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Abstract

Tooth removal is one of the most performed surgical procedures worldwide. Despite the high
amount of tooth removal procedures carried out each year, scientific understanding of these
procedures is not present. Knowledge of force and torque behaviour is limited and knowledge
about movements has never been subject to scientific research before. This study is an initial
attempt to describe the factors that influence tooth removal in terms of forces, torques and
movements. In-vitro measurements were performed that resulted in a dataset containing
force, torque and movement time series of 181 human demonstrations of tooth extractions.
This report showed how feature engineering and classification modelling were employed to
find tooth removal explaining parameters in the dataset.

The feature engineering process led to numerical features describing the force and movement
(rotation) time series. The rotation features were found to be most descriptive in describ-
ing differences in tooth removal procedures. This introduced five distinct rotation strategies
that grouped the human demonstrations based on similarity of extraction strategy. These
groups have been used as classification labels in the supervised learning process. A Naïve
Bayes algorithm and a Logistic Regression algorithm were implemented as prediction models.
These models showed that while the rotation features contributed the most to the predic-
tion performance, there was need for additional force features to reach maximum prediction
performance.

The results showed how feature engineering and classification modelling are the first steps in
understanding the procedure of tooth removal.
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Chapter 1

Introduction

Tooth removal is one of the most commonly performed surgical procedures worldwide [1]. In
the United States alone, an estimated amount of 10 million wisdom teeth (only 4 out of all
32 human adult teeth) are extracted each year, accounting for an annual cost of more than
$3 billion [2].

1-1 Relevance

Despite the high amount of tooth extractions carried out each year, understanding of this
procedure is limited. Knowledge about the reaction forces or torques is limited, and previous
research only aimed at measuring the maximum amount of force necessary [3, 4, 5]. Further-
more, the directions in which the forces are applied, and foremost the movement the dentist
performs, have never been subject to scientific research before. The lack of this technological
understanding translates in the lack of a fundamental model explaining the intrinsic proper-
ties of tooth removal. In consequence, education on tooth removal also has been unchanged
for 2000 years, resulting in limited technological advancement in this field. Nowadays, ed-
ucation only consists of reading minimal and general instructions on ‘rocking and twisting’
motions and pre-clinical training possibilities are absent or mostly inadequate. Students have
to practice their skills on plastics jaws, requiring less force. Furthermore, the performed
movements are not reflecting a real clinical situation. Hanson et al. showed how teaching
tooth removal on cadaver jaws is more realistic then regular plastic mannequins [6]. However,
most European dental schools do not have the resources to introduce such methods, so the
student’s skill set has to be learned on real patients [7].

The problem of limited training facilities is in contrast to other specialisations in dentistry
like restorative or endodontic dentistry. These specialisations booked more progress in imple-
menting pre-clinical training possibilities. Virtual reality modules or simulator environments
are already part of the current educational material [8]. An example of the implementation
of such a training simulator in restorative dentistry is shown in Figure 1-1. This simulator
uses a physical rotary drilling tool in combination with a virtual environment to teach the
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Figure 1-1: Simodont training simulator where the procedure of hard tissue removal is practiced
with a physical rotary drilling tool.1

removal of hard tissue. Such methods however, are not yet implemented in the field of tooth
removal [8].

This problem becomes even more evident when focusing at improvements in preventive den-
tistry programs. In well-developed countries, preventive dentistry gives rise to healthier teeth,
contributing to a decrease in necessary extractions [9]. Dental students are thus suffering from
decreased exposure to ‘learning by experience’ because fewer teeth need to be removed in gen-
eral, facilitating lower confidence levels amongst recently graduate dentists [7]. A concerning
development rising from this are the increasing referrals to Oral and Maxillofacial Surgery
(OMFS) practices for simple tooth removal procedures [7]. This secondary line care is more
expensive, so referrals due to a lack of confidence should be avoided as much as possible [9].

Summarizing, the lack of understanding of tooth removal has consequences both on educa-
tional level and on a clinical level. The need for improving this is high, and understanding the
tooth removal procedure should be considered as the first step towards a scientific model de-
scribing the intrinsic properties of what makes (un)successful tooth removal. This facilitates
the design of evidence-based educational material, helping dental students gaining confidence
and, potentially, supplying them with reliable pre-clinical training possibilities. Next to that,
it has the potential to help clinicians predict clinical outcomes (i.e. complicated treatments),
leading to more (cost-)efficient referrals to oral and maxillofacial surgeons.

1-2 Research Question

In order to start to understand the tooth removal procedure, the fundamental properties
of this procedure should be found. Stegenga already showed the importance of different
movement patterns [10]. Ojala showed how the amount of force could be different in various
teeth [11]. However, no uniform conclusion has been drawn on the actual interaction between
the two and their precise value yet. Measuring these movements and forces and analysing them
would be a first step towards understanding tooth removal. To date, reliable measurements
of forces and movements have not been possible due to technological impossibilities. The

1Courtesy of MOOG. Image from https://www.moog.com/markets/medical-dental-simulation/haptic-
technology-in-the-moog-simodont-dental-trainer.html
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key-hole nature of the tooth removal procedure makes it challenging to adequately measure
movements. Furthermore, the forces and moments are only measured using strain gauges on
the extraction tool [3, 4]. These are gripping forces, but no reaction forces of the tooth itself
are measured. In addition, the rare combination of high forces and subtle movements has not
been subject to research before.

However, advances in robotic technologies makes it possible to use a robot for recording
human motion. The robot’s precise motion tracking capabilities resolve the difficulties of
measuring key-hole experiments. In addition, external force-torque sensors can be employed
to measure reaction forces and reaction torques. This results in a dataset containing force,
torque and movement data of human demonstrations of tooth removal procedures. Features
describing differences between tooth characteristics could be deducted from the dataset and
used to analyse the movement and force-torque data. In this way, extraction strategies,
repetitive patterns or anomalies can be detected. Tooth specific parameters can be deducted,
and information can be provided in which manner these parameters are of influence during
a particular tooth extraction. With these parameters, machine learning can be employed
to perform predictive modelling of the found structures and patterns. With these patterns,
predictions can be made on what tooth is extracted, what the force level should be or what
movement should be made.

This thesis aims to bridge the scientific gap of limited understanding of the extraction pro-
cedure. Robotic technology is employed to record human demonstrations of tooth removal
procedures for modelling and analysis purposes. These human demonstrations involve the
coherence of forces and movements and their interactions. Drawing conclusions from the ob-
tained data could give insight into the explanation of tooth removal procedures which serves
as the main research question and goal of this thesis:

Main Research Question (MQ)

How can the process of tooth removal be understood in
terms of forces, torques and movements?

This research question gives rise to a framework which can explain tooth removal by trans-
lating human demonstrations of tooth removal procedures into understanding of the tooth
removal process. This framework involves the development and validation of a reliable and
safe measurement setup, which can capture the interplay of the human movement and re-
sulting forces as precisely as possible. Furthermore, it involves the storage and analysis of
this dataset, which are the first steps in bridging the scientific gap that exists in this field.
If relevant features are found from the dataset that can describe similarities or differences
between teeth, these features can be employed in a supervised prediction model. Analysing
the behaviour and outcomes of such a prediction model provides insights into the impor-
tance of the features. To answer the main research question, the above leads to the following
sub-questions:
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Sub-Question 1 (SQ-1)

What are the most relevant factors in explaining tooth removal and how can we
explain extraction differences between teeth?

Sub-Question 2 (SQ-2)

To what extend can a supervised prediction model be used to explain the factors
that influence the process of tooth removal?

1-2-1 Objectives

The above research questions are posed in the framework of understanding the process of
tooth removal, which is a broader research then only described in this thesis. Within the
scope of this broader research, some overarching objectives for this thesis are defined and
summarized below:

• Bridging the scientific gap in the field of tooth removal.

• Utilizing robot technology to capture clinician’s extraction movement and constructing
a dataset respresenting a real extraction as close as possible

• Providing a basis for the development of reliable educational material for dental students
by providing intuitive and science based evidence for tooth removal explaining factors

1-3 Approach

A systematic approach should be followed to give a justified answer to the research questions
defined above. Tooth removal is an accurate and careful procedure, influenced by numerous
parameters. Therefore, it must be ensured that the movement of the extraction process and
its reaction forces are captured in high detail. A hypothesis-based approach will be used
while approaching (MQ), (SQ-1) and (SQ-2), which is shown in Figure 1-2. This facilitates
a systematic analysis of the obtained data and helps to scope the thesis’ objectives. This
section will elaborate on the various steps that should be taken before the research questions
can be answered. This section will also serve as an outline for the remainder of this report.

Figure 1-2 shows the approach used to draw conclusions from the complex dataset of tooth
removal. Two phases are contributing to this goal, the phase before drawing the hypothesis
and a phase after drawing the hypothesis. The first phase is denoted as the exploratory
phase. Here the raw data is obtained from human demonstrations and it is pre-processed.
Some first insights are made based on the intrinsics of the dataset. These insights are used to
come up with hypotheses about what factors are explaining tooth removal. The second phase
is an iterative phase where the hypotheses are used as a starting point to perform feature
engineering and build a prediction model. For example, a choice for a feature is made because
it looks promising. This feature is extracted from the time series and used as an input in the
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Figure 1-2: Systematic hypothesis-based approach used to answer the research questions. This
figure explains the approach used to analyse tooth removal, but it is also used as a guideline
for the rest of the report. The steps taken to come to a justified answering of the research
question are drawn in the coloured rectangles. Each step is described in a separate chapter,
indicated with the abbreviation ‘CH’ in the corners. The inner rounded rectangles represent the
sub-steps that are made, and the smaller grey rectangles are the representation of the data.
Experiments are carried out with a measurement setup to obtain force, torque and movement
data from human demonstrations of tooth removal procedures in 10 dimensions. This raw data is
pre-processed, transformed and augmented to 14 dimensions. First insights are made together
with clinical expertise, leading to a hypothesis about factors influencing tooth removal. Based on
this hypothesis, feature engineering is performed. This step reduces the 14-dimensional time
series to a n-column sized table, with n representing the number of features. Next, a prediction
model is built on top of the feature engineering model and the extracted features are used
in a Naive Bayes algorithm and a Logistic Regression algorithm to make a classification between
groups of teeth. The results of the feature extraction process and prediction modelling are tested
against the hypothesis, and based on the results, conclusions are drawn.

prediction model. If the features do not show performance, the feature engineering process
is tweaked and revised. Multiple hypotheses were adapted and reviewed before coming up
with the final one. This report only describes the last iteration from hypothesis to results
and which steps are taken to accomplish these results. Both feature engineering and and
prediction modelling leads to results. These results are tested against the hypothesis and
conclusions are drawn accordingly.

1-3-1 Exploratory Phase

First, the raw data should be obtained from the human demonstrations measured with the
measurement setup. The development and characteristics of the measurement setup are
described in Chapter 3, where relevant design choices are explained. The design of the in-
vitro extraction experiments and the characteristics of the raw dataset are described. Next,
Chapter 4 describes how the raw data is pre-processed such that sensor noise is filtered
and missing data is augmented. Correlations, trends and anomalies are inspected to gather
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more information about the dataset. With the help of clinical expertise, a hypothesis about
features explaining tooth removal is defined from these first insights. This clinical expertise is
of high importance to justify if found patterns are reasonable and have a chance to survive as
hypothesis. The hypotheses are used as the first building block towards the results that are
obtained in the later stages of the research. It will serve as the bridge between the exploratory
phase and the iterative modelling phase. As such, the hypotheses will be described at the
beginning of Chapter 5.

1-3-2 Iterative Phase

Subsequently, there is an iterative phase where the formed hypothesis is modelled. The second
part of Chapter 5 describes the feature engineering process that extracts features from the
pre-processed time series data. These features are designed such that they represent the state-
ments made in the hypothesis. These features are extracted from the time series and placed
in a table. This table can be used as an input to the prediction model, which is described in
Chapter 6. Multiple features combined can be used to build a Gaussian Naive Bayes classifier
that uses Bayes’ Theorem to find coherence amongst the extracted features. This Naive Bayes
prediction model will serve as a baseline model which will be tuned and compared to a more
sophisticated Logistic Regression model. These algorithms are not the most sophisticated
machine learning algorithms available. In this research however, the goal is not to reach the
best prediction performance. The goal is to implement an interpretable method, allowing
humans to gain insights [12]. Best subset implementation and feature importance techniques
will be used to gather feature specific information, giving more evidence for feature descrip-
tiveness and model performance contribution. From the features and the modelling of the
prediction model, more sophisticated insights will emerge, providing additional conclusions
about the tooth removal procedure.

1-3-3 Additional Outline

In addition to the chapters described above, Chapter 2 will provide the reader with the
required background knowledge about the tooth removal process and the machine learning
principles used in this report. Furthermore, Chapter 7 describes the results of the feature
engineering process and the prediction model analysis. Chapter 8 provides a summary of the
executed research and discusses and justifies the results. Furthermore, the limitations of the
research are stated and recommendations for future research are provided.

1-4 Related Work

This section shows the work done in literature regarding the application of robotics in den-
tistry. A small overview of robotics applied in three most essential sub-areas of dentistry
is shown, involving orthodontics, implantology and restorative dentistry. This subsection is
included to show what the current state of technology readiness is in dentistry, and what the
possibilities are for applying robotics in the field of tooth removal.
In orthodontics, robots are mostly used for bending dental braces. A solution widely used
in practices is the Suresmile treatment [13]. Scanning the mouth with 3D equipment is used
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to achieve a Computer Aided Design (CAD) model of the mouth. With this CAD model,
the researchers can plan effective treatments and reduce bending error margins. A robot
is used to bend the metal wire brace precisely based on the 3D CAD model. A decrease
in treatment time of 5 months (25%) is achieved compared to conventional methods. The
process of bending the archwire is a crucial factor for decreasing these treatment times [14].
A bending robot not yet implemented in practices but showing potential is described by Jiang
et al. They introduced a bending robot that uses a Bessel curve to model the shape of the
archwire [15].
In implantology, the application of robotics is more focused on robotic guidance research. In
the United States, a healthcare startup developed Yomi, a robot assisting surgeons in perform-
ing implant surgery. With integrated visual feedback and haptic guidance, Yomi is considered
as cutting edge technology in the field of implantology and robotic integration in dentistry.
However, it should be taken with caution, as results in terms of accuracy, reproducibility
and repeatability of Yomi have not been published in literature so far. Additionnaly, other
research groups have published work where the human error is being eliminated, and the
accuracy is improved when performing implant surgery. Sun et al. describe a setup that gen-
erates a virtual plan to determine the ideal implant position [16]. Markers are attached in the
mandibula before the mouth is scanned with a CT scan. This generates a virtual 3D model
of the mouth, where the location of the implant position is known relative to the mandibula.
Touching upon the markers with a guided robot will calibrate the system so the coordinates of
the robot are transfered to the virtual environment. The software calculates the most efficient
path and the drilling robot executes the path to drill the hole for an implant. Furthermore,
Yu et al. made use of a stereo vision-based navigation system on a 3-DOF manipulator to
approach the drilling holes for an implant [17]. The manipulator is moved by a clinician in a
force field, causing a force feedback guidance system guiding the manipulator in the direction
of the drilling hole.
In restorative dentistry, robotic research is mainly applied in the field of hard tissue removal.
This method however, relies a lot on human accuracy [18]. With small holes, the conventional
treatment strongly relies on the accuracy of the clinician. Yuan et al. proposed a fully auto-
matic tooth preparation technique that eliminates manual operation from a clinician [19, 20].
A three-dimensional motion planning tool controlling an ultra-short pulse laser beam is used
to perform the complete tooth preparation process. This research however, is only in the
preliminary phase where it is not ready to be implemented in daily practice yet. Otani et al.
investigated the removal of hard tissue as well, but only for aesthetic purposes and a different
approach is used [21]. The hard tissue is removed with the same rotary cutting tool as in the
manual removing of hard tissue, only mounted on a robotic arm which is used as guidance
for this key-hole experiment. Better accuracy and precision was reached compared to the
manual preparation method. No implementation was given however, so this research is still
in the preliminary phase.
Concluding this subsection, most of the studies show that human intervention is still needed.
Dentistry is still not at a point that robotics can be an integrated part of the daily workflow,
but the existing research shows the advantages of increased precision, accuracy and more
precise pre-surgical planning. Orthodontics was shown to be the only field in dentistry where
other than basic research has been performed, and robotic solutions are yet implemented in
the daily workflow. However, in the fields of implantology and restorative dentistry, only
fundamental research and preliminary studies have been carried out.
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Chapter 2

Theoretical Background

This chapter provides the dental principles and the technical background knowledge necessary
to better understand the steps made in the remainder of this report. Section 2-1 describes
the background knowledge of the domain of dentistry. This section starts with explaining
relevant anatomical knowledge about the mouth and the teeth inside the upper and lower
jaw of a human. Furthermore, the relevant background information about the tooth removal
procedure is explained. In addition to this, the various techniques currently taught to dental
students are discussed.

Section 2-2 describes background information about the feature engineering process and why
it is employed in the machine learning pipeline. Reasons are given why feature engineering is
particularly useful for trying to understand tooth removal procedures. The features from the
feature engineering process will be used in a Naïve Bayes (NB) prediction model and a Logistic
Regression (LR) prediction model. The working principles of these models are discussed, and
evaluation techniques to measure the performance of these algorithms are explained as well.

2-1 Dental Background

2-1-1 Anatomy

In the left figure of Figure 2-1, all 32 teeth of a healthy adult are displayed. In this research,
the notation of The Fédération Dentaire Internationale (FDI) is used. The mouth is divided
into four quadrants, each holding eight teeth. The first number refers to the quadrant, the
second number refers to the individual tooth within this quadrant. The figure should be seen
from the dentist’s perspective, where the right and left annotations are corresponding to the
patient’s perspective. This means the notation “31” refers to an incisor in the left half of the
lower jaw and the notation “17” refers to a molar in the right half of the upper jaw.

These 32 teeth can be subdivided into the following groups; 8 incisors, 4 canines, 8 premolars
and 12 molars of which the four most distal ones are also known as the ‘third molars’ or
‘wisdom teeth’. Teeth characteristics are mainly determined by the root type. A tooth can
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10 Theoretical Background

Figure 2-1: The left figure is showing an outline of a regular human mouth, seen from a dentist’s
perspective.1 The right and left declarations are corresponding to the perspective of the patient.
The right figure shows the anatomy of an adult molar tooth, with important dental terminology
visualized.2

have single or multiple root, varying in size, length and shape (round/oval/straight/curvy).
The right figure of Figure 2-1 is displaying the internal structure of a single tooth. The most
important parts are the crown and the root(s), which contain the vital tissues of the tooth.
The crown is the part that is visible in the mouth and it is the hardest form of tissue in
a human body. In healthy patients, the root is entirely underneath the gingiva and for the
largest part it is situated inside the bone. In patients with periodontal diseases, parts of
the root can submerge because of retracting periodontal tissue. The cementum (outer layer
of the root) is strongly connected to the surrounding bone through fibrous ligaments. The
combination of loosening these fibrous ligaments and space creation between gingiva and bone
is considered as ‘loosening the tooth’.

2-1-2 Tooth extraction

Generally, two types of instruments are available to remove a tooth: a forceps and a luxator.
A forceps is a commonly used tool while extracting teeth. Tooth crowns are varying in shape,
so multiple variations of forceps’ exist to facilitate a solid grip on every tooth. Based on
individual preference of the clinician and varying clinical situations, a luxator (also known as
an elevator) could be used as well. This is a small long tool which can be placed in between
two teeth. With a very high torque, the tooth is plied out of its socket, located in the gingiva
(see Figure 2-1). The constantly changing position of the luxator relative to the tooth makes
reliable measurements of forces and their directions even more difficult, which was the main
reason only to use forceps in this research.

Two extraction techniques are most frequently used in tooth removal: a rocking motion and
a twisting motion. Both tooth motions are visualized in Figure 2-2. The chosen technique
depends on the number of roots a tooth has and its shape. Single-rooted teeth are twisted
around their longitudinal axis. Multiple-rooted teeth are extracted using a rocking motion,
because multiple roots make a twisting motion impossible [4]. When a tooth is moved during

1Adapted from https://sites.google.com/site/oralhealthin/articles/tooth-numbering-systems
2From https://cdn.sharedentalcare.com/wp-content/uploads/2019/06/Tooth-Anatomy.png
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2-1 Dental Background 11

a rocking and twisting motion, it is believed that space is created for the physical removal of
the tooth in the softer centre part of the bone, called bone marrow [10]. At the same time, the
ligaments between the cementum of the tooth and its bony sockets are disrupted. Depending
strongly on the position of the root(s) inside the bone relative to the strong outer layer of
the bone (cortex) and softer part (marrow), a ‘preferable’ direction of movement is usually
present.

Figure 2-2: Visualization of the two most frequently used extraction techniques. The left figure
displays a rocking motion and the right figure displays a twisting motion.3

Currently, only these ‘rocking’ and ‘twisting’ motions are taught through a similar table as
Table 2-1 to dental students, based on the book of Stegenga [10]. The extraction techniques
are subdivided into groups of similarity, and for every group, only basic instructions are given.
Two thousand years ago, a man named Aurelius Celcus, also described tooth removal with
the same words: ‘rocking and twisting’ [22]. So, compared to the work of Celcus, education
on these extraction techniques has not changed in 2000 years. Table 2-1 is showing how this
educational material is handed to the students by Stegenga nowadays. The practical skill of
extracting teeth is transferred through a table. Together with the fact that tooth removal ed-
ucation has not changed for over 2000 years, this table gives the impression that there is more
to tooth removal than only ‘rocking’ and ‘twisting’. Other initiatives to improve tooth removal
education have been described (i.e. videos, cadaver studies), but their representativeness and
therefore their use is limited [7].

Table 2-1: Extraction techniques per tooth, grouped together based on similarity of extraction
technique. This table is a merged and adapted version from Table 12.1 and Table 12.2 from [10].

Extraction technique Tooth number Root shape

Twisting 11, 21 Round shaped
34, 35, 44, 45 Sometimes two roots

Rocking 12, 22 Oval shaped
Rocking + twisting 13, 23 Long oval shaped

15, 25 Flat shaped
Rocking [Lingual/Palatinal]4 31, 32, 33, 41, 42, 43 Long oval root

14, 24 Two thin roots
16, 17, 26, 27 Three roots

Rocking [Highly Lingual] 36, 37, 46, 47 Two flat shaped roots

3Adapted from https://support.clearcorrect.com/hc/en-us/articles/203836918-Tooth-Movements
4Lingual is the clinical term for towards the tonque as used in the lower jaw, palatinal is the clinical term

for towards the palatinum as used in the upper jaw. However, both lingual and palatinal represent the same
motion: opposite to buccal
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2-2 Machine Learning

Machine Learning is a subset of the broader term Artificial Intelligence (AI). AI research
focuses on techniques that enable computers to mimic human intelligence. Machine learning
focuses on improving task performance from experience using statistical techniques. An al-
gorithm develops an internal model to pair input data to output data. A formal and widely
accepted definition of the term machine learning was proposed by Tom Mitchell [23] two
decades ago:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E.”

— Tom Mitchell, 1997

In general, machine learning algorithms can be categorized based on the learning style an
algorithm adopts to solve the problem statement. This learning style is fully dependent on
the amount of supervision given on the input data. We can distinguish between supervised
learning methods, unsupervised learning methods, semi-supervised learning methods and re-
inforcement learning. Supervised learning is the learning method where the input data is
labelled. These labels are the desired solutions, and the algorithm learns from these labels.
Unsupervised learning is the learning method where the input data is not labelled, and the
algorithms try to learn without supervision. When providing labels for large datasets is costly,
or if the labels are not available, a semi-supervised learning approach is often used [24]. The
input data mostly has unlabeled instances and a few labelled instances. Reinforcement learn-
ing is the learning system that shows how agents take decisions in an environment to maximize
the cumulative reward over time [25]. The system learns from these rewards while developing
policies for performing actions in varying situations. Some examples of reinforcement learning
applications are learning to play ball-in-a-cup [26] or learning to play table tennis [27].

In this research, we employ supervised learning for our analysis. The use of a supervised
learning approach has two main reasons: First, our dataset will not be large, so unsupervised
learning is expected to yield mediocre performance, while supervised learning generally per-
forms better with smaller datasets [28]. Second, supervised learning has the advantage that
the labels of the input data are known. These labels are not only used to build the model
that predicts the correct output, but they can also be used to give contextual information on
what happens during the learning phase. This can be used in our favour to find predictors
for specific extraction strategies or various clinical situations.

