
Master of Science in Applied Geophysics

Research Thesis

An enhanced Genetic Algorithm and
its application on two non-linear

geophysical problems

Yenni Paloma Villa Acuna

August 10, 2018

An enhanced Genetic Algorithm and
its application on two non-linear

geophysical problems

Master of Science Thesis

for the degree of Master of Science in Applied Geophysics at

Delft University of Technology

ETH Zürich

RWTH Aachen University

by

Yenni Paloma Villa Acuna

August 10, 2018

Department of Geoscience & Engineering · Delft University of Technology
Department of Earth Sciences · ETH Zürich
Faculty of Georesources and Material Engineering · RWTH Aachen University

Delft University of Technology

Copyright c© 2013 by IDEA League Joint Master’s in Applied Geophysics:

Delft University of Technology, ETH Zürich, RWTH Aachen University

All rights reserved.
No part of the material protected by this copyright notice may be reproduced or utilized
in any form or by any means, electronic or mechanical, including photocopying or by any
information storage and retrieval system, without permission from this publisher.

Printed in The Netherlands, Switzerland, Germany

http://www.tudelft.nl

IDEA LEAGUE
JOINT MASTER’S IN APPLIED GEOPHYSICS

Delft University of Technology, The Netherlands
ETH Zürich, Switzerland
RWTH Aachen, Germany

Dated: August 10, 2018

Committee Members:
Dr. Ir. G.G.Drijkoningen

Dr. Yimin Sun

Dr. Ir. Florian Wellman

Supervisor(s): Dr. Ir. G.G.Drijkoningen

Dr. Yimin Sun

Abstract

Since its inception in 1975, Genetics Algorithms (GAs) have been successfully used as a tool
for global optimization on non-convex problems in a wide range of real world applications. Its
creation was inspired by natural adaptation and selection mechanisms that evolve from one
population of chromosomes to a fitter population by means of an artificial natural selection
dictated by the operators of elitism, crossover and mutation. An advanced Genetic Algorithm
(aGA) was proposed by Sun et al. [2017], and this algorithm seeks the global maximum of
n-th dimensional non-convex functions. However, convergence speed is a key factor for the
success of a global optimization algorithm when it comes to scalability; in production even a
slight efficiency improvement matters as it can easily takes weeks or even months to process
a huge data set. Therefore, the goal of this project is to improve the convergence speed of
the currently available aGA by simultaneously enhancing both its global and its local search
capabilities. To this end, two solutions were proposed. The first is a modified version of the
well known Island model GAs and the second was named Self Adaptive Differential Evolution
(SADE) fine tuning scheme.

After a successful demonstration of its improved performance on several multi-modal test
functions, the enhanced Genetic Algorithm (eGA) is used to tackle two common non-linear
geophysical problems: static correction and Common Reflection Surface (CRS) stacking. In
the former, the near-surface related time-shifts are estimated without resorting to an explicit
velocity-depth model; instead, the events of interest are aligned in a data-driven fashion by
maximizing the stacking power. The latter is a novel alternative to the traditional Common
Midpoint (CMP) stacking that has proven to yield higher quality images, specially when
applied to low Signal to Noise Ratio (SNR) data or data with challenging structures like the
anomalies encountered in the subsurface. This improvement in the quality of the stacked
image is attributed to a non-local mean mentality, which enables using traces from different
CMP gathers to the CMP gather being resolved. Owing to the high non-linearity of both
problems, they are ideal test beds for global optimization algorithms. The effectiveness of the
eGA is demonstrated on synthetic data sets with promising results in these problems.

vi Abstract

August 10, 2018

Table of Contents

Abstract v

1 Introduction 1
1-1 Seismic Exploration . 1

1-2 Literature Review . 2
1-2-1 Static correction . 2
1-2-2 Commom Reflection Surface Technology 2

1-2-3 Genetic Algorithms . 3

1-3 Thesis Outline . 5

2 An advanced Genetic Algorithm (aGA) 7

2-1 Evolution scheme . 7
2-1-1 Initialization . 7
2-1-2 Elitism . 8
2-1-3 Parent selection . 8
2-1-4 Crossover Operator . 8

2-1-5 Mutation Operator . 8

2-1-6 Periodic Boundary Condition (PBC) . 9

2-2 Beating the Premature Condition . 9

2-3 Stopping criteria . 10

2-4 Workflow of the aGA . 10
2-4-1 Definition of parameters . 12

3 An enhanced Genetic Algorithm (eGA) 13

3-1 Features of the eGA . 14
3-1-1 Randomized Islands Model . 14

3-1-2 Self Adaptive Differential Evolution (SADE) fine tuning search 15

3-2 Workflow of the eGA . 18
3-2-1 Definition of parameters . 20

August 10, 2018

viii Table of Contents

4 Application onto multi-modal test functions 21

4-1 Benchmark Functions . 21

4-2 Particle Swarm Optimization (PSO) . 22

4-3 Experimental Results . 24

4-3-1 Comparison against PSO . 24

4-3-2 Comparison against aGA . 25

4-4 Summary . 26

5 Application onto a synthetic 2D static correction demo 29

5-1 Definition of the fitness function . 29

5-2 Synthetic data set . 31

5-2-1 Convergence condition . 32

5-3 Results . 38

5-4 Summary . 38

6 Application onto a synthetic 2D CRS demo 43

6-1 The Common Reflection Surface operator . 45

6-2 Common Reflection Surface Demo . 46

6-2-1 Synthetic dataset . 46

Data generation . 46

6-2-2 CRS parameters estimation . 50

6-3 Results . 50

6-4 Summary . 51

7 Discussion and Conclusions 57

7-1 Discussion . 57

7-2 Conclusions . 58

A 59

Acknowledgements 61

Bibliography 63

August 10, 2018

Acronyms

ACO Ant Colony Optimization

aGA advanced Genetic Algorithm

AI Artificial Intelligence

BLX Blending Crossover

BFCD Back and Forth Coordinate Descent

CI Computational Intelligence

CMP Common Midpoint

CRS Common Reflection Surface

eGA Enhanced Genetic Algorithm

EC Evolutionary Computation

GAs Genetic Algorithms

MSA Modified Simulated Annealing

PML Perfectly Matched Layer

PBC Periodic Boundary Condition

PP Primary to Primary or P-P wave

PS Primary to Secondary or P-S wave

PSO Particle Swarm Optimization

SA Simulated Annealing

SADE Self-Adaptive Differential Evolution

VFSA Very Fast Simulated Annealing

ZO Zero Offset

August 10, 2018

x Table of Contents

August 10, 2018

Chapter 1

Introduction

1-1 Seismic Exploration

Geophysical methods have allowed humans to study the Earth’s interior in order to determine
its structure and most likely composition. This need arises from the fact that most minerals
and materials essential to the survival of humanity are extracted from the first several hundred
meters of the subsurface.

