chapter 4 proposes a model based on the
principles of multi-body dynamics. This model has to adhere to a number of
requirements such as ease of use and low resource intensity. From the literature
survey and private communicationit was concluded that the current state of fluid
structure interaction technology, coupling a structural finite element analysis to a
computational fluid dynamics analysis, is such that a full simulation of a complete
kite is not feasible within the requirements for the kite simulation tool. The
highly complex model would be too difficult to use and too resource intense to
be funded by the current kite industry. Furthermore, the state of the industrial
application of kites also does not yet warrant such a large and risky investment.
The proposed kite simulation toolbox runs within MSC ADAMS and enables the
designer to quickly build kite configurations from three main building blocks:
Tethers, inflatable tubes and foils. The kite simulation toolbox has already seen
extensive use by students who quickly picked it up. The resource friendly nature
of the simulation allows it to run on a conventional laptop or desktop computer.

Chapter 5 presents the results of a validation of the model presented in chapter
4. The tether model was compared with pendulum and wave propagation experi-
ments and showed good correlation. A model convergence study showed that for
a quasi-static situation, only 10 elements were needed to approximate a 25 meter
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cable. Increasing the amount of elements yielded no noticable difference. The in-
flatable beams were compared to test data in a cantilever bending experiment and
also showed good correlation. Furthermore, the location of wrinkling in a tapered
beam was calculated as a function of taper ratio and the data was compared to
tapered beam simulations. It can be concluded that the location of the wrinkles
on the tapered beam coincided well with the numerical simulations. Lastly, the
airfoil simulation was compared to existing data on single membrane airfoils and
showed reasonable similarity. It should be noted that the simulations were based
on airfoils with a thickness between 15% and 25% while the only available test
data was that of an airfoil with a 10% thickness. This extrapolation of the data
on which the simulation is based can give rise to inaccuracies. Lastly, the shape
of the simulated two dimensional airfoil is compared to measured data and shows
good agreement.

In order to validate the three dimensional canopy shape, a kite was placed in
a wind tunnel and the shape was captured using photogrammetry. It was conclu-
ded that the measurement technique of photogrammetry is a particulatly useful
technique in kite research due to the fact that it captures the shape instantly. Fur-
thermore, the technique is both simple to use and cheap to realize. The resulting
canopy shapes showed great similarity with the simulated canopy shapes. Some
details, however, cannot be obtained from the numerical simulation. For instance,
wrinkling in the canopy can lead to extra turbulence and loss of lift which does
not occur in the simulation. Furthermore, the structure has some measure of ini-
tial slack which can be accounted for in the simulation. However, this parameter
is not easily predicted beforehand. The slack becomes especially obvious while
only lightly loading the kite. In practice this is less of an issue because the more
interesting cases are those where the kite is under high load. For these high load
cases, the simulated canopy shape and the measured canopy shape showed good
agreement. Also, the resulting load on the wing shows good correlation.

A final validation was performed by flying a number of conventional surf kites
and comparing the forces on the power lines and the absolute velocity with the
simulated case. The comparison showed remarkable similarity, further establi-
shing the validity of the simulation. The kite simulation toolbox was designed to
provide a kite designer with the means of virtual prototyping on a conventional
computer. Model validation has shown that the kite simulation toolbox provides
that capability with an acceptable measure of accuracy and the feedback from
students has confirmed the ease of use of the software.

In order to establish the benefit of an engineering methodology for kite design,
a number of case studies were done. First, the principle of effective cable length is
introduced. Using the kite simulation toolbox, it was shown that for long tethers
there is a large amount of inertia in the cable which has a damping effect on the
disturbances introduced into the cable by the kite.

The second case investigates the cornering performance of a conventional surf
kite, a fiercely debated issue among kite designers and kite surfers. Using the
kite simulation toolbox it was concluded that the yawing motion resulting from
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an increase in force on the steering line is brought about by the flexibility of the
kite. By pulling on one of the steering lines, an a-symmetric tether loading is
created which flexes and warps the kite such that the lift forces on the left and
right tip are offset sightly. This offset creates a yawing moment. This also means
that a rigid kite cannot steer, which is confirmed by running a simulation with
a rigid kite. The case study continues to explore what parameters influence the
cornering performance of the surf kite. By increasing the wing chord at the tip,
a faster cornering performance can be obtained.

The last case study investigates the then current kiteplane design and showed
that due to lack of lateral surface area, an unstable pendulum motion is created.
For the kiteplane, there is a close correlation between the lateral surface area
of the kite and the pendulum instability. This knowledge is used to propose a
number of design changes which are incorporated into a new kiteplane design.
Flight tests of this new design confirmed the predictions. The new design shows
greatly improved pendulum stability

7.2 Recommendations to the scientific community

The main recommendation that can be given to the scientific community is to no
longer ignore the potential of kites. From a scientific point of view, a kite is an
immensly interesting object. With kites, just about every complication is present,
except for supersonic flow. Kites provide the means to study complex phenomena
whilst keeping experiments cheap. The craftsmen of the 19th century pursueing
powered flight realized the research potential of kites and benefitted greatly from
it as a result. Furthermore, the research field of kites is a open field with great
potential for scientists and engineers. Applications for kites are as multiple as
they are diverse. Controllable kites are the enabling technology in new fields such
as high altitude energy generation and can function as sensor platforms and a
means of ship propulsion.

The models presented in this thesis can be refined further. The numerical
model using a multi-body approach can also be applied to parachutes and pa-
ragliders, as well as to conventional aircraft. This allows these applications to
benefit from the low resource intensity of this model. It is recommended to ex-
pand the aerodynamic model to include more airfoils like the double membrane
airfoil in order to study its benefit. Also, the current building blocks allow the
creation of complete laddermill simulation models with a flexible kite on a flexible
line, attached to a ground station. This will allow for simulation of reel-in and
reel-out strategies, with or without flying cross-wind patterns. Of special interest
are the forces in the lines, the forces in the canopy and the resulting power output.
Obtaining this data will allow for e.g. cost estimations based on the loads and
duration of loads on the materials of the kite and tether.

Eventually, many years from now, a full fluid structure interaction simulation
of a complete kite may become a reality. A step in that direction can be made
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by using uniform pressure models for the inflated tubular structure. This method
allows the designer to study wrinkling in a complex tubular frame and possibly
validate the more simple multi-body model of inflated tubes. At the moment, the
method of uniform pressure is being used succesfully in simulation of airbags, and
it holds great potential for other fields as well.

Much of what is possible today has come about with the advent of new, light-
weight materials. Currently, all kites are made out of a combination of Dacron,
ripstop Nylon and thermoplastic poly-urethane. These materials are relatively
weak and susceptible to degredation under UV light. It comes highly recommen-
ded to invest considerable amounts of research effort into new materials for kite
applications. As a matter of fact, many materials already exist which would be
a tremendous improvement over the current materials. High-tensile fibers in a
matrix of metallized mylar and other non-woven flexible composites are far stron-
ger and more UV resistent. Also, the current method of building an inflated
beam uses two materials: Dacron is used as the outer layer, carrying the load of
the internal pressure. Thermoplastic poly-urethane is used as an inner bladder
to contain the inflation gas. It is recommended to combine these two functions
(structural strength and gas containment) into a single material, which has the
potential to result in a lighter beam. Lastly, joining techniques deserve further at-
tention, especially when using new materials. Currently, kites are sown together.
Joining techniques such as bonding and welding allow for a less discrete transfer
of load. Switching materials and joining technoques in the production process of
kites is a change which has large implications. Currently, kites are mostly made in
China, India and Vietnam. Switching these facilities to new materials and joining
techniques is a major endeavor, but will ultimately have to be undertaken in order
to advance the technology of kites. Another field which needs extensive research
is that of control theory for kites. kite control is needed to build automatically
controlled kite. The field of control will benefit greatly from rigid-body models
which make use of higher-order models for their stability derivatives. The field of
kite control is wide open at the moment and is a great opportunity to do exciting
new things.

Lastly, it is highly recommended that the scientific community engages into
discussion with the kite designers. There is an enormous amount of empirical
knowledge with kite designers which should be taken advantage of. In order to
consolidate kite knowledge and engineering, the first kite conferences have already
been held, one of which was at the Delft University in 2009. It comes highly
recommended to invite the kite designers to these conferences and engage them
in discussion.

7.3 Recommendations to kite designers

It is remarkable to see what has been achieved by kite designers in the last decade.
With limited resources and a relatively small market, they have forged a new era
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for kites which has resulted in designs of incredible performance. However, in
the last few years, the pace of improvement has slowed down. The trial-and-
error design process has run its course and it is now time for a more structured
approach.

At the basis of any structured design process lies a set of requirements. In
order to quantify these requirements, measurements on riders and boards are re-
quired. Reproducable measurements are absolutely key to a structured kite design
process. Not just in quantifying the set of requirements, but also in evaluating the
new designs. Different designs cater to different riders. From the novice to the
experienced, requirements will greatly vary. Defining these requirements will give
the design a certain amount of focus. This focus is what lies at the foundation of
the structured design effort.