Figure 2-3 shows an example of how labelling works in a spam-filter, a typical example of a
supervised learning problem. Each instance (envelope) is labelled as spam or non-spam. This
label can be considered as the class. The model learns a policy from the coupled class and
instances in the training set, and this is applied on a new, unseen email, where the goal is to
predict the correct value of the class.

Supervised learning problems can be categorized into two learning types: classification prob-
lems and regression problems [29]. Classification is the process where the prediction model
is assigning observations to a class. The spam-filter problem in Figure 2-3 is an example of
such a classification task. The classification model can be a binary, or a multi-class prediction
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2-2 Machine Learning 13

Figure 2-3: Supervised learning principle applied on a spam filter. Each instance is labelled with
a class and the model learns these pairs. In this way the model is able to classify the class of an
unseen instance (from [28]).

model. In multi-class prediction, the model is capable of predicting more than one class.
Regression algorithms are predicting continuous numerical values based on the information
hidden in the input information. It tries to find the relationship between response Y and
input predictor X. Typically regression algorithms are used for stock value prediction or
housing prices.

In this research, the classification prediction type will be used to build the prediction model.
Classification will be more suitable than regression, because with classification we can check if
the features make sense. Predicting continuous values with regression would only be justified
if the features have successfully shown to be predictors for tooth removal, which they are
not yet. The labels (classes) for classification in our model will be found based on similarity,
emerging by the implementation of a feature engineering approach. Feature engineering is
a common, underestimated step within the machine learning pipeline, but has proven to be
decisive when domain expertise is embedded in the feature engineering process [30]. The
following subsection describes how feature engineering works and how it could be applied in
our research.

2-2-1 Feature Engineering

Usually, several steps in standard order have to be made when applying machine learning
to real-world problems. This sequence of steps is typically called a pipeline. This includes
but is not limited to the gathering of the data, removal of outlier data, filtering, applying
transformations, doing feature extraction, perform model training, perform predictions and
performing evaluations. A typical example of a Machine Learning pipeline can be seen in
Figure 2-4.

This figure shows that there are more steps to machine learning then only picking a learning
model and apply it on a dataset. As can be seen in Figure 2-4, this learning model needs
features as an input and learns the mapping to the desired outputs. The general form of
the last three steps of this figure can be seen in Equation (2-1). Here X is the input to the
machine learning model and y is the output of the machine learning model. The function f is
the mathematical model that is fitted to the input data such that it learns the corresponding
outputs.

y = f(X) (2-1)

Master of Science Thesis W.M. de Graaf



14 Theoretical Background

Figure 2-4: Typical machine learning pipeline from raw data to output predictions. The first
step is the acquisition of raw data. The second step is the feature engineering step, which often
also included pre-processing of the raw data. Subsequently, the features are extracted and used
as an input to a machine learning model. Predictions are made with this model which leads to
an output (figure adapted from [31]).

This shows that the features represent X and the learned classes represent y. A feature is
a numeric representation of a portion of the raw data, which is the right input form for the
machine learning pipeline [30]. The process of extracting these features from the raw data
is called feature engineering, depicted as the second step in Figure 2-4. It is considered as
an important step to make machine learning models perform well. Well-chosen features can
make the modelling part easier and more informative, yet increasing the output performance
of the pipeline. Harvey et al. and Bagnall et al. argued that higher model performance can
be reached when the input data is transformed to feature-based representations rather than
building complex prediction models in spaces that are not representative for the input data [32,
33]. Feature Engineering is widely applied in multiple domains such as text analysis (spam-
filters, sentiment analysis or translation), image recognition (automatic driving, number-plate
recognition or tumour detection on CT-scans) [34] or in the domain of time series analysis
[35]. In the latter, the time series is transformed into a feature-based representation. This
set of features can be used to find similarity amongst multiple time series [36]. An example
of the feature extraction process and the resulting feature representation form can be seen in
Figure 2-5. It shows how the number of rotations and the mean length of a back and forth
movement of a time series can be translated into a feature-based representation.
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Figure 2-5: Feature engineering process on a single demonstration. The black curve represents
the time series data. Two features are extracted from this time series: the amount of rotations,
annotated with the circles, and the length of one back and forth movement, annotated with the
arrows underneath the plot. These two features are placed in a table, as shown in the lower right
of the figure. Each experiment is depicted by a row and the features are depicted by a column.
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2-2 Machine Learning 15

The resulting representation is a table where the columns are the feature vectors and the rows
are the experiments. Referring back to Equation (2-1) and step 3 in Figure 2-4, this table is
the input format X for the machine learning algorithm.
With the variety of applications of feature engineering to real-world problems, the manual
selection of features from a dataset is dependent on the knowledge of the researcher. This
automatically means that the performance of the resulting prediction model is dependent
on the knowledge of the researcher. If the domain expertise of the researcher is put into
practice in the right way, the features will describe the underlying mechanisms of the data in
an efficient way and critical information can be isolated. This can help the machine learning
model to focus on what the significant predictors for the specific problem are. In our our
the implementation of feature engineering is mainly chosen because the information retrieval
from the feature engineering process is high. This gives insight in what factors influence tooth
removal and how features can explain differences between (groups of) teeth. Furthermore, a
time series representation is not a suited input format for the prediction algorithm, so the
time series have to be represented by numerical values: the features. The importance of
domain expertise and model performance is well summarized by Timmer et al. [37]:

“The crucial problem is not the classificator function (linear or nonlinear),
but the selection of well-discriminating features. In addition, the features
should contribute to an understanding [...]”

— J. Timmer, 1993

2-2-2 Feature Normalization

Usually, the table in the lower right of Figure 2-5 is the correct input format for the features
to work in a machine learning algorithm. However, the dataset can contain features which
are highly varying in ranges and magnitudes. As machine learning algorithms make use of
the Euclidean distance to calculate the distance between samples, this is problematic. Higher
feature magnitudes will contribute significantly more to the distance calculation then fea-
tures that have lower magnitudes, yielding a skewed contribution to the output performance.
Scaling can be performed to let all features contribute evenly to the output performance. A
selection of scaling methods will be explained below.

Standardization

Standardization, also referred to as variance scaling, is used to subtract the mean off the
individual feature value, while dividing by the standard deviation. This will center the feature
distribution around 0 mean (x̄ = 0) and scale the variance of the distribution to 1 (σx = 1).

Min-Max Scaling

The next scaling method is Min-Max scaling. The values of the feature vector are scaled to a
fixed range between 0 and 1. Because this lower and upper bound are often smaller than the
bounds of the unscaled dataset, the standard deviations are smaller, resulting in a smaller
outlier error.
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l2 Normalization

The feature vector can also be scaled using the Euclidean norm, also referred to as the l2
norm. This is the distance from the origin to the vector coordinate in the vector space.

x̃ = x

||x ||2
(2-2)

where x is the unscaled feature value, ||x||2 is the Euclidean distance of the feature vector,
denoted as

√
x2

1 + x2
2 + ...+ x2

n and x̃ is the scaled feature value.

2-2-3 Prediction Models

After the features are scaled, they can be used as an input for the supervised classification
model. Some examples of supervised classification algorithms are Decision Tree (DT), (Deep)
Neural Network (NN), K-Nearest Neighbor (KNN), Naïve Bayes (NB), Support Vector Ma-
chine (SVM) and Logistic Regression (LR). Within the scope of this project, two main criteria
are considered the most important for choosing a suitable prediction algorithm: the amount
of data (which is limited) and the amount of information inferred from the model (which
should be high).

A strong property of a NB algorithm is that even with limited data, it could be successfully
applied in practice [38, 39]. SVMs and KNN have proven to be robust classifiers, but with
limited data and strong linear calculation methods or solvers, they are prone to overfit [40].

Considering the amount of information inferred from an algorithm, DTs are most insightful
in terms of absolute feature importance. The output of the prediction is directly correlated
with the values of the features, giving a good insight into what features are descriptive and
could potentially be predictors for a specific tooth group [30]. On the other hand, the LR
algorithm outputs probabilities, making the classification decision more informative than only
a yes/no [41].

(D)NNs are very advanced and could discover high nonlinear trends in datasets [41]. They
consist of activation layers where weights and biases are randomly adapted to find patterns in
the input data. With a low amount of data, the weights and biases are tuned such that high
nonlinear patterns are found within the data. With a small dataset, this presumably results
a strong overfit [28] on the training data. Furthermore, because of the perceptron structure
in the NN, it is not possible to infer information on the specific feature importance.

Based on the proven performance of NB models on small datasets and the amount of infor-
mation that can be inferred from both NB and LR models, a Naïve Bayes algorithm and a
Logistic Regression algorithm will be used in this research. DTs have proven a to be most
insightful, but are not used because they are prone to overfit on small datasets. Below the
main working principle of both the NB algorithm and the LR algorithm is explained:

Naïve Bayes Algorithm

NB classification algorithms are algorithms based on the probabilistic Bayes Theorem. A NB
algorithm can discriminate between features and predict a class based on the relationship
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2-2 Machine Learning 17

between features. However, these features should be independent, which is the core principle
of the Naive Bayes classifiers. All features contribute evenly to the probability of the class
prediction. This class prediction is called the posterior probability and is calculated based on
Bayes’ rule as follows:

P (y|X) = P (X|y)P (y)
P (X) (2-3)

Here P (y|X) is called posterior probability. It is the probability of class y being predicted,
given event X has occurred. P (X|y) is called the likelihood, which is the probability of a
predictor being true given class y. P (y) is the priori of y, the probability of y before the
evidence P (X) is seen. Here X is representing the features which are used to predict y and
it is given as X = (x1, x2, . . . , xn). Substituting this in Equation (2-3) gives:

P (y|x1, . . . , xn) = P (x1|y)P (x2|y) . . . P (xn|y)P (y)
P (x1)P (x2) . . . P (xn) (2-4)

For any given input the denominator stays constant. Hence, a proportionality is introduced,
and with some rewriting the following equation remains:

P (y|x1, . . . , xn) ∝ P (y)
n∏

i=1
P (xi|y) (2-5)

with n the amount of features representing the dataset. From this equation, a classifier
model can be created, extracting the maximum probability of class variable y with given set
of predictors X:

y = arg max
y

P (y)
n∏

i=1
P (xi|y) (2-6)

The predictors of Equation (2-6) are still discrete. To make predictions with continuous
predictors, a Gaussian distribution can be used to model the likelihood of the features X
continuously. This is called a Gaussian Naïve Bayes classifier:

P (xi|y) = 1√
2πσ2

y

exp
(
−(xi − µy)2

2σ2
y

)
(2-7)

with µy and σ2
y being the mean and the variance of class xi respectively.

Logistic Regression

Logistic Regression is a different type of classification algorithm. It is based on a type of
regression, but the usage is to classify independent variables by means of a probability. The
foundation of the algorithm is the sigmoid function (Figure 2-6):
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Figure 2-6: Sigmoid function used in Logistic Regression to calculate the output class probability.
On the horizontal axis the input η is stated and the vertical axis states the output probability.

f(η) = 1
1 + exp(−η) (2-8)

We can substitute the linear relationship from linear regression f(x) = β0 +β1x1 + . . .+βpxp

into Equation (2-8) to force the output to be a probability between 0 and 1:

P (x) = 1
1 + exp(−(β0 + β1x1 + . . .+ βpxp)) (2-9)

In this way, the model can make classifications based on the probability measure P . Although
Logistic Regression depends on the sigmoid function, the coefficients β are still linear depen-
dent, making the model a linear model. The model learns by adapting and estimating the
coefficients β with the help of Maximum-likelihood Estimation. Based on a Gaussian distri-
bution, the values for β will be found such that they maximise the likelihood of the model
producing the output data as observed.

2-2-4 Performance Measures

Figure 2-7: Confusion ma-
trix categorizing the predic-
tion class against the class in
ground truth.

The performance of an algorithm can be calculated by compar-
ing the predicted values with the ground truth. This is possible
because a supervised algorithm is used, so the labels are known.
The most common technique is the use of a confusion matrix [42].
An example can be seen in Fig. 2-7. This figure shows how to
compare the predicted class with the ground truth. It defines the
True Positive (TP), True Negative (TN), False Positive (Type I
error, FP) and False Negative (Type II error, FN) variables. TN
indicates we predicted a class and this is correct. FP indicates we
predicted a class while this is not correct, and FN indicates we did
not predict a class while it is that class, respectively representing
Type I and Type II errors. From these errors we can derive the
accuracy metric, which is a ratio between the correct predictions
(diagonal) and the total amount of predictions made:

acc = TP + TN

TP + TN + FP + FN
(2-10)
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However, accuracy can be a distorted metric. It assumes both classes have the same presence.
If the classes are not well balanced, the prediction can be biased and will favour one class
above the other. From this perspective, we need to be more specific. Recall is a metric that
measures how much we predicted correctly, from all classes that have a positive ground truth.

Re = TP

TP + FN
(2-11)

The precision metric gives us the ratio out of all positive classes we predicted correct, how
many actually are positive:

Pr = TP

TP + FP
(2-12)

A high recall means minimizing the FN rate. An example is the prediction of cancer. Cancer
should always be detected, so predicting that a patient does not has cancer while cancer is
present (FN) is worse then predicting the patient has cancer while cancer is not present (FP).
On the other hand, high precision means minimizing the FP rate. This is mainly used is
spam-filters. An important e-mail should not be classified as spam (FP), while it matters less
if spam is not correctly classified as spam (FN).

A comparison metric is used to compare models where the precision metric and the recall
metric are combined. Extreme values are punished more which gives a proper balance between
Equation (2-11) and (2-12), which is called the F1 score:

F1 = 2 · Pr ·Re
Pr +Re

(2-13)
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Chapter 3

Measurement Setup

This chapter describes the setup that is designed and used for measuring the forces, torques
and movements from human demonstrations of tooth removal procedures. These measure-
ments are performed on fresh frozen cadaver jaws. It will give a brief description of the
challenges involved in measuring tooth removal, leading to design choices and compromises in
the setup design. Furthermore, an overview of the components involved in the measurement
setup is given. The mechanical components are discussed briefly and the robotic components,
including the software, are discussed in more detail. A selection of the resulting dataset is
shown to ensure the reader becomes familiar with the type of data acquired, adding to the
readability of the rest of the report.1

3-1 Challenges

Several challenges should be overcome to design a setup that can measure the forces-torques
and rotations involved in tooth removal. This section describes the four most significant
challenges and considerations that had an impact on the design process.

The first challenge is to capture these measurements in an in-vivo setting, so on ‘real’ pa-
tients. This would be the ideal setting, because the measurements would represent reality
as close as possible. An alternative would be measuring in an in-vitro setting, where fresh
frozen or conserved jaws are used. A significant drawback with this in-vitro approach is the
representativeness of the results for tooth extractions in the clinic.

Second, all the parts of the setup should be attached rigidly to each other. Movement of parts
should be minimized when applying forces during an experiment since sub-millimetre motion
is recorded. Furthermore, the anatomy of the upper jaw and the lower jaw varies, causing a
difference in the orientation of the extraction direction. This means two separate jaw holders

1The general design choices of the hardware (jaw holders, robot and frame) were already determined by the
Department of Biomechanical Engineering before the author started this project. The author is responsible
for the software and control of the robot and the data storage.
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have to be developed, both having several extraction orientations. The height, distance and
the orientation of both jaw holders with respect to the robot should be able to be adjusted
to compensate for variations in jaw anatomy.
The third challenge is the measurement of high forces and subtle movements simultaneously.
The setup should capture movement and force-torque interactions in high detail, such that
differences between various teeth are visible and reproducible.
At last, during an experiment, the presence of the setup must not lead to any restriction,
otherwise the results will be biased. Handling the forceps attached to the robot should feel
as natural as possible, even if extreme movements are made. Additionally, the jaw holders
should be designed in such that the clinician’s hand movements are not blocked in any way.

3-2 Overview

The proposed solution is shown in Figure 3-1, where the components are numbered from
1-7. A significant concession to the ideal setup is the use of an in-vitro experimental setting.
Compared to in-vitro measurements, accurate sub-millimetre movement tracking and regis-
tration of forces and torques, and their directions in an in-vivo setup are questionable. One
of the main issues is the mobility of the patient, which is difficult to compensate for. This
is especially true for the lower jaw, being not rigidly fixated to the human skull. The setup
consists of a robotic arm, a camera, an adjustable frame, a force-torque sensor on a rotation
plate and a holding device for cadaver jaws (separate holding devices for upper and lower
jaw).

Figure 3-1: Overview of the setup with the following components: (1) robot arm, (2) forceps
holding device, (3) video camera, (4) upper jaw holding device, (5) force-torque sensor, (6) bolts
to adjust frame vertically, (7) bolts to adjust frame horizontally

With a dental forceps connected to the robot arm, the movement of a dentist is measured.
The procedure of measuring movement is described in Section 3-2-1. The movement of the
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dentist results in an application of forces and torques on the tooth. The forces and torques
are measured with a force-torque sensor. This sensor is connected to the robot bu means of
an adjustable frame. The procedure of measuring forces and torques is described in Section 3-
2-2. Because an in-vitro setting is used, the tooth extractions are performed on cadaver jaws.
Two holding devices for upper and lower jaw respectively, have been developed to fixate the
cadaver jaws rigidly. The position of the holding devices for the upper and lower jaws can
be changed relative to the robot and placed at different heights. This is necessary to mimic
clinical circumstances in which the position of the upper and lower jaw are, respectively,
vertical and horizontal. Furthermore, the jaw holders can rotate along the vertical axis. This
is implemented to mimic the position of the dentist in practice as close as possible.

3-2-1 Measuring Movement

A KUKA LBR iiwa7 R800 [43] is the heart of the setup, being a collaborative robot with seven
rotational joints. Position and orientation data is needed for analysis, and this robot is capable
of recording position and orientation data of the end-effector at 100Hz in 7-DOF (number
1 in Figure 3-1). The robot’s integrated torque and rotational sensors enable for detection
of external forces applied on the robot, making this robot highly suitable for collaborative
purposes.

Figure 3-2: The seven rotation joints
of the KUKA iiwa robot. The schematic
drawing explains the working principle of
the spring damper system that is used in
the compliant control mode. When a mo-
tion is applied, the spring with stiffness k
and the damper with damping c resist this
motion according to the value of k and c.

Where most robots are controlled by a simple posi-
tion controller, where the desired position is reached by
moving the rotational joints with a pre-defined velocity.
The KUKA has an additional compliance control mode,
where all joints are acting as separate rotational spring
damper systems. In this mode, not the rotation of all
joints is controlled, but the virtual rotational stiffness
k and virtual damping c are controlled. This k and c
of all seven joints can be adjusted separately. If there
is no stiffness and no damping in all joints, the robot
can be moved freely around, by exerting a minimum of
external force on the robot’s body. Attaching a dental
forceps to the end-effector allows the robot to follow its
movement while logging the position and orientation of
the dental forceps. This principle can be used to mea-
sure the movement of a clinician performing a tooth
removal procedure.

Figure 3-2 displays the location of all seven rotational
joints. Additionally, a schematic drawing of the rota-
tional mechanism is drawn. By incidence of the spring
with stiffness k and the damper with damping c, the
rotation θ is brought back to original state 0. The stiffness k and damping c are the rates at
which this rotation returns to the original state. The higher k and c, the stiffer the rotation
of that particular joint. If all values are set to 0, the robot will collapse under its own weight.

While performing an experiment, the clinician should feel a minimum of resistance from the
robot. The clinician is free to move the forceps around, but certain extreme movements are
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causing the robot to resist this movement because the robot is not able to provide the desired
position or orientation from the current joint configuration. The kinematic chain of the robot
cannot provide the desired end-effector motion, so it results in high resistance of the robot
at the end-effector. It can also happen that the robot is able to provide for the desired
end-effector motion, but it suddenly reaches its joint limits and automatically shuts down for
safety precautions. The stiffnesses of joints 2 and 5 are set to 5 N/m to prevent these pitfalls
from happening. Movement in joint 2 and 5 is thus becoming limited, ensuring no joint limits
overshooting. But most importantly, it allows the clinician to perform extractions with almost
no resistance from the robot. Compliance control is based on the starting configuration of the
robot, and because extractions of upper jaw teeth require other movements than extractions of
lower jaw teeth, multiple starting configurations are pre-programmed accordingly for both the
upper jaw and the lower jaw experiments. An example of the upper jaw starting configuration
is shown in Figure 3-1.

3-2-2 Measuring forces and torques

Figure 3-3: Force torque sensor (FT sensor) used to measure force and torque time series. The
sensor is placed underneath the jaw holders [44].

An ATI 16 bit Delta transducer is used for recording the force and torque data in six axes at
a rate of 20Hz (number 4 in Figure 3-1). Figure 3-3 shows the force-torque (FT) sensor used
in the setup. It consists of a transducer that converts an applied load to force and torque
components. Three symmetrically placed metal beams are located inside the transducer with
semiconductor strain gauges attached to them. When applying a force to the transducer,
Hooke’s Law can be used to calculate the force and torque components by measuring the
strain applied to the beam. A detailed explanation can be found in Appendix B.

3-2-3 Calibration

The measurements of the forces, torques and movements are all with respect to the location
and orientation of the tooth. By means of calibration the location and orientation are de-
termined. A summary of this calibration process can be read in Appendix C, and a detailed
analysis can be read in Section 4-1-2.
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3-3 Measurement Samples

The experiments took place in an in-hospital anatomy laboratory. Because an in-vitro mea-
surement setting is used, fresh frozen cadaver jaws are used to extract teeth from. These jaws
are prepared to a pre-defined and standardized form to fit the holding devices optimally as
described in Section 3-3-1. Any remaining soft tissue is removed by using standard surgical
blades. Care was taken not to remove any of the attached gingivae as periodontal health was
one of the clinical parameters. The bodies from which the samples were taken were donated
to science in accordance with Dutch legislation and the regulations of the medical ethical
committee of the Amsterdam UMC at the location Academic Medical Center.

3-3-1 Jaw Holding Devices

Figure 3-4 show how the fresh-frozen jaws are placed in the jaw holders. Essential for repro-
ducible, accurate and thus meaningful measurements is a completely rigid fixation of both
upper and lower jaw. Two separate holding devices had to be designed. The most important
reason for this is that the anatomical differences between the two jaws do not facilitate the
design of a single device to fit both. In general, non-corrosive and smooth surface materi-
als were used to facilitate cleaning, which is especially necessary when working with (fresh)
human material.

(a) (b)

Figure 3-4: Both jaw holders for the upper jaw (a) and the lower jaw (b), rigidly connected to
a rotation plate and the FT-sensor. For a more detailed description of the numbered components
of the jaw-holders and the design choices made, the reader is referred to the paper in Appendix C.

3-4 Software Integration

The platform Robotic Operating System (ROS) is used to develop a control centre where all
the components of the measurement setup are managed [45]. With a Graphical User Inter-
face (GUI) the robot and the force-torque sensor can be switched on or off. At the same
time, the position, orientation, force and torque data are logged and saved to the computer.
The GUI handles and saves this experimental data and clinically essential parameters such as
periodontal health, amount of roots and root size can be linked to the respective experiment.
Additionally, a video stream of the experiment is saved to facilitate the analysis and interpre-
tation of the data later on. For controlling the KUKA, the iiwa_stack is used, which first
appeared in the work of Hennersperger et al. [46].
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Figure 3-5: Comparison of the removal of a central upper incisor (21) by an experienced surgeon
(a) and the removal of a central upper incisor (11) by a dental student (b). The arrow indicate
the force and torque spike that occur at the instance of a tooth fracture.

3-5 Results of the measurements

In total, an amount of 150 teeth are extracted from seven upper jaws and seven lower jaws.
The jaws were fresh frozen cadaver jaws as described in Section 3-3. Three experienced
oral and maxillofacial surgeons extracted a total of 128 teeth. Most experiments have been
performed by the same experienced oral and maxillofacial surgeon (n=79), to gain a repre-
sentative dataset. Additionally, a dental intern was asked to perform experiments as well
(n=22). This was done to test if the differences between an experienced and an inexperienced
clinician can be visualized.