Seismic exploration is one of many geophysical surveys used for this purpose and aims at
retrieving an image of the subsurface from active acoustic/elastic reflection measurements.
Take the marine seismic survey as an example. Seismic sources (airguns) and receivers are
located below the water surface. The source emits an acoustic wavefield that gets reflected
back and is finally detected by the receiver channels. This method involves large volumes
of data given that thousands of receiver channels are used per source and the experiment is
repeated for many different source locations. Depending on the ocurring physical phenomena
and the type of waves recorded, seismic exploration can be classified into Primary (or P-P)
and Converted (or P-S) wave exploration.

Seismic exploration faces a major challenge of complex seismic wave propagation effects in
the near-surface area, due to its unconsolidated character. As a result, layers within the near
surface are often characterized by highly complex velocities and densities. During the seismic
survey, seismic waves pass through the complex near-surface area twice, and this distorts the
image quality of deep events of interest. This is the well-known near-surface problem that
degrades the final seismic image quality severely. For more than 70 years different techniques
have been proposed to handle the near-surface problem, to name a few: common focus point
[Sun and Verschuur, 2012; Sun et al., 2014], full wavefield redatuming [Vrolijk et al., 2012],
Green’s function estimation [Berryhill, 1984], full waveform estimations (FWI) [Jones, 2012]
and static correction [Cox et al., 1999]. In production, static correction so far is a commonly
accepted technology for handling the near-surface challenge.

August 10, 2018

2 Introduction

1-2 Literature Review

1-2-1 Static correction

Static correction is based on the premise that topography and smooth velocity variations
induced anomalies in the near-surface area that can be approximated merely by time shifts,
given that rays follow almost vertical trajectories while traveling through this area [Ronen and
Claerbout, 1985]. The aforementioned assumption is valid as usually the velocity increases
at deeper depths.

Statics can be estimated by either model-driven [Berryhill, 1984; Bevc, 1997; Reshef, 1991;
Shtivelman and Canning, 1988] or data-driven methods [Ronen and Claerbout, 1985; Sun
et al., 2017; Sun and Verschuur, 2012; Sun et al., 2014; Sun and Verschuur, 2014]. In the
former, an explicit velocity model of the complex near-surface layer must be estimated first,
whereas in the latter the statics are estimated by maximizing the stacking power of the image
containing the complex zone of interest.

For model-driven approaches, the velocity model of the near-surface can be obtained by
surface wave inversion [Douma et al., 2011], refracted wave inversion [Duret et al., 2016] or
full-waveform inversion [Liu et al., 2013]. Based on this velocity model, it is then possible to
calculate statics.

In data-driven methods, maximization of the stacking power can be “guided” by pilot traces.
However, if these pilot traces are not available, static correction can also be done in a fully
automated manner, by maximizing the power of stacked traces [Ronen and Claerbout, 1985;
Sun et al., 2017]. Furthermore, Koglin et al. [2006] integrated a residual static correction
method into a data-driven common-reflection-surface-stack-based imaging work-flow to elim-
inate residual statics with 2-way travel times described with less than 10 parameters. The
above-mentioned methods have been, to some extent, successfully applied to 2D data, but
the computational expense and calculation time has prevented their application to large 3D
data.

1-2-2 Commom Reflection Surface Technology

The Common Reflection Surface (CRS) stacking method can be seen as a more sophisticated
version of the Common Midpoint (CMP) stacking, thanks to the adoption of the non-local
mean mentality, as it allows for the inclusion of traces from different CMP gathers, now
arranged in a super-gather. As a result, a higher quality stack image with more continuous
reflectors, improved spatial resolution and a higher SNR is produced. Unfortunately, this
comes at the expense of higher computational costs to estimate additional parameters required
for the moveout correction.

CRS technology seeks to determine some parameters (three in 2D and eight in 3D) of the
travel-time approximation that maximize the coherence for each same seismic event in all
traces belonging to the same super-gather. In other words, the key is determining the optimal
CRS attributes that best describe the stacking surface fitting the reflections of the prestack
data. Therefore, this problem narrows down to simultaneously search for the attributes of
each seismic event at every midpoint, by means of a multidimensional global optimization

August 10, 2018

1-2 Literature Review 3

algorithm that maximizes the coherence of those seismic traces within a certain aperture of
the stacking surface.

Owing to the high number of traces involved in this search process, the computational cost
can become very high. In order to decrease this burden, two strategies have been proposed.
The first resorts to any previous velocity model at hand to restrict the search space and,
this way, to reduce the number of possible parameter combinations to be tested. In the
second, also known as the pragmatic search, the search is conducted in a sequence of single-
parameter searches such that in 2D, the first parameter determined is the velocity to construct
the CMP stack, then the emergence angle and finally the curvature. Nevertheless, the joint
estimation of the CRS attributes have been claimed to yield better results than one-parameter
sequential searches [Barros et al., 2015]. Müller [1998]; Jäger et al. [2001]; Mann et al. [1999]
also proposed hybrid schemes where both, velocity and emergence angle, are searched for
simultaneously and then the curvature can be obtained with a one-parameter semblance
search. Either way, the result of this sequential search procedure can be used as the initial
seed for a global optimization that further improves the final result.

Due to unacceptably high computational cost, the pursuit of these attributes cannot be done
in a deterministic brute-force way, where all possible parameter-combinations in the discrete
search space are tested. Heuristic algorithms like Simulated Annealing [Müller, 1998; Jäger,
1999] and Differential Evolution [Barros et al., 2015] have been applied onto this problem.
Barros et al. [2015] designed a hybridized algorithm using the modified Simulated Annealing
that is further refined by a Newton local search, in order to keep global and local searches at
a good balance. Müller [1998] compared the performance obtained using Simulated Anneal-
ing (SA), Modified Simulated Annealing (MSA) and Very Fast Simulated Annealing (VFSA)
algorithms, where he concluded that VFSA and MSA are more suitable for determining the
CRS attributes and generate high SNR Zero Offset (ZO) sections, as the first two algorithms
being more efficient than the last one. Minato et al. [2012] concluded that both Differen-
tial Evolution (DE) and SA are effective at locating the global optimum attributes, but SA
converges faster. Walda and Gajewski [2015] proposed using GAs to tackle the CRS optimiza-
tion problem, which resulted in promising results particularly at dealing with more complex
structures like salt bodies.

1-2-3 Genetic Algorithms

Over the course of history, humans have struggled to understand and, to varying extents, to
predict a wide range of natural phenomena. The human brain, for example, can accomplish
a wide variety of activities, many of them effortlessly, such as identifying colors or smells,
that thanks to its connection with our senses seem trivial to us. To artificially mimic these
activities, pioneer computer scientists, such as Turing [2009], Von Neumann [2012] and others,
envisioned the power of combining their understanding about natural systems with computer
programs. Since then, these biologically motivated computational activities have aimed at
1) modeling the human brain, 2) mimicking learning and 3) simulating biological evolutions.
The first developed into the field of neural networks, the second into machine learning, and the
last one into the so called ”Evolutionary computation” (EC), from which Genetic Algorithms
(GAs) are the outstanding example [Mitchell, 1998].