Measurements are not necessarily complicated or expensive. In this thesis,
extensive use is made of photogrammetry by using 14 cameras simultaneously.
Although this allows the instantaneous capturing of the shape of the kite, such an
array is not a prerequisite. keeping a kite in a certain spot and walking around
the kite while taking pictures with one camera will already result in a reasonably
good wireframe model.

The shape of a kite while it lies on the beach is of far less interest than the
shape of a kite while it is flying. the enormous flexibility of a kite will ensure that
the loaded shape is significantly different from the unloaded shape. Again, here
photogrammetry can help in determining the shape of the arc while it is loaded.
It allows for evaluation of the tubular structure, as well as the bridle line system.

The airfoil shape of a kite has remained nearly unchanged in the last decade.
They are all derivatives of single membrane airfoils. A double membrane airfoil
will greatly increase the lift over drag of a kite. Battens can also influence the
shape of the airfoil to induce certain flight characteristics. It was shown in section
6.3 that the lift in the tips is of great influence on the cornering performance of a
kite. Tayloring the airfoil in the tips allows the designer to directly influence the
cornering performance.

New materials will allow for higher pressures in the tubes and higher wing
loadings on the canopy. furthermore, a lighter kite will corner faster and will be
able to fly in lower wind conditions. Current surf kites have greatly benefitted
from earlier advances in materials science and they can do so again. Also, new
joining techniques will be needed. It is highly recommended to form cooperations
with the sailing industry where bonding and welding is already common practice.
As a matter of fact, there are a large amount of similarities between sails and
kites, such as materials, loads and weight issues. A cooperation with the sailing
industry can benefit both parties.

Lastly, analogue to what was mentioned in the previous section, seek out
the academic institutes and challenge them. Kites form an interesting field of
study and there is a large amount of knowledge already available in the scientific
community. All that needs to be done is to apply that knowledge to kites. Invite
the scientists to experience the power of kites first-hand and work with them on
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formulating the right questions. It is the authors strong belief that there can be
no greater benefit to the development of kites than a strong cooperation between
the scientific community and the kite industry.
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APPENDIXA

Kite system definitions

In this appendix the frames of reference will be defined. Conventional flight
dynamics [Mulder et al., 2007] has defined a large array of frames of reference
for aircrafts and other free flying objects. In this section we will define a set of
reference frames which are specific to kites and will be used throughout this thesis.

A.1 Frames of reference

This set of reference frames will bear a striking resemblance to the frames of
reference used with conventional aircraft. The difference lies within the tether
which connects the kite to the gound. This tether requires its own frame of
reference. Figure A.1 shows the three basic frames of reference used.

The first frame of reference is the earth-fixed frame of reference (OXEYEZE).
It is a right-handed orthogonal axis system with its origin fixed to the earth. It is
the same earth axis system used in conventional flight mechanics theory [Mulder
et al., 2007].

The second frame of reference is the tether frame of reference (OXtYtZt).
This frame of reference is specific to kite applications. It is also a right-handed
orthogonal axis system and its origin is connected to an arbitrary location on the
tether. The Xt and Zt axis are perpendicular to the local tether axis and the
Zt is parallel to that. In reality, a tether is able to flex and deform as a result
of the forces that act on it. Therefore, for a deformable cable, the tether frame
of reference has a different orientation for every location on the tether. For the
purpose of this rigid body analysis, the kite is assumed to fly on a short tether, in
the order of 100m. For a short tether like this, it can be assumed to be straight.
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Figure A.1: The three basic frames of reference for a kite.

With this tether model, the tether frame of reference has the same orientation
everywhere on the tether.

The third and last frame of reference is the body-fixed frame of reference
(OXBYBZB). This frame of reference is also a right-handed orthogonal axis
system and has its origin in the center of gravity of the kite. It is the same earth
axis system used in conventional flight mechanics theory [Mulder et al., 2007] and
points its XB axis forward, its YB to the right and its ZB downward with respect
to the kite.

A.2 Transformation from EE to ET

The orientation of the one dimensional tether with respect to the earth axis frame
of reference is defined by the two rotations ψ and φ. The azimuth angle ψ is the
angle between the wind vector and the tether projection on the surface plane. The
direction of XE is defined to coincide with the (average) wind direction (from
which it originates). The zenith angle φ is the angle between the vertical, the
direction perpendicular to the surface plane, and the tether. From the rotations
perspective, the tether initially coincides with ZE . It is then rotated about this
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axis with an angle ψ and subsequently rotated about YE′ with an angle φ. Figure
A.2 shows the tether orientation angles.

XE

YE

ZE

θt

ψt

χt

Zt

Yt

Xt

Figure A.2: Tether orientation angles.

The rotation matrices corresponding to these two rotations are given by equa-
tions A.1 and A.2 respectively.

TE′E =





cos (ψt) sin (ψt) 0
− sin (ψt) cos (ψt) 0

0 0 1



 (A.1)

TE′′E′ =





cos (θt) 0 − sin (θt)
0 1 0

sin (θt) 0 cos (θt)



 (A.2)

The rotation angle of the tether along its longitudinal axis is indicated with
χ. This angle gains significance once a bridle line system is included. Without
a bridle, the tether is a one dimensional body. A bridle system will make it a
two- or even three dimensional body, requiring an extra angle to orient it. The
transformation from EE′′ to ET requires a single rotation about the ZE′′ -axis
with the angle χ, the transformation matrix is given by equation (A.3).

213



TtE′′ =





cos (χt) sin (χt) 0
− sin (χt) cos (χt) 0

0 0 1



 (A.3)

The length of the tether, defined as the distance between the origin of reference
frame EE and the center of the line through the two bridle line attachment points,
is again indicated by lt.

A.3 Transformation from ET to EB

The transformation from the tether reference frame to the body axis reference
frame is done by three sequential rotations:

• rotation ξ, body yaw angle w.r.t. the tether, about Zt-axis

• rotation κ, body pitch angle w.r.t. the tether, about Yt′ -axis

• rotation τ , body roll angle w.r.t. the tether, about XB-axis

The rotation defines the following reference frames:

ET → ET ′ → ET ′′ → EB (A.4)

The transformation matrix for the rotation from ET to EB is given by:

TBt =





1 0 0
0 cos τ sin τ
0 − sin τ cos τ









cosκ 0 − sinκ
0 1 0

sinκ 0 cosκ









cos ξ sin ξ 0
− sin ξ cos ξ 0

0 0 1





=















cosκ cos ξ cosκ sin ξ − sinκ
(

sin τ sinκ cos ξ
− cos τ sin ξ

) (

sin τ sinκ sin ξ
+cos τ cos ξ

)

sin τ cosκ

(

cos τ sinκ cos ξ
+sin τ sin ξ

) (

cos τ sinκ sin ξ
− sin τ cos ξ

)

cos τ cosκ















(A.5)

The angular velocity vector of the body-fixed reference frame Fb with respect
to the tether-fixed reference frame Ft expressed in Ft using the rotational speed
of the same rotations is given by:

Ωb
bt = TBt′Ω

t′

t′t + TBt′′Ω
t′′

t′′t′ +Ωb
bt′′

=





τ̇ − ξ̇ sinκ

κ̇ cos τ + ξ̇ sin τ cosκ

−κ̇ sin τ + ξ̇ cos τ cosκ



 (A.6)
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Now the angular velocity of the body-fixed reference frame with respect to the
earth-fixed reference frame can also be written as:

ΩB
BE = ΩB

Bt + TBtΩ
t
tE (A.7)

and the transformation matrix from EE to EB can also be written as:

TBE = TBtTtE (A.8)

The inverse of the transformations given in this section can be obtained by
taking the inverse of the transformation matrices. Since all transformation ma-
trices are orthogonal the inverse of the transformation matrices is equal to their
transpose, i.e. T−1 = T

⊤.