Figure 3-5 show the comparison of an experiment carried out by both an experienced surgeon
and a dental intern. The force, torque and rotations in xyz-directions are plotted on the
vertical axis. This is raw data that is transformed from the end-effector frame Ψee to the
tooth frame Ψt (a detailed explanation of this transformation can be found in Section 4-1-3).
It can be seen that the measurement setup is able to measure anomalies (arrows in (b)) and
accurate force, torque and rotation changes. Interesting to see is the more than 200% increase
of force the dental student uses compared to the surgeon. The dental student also shows a
less recognizable plan in terms of movement. In contrast, the surgeon manages to keep the
forces and torques at a relatively low and stable amount whilst increasing the movement.

This is just a small portion of the results showing the potential of this setup for measuring
force, torque and movement data in in-vitro tooth removal procedures. For additional results
and a more thorough explanation on design choices and the experiments conducted, the reader
is referred to Appendix C.

3-5-1 Resulting Dataset

The dataset that originates from the experiments will contain non-representative experiments.
This can be due to no successful tooth removal, slippage of the forceps, tooth breakage or
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endodontic treatments that were present in the tooth. These faulty experiments are filtered
out before the analysis starts. After removing the samples that were not representative, the
dataset is as follows:

Study Population

Three experienced oral and maxillofacial surgeons performed 116 successful and representative
tooth extraction from a total of 127 extractions. The student performed 15 successful and
representative tooth extractions from a total of 22 extractions. This means, a total of 131
successful representative extractions will be used for the analysis. From these, 61 teeth are
extracted from the lower jaw, and 70 teeth are extracted from the upper jaw. All extractions
yield 6-dimensional force-torque data and 7-dimensional cartesian (position and orientation
quaternion) movement data, in the format of time series. In addition to the time series, each
experiment is annotated with metadata. This includes the jaw type, the tooth number, the
race, the extraction instrument, the state of the tooth, the state of the periodontium, the
complications, the number of roots and the root length, which adds another nine dimensions.
Figure 3-6 is showing how this dataset is built up.

Extraction	1
Extraction	2

Extraction	...
Extraction	131

MD

TS

FT	in	6D Movement	in	7D

Meta	Data	in	9D

4	Executors

Main	Surgeon	(n=68)

Surgeon	2	(n=23)

Surgeon	3	(n=25)

Student	(n=15)

Data

Figure 3-6: An overview of the dataset that is used for analysis. The four executors together
performed a total of 131 representative extractions. The grey stacked rectangles represent these
representative extractions. A single extraction consists of time series data (TS) in green and
meta-data (MD) in blue. The time series consists of 6-dimensional force and torque time series
(brown) of time t and 7-dimensional movement time series (purple) of time t. The metadata
consists of nine single categorical or numerical data points.

This means a total of 131x13=1703 time series are included and 131x9=1179 single metadata
points are included.
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Chapter 4

Data Pre-processing

This chapter describes how the raw data pre-processed into a format suited for feature en-
gineering. Figure 4-1 displays where the pre-processing step fits in our approach. It can be
seen that we get the raw data as an input to this process, and we get the clean data as an
output of this process. The clean data will be used to propose hypotheses. These hypotheses
are described in Section 5-1.

Raw	Data

Hypothesis

Pre-Processing

Clean	DataCalibration
Transformations

Filtering

Figure 4-1: Pre-processing pipeline from the approach of Section 1-3. The raw data is the input
for the pre-processing and the clean data is the output. The clean data results in a hypothesis,
which is not stated in this chapter, but in Section 5-1.

The raw data is oriented in the local references frames. This means the force and torque time
series are expressed in the sensor frame, and the movement data of the end-effector is expressed
in the robot’s frame. Section 4-1 discusses the transformations of the local reference frames to
a single reference frame that is situated on the tooth to be extracted. Section 4-1-1 describes
the general overview of the current dataset and how the data formats can be interpreted.
Also an overview of the local reference frames with respect to the world frame is given. The
transformation from a local frame to the tooth frame can only be performed when the location
and orientation of the tooth frame are known. We can obtain this location and orientation
by calibrating the individual tooth. This calibration method is described in Section 4-1-
2. Section 4-1-3 and Section 4-1-4 uses this calibration to describe the transformation of the
rotations and the forces and torques respectively from their local reference frames to the tooth
frame. When the transformation is complete, the data can be cleaned. This is described in
Section 4-2. The effect of resampling, filtering and data augmentation is discussed and applied
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on the transformed data, yielding a clean dataset with minimum noise which can be used for
feature extraction.

4-1 Reference Frame Transformation

4-1-1 General overview

The raw data from the measurement setup consists of 13 dimensions. The force in sensor xyz-
dimensions grouped together with the torque in sensor xyz-dimensions gives a 6-dimensional
wrench. The position of the robot’s end-effector in xyz-dimension and the orientation of the
robot end-effector in four dimensions gives seven dimensions. The position of the end-effector
is considered as a 3-dimensional vector. The orientation is represented as a quaternion, which
is the 4-dimensional representation of any rotation in a 3-dimensional space [47]. Usually,
quaternions are favoured in robotic applications above Euler angles or rotation matrices.
Although quaternions are less intuitive and more complex to understand, they avoid the
problem of ‘gimbal lock’ [48]. This gimbal lock occurs when the pitch angle of a mechanism
approaches 90◦ and one degree of freedom is lost.

Figure 4-2: A schematic overview of the setup with the coloured frames of reference for each
component of interest. The robot is located on top of the adjustable frame, and the force-torque
sensor is rigidly connected on the opposite side of the frame with respect to the robot. The black
arrows a, b, c indicate how the frame widths, height or sensor rotation can be adjusted respectively.
Frame Ψw is the robot base coordinate frame, which is fixed with respect to the world. Frame Ψee

is the coordinate frame as attached to the end-effector of the robot. The forceps with coordinate
frame Ψf is rigidly connected with the end-effector. The location of the sensor is expressed by
Ψs, and the location of the tooth is expressed by Ψt.

Figure 4-2 is showing the schematic overview of the measurement setup of Chapter 3. The
Kuka robot is located at the right on top of the adjustable frame. The force-torque sensor is
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Figure 4-3: Jaw holders with plastic jaws to show the two calibration tools and their respective
reference frames. The upper jaw is placed on the left and the lower jaw is placed on the right.
For the upper jaw, the luxator is used as a calibration tool. The y-axis of the luxator frame is
pointing out of plane, indicated with a dot. The calibration tool for the lower jaw is a lower incisor
forceps and is depicted on the right, where the y-axis is pointing into the plane. The reference
frames depicted on both tools are Ψf . Their individual transformation to Ψee is not identical.

located opposite of the robot and is depicted in black. The jaw holder is located on top of the
force-torque sensor. The black arrows next to the frame indicate the type of adjustment that
can be made to the frame: the horizontal arrows a indicate a change of the distance between
the robot and the sensor, the vertical arrow b indicates the change of height of the sensor and
the rotational arrow c indicates the orientation change of the sensor with respect to the robot.
Moreover, it shows the reference frames of the Kuka robot (Ψw), the force-torque sensor (Ψs),
the end effector (Ψee), the forceps (Ψf ) and the tooth (Ψt). The tooth frame is the frame
in which the forces, torques and movements will be expressed. Frame Ψs is determined by
the dimensions of the adjustable frame. Frame Ψee and frame Ψf are determined by the
movement of the robot and frame Ψt is determined by the calibration process.

4-1-2 Calibration Process

With the help of the robot, the position and orientation of every tooth can be found. Because
of the orientation difference between the upper and lower jaw (vertical/horizontal), two cali-
bration tools were necessary. A lower incisor dental forceps is used for calibration in the lower
jaw, due to the 90-degree angle and its straight design. For the upper jaw, a straight dental
elevator (Usto-Lux, Ustomed, Germany) is used for calibration. This is done for the sake of
convenience; any other tool with a flat pointy end could be used as well. Both tools and their
orientation frames with respect to the tooth can be seen in Figure 4-3. The calibration is done
by touching the centre of the crown. The tip of the tool is oriented in line with the z-axis
of the tooth. For the elevator tool, this is along the length of the tool. For the forceps tool,
this is the fixed part of the tip that is perpendicular to the handle. The calibration is done
successfully if the reference frames on the tools are matched up with the reference frames
depicted on the tooth in Figure 4-3. The tool’s position and orientation are now registered
as Ψt, which is expressed in Ψw.

4-1-3 Transforming movement from Ψw to Ψt

The movement performed by the clinician should be understandable. The format of the
movement data allows for two ways of describing it: by the use of end-effector position data
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or by the use of the forceps’ tip rotation data. To compare against the motions described by
Stegenga, the tip of the forceps rotation representation is used. This is most easy to interpret,
and if the results of this study will be used later on, rotation is a better interpretable metric
from a clinician’s point of view. Furthermore, it is assumed that the tip of the forceps that
grabs the tooth does not change in position during an extraction. A rotation representation
thus captures the same movement as a position representation, only better interpretable.

To express the movement data in an interpretable format, the obtained orientation quaternion
should be converted to Euler angles. Euler angles are chosen because their representation of
movement is easier to interpret then rotation matrices are. To show this conversion, we start
with a representation of a quaternion q:

q = w + xi + yj + zk (4-1)

The first component w is referred to as the ‘real’ part o the quaternion. The remaining three
components x, y and z are the imaginary part, with i, j and k being the mutually orthogonal
imaginary unit vectors. In this way, x, y and z is the vector part of the quaternion about
which the rotation should be constructed. The real part w is the scalar which determines the
amount of rotation around the vector part.

From the calibration process, we obtained the orientation quaternion of the tooth. We call
this quaternion qt, which is the orientation of the reference frame Ψt. This quaternion is
fixed and does not change during an experiment. The orientation of the end effector, and
thus the orientation of the tip of the forceps, changes during an experiment. This means
the orientation of the forceps, expressed as quaternion qf with frame Ψf also changes over
time. With quaternion multiplication, we can find the relative quaternion between qt and qf ,
describing the change of orientation of Ψf in Ψt:

qrel = q−1
t · qf (4-2)

This quaternion in the form of Equation (4-1), consists of the terms arel, brel, crel and drel.
These terms can be used to calculate the corresponding Euler angles, based on the yaw (φ),
pitch (θ) and roll (ψ) conversion, being the zyx-axis in frame Ψt:

φ = arctan
(

2(wrelxrel + yrelzrel)
w2

rel − x2
rel − y2

rel + z2
rel

)
(4-3)

θ = − arcsin (2(xrelzrel − wrelyrel)) (4-4)

ψ = arctan
(

2(wrelzrel + xrelyrel)
w2

rel + x2
rel − y2

rel − z2
rel

)
(4-5)

An example of an arbitrary raw time series as measured in Ψw and converted via Ψee to Ψt

can be seen in Figure 4-4. The quaternions from the raw measurements are also converted to
Euler angles zyx using Equations (4-3 - 4-5). The combined rotation around the xz-axis in
Ψw results in almost a pure rotation around the z-axis in frame Ψt. Using Figure 4-3 we can
see that this represents a rotation around the longitudinal axis of an upper incisor.
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Figure 4-4: The Euler angles xyz from an arbitrary measurement to show the effect of the
coordinate transformation of the movement. The left figure depicts the raw Euler angles in Ψw

and the right figure depicts the transformed Euler angles in the tooth frame Ψt.

4-1-4 Transforming wrench from Ψs to Ψt

Frame Ψs is the sensor frame. This frame is fixed to the sensor, but because the sensor is
mounted on a rotation plate, frame Ψs can rotate around its vertical axis. In Figure 4-2 this is
indicated with the rotational arrow next to the sensor. The location of Ψs with respect to the
world frame can be determined by measuring the height adjustments and width adjustments
of the frame, indicated with the black arrows in Figure 4-2. With frame width a, height b
and sensor rotation c in mind, the position and orientation of Ψs with respect to the world
frame Ψw is determined.
To find the transformation between Ψs and Ψt, we can make use of homogeneous matrices.
The transformation between the sensor frame Ψs and the calibrated tooth frame Ψt can be
found by calculating Ht

s:

Hs
t = Hs

wH
w
eeH

ee
t =

[
Rs

t ps
t

0 1

]
(4-6)

It starts with the calculation ofHs
w, the transformation between the sensor and the world. The

principal axis of the sensor and thus the orientation with respect to the robot is determined
by the mechanical description of the sensor and denoted as Rs0

w . A detailed explanation can
be read in Section 3.4 of the sensor manual, included in Appendix B. The location of the
sensor with respect to the world is determined by the height b and width a dimensions of
the adjustable frame and denoted as ps0

w . This completes the transformation matrix Hs0
w . In

addition, the transformation of the rotation plate (Hrp) should also be taken into account.
This involves a pure rotation ψ around the z-axis, and because the plate rotates the sensor
around its centerline, no translation is involved. Thus Hrp consist of Rrp(ψ) and prp =
[0, 0, 0]T This yields the following transformation:

Hs
w = HrpH

s0
w =

[
Rrp prp

0 1

] [
Rs0

w ps0
w

0 1

]
, with Rrp(ψ) =


cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (4-7)

Next, the transformation Hw
ee is defined, which is the transformation from the world frame to

the end-effector frame. This is the logged position and orientation of the end-effector which
would be Hee

w . Instead, we can use the inverse of Hee
w to calculate the transformation Hw

ee:
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Hw
ee = (Hee

w )−1 =
[
(Ree

w )T −(Ree
w )T pee

w

0 1

]
(4-8)

At last, the transformation Hee
t is defined. This is the transformation from the end-effector

to the tip of the calibration tools in Figure 4-3. The precise transformations are not included
in this report, but they are taken into account during the calculations. This transformation
matrix thus is two-fold: one for the luxator calibration tool and one for the incisor calibration
tool. The reference frame Ψf is not taken into account here, because during the calibration
process this frame coincides with Ψt.
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Figure 4-5: The torque data in xyz-directions from an arbitrary measurement to show the effect
of the wrench coordinate transformation. In the left figure the raw torque data is depicted in the
sensor frame Ψs and in the right figure the transformed torque data in the tooth frame Ψt is
shown.

Now the transformation between Ψs and Ψt is found, we can use this to calculate the force
and torque transformation. The forces and torques in Ψs can be represented by a wrench,
which is a 6-dimensional generalized force containing a pure linear force and a pure moment
around it. It is expressed in the following form:

W =
[
f

τ

]
f ∈ R3 pure linear component
τ ∈ R3 pure rotation component

(4-9)

Using screw theory we can perform the adjoint transformation of Hs
t to transform the applied

wrench from Ψs to Ψt:

W t =
[
ft

τt

]
= AdT

Hs
t
W s =

[
(Rs

t )T 0
−(Rs

t )T p̃s
t (Rs

t )T

] [
fs

τs

]
(4-10)

where p̃s
t is the skew-symmetric form of ps

t . Equation (4-10) also takes the generated torque
that results from the translation from the sensor to the tooth at a distance −ps

t into account
by the term −ps

t × fs. An example of the transformation of a 3D torque measurement is
shown in Figure 4-5.

4-2 Data cleaning

The transformed data can be processed further so it can be used in the feature engineering
process. To ease the comparison in the python environment, the force-torque data is resam-
pled from the obtained 20Hz to 100Hz. This is done to match the time series length of the
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movement data. Next, the unnecessary data at the beginning and end of an experiment is
deleted where the forces and torques are zero and the movement stops. Next, the noise is
reduced by the use of filtering. This is needed to let the feature extraction process become
robust, and the predictive features more stable. At last, data augmentation takes place where
additional time series such as velocity and magnitudes are obtained.

4-2-1 Resampling

When resampling the wrench data (20Hz) and the movement data (100Hz) to the same sample
length, three choices can be made; the wrench data can be upsampled to the movement data,
the movement data can be downsampled to the wrench data, and both wrench data and
movement data can be upsampled and downsampled respectively to a third frequency. To
lose the least amount of information, the choice has been made to upsample the wrench data.
In this way, no information is lost from the movement data. Due to upsampling however,
noise will be introduced in the wrench data. This will be filtered out later when the dataset
is filtered as a whole.

The wrench data is upsampled from 20Hz to 100Hz using a standard Fast Fourier Transfor-
mation (FFT). The result can be seen in Figure 4-6.
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Figure 4-6: Result of the upsampling of an arbitrary fz time series (orange) in comparison with
the regular time series (blue).

4-2-2 Filtering

The feature extraction methods we aim to use will be sensitive to noise. We can filter out the
high frequencies of the data by applying a causal low-pass Butterworth filter. With sampling
frequency fs = 100Hz and cutoff frequency of 1Hz, we can filter out the higher frequencies
resulting in the following smoothing of the data:
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Figure 4-7: Result of the butterworth filter for an arbitrary measurement
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This technique is applied to the 6-dimensional wrench data and the 3-dimensional rotational
data. It can be seen that the filtered data is able to follow the shape of the demonstration
and at the same time is able to filter out the high frequencies.

4-2-3 Data Augmentation

For feature extraction, we can include additional data, other than the data obtained from the
measurement setup. The rotational velocity for instance, is needed to perform zero velocity
crossings analysis. This can be used to define segments of movements. Furthermore, the
magnitude of the forces and torques can be used to find differences between teeth in terms of
total amount of applied force.

Velocity estimation

Because the velocity of the movement is not directly obtained from the measurement setup,
we can estimate it using a finite difference method of the rotation xyz at time t:

∂x
∂t

= xt+1 − xt

∆t (4-11)

Where x is the vector containing [x, y, z]T rotation, t is the instance in time and ∆t is the
time interval between two samples, which is equal to 0.01 seconds.

Magnitude estimation

The magnitude of the 3-dimensional forces and 3-dimensional torques can be used to express
the total amount of force applied during an instance in time. We can use the Euclidean norm
to calculate this magnitude as follows:

||xt|| =
√
x2

x,t + x2
y,t + x2

z,t (4-12)

Here xt is the 3-dimensional force vector with xyz-components or the 3-dimensional torque
vector with xyz-components at timestamp t. This Euclidean norm is the length of the vector
so it is always a positive scalar.

4-2-4 Trimming unnecessary data

Usually, the obtained data stream has some meaningless data at the beginning and the end of
an experiment. To ease the pre-processing work, the trimming of this meaningless data was
done right at the end of an experiment, using the GUI described in Section 3-4. Trimming is
done manually right after the demonstration because the whole dataset is quite diverse, and
no general metric can be defined to trim all data accurately. If it was not done right after the
demonstration during the experiments, it should have been done manually either way, only
later in the process.
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4-3 Summary

In this chapter, we applied several pre-processing steps to improve the quality of the raw data
obtained from the measurement setup. We started with specifying the calibration method
and the tools needed to perform this calibration. This calibration method is needed to specify
the tooth location and orientation, which is used for the transformation of the raw data in a
specific unified format.

We continued by transforming the data from the sensor frame and the robot frame to the
unified tooth frame. In this way, the force, torque and rotational data for every tooth is
expressed in a unified reference frame. This makes it possible to compare different extraction
behaviours of teeth amongst each other, but also simplifies the feature engineering process.
Because the 7-dimensional position and orientation data was reduced to only three rotation
dimensions, the dataset consists of 9 dimensions after transformation.

Furthermore, we described the process of cleaning the data by the use of resampling, filtering,
data augmentation and trimming. In this way, we obtained a clean and consistent dataset
without meaningless data, which is ready to be used in the feature engineering process. With
the augmentation of three velocity time series, one force magnitude time series and one
torque magnitude time series, the 9-dimensional time series is increased to a final amount of
14 dimensions. A single tooth extraction measurement thus has 14 time series representing
it.
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Chapter 5

Feature Engineering

This chapter describes the feature engineering process from clean data to a feature table. From
manually inspecting the dataset, multiple hypotheses about what factors are influencing tooth
removal are formed. This process is highly dependent on the expertise of the researcher, as
such, a clinician of the Amsterdam UMC helped in forming the hypotheses. In this case, both
technical expertise and clinical expertise were combined in forming the hypotheses. Based
on the hypotheses, the 14-dimensional time series is reduced in dimension to a feature table
through the feature extraction process. This table is the input format that is needed for
the prediction model. Figure 5-1 shows the steps needed to transform the clean data into a
feature table.

Results

Hypothesis

Clean	Data

Feature	Engineering

Feature	ExtractionFeatures

CH5

CH5

Figure 5-1: Prediction modelling pipeline from the approach of Section 1-3. The clean data
results in a hypothesis that is used as a starting point for the feature engineering. The feature
engineering process outputs numerical features, represented in table format. Furthermore, first
results of factors influencing tooth removal are found. These results will be described in Chapter 7.

Within this chapter, a division will be retained between the analysis of force data and the
analysis of rotational data. First, the hypotheses from the forces and rotations are described
in Section 5-1. Section 5-2 discusses the method of extracting features from the force data.
Chapter 5-3 discusses the method of extracting features from the rotational data. This chapter
ends with summarizing the force and rotational features that will be used as an input to the
prediction model in Chapter 6. Examples of extreme values of the features are given.
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5-1 Hypothesis

To form the hypothesis, we can analyse the cleaned data that is obtained up to this point.
The cleaned data consists of force, torque and movement data. The next subsections describe
how the hypotheses of the forces and the rotations are constructed. The torque data was in-
consistent but had some resemblance with the rotations. After multiple iterations of analysis,
no sufficient proof was found that the torques could render good feature descriptiveness for
the feature engineering model and the prediction model, so the choice was made to not pro-
pose a hypothesis about the torque data. The analysis leading to hypotheses about force and
rotation, is based on the dataset of 68 experiments from the main surgeon. For readability of
this report, not all figures are included, but an interesting selection is discussed.

5-1-1 Force hypotheses

Figure 5-2 is displaying the force plots of three different experiments. The left figure shows the
reaction forces of an upper incisor, the central figure shows the reaction forces of a bicuspid
(pre-molar), and the right figure displays the reaction forces of a molar. First, it can be seen
that the extraction can be subdivided into two phases: a phase where the force Fz is negative,
indicating a pushing action of the tooth in the jaw and a phase where the force Fz is positive,
indicating a pulling action. In addition to these phases, it can be seen that during the pulling
phase (and in limited amount during the pushing phase), the complexity of all three the
forces increases when the tooth is located more to the back of the mouth. With the term
‘complexity’ the amount of zero velocity points and the magnitude of the forces is meant.1
From manual inspection of the data it can be seen that these statements are true for teeth in
both the upper and lower jaw. The expertise of the clinician supports these statements.

Figure 5-2: Force curves from an upper jaw incisor, bicuspid and a molar. The horizontal dashed
line is where the force is 0N. There exists a phase where Fz is pushing into the jaw with Fz < 0
and a phase where the total Fz force profile is shifted above zero Fz > 0. Furthermore, the
force complexity and magnitude during the pulling phase is increasing when the extracted tooth
is located towards the back of the mouth.

It is hypothesised that the above mentioned can be of influence on the prediction model. With
the human eye, it is possible to see differences in various force curves. Based on the statements
about force complexity and the vertical force, features could be extracted that contain these
differences. This leads to the hypotheses about the force data, which is summarised as follows:

1With the term complexity it is not claimed that the actual force complexity of tooth removal is found.
The term ‘complexity’ is used for convenience sake, since the researchers are unsure what complexity in terms
of tooth removal means
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Hypotheses about the Forces

1. An extraction can be subdivided by at least two strategies,
which are based on the reaction force Fz. These strategies are the
pushing and pulling strategies respectively.
2. Forces increase with complexity when teeth are located more
towards the back of the mouth.

5-1-2 Rotation hypothesis

When manually inspecting the rotational data, it can be seen that the time series are more
varied than the ‘rocking and twisting’ movements described by Stegenga in Table 2-1. Based
on his explanations, there are two main rotation strategies: a twisting motion and a rocking
motion. Because Stegenga uses a different naming convention than our calibrated reference
frames, Table 5-1 includes the comparison of the naming conventions of Stegenga, the anatom-
ical movement and ours.

Table 5-1: Comparison of basic naming conventions of the rotational movements. The descrip-
tion of Stegenga is shown in the first column, the anatomical description is shown in the second
column and our description based on the calibration process is shown in the third column

Stegenga description Anatomical description Our description

Rocking Bucco-Lingual / bucco-palatal y-rotation
Twisting Longitudinal rotation z-rotation

For reference Figure 5-3 includes the rotational movements described in Table 5-1. This figure
show the same movements as Figure 2-2, only the anatomical description is used here.