Evolutionary Computation emerged from the idea that processes and mechanisms of biological

August 10, 2018

4 Introduction

evolutions could be used as a search and optimization tool in a wide range of applications.
The goal was to evolve an initial population of candidate solutions by using operators inspired
by the neo-Darwinian theory of evolution: natural selection. In 1975, this motivated Holland
[1975] to publish his work, where, inspired by the mechanisms of natural adaptation, presented
GAs as an abstraction of biological evolutions. Based on this concept, he proposed the
machinery for evolving from one population of “chromosomes” to a fitter population by means
of a “natural selection” dictated by selection, crossover and mutation. At the first stage,
the chromosomes allowed for offspring generation are selected based on their reproduction
probability such that, on average, the fitter chromosomes are more likely to produce more
offsprings than the less fit ones. Subsequently, in crossover, the strings of parent chromosomes
are exchanged, roughly mimicking the biological recombination between parents, whereas in
mutation, the values of some alleles of the chromosome are randomly changed, to promote
diversity within the population that otherwise would be quickly exhausted by the former
operators [Gallagher et al., 1991].

EC is currently a sub-discipline of Computational Intelligence (CI), which in turn also covers
other subdisciplines focused on adaptive and intelligence systems such as Swarm Intelligence,
Fuzzy Systems and Artificial Neural Networks. Other examples of CI include Particle Swarm
Optimization (PSO) [Kennedy and Eberhart, 1995; Brownlee, 2011], inspired by bird flocking,
Ant Colony Optimization (ACO) [Maniezzo, 1992; Mitchell, 1998], probabilistic algorithms
inspired by the foraging behavior of ants, and Simulated Annealing (SA) [Kirkpatrick et al.,
1983], among others.

August 10, 2018

1-3 Thesis Outline 5

1-3 Thesis Outline

The content of this thesis is outlined below.

Chapter 2: An advanced Genetic Algorithm (aGA)
In this chapter, a novel Genetic Algorithm, aGA, suitable for non-convex optimization prob-
lems is introduced. Additionally, the reasons for the selection of each operator, as well as its
advantages and limitations are further discussed in this chapter.

Chapter 3: An enhanced Genetic Algorithm (eGA)
This chapter begins with the needs for improvement of the already available aGA. Next the
ideas implemented are explained further in detail as well as their triggering mechanisms to
wisely achieve a good balance between the local search and the global search.

Chapter 4: Application onto multi-modal test functions
In this chapter the eGA will be used to optimize three challenging benchmark functions
commonly used to test the performance of non-convex optimization algorithms and compare
its performance against that of the aGA and the well known PSO.

Chapter 5: Application onto a synthetic 2D receiver-side static correction demo
The proposed eGA will be applied to correct for receiver-side statics on ideally normal moveout
corrected CMP gathers.

Chapter 6: Application onto a synthetic 2D CRS demo
The proposed eGA will be used as the optimization tool for CRS stacking of two 2D synthetic
data sets designed to accommodate both low SNR data and one velocity anomaly.

Chapter 7: Discussion and Conclusions
In this section, we first make a further deep and insightful discussion on the content of this
thesis and then summarize the main conclusions.

August 10, 2018

6 Introduction

August 10, 2018

Chapter 2

An advanced Genetic Algorithm (aGA)

Optimization can be defined as the process of finding the combination of input parameters, or
decision variables, that result in the optimum (minimum or maximum) output, dictated by
a fitness or cost function, under a set of constraints. GAs are heuristic optimization methods
that belong to the category of global optimization used for this purpose. Since their birth in
1975, GAs have been successfully used as a tool for non-convex global optimization in a wide
range of realistic applications. Since then, further improvements in this field have focused on
avoiding limitations of the global methods and improving its convergence speed while keeping
the original idea of mimicking natural evolution to ensure the survival of the fittest in mind.

In Geophysics many problems are highly non-linear by nature and GAs have been proven to
be a very suitable tool for efficiently addressing these challenges. However, as any other global
optimization method, GAs also face the practical challenge of high computational costs. This
section describes a novel GA developed by AOC GRC Delft, suitable for global optimization
problems. The algorithm is called “an advanced Genetic Algorithm” (aGA) [Sun et al., 2017]
and seeks the global maximum of n-dimension non-convex functions. The remainder of this
chapter is dedicated to provide a clear explanation of its working principle, components and
how altogether they successfully lead to the pursuit of the fittest.

Last but not least, it is known that the two main disadvantages of GAs are premature con-
vergence and the difficulty at fine-tuning a located optimum. For this reason, the last two
sections of this chapter are dedicated to explain in detail the solutions used in the aGA.

2-1 Evolution scheme

2-1-1 Initialization

The aGA starts with an initial population of N chromosomes, or row vectors of dimension
[1, n], selected at random, with n equal to the number of dimensions to be optimized.

August 10, 2018

8 An advanced Genetic Algorithm (aGA)

2-1-2 Elitism

In aGA elitism is explicitly performed by passing the best Nc members of the current gener-
ation to the next generation. Furthermore, before mutation is applied, the best Nm members
among these Nc members (Nm ≤ Nc) are also protected from mutation.

2-1-3 Parent selection

At the current iteration t, the first step towards offspring generation is called parent selection.
From a population of N chromosomes, each parent is selected by randomly picking two indi-
viduals from the population and running a tournament, based upon their fitness comparison,
to determine which one gets selected. The winner of the tournament (the one with the higher
fitness φ) is selected for crossover and this process is repeated for both parents (X1,t and
X2,t).

2-1-4 Crossover Operator

An offspring is generated via crossover of two parents X1,t and X2,t and a multipoint Blend
Crossover (BLX-α) combination [Eshelman and Schaffer, 1993] is used as the crossover oper-
ator. In this operator, the kth gene of the ith offspring, for i = 1, ..., N , selected for crossover
is a value randomly selected from the interval [Cmin − Iα,Cmax + Iα], as follows:

Xi,t+1
k,cross =

{
Lk − αIkρ ∗ (2αIk + Uk − Lk) if R < Pc

Xi,t
k if R ≥ Pc

, (2-1)

where R and ρ are uniform random numbers generated on the fly, Pc is the crossover probabil-
ity, Lk and Uk define the lower and upper boundaries along the dimension k, I = Cmaxk −Cmink

with Cmink = min(X1,t
k , X2,t

k) and Cmaxk = max(X2,t
k , X2,t

k), α = 0.5, X1,t
k and X2,t

k are the
kth genes of the first and second parents at the current iteration t, respectively. Sun and
Verschuur [2014] claims this operator was selected for having reported the best results when
dealing with highly non-linear functions.