Transformation from EE to EB and derivation of ΩB
BE

In the aerospace industry the rotation sequence ψ → θ → φ is most commonly
used for the rotation from EE to Eb, where

• ψ is the yaw angle, rotation about the ZE-axis

• θ is the pitch angle, rotation about the YE′ -axis

• φ is the roll angle, rotation about the XB-axis (=XE′′-axis)

where the YE′-axis and XE′′ -axis are the axes of the intermediate reference
frame EE′ and EE′′ respectively. The complete rotation defines the following
reference frames:

EE → EE′ → EE′′ → EB (A.9)

The transformation matrix for the rotation from EE to EB is given by,
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TBE = TBE′′TE′′E′TE′E

=





1 0 0
0 cosφ sinφ
0 − sinφ cosφ









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









cosψ sinψ 0
− sinψ cosψ 0

0 0 1





=















cos θ cosψ cos θ sinψ − sin θ
(

sinφ sin θ cosψ
− cosφ sinψ

) (

sinφ sin θ sinψ
+cosφ cosψ

)

sinφ cos θ

(

cosφ sin θ cosψ
+sinφ sinψ

) (

cosφ sin θ sinψ
− sinφ cosψ

)

cosφ cos θ















(A.10)

The angular velocity of the body-fixed reference frame Eb with respect to
the normal earth-fixed reference frame EE expressed in EB is obtained using the
rotational speed of the previous defined angles. This results in:

ΩB
BE = TBE′ΩE′

E′E+TBE′′ΩE′′

E′′E′ +ΩB
BE′′ =





φ̇− ψ̇ sin θ

θ̇ cosφ+ ψ̇ sinφ cos θ

−θ̇ sinφ+ ψ̇ cosφ cos θ



 (A.11)
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APPENDIX B

Bridle line model

This appendix gives the bridle line model used in the rigid body model of section
3.2. The bridle lines constrain the kite in a mix of roll (p) and yaw (r) motion
depending on the body pitch angle with respect to the tether κ. See figures B.1,
B.2 and B.3.

For simplicity of implementation the bridle lines are not explicitly modelled
by two spring-dampers, but rather by a moment caused by the main tether force
in YB-direction: G. The tether force in body components is shown in figure B.2.

When the tether has a tether force T and the tether is in the symmetric plane
of the kite, that is τ and ξ are zero, the vertical components of the forces in the
bridle lines are equal to 1

2T . Furthermore the tether force in Yb-direction G is

zero, so 1
2T is equal to 1

2

√
F 2 +H2.

Two assumptions are made for modelling the forces in the bridle lines:

1. The forces act in the YtZt-plane or parallel to this plane

2. The bridle angle ϑ is invariant

From the first assumption follows that the angle between the bridle line and
the main line in the XtZt-plane stays small. From the second assumption follows
that the elastic elongation of the bridle lines stays small.

The absolute value of the tether forces in the bridle lines are given by the
parameters TL and TR for the left and right bridle line respectively. The vertical
components in the YtZt-plane are given by the parameters T vL and T vR. The
horizontal components in the YtZt-plane are given by the parameters T hL and T hR.
See figure B.1. Furthermore the bridle angle is specified by ϑ as shown in figure
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Figure B.1: Bridle line forces, G = 0.

B.1. The absolute value of the forces in the bridle lines can be written as:

TL =
√

T v2L + T h2L

TR =
√

T v2R + T h2R

(B.1)

Now when the tether force component G has a nonzero value the forces in the
bridle lines will not be equal anymore. A moment acting in the XtZt-plane will
result to counteract this asymmetric condition.

This moment, given by Mbridle, is simply equal to:

Mbridle = −G · lbr cosϑ (B.2)

where lbr is the length of one of the bridle lines. See figure B.3.
As this moment is actually caused by a difference in the bridle line forces, this

moment is transferred by the bridle line forces TL and TR to the body. Only the
change in the vertical components of the bridle lines will transfer this moment, as
the horizontal components do not act about the arm lbr, because they act about
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Tt

−k

F

G

H

√
F 2 +H2

τ

Figure B.2: Tether force Tt in body components F , G and H.

〈xtaL, ztaL〉 and 〈xtaR, ztaR〉. The change in the vertical components will cause a
moment given by:

Mbridle = (∆T vR −∆T vL) · lbr sinϑ

Because it is assumed that ϑ is constant, it means that ∆T vR is equal to −∆T vL.
From this follows that:

∆T vL = −∆T vR =
1

2

cosϑ

sinϑ
·G =

G

2 tanϑ
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Figure B.3: Bridle line forces, G 6= 0.

Now the vertical components of the bridle forces are given by equations (B.3):

T vL =
1

2
TG=0 +∆T vL

=
1

2

(

√

F 2 +H2 +
G

tanϑ

)

T vR =
1

2
TG=0 +∆T vR

=
1

2

(

√

F 2 +H2 − G

tanϑ

)

(B.3)

The horizontal components of the bridle T hL and T hR follow from force equili-
brium and the fact that ϑ is constant:

T hL = T hL,G=0 +
1

2
G

=
1

2
TG=0 tanϑ+

1

2
G

T hR = T hR,G=0 −
1

2
G

=
1

2
TG=0 tanϑ− 1

2
G

(B.4)

If the bridle line forces are given in components of the body-fixed reference
frame 〈FL, GL, HL〉 and 〈FR, GR, HR〉 than the bridle line moments MtL and
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MtR are obtained by equations (B.5):

MtL =





PL
QL
RL



 = rtaL ×





FL
GL
HL





MtR =





PR
QR
RR



 = rtaR ×





FR
GR
HR





(B.5)

where rtaL and rtaR are the left and right position vectors of the tether attachment
point with respect to the center of gravity in the body-fixed reference frame. They
are given by equations (B.6):

rtaL =





xtaL
−lbr sinϑ
ztaL





rtaR =





xtaR
lbr sinϑ
ztaR





(B.6)

where it is assumed that ytaL is equal to −ytaR by the fact that ϑ is invariable.
The total tether moment Mt is obtained by adding the moments of the bridle

lines Mt,L and Mt,R, so:

Mt =





P
Q
R



 =





PL
QL
RL



+





PR
QR
RR



 (B.7)

Writing the bridle forces TL and TR in body components is done by:




FL
GL
HL



 = ebL · TL




FR
GR
HR



 = ebR · TR

(B.8)

where ebL and ebR are the unit vectors of the left and right bridle line respectively.
The direction of the bridle lines are determined by the angles κ and ϑ and

their unit vectors are computed by:

ebL =





− sinκ cosϑ
sinϑ

cosκ cosϑ





ebR =





− sinκ cosϑ
− sinϑ

cosκ cosϑ





(B.9)
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where κ is a rotation about Yt′ -axis and is given by (see figure B.2):

κ = arctan

(

− F√
G2 +H2

)

for − 1

2
π < κ <

1

2
π (B.10)

The body roll angle with respect to the tether τ can be obtained by:

τ = arctan

(

G

H

)

for − 1

2
π < κ <

1

2
π (B.11)

τ is a rotation about Xb-axis. Since the tether force Tt is directed in the
Zt-axis, the body yaw angle with respect to the tether ξ has no influence on the
body components of the tether force.
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APPENDIX C

Linearization of the symmetric equations of motion

This section outlines the linearization of the symmetric equations of motion of
section 3.2 Figure C.1 shows a graphical representation of this system with the
definition of the angles κ, θt and θ.

Accelerations

The linearized acceleration terms are given by:

Fx(∆X) =m ·∆u̇k
Fz(∆X) =m ·∆ẇk

My(∆X) = Iy ·∆q̇
(C.1)

Forces and moments

The forces and moments for the symmetric case are a function of:

W → f
(

θ
)

X,Z,M → f
(

ua, wa, ẇa, q
)

F,H,Q→ f
(

xta, lt, l̇t, κ
)

where the left and right bridle attachment positions have been replaced by one
parameter x(ta), because they move synchronously for the symmetric case.
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Figure C.1: Symmetric state-space kite system.

The linearized symmetric forces and moment become:

Fx(∆X) =−W cos θ0 ·∆θ +Xua
·∆ua +Xwa

·∆wa +Xq ·∆q
+ Fxta

·∆xta + Flt ·∆lt + Fl̇t ·∆l̇t + Fκ ·∆κ

Fz(∆X) =−W sin θ0 ·∆θ + Zua
·∆ua + Zwa

·∆wa + Zẇa
·∆ẇa + Zq ·∆q

+Hxta
·∆xta +Hlt ·∆lt +Hl̇t

·∆l̇t +Hκ ·∆κ

My(∆X) = Mua
·∆ua +Mwa

·∆wa +Mẇa
·∆ẇa +Mq ·∆q

+Qxta
·∆xta +Qlt ·∆lt +Ql̇t ·∆l̇t +Qκ ·∆κ

(C.2)

The derivatives of the tether forces and moment are derived from the tether
model.

Tether forces and moments

Expressions for the tether forces and moments with respect to a change in κ, lt,
l̇t and δ can be derived. The tether is modelled as a spring-damper given by the
values kt and ct for the spring and damping constant respectively. The tether
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force is given by, see equation 3.33:

Tt = kt · δlt + ct · l̇t

where δlt is the elastic elongation at t = 0 s.