Figure 5-3: Anatomical description of the movements as described in Table 5-1. The left
figure displays the bucco-lingual/palatal movement and the right figure displays the longitudinal
rotation.2

The inspected data showed more rotations then only the rocking and twisting rotations. A
selection of the groups covering all the different rotations in our dataset are shown in Figure 5-
4. The left figure shows a pure rotation around the z-axis, and the second figure shows a

2Adapted from https://support.clearcorrect.com/hc/en-us/articles/203836918-Tooth-Movements
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pure rotation around the y-axis up until the end of the experiment. The last part of this
experiment includes a pure z-rotation as well. This second figure thus captures the rocking
and the combination of rocking and twisting movement as described by Stegenga. The third
and fourth figure show a rotation that is not described by Stegenga. It is a rotation where
all three axes are active and play a role in the extraction movement. The clinician refers to
this movement as the movement of ‘8 ’. This type of movement is not described in the tables
of Stegenga but is applied in practice now and then. We will refer to this movement as the
8-rotation in the remainder of this report. The third and fourth plot of Figure 5-4 displays
multiple variations of this movement, which has to be investigated further.
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Figure 5-4: Various rotations plotted that are encountered during the manual inspection of the
rotation dataset. The left figure displays a pure z-rotation, the second figure displays a pure
y-rotation. The third and the last figure displays two variations of the 8-rotation

We want to find a descriptor for the found groups, and it is hypothesized that the combination
of rotations amongst multiple axes can be a predictor for these tooth groups. The dataset
showed that the demonstrations were either performed by performing a dominant y-rotation,
a dominant z-rotation or a combination of yz-rotation. The rotation around x was present
but was not dominant. This is probably due to adjacent crowns that do not allow for rotation
along the x-axis. The experience of the clinician in practice supports this.

Furthermore, it was argued that the more the tooth was located to the back, the larger
number of rotations is needed to extract the tooth. Figure 5-4 is showing this, where the
left figure is an incisor and the most right figure is a molar. An increase in the number of
rotations was seen, which could be a predictor for the type of tooth being extracted. The two
hypotheses are summarized as follows:

Hypotheses about the Rotations

1. Rotation differences around the y-axis, z-axis or a combination
of both can be used to distinguish extraction strategies between
groups of teeth.
2. The more the tooth is located towards the back of the mouth,
the larger number of rotations are needed to perform a successful
extraction.

5-2 Feature engineering of force data

The hypotheses of the forces is stated in Section 5-1-1. The first hypothesis is based on the
behaviour of the reaction force Fz. This force can have a pushing or a pulling character.
It showed the characteristics from the cross-over point, where the strategy switches from a
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pushing form to a pulling form. The second hypothesis is based on the force curves after
this cross-over point. It seemed that the forces are increasing in complexity when teeth
are located towards the back of the mouth. Section 5-2-1 describes how the strategies are
deduced from the force data and how this leads to features describing the strategy of applying
force. Section 5-2-2 describes how the complexity is modelled and how this leads to features
describing the complexity of the applied force.

5-2-1 Extracting Strategies

The extraction of the strategy is done via the algorithm stated below. It is based on the first
hypothesis, where we use the force Fz to make a distinction between the strategies.

Algorithm 1: Strategy deduction algorithm for the force time series
Result: Strategy at time t
for time t do

if Fz < 0 then
S = phase push;

else if Fz > 0 & Fz > Fy then
S = phase pull;

else
S = not defined;

end
end

Here S is the strategy at time t. The strategy is assigned to a data point based on the value
of Fz, but also based on the value Fy. By manual inspection, it was seen that the value of
Fy was usually centred around zero, which gives a good benchmark for Fz. It is also possible
that the value of Fz does not comply with the given rules, then an unknown (not defined)
strategy will be assigned to the datapoint. An example of the strategy deduction can be seen
in Figure 5-5. The upper figure displays the force curves, and the first horizontal bar displays
the deducted strategy.
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Figure 5-5: Strategy deduction for all timestamps of a force experiment, where str1 is the pushing
strategy and str2 is the pulling strategy, and Not Def are the non defined timestamps. The upper
bar is the unfiltered strategy annotation and the lower bar is the filtered strategy annotation.
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It can be seen that until timestamp t = 18s, the strategy is swapping and changing relatively
fast from str1 to str2. Based on empirical conclusions from the experiments, advised by
clinicians, we assume that it is not possible to change from strategy within a time span of 1
second deliberately. We can use this to filter out the strategies that have a total duration of
less than a second. This can be seen in the lower bar of Figure 5-5.

The strategy algorithm is executed on all successful extractions. This yields an additional
time series where every sample is annotated with a strategy for force application. This extra
time series can be used to extract numerical features, describing the total extraction in a
generic way. We can calculate the time a strategy is performed as a percentage of the total
time of the extraction. This gives us two features: f_str1_perc, which is the percentage of
the usage of str1 during the extraction, and f_str2_perc, which is the percentage of the
usage of str2 during the extraction.

5-2-2 Force Complexity

The strategy conversion can also be used to define the cross over point where pushing of the
tooth passes over to pulling of the tooth. This cross over point can be used to calculate the
complexity of the extraction in the final pulling phase. Figure 5-6 is showing the same force
curves and filtered strategies as plotted in Figure 5-5. In addition, the cross over point is
plotted, and the force direction changes are marked. The total amount of points in the final
pulling phase is a measure of complexity, which is hypothesized to increase when teeth are
located towards the back of the mouth. This complexity of the force in xyz-directions is thus
extracted from the data as a feature, yielding three complexity features: fx_complexity,
fy_complexity and fz_complexity.
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Figure 5-6: Figure displaying how the complexity of the force is calculated. Only the amount
of force direction changes within the last part of str2 count towards the force complexity feature.
The dots represent a direction change, which is annotated in all three directions.

5-3 Feature engineering of rotation data

For the rotation data, the hypotheses are stated in Section 5-1-2. It is hypothesized that
there is more to tooth removal then only a rocking and twisting motion. With the formed
hypotheses, we try to validate this statement by finding extraction strategies in the rotations.
As such, this section will focus on modelling the rotations in terms of the y-rotation and the
z-rotation. Section 5-3-1 describes how these rotations are modelled and how we can extract
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features from this model. Section 5-3-2 is describing the method where the rotation curves are
segmented based on direction changes, such that the number of back and forth movements can
be modelled. These can be used to extract features that could be predictors for complexity,
because more changes in movement direction can indicate an increase in complexity.

5-3-1 Strategies

Currently, the rotation data is in three dimensions (xyz). To make use of a comprehensive
type of modelling which is easy to interpret, we exclude the use of the x-direction of the
rotations. The data had shown that the rotation in the x-direction is the least present
(Section 5-1-2) and the anatomical position of neighbouring crowns prevent the tooth from
rotating around the x-axis. In general, the x-axis’s contribution to the total amount of
rotation is less or equal compared to the y-axis’s contribution in 94% of the experiments (64
out of 68 experiments). This was true for both the upper and lower jaw. As such, we assume
that the rotation strategy depends on the relation between the yz-rotation. The differences
in extraction techniques become apparent when the heatmaps and the corresponding kernel
density estimation are plotted. Figure 5-7 show the plots of a typical z-rotation extraction
and a typical y-rotation extraction.
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Figure 5-7: Heatmaps resulting from plotting the y-rotation and the z-rotation. The kernel
density distributions in y and z-directions are included on the top and the right respectively. The
left figure displays a typical heatmap for an upper jaw incisor extraction. The right figure displays
a typical heatmap for an upper jaw pre-molar extraction.

The darker the region, the more frequent the corresponding yz-rotation is performed. A clear
difference between the overall extraction strategy between an upper incisor on the left and
an upper molar on the right can be seen. The incisor extraction is purely z-oriented and
the pre-molar extraction is purely y-oriented. Also the amount of rotation is larger for the
incisor then for the pre-molar. Appendix A is showing more kernel density graphs of various
strategies found in the time series. However, Figure 5-7 is not showing whether and at which
time the extraction strategy is changing. From the inspection of the data, it was seen that
there are also strategy changes during an extraction. This behaviour is not captured by these
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figures and is thus investigated further. Capturing these interchanging behaviour between
strategies could be of high importance because the number of strategies can give information
about the difficulty of an extraction.

To capture these strategy changes, we first need to find the strategy at every instance in time.
We can use the velocity of the rotation curves to see how many rotation in what direction
is applied per time stamp. The velocity at an instance in time can be thought of a velocity
vector in the yz-plane. In this way, it is possible to build a feature from the coupled behaviour
of the single y and z-rotation, capturing the influence of both directions in one metric. We
can calculate the angle that this velocity vector makes with the use of the tangens rule:

θyz = tan
(
dz

dy

)
(5-1)

From this angle, we can build a ruleset where we assign strategies to a certain angle. The left
figure of Figure 5-8 is showing the ruleset for the specific angles chosen in a pie chart. The
vertical axis is the amount of z-rotational velocity and the horizontal axis is the amount of
y-rotational velocity. When plotting the y-component and the z-component, points as p1, p2
and p3 emerge. Based on its location with respect to the circle, the points fall within the
coloured regions. The region is telling which strategy is used for that particular data point.
The yellow region is where the y-velocity and z-velocity contribute evenly (20◦-70◦ and 110◦-
160◦), the green region is where a pure y-velocity occurs (0◦-15◦ and 165◦-180◦) and the blue
region is where a pure z-velocity occurs (75◦-105◦). An example of this strategy deduction
performed on a whole experiment can be seen in the right figure of Figure 5-8.
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Figure 5-8: Rotation deduction strategy based on the amount of z-rotational velocity applied
versus the amount of y-rotational velocity applied at time t. The resulting point on the circle
determines which strategy is annotated to the data point. The resulting strategy deduction can
be seen in the right plot. The blue curve is the z-velocity, and the green curve is the y-velocity.
Plotting the point (dyt, dzt) in the circle on the left yields a strategy, indicated by the location of
the point. This strategy is calculated for all timestamps in the whole experiment. The resulting
strategy deduction for the whole experiment is shown by the bar underneath the right plot. The
legend of the circle also indicate the colours in the bar.

It can be seen that the strategy is changing relatively fast, so it should be filtered to be more
smooth. We can use a rolling window filter to smooth out the strategy to be more consistent
and logical. The size of the window is one second, and it iterates over the whole length of the
time series. The results of this filtering are shown in Figure 5-9.
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From this filtered strategy, we can extract our features. We assume the majority of the
strategy in an experiment is representative for the type of tooth extracted. As such, we
can use the percentage of the respective strategies of a whole experiment as a feature. This
yields the following features: y_perc, z_perc and both_perc. Furthermore, the number of
strategies can be used to discriminate between teeth. The more changes in strategy, the
more complex the applied rotation is. A feature is constructed from this, which it is called
#_rot_strategies.
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Figure 5-9: The filtered rotation strategy deduction. The colors for the strategy are depicted in
the left figure from Figure 5-8. The curve colors depict the velocity in the direction of y and z
respectively.

Figure 5-9 shows how the model captures the change in strategy. Around t = 10s the executor
is changing from a pure z-rotation to a combination of yz-rotation: an 8-rotation. It can be
seen that this is repeated two times, indicating that only a z-rotation is not sufficient enough
to extract this tooth.

5-3-2 Rotation Complexity

Knowledge from manual inspection of the data combined with clinical expertise led to a
hypothesis that the number of rotations increases when the tooth is located to the back of
the mouth. The rotational data is mostly composed of oscillating motions. This is due to
the nature of the rotational movement, where back and forth and left and right movements
are made periodically. We are interested in counting these amounts of periodic movement,
and we can use the velocity curves to segment them out. From Section 5-3-1 we know
that the strategy features are build from two dimensions, the y-velocity and the z-velocity.
Zero velocity crossing segmentation can only segment a single time series. This means the
most dominant rotation direction is chosen to be segmented. The feature values of y_perc
and z_perc are compared and the velocity of the most dominant direction is chosen to be
segmented. The locations of the zero velocity crossings are the local maxima or minima of
the rotations, representing a change in the rotation direction. The result of the segmentation
of a z-rotation can be seen in Figure 5-10 where a clockwise z-rotation is shown in blue and
a counter clockwise z-rotation in red. The rotation of the y-direction is shown in green.

From this calculation, we can extract features that are a measure for the rotation complexity.
In this way, the segment length is used as a feature, because this varies a lot amongst the
demonstrations. This is supported by the clinician’s expertise, who agreed that in practice
a single longitudinal rotation movement for an incisor takes less time than a bucco-lingual
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Figure 5-10: Zero velocity crossing segmentation of the rotation time series based on the most
dominant rotation. In this figure, the rotation in z-direction is segmented. The blue curves
represent a clockwise rotation in z-direction and the red curves represent a counter-clockwise
rotation in z-direction. The green curve is the rotation in y-direction. The horizontal lines are
the respective segments that are introduced by the zero velocity crossing method.

rotation for a molar. Hence we can use the mean_seg_length as a feature. In addition to this,
we can count the number of segments. This is a measure of rotation complexity, where more
direction changes can indicate a higher level of complexity. As such, the feature is defined as
the number of direction changes: dir_changes.

5-3-3 Overview of all features

A visual overview of the features and their extremes is summarized in Table 5-2 and Table 5-3.
For convenience, the features and its textual interpretations are restated in Section 7-1-1 and
Section 7-1-2 as well.

Table 5-2 is showing the extreme values of the features deduced from the force data. The first
column shows the feature name, the second and third columns show the minimum extreme
value of the feature and the maximum extreme value of the feature.

The plotted curves are the transformed and filtered force curves in x, y and z-direction
respectively. The legend in Figure 5-11 show the corresponding colors for the force directions.
Underneath the force curves, a coloured bar can be seen. This is the strategy bar, showing
the annotation of the pull strategy (str1) or push strategy (str2) per time stamp.

For f_str1_perc, the minimum extreme value has a small str1 percentage, as indicated by
the yellow colour in the strategy bar. The maximum extreme value has a high str1 percent-
age, shown by a large yellow area in the strategy bar.
For f_str2_perc, the opposite is shown. The green area (str2) in the strategy bar is small
for the minimum extreme value, where it is large for the maximum extreme value.
The last row shows the complexity features (f(xyz)_complexity). For all three force direc-
tions, this complexity is based on the amount of force direction changes, as indicated by the
coloured dots. The strategy bar is included because the complexity is only measured from
the last phase of the total extraction, indicated by the dotted vertical line.

Table 5-3 is showing the extreme values of the features deduced from the rotation data.
The first column shows the feature name, the second and third columns show the minimum
extreme value of the feature and the maximum extreme value of the feature. The plotted
curves in row 1-4 of Table 5-3 are the transformed and filtered rotation curves in y-direction
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Table 5-2: Force features summarized with examples of the minimum extreme values and the
maximum extreme values of the respective feature.

Feature Name Minimum extreme Maximum extreme
feature value = low feature value = high

f_str1_perc

f_str2_perc

fx_complexity
fy_complexity
fz_complexity
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Figure 5-11: Legend for the force curves as depicted in Table 5-2.

(green color) and in z-direction (blue color). The left figure of Figure 5-12 shows the legend
with the corresponding colors. Underneath the rotation curves, a coloured bar can be seen.
This is the strategy bar, showing the annotation of the rotation strategy used per time stamp.
The right figure of Figure 5-12 shows the legend of the strategy bar with the corresponding
colors. The colour of this strategy bar indicates in which direction (unknown, y, z, both yz)
the rotation at time t is performed, based on the ruleset of Section 5-3-2.

For y_perc, z_perc and both_perc, the minimum and maximum feature values are based

Master of Science Thesis W.M. de Graaf



50 Feature Engineering

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Type of Rotation [Row 1-4]
bucco-lingual/palatal (y)
longitudinal (z)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Strategy Bar

no_class
y
z
both

Figure 5-12: Legends for row 1-4 in Table 5-3. The left legend is the legend for the rotation
curves, with the green color representing the y-rotation and the blue color representing the z-
rotation. The right legend is the legend for the strategy bar, with the white color representing no
strategy, the green color representing a y-rotation dominant strategy, the blue color representing
a z-rotation dominant strategy and the yellow color representing a yz (both) dominant strategy.

on the percentage of the rotation in y, z or yz-direction respectively. This is indicated by a
small or large covered area of the respective colour in the strategy bar.
For #_rot_strategies, the amount of strategy changes in the strategy bar is counted. The
minimum value shows no change (one single colour), while the maximum value shows a lot of
strategy changes (multiple changing colours).

Row 5-6 of Table 5-3 show the minimum and maximum values for mean_seg_length and
dir_changes. These features are based on the segmentation of the dominant rotation, as
indicated by the vertical dotted lines. Figure 5-13 shows the legend with the corresponding
colors of the segmented rotation curves. In all four figures of row 5-6 of Table 5-3 the z-rotation
was the dominant rotation, so this line is segmented. The red parts indicate a clockwise
rotation around z, while the blue parts represent a counter-clockwise rotation around z. The
green line is the y rotation. For mean_seg_length, the left figure displays a minimal distance
between the segments and the right figure displays the maximum mean distance between the
segments. For the dir_changes, the left figure displays the least amount of segments. The
right figure displays the most amount of segments.
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Figure 5-13: Legend for the segmented rotation curves on row 5-6 in Table 5-3. The green color
is representing the y-rotation, the blue color is representing a counter-clockwise z-rotation and
the red color is representing a clockwise z-rotation.
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Table 5-3: Rotational features summarized with examples of the minimum extreme values and
the maximum extreme values of the respective feature.

Feature Name Minimum extreme Maximum extreme
feature value = low feature value = high

y_perc

z_perc

both_perc

#_rot_strategies

mean_seg_length

dir_changes
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5-4 Summary

This chapter described the feature engineering process, where relevant numerical features are
extracted from the pre-processed time series. This chapter started with the formation of four
hypotheses: two hypotheses for the force data and two hypotheses for the rotational data.
We started the feature extraction based on these hypotheses, guiding the process towards
clinically interpretable models.

From the force data, it was possible to deduce a strategy per time sample based on the
vertical force Fz. We found a pushing and pulling strategy, which we were able to express in
percentages of the total experiment time. This resulted in the f_str1_perc and f_str2_perc
features. Furthermore, we found that we could express the force complexity as the number of
directional changes during the pulling phase after the cross over point. We did this for the force
in x, y and z direction, resulting in the fx_complexity, fy_complexity and fz_complexity
features.

From the rotational data, we deduced a strategy measure and a complexity measure. The
strategy is based on the type of yz-rotation performed and can be calculated using the ro-
tational velocity. At every instance in time, the magnitude of the dy-component versus the
magnitude of the dz-component yields a strategy based on the direction of the resultant. This
strategy deduction can be used to find the dominant rotation in an experiment, while also
capturing changes of strategies within this experiment. The resulting features from this strat-
egy model are the percentage of rotational velocity in y direction, the percentage of rotational
velocity in z direction and the percentage of rotation in both directions; y_perc, z_perc and
both_perc respectively. The amount of changes in strategy is also used as a feature, named
#_rot_strategies. Furthermore, the complexity of a rotation is investigated. With Zero
Velocity Crossing (ZVC) segmentation, the dominant rotation time series is segmented and
the changes in rotation direction are captured. The number of segments and the length of
these segments are the resulting features that are a measure of complexity: dir_changes and
mean_seg_length.
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Chapter 6

Prediction Modelling

This chapter describes the prediction modelling process that is performed to make predic-
tions between different groups of teeth. This prediction model builds on top of the feature
engineering model that is described in Chapter 5. It takes features in table format as an
input, and by applying a classification method, it outputs a prediction of a specific class. The
pipeline that will be used as reference can be seen in Figure 6-1.

Prediction	Model
Naive	Bayes Logistic	Regression

Results

CH6

Features

Figure 6-1: Classification learning pipeline from the approach of Section 1-3. The feature table
is used as an input the the prediction model. The prediction models are the Naïve Bayes (NB)
model and the Logistic Regression (LR) model. By classification, these models provide predictions,
yielding results and conclusions.

This chapter starts with the description of the data structure and how the instances of the
table are labelled such that a supervised learning algorithm can be applied. Next, the learning
methods that will be used to analyse the feature table are discussed. We will make use of
a NB algorithm that serves as a baseline model. A LR algorithm will be used to compare
performance. At last, the techniques used to assess the performance of the models during the
implementation and comparison are discussed, as well as the methods that describe feature
importance.

6-1 Feature table pre-processing

This section describes how the input feature table could be modified such that it could be
used in a supervised prediction model. First the labelling is discussed in Section 6-1-1, where

Master of Science Thesis W.M. de Graaf



54 Prediction Modelling

classification groups are used as classes. These classes used are described in the results,
Section 7-1. Section 6-1-2 shows how the features can be scaled such that they are represented
to the algorithms on the same scale. This makes sure all feature distributions have zero mean
and a standard deviation of one so that the prediction algorithm weighs their importances
equally. At last, prediction modelling consists of a training phase and a testing phase, each
with separate parts of the feature table. Section 6-1-3 describes how the feature table is split
such that the test set is a representative part of the data.

6-1-1 Labelling

As can be seen in Figure 6-1, the input data is the feature table as stated in Section 5-4.
The rows of this table represent the experiments, the columns represent the features derived
with the feature engineering process. In order to use a prediction model successfully, the
experiments should be labelled with a class. Our goal is to find a set of features that is
descriptive for a specific group of teeth. When we are able to develop a model that renders
high performance, we can argue that the features are good predictors for the specific groups
that we made. As such, these features render descriptiveness between teeth.

Table 6-1: Adjusted feature table where the labelled class is shown in column ‘label ’. This label
is used in the supervised learning algorithm to fit the feature values in the training and testing
phase.

Exp # label f_str1_perc f_str2_perc fx_complexity . . . y_perc dir_changes

Exp 1 Class 1
Exp 2 Class 2
... Class 3
Exp n Class 2

Table 6-1 is displaying the input format of the table for the prediction model. The features
from Section 5-3-3 are placed in the columns, the experiments are placed in the rows. A
column displaying the label is added. This label is the desired output and can be of any
kind: a group of teeth, an extractor, the number of roots or the root size. As long as it is
a categorical value, we can use it as our class in the prediction algorithm. Section 7-1-2 is
showing the results from feature engineering, which includes the classes that are used in the
prediction algorithm.

6-1-2 Standardization

Furthermore, some pre-processing needs to be done on feature level. Most of the machine
learning algorithms are using Euclidean distance measures in determining similarity [28].
When features are differing drastically in scale (thus distance), the algorithm can give more
weight to the feature with a higher magnitude. In our case, the force complexity can range
from [0:25], and the rotational velocity percentage ranges from [0:1]. This will result in an
unwanted bias towards the feature with the smallest distance, which we want to avoid. To
make the features more comparable, we can use a scaling method to scale the features to
the same range so the prediction algorithm can compare them evenly. The standardization
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method as described in Section 2-2-2 is used in favour of the MinMax scaling option. The
MinMax scaler is sensitive to outliers and is mostly used for small standard deviations. The
values are scaled between a range of 0 and 1. So the occurrence of one outlier can reduce the
performance drastically. Our dataset has some outliers which should be taken into account
more smoothly then done with MinMax scaling. They should not be scaled to the same
bounding range. Figure 6-2 is showing the effect of standardization on the raw feature data
for two arbitrary features for the dataset of the main surgeon (n=68).
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Figure 6-2: Example of how standardization affects the distribution of two features from the
dataset. In the left figure two random unscaled features are plotted against each other and in the
right figure the standardized features are plotted

6-1-3 Train/test split

The development of the classification model consists of a training phase and a testing phase.
Both phases use different portions of the available feature table, which is called the train/test
split. During training, the model uses the labels of the training data to learn decision making.
Next, this decision making is applied to the test set to validate the predictions. The splitting
of this data is done randomly, where an x percentage of the data is chosen to represent the
test set, and the rest is chosen to be the training set. With the splitting of this dataset, a
significant tradeoff has to be made. When the amount of training data is high, the model
improves on training accuracy, because the model has more samples to learn from. On the
other side, the amount of test data needs to be representative enough to assess the performance
of samples that are not seen yet. For instance, if a class in the test set has only 1 sample
and the training set has 99 samples, this is considered as a poor train/test split. In our
models, a percentage of 35% for the test set is used. Figure 6-3 shows how this percentage is
determined. A Gaussian Naive Bayes model is used to assess the training and testing accuracy
for 500 random train/test splits between 20% and 50% test set size. A test set size of 45%
is performing slightly better than a test set size of 35%, while yielding slightly more outliers
than a test set size of 35%. Our dataset is relatively small with 68 samples, so to keep the
training accuracy high while having a representative test set, a test set size of 35% is chosen.