2-1-5 Mutation Operator

Before mutation, once again, elitism takes place and the best Nm chromosomes, of those Nc

chromosomes passed from the previous generation, are protected from mutation, while the
N − Nm remaining offspring chromosomes are subject to it. The genes of the chromosome
selected for mutation are modified as follows:

Xi,t+1
k,mut =

{
Xi,t+1
k,cross + ∆(t, k) if R1 < Pm

Xi,t+1
k,cross if R1 ≥ Pm

, (2-2)

∆(k) =

{
αr(Uk − Lk) if R2 ≥ 0.5

αr(Lk − Uk) if R2 < 0.5
, (2-3)

August 10, 2018

2-2 Beating the Premature Condition 9

where R1, R2 and r are random numbers generated on the fly, Xi,t+1
k,cross is the kth gene of the

ith offspring obtained in the previous step, Pm is the probability of mutation, and α is a factor
controlling the degree of exploitation.

2-1-6 Periodic Boundary Condition (PBC)

In aGA, every gene of each chromosome must always be within a valid range, bounded by
the search space defined by [L,U]. However, as noted in the previous two steps, mutation
and crossover are operators that might cause some genes to be out of the valid range or, in
other words, out of the search space. As a consequence, new chromosomes may leave the
boundary of the search space. Therefore, every time the mutation or/and crossover operators
are applied, a continuous boundary condition is used to map those genes back to the valid
range. The mathematical expression of this boundary correction is given in Equation 2-4.

Xi,t+1
k,PBC =

Lk + (Xi,t+1

k − Uk) if Xi,t+1
k > Uk

Uk − (Lk −Xi,t+1
k) if Xi,t+1

k < Lk

Xi,t+1
k if Lk ≤ Xi,t+1

k ≤ Uk
, (2-4)

where Xi,t+1
k is the kth gene of the ith offspring, obtained after either crossover Xi,t+1

k,cross or

mutation Xi,t+1
k,mut.

2-2 Beating the Premature Condition

One disadvantage of the GAs occurs when, at an early stage, a relatively good (but not the
globally best) solution starts dominating the evolution and the whole population is dragged
towards this local zone. As a result, the population diversity starts exhausting quickly and
the global search capability weakens, eventually causing the search getting trapped in a local
minimum. This effect is also known as the premature convergence situation and it is a
major problem because, if not detected in time to prevent the population diversity from
devastation, the GAs will waste time exploring local areas very likely without the possibility
to jump out of it. One potential solution is increasing the size of the population such that the
probability of finding better solutions, from the very beginning, is higher. A second potential
solution is to increase the mutation probability to promote a certain amount of diversity in
the population. However, increasing the population size has the negative impact of requiring
more computational time whereas increasing the mutation probability results in an increase
of the randomness, turning it into a Monte Carlo search.

The mechanism aGA proposes to skip the premature convergence first makes sure that the
current best fitness φBest has increased at least Rp%, compared to the best fitness φbest′

checked tes generations ago, such that φBest > φbest′ ∗ (1 +Rp). If so, a good balance between
the global and the local searches is being achieved (so far) and the evolution continues.
Otherwise, an exhaustive search is used to help the algorithm jump out of this premature
situation.

Exhaustive search is the building block designed to beat the premature situation. This ex-
haustive search scans possible parameter values along a certain dimension of the solution. To

August 10, 2018

10 An advanced Genetic Algorithm (aGA)

do so, the gene selected for scanning is increased by a fixed scan step ∆es, each time for a
total number of nsteps times. Both parameters, nsteps and ∆es, are carefully selected to cover
the entire search space such that nsteps = (U − L)/∆es. Unfortunately, following this proce-
dure with every single gene of the chromosome would increase the number of fitness function
evaluations, prohibiting its application onto all genes at once. Then, this exhaustive search is
applied only on certain genes selected at random with a probability given by µ = x/n, where
x is a user pre-defined input indicating the total number of dimensions to be exhaustively
analyzed every time the search is in a premature situation, and n is the problem dimension.
In other words, every time the exhaustive search is triggered, the current number of function
evaluations η is increased by nsteps ∗ n ∗ µ on average.

However, the cost of this brute force search is very high, and hence an improvement of this
aGA should be aimed at promoting diversity and exploring the search space in a smarter way.

2-3 Stopping criteria

The aGA stops when either the best solution found converges or the algorithm reaches a
maximum number of iterations tmax. For those experiments where the true solution is known
and a convergence condition is accordingly defined, the former applies, otherwise only the
latter condition is valid.

2-4 Workflow of the aGA

The step-by-step of the enhanced Genetic Algorithm, illustrated in Figure 2-1, is summarized
in the following, and the parameters there used are defined in subsection 2-4-1.

Step 1: Initialize the population with N random candidates of size [1, n], the loop iteration
counter t = 0 and the number of fitness evaluations η = 0.

Step 2: Evaluate the fitness function φi of each ith new member Xi and sort them in de-
scending order of fitness φ.

Step 3: Increase the number of function evaluations η by N and assign the fitness of the
first chromosome (as sorted in Step 2) to φbest′ .

Step 4: Every tes generations check premature convergence. If the current best fitness φBest
is at least (1 +Rp) times bigger than the best fitness achieved tes generations ago φbest′ ,
go directly to Step 5. If not, do an exhaustive search to replace weak chromosomes
with new ones, update the number of function evaluations η and then go to Step 5.

Step 5: Create a new population of chromosomes, as explained in section 2-1, and continue.

Step 6: Evaluate the fitness function φi of each ith new offspring Xi,t+1 and sort them in
descending order of fitness φ. Next, increase the counter of function evaluations η by
N and the iteration counter t by 1.

Step 7: Test whether one of the stopping criteria is met (see section 2-3). If so, the output
is the current best solution φbest and the algorithm is over, otherwise go to Step 4.

August 10, 2018

2-4 Workflow of the aGA 11

Figure 2-1: Flowchart of the aGA [Sun et al., 2017].

August 10, 2018

12 An advanced Genetic Algorithm (aGA)

2-4-1 Definition of parameters

For completeness, the parameters used in this chapter are restated as follows:

[L,U] Upper and lower boundary arrays delimiting the search space.

µ Ratio of number of genes allowed to be exhaustively searched over n.

Xi,t ith chromosome at current iteration tth.

Xi,t+1 ith offspring.

η Number of fitness function evaluations.

n Number of independent parameters (dimensions) to be optimized.

N Population size.

Nc Number of members inherited from the previous population.

Nm Number of members in those inherited members that are exempted from mutation.

Pc Crossover probability.

Pm Mutation probability.

φbest′ Best fitness when premature convergence was last checked.

φBest Best fitness so far.

φi Fitness of ith chromosome.

∆es Scanning step for the exhaustive search.

Rp Improvement factor defining the premature condition gain.

nsteps Number of steps exhaustively searched along a certain direction.

t Number of loop iterations so far.

tmax Maximum number of loop iterations allowed.

tes Number of iterations after premature convergence was last checked.