Writing this in the body axes by the transformation TBt gives:

F = −kt sinκ · δlt − ct sinκ · l̇t
H = kt cosκ · δlt + ct cosκ · l̇t

(C.3)

These forces give the tether moment by:

Q = F · zta −H · xta (C.4)

Linearizing the previous expressions, (C.3) and (C.4), gives:

F (X0) = −kt sinκ0 · δlt0 − ct sinκ0 · l̇t0
H(X0) = kt cosκ0 · δlt0 + ct cosκ0 · l̇t0
Q(X0) = F0 · zta −H0 · xta0

(C.5)

and

F (∆X) =−H0 ·∆κ− kt sinκ0 ·∆lt − ct sinκ0 ·∆l̇t
H(∆X) = F0 ·∆κ+ kt cosκ0 ·∆lt + ct cosκ0 ·∆l̇t
Q(∆X) = ztaFκ ·∆κ− ztakt sinκ0 ·∆lt

− ztact sinκ0 ·∆l̇t − xta0Hκ ·∆κ
− xta0kt cosκ0 ·∆lt − xta0ct cosκ0 ·∆l̇t
−H0 ·∆xta

(C.6)

where Fκ = −H0 and Hκ = F0.

Kinematic relations

Applying the initial conditions to the body related kinematic relations yields:

θ̇(∆X) = ∆q (C.7)

The linearization of the first of the kinematic relations of the tether, equation
(3.21), is done by first writing equation (3.21) as a function of the symmetric
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parameters.




ẋtt
ẏtt
żtt



 = TtB









ubk
vbk
wbk



+Ωb
bE × rbta





= TtB









ẋbk
0
żbk



+





q · zta
0

−q · xta









= T
⊤

Bt





ubt
0
wbt





=





cosκ · ẋbt + sinκ · żbt
0

− sinκ · ẋbt + cosκ · żbt





This gives:

ẋtt = cosκ (uk + q · zta) + sinκ (wk − q · xta)
żtt = − sinκ (uk + q · zta) + cosκ (wk − q · xta)

Linearizing this equation gives for X0 and ∆X:

ẋtt(X0) = cosκ0 (uk0 + q0 · zta) + sinκ0 (wk0 − q0 · xta0)
żtt(X0) = − sinκ0 (uk0 + q0 · zta) + cosκ0 (wk0 − q0 · xta0)

(C.8)

ẋtt(∆X) = cosκ0 ·∆uk + zta cosκ0 ·∆q
+ sinκ0 ·∆wk − xta0 sinκ0 ·∆q

żtt(∆X) =− sinκ0 ·∆uk − zta sinκ0 ·∆q
+ cosκ0 ·∆wk − xta0 cosκ0 ·∆q

(C.9)

where the initial condition has been applied and zta is assumed constant as defined
in section 3.2.3

Linearization after applying the initial conditions to the second tether kine-
matic relation (3.22) yields:

l̇t(∆X) = −∆żtt

θ̇t(∆X) = − 1

lt0
∆ẋtt

(C.10)

From relations (A.6) and (A.7) one can obtain a relation between the rotational
velocities of the body and the tether, which is used to remove the state κ and
to be replaced by θ and θt. Linearization for the symmetric case with the initial
conditions gives:

q(∆X) = ∆κ̇+∆θ̇t (C.11)
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Wind kinematics

Applying the initial conditions to the wind kinematic relations (3.29) yields:

uba = ubk +Wx cos θ

wba = wbk +Wx sin θ
(C.12)

Applying linearization on equation (C.12) results in:

ua(X0) = uk,0 +Wx0 cos θ0

wa(X0) = wk,0 +Wx0 sin θ0
(C.13)

and

ua(∆X) = ∆uk + cos θ0 ·∆Wx −Wx0 sin θ0 ·∆θ
wa(∆X) = ∆wk + sin θ0 ·∆Wx +Wx0 cos θ0 ·∆θ

(C.14)

Furthermore for the linearization of the wind acceleration, equation (3.30),
holds:

u̇ba(X0) = u̇k,0 − q0 sin θ0Wx,0

ẇba(X0) = ẇk,0 + q0 cos θ0Wx,0

(C.15)

and

u̇ba(∆X) = ∆u̇k −Wx0 sin θ0∆q

ẇba(∆X) = ∆ẇk +Wx0 cos θ0∆q
(C.16)

Where u̇k,0 = ẇk,0 = q0 = 0 as stated by the initial conditions of section 3.2.5.
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APPENDIXD

Linearization of the asymmetric equations of motion

The linearized equations of motion for the asymmetric case are [Groot, 2010]

Fy(∆X) = m ·∆v̇k
Mx(∆X) = Ix ·∆ṗ− Jxz ·∆ṙ
Mz(∆X) = Iz ·∆ṙ − Jxz ·∆ṗ

(D.1)

Forces and moments

The forces and moments for the asymmetric case are a function of:

W → f
(

φ
)

Y, L,N → f
(

va, v̇a, p, r
)

G,P,R → f
(

xLta, x
R
ta, τ

)

where xLta and xRta are the displacements of the left and right bridle attachment
points to the kite. The linearized asymmetric forces and moments become [Groot,
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2010]:

Fy(∆X) = W cos θ0 ·∆φ
+ Yva ·∆va + Yv̇a ·∆v̇a + Yp ·∆p+ Yr ·∆r
+GxtaL

·∆xtaL +GxtaR
·∆xtaR +Gτ ·∆τ

Mx(∆X) = Lva ·∆va + Lp ·∆p+ Lr ·∆r
+ PxtaL

·∆xtaL + PxtaR
·∆xtaR + Pτ ·∆τ

Mz(∆X) = Nva ·∆va +Nv̇a ·∆v̇a +Np ·∆p+Nr ·∆r
+RxtaL

·∆xtaL +RxtaR
·∆xtaR +Rτ ·∆τ

(D.2)

Tether forces and moments

Expressions for derivatives of the tether forces and moments can be found by
linearizing the equations for the bridle lines given in appendix B. The tether unit
vector et expressed in the body-fixed reference frame is defined by three angles
τ , κ and ξ as defined by the transformation from Ft to Fb. The transformation
of the tether force in the tether-fixed reference frame to the body-fixed reference
frame is given by:

T b = TBtT
t





F
G
H



 = TBt





0
0
Tt









F
G
H



 = Tt





− sinκ
sin τ cosκ
cos τ cosκ





(D.3)

From equation (D.3) can be obtained by applying the initial conditions τ0 = 0
and κ0 6= 0:

∆F = − sinκ0 ·∆Tt − Tt0 cosκ0 ·∆κ
∆G = Tt0 cosκ0 ·∆τ
∆H = cosκ0 ·∆Tt − Tt0 sinκ0 ·∆κ

(D.4)

Since Tt and κ are symmetric quantities ∆Tt and ∆κ are zero for the asym-
metric motions, so only ∆G is not zero.

Linearizing equations (B.8) the derivative of the bridle force components in
body-fixed reference is obtained:

FL(∆X) = − sinκ0 cosϑ ·∆TL FR(∆X) = − sinκ0 cosϑ ·∆TR
GL(∆X) = sinϑ ·∆TL GR(∆X) = − sinϑ ·∆TR
HL(∆X) = cosκ0 cosϑ ·∆TL HR(∆X) = cosκ0 cosϑ ·∆TR
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(D.5)

Linearizing the equations for TL and TR gives:

TL(∆X) =
T vbr0

√

T v2br0 + T h2br0

·∆T vL +
T hbr0

√

T v2br0 + T h2br0

·∆T hL

TR(∆X) =
T vbr0

√

T v2br0 + T h2br0

·∆T vR +
T hbr0

√

T v2br0 + T h2br0

·∆T hR
(D.6)

where br stands for the left and right bridle line and where is used that T vL0 =
T vR0 = T vbr0 and T hL0 = T hR0 = T hbr0 for the initial condition where G is zero.

Linearizing the vertical and horizontal components of TL and TR gives:

T vL(∆X) = 1
2 tanϑ ·∆G T vR(∆X) = − 1

2 tanϑ ·∆G
T hL(∆X) = 1

2 ·∆G T hR(∆X) = − 1
2 ·∆G

(D.7)

Linearizing equations (B.5) for the asymmetric left and right bridle moments
PL, PR, RL and RR results in:

PL(∆X) = ytaL ·∆HL − ztaL ·∆GL
PR(∆X) = ytaR ·∆HR − ztaR ·∆GR
RL(∆X) = xtaL0 ·∆GL +GL0 ·∆xtaL − ytaL ·∆FL
RR(∆X) = xtaR0 ·∆GR +GR0 ·∆xtaR − ytaR ·∆FR

(D.8)

Finally the resulting moments on the body P and R are than given by:

P (∆X) = ∆PL +∆PR

R(∆X) = ∆RL +∆RR
(D.9)

Finally condensing the previously obtained equations will give the first deri-
vatives of G, P and R as a function of τ , xtaL and xtaR:

Gτ = Tt0 cosκ0

Pτ = −
zta sinϑ cosκ0

√

Tt0
2
(

1 + tan2 ϑ
)

tanϑ
+
ytaL cosϑ cos2 κ0

√

Tt0
2
(

1 + tan2 ϑ
)

tanϑ

Rτ =
ytaL cosϑ sinκ0 cosκ0

√

Tt0
2
(

1 + tan2 ϑ
)

tanϑ
+
xta0 sinϑ cosκ0

√

Tt0
2
(

1 + tan2 ϑ
)

tanϑ
(D.10)

where the fact is used that ytaL = −ytaR and ztaL = ztaR = zta.
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Kinematic relations

Applying the initial conditions to the body related kinematic relations [Mulder et
al., 2007] yields:

φ̇(∆X) = ∆p+ tan θ0 ·∆r

ψ̇(∆X) =
1

cos θ0
·∆r

(D.11)

The kinematic relations relating to the tether, equations (3.21) for the asym-
metric motion are linearized as follows.