6-2 Model Implementation

This section describes what the characteristics of the implemented Naïve Bayes and Logistic
Regression models are.
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Figure 6-3: Accuracy distributions plotted for 500 randomized stratified train and test sizes,
categorized per test size fraction. In blue the distribution for the the training set is plotted and in
orange the distribution for the test set is plotted. The diamonds indicate single outlier samples.

6-2-1 Naïve Bayes implementation (baseline model)

The training data can now be used to make predictions. First, the training set is fitted to the
Naive Bayes model, which serves as a baseline model. A Gaussian implementation is chosen,
where the classes are fitted based on the Gaussian distribution as described in Equation
(2-7). The distribution consists of µy and σ2

y , being the mean and the variance of class xi

respectively. The Naïve Bayes model is easy to implement, having no parameters to tune.
The only implementation to make is the choice for a Gaussian model because the feature
values are continuous.

6-2-2 Logistic Regression implementation

The second algorithm used is a Logistic Regression algorithm. Section 2-2-3 describes how
the main principle of Logistic Regression is based on the sigmoid function of Equation (2-8).
The sigmoid function of the Logistic Regression model only allow for binary classification.

For our application however, a multiclass classifier is needed. The use of a One-Versus-
Rest (OVR) solving strategy can make this happen. The binary classifier will be trained for
each class, and the class that has the largest probability returned by Equation (2-8) is chosen
as the respective class. In this way, the binary Logistic Regression model is transformed into
a multiclass classifier.

6-3 Model performance

This section describes how the performances of the supervised prediction models of Section 6-
2 are assessed. In addition to the confusion matrix, where techniques of accuracy, precision
and recall are used to calculate performance, we can also make use of the cross-validation
technique. Cross-validation makes use of multiple (not necessarily random) train/test splits to
assess the performance of the algorithm on unseen data. It splits the data in k-folds, repeating
the train/test splitting method multiple times. It is different from the simple train/test
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splitting method because in cross-validation, the algorithm ensures that all samples from the
original dataset end up in both the training set and the test set. An example of the regular
k-fold cross-validation that is usually performed in machine learning is shown in Figure 6-4.
This figure is constructed with the dataset samples of the main surgeon and the classes from
Section 7-1-2.

Figure 6-4: A k-fold cross validation procedure performed on the dataset of the main surgeon
(n=68). The respective train/test splits over 5 cross validation iterations is depicted in the first 5
rows, where a red colour represents the samples from the test set and the blue colour represents
the samples from the training set. The sample division is based on the classes from Section 7-1-2
and is shown in the last row.

This figure shows how the test set is 1/5 of the total amount of samples. In the second iteration
(annotated with 1) however, it can be seen that the test set spans the whole low_mol class
and almost the whole low_premol class. This means that the algorithm could not train on the
characteristics of these classes because none or limited data is available. The performance will
drop because the test set is not ‘representative’ for the training set. A more representative
split on the test set is needed, so the division of samples in the test set should be performed
differently then in regular k-fold cross-validation. This can be accomplished by introducing
a stratified k-fold cross-validation. Figure 6-5 is displaying this cross-validation where 5
iterations are performed.

Figure 6-5: Stratified k-fold cross validation procedure performed on the dataset of the main
surgeon (n=68). This figure shows that the training set samples and the test set samples are
evenly divided over the number of samples in each class.

This figure shows that the train/test splits are evenly divided (stratified) over the number of
samples that exists in a class. In this way, all five classes are represented in the test set, so
that the test set becomes a good representation of the classes in the original dataset. The
stratified k-fold cross-validation will be used in analysing the performance of the models on
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unseen data.

6-4 Feature importance

This section describes how the impact of the features on the model performance can be as-
sessed. Section 6-4-1 describes best subset selection, Section 6-4-2 describes forward stepwise
selection and Section 6-4-3 describes the SHapley Additive exPlanations (SHAP) implemen-
tation.

6-4-1 Best subset selection

Best subset selection will be employed to demonstrate the differences between the predictive
power of the NB algorithm and the LR algorithm. Best subset selection tries to find the
best combination of features for n amount of features [49]. It iterates through the amount of
features n = 1, . . . , k, with k being the maximum amount of features. At every iteration it
fits

(k
n

)
models, yielding a total amount of 2k models. At every iteration, the model with the

highest accuracy is assigned the best subset. Our model contains 11 features, so a total of
211− 1 = 2047 models have to be fitted.

6-4-2 Forward Stepwise Selection

If the amount of features n increases, the computation time of the best subset selection
algorithm described above increases exponentially. Additionally, the best subset selection
does not provide information about which features are responsible for the model to perform
in this way.

The forward stepwise selection algorithm has a different approach [50]. It starts with fitting a
model where 0 predictors are present, and it iterates through all n amount of features. Every
iteration, the best improvement on the model for the remaining features is calculated, and
the feature that gives the best additional performance on the current model is added. This
continues until all features are included in the model.

6-4-3 SHapley Additive exPlanations (SHAP) values

Additionally, SHAP values can be used to define the individual contribution of a feature on
the model’s performance [51]. It is based on the Shapley value that is mainly used in game
theory. Game theory describes how two or more players are involved in a strategy to achieve
a desired outcome or payoff. In this way, Shaply values could determine a payoff for the
involved players and their contribution. In machine learning, this is used to determine the
contribution of a feature to the model output. SHAP values are computed for single samples
from the dataset, so they are a local interpretation of the supervised learning algorithm [51].
They do not explain the working principle of the algorithm: they only provide interpretations
of the features.
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6-5 Summary

This chapter described the classification learning process, where the input features in the
form of a table are managed to be used in a prediction model that yields good and reliable
accuracy.

First, the process of class labelling was explained. Next, the features were standardized
to eliminate high scaling differences amongst the features. Next, the type of train/test set
splitting is discussed where evidence was given for the split amount. Furthermore, the im-
plementation of two prediction models was discussed. An implementation of a NB algorithm
was given to serve as a baseline model. An implementation of a LR algorithm was given to
compare the baseline model to. At last, we showed how cross-validation could be used to
assess the performance of the prediction model on new, unseen data, and we showed how best
subset selection, forward subset selection and SHAP values could be used to identify feature
importance.
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Chapter 7

Results

This chapter describes the results of the modelling of tooth removal. Section 7-1 states the
results of the feature engineering process that leads to features that can be distinguished in
tooth removal procedures. The deduction of these features results in key insights. The results
of the force analysis and the results of the rotation analysis are discussed separately.
Section 7-2 discusses the outcomes of the classification learning process. The features found
from the feature engineering are fed into multiple prediction models. First, the results of a
Naïve Bayes (NB) algorithm are discussed. Limited number of parameters can be altered in
a NB model, therefore the NB model serves as a baseline model. The results of the Logistic
Regression (LR) model are compared with the results of the NB model. Subsequently, signif-
icant differences in accuracy and stability with respect to the baseline model are given. At
last, the results of the feature importance analysis are given. The results of forward stepwise
selection and SHapley Additive exPlanations (SHAP) values are discussed, supporting the
interpretations of the predictions made by the LR model.
An overview of the total dataset and the study population is included in Section 3-5-1. It
describes the properties of the dataset including, but not limited to, the number of successful
extractions, the number of executors and the number of complications.
This chapter show graphs containing datapoints for incisors and (pre-)molars. The teeth
[11, 12, 13, 21, 22, 23] and [31, 32, 33, 41, 42, 43] are included as incisors. The
teeth [14, 15, 16, 17, 24, 25, 26, 27] and [34, 35, 36, 37, 44, 45, 46, 47] are in-
cluded as (pre-)molars

7-1 Results of the Feature Engineering process

The output of the feature engineering process are features that seemed useful for the pre-
diction model. This section describes how these features describe differences between tooth
extractions. Section 7-1-1 shows how Fz and the complexity of the force curves contribute
to differences between teeth. Section 7-1-2 shows how the features derived from the rotation
can indicate differences between teeth.
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7-1-1 Descriptiveness in force features

The process of feature extraction of the forces described in Section 5-2 led to the following
features: f_str1_perc, f_str2_perc, fx_complexity, fy_complexity and fz_complexity.
Table 7-1 states these features and their descriptions.

Table 7-1: Explanation of the features deduced from the force data.

Feature Name Feature Description

f_str1_perc Percentage of the total extraction where Fz < 0, indicating vertical pushing
f_str2_perc Percentage of the total extraction where Fz > 0 and Fz > Fy, indicating vertical pulling
fx_complexity Amount of force direction changes in x-direction during the final force application strategy
fy_complexity Amount of force direction changes in y-direction during the final force application strategy
fz_complexity Amount of force direction changes in z-direction during the final force application strategy

The features of the force data can be analysed on two levels. First, on an anatomical level.
Anatomical data such as type of tooth (incisor or molar), jaw type (upper or lower) or amount
of roots are used to compare feature values amongst different teeth. This should be done with
consistent data, preferably from a single person. As such, the data from the main surgeon (68
samples) will be used for this analysis. Second, features are looked for that can distinguish
between different surgeons. This is done for two main reasons: validating if the found model
generalizes to unseen datasets and comparing the techniques of multiple executors amongst
each other. The analysis on executor level is carried out with the data of three surgeons (116
samples) and one student (15 samples).

Descriptiveness on anatomical level

The features f_str1_perc and f_str2_perc are both expressed in percentages of the same
extraction. This means they are strongly related. When we plot both percentages against
each other and add information about the complexity of Fz, the tooth type and root amounts,
we get the plot in Figure 7-1. In this way, we can investigate the influence of the type of
tooth or the number of roots on the strategy of force application.

The left figure displays the pushing percentage (f_str1_perc) versus the pulling percentage
(f_str2_perc). The datapoints of the molar teeth are situated more in the lower right
quadrant, and the datapoints of the incisor teeth are situated in both upper left and lower
right quadrant, indicating either a higher than 50% of pulling percentage or a higher than
50% of pushing percentage. The multi-rooted teeth are mainly extracted using a majority
of pulling force. Furthermore, no distinction for single rooted teeth can be argued for these
features based on Figure 7-1.

The right figure is displaying the complexity in Fz direction on the vertical axis versus the
amount of pulling percentage normalized from 0 to 1 on the horizontal axis. In this dataset,
multi-rooted teeth always require more than 12 Fz complexity, which is indicated with the
black horizontal line. In general, most incisors are situated under this line of 12 Fz complexity,
but still the distribution of the incisors in terms of Fz complexity is overlapping with the
distribution of the molars.
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(pre-)

Figure 7-1: The demonstrations of the main surgeon (n=68) plotted for a selection of force
features. The left figure shows the pushing percentage (f_str1_perc) on the vertical axis versus
the pulling percentage (f_str2_perc) on the horizontal axis, both normalized from 0 to 1. The
right figure shows the force complexity in Fz direction on the vertical axis versus the pulling
percentage (f_str2_perc) on the horizontal axis normalized from 0 to 1. The scatter size is
based on the amount of roots of the tooth, and the colour grading of the samples distinguishes
based on the tooth type.

Figure 7-1 does not discriminate between jaw type. Figure 7-2 displays the same axis and
datapoint values as Figure 7-1, only the colour grading and marker size is adapted. In this
new figure, the colour indicates the jaw type (upper jaw, lower jaw), and the marker size
indicates the tooth type (incisor, (pre-)molar).
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Figure 7-2: The pulling percentage (f_str2_perc) on the horizontal axis versus the pushing
percentage (f_str1_perc) on the vertical axis of 68 demonstrations of the main surgeon. The
tooth type (incisor or (pre-)molar) is described by the scatter size and the type of jaw is described
by the scatter color

From this figure, a higher level of descriptiveness occurs. The variance in the distribution
of the lower jaw samples is much smaller than the variance in the upper jaw samples. The
lower jaw samples are mostly situated in the lower right quadrant. Most lower jaw molars are
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situated on the diagonal line that is plotted, whereas the incisors are not. This diagonal line
represents the situation that the addition of the pushing percentage and the pulling percentage
gives 100%. When a point is situated on this line, all timestamps in an experiment are thus
annotated with either a pushing strategy or a pulling strategy, and no datapoint is annotated
with an unknown strategy. The more datapoints are situated on this line, the better the
pushing/pulling strategy deduction system works. Especially the lower molars are situated
on this line, indicating the force strategy deduction algorithm performs best for lower molars.

In addition to analysis of the Fz strategy features, also the degree of descriptiveness in the
complexity features is investigated. Figure 7-3 shows two combinations of plotting the com-
plexity in all force directions sequentially. Both plots show the amount of complexity for
incisor teeth is distributed towards the lower left of the plot, while also overlapping with the
(pre-)molar distribution significantly. Furthermore, only the left plot shows a significant level
of descriptiveness. The upper jaw samples are almost fully separated by a 45 degree line from
the lower jaw samples in plotting the xy complexity.
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Figure 7-3: Force complexity in all xyz-directions plotted against each other sequentially. The
size of the marker indicates the type of tooth and the color of the marker indicates the jaw type.

Except for a clear separation between upper jaw teeth and lower jaw teeth in Fx complexity
and Fy complexity, plotting the jaw type did not give satisfactory results to argue for descrip-
tiveness in tooth type. To quantify the suspicion that the distributions for incisor teeth differ
from the distributions of molar teeth, the boxplots in Figure 7-4 are included.

The horizontal axis is displaying the three directions in which the force can be applied, and
the vertical axis is showing the respective complexity. Comparing the force direction amongst
each other, the median complexity of the incisors show the same complexity and the median
complexity of the molars show the same median complexity. Furthermore, the lowest 25%
of incisor observations have a significant smaller variance than the biggest 25% of incisor
observations. Comparing tooth type wise, the medians of the molar complexity are higher
than the medians of the incisor complexity. Furthermore, there is a separation between the
interquartile ranges of the incisor and molar distributions in the Fy and the Fz direction.

Interoperability descriptiveness

We can further investigate the descriptiveness of the force strategy deduction system when
looking at differences between executors. The boxplot in Figure 7-5 displays the push
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(pre-)

Figure 7-4: Distribution box plots of the complexity in all three force directions. The purple
color is indicating the distributions related to the incisor teeth and the orange color is indicating
the distributions related to the (pre-)molar teeth.

(f_str1_perc) and pull (f_str2_perc) strategy distribution of the four executors. The first
column displays the distribution of the main surgeon. The second and third column displays
the distribution of the two other surgeons, and the last column displays the distribution of the
student. The distributions of the main surgeon and surgeon 2 are showing the most similarity
in terms of median push and pull percentage. The distributions for the student are deviating
the most from all other distributions in terms of pulling strategy variance. Furthermore, a
clear distinction between the pushing and pulling distribution is seen. It shows no overlap
between push and pull distributions whatsoever.
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Figure 7-5: Distribution box plots of the normalized push and pull percentages for all executors.
The number n is indicating the amount of samples that are spanning the distributions. The
amount of push percentage f_str1_perc is depicted in red and the amount of pull percentage
f_str2_perc is depicted in blue.

We can take a look at how the actual distribution of the student is constructed by plotting the
pushing percentage (f_str1_perc) versus the pulling percentage (f_str2_perc). Figure 7-6
is showing this plot. It stands out that all datapoints are situated at the left of this plot
(which was expected based on the student’s small and low pull distributions in Figure 7-5).
It can be seen however, that only one sample is situated on the diagonal line, indicating the
strategy deduction system returns high percentage of not defined timestamps.

In addition to the strategy deduction system, we can also compare the distributions of the
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Figure 7-6: Features f_str1_perc and f_str2_perc plotted against each other for the samples
of the student (n=15). The type of tooth is indicated by the marker size and the type of jaw is
indicated with the marker colour.

force complexity amongst all four executors. This can be seen in Figure 7-7.

(pre-)

Figure 7-7: Distribution box plots of the complexity in all three force directions for all executors.
The purple color is indicating the distributions related to the incisor teeth and the orange color is
indicating the distributions related to the molar teeth.

From this figure, we can see that the expected behaviour of descriptiveness between median
complexity between the incisor distribution and the molar distribution can only be found at
the main surgeon. All other three executors have overlapping distributions for incisors and
molars in all three force directions. Furthermore, the distributions of the student are standing
out the most in terms of variance. The distributions of the main surgeon and surgeon three
are the most narrow in general. Furthermore, the distributions of surgeon 2 and the student
are most alike. This is probably related to the long execution times both executors adopted,
influencing the complexity feature.

7-1-2 Descriptiveness in rotation features

The process of feature extraction of the rotational data described in Section 5-3 led to
the following features: y_perc, z_perc, both_perc, mean_seg_length, dir_changes and

W.M. de Graaf Master of Science Thesis



7-1 Results of the Feature Engineering process 67

#_rot_strategies. Table 7-2 states these features and their description.

Table 7-2: Explanation of the features deduced from the rotation data with their descriptions.

Feature Name Feature Description

y_perc Percentage of the total tooth extraction the forceps is rotating around the y-axis
(bucco-lingual in lower jaw or bucco-palatal in upper jaw)

z_perc Percentage of the total tooth extraction the forceps is rotating around the z-axis
(longitudinal rotation)

both_perc Percentage of the total tooth extraction the forceps is rotating the 8-movement
(combination of yz-rotation)

mean_seg_length Mean length of a segment (one back/forth movement) of the main axis of rota-
tion

dir_changes Amount of direction changes in the main axis of rotation (amount of segments)
#_rot_strategies Total number of strategies (y_perc, z_perc, both_perc) used to remove a tooth

In analysing the features deduced from the rotational data we can, just as with the force
features, make a distinction between descriptiveness on anatomical level or executor level. For
the sake of consistency, also the results of the rotational feature extraction will be discussed
by means of this same structure, with the dataset of the main surgeon (n=68 samples) and
the dataset of all executors (n=131 samples) respectively.

Descriptiveness on anatomical level

Using the same plotting technique as for the forces, we can plot the percentage of rotation in y-
direction (y_perc), the rotational velocity in z-direction (z_perc) and the rotational velocity
in yz-direction (both_perc) for all the experiments of the main surgeon in a three-fold figure.
This is shown in Figure 7-8.

Figure 7-8: The normalized percentage of rotation strategy in z-direction (z_perc), y-direction
(y_perc) and yz-direction (both_perc) plotted in a three fold plot. The marker color indicates
the type of jaw and the marker size indicates the amount of roots of the tooth.

The left figure of Figure 7-8 displays a clear separation between the single-rooted teeth (1
root) and the multi-rooted teeth (2-3 roots). For multi-rooted teeth (big markers), no more
than 20% of a pure z-rotation is present, except for one outlier. The percentage of y-rotation
is spread from 15% to 100%, indicating the extraction technique is either a pure y-rotation
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or a combination of an 8-rotation and a y-rotation. Subsequently, the left plot also displays a
clear area of interest where the single-rooted teeth are situated. Especially the single-rooted
teeth in the lower jaw show less than 20% of y-rotation. This indicates the single-rooted
teeth are mostly extracted using a z-rotation or by a combination of z-rotation and an 8-
rotation. The centre plot and the right plot show an apparent linear trend. For z_perc and
both_perc mostly single-rooted lower jaw samples meet this linear relation, while for y_perc
and both_perc mostly multi-rooted upper jaw samples meet this linear relation.

Zooming in on the left plot of Figure 7-8, the amount of roots metric can be replaced by the
type of tooth to allow for a more tooth specific comparison. The result is shown in the left
plot of Figure 7-9.

Lower Jaw Remaining

Lower Molars

Upper molars

Upper Incisors

Lower Jaw Remaining
(pre-)

Figure 7-9: Clustering of rotation demonstrations where the percentage of y-rotation is plotted on
the horizontal axis and the percentage of z-rotation is plotted on the vertical axis in the left figure.
Because the ‘remaining’ samples in the lower jaw do not display distinctiveness based on y_perc
and z_perc, they are compared amongst the features dir_changes and mean_seg_length,
which can be seen in the right figure. The proposed clustering in this figure is done based on
tooth type

This figure shows the extraction strategy of molars in the upper jaw mainly include y-rotation.
The extraction strategy of incisors in the upper jaw mainly include z-rotation. The molars
in the lower jaw have a varying y-rotation between 0% and 40% of the total demonstration,
whilst having no z-rotation. We are left with a group of teeth in the upper jaw where no
uniform distinction can be made y_perc or z_perc. To see if the complexity of the rotation
can give descriptiveness in this group, the right plot of Figure 7-9 is included. It shows the
samples plotted with the number of segments on the horizontal axis and the mean segment
length on the vertical axis. When a segment length is small and/or the amount of segments is
small, a distinguishable group emerges with lower jaw incisors. When a segment length is big
and/or the amount of segments is big, the last group with lower pre-molars appears. In this
way, both the features representing rotation strategy and the features representing rotation
complexity are yielding descriptiveness between groups of teeth.

Because the groups in Figure 7-9 show significant similarities amongst groups of teeth, groups
are formed based on these similarities of extraction technique. The various extraction tech-
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niques and the corresponding tooth numbers are described in Table 7-3. These groups will
also be used later on as classification labels in the prediction algorithm. The corresponding
names as used in the remainder of this report are added in the last column.

Table 7-3: Extraction techniques grouped together based on the outcomes of the feature engi-
neering process. The tooth numbers and the group names are included.

Extraction technique Tooth number Group name

z_rot 11, 21, 12, 22, 13, 23 up_in
y_rot 14, 24, 15, 25, 16, 26, 17, 27 up_mol
8-rot [high rotation velocity] 31, 41, 32, 42, 33, 43 low_in
8-rot [low rotation velocity] 34, 44, 35, 45 low_premol
8-rot [buccal oriented] 36, 46, 37, 47 low_mol

To justify that the found groups of Table 7-3 indeed yield differences in extraction techniques,
the kernel density analysis as performed in Figure 5-7 can be carried out on all the extraction
belonging to the respective group. This yields a heatmap of all the rotations in y and z-
directions of that particular group. The results of grouping the data of the main surgeon are
shown in Figure 7-10.
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Figure 7-10: Gaussian distribution of the amount of y-rotation against the amount of z-rotation
in radians of all classes defined in Table 7-3, displayed in a heatmap.

Various extraction techniques can be seen in this figure. The most obvious technique is
applied on upper incisors. It is a dominant rotation around the z-axis, whilst almost no
rotation around the y-axis is present. The upper molars have a dominant y-rotation, but the
rotation in z is still present. The lower incisors and the lower premolars are mainly oriented
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towards the rotation around z, but the y-rotations are present. The lower premolar plot
shows two distinct distributions, indicating multiple techniques are used to extract this type
of tooth. The lower molar group show an apparent 45 degree angle between the y-rotation
and the z-rotation. This indicates the application of a pure 8-rotation as extraction technique
for lower molars.
The heatmaps in Figure 7-10 are the result of the heatmaps that are based on the rotation
data. To compare amongst executors in an organised manner, the most interesting results
from their heatmaps are included in the following results. The remaining heatmaps not
included in this report can be found in Appendix A-4.

Descriptiveness on executor level

Figure 7-11 is showing the comparison of the heatmaps of all the executors. The technique for
the upper incisors is roughly the same for all executors. The main surgeon however, performs
the extractions with less variance in y-rotation. The variances in y-rotation of surgeon 2
and surgeon 3 are higher and the variance in y-rotation of the student is large. The main
surgeon also extracts the lower incisors with a small favour in z-rotation, but compared to the
upper incisors, an increase in y-rotation is shown. This is an indication for the ‘8’ extraction
technique. The lower incisors heatmaps of surgeon 2 and surgeon 3 are shown to be oriented
to a y-rotation, where the spread along the z-rotation is less. It can be seen however that
the heatmap lights up a bit towards the z-rotation, indicating the presence of a z-rotation as
well. This difference can be due to the fact that this group consists out of two persons, both
adopting their own different extracting techniques.
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(a) Main surgeon
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(b) Surgeon 2 and 3
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Figure 7-11: Heatmap of the y-rotations against the z-rotations for the upper incisor class and
the lower incisor class. The data of the main surgeon is plotted in (a), the data of the other two
surgeons are plotted in (b) and the data of the student is plotted in (c).

The last column shows the heatmap of the student. It can be seen that for the upper incisors,
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there is no clear strategy. The movements are all over the place. This is in high contrast with
the clean and subtle movements from the clinicians. The lower incisor group also deviates
from the findings of the clinicians. It shows a pure y-rotation, indicating a buccal-lingual
movement. This is interesting to see because this type of movement is exactly the extraction
movement how Stegenga describes the procedure on extracting lower incisor teeth (Table 2-1).