µ x over n ratio.

x Number of dimensions to be analyzed every the exhaustive search is applied.

August 10, 2018

Chapter 3

An enhanced Genetic Algorithm (eGA)

The key to success of GAs strongly depends on the operators used [Chinnasri et al., 2012; Selvi
and Rajaram, 2007], the evolutionary machinery designed [Gomes and Selman, 2001; Gong
and Fukunaga, 2011; Whitley et al., 1999], the parameters set [Harik and Lobo, 1999; Biazzini
et al., 2009; Wolpert and Macready, 1997; Valenzano et al., 2010] and, more importantly, a
good trade-off between its global and local searches. Achieving the last implies coping with
two complementary searches able to fill in the gaps of each other. The degree of success of
GAs is usually measured in terms of the final fitness value and the total amount of function
evaluations.

The aGA has proven to yield outstanding results given enough time and fine-tuned parameters
[Sun and Verschuur, 2014; Sun et al., 2016, 2017]. However, convergence speed is a key factor
for the success of a global optimization algorithm when it comes to scalability; in production
even slight efficiency improvements matter as it can easily take weeks or even months to
process a huge data set. Therefore, the goal of this project is to improve the convergence
speed of the currently available aGA by simultaneously enhancing both its global and its local
search capabilities.

In order to improve both capabilities, two solutions were proposed. The first was a modified
version of the well known Island model GAs and the second was named Self Adaptive Differ-
ential Evolution (SADE) fine tuning scheme. The former consists of multiple sub-populations
(or islands) running simultaneously with different parameter sets selected at random. This
idea was proposed by Gong and Fukunaga [2011], where it was claimed that it is not very
difficult to quickly achieve average performed results if sufficient parameters are tested on
unique islands. For the second idea, the effectiveness of the Differential Evolution (DE) mu-
tation operator [Barros et al., 2015] at correcting outlier genes inspired us to design a novel
SADE fine tuning search, capable of navigating around the best solution found, in directions
different to the orthogonal. At the end of every subsection I will explain the potential pitfalls
each solution may face and how a wise triggering of its functionality can help to prevent these
problems.

August 10, 2018

14 An enhanced Genetic Algorithm (eGA)

3-1 Features of the eGA

3-1-1 Randomized Islands Model

This idea consists of defining multiple sub-populations (or islands) with different parameter
sets and sequentially evolve them such that the update of each island is interleaved with an
unidirectional communication system. The logic behind this communication is to transfer the
best member from one island to the next if, and only if, its best current solution is fitter than
the worst offspring last generated by the next island, as illustrated in Figure 3-1. Additionally,
in order not to devastate the achieved extra-diversity, the frequency of communication among
islands is controlled such that each island is given some time to evolve and find its currently
best solution before it is forced to follow a better trajectory or eventually forces its neighbor
island to do it.

As stated in the No Free Lunch theorem (NFL), on average, the outstanding performance
of any algorithm over a certain class of problems is offset by its poor performance in other
problems [Wolpert and Macready, 1997]. In a similar way, finding the parameters that result
in the best performance of an algorithm can not guarantee these parameters will also perform
well in all other applications. Therefore, a prior problem-specific tuning of parameters could
dramatically improve its convergence speed. Unfortunately, this offline parameter tuning is
a very expensive process and in practice, where time is a precious asset, users end up finding
the best averaged parameters only once and expect them to be effective in any other problem
and thus skip this extra-step in the future. Conversely, in this work, we completely avoid
any on/offline parameter tuning by selecting a different parameter set (Pmj , Pcj , Nj) for each
island at random from a valid range where extreme cases are neglected, i.e. Pcj ∈ [0.3, 0.8]
and Pmj ∈ [1/n, 3/n]. The upper bounds of the population size range depend on the number
of island selected but, based on our tests, we concluded that the overall population should be
smaller than ten times the number of parameters to be optimized.

The improvements achieved using this idea can be attributed to the enlargement of the sam-
pling space and the degree of independence each island is given to freely explore the search
space and follow potentially better trajectories. This freedom introduces a certain amount
of diversity to the overall system by allowing the evolutionary behavior of each island to be
different from each other, so that each sub-population explores the space in a different manner
and at a different pace. As discussed in section 2-2, another strategy to promote diversity is
to increase the population size. However, increasing the population size not only results in an
enlargement of the sampling space but also in deceleration of the cross-fertilization of infor-
mation among members. It is there where the most significant advantage of the island model
relies on: even though by using multiple islands the sampling space is implicitly enlarged, the
crossover is done between members of the same sub-population only. On top of that, the fact
that after every successful communication, each sub-population is drastically imposed a “role
model” to follow, the speed of information sharing between chromosomes is even faster.

August 10, 2018

3-1 Features of the eGA 15

Figure 3-1: Smart communication system among islands for ni = 4, Pcj ∈ [0.3, 0.8] and Pmj ∈
[1/n, 2/n]. Observe there is no communication from island 3 to 4.

3-1-2 Self Adaptive Differential Evolution (SADE) fine tuning search

The DE mutation is a scheme first introduced by Storn and Price [1997], where the ith

chromosome at the current t iteration Xi,t is mutated by adding the weighted difference
between two members of the population selected at random, as expressed in Equation 3-1
and illustrated in Figure 3-2(a):

Xi,t
DE = Xi,t + α(Xr2,t −Xr1,t), (3-1)

where Xi,t
DE is the DE-mutated chromosome, r1 and r2 are the indices of the parents selected

at random (different from index i), and α is known as the DE scaling factor.

In general, GAs are known for their limited capacity at fine tuning their best chromosomes
to reach the exact solution, and the aGA was not an exception. In our tests, we have also
confirmed that the aGA was able to quickly achieve solutions close to the ground truth. The
effectiveness of DE-mutation inspired us to use it as basis to redesign a local search capable
of quickly fine tuning good chromosomes. Our SADE fine tuning scheme seeks to improve the
best chromosome of all populations Xc,t+1, by iteratively allowing it to mutate, as follows:

XBest,t
SADE = XBest,t + α(m)(Xr2,t −Xr1,t), (3-2)

where XBest,t is the fine-tuned version of the current best chromosome and α(m) will be
explained in the following paragraph.

The DE-mutation scaling factor α is a real value controlling the step length given towards
Xr2,t
j −Xr2,t

j and, based on our tests, the effectiveness of the DE mutation operator is very
sensitive to its selection. Higher values of α increases the exploration freedom of the algorithm
whereas smaller ones are rather used to exploit the information contained in the current

August 10, 2018

16 An enhanced Genetic Algorithm (eGA)

population. Therefore, to wisely avoid manual tuning, in eGA α is automatically adjusted
every iteration until a maximum number of nmax attempts is reached for that trial. In short,
a line-search of α is performed, as expressed in Equation 3-3,

α(m) = (α0)
−m, (3-3)

where α(m) is the SADE scaling factor at the mth attempt, α0 its initial value and m the
attempt counter (for m = 1, ..., nmax), as illustrated in Figure 3-2(b).