Equation (3.21) is written as a function of only the asymmetric degree of
freedom, ẏtt :





ẋtt
ẏtt
żtt



 = TtB









ubk
vbk
wbk



+Ωb
bE × rbta





= TtB









0
vk
0



+





0
r · xta− p · zta

0









= T
⊤

Bt





0
ẏbt
0





=





0
cos τ · ẏbt

0





This gives:

ẏtt = cos τ · (vk + r · xta − p · zta)

Linearizing this equation gives for X0 and ∆X:

ẏtt(X0) = −p0 · zta + r0 · xta0 (D.12)

where xta0 is the initial cart position and zta is invariant.

ẏtt(∆X) = ∆vk − zta ·∆p+ xta0 ·∆r (D.13)

The linearization of the second of the kinematic relations relating to the tether,
equation (3.21), for the asymmetric variable results in:

ψ̇t(∆X) = − 1

lt0 sin θt0
∆ẏtt (D.14)

Taking equations (D.13) and (D.14) together results in:

∆ψ̇t = − 1

lt0 sin θt0
·∆vk +

zta

lt0 sin θt0
·∆p− xta0

lt0 sin θt0
·∆r (D.15)
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Another equation can be obtained from the kinematic relation (A.6) for a
relation between the rotational velocities of the body and the tether, which is
used to remove the state τ and to be replaced by θ and θt. The asymmetric body
rotations p and r are given by:

p = τ̇ − ξ̇ · sinκ− ψ̇t · (sin θt cosκ cos ξ + cos θt sinκ)

r =− κ̇ · sin τ + ξ̇ · cos τ cosκ− ψ̇t · sin θt (cos τ sinκ cos ξ + sin τ sin ξ)

+ ψ̇t cos θt cos τ cosκ

(D.16)

Linearizing these equations with the initial condition gives for ∆X :

p(∆X) = ∆τ̇ − sinκ0 ·∆ξ̇ − (sin θt0 cosκ0 + cos θt0 sinκ0) ·∆ψ̇t
r(∆X) = cosκ0 ·∆ξ̇ − (sin θt0 sinκ0 − cos θt0 cosκ0) ·∆ψ̇t

(D.17)

Wind kinematics

The wind kinematics equation (3.29) can be written as:

V b
a = V b

k + V b
w





ua
va
wa



 =





uk
vk
wk



+ TBE





Wx

Wy

0





(D.18)

Evaluating the previous for va results in:

va = vk + (sinφ sin θ cosψ − cosφ sinψ) ·Wx

+ (sinφ sin θ sinψ + cosφ cosψ) ·Wy

(D.19)

Linearization of (D.19) with the initial conditions gives:

va(X0) = 0 (D.20)

and

va(∆X) = ∆vk +∆Wy +Wx0 sin θ0 ·∆φ −Wx0 ·∆ψ (D.21)

For the wind acceleration, equation (3.30), with the initial conditions holds:

v̇a(∆X) = ∆v̇k +Wx0 sin θ0 ·∆p−Wx0 ·∆r (D.22)
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APPENDIX E

Asymmetric control authority using shifting tow points

Section 3.2.7 derives the linearized asymmetric equations of motion and writes
them in dimensionless matrix notation. This derivation yields the coefficients
CGxtaL

, CGxtaR
, CPxtaL

, CPxtaR
, CRxtaL

and CRxtaR
. These coefficients describe

the control authority of the shifting tow point control system outlined in section
3.2. The discussion in this section focusses on these coefficients and their effect on
the kite. The shifting tow point control system is a derivative from the conven-
tional control system found on most surf kites (see figure 5.23). By pulling on the
steering lines, the resultant force on the tip, consisting of the sum of the power
and steering line on that tip, shifts aft. The tow point shifting control system
introduced in section 3.2 replaces the power and steering line with a single line
which is physically shifted along the surf kite tip. Figure E.1 shows a schematic
representation of a kite with a sliding tow point control system.

In the analysis of this section, the following assumptions are made:

• λL and λR are small

• Controls move anti-symmetric (xtaL = -xtaR)

• Controls move instantly

When the kite flies in its zenith position, as indicated by the initial conditions
of section 3.2.5, the angle between the tether and the mean aerodynamic chord
will be close to 90 degrees (in the XB-ZB plane). In this situation we can also
assume λL = -λR. For the position of the controls we can write:
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Xt

λR
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∆xtaR∆xtaL
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VaXS

XB

TR

TL

lbr
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Figure E.1: A schematic representation of a kite with a towpoint sliding control me-
chanism.

rBtaL0 =





xtaL0
ytaL
ztaL



 (E.1)

rBtaR0 =





xtaR0

ytaR
ztaR



 (E.2)

∆rBtaL =





∆xtaL
0
0



 (E.3)

∆rBtaR =





∆xtaR
0
0



 (E.4)
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Figure E.2 shows a schematic representation of the same kite, but from the
front.

YB ,YS

lbr sinϑL lbr sinϑR

ϑL ϑR
lbrlbr

TL TR

Zt

T

Yt

Figure E.2: A schematic representation of a kite with a towpoint sliding control me-
chanism (front view).

A new set of assumptions regarding figure E.2 are added to the previous as-
sumptions:

• ϑL = -ϑR

• ϑL and ϑR are assumed invariant

• ϑL and ϑR are small

With these assumptions, it is now possible to state:

TL = TR = Tbr (E.5)

Which is an assumption in itself. It is deemed acceptable due to the fact
that the bridle lines are generally long (in the order of 20-25 meters) and the
displacement of the tow points is relatively small (in the order of 20cm). Of
interest here is not so much the magnitude of the bridle line forces but the moments
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they introduce when the tow points shift. For the bridle line forces TL and TR

we can write:

T t
L =





TxL
TyL
TzL





t

=





TL cosϑL sinλL
TL sinϑL

TL cosϑL cosλL





t

(E.6)

T t
R =





TxR
TyR
TzR





t

=





TR cosϑR sinλR
TR sinϑR

TR cosϑR cosλR





t

(E.7)

We can transform the vectors of equations (E.6) and (E.7) from the tether
axis system to the stability axis system:

T S
L = TSB · TBt · T t

L (E.8)

T S
R = TSB · TBt · T t

R (E.9)

The components of the bridle line forces are now expressed in the stability
frame of reference. This is schematically represented in figure E.3

Tether force componentG in YS direction

For tether force component G we can write:

G = T SyL + T SyR = TByL + TByR (E.10)

Using the transformation matrices of appendix A, we can write:

G = TBt(1, 2) · (cosϑL sinλL) · Tbr + TBt(2, 2) · sinϑL · Tbr
+ TBt(3, 2) · (cosϑL cosλL) · TbrTBt(1, 2) · (cosϑR sinλR) · Tbr

+ TBt(2, 2) · sinϑR · Tbr + TBt(3, 2) · (cosϑR cosλR) · Tbr (E.11)

Because of the assumptions ϑL = -ϑR and λL = -λR we can rewrite equation
(E.11):
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ZSZB

Zt

T

Xt

XS

XB

TR
TL

T SxL T SxR

T SzL T SzR

Figure E.3: A schematic representation of the bridle line forces in the stability frame
of reference.

G = [(sin τ cosκ) · (cosϑL cosλL) + (sin τ cosκ) · (cosϑR cosλR)] · Tbr (E.12)

Due to the presence of the bridle lines, the body roll angle with regard to the
tether τ will most likely be very small. This means that the sine of this small
angle will also be very small. As such, equation (E.12) leads to the conclusion
that G will be small as well. And thus will have only a marginal effect on the
control of the kite.