In addition to the heatmaps shown above, the velocity heatmaps of all the four executors are
calculated. These are included in Appendix A-4. The most interesting finding from these
velocity heatmaps is that the student is using less rotation velocity than the surgeons.

7-2 Results of the Supervised Prediction Modelling

Section 7-1 showed how the feature engineering process led to features that describe tooth
removal on anatomical level or executor level. Furthermore, tooth groups are formed, mainly
based on features of rotation. These groups will serve as the classification groups for the
supervised prediction algorithm. Section 7-2-1 describes how a Naïve Bayes algorithm serves
as a baseline model taking the features as input to fit them based on the classification groups.
This baseline model yields a certain performance and stability. These are compared with
the outcomes of a LR model by means of accuracy and bet subset selection. At last, the
interpretability of the features used in the LR is discussed in Section 7-2-3, where the results
of forward stepwise selection and SHapley Additive exPlanations values are stated.

7-2-1 Gaussian Naïve Bayes prediction Model

The NB algorithm is implemented on the dataset of the main surgeon (n=68). The train/test
split as described in Section 6-1-3 yields a training set size of 47 samples and a test set size
of 21 samples. The respective train class sizes are: low_in: 18, low_mol: 5, low_premol:
7, up_in: 23 and up_mol: 15. The respective test class sizes are: low_in: 6, low_mol: 1,
low_premol: 2, up_in: 7 and up_mol: 5. When the NB model learns from the training data
and predicts output classes from the unseen samples of the test set, a confusion matrix can be
employed to give insight in the prediction performance of the model on the respective classes.
The confusion matrix for the training set is shown in Figure 7-12a and the confusion matrix
for the test set is shown in Figure 7-12b.

Looking at individual classes, it can be seen that for both testing and training the classes
low_in, up_in and up_mol render a high accuracy. The amount of samples in these classes
is higher than in the other classes, which contributes to better training accuracy. However,
the other classes perform reasonably well, despite the low amount of samples.

Furthermore, a mixup can be seen between the classes low_in and low_premol in the training
set. Two low_premol predictions are wrongly predicted as low_in and two low_mol predic-
tions are wrongly predicted as low_premol. This can be an indication that the groups low_in
and low_premol are more similar than thought. This confusion is also visible in the test set
whilst being less present. It can also be seen that from both the training set and the test
set, only one classification mistake is made between the upper and lower jaw, indicating the
prediction model is good at predicting differences between upper and lower jaw.
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(a) Confusion matrix for training set (b) Confusion matrix for test set

Figure 7-12: Confusion matrices for prediction results of the NB model. Figure (a) shows the
result for the training set and figure (b) shows the result for the test set. Each instance in a
column of the matrix represents the predicted label for a sample and each row represents the true
label for that sample.

Cross-validation

Figure 7-12 is showing the confusion matrices of the NB prediction model. This is the result of
a random stratified split of the training and test data. Because various splits render different
results, cross-validation can be performed. The full process is described in Section 6-3. The
result in terms of accuracy implementation of a 5-fold stratified cross-validation is shown in
Figure 7-13. The training and the test accuracy are plotted with respect to the fold.

Figure 7-13: Cross validation scores when a 5-fold stratified cross validation is performed on the
Naive Bayes model. The red curve shows the the training accuracy and the green line shows the
cross-validation test accuracy.

The training accuracies show good performance over all folds. The cross-validation accuracies
however, show instability. The accuracies of fold 1-4 are going up and down, and the accuracy
of the last fold is dropping significantly. Comparing the cross-validation accuracies with the
training accuracies, it is argued the training set is overfitting. This causes the cross-validation
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scores to drop when they contain outliers (last fold).

Improvements can be made based on the obtained model so far. Because of the small dataset,
it is hard to gain improvements in accuracy, precision and recall. The Naive Bayes is good
at using the existing features for its predictions. The model however, is unstable. The cross-
validation shows a instability and a fairly big drop in accuracy, probably caused by an outlier.
In the next section, the results of the implementation of a Logistic Regression algorithm are
discussed, which should render more stability and less variance in prediction accuracy. The
current algorithm is compared with this new algorithm.

7-2-2 Logistic Regression Model

To allow for multiclass prediction a Logistic Regression model with an One-Versus-Rest (OVR)
structure is introduced. The maximum iterations are set to 1000, and the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) solver is used. First, the performance of the
LR algorithm is compared with the performance of the NB algorithm. Then the best feature
set selection is compared for both algorithms. This indicates how much features are necessary
to gain good performance.

Naïve Bayes and Logistic Regression comparison on accuracy

We can compare the performance of this model in terms of stability with the Naive Bayes
model described above. Showing plain confusion matrices of the Logistic Regression model
and comparing them with the confusion matrices of Figure 7-12 does not make sense to
compare in terms of stability. From the Naive Bayes cross-validation it was shown that the
way the training and test data was split had much influence on the prediction outcome, so
to compare the two algorithms, 500 randomized train/test splits for both the Naive Bayes
algorithm and the Logistic Regression algorithm are performed and plotted. This is shown
in Figure 7-14.

First, the training sets are discussed. For NB and LR, both training medians are nearly equal.
However, the interquartile range for Naive Bayes is centred around the mean, indicating the
mean and the median are identical. The median in the LR model is more centred towards the
third quartile, meaning half of the data has higher accuracy than 90%. Furthermore, the LR
training distribution show a discrete character of frequency peaks. This can be caused due
to the small number of samples in the dataset, where the randomized train/test splits render
the same accuracy by wrongly predicting the same amount of samples over these various
train/test splits. At last, the 95% confidence interval of the Naive Bayes almost spans across
the whole distribution, while the 95% confidence interval of the Logistic regression is way
more centred towards the median, which indicates higher stability for the LR model.

Next, the test set distributions are inspected. For both NB and LR, the test set shape varies
from the training set shape. There is more variety in accuracy and the spread is higher,
leading to a narrower distribution plot. The ‘discretization’ behaviour we saw for the training
set in LR can be seen for the test set as well. The NB testing accuracy shows a wide 95%
confidence interval, spanning almost the whole distribution. This was seen in the training set
as well. For the LR, the 95% confidence interval is again smaller than for NB, which can be
caused by the more stable training set in Logistic Regression.
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Figure 7-14: Probability density plots from 500 randomized train/test splits for the Naive Bayes
algorithm and the Logistic Regression algorithm. The blue violins show the distributions of the
train data and the orange violins show the distributions of the test data.

Finally, the median training accuracy and the median testing accuracy are more similar for
the LR model than for the NB model. The NB distribution of the test set is more shifted
downwards with respect to the training set compared to the distributions of the LR model.

Best subset selection

The best subset selection is performed to show how the accuracy changes in relation with
the number of features. This is done for the NB model and the LR model. The result of
implementing best subset selection on both models is shown in Figure 7-15.

The left figure shows the best subset selection for the NB model, and the right figure shows
the best subset selection for the LR model. The average accuracy of the NB model is indicated
by the green line and the red line indicates the maximum accuracy. This shows that the NB
model has significantly higher accuracy than the LR model, especially when the amount of
features is small (94% over 89%). However, the mean accuracies for both models do not differ
significantly. The green line shows the NB model has higher mean accuracy in general, but
a bigger standard deviation than the LR model. The standard deviation of the LR model is
almost half the size of the standard deviation of the NB model. Also, if we take a look at
the minimum accuracies per feature amount, the slope for the LR algorithm is almost linear,
yielding a much smaller spread between the maximum score and the minimum score for the
accuracy, which is likely causing the smaller standard deviation.

From this plot it looks like that the NB algorithm outperforms the LR algorithm. These
subset calculations however, are based on the total dataset, so no split between a training
dataset and the testing dataset is done. It can be argued that the NB model is better at fitting
complex relationships when small amount of features are present than the LR model. This
is not always desirable, because generalization to unseen samples is important. Taking the
train/test performance results of Figure 7-14 into account, it is argued the LR model performs
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Figure 7-15: Best subset selection for the Naive Bayes algorithm and Logistic Regression algo-
rithm. The black dots represent the algorithms accuracy for a fitted models. For each number of
features, the combination of possible models

(
k
n

)
are fitted. Here n is the number of features to

choose from and k is the total amount of features, which is 11. The red line is the subset with
the highest accuracy. The green line shows the mean accuracy and the standard deviation over
all
(

k
n

)
models for every feature amount.

more stable while being less prone to overfit compared to the NB model. As such, the LR
algorithm is used for performing the forward stepwise selection and SHAP interpretability
tests.

7-2-3 Model Interpretability

The best subset selection from Section 7-2-1 and Section 7-2-2 can be of help when interpreting
the impact of the features on the model accuracy. When a feature has a high impact on the
model accuracy, it means this feature is descriptive and defining for the intrinsic properties
of this class. We can use two methods to investigate the feature importance in our Logistic
Regression model. First, we employed a forward stepwise selection model. This model starts
with fitting a model with 0 features and at every iteration, it adds the feature that gives the
best additional improvement. Furthermore, we used the SHAP interpretability optimization
to find the parameters with the most predictive power.

Forward stepwise selection

The results of the forward stepwise selection on the LR model can be seen in Table 7-4. This
table shows the cumulative improvements on the model accuracy when using the forward
stepwise feature selection method. The seven most essential iterations are plotted, yielding a
training accuracy of 86.8%. Interesting to see is that the rotation features z_perc and y_perc
together account for 73.5% of the accuracy, after only two iterations. After 6 iterations the
performance of the model stagnates, yielding no additional performance increase at iteration
7. The ultimate performance is thus reached by combining three features of rotation and
three features of force complexity.
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Table 7-4: Forward stepwise feature selection result for the five most important iterations. The
last two columns represent the cumulative accuracy added during an iteration and the resulting
accuracy of the combined features.

It. Features Cum Acc. Acc.
% %

1 z_perc 63.2 63.2
2 z_perc y_perc 10.3 73.5
3 z_perc y_perc fy_complexity 3 76.5
4 z_perc y_perc fy_complexity fz_complexity 1.4 77.9
5 z_perc y_perc fy_complexity fz_complexity #_rot_strategies 4.5 82.4

6 z_perc y_perc fy_complexity fz_complexity #_rot_strategies 4.2 86.8
fx_complexity

7 z_perc y_perc fy_complexity fz_complexity #_rot_strategies 0 86.8
fx_complexity mean_seg_length

SHAP Interpretability

In addition to the forward stepwise selection, we can use the SHAP interpretability that is
basing the feature importance on game theory. Figure 7-16 show that again, the z_perc
feature and the y_perc feature are impacting the model performance the most.

Figure 7-16: SHAP values for the Logistic Regression model trained on the classification classes
as described in Table 7-3. The stacked bars show the impact of a feature on the output of the
Logistic Regression model. The colour grading of the bars indicate the impact of the feature on
the output performance of a specific class.

Especially for the classes in the upper jaw, the impact of the z_perc feature and the y_perc
feature on the model output is significant. Furthermore, it can be seen that the Fz_complexity
has the most impact on the lower molar class. The feature both_perc has the most impact
on the lower incisor class.
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Chapter 8

Discussion and Conclusion

This chapter intends to discuss the results of Chapter 7. First, the results of the feature
engineering of the force data, the feature engineering of the rotation data and the supervised
prediction model are discussed in Section 8-1. Next, a general discussion is provided in
Section 8-2, responding to the research question and the sub-questions posed in Section 1-2.
Section 8-3 states the conclusion and Section 8-4 gives recommendations for future work.

8-1 Discussion of Feature Engineering and Prediction Model

This section provides an in-depth discussion of the results of the feature engineering of the
force data, the feature engineering of the rotation data, and the supervised prediction model.

8-1-1 Discussion of the force features

Section 7-1-1 stated how the most essential features deduced from the force data tried to
describe descriptiveness of tooth removal on anatomical level and interoperability level. In
general, on anatomical level, only a descriptive trend could be seen for features fx_complexity
and fy_complexity when comparing on jaw type (upper, lower). The samples from the upper
jaw showed an increase in fy_complexity accompanied with a decrease in fx_complexity,
while the samples for the lower jaw showed the opposite (Figure 7-3). With the results of the
rotations in mind, an explanation in retrospect for this clear separation could be the fact that
the movements for the upper jaw (especially the upper jaw molars) are more y-rotation ori-
ented. This results in an application of force in the y-direction, increasing the fy_complexity.
On the other hand, the samples of the lower jaw (especially the lower jaw molars) require
more of an 8-rotation. This results in an increase of force application in x-direction, increasing
the fx_complexity. Apparently, the force application direction changes in y-direction comes
forward while applying bucco-lingual rotations, while the force application direction changes
in x-direction comes forward while applying an 8-rotation. Future work could investigate the
coupling of these movements and their resulting force directions.
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Furthermore on interoperability level, the distributions of the force features did not show
significant descriptiveness amongst the executors, except for the student. The student used a
different strategy than the other three surgeons, especially compared with the main surgeon.
This becomes evident when comparing Figure 7-2 and Figure 7-6. The location of the samples
of the student is clustered and oriented to the left of the plot, while the majority of the samples
of the main surgeon is oriented to the lower right of the plot. This indicates the student is
applying a different force strategy than the surgeon. This statement is strengthened by the
amount of datapoints of the student situating on the ‘perfect line’. Only a single datapoint
is situated here, indicating the student’s force data differs from the main surgeon’s force
data. Furthermore, the student needed more complexity than the other three surgeons, while
showing most similarities with surgeon 2 (Figure 7-7). The latter was probably due to the
amount of time needed to extract. For both surgeon 2 and the student, this was higher
compared to the extraction times of the main surgeon and surgeon 3. Right away, this could
be considered a downside of the complexity features. They are still dependent on time: the
more time needed, the more complexity. An improvement on the current complexity features
would be the introduction of a time-independent force feature, where the complexity of the
extraction could be expressed as ‘complexity per second’.

The torques were not used in the analysis. During the brainstorm sessions, the torque data
did not show apparent descriptiveness, and the data looked random. First iterations of
prediction performance of the force features in the prediction model showed disappointing
results in terms of accuracy. In this way, the torques were not analysed and no features
are based on them. However, with the current knowledge about the rotations and forces, a
hypothesis about the torques is proposed to show how features from the torque data could
have been deducted in the feature engineering process. The torques operate around the
same axis of rotation as the rotation data, lending itself for an introduction of a ‘resistance’
measure. In this way, when a small rotation value is measured and a high torque value, the
resistance is high. When the rotation is high and the torque is small, the resistance is small.
It could be that the clinicians are rotating in the direction of least resistance and therefore
avoiding strong forces and torques in specific directions to minimize the risk of fractures. For
further research, the working principle of the torques could be investigated in combination
with this ‘resistance’ measure. This direction of research could be performed in combination
with rotations, or it could be more focused towards the detection of anomalies, such as tooth
fracture or complications.

In literature, limited research on the topic of force interactions showed strong contradictory
results. This shows the complexity of analysing forces during tooth removal. Comparing the
results with the hypothesis stated about the forces, the first hypothesis about the pushing and
pulling strategies is rejected. This strategy deduction could only be used to show differences
between a student and a surgeon, but it did not provide enough information about descrip-
tiveness between teeth. The second hypothesis could be assumed with caution. In general, a
slight increase of complexity was seen for molars compared to incisors, but the distributions
of feature values show much overlap between incisors and molars. From this, the question
‘Why was the hypothesis proposed in the first place?’ can be asked. This was done because
at earlier iterations of the modelling phase, predictions of the force features (and especially
the complexity features) showed reasonable prediction performance. The feature engineer-
ing analysis was done after the prediction modelling. This should have been the other way
around, so the limited descriptiveness was noticed in an earlier stage of the process. Besides,
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the researchers were too much fixated at finding a metric for complexity, above just using
basic features such as maximum force.

In summary, the feature extraction of the force data did not show the desired results in terms
of descriptiveness. Feature Engineering remains a process that is highly dependent on human
intervention and the expertise of the human concerned [30]. The researchers did not find
the best working force features yet, but further analysis could change this. This statement
is strengthened by the fact that the most basic characteristics such as maximum force, total
force applied or peak force are not included as features in this research. At first iterations of
the modelling, they did not look promising and not descriptive. Further research could look
into their descriptiveness.

8-1-2 Discussion of the rotational features

Section 7-1-2 stated how the force features resulted in descriptiveness between groups of
teeth and descriptiveness between executors. The features z_perc, y_perc, dir_changes
and mean_seg_length were able to discriminate five different groups of rotation. In line with
textbook instructions, for example in Stegenga [10], we found apparent differences between
certain movement strategies, most important being the pure rotation around the z-axis and
a pure rotation around the y-axis. However, it seems that an extra group of descriptive
movement patterns exists as well (8-rotation), which has three variants: buccal oriented, high
rotation velocity and low rotation velocity. The results of the feature engineering process of
the rotation data seems to be well in line with our hypotheses about rotations. The features
z_perc, y_perc showed they can be used to find descriptiveness in extraction strategy. These
features showed interoperability coherence amongst surgeons, which was especially high for
the up_in class and the low_premol class. The extraction strategy of the student differed
significantly, which was most apparent in the up_mol class and the low_in class.

The rotational features are found to be descriptive but do have their limitations. Still, the
rotation of the extraction procedure is measured with a robot attached to a forceps. Although
the learning curve for handling the robot is pretty steep, the compliant movement of the robot
could still impose movements to the surgeon that were not intended by the surgeon in the
first place. This has a larger effect on the smaller samples sizes (n=23, n=26, n=22) for
respectively surgeon 2, surgeon 3 and the student because they did not have time to learn
how to handle the robot. This in contrary to the main surgeon, who significantly performed
more experiments (n=79). Furthermore, the main surgeon removed all teeth during a single
day. Possibly, this has influence on the resulting data. On one hand, it can introduce the
effect of consistency when performing the same experiment over and over again. On the other
hand, it can introduce the effect of increased (physical) workload, where fatigue could be
increased and concentration could be decreased in time. Currently, these factors are assumed
constant, and their influence on the data is unknown.

Furthermore, it is assumed the position of the tip of the forceps does not change during an
extraction. However, when a tooth comes loose, the center of rotation of the tooth is changing.
As such, the position of the forceps changes as well. The assumption that the tip does not
move was initially made because in dental literature there is no consensus about what the
location of this center of rotation is (if any). In hindsight, we could argue that, especially for
more significant deviations from the original centre of rotation (generally bucco-lingual and
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8-movements), Ψt is continuously moving, while the transformation of the forces, torques and
rotations assume a fixed frame. The rotation is less dependent on this fixed frame because
it is calculated as a relative movement, while not being dependent on position. The wrench
transformation, on the other hand, is dependent on the position. This could be a reason that
the rotation features worked out better than the force-torque features.

8-1-3 Discussion of the prediction model

Section 7-2 showed the results of the modelling of tooth removal features with a supervised
machine learning model. The Naïve Bayes (NB) baseline model showed it is fairly good
at distinguishing between the upper jaw and the lower jaw. Figure 7-12b showed only one
classification mistake on the training data was made between upper and lower jaw (97%
accuracy). No classification mistakes between upper and lower jaw were made in the test set,
yielding 100%. The absolute accuracies are not the most important however. Apparently,
the impact of the combination of force and rotation features differs significantly between the
upper and lower jaw, yielding high prediction accuracy between the jaws. The specific impact
of the force features or rotation features on the jaw type is not investigated. In hindsight, a
separate prediction model classifying the jaw type should have been integrated. This could
have given more proof for the decisiveness of the force features.

The Logistic Regression (LR) model outperformed the NB model based on stability and
mean test accuracy, when the same 500 train/test splits are used. The median accuracies
of the training set and test set were closer for LR compared to NB. These results show
that with such a small dataset, the accuracies and performance of the prediction model are
dependent on the class sizes. Here the train-test split ratio is critical and influences the
performance of the predictions. Some test set classes showed only one sample, which in
general is not representative for the training set. Additional data is needed to make the
samples in the test set more reliable. On the other hand, when more data is gathered, the
need for a more sophisticated machine learning algorithm such as neural networks emerge
[12]. The downside of ‘just gathering an enormous amount of data’ is two-fold: It is costly,
especially the acquisition of fresh frozen cadaver jaws is expensive. Furthermore, with the
application of a more sophisticated algorithm you lose upon interpretability. The amount of
data should lie in a sweet spot where applied algorithms still find descriptiveness amongst
classes and coherence within classes, without losing upon techniques to gain information from
the learning model.

The interpretation analysis of the model showed how the rotation features account for most
of the descriptiveness in the model. This was expected, because the most descriptive features
emerged from the rotation data and the labelling was based on the descriptiveness of the
rotation features. However, the prediction algorithm still needs information from the force
features to yield high prediction performance.
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8-2 General Discussion

8-2-1 What was found in this study?

This study explored whether feature engineering and supervised prediction modelling are able
to describe tooth removal in terms of forces and movements. A scientific gap exists in the
field of tooth removal and this research provides an innovative first step to bridge this gap.
With the use of robotic technology, 131 successful human demonstrations of tooth removal
procedures were recorded from four different executors. Feature engineering was used to
extract relevant features from the demonstrations. These features provide information about
the tooth removal process but were also used as in input to a supervised classification model.
This classification model was used to classify tooth groups that were formed during the feature
engineering process.

The feature engineering process showed that we were able to discriminate between teeth
mainly based on the features of the rotation rather than the features of the force. We were
able to show how the percentage of y-rotation and the percentage of z-rotation could be
used to form groups of similar extraction strategy. The formed groups proved how different
extraction techniques are used for different teeth. Furthermore, the groups where used to
highlight strategy differences between a student and surgeons. The strategy of the student
in terms of rotation direction and velocity, significantly differs from the strategies of the
surgeons.

The prediction modelling confirmed that indeed the features from rotation have high predic-
tive importance. The rotation features alone have shown to account for more than 73.5% of
the model’s performance. In this way, the prediction model helped to justify the descriptive
factor of the rotation features. Even with a small dataset, the supervised prediction algorithm
yielded significant performance.

The analysis of the feature engineering model and the prediction model are based on finding
differences between feature values. Hence, the process adopted in this thesis is of a discrim-
inative nature. Differences in the dataset are used to our advantage in trying to explain
anatomical variations or variations between executors. However, a discriminative model does
not necessary describe the total process of tooth removal. If a surgeon is using the same
technique for all extractions, a discriminative model is not able to find this. A generative
model on the other hand, is able to extract this specific behaviour from the data. Our dis-
criminative model thus does not describe the most important factors for tooth removal, but
describes how differences in terms of forces, rotations and movements between tooth groups
could be explained. This means, factors influencing differences in tooth removal procedures
are found, but factors influencing all teeth in the same manner still have to be found.

8-2-2 Limitations

However, some limitations still exist for this research. Despite this research showed promising
results into a first insight in tooth removal procedures, the main pitfall seems to be the
limited amount of data. This was mainly seen in the results of the prediction model. The NB
baseline model did show significant accuracy with 84% on the test set (2 out of 21 wrongly
predicted samples). However, the lower molar class still contains only one sample, indicating

Master of Science Thesis W.M. de Graaf



82 Discussion and Conclusion

a limited representativeness of this class in the test set. The current model predict this test
set sample accurate, but with a different train/test split, this will not always be the case.
Classes with with larger test sizes (i.e. class up_in: upper incisors) show much stronger
accuracy performance. In the training set, all 16 samples are predicted correctly and in the
test set only one sample is predicted as false positive. Extending the dataset with more data
would justify the development of i.e. scientific backed educational material. It was valuable
to show that even with small amount of data, predictions on the formed groups differed
significantly and significant differences between the main surgeon and the student emerged.
The datasets of the other two surgeons however, were too small to draw justified conclusions.
For further research, especially because the area of forces needs more research, we should
gather more data that focuses on consistency within extractions of a single surgeon to ensure
representativeness of all classes in the test set.

Secondly, as described in Chapter 3, an in-vitro measurement approach is used in this research
with fresh frozen cadaver jaws. Research of Cicciù et al. and Ahel et al. has pointed out that
in-vivo experiments will not lead to reliable data [3, 52]. But without reliable in-vivo data
to compare our dataset to, it should be questioned whether our dataset is representative in
clinic. It is possible that the extraction force is significantly lower than in real jaws because
the gingiva in cadaver jaws is softer. Furthermore, the state of the jaws is assumed constant
over the total amount of experiment day. All extractions are performed over a total time
span of four days. It is possible that the jaws used at the first day were more rigid than
the jaws used on the last day because the gingiva was not fully thawed at the start of the
experiments. Additionally, the movements with the robot and the way force is applied, differs
from an in-vivo setting. The robot is not fully resistance-free and it requires a steep learning
curve to adjust to the compliant dynamics of the robot. This could introduce fatigue of the
executor after many extractions. The rotation velocity could decrease after a certain amount
of extractions, which could affect the chosen strategy. A perceived workload questionnaire for
every full jaw extracted could be used to measure this. An example could be a NASA Task
Load Index (NASA-TLX) [53] or a Shortened Fatigue Questionnaire (SFQ) [54].