The SADE fine tuning process starts removing the 25% of the furthest members (cyan dots)
to the best chromosome (red dot) of a mature enough population, as shown in Figure 3-3(a).
Then, for every iteration, e.g. Figure 3-3(b), a couple (green dots) is randomly selected from
this sub-population and α is automatically decreased for a maximum of nα attempts or until
the tuned chromosome is fitter than the initial best chromosome. Then, in the following
iterations (Figure 3-3(c) to 3-3(e)), another couple is selected as parents and the process is
repeated until the convergence condition is met (see Figure 3-3(f)) or the maximum number
of repetitions nmax is reached. It is important to clarify that every attempt to self-adaptively
improve α also includes −α so that both directions are equally scanned. In our example, α
was decreased less than 8 times (observe the 8 gray asterisks to the left and 8 yellow crosses to
the right of the red filled circle in Figure 3-3) until a fitter solution was obtained and, finally,
the process met the convergence condition after 4 iterations. As evidenced, this mechanism
was capable of correcting deviations in just a few iterations if the population is at an advanced
stage of the evolution.

(a) DE mutation scheme with fixed α (b) SADE fine tuning with α0 = 2 and nα = 6

Figure 3-2: Comparison between a) DE mutation and b) SADE fine tuning.

As a final remark, it is worth mentioning that this extra component added for fine tuning
might become very expensive if applied at a premature stage and it would end up causing
the opposite effect. Besides, as the true solution is usually unknown in practice, defining
the limit when the population has become mature enough to be fine tuned is not an easy
task, specially when the only measure at hand is fitness and its rate of growth. Keeping in
mind that this mechanism was designed to correct those genes out of the GA acuity and stop
it from wandering, a wise triggering criterion to bring this component into functionality is
checking whether after a fixed number of iterations fDE , the growth rate of the fitness has been
zero more than twice. If so, the fine tuning starts and is expected to meet the convergence
condition; otherwise, the population is not ready for tuning and the eGA continues.

August 10, 2018

3-1 Features of the eGA 17

(a) i=0. Detect and remove the 25% furthest members
(cyan dots) to the best member XBest,t (red dot).

(b) i=1

(c) i=2 (d) i=3

(e) i=4 (f) Zoomed version of i=4

Figure 3-3: Step by step illustration of the SADE fine tuning mechanism applied onto a 2D
Ackley function (which will be further discussed in chapter 4) with minimum located
at [x1, x2] = [0, 0]. a) Preliminary step aimed at removing 25% furthest outliers.
For every iteration from b) to e), each couple is automatically decreased by 2 up to
nα = 8 times or until a fitter solution was found. h) Zoomed version of the final
result shown in Figure 3-3(d).

18 An enhanced Genetic Algorithm (eGA)

3-2 Workflow of the eGA

After adding the above mentioned ideas to the original aGA, we end up with a more complex
but robust algorithm aimed at improving both local and global search capabilities, when
possible. The step-by-step of the enhanced Genetic Algorithm, illustrated in Figure 3-4, is
summarized in the following, and the parameters there used are defined in subsection 3-2-1.

Step 1: Initialize the generations counter t = 0, number of fitness evaluations η = 0 and
island’s number iterator j.

Step 2: Randomly select the GA parameters of each island from the user-defined ranges.

Step 3: Initialize every jth population (j = 1, ..., ni) with Nj random row vectors of size n.

Step 4: Evaluate the fitness function φi of all members within each island and sort them in
descending order of fitness φ.

Step 5: Increase the number of function evaluations η by
∑ni

j=1(Nj − Nm) and assign the
fitness of the overall best chromosome to φbest′ .

Step 6: Check whether the island’s number iterator j is larger than the number of islands
defined ni. If so, go directly to Step 7, otherwise jump to Step 11.

Step 7: Check whether the current iteration is a multiple of tSADE , if so determine whether
the growth of rate has been stucked in the same value as last time it was checked to
apply the SADE fine tuning scheme and go to Step 8. If not, go directly to Step 9

Step 8: Increase p by one.

Step 9: Restart the island’s number iterator to j = 1, increase the number of iterations
counter by one and go to Step 10.

Step 10: Test whether one of the stopping criteria (section 2-3) is met. If so, the output is
the best current solution and the algorithm is over, otherwise go to Step 6.

Step 11: Every tcom generations transfer chromosomes between islands, if it is possible, as
explained in subsection 3-1-1 and then go to Step 12.

Step 12: Every tes generations check premature convergence. If the current best fitness of
the jth island φBest,j is at least (1 +Rp) times bigger than the fitness of the overall best
chromosome φbest′ , achieved tes generations ago, go directly to Step 13. If not, do an
exhaustive search to replace weak chromosomes with new ones and then go to Step 13.

Step 13: Replace the fitness of the overall best chromosome φbest′ , updated tes generations
ago, with φBest,j , only if φBest,j > φbest′ .

Step 14: Create a new population of chromosomes for the jth island, as explained in sec-
tion 2-1, and then go to Step 15

Step 15: Evaluate the fitness function φi of every ith (i = 1, ..., Nj) member belonging to
the jth island and subsequently sort them in descending order of fitness φ.

Step 16: Increase the number of function evaluations η by Nj , the island’s number iterator
by 1, store the best fitness of the jth island φBest,j in RBest,j and then go to Step 10.

August 10, 2018

3-2 Workflow of the eGA 19

Figure 3-4: Flowchart of enhanced Genetic Algorithm.

August 10, 2018

20 An enhanced Genetic Algorithm (eGA)

3-2-1 Definition of parameters

For completeness, the new parameters introduced in this chapter are restated in the following.

α DE scaling factor.

α(m) SADE scaling factor.

α0 Initial DE scaling factor.

φi,j Fitness of ith chromosome of jth island.

φbest′ Fitness of the overall best chromosome tes generations ago.

φBest Fitness of the current overall best chromosome.

φBest,j Fitness of the best chromosome of jth island.

φBest,j−1 Fitness of the best chromosome of (j − 1)th island.

φWorst,j Fitness of the worst chromosome of (j)th island.

nα Maximum number of times α is allowed to decrease for.

nmax Maximum number of attempts to fine-tune the fittest chromosome.

ni Number of islands

Nj Population size of jth island.

Pcj Crossover probability of jth island.

Pmj Mutation probability of jth island.

p Counter increasing every time the growth rate is stucked after tSADE iterations.

Rj,t Record containing the best fitness of every island in each iteration.

Rp Improvement factor defining the premature condition gain.

t Number of iterations so far.

tcom Frequency of communication among islands.

tSADE Number of iterations after SADE fine tuning is checked.

tes Number of iterations after premature convergence was last checked.

tmax Maximum number of iterations.

Xi,t
j ith chromosome of jth island at tth iteration.