Tether moment component P around XS

For the tether moment component P around XS we can write:

P = (xcg − (xtaL0 +∆xtaL)) · sinαe · TByL
+ (xcg − (xtaR0 −∆xtaR)) · sinαe · TByR

+ lbr sinϑL · T SzL + lbr sinϑR · T SzR (E.13)

With the assumptions ϑL = -ϑR, ∆xtaL = ∆xtaR, TL = TR, xtaL0 = xtaR0,
and the rotation matrix:
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TSB =





cosαe 0 − sinαe
0 1 0

sinαe 0 cosαe



 (E.14)

We can now write:

lbr sinϑL · T SzL + lbr sinϑR · T SzR = lbr sinϑL(T
S
zL − T SzR) (E.15)

and:

T S
L − T S

R = TSB · TBt · TL ·





cosϑL sinλL − cosϑR sinλR
sinϑL − sinϑR

cosϑL cosλL − cosϑR cosλR



 (E.16)

Evaluation of the previous equations yields:

T SzL − T SzR =

[(sinαe cosκ cosχ+ cosαe(cos τ sinκ cosχ+ sin τ sinχ))

· (cosϑL sinλL − cosϑR sinλR)

+ (sinαe cosκ sinχ+ cosαe(cos τ sinκ sinχ− sin τ cosχ))

· (sinϑL − sinϑR)

+ (− sinαe sinκ+ cosαe cos τ cosκ)

· (cosϑL cosλL − cosϑR cosλR)] · TL (E.17)

With ϑL = -ϑR and λL = -λR:

cosϑL cosλL − cosϑR cosλR = 0 (E.18)

For the tether moment component P around XS we can now write:
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P = (xcg − (xtaL0 +∆xtaL)) · sinαe · TByL
+ (xcg − (xtaR0 −∆xtaR)) · sinαe · TByR
+ lbr sinϑL[(sinαe cosκ cosχ+ cosαe(cos τ sinκ cosχ+ sin τ sinχ))

· (cosϑL sinλL − cosϑR sinλR)

+ (sinαe cosκ sinχ+ cosαe(cos τ sinκ sinχ− sin τ cosχ))

· (sinϑL − sinϑR)] · TL (E.19)

In the previous subsection we have established thatG is small. This means that
TByL + TByR must also be small. Furthermore, considering that for the simulation
presented in section 3.2 the initial position of the cable is in the center of gravity,
the quantities (xcg − (xtaL0 +∆xtaL)) and (xcg − (xtaR0 +∆xtaR)) are of equal
magnitude and opposed in sign. Coupled with the multiplication by the sine of
the small angle αe, this results in the first half of equation (E.19) being small.

Furthermore, it was established earlier that ϑL and λL are small angles. The-
refore, the sine of these angles is also small. This renders the second part of
equation (E.19) small as well. The conclusion is thus, that the contribution of P
during an anti-symmetric control input is small, if not close to zero.

Tether moment componentR around ZS

For the tether moment component R around ZS we can write:

R = (xcg − (xtaL0 +∆xtaL)) · cosαe · TByL
+ (xcg − (xtaR0 −∆xtaR)) · cosαe · TByR

+ lbr sinϑL · T SxL + lbr sinϑR · T SxR (E.20)

Analogue to the component P , we can write equations for T SxL - T SxR:

T SxL − T SxR = [(cosαe cosκ cosχ+ sinαe(cos τ sinκ cosχ+ sin τ sinχ))

· (cosϑL sinλL − cosϑR sinλR)] · TL
+ [(cosαe cosκ sinχ− sinαe(cos τ sinκ sinχ− sin τ cosχ))

· (sinϑL − sinϑR)] · TL
+ [(− cosαe sinκ− sinαe cos τ cosκ)

· (cosϑL cosλL − cosϑR cosλR)] · TL (E.21)
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Which leads to the following expression for R:

R = (xcg − (xtaL0 +∆xtaL)) · cosαe · TByL
+ (xcg − (xtaR0 −∆xtaR)) · cosαe · TByR
+ lbr sinϑL[(cosαe cosκ cosχ− sinαe(cos τ sinκ cosχ+ sin τ sinχ))

· (cosϑL sinλL − cosϑR sinλR)

+ (cosαe cosκ sinχ− sinαe(cos τ sinκ sinχ− sin τ cosχ))

· (sinϑL − sinϑR)] · TL (E.22)

For the same reasons as in equation (E.19), the second half of equation (E.22)
can be considered small. The difference with equation (E.19) is mostly in the
first half where the terms are now multiplied by the cosine of the small angle αe
instead of the sine. This leads to the conclusion that, for the initial conditions
and the assumptions made in this appendix, the contribution of R as a result of
an anti-symmetric control input will be small, but larger than the contributions
of P and G.

These findings seem to agree with the findings of section 6.3.3 where a multi-
body model of a rigid kite is simulated. The effects of a asymmetric control input
result in a slight increase in yaw angle. No direct result of G and P are found.
The yaw increase as a result of a changing R is only small compared to actual
surf kites. Section 6.3.3 continues to state the role of flexibility on the yaw rate
of such a kite.
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APPENDIX F

Comparison of rigid body models

Basic verification Of both the Newtonian and Lagrangian equations of motion
is done by insertion of a proven aerodynamic model in order to find out if the
equations and implementation of the generalized forces and aerodynamic states are
correct. For this purpose, an aerodynamics model of the Cessna CE500 Citation is
used. An accurate model for this aircraft is available Mulder et al. [2007], because
this particular aircraft is partly owned by the faculty of Aerospace Engineering
and used as a flying laboratory. In order to make this model suitable for flying as
a kite, a small change needs to be made. The mass of the Citation is far to large
to allow it to fly as a kite in conventional wind speeds. Therefore, the mass of the
Citation was reduced by 96%. Since the stability derivatives are dimensionless,
they remain the same for this adapted Citation model.

Further details on the aerodynamics model are interesting, but irrelevant since
the purpose is to validate the models it is inserted to. For this purpose a com-
parison is made between two different simulation models using both the same
aerodynamics model, the Newtonian model of section 3.2 and the Lagrangian
model of 3.3. The two test cases that have been selected are:

• Symmetric motion disturbed by an elevator step input at t = 1 s starting
from equilibrium conditions

• Asymmetric motion disturbed by a constant wind gust of 10 ms−1 in YE
direction

The results of the symmetric motion simulation are displayed in Fig. F.1. In
general the results are similar, they converge to the same point and the overall
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behavior is the same. The oscillation amplitude and damping however, are slightly
different. Both models should produce exactly the same result, but the difference
in method and implementation apparently causes minor differences. Nevertheless,
the differences are small enough to provide additional confidence in both models.
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Figure F.1: Symmetric motion comparison of the Lagrangian model — with the New-
tonian model —.

For the asymmetric motion simulation the results are displayed in Fig. F.2. As
with the symmetric motion results, the general behavior of both models is similar,
but there are differences as well. Due to the fact that the motion does not converge
to an equilibrium state, the end point of the simulations is not the same in this
case. The Lagrangian model is falling faster compared to the Newtonian model,
which can be observed from Fig. F.2 by the lower −ZE value for the black line.
This is in accordance with the overall greater apparent velocity. The oscillation
in the apparent velocity of the Lagrangian model is again of higher amplitude
and damping compared to the Newtonian model. As for the asymmetric case, the
differences in the results are small enough for a gain in confidence in the models.
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Figure F.2: Asymmetric motion comparison of the Lagrangian model — with the New-
tonian model —.
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APPENDIX G

Fitted constants

In this section, the numerical values are given of the coefficients which are used
in the kite simulation toolbox. The numerical values of coefficients are obtained
using a fitting procedure on experimental or numerical data.

G.1 Inflated tube constants

This section contains the coefficients which govern the behavior of the inflatable
tubes in the numerical model presented in chapter 4

Table G.1: Coefficients which govern the behavior of the inflatable tubes.

Component Coefficient Value Coefficient Value

Beam bending C1 6582.82 C5 271865251.42
C2 -272.43 C6 215.93
C3 40852.38 C7 14021.79
C4 14.31 C8 -589.05

Beam collapse C9 322.55 C11 5.3833
C10 0.0239 C12 0.0461

Beam torsion C13 1467 C17 -17703
C14 40.908 C18 358.05
C15 -191.8 C19 0.0918
C16 47.406

245



G.2 Aerodynamic constants

This section contains the coefficients which govern the aerodynamic forces in the
numerical model presented in chapter 4

Table G.2: Coefficients which govern the behavior of the aerodynamic
forces.

Component Coefficient Value Coefficient Value

Lift C20 -0.008011 C32 0
C21 -0.000336 C33 0
C22 0.000992 C34 0
C23 0.013936 C35 -3.371000
C24 -0.003838 C36 0.858039
C25 -0.000161 C37 0.141600
C26 0.001243 C38 7.201140
C27 -0.009288 C39 -0.676007
C28 -0.002124 C40 0.806629
C29 0.012267 C41 0.170454
C30 -0.002398 C42 -0.390563
C31 -0.000274 C43 0.101966

Drag C44 0.546094 C50 0.123685
C45 0.022247 C51 0.143755
C46 -0.071462 C52 0.495159
C47 -0.006527 C53 -0.105362
C48 0.002733 C54 0.033468
C49 0.000686

Moment C55 -0.284793 C59 -1.787703
C56 -0.026199 C60 0.352443
C57 -0.024060 C61 -0.839323
C58 0.000559 C61 0.137932
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APPENDIXH

Kiteplane properties

In this appendix the specifications and technical details are presented starting
with the geometry in Section H.1, followed by Section H.2 on the structure and
inertia of the Kiteplane, the chapter concludes with a separate discussion on the
flexibility issue.