Knowing the relation between the in-vitro measurements and real extractions in terms of
periodontal state, application of movement and reaction forces, could make this research
more justified. Not much is known yet about how the frozen jaws anatomically relate to real
jaws, so this could be investigated in future work. Also the relation of in-vitro movements
and in-vitro forces to real movements and forces is not known. This could also be investigated
for future research.

Thirdly, we did not use a trustworthy and reliable calibration tool. The calibration process is
still based on human interpretation of the location and orientation of the tooth. Determining
the orientation of the tooth is difficult since roots are situated inside the bone. Furthermore,
it is well known that the root’s tip might deviate in shape and orientation, which seems to be
a good reason to consider using radio-graphical images for a more precise calibration process.
Also, two separate calibration tools were used for the upper and lower jaw, respectively. The
design of a solid and reliable calibration tool that is generic for both upper and lower jaw
would help the calibration process enormous. It will lead to higher repeatability, which relies
less on the interpretation of the human.

At last, we will reflect on the process that led to the results. This project involved the
application of technical knowledge in the domain of dentistry, that was first unknown to the
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author. The innovative character of this project and contributing to educational improvements
fed the author’s enthusiasm to work on this project. However, this enthusiasm also caused
the author to dive too deep into the research and modelling, without taking a step back and
reflecting on the progress and approach so far. For example, a step back should have been
taken after the feature engineering process to reflect on the feasibility of the force features. In
this way, the force features could have been more descriptive in describing differences between
teeth. In retrospect, the process of finding the factors that influence tooth removal might have
been dedicated too much to ‘finding the best features as possible’ for the prediction model.
On forehand, we should have been less optimistic about the prediction model and should have
focused more on incorporating the more obvious features in combination with clinical data
such as treatments and executors expectations. Currently, these factors are left out of the
equation, while they could have add importance in clarifying predictions or outliers. This is
a consequence of the approach taken. At the point of defining the features, the focus was too
much on finding features for complexity that where intuitive to understand. At first, these
features looked promising in the prediction model step, but in the end, they did not show
descriptiveness in the feature engineering step.

8-3 Conclusion

In conclusion, with a relatively small amount of data, we gained new insights into the process
of tooth removal. Feature engineering was employed to find the most important factors
influencing tooth removal procedures. Despite not all data was used and some data might be
under-evaluated, feature engineering proved to be well suited for deducing features from the
dataset. The rotation features were shown to be most descriptive, distinguishing between five
groups of teeth. The force features did not prove to give significant descriptiveness between the
extractions, but it showed potential. Furthermore, apparent extraction differences between
the surgeons and student are found. In general, the student’s extraction technique differs in
strategy and complexity, illustrating the need for evaluation of current educational methods.

At this stage of the research, it can be concluded that the outcomes of the NB model and
the LR mainly justify the descriptiveness of the rotation features. Supervised prediction
showed that even with a small amount of data, the models are able to distinguish between
different groups of teeth. However, the outcomes also show the limitations of the small
dataset, confirming the need for more consistent data from a single executor.

An all-encompassing explanation of the tooth removal process is not found yet. However,
this research showed that the process of feature engineering contributes to the understanding
of various extraction strategies. These strategies are found to be highly influenced by the
imposed rotation on the tooth. The prediction model highlighted these differences but showed
how rotation data alone is not sufficient enough to fully explain differences in tooth removal
procedures.

8-4 Future Work

Based on the discussion and the conclusion, the following recommendations for research di-
rections and future work are proposed:
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• The methodology mainly affected the force features and thus the information gain of
the force features. Ahel et al. and Cicciù et al. already showed the difficulty of
modelling the force in tooth removal procedures [3, 52], but it is inevitable that our
dataset cannot lead to a conclusion about forces and force differences. So the deduction
of the force features should be improved for future work, which could lead to clinical
understanding of the applied force. A start can be made with deducing the total applied
force over the time span of an extraction. This can be an informative descriptor for
differences between molars and incisors because in general, more time is needed to
remove molars. Furthermore, the maximum of applied force could be a feature that is
worth investigating.

• It was argued that the rotation and the torque combined would yield a kind of resistance.
A high torque measurement with a low rotation measurement indicates a tooth that is
fixated in the gum and a low torque measurement with a high rotation measurement
indicates a loose tooth. A feature could be proposed that combines both rotation and
torque into a single metric defining resistance. When this resistance is modelled, the
amount of torque could be coupled with the strategy performed. In this way, resistance
could be used to explain why and how clinicians are swapping to the next strategy.

• If the force features are more stable, and a resistance metric is introduced, another
prediction model (NB or LR) could be used to build a new classification model. We can
hypothesize that with better features and more data, the accuracy will increase. If this
classification model performs stable and has accurate predictions, a regression model
can be introduced, performing supervised learning from classes to numerical values.
This regression can be employed to predict the feature values for specific teeth; a tooth
number is given as input to the model, and the model predicts the corresponding feature
values.

• Especially with the use of rotational features, new educational material could be devel-
oped. The strategies can be used to serve as a basis for movement training of dental
interns. The rotational directions for the different strategies are known, so these can
be used as haptic guiding movements in a simulator. A force field could be generated,
which guides the movement of the intern in only z-rotation or only 8-rotation. Based
on the deviation of the prescribed movement patterns, the guiding force increases. In
this way, the dental intern is forced to learn the movements that correspond to the spe-
cific teeth groups. Furthermore, the measurement setup could be of significant value to
evaluate the current educational methods. The validity of plastic jaws and movements
performed on these jaws could be tested to show the representativeness of the current
educational methods.

• At last, a study could be performed that investigates the transferability of the move-
ments made and the forces applied in the clinic to our in-vitro measurement setting.
Yet it is unknown how representative our measurements are for real-life extractions.
Knowing the representativeness of our measurements would justify the feasibility of the
measurement setup and our analysis performed. The more representative the measure-
ments, the better the measurement setup could be used for educational purposes.
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Appendix A

Additional Feature Engineering Results

This appendix shows additional information on the feature engineering process as described
in Chapter 5. Not all figures could be included in the report, so a selection covering the total
diversity of the dataset is given in this chapter. Section A-1 covers the additional graphs on
how the force strategy is deduced. Particularly, the filtering method is shown that makes
filters irrelevant strategies out. Section A-2 shows additional graphs for the segmentation
process of the rotation data, where the regular rotations and the velocities are plotted in the
same figure. This is done to see how the velocity impacts the segmentation and the strategy
filtering. Furthermore, additional kernel density plots and Gaussian heatmaps are given that
were not included in the report.

A-1 Additional figures for feature engineering of forces

Figure A-1 includes the results of the pushing and pulling strategy deduction algorithm for
four measurements. In all four figures (upper left, upper right, lower left and lower right), the
upper plot shows the force curves in x, y and z-direction (red, green, blue colors respectively).
The second plot the annotation per time stamp on which strategy is currently used. The three
options are str1, str2 and Not Def. These are a pushing strategy, a pulling strategy and an
unknown strategy respectively. Because it is hypothesised that a strategy is always applied for
at least one second, the strategies yielding a smaller time span than one second are filtered out.
The result of the filtered annotations are plotted in the third figure. The bar at the bottom is
a visual representation of this third graph, making the strategies assignment somewhat easier
to interpret.

The upper two figures show a comparison between the strategy deduction of an incisor in the
upper jaw (left figure) and an incisor in the lower jaw (right figure). It can be seen that the
pushing strategy (str1) in the left figure is the main type of extraction, where in the right
figure the pulling strategy (str2) is more present. It looks like the two strategies are swapped
in place.
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The lower two figures show a comparison between the strategy deduction of a molar in the
upper jaw (left figure) and a molar in the lower jaw (right figure). Here it can be seen that for
the upper molar only a pulling strategy (str2) is used and no pushing strategy at all. This is
in contrast with the pushing strategy of the molar in the lower jaw (right figure) that occupies
half of the extraction strategy.

At last we can compare the molar strategy deduction (both lower figures) with the incisor
strategy deduction (both upper figures). The force profiles of the molar figures show an
increase in complexity comparised to the force profiles of the incisors. The back and forth
appliance of the force is more present in the lower two figures than in the upper two figures.

Based on these differences shown in both pushing and pulling strategy and the differences
shown in complexity, the hypothesis about Fz and complexity as stated in Section 5-1 is
proposed.

Figure A-1: Strategy deduction results for force data for an incisor in the upper jaw (upper left),
an incisor in the lower jaw (upper right), a molar in the upper jaw (lower left) and a molar in
the lower jaw (lower right). In all four figures the force curves in x, y and z-direction are plotted
in red, green and blue respectively in the most upper plot. The second plot shows the unfiltered
strategy annotation per time sample. The third plot shows the filtered strategy annotation per
time sample. The coloured bar at the bottom is a visual representation of the filtered strategy
annotation.
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A-2 Additional figures for feature engineering of rotations

A-2-1 Strategy deduction and movement segmentation

Figure A-2 includes the results of the strategy deduction algorithm and the segmentation
algorithm for four measurements. In all four figures (upper left, upper right, lower left and
lower right), the upper plot shows the rotations curves in y and z-direction (green, blue colors
respectively). The bar underneath the rotation curves show the strategy that is annotated
to a specific timestamp. These are an unknown strategy, a strategy of y-rotation, a strategy
of z-rotation or a strategy of yz-rotation (both) with colors white, green, blue and yellow
respectively. Below the figure the legend is shown, with on the left the legend for the rotation
movements and on the right the legend for the strategy bar.
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Figure A-2: Strategy deduction and segmentation results of rotation data for an incisor in the
upper jaw (upper left and upper right), a molar in the upper jaw (lower left) and a molar in the
lower jaw (lower right). In all four figures the rotation curves in y and z-direction are plotted.
Both upper figures show experiments where the z-direction was dominant. Here, a segmentation
distinction is made between counter-clockwise rotations (blue) and clockwise rotations (red).
Both lower figures show experiments where the y-rotation was dominant. Here, a segmentation
distinction is made between lingual/palatal rotation (green) and buccal rotation (orange). In all
four figures the type of extraction strategy is plotted in the bar underneath. All time stamps are
annotated with no strategy, a y-rotation strategy, a z-rotation strategy of an 8-rotation strategy
(both), annotated with the white, green, blue or yellow color respectively.

The upper two figures show the segmentation of the rotations in experiments where the z-
direction was dominant. A clear difference between the left figure and the right figure can be
seen in amount of rotation changes needed. The direction changes (indicated with the color
change from blue to red) is more present in the right figure than in the left figure. In the
upper right figure it is interesting to see that around t = 15s, the algorithm detects a change
from a pure z-rotation to a pure y-rotation.

The lower two figures show the segmentation of the rotations in experiments where the y-
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direction was dominant, again indicated with the color change (green, orange). Comparing
the lower left and the lower right figure, again the amount of segments is higher in the right
figure. The strategy in the left figure is a pure y-rotation (bucco-lingual/palatal), while the
strategy in the right figure is mostly using both yz-directions (8-rotation).

These figures are included to show the versatile results of the strategy deduction algorithm
and the segmentation algorithm on the rotation data.

A-2-2 Kernel Density Estimation

Two extra figure of the Kernel Density Estimation as performed in Section 5-3-1 are included.
Figure A-3 shows the differences between a lower jaw incisor and a lower jaw molar. The
round shaped heatmap in the left plot indicates the strategy is changing quite a lot and a
combination of separate y and z rotations is used. The thin line shaped curve which has an
angle of 45◦ in the right plot indicates a pure simultaneous y-z rotation.

Figure A-3: Heatmap resulting from the plotting the Gaussian distribution of the y-rotation and
the z-rotation of a demonstration of a lower jaw incisor 42 on the left and a lower jaw molar 47
on the right

A-3 Gaussian Rotation Distributions

Section 7-1-2 show the heatmap results of the main surgeon for the rotational data. In this
section, the heatmaps for the other three extractors are provided. Figure A-4 provides the
heatmaps of the rotation in y and z-direction for surgeon 2 and surgeon 3. Figure A-5 provides
the heatmaps of the rotation in y and z-direction for the student.

Interestingly, the rotations of the surgeons do not show a coherent strategy along the classes.
The heatmap does not show a pure y or a pure z-rotation. Instead, the heatmaps are more
round shaped and a lot of deviation can be seen away from the centre point (0,0). The
heatmaps of the student show do show interesting behaviour for the upper incisor class
(up_in). The movement is all over the place, so no clear strategy is applied. This could
indicate a lack of confidence and experience. Furthermore, the most applied strategy (red
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Figure A-4: Grouped rotation heatmaps from the rotation data of surgeon 2 and surgeon 3. The
y-rotation is plotted on the horizontal axis and the z-rotation is plotted on the vertical axis.
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Figure A-5: Grouped rotation heatmaps from the rotation data of the student. The y-rotation
is plotted on the horizontal axis and the z-rotation is plotted on the vertical axis.

dot) is located at a z-rotation of 0, and a positive y-rotation of 0.1 radians. This indicates a
palatal strategy, which is a different strategy than the longitudinal rotation (z-rotation) the
main surgeon performs.
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A-4 Gaussian Velocity Distributions

In addition to the heatmaps based on the y-rotation and z-rotation data, the heatmaps of the
velocity data in y and z-direction are included in this appendix. These were not included in
the report, but yield interesting findings, which could be of interest for the reader. Figure A-6
displays the heatmaps for the tooth groups of the velocity data from the main surgeon.
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Figure A-6: Grouped rotation velocity heatmaps from the rotation velocity data of the main
surgeon. The y-rotation velocity is plotted on the horizontal axis and the z-rotation velocity is
plotted on the vertical axis.

Interesting to see, is that the velocity in extracting the upper incisors (up_in), reaches twice
the values of velocities in the other classes. Also the direction of the velocity is quite distin-
guishable. For the upper incisors (up_in), the lower incisors (low_in) and the lower premo-
lars (low_premol), the main direction of velocity is in the z-direction. For the upper molars
(up_mol), this is clearly in y-direction and for the lower molars (low_mol) this is clearly in
the yz-direction.

The next page show the heatmaps of the other executors. Figure A-7 shows the combined
velocity heatmaps of surgeon 2 and surgeon 3. Figure A-8 shows the velocity heatmaps
of the student. Most remarkable is that the rotation velocity around the z-axis is most
distinguishable. Furthermore, the heatmaps of the surgeons show a lot of variation, especially
a little further away from the centre. At last, it can be seen that all the rotation velocities of
the student are low, much lower than the velocities of the surgeons. This can be due to the
student’s inexperience and low confidence level.
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Figure A-7: Grouped rotation velocity heatmaps from the rotation velocity data of surgeon 2 and
surgeon 3. The y-rotation velocity is plotted on the horizontal axis and the z-rotation velocity is
plotted on the vertical axis.
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Figure A-8: Grouped rotation velocity heatmaps from the rotation velocity data the student.
The y-rotation velocity is plotted on the horizontal axis and the z-rotation velocity is plotted on
the vertical axis.
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Appendix B

ATI F/T sensor information

This Appendix covers the relevant information regarding the working principle of the force
torque sensor. Section B-1 describes how Hooke’s law is applied to measure the forces and
torques applied on the transducer. Section B-2 provides the functional outline of the elec-
trical, software and mechanical parts of the force torque system are included as stated in
the installation and operation manual as provided by ATI industrial Automation [44] . Ad-
ditionally, the schematic drawings of the transducer and the mounting plate are added for
reference.

B-1 Hooke’s Law for Force Torque Measurement

Equation (B-1) can be used to calculate the force and torque components by measuring the
strain on the beam when a force is applied to the transducer:

σ = E · ε (B-1)

Here σ is the stress applied to the beam, which is proportional to the applied force. E is
the elasticity modulus of the beam and ε is the strain applied to the beam. The strain ε is
the unknown variable, but it can be measured by measuring the change in resistance of the
strain gauges attached to the beam. The change in resistance ∆R changes as a function of
the strain ε in the strain gauge and the strain gauge constant:

∆R = GF ·R0 · ε (B-2)

R0 is the resistance of the strain gauge in an unstrained state and GF is the ratio between
the relative change in electrical resistance and the mechanical strain; the gauge factor. The
change in resistance ∆R is measured and with the use of Equation (B-1) and Equation (B-2)
this resistance is converted to force and torque components σ.
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B-2 Relevant information from Installation Manual

F/T Controller Installation and Operation Manual 
Document #9610-05-1001-22 

 
ATI Industrial Automation, 1031 Goodworth Drive, Apex, NC 27539 USA +1-919-772-0115 www.ati-ia.com 

27 

3. How It Works 
3.1 Introduction 

This section provides a functional outline of the F/T system. The F/T system is broken into 
three areas: electrical, controlling software, and mechanical. A graphical representation of the 
electronics is presented in Section 3.2. A controlling software flow chart is shown in Section 
3.3. A mechanical description is shown in Section 3.4. 

3.2 Electronic Hardware 

 
Figure 3.1—Electronic hardware outline 
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F/T Controller Installation and Operation Manual 
Document #9610-05-1001-22 

 
ATI Industrial Automation, 1031 Goodworth Drive, Apex, NC 27539 USA +1-919-772-0115 www.ati-ia.com 
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3.3 Software Outline 

 
Figure 3.2—F/T Controller Data flowchart 

3.4 Mechanical Description 
The property of forces was first stated by Newton in his third law of motion: “To every action 
there is always opposed an equal reaction; or, the mutual action of two bodies upon each 
other are always equal, and directed to contrary parts.” The transducer reacts to applied forces 
and torques using Newton’s third law. 

 
Figure 3.3—Applied force and torque vector on transducer 
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The force applied to the transducer flexes three symmetrically placed beams using Hooke’s 
law:  

σ = E·ε 
σ = Stress applied to the beam (σ is proportional to force) 
Ε = Elasticity modulus of the beam 
ε = Strain applied to the beam 

Aside: 

The transducer is monolithic structure. The beams are machined from a solid 
piece of metal. This decreases hysteresis and increases the strength and 
repeatability of the structure. 

Semiconductor strain gages are attached to the beams and are considered strain-sensitive 
resistors. The resistance of the strain gage changes as a function of the applied strain as 
follows: 

∆R = Sa·Ro·ε 

∆R = Change in resistance of strain gage 
Sa = Gage factor of strain gage 
Ro = Resistance of strain gage unstrained 

ε = Strain applied to strain gage 

The electronic hardware, described in Section 3.2, measures the change in resistance and the 
software, described in Section 3.3, converts this change to force and torque components.  
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10.7 Delta Transducer with Mounting Adapter 
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10.16 Delta Mounting Adapter Plate 

 

98 ATI F/T sensor information

W.M. de Graaf Master of Science Thesis



Appendix C

Conference Paper

Parts of this report are submitted as a conference paper to the 42nd Annual International
Conferences of the IEEE Engineering in Medicine and Biology Society 2020 and is written in
collaboration with Dr. Ing. J. Kober (Cognitive Robotics, Delft University of Technology)
and Drs. T.C.T. Van Riet (OMFS, Amsterdam UMC). The paper is a detailed and extended
explanation of the material described in Chapter 3 and is titled ‘Robot Technology in Analyzing
Tooth Removal - a Proof of Concept’. Chapter 3 explains is focused on the robotic and software
parts of the measurements setup. For readability of the report some parts of the paper are left
out of the report. As a result a more thorough explanation of the design considerations and
concessions made in the design process are discussed in the paper, as added in this appendix.
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Robot Technology in Analyzing Tooth Removal - a Proof of Concept

Tom C.T. van Riet1, Willem M. de Graaf2, Reinier van Antwerpen3, Jan van Frankenhuyzen3,
Jan de Lange1, Jens Kober2

Abstract— a measurement setup is proposed that, for the
first time, is capable of capturing the combination of high
forces and subtle movements exerted during tooth removal
procedures in high detail and in a reproducible manner by
using robot technology. The outcomes of a design process from
a collaboration between clinicians, mechanical and software
engineers together with first results are presented in this proof
of concept.

Clinical relevance— by measuring all aspects of tooth re-
moval in a single setup a strong database can be build that
will deliver the data needed to gain scientific understanding
of what makes (un)successful tooth removal. It gives a unique
opportunity to model the procedure, evaluate techniques, un-
derstand and predict adverse events as well as to create new
evidence-based teaching methods.

I. INTRODUCTION

Tooth removal, or exodontia, is one of the most commonly
performed surgical procedures on our planet. Despite its high
prevalence, surprisingly little is known about this procedure.
During these procedures dental surgeons use a combination
of subtle movements and strong forces to free a tooth
from its surrounding bony socket. Previous (very limited)
research aimed at measuring just the total amount of forces
necessary for exodontia [1]–[5]. The precise direction (in 3
dimensions) of the involved forces and the movements of
the dental surgeon were, to the authors’ knowledge, never
before subject to research. The latter is probably due to
the limitations of available instruments to precisely measure
these parameters in a “key-hole” environment. It has led to
a large scientific gap which becomes more evident when
looking at the education of dental students. Tooth removal
is the most invasive procedure dental students need to learn
during their training but it is also the single procedure for
which adequate preclinical training possibilities are absent or
largely inadequate [6], [7]. Up until today students mostly

*Research supported by the Dutch Research Council (NWO) by means
of the Open Mind Grant (2018, project number 17394)

1Tom C.T. van Riet and Jan de Lange are with the depart-
ment of Oral and Maxillofacial Surgery of the Amsterdam Univer-
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dam (ACTA), Meibergdreef 9, 1105 AZ, Amsterdam {t.c.vanriet,
j.delange}@amsterdamumc.nl

2Willem M. de Graaf and Jens Kober are with the
department of Cognitive Robotics of the 3mE faculty of
the Delft University of Technology, Mekelweg 2, 2628 CD,
Delft w.m.degraaf@student.tudelft.nl and
j.kober@tudelft.nl

3Reinier van Antwerpen and Jan van Frankenhuyzen are with the Depart-
ment of Biomechanical Engineering of the 3mE faculty of the Delft Univer-
sity of Technology, Mekelweg 2, 2628 CD, Delft {r.vanantwerpen,
j.vanfrankenhuyzen}@tudelft.nl

Fig. 1: Overview of the setup. (1) robot arm, (2) forceps
holding device, (3) video camera, (4) upper jaw holding
device, (5) force torque sensor, (6) bolts to adjust frame
vertically, (7) bolts to adjust frame horizontally

learn their skills from textbooks with only minor instructions
and train their skillset on actual patients [7]. Students in
well-developed countries, where extensive preventive den-
tistry programs are present, are suffering from decreased
exposure to ‘learning by experience’ because less teeth
need to be removed in general. This contributes to low
confidence levels in tooth removal procedures of young
dentists and an increase in referrals to (more expensive)
oral and maxillofacial surgery practices [7], [8]. Complete
data on every aspect of these procedures is needed to be
able to understand what makes (un)successful tooth removal
and to scientifically describe and model the procedure. This
dataset should additionally contain clinical parameters and
perioperative data to be able to find relevant parameters in
successful tooth removal. It would facilitate the design of
evidence-based educational instruments but, next to that, it
has the potential to help clinicians predict clinical outcomes
(i.e. complicated treatments) and could lead to more (cost-)
efficient referrals to oral and maxillofacial surgeons.

The goal of this project is to design a measurement setup
that captures the high forces and subtle movements involved
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in tooth removal procedures in detail. The design of the setup
and integration of, amongst others, a collaborative robot and
6-axis force-torque sensor are shown in this article together
with first results as a proof of concept.

II. MATERIAL AND METHODS

A. Challenges in detailed measuring of tooth removal

Several challenges had to be overcome during the design
of the measurement setup. Dental surgeons use a combination
of high forces and subtle motions to loosen a tooth from its
bony socket. It is necessary to measure these sub-millimeter
movements in 3 dimensions and at a high rate to be able
to analyze movements in full detail and, for example, en-
able analysis of adverse events like tooth fracture. These
measurements should take place without restricting dental
surgeons in their movements in any way. Forces and torques
should be measured in 3 dimensions in the center of rotation
of the tooth, simultaneously with the movements. Clinically
important parameters such as periodontal health, amount of
roots, root size, age of the patient, and restorative state should
be easily integrated into the measurements. Preferably these
measurements should all be performed on patients in an in
vivo setup.