XBest,t The best of all chromosomes at tth iteration.

XBest,t
SADE SADE fine-tuned version of Xbest,t.

XBest,t
j−1 The best chromosome of (j − 1)th island at tth iteration.

XWorst,t
j The worst chromosome of jth island at tth iteration.

Z Record containing the fitness growth rate measured every tSADE iterations.

August 10, 2018

Chapter 4

Application onto multi-modal test
functions

In order to test the performance of the proposed eGA, it will be used to optimize three bench-
mark functions for increasing number of dimensions and the results were compared against
the aGA proposed by Sun et al. [2017] and the PSO by Brownlee [2011]. These functions are
test beds for minimization problems widely used for testing the performance of non-convex
optimization algorithms given that they are non-linear multi-modal functions and finding the
global minimum is challenging due to the search space containing a high number of local
minima. Our eGA wills search for the global solution by maximizing the negated functions.
In this chapter, as the global maxima φtrue of the three test functions are known, the conver-
gence condition for φBEST is defined as | φBEST − φtrue |≤ ∆φmin, such that the algorithm
finishes when the difference between the current best φBEST and the true fitness φtrue reach
a minimum threshold dictated by ∆φmin.

4-1 Benchmark Functions

The three functions used to test the performance of the eGA are the well-known Ackley,
Rastrigin and Griewangk functions illustrated in Figure 4-1 for n = 2, i.e. the two-dimension
version of these functions. The mathematical expression for the n-dimension Ackley func-
tion, expressed in Equation 4-1, presents a marked decreasing behavior towards the global
minimum, located at the origin of the coordinate system.

A(x1, ..., xn) =

20− 20exp

−0.2

√√√√0.5

n∑
i=1

xi

+

[
1− exp

(
0.5

n∑
i=1

(cos (2πxi)

)]
,

Range :− 5.12 6 xi 6 5.12,

Solution : xi = 0,

φtrue : A(0, ..., 0) = 0.

(4-1)

August 10, 2018

22 Application onto multi-modal test functions

For the Rastrigin function, the global minimum is also located at the origin but hardly
distinguishable from its surrounding locals. The expression for the n-dimension Rastrigin
function is given as:

R(x1, ..., xn) = 10n+
n∑
i=1

(x2i − 10cos(2πxi)),

Range :− 5.12 6 xi 6 5.12,

Solution : xi = 0,

φtrue : R(0, ..., 0) = 0.

(4-2)

Finally, the Schwefel function is a deceptive function where the global minimum is not located
at the origin of the coordinate system and far from the next local minimum. The expression
for the n-dimension Schwefel function is given as:

S(x1, ..., xn) = 418.982887n−
n∑
i=1

(xisin
√
xi),

Range :− 512 6 xi 6 512,

Solution : xi = 420.9687,

φtrue : S(420.9687, ..., 420.9687) = 0.

(4-3)

4-2 Particle Swarm Optimization (PSO)

In order to compare the performance of our eGA with other evolutionary algorithms, PSO
was also used to maximize the aforementioned functions. PSO was proposed by Kennedy and
Eberhart [1995] as a stochastic global optimization algorithm and, since then, it became the
inspiration for future Swarm Intelligence algorithms in the sub-field of CI. Similar to GAs,
PSO starts with a random population of candidates solutions that are updated iteration
after iteration, influenced by their personal best past location and the best past location
of the swarm, until the global solution is reached. However, unlike GAs, PSO have no
evolutionary operators, such as mutation and crossover, but instead the potential solutions,
or particles, move towards the member whose value is closest to the target at any given
moment. The most significant advantages of PSO over GAs are its easier implementation as
well as the smaller number of parameters to be tuned. Another important difference between
both is their information-sharing mechanism: whereas in GAs the genetic material spreads
omnidirectionally among all the members of the population, in PSO it is more like a one-way
information-sharing mechanism from the best particle to the others.

PSO is inspired by the schooling behavior of fish or the flocking behavior of birds working
together to find a hidden source of food. They do this by circling around an area and
chirping the loudest when any of them gets closer than the previous to the target and this
way it attracts the others in its direction, until all others cluster or converge around an
optimum, or several optima. To this end, each particle must carry the following information:
data representing the plausible solution, the personal best value, indicating the closest the
particle has been from the target, and the velocity value regulating how much the data can
be changed.

August 10, 2018

4-2 Particle Swarm Optimization (PSO) 23

(a) Isometric view of 2D Ackley function (b) Transversal view of A(X1, X2)

(c) Isometric view of 2D Rastrigin function (d) Transversal view of R(X1, X2)

(e) Isometric view of 2D Schwefel function (f) Transversal view of S(X1, X2)

Figure 4-1: Three 2D multi-modal test functions used to benchmark the performance of the pro-
posed Genetic Algorithm: Ackley (a,b), Rastrigin (c,d) and Schwefel (e,f). Observe
the search space was selected to include as many local minima as possible.

August 10, 2018

24 Application onto multi-modal test functions

Figure 4-2: Flowchart of Particle Swarm Optimization.

The work-flow of the PSO algorithm is as follows: it starts with a group of random particles
that move through the search space following two “best” values: the best solution (P ibest)
achieved by the ith particle so far and the best value obtained by any particle in the population
(P gbest) [Kennedy and Eberhart, 1995]. Based on these two best values, the particle updates
its velocity, as in Equation 4-4:

vi(t+ 1) = vi(t) + (c1 ∗ r ∗ (pibest − pi(t))) + (c2 ∗ r ∗ (pgbest − p
i(t))), (4-4)

where r is a number randomly selected from a Gaussian distribution and c1 and c2 are the
cognitive and social parameters, respectively. The particle position is also updated using:

pi(t+ 1) = pi(t) + vi(t). (4-5)

The flowchart of the PSO algorithm is illustrated in Figure 4-2

4-3 Experimental Results

4-3-1 Comparison against PSO

In this section, as a preliminary test, the performance of the eGA will be compared against a
PSO implementation [Brownlee, 2011]. For the eGA, the number of islands is set to Ni = 2,
its communication frequency to tcommu = 1 and, for the SADE fine tuning component, its
frequency is set to tSADE = 10, α is decreased for a maximum of nα = 6 attempts (starting
from α0 = 2) and every time this component is triggered, the best chromosome is fine-tuned
up to nmax = 100 times. For the PSO, cognitive and social parameters are set to 2 and swarm
size equal to 30. Both algorithms were allowed to run for a maximum of tmax = 106 iterations
and the convergence threshold was set to ∆φmin = 10−3.

August 10, 2018

4-3 Experimental Results 25

First, PSO and eGA are applied to optimize the three above mentioned benchmark functions
with a dimension equal to 2. As can be seen in Figure 4-3, eGA reaches the global minimum
in less than 80 iterations whereas PSO almost takes the maximum number of iterations to
converge. So far, it can be concluded that eGA has outperformed PSO. However, to be
able to draw a more solid conclusion, the experiment had to be repeated for ten times with
different random seeds. The average results obtained for increasing number of dimensions,
starting from 2 up to 10, are shown in Figure 4-4. It can be seen in this figure that while
eGA always reaches the goal point, for this maximum number of iterations PSO is incapable
of converging for dimensions higher than two.