H.1 Kiteplane geometry

The shape of the Kiteplane and the major dimensions are displayed in figure
H.1. It features an approximate elliptic wing with positive dihedral from the tail
boom section to the tips and is in size comparable to a small surfkite. The twin
tail booms support the horizontal tail plane that is located in between and two
vertical tail planes on top. The only control surface included in the design is an
elevator. However, as the need arises, additional surfaces can be attached with
modest effort.

The main geometrical properties are listed in Table H.1, where the mean aero-
dynamic cord and its location are calculated using the definitions from [Torenbeek,
1982]. The definitions are repeated in equations (H.1) and (H.2) respectively.

c =
2

S

∫ b
2

0

c2dy (H.1)

y =
2

S

∫ b
2

0

cydy (H.2)
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Figure H.1: Kiteplane geometry.

All geometrical properties are merely design values, because the flexible nature
of the structure tends to deform significantly under load. Section H.3 discusses
this matter and its implications in more detail.
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Table H.1: Geometric properties of the undeformed Kiteplane.

Component Parameter Symbol Value Unit

Wing Surface area Sw 5.67 m2

Span bw 5.68 m
Aspect ratio ARw 5.65
Taper ratio λ 0.66
Leading edge sweep ΛLE 0 Deg
Dihedral angle outer wing1 Γ 14 Deg
Center cord cc 1.26 m
Root cord cr 1.21 m
Tip cord ct 0.83 m
Mean aerodynamic cord cw 1.08 m
MAC spanwise location yw 1.21 m

Airframe Total length l 3.08 m
Horizontal tail distance lHT 2.24 m
Vertical tail distance lV T 2.56 m

Horizontal tail Surface area SHT 1.28 m2

Span bHT 1.68 m
Aspect ratio ARHT 2.2
Taper ratio λHT 1.0
Cord cHT 0.76 m

Vertical tail 2 × surface area SV T 0.33 m2

Span bV T 0.44 m
Aspect ratio ARV T 1.2
Taper ratio λV T 0.59
Leading edge sweep ΛLE,V T 23 Deg
Root cord cr,V T 0.47 m
Tip cord ct,V T 0.28 m
Mean aerodynamic cord cV T 0.38 m
MAC spanwise location yV T 0.20 m

1 The center wing has a zero dihedral angle.

H.2 Kiteplane structure and inertia

The structure of the Kiteplane consists of inflatable beams and canopy surfaces
that are stitched together. The beams carry the aerodynamic loads that are gene-
rated by the canopy surfaces. Figure H.2 displays the Kiteplane beam structure,
the diameters of the tubes can be found in Table H.2.

Because the beams need to be both strong and airtight they are made of two
layers, one for strength and one to keep the air inside. Besides, a single airtight
layer would hardly be airtight after all the stitches to join the parts. The materials

249



Figure H.2: Drawing of the Kiteplane beam structure.

Table H.2: Inflatable beam specifications.

Parameter Value Unit

Nominal pressure 0.400 Bar
LE front beam root diameter 0.151 m
LE front beam tip diameter 0.100 m
LE rear beam root diameter 0.214 m
LE rear beam tip diameter 0.142 m
Tail beam main diameter 0.163 m
Tail beam end diameter 0.084 m
Tail beam length (wing TE to end) 1.868 m
Horizontal tail front beam diameter 0.126 m
Horizontal tail rear beam diameter 0.062 m
Vertical tail root beam diameter 0.084 m
Vertical tail tip beam diameter 0.042 m

used for both layers of the beams and the canopy surfaces are listed in Table H.3.

Table H.3: Basic structural weight break down.

Part Material Density [gm−2]

Beam outer layer Dimension Polyant Dacron 170
Beam inner bladder 100 micron thermoplastic polyurethane 100
Canopy surfaces Teijin polyester 50

By combining the density of the materials and the geometry, the weight and
inertia can be estimated. The total inertia of the Kiteplane consists of three parts,
the pressurized beam structure, the canopy surfaces and the air confined in the
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tubes and airfoils.
To obtain the inertial information of the first two parts, the CAD model is

analyzed using Catia V5. The model is split up in two assemblies, the canopy
surfaces and the beam structure. By applying a surface density the inertia of both
assemblies are calculated. For the canopy assembly a surface density of 50 gm−2

is used and for the beam structure 300 gm−2. The latter consists of 170 gm−2 for
the Dacron layer, 100 gm−2 for the bladder and an additional 10% for the sum of
the stitches, bladder valves, velcro etc.

To calculate the contribution of the air volume to the inertia, the air is assumed
to be concentrated at lines and points throughout the Kiteplane structure. The
wing is, for example, modeled as a constant density rod located at the quarter
cord. The inertia of the tree parts combined is calculated by applying Steiner’s
parallel axis theorem. The results of the calculations are shown in Table H.4.

Table H.4: Kiteplane inertia and center of gravity with respect to the leading edge.

Parameter Value Unit

Mass 4.21 kg
xcg 0.916 m
ycg 0 m
zcg 0.089 m
Ixx 7.38 kgm2

Iyy 4.20 kgm2

Izz 11.43 kgm2

Ixy 0 kgm2

Ixz 0.18 kgm2

Iyz 0 kgm2

9
2
 c

m

 9 cm

Apparently the center of gravity is located at about 92 cm behind the leading
edge of the wing, this is at approximately 85% of the MAC. The vertical loction
of the center of gravity is 9 cm above the leading edge in the the center section
of the wing, this coincides approximately with the top of the airfoil at the wing
center section. For an aircraft this outcome would be unsatisfactory, because the
aerodynamic center of the Kiteplane is located at approximately lHT

SHT

S
= 0.51

m behind the wing ac or 15 cm in front of the cg. However, for a kite with a tether
that is attached at a location much in front of the center of gravity, the system
is stabilized because α and tether tension are positively related in the normal
operating domain.

The moments of inertia in Table H.4 are important as well, for they determine
the control power to meet the required turning rates. For aerodynamic controls,
the surface areas are proportional to the required turn rate and the moment of
inertia divided by the available moment arm. Since lift based control forces are
more efficient compared to drag forces, control surfaces should not be placed
normal to the airflow. Keeping this in mind, the ideal locations that maximize
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the moment arm of the control surfaces are easily deduced from the geometry:

• For rolling about the x-axis the surfaces should be placed at the wingtips.

• For pitching about the y-axis the surface should be placed at the horizontal
tail.

• For yawing about the x-axis the surface should be placed at the vertical
tails.

Just like a regular airplane. The resulting moment arms (to the hinge loca-
tions) and forces required for a unit angular acceleration are displayed in Table
H.5, with the right column calculated using equation (H.3).

Table H.5: Preliminary control power requirements.

Axis Motion Moment arm [m] Force for unit angular acceleration [Ns−2]

x Rolling 2.25 3.3
y Pitching 1.89 2.2
z Yawing 2.14 5.3

F

α̈
=
I

r
(H.3)

Since the moment arms do not differ a lot, the force required for angular
acceleration is ordered in the same way as the moments of inertia. Pitching is
relatively easy achieved and yawing requires most effort.

H.3 Kiteplane flexibility

Up to now this chapter has discussed both geometry and inertia as if it were a
static property, but due to the flexible nature of the Kiteplane these are simplifi-
cations that require investigation. The first question to be answered here is how
flexible is the Kiteplane? This is in fact a twofold question because if flexibility
is something as the amount of deformation occurring in normal operation, it is
determined by both stiffness and loads. For aircraft, stiffness is a structural pro-
perty and loads are probably best represented by wing loading if a single figure is
to be used.

If the Kiteplane is compared with a surfkite that has about the same wing
loading, the inflatable structure makes the Kiteplane much more rigid. On the
other hand, a Cessna 172 Skyhawk has about a ten times higher wing loading,
but the relative wing deformation in normal operation is significantly less. Still
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the global shape of the the Kiteplane, i.e. the relative position and orientation of
its major components, can be considered fairly constant in its normal operating
domain.

From the test flights is concluded that the only global parameter from Table
H.1 that changes significantly is the wing dihedral. However, if the wing is bridled
at more points this deformation becomes insignificant at global scale as well.
For these reasons the inertia of the Kiteplane as displayed in Table H.4 and the
geometric properties of Table H.1 are considered constant in the remainder of
this text. For the focus of this text, small variations in these properties are not
important. Besides, the inaccuracies in the measured values are in size similar to
the variations.