Multiple sessions with a team of clinicians, mechanical
engineers and computer scientists led to inevitable com-
promises in the setup. One of the major concessions to
the ideal setup was the use of an in vitro measurement
setup. Simultaneous and reproducible recordings of posi-
tion/orientation/force/torque measurements are essential in
this fundamental research. Compared to in vitro measure-
ments, accurate sub-millimeter movement tracking and reg-
istration of forces/torques and their directions in vivo is
questionable. One of the main issues is that the mobility of
the patient is difficult to compensate for, which is especially
true for the lower jaw, which is not rigidly fixated to the
human skull. The force/torque sensor would need to be
integrated in the forceps between the surgeon’s hand and
the tooth, which is unrealistic due to very limited space and
high forces. Next to that, in vivo tooth removal requires
considerable counterforce from the surgeons’ second hand
which would interfere with the force measurements. Finally,
we made the assumption that the forceps and the tooth are
rigidly connected once the tooth is grabbed. Therefore, we
do not need to measure the movement of the tooth itself and
can place the force/torque sensor under the jaw. To capture
the clinicians’ movement, several techniques were proposed
of which optical tracking (infrared) and robot technology
were the most promising. Robot assisted motion capture was
preferred due to the high accuracy associated with robotic
positional measurements. Next to that, by rigidly fixating the
standard dental forceps to the end-effector, the surgeon can
hold the forceps as they would do in clinical circumstances.
Compared to optical trackers it prevents the need for markers
and it avoids visibility issues of the tracking system during
these ‘key hole’ surgical procedures.

B. An overview of the measurement setup

The measurement setup, see Fig. 1, consists of:
• a holding device for the upper- and lower jaw in an

adjustable frame (Section II-C)
• 7 dental forceps (Section II-C)
• a six-axis force/torque (FT-) sensor (Section II-D)
• a compliant robot arm (Section II-D)
• a video camera (Section II-D)
• the Robot Operating System (ROS) (Section II-D)
• a graphical user interface (GUI) (Section II-E)

C. The adjustable frame and holding devices

To add to the readability of this subsection, numbers put
between parentheses are referring to Fig. 2 (numbers 1 to 16)
and Fig. 3 (numbers 17 to 32). A framework of a 60 by 60
millimeter aluminium profile (Item Industrietechnik, Solin-
gen, Germany) was designed to mechanically integrate the
different components (Fig. 1). The framework is adjustable,
meaning the position of the holding devices for the upper
and lower jaws can be changed relative to the robot and
placed at different heights. This is necessary to mimic clinical
circumstances in which the position of the upper and lower
jaw are, respectively, vertical and horizontal. For ergonomic
reasons, the patient is positioned higher when removing
teeth from the upper jaw. The addition of a rotational plate
(14,29) between the frame and the holding devices mimics
the turning of the patients head and leads to a more clinical
representative situation in which the clinician can maintain
an ergonomic pose during the extraction procedure. The plate
is located just below the FT-sensor (13,28) and can be rotated
by pulling a locking bolt (16,32) on the bottom plate (15,30).
The locking bolt falls into one of the position holes upon
its release and can be further tightened to eliminate any
slack. The position holes allow a 137.5 degree rotation in
11 steps of 12.5 degree increment in either direction (a total
range of 275 degrees). Next to the ergonomic advantages, the
usage of an adjustable frame largely overcomes an important
issue of working with a robot arm. When any of the robot’s
joints reaches a joint limit, it needs to adjust other joints to
enable the end-effector to reach the desired position. This can
involve a rigorous movement of the robot which inevitably
leads to some resistance for the clinician. By placing the
most relevant joints in a neutral position just before starting
the experiment, reaching joint limits can be avoided. This is
enhanced by placing the upper and lower jaw in a favorable
position relative to the robot arm. The frame was provided
with a scale (millimeter) to measure the exact position of the
holding devices for calibration purposes, see Section II-D.

Essential for reproducible, accurate and thus meaningful
measurements is a completely rigid fixation of both upper
and lower jaw. Two separate holding devices had to be
designed. First because the above mentioned difference in
ergonomic position (horizontal/vertical) of both jaws. Second
because the anatomical differences between the two jaws
do not facilitate the design of a single device to fit both.
In general, non-corrosive and smooth surface materials were
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Fig. 2: Holding device for upper jaw: (1) upper jaw, (2)
surface plate, (3) support plate, (4) ground plate, (5) axle
boxes, (6) clamping arms, (7) clamping bolt, (8) sliding
block, (9) clamp axis, (10) front block, (11) clamping nut,
(12) top plate of sensor build-up, (13) force/torque sensor,
(14) rotation plate, (15) bottom plate, (16) locking bolt

used to facilitate cleaning which is especially necessary when
working with (fresh) human material.

The shape of the upper jaw is geometrically unsuitable
to fixate (inverted trapezoid shape) and can be very thin
at certain points. As is known from facial trauma surgery,
other parts of the midface (located just above the upper
jaw) have better properties in terms of fixation because of
the strength and shape of the bone. This counts for both
the paranasal region (besides the nose) and, more lateral,
the connection between upper jaw and zygomatic bone
(‘zygomatic buttress’). For holding the upper jaw, see Fig. 2,
a clamping nut (7) was placed in an angular position relative
to grooves on the main plate (4). Tightening the clamping
bolt will force the 3D-printed titanium clamping arms (6),
which were manufactured through selective laser melting
(material: Ti6AI4V-ELI), to push the maxilla (1) downwards
and forwards into a 45-degree angle. This way the frontal
part of the maxilla, with its strong paranasal zones is fixated
underneath a ridge (10). The ridge’s geometry allows the
upper jaw to slide slightly under it and prevents it from tilting
upwards. Vertical grooves in this ridge minimizes translation
from left to right. Sideward motion is further limited by
tightening the axle boxes on the clamp axis (5) against
the clamping arms. The arms push the strong zygomatic
buttresses downwards and inwards. The rough surface of
the clamps ensure grip even when remnants of muscle
attachments are not completely removed during preparation
of the skull. The shape of the clamp’s head is designed to
fit the natural shape of the zygomatic buttress which reduces
the risk of iatrogenic fractures during any of the experiments.

Compared to the upper jaw, the lower jaw can be geo-
metrically adjusted to make it more suitable for fixation. Its
thick and strong cortical lining lends itself for fixation, even
when the bone is reduced in size, see Fig. 3. Similar to
the fixation of the upper jaw a clamping nut (21) is placed
in an angular position to the grooves of the surface plate
(20). By tightening the clamping bolt the clamp axis will

Fig. 3: Holding device for lower jaw: (17) lower jaw, (18)
surface plate, (19) supporting plate, (20) ground plate, (21)
clamping bolt, (22) sliding block, (23) clamp axis, (24) side
blocks, (25) front block, (26) clamping nut, (27) top plate of
sensor build-up, (28) force-torque sensor, (29) rotation plate,
(30) bottom plate, (31) rotation axis, (32) locking bolt

Fig. 4: Holding device for dental forceps.

force the jaw in a 45 degree angle downwards and forwards
against the front block (25). The design of the front block
ensures that the jaw can slide slightly under it to prevent
the jaw from tilting upwards, while vertical grooves prevent
translation sidewards. Further translation is limited by sliding
the side blocks (24) on the clamp axis against the sides of the
jaw and locking them on the axis with a bolt. The design of
the blocks is lean to facilitate the movement of the clinician,
even when removing dorsally located molars.

To remove teeth, dental surgeons have a large variety
of forceps at their disposal. To enhance grip on the tooth,
the forceps are designed to specifically fit a certain type of
tooth. For these experiments, seven dental forceps (Aesculap,
B.Braun, Melsungen, Germany) are used: the left upper mo-
lar, right upper molar, upper premolar, upper incisor, lower
molar, lower premolar and lower incisor forceps. They are
fixated to the end-effector through a custom aluminum holder
with two bolts (5mm), see Fig. 4. The aluminum holder
is fixated in the end-effector by tightening one clamping
bolt. The partially flat design of the custom aluminum frame
ensured a reproducible position of the dental forceps in the
end-effector.

102 Conference Paper

W.M. de Graaf Master of Science Thesis



D. The robot and force-torque measurements

To obtain sub-millimeter precision and accurate repeata-
bility of movements during the procedure, the KUKA LBR
iiwa 7 R800 is used [9]. This robot is a 7 degree of freedom
collaborative robot with 7 rotational joints and recording
position and orientation data of the dental forceps at 100Hz.
The integrated torque and rotational sensors enable the robot
to detect external forces which makes this robot collaborative
and highly suitable for integration in this measurement setup.
An ATI 16 bit Delta transducer is used for recording the force
and torque data in 6 axis at a speed of 20Hz. A Logitech
C920 Pro HD webcam is used to record a video stream of
the experiment. The latter will facilitate the interpretation of
data patterns when analyzing the data later on.

The platform Robotic Operating System (ROS) is used
for software integration of the force/torque sensor, the video
camera, and the collaborative robot [10]. ROS is an open
source framework that allows for easy integration of several
hardware sensors with robotic control and simulation. It
provides hardware abstraction, device drivers, and libraries.
The image pipeline repository is used to convert the
image data from the video camera to the ROS framework.
For controlling the KUKA, the iiwa stack repository is
used which contains high level commands to collaborate with
the robot through the ROS framework [11]. A custom ROS
driver was written to read out the serial data from the FT-
sensor and enable its usage in the ROS environment.

To enable the clinician to freely move the forceps, the
robot mode is switched to a passive mode (impedance
control). Impedance control enables a dynamic collaboration
between the clinician and the robot. In this mode all 7 joints
are acting as separate spring-damper systems. The stiffness
and damping constants can be tuned by the user for each
individual joint. High values will result in rigid joint motion,
whereas lower values will result in more compliant/floating
motion. To prevent joints drifting into joint limits and to
facilitate the clinician during the experiments, joints numbers
a2 and a5 are set to a higher stiffness and damping value
compared to the other joints (Fig. 1). It results in a more
compliant motion of the dental forceps.

Both the FT-sensor and robot need to be calibrated before
each experiment to register the position and orientation of
the teeth. The robot is used for calibration of the position
and orientation of the teeth. Because of the orientation
difference of the upper and lower jaw (vertical/horizontal)
two calibration tools were necessary. A lower incisor dental
forceps is used for calibration in the lower jaw, due to the
90 degree angle and its straight design. For the upper jaw a
straight dental elevator (Usto-Lux, Ustomed, Germany) is
used for calibration. The calibration is done by touching
the center of the crown holding the tool in line with the
z-axis of the tooth (see Fig. 5). The tool’s position and
orientation was then registered using the graphical user
interface (see below, Section II-E). By combining the exact
position of the holding device (using the scale provided on
the setup’s frame) and the positional information of the robot,

(a) Upper jaw holder. (b) Lower jaw holder.

Fig. 5: Representation of the anatomical preparation of the
upper- and lower jaw to fit the holding devices. The reference
frames for upper- and lower teeth are shown.

a mathematical conversion can be made to determine the
position and orientation of the teeth. Because the teeth in
the upper jaw are positioned horizontally and the teeth in
the lower jaw are positioned vertically, the z-axis of the
teeth in the upper jaw is oriented along the x-axis of the
robot’s world frame, as opposed to the lower jaw in which
the z-axis is aligned with the z-axis of the robot’s world
frame. Therefore, teeth in the upper jaw need a different
transformation to the world frame than teeth in the lower
jaw. The calibration method, as described above, enables
the forces, torques and rotations of all teeth in both upper
and lower jaw to be expressed in exactly the same reference
frame, easing data analysis.

E. Graphical User Interface

To improve the workflow during the experiments, a Graph-
ical User Interface (GUI) is designed as a platform where
all components of the setup as well as the experiments
can be managed simultaneously. The GUI allows for meta-
information to be added to the experiments. It consists of
a pre-operative, perioperative and post-operative window in
which data are shown and can be edited, if necessary. In
the pre-operative screen clinical data such as periodontal
or restorative state can be filed. To optimize the flow of
the experiments, predefined joint positions are determined in
which most relevant joints are in their neutral status (Section
II-C). These predefined starting positions are different for
upper and lower jaw because of their different positions
relative to the robot. They can be requested and executed
from within the preoperative part of the GUI. During the
experiments the GUI shows graphical information on actual
measurements to enable live monitoring of the experiment.
A summary of the experiment is shown and certain ‘events’
can be added to the experiment in the postoperative section.
As an example, a marking can be added at a point in time
where a complication has happened. The postoperative part
also offers the opportunity to trim unuseful data, for example
the time between the tooth being removed and the moment
where the experiment is actually stopped in the GUI (usually
a few seconds later).
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The experiments took place in an in-hospital anatomy
laboratory. Samples were obtained through the body donation
program from the Department of Medical Biology, Section
Clinical Anatomy and Embryology, of the Amsterdam UMC
at the location Academic Medical Center in The Nether-
lands. The bodies from which the samples were taken were
donated to science in accordance with Dutch legislation
and the regulations of the medical ethical committee of the
Amsterdam UMC at the location Academic Medical Center.
The setup was tested with experiments on both conserved
and fresh frozen cadaver jaws. A band saw was used to
reduce the cadaver heads to the proportions as necessary
to fit the holding devices. For the lower jaw this meant an
oblique 45 degree bone cut from the gonial angle of the
mandible towards the retromolar area. For the upper jaw a
horizontal cut starting at the level of the infra-orbital rim
was made. The cut was continued dorsally to the level of
the articular tubercle and then connected to the oropharynx.
See Fig. 5a and 5b. Soft tissue was largely removed by
using standard surgical blades. Care was taken not to remove
any of the attached gingiva as periodontal health was one
of clinical parameters. As dental notation system the ISO
system is used (Internation Standards Organization number
3950, Fédération Dentaire International).

III. RESULTS

In order to provide a comprehensive overview of the data
that can be obtained using this measurement setup, while
also safeguarding the readability of this article, representative
examples of data on movements, forces, and clinical data
are shown. One of the main goals of this setup was to
visualize what movements happen during tooth removal. To
the authors best of knowledge, this has never been done
before. In textbooks on oral surgery usually a short and basic
movement pattern is advised for successful tooth removal
[12]. Which movement pattern to choose is largely based
on tooth root morphology. For example, a central upper
incisor, which has only 1 root that usually has a round
shape, is advised to ‘rotate’ out of the bony socket. For
an upper molar with 3 roots a movement from buccal to
the palatal side is advised, largely luxating towards the
buccal side. Fig. 6 shows the movements recorded during
removal of an upper central incisor (tooth number 21). In this
figure the described pattern from the textbook can be clearly
recognized. Rotations around x and y-axis are absent whilst
a recurrent rotation around the tooth’s axis is evident. The
data shows both a clockwise and counterclockwise rotation
around the tooth’s axis that increases towards the clockwise
side before the tooth is taken out. At the end of the movement
a slight increase in movements around the x and y-axis shows
a wiggle to release the tooth.

When compared to the movements during removal of a
first upper molar (tooth number 16) on the right side a
difference in movement pattern can be found. This first molar
had, as usual, 3 roots. This means that rotation of the tooth is
geometrically unfavorable. In Fig. 6 this can be recognized
by the flat character of z-axis meaning no rotation takes
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Fig. 6: Comparison of rotations of an upper incisor (21) and
upper first molar (16)
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Fig. 7: Removal of a central upper incisor (21) by an
experienced surgeon

place throughout the entire procedure. Rotation around the
y-axis shows a buccal movement which increases over time.
Movement around the x-axis (mesiodistal movement) shows
a slight movement towards the mesial side during this buccal
movement which means the tooth is moved in the direction
of the opening of the mouth.

A. Forces and torques

When explaining tooth removal to dental students, usually
one of the first things that is explained is that the idea of
‘pulling’ a tooth is incorrect. A tooth needs to be ‘pushed’
out. In terms of forces one could expect a negative force
in the tooth’s root axis (z-axis). Fig. 7 shows the forces
exerted during removal of a central upper incisor. It can be
appreciated that, during the first phase of the treatment, the
tooth is actually pushed into its socket. During this phase
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only a little movement (rotation) can be distinguished. Later
during the treatment we can see a clear turnaround in terms
of forces. Pushing into the socket becomes pulling whilst
movements are increasing, meaning the tooth is coming
loose.

B. Clinical data

To gain a representative dataset, most experiments dur-
ing the testing phase have been performed by the same
experienced oral and maxillofacial surgeon. To test if the
differences between an experienced and an inexperienced
clinician can be visualized, a dental intern was asked to
perform experiments as well. In total the surgeon removed
76 teeth of fresh frozen cadavers of which in 5 (7%) cases
a fracture of a root occurred. The dental intern removed 21
teeth, also of fresh frozen cadaver head of which in 9 (43%)
cases a fracture of a root occurred.

To see if the data can deliver us further insight in what
the differences between the two clinicians are, a comparison
of a removal of the same type of tooth between the dental
intern and the experienced oral and maxillofacial surgeon
can be made. Without the necessity of an in-depth analysis,
we can see major differences between the removal a central
upper incisor when this procedure is performed by a dental
intern (Fig. 8) and an experienced oral and maxillofacial
surgeon (Fig. 7). Both teeth were central upper incisor with
a composite restoration, a healthy periodontium and a root
length of 14mm. The dental student:

• exerts more than twice the amount of forces in the
beginning of the procedure

• shows a less recognizable plan in terms of movements
consisting of a mixture of rotational and buccopalatinal
movements

• fractures the root of the tooth. This was clinically noted
to happen at T(seconds) = 33. Here a small spike in the
forces and torques can be observed

The surgeon manages to keep forces and torques at a relative
low and stable amount whilst increasing the movements
(loosen the tooth).

IV. DISCUSSION

In this study a measurement setup is proposed that is
the result of a strong collaboration between clinicians, me-
chanical and software engineers. It is capable of, for the
first time, capturing the combination of high forces and
subtle movements exerted during tooth removal procedures
in high detail by using, amongst others, robot technology.
First outcomes of experiments are used as a proof of the
concept and show promising results. The dataset which can
be built with this setup offers a unique insight in one of the
oldest and most performed surgical procedures worldwide.

It is remarkable how underdeveloped the scientific under-
standing of tooth removal is. Only a few attempts have been
undertaken in which moments were measured in an in vivo
setting, in contrast to this study where an in vitro setup is
proposed [1]–[5], [13]. The studies that have been performed
thus far used either a strain gauge or manometer attached to,

−40
−30
−20
−10

0
10
20
30
40

[N
]

Forces

−15
−10

−5
0
5

10
15
20
25

[N
m

]

Torques

0 10 20 30 40 50 60

−30

−20

−10

0

10

20

30

[°
]

Rotations

x y z

Fig. 8: Removal of a central upper incisor (11) by a dental
student. The arrows indicate the spikes that occur at the
instance the tooth fractures.

or integrated in, a dental forceps. They were therefor limited
to measuring forces and moments, not the movements of the
clinician. The outcomes are very limited and heterogeneous
which shows the difficulty of analyzing tooth removal in vivo
conditions. For example, Cicciu et al. [1] found a 25 fold
increase in forces used in upper premolar removal compared
to lower premolar removal whilst Lehtinen [2] and Ojala
[5] found the forces between upper and lower canines to
be indifferent. This shows that a benchmark to compare our
results to is unfortunately not available.

The lack of technical possibilities to measure subtle (sub-
millimeter) movements and high forces in all directions in
an in vivo condition is the main reasons why an in vitro
setup was chosen to study tooth removal. Its design for in
vitro measurements is also one of the major drawbacks of
this setup. It will be unsure how data can be translated
into in vivo circumstances. This is even more true since
there is very limited in vivo data available to correlate
the outcomes to. Next to that the setup is limited to the
use of dental forceps. The elevator is also frequently used
in tooth removal procedures, but its usage is much more
diverse (different positions relative to the tooth for example)
and we would need to measure the movement of the teeth
themselves, which made it unsuitable for a first proof of
concept. Finally the setup does not provide the possibility
to measure clamping forces between the tooth and dental
forceps. This would require mechanical changes to the dental
forceps itself and might interfere with the normal usage of
a dental forceps by the clinician. Despite its disadvantages
the authors believe that, especially when using fresh frozen
cadavers, the setup can be used to gain a unique and relevant
new insight into tooth removal techniques.

Mechanically the development of the rigid fixation method
for a human upper and, to a lesser extent, lower jaw was
most challenging. Several designs were 3D-printed in plastic
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and tested on conserved cadaver jaws on ease-of-fixation
and rigidity of the fixation method before the final design
was chosen and manufactured in stainless steel. When first
testing the stainless steel setup a slight mobility of the jaw
holders was noted due to the locking bolt in the rotational
plate which was a prefabricated and gave some slack. It was
later customized to a locking pin that could be tightened by
rotation which resulted in a strong and complete rigid fixation
of the jaws. During the experiments with fresh frozen jaws,
out of 146 experiments, only 2 times an experiment failed
because of loosening of the jaw within the holding device.
Both times it involved an upper jaw and loosening was due
to improper tightening of the holding device at the start of
the experiment.

For the measurement of movements a robot was added to
the setup. One of the major concerns when using the robot
in a ‘compliant’ mode was the robot not being fully passive
at all times. Especially when joint limits are approached
with some pace, the robot showed resistance when adapting
its joint position to enable certain positions or movements.
To overcome this problem a ‘best fit’ starting position of
the end-effector of the robot was to be found where most
(relevant) joints were in a neutral position to ensure as little
resistance as possible. Although it is difficult to measure
the exact value of the resistance, it seems relatively small
in comparison with the large amounts of forces exerted.
The upper jaw was fixated with the occlusal plane in a
vertical way and the lower jaw with its occlusal plane
horizontal to mimic the clinical situation which required
different “preset” joint positions for upper and lower jaws.
These positions, that were optimized based on preference
from the surgeons, were programmed starting position for
all experiments. The combination of an adjustable frame and
a rotational plate ensured roughly the same starting position
for all experiments in upper and lower jaw. Pre-programming
the same joint positions at the start of each experiment also
added to the reproducibility of the experiments. Despite all
efforts on creating a setup that comes as close to a clinical
setting as possible, it must be noted that some resistance
seems inevitable and this should be taken into account when
interpreting results of these experiments. Despite a slight
learning curve was noted when it comes to working with
a passive robot arm, the feedback the authors received on
clinical representativeness in general was very positive.

To calibrate the position of the tooth and its orientation
relative to the FT-sensor and the robot a different dental
instrument was used for both upper and lower jaw. It was
aligned with the tooth axis by the clinician based on the
orientation of the crown of the tooth. Despite efforts made
to be as precise as possible some comments should be made.
Firstly, even in an in vitro setting, it can be quite challenging
to align a tool in all axis at the same time. Secondly, the
crown forms only a small portion of the tooth. It is common
knowledge in the field of dentistry that roots tend to divert
to some extend (usually distally). To add to the precision of
the measurements in future experiments it can be considered

to use CT-data to calibrate the position of the entire jaw
by using anatomical landmarks rather than calibrating each
tooth separately. This could also reduce duration of the
experiments.

V. CONCLUSIONS AND FUTURE WORK

It is the goal of this research group to acquire data on
every aspect of tooth removal. With this setup a dataset
can be build that contains high quality data on every aspect
of tooth removal. Data driven modelling will be used to
analyze the large amount of data. A model is necessary to be
able to understand what makes tooth removal (un)successful.
Clinicians could learn from a model what parameters are
essential to look for in clinic and to help predict the level of
difficulty of an upcoming procedure. It could help them to
decide when referral is necessary based on their own com-
petence. The setup allows for different teaching instruments,
i.e., plastic models or conserved cadavers, to be tested on
representativeness. The derived dataset will be used to create
new and evidence based learning material for dental students
and young dentists. In a later phase some parts of the setup
can be transformed for the use in an in vivo experiment to
enable a correlation to clinical data.
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List of Acronyms

CAD Computer Aided Design
ROS Robotic Operating System
GUI Graphical User Interface
NB Naïve Bayes
KNN K-Nearest Neighbor
SHAP SHapley Additive exPlanations
LR Logistic Regression
OVR One-Versus-Rest
NASA-TLX NASA Task Load Index
SFQ Shortened Fatigue Questionnaire
LBFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno
DT Decision Tree
NN Neural Network
SVM Support Vector Machine
ZVC Zero Velocity Crossing
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