4-3-2 Comparison against aGA

(a) Ackley function (b) Rastrigin function

(c) Schwefel function

Figure 4-3: Optimization of 2D a) Ackley, b) Rastrigin and c) Schwefel functions with PSO
(solid blue curve) and eGA (red and yellow lines).

August 10, 2018

26 Application onto multi-modal test functions

Finally, the performance of the eGA and aGA will be compared. To do so, the population
size of the aGA was set to 100 and the crossover and mutation probabilities to Pc = 0.5 and
Pm = 2/n, respectively. For the eGA, a total of Ni = 2 islands (communicated after every
iteration) were used and the parameters of the SADE fine tuning were set to tSADE = 10,
nmax = 100, nα = 6, α0 = 2. Both algorithms were allowed to run for a maximum of
tmax = 106 iterations and the convergence threshold was set to ∆φmin = 10−3.

The results of applying the aGA and eGA to optimize the three multi-modal test functions, for
increasing number of dimensions, are shown in Figure 4-5; these are the results of averaging
the performance obtained with ten different random seeds for each dimension. The right-
hand side panels show, on average, the number of function evaluations required to meet one
of the stopping criteria whereas the panels on the left display the average fitness achieved
when the algorithm finished. As can be seen, both algorithms successfully met the convergence
condition (abs(φb−φtrue) ≤ 10−3) before exceeding the maximum number of iterations tmax =
106, but the eGA is much faster; in some situations up to 2 orders faster.

4-4 Summary

The success of the eGA proposed in this thesis was demonstrated in this chapter where, first,
it was proven to be far superior than a second evolutionary algorithm known as Particle
Swarm Optimization, as described in Brownlee [2011].

Furthermore, compared with the aGA, the eGA achieved a significant improvement in
computation efficiency when used to optimize three multi-modal test functions commonly
used to test the performance of non-convex optimization problems.

August 10, 2018

4-4 Summary 27

(a) Fitness function for increasing dimensions (b) Function Evaluations for increasing dimension

(c) Fitness function for increasing dimensions (d) Function Evaluations for increasing dimensions

(e) Fitness function for increasing dimensions (f) Function Evaluations for increasing dimensions

Figure 4-4: Comparative results showing the average (left) fitness and (right) total number of
function evaluations of PSO (blue) against the aGA (red), as a function of number
of dimensions, for (a,b) Ackley, (c,d) Rastrigin and (e,f) Schwefel.

August 10, 2018

28 Application onto multi-modal test functions

(a) Fitness function for increasing dimensions (b) Function Evaluations for increasing dimension

(c) Fitness function for increasing of dimensions (d) Function Evaluations for increasing dimensions

(e) Fitness function for increasing dimensions (f) Function Evaluations for increasing dimensions

Figure 4-5: Comparative results showing the average (left) fitness and (right) total number of
function evaluations of the aGA (blue) against the eGA (red), as a function of
number of dimensions, for (a,b) Ackley, (c,d) Rastrigin and (e,f) Schwefel.

August 10, 2018

Chapter 5

Application onto a synthetic 2D static
correction demo

Although for many years compressional wave (or P-wave) seismic technology has featured the
most technological developments, the use of shear-waves has recently proven to improve both
imaging quality and reservoir characterization. In other words, the additional information
provided by S-waves has allowed modelling reservoirs more adequately, redefining their quan-
titative properties and eventually finding new reserves in reservoirs that would otherwise be
considered unsuccessful with P-waves alone.

We treat on-shore wave propagation of P-P and P-S waves with the models shown in Figure 5-
1. In the former, the source excites P waves that travel vertically through the near-surface
layer, after which deflecting beyond until they get reflected up somewhere in the subsurface.
Then, while traveling on their way back, the reflected P waves experience another vertical
propagation in the near-surface area before they reach the surface. For P-S waves the scenario
is different, when the downgoing P-waves reach their reflection point, they get converted to S-
waves and, before reaching the surface, S-waves travel vertically within the near-surface. For
this reason, in P-S exploration, P-wave (or source-side statics) and S-wave (or receiver-side)
statics are normally processed separately.

5-1 Definition of the fitness function

In data-driven static correction methods, the power of the stacked CMP section is considered
a good quality indicator of the static correction because if all the traces in a CMP were
applied with the correct statics, then all the traces would be perfectly aligned and its stacking
power Ê should be maximized. Therefore, the idea is to align the seismic events by globally
maximizing the corresponding stacking power as defined in Equation 5-1 for the 2D case and
Equation 5-2 for the 3D case [Sun et al., 2017].

August 10, 2018

30 Application onto a synthetic 2D static correction demo

(a) P-wave seismic exploration (b) S-wave seismic exploration

Figure 5-1: (a) Primary and (b) converted-wave seismic exploration. Source: adapted from [Sun
et al., 2017]

φ = Ê =

N∑
i=1,step=M/2

T2∑
t=T1

i+M∑
j=i

fj(t)

2

, (5-1)

φ = Ê =

N∑
i=1,step=M/2

Q∑
k=1,step=V/2

T2∑
t=T1

i+M∑
j=i

k+V∑
u=k

fju(t)

2

, (5-2)

where fju(t) is the stacked CMP trace for x = j and y = u, with iterators i and k scanning
along the x and y dimensions, starting from 1 up to N and Q, respectively. Besides, M and
V define the 2D local coherence window size that is covered by j and u, starting from (i, k).
The increment steps are equal to M/2 and V/2, implying that there is a half-window overlap
between two consecutive coherence windows. Finally, [T1, T2] delimits the target zone.

Observe that, for the 2D case, k, Q, u and V can be neglected and then, the jth stacked CDP
trace fj(t) can also be expressed as:

fj(t) =

F∑
i=1

Pi[t− CR ∗ stat(XR)− CS ∗ stat(XS)], (5-3)

where F is the fold of the jth CMP gather, Pi(t) is the ith trace in the current gather and
stat(XR) and stat(XS) are the statics at source and receiver locations, respectively. Therefore,
as the purpose of this demo is to handle receiver-side statics only, CS = 0 and CR = 1 and
thus Equation 5-3 becomes:

fj(t) =
N∑
i=1

Pi[t− stat(XR)]. (5-4)

August 10, 2018

5-2 Synthetic data set 31

To this end, real-valued chromosomes, describing stat(XR), are defined as candidate solutions
where each gene represents the static time shift corrections of each receiver and are represented
with float numbers.

5-2 Synthetic data set

In this section we apply the eGA to three synthetic 2D data sets designed to correct for
receiver-side statics, using Equation 5-1 as fitness function, with a