Although the deformation of the Kiteplane does not affect its properties glo-
bally, locally the fluid structure interaction can be considerable. Deformation at
airfoil level has a large impact on the aerodynamic forces and vice versa. This
can affect controllability in a negative way, but may also be an opportunity for
sophisticated controls. However, due to a lack of experimental data, incorpora-
ting aerodynamic effects of local deformation modes is beyond the scope of this
appendix.
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Samenvatting

Een Systematische Methodologie voor Vlieger Ontwerp

Vliegers bestaan al zo’n 3000 jaar [Fadul, 2009], en toch hebben ze weinig aandacht
genoten van de wetenschap. En dit terwijl vliegers een belangrijke rol hebben
gespeeld bij de ontwikkeling van het vliegtuig in de negentiende eeuw. In de
eerste helft van de twintigste eeuw heeft de aandacht van de wetenschappelijke
gemeenschap er voor gezorgd dat de luchtvaart kunde en techniek is uitgegroeid
tot een bloeiende tak van wetenschap. De systematische en wetenschappelijke
aanpak van het ontwerp van het vliegtuig heeft er toe geleid dat het vliegtuig een
geavanceerd en ver doorontwikkeld product is geworden en die de maatschappij
als geheel gevormd heeft.

Het ontwerp van vliegers is nog steeds een voornamelijk proefondervindelijk
proces. Voor hedendaagse applicaties zoals kite surfing en andere sport-gerelateerde
activiteiten heeft een dergelijk process laten zien dat het mogelijk is om tot goede
resultaten te komen. Dit is mogelijk gemaakt door verbeterde materialen en het
feit dat het relatief goedkoop is om prototypes te maken. Deze fase van prototype
ontwerp en evaluatie is aanzienlijk goedkoper van voor conventionele vliegtuigen.

In het laatste decennium heeft er een toename plaatsgevonden van aandacht
voor nieuwe industriele toepassingen van vliegers. Meer dan 40 instituten wereld-
wijd houden zich momenteel bezig met energieopwekking en transport met behulp
van vliegers [Furey, 2009]. Deze nieuwe industriele toepassingen van vliegers intro-
duceren een eisenpakket wat veel strikter en complexer is. De eisen met betrekking
tot prestaties en veiligheid zijn aanzienlijk complexer dan voor conventionele surf
kites.

Het gebruik van een proefondervindelijk ontwerp proces bij het ontwerp van
deze complexe industriele vliegers leidt ertoe dat het aantal benodigde prototypes
drastisch zal toenemen. Ook loopt men het gevaar dat de evaluatie van al die
prototypes oncontroleerbaar wordt. Om grip te houden op het ontwerp van deze
complexe vlieger systemen is er een systematische ontwerp methodologie nodig.
Een proces wat lijkt op het proces van vliegtuig ontwerp.
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De methodologie die in deze dissertatie gepresenteerd wordt is gestoeld op drie
pijlers:

• Kennis over de dynamica, constructie en ontwerp van vliegers en vlieger-
gerelateerde technologie.

• Ontwerp programma’s die intuitief en rekenvriendelijk zijn.

• Reproduceerbare metingen om kennis te ontwikkelen en modellen te valid-
eren.

Om de basiskennis van vliegers neer te zetten is er eerst gekeken naar een zo
simpel mogelijke modelvorming. In deze modelvorming wordt de vlieger gezien als
een rigide lichaam. Twee rigide lichaammodellen worden ontwikkeld en met elkaar
vergeleken. Deze vergelijking toont aan dat de twee modellen vergelijkbaar zijn in
de resultaten die ze produceren. Elementaire vragen met betrekking tot stabiliteit
kunnen met deze modellen beantwoord worden. Voorts maakt de analogie met
de modelvorming van conventionele vliegtuigen het mogelijk om een eenvoudige
vergelijking te maken tussen vliegtuigen en vliegers. Deze vergelijking is gebaseerd
op de eigenwaarden en eigenbewegingen van een vlieger en een vliegtuig.

De flexibiliteit is een van de voornaamste verschillen tussen vliegers en vliegtu-
igen. Deze flexibiliteit is iets wat moet worden verwelkomd. Het stelt de vlieger in
staat om op een uiterst elegante wijze te reageren op verstoringen door te vervor-
men en de verstoring te absorberen. Voor een flexibele vlieger speelt de flexibiliteit
een belangrijke rol in de stabiliteit en vliegprestaties. Daarintegen presenteert de
flexibiliteit wel een extra complexiteit voor de ontwerper. Om de flexibiliteit te
simuleren is gekozen voor een ”Multi-body dynamics” aanpak.

De ”Kite Simulation Toolbox” is een numeriek simulatie software pakket voor
flexibele vlieger constructies en is opgezet als een ”toolbox” binnenMSCADAMS
om zo een intuitive interactie met de gebruiker te bewerkstelligen. De goede toe-
gankelijkheid van de software is een belangrijke eis omdat de huidige vlieger in-
dustrie niet de financiele middelen heeft om een complexe software infrastructuur
op te zetten.

De ”Kite Simulation Toolbox” gebruikt drie basis blokken om vliegers te
bouwen. Deze blokken zijn (1) ”kabels”, (2) ”opblaasbare buizen” en (3) ”doek-
vleugel profielen”. Deze blokken kunnen worden gebruikt om een groot aantal
vlieger configuraties te bouwen.

De kabels bestaan uit een ketting van rigide cylindrische elementen die ver-
bonden zijn met kardanscharnieren. Op elk van deze elementen werkt een aero-
dynamische weerstandskracht.

De opblaasbare buizen worden beschreven door een ketting van korte cylin-
drische elementen die verbonden zijn met bolscharnieren. Deze bolscharnieren
maken rotaties om alle drie de assen mogelijk. Twee van deze rotaties zijn voor
buiging, de derde voor torsie. Over deze bolscharnieren staan drie-dimensionale
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rotatieveren. De stijfheden van deze rotatieveren bepalen het buig- en torsiege-
drag van de buis. Een algoritme wordt gedefineerd voor deze stijfheden, als functie
van interne druk, locale buisstraal en locale deflectie, om het juiste buiggedrag
te bewerkstelligen. Deze algoritmen zijn gebaseerd om een serie buigproeven op
opblaasbare buizen.

De doek-vleugel profielen worden gemodelleerd door een verbinding te maken
tussen de voorzijde en achterzijde van de vleugel. De voorzijde bestaat uit de
eerder beschreven opblaasbare buis, de achterzijde wordt gevormd door een ka-
bel. De verbinding bestaat uit een ketting van rigide cylindrische elementen. Op
de kruispunten van deze elementen staan de krachtscomponenten die de aero-
dynamische belasting op de vleugel introduceren. Een algoritme is gedefineerd
die aan de hand van invalshoek, profielwelving en profieldikte de juiste aerody-
namische coefficienten geeft. Dit algoritme is gebaseerd op een CFD analyse van
een groot aantal profielen met verschillende diktes en welvingen bij verschillende
invalshoeken.

De thesis presenteert tevens een validatie van dit model. Eerst is er gekeken
naar een vergelijking op het niveau van de basis blokken. Daarna is er een evaluatie
gedaan aan de hand van de drie dimensionale zeilvorm van de vleugel. Deze
vorm is eerst gemeten in de windtunnel van de Universiteit van Stuttgart door
middel van fotogrammetrie en vervolgens vergeleken met de gesimuleerde vorm.
Deze vergelijking toont aan dat er een sterke overeenkomst is tussen gemeten en
gesimuleerde waardes. Ten slotte zijn er metingen gedaan aan surf kites tijdens de
vlucht. De krachten op de lijnen zijn gemeten, alsmede de absolute snelheid van
de vlieger ten opzichte van de aarde, en deze zijn vergeleken met de gesimuleerde
waarden. Wederom toonde de vergelijking een sterke overeenkomst.

Met de toegenomen kennis en ontwikkelde gereedschappen zijn er een aantal
casussen aangepakt. De eerste casus berteft het fenomeen van effectieve kabel
lengte. De tweede casus was gedoelt op de discussie die er bestaat binnen de
vliegerwereld omtrent het sturen van een surf kite. De reden waarom een surf kite
een stampend stuur gedrag vertoond was niet duidelijk. De ontwikkelde numerieke
simulatie presenteert een nieuwe, onderbouwde hypothese. Voorts toont de sim-
ulatie aan hoe het stuurgedrag beinvloed kan worden. De derde casus betreft de
stabiliteit van de ”kiteplane”, een vlieger met een vliegtuig-achtige configuratie.
Tijdens de vliegtests was gebleken dat de kiteplane een instabiel asymmetrisch
geinverteerde slingerbeweging vertoonde. Door middel van een analyse van de
bewegingsvergelijkingen wordt de oorzaak van dit gedrag bloot gelegd. Een aan-
passing in het ontwerp wordt geformuleerd en een vliegtest van het nieuwe ontwerp
toont een sterk verbeterte asymmetrische stabiliteit.

Deze dissertatie concludeert uiteindelijk dat een wetenschappelijke aanpak
van het ontwerp van vliegers leidt tot een sterk verbeterd begrip en een meer
gestructureerd ontwerp proces. De modellen hebben aangetoont een significante
bijdrage te kunnen leveren aan de toekomstige ontwikkelingen van vliegers en
vlieger-gerelateerde technologie.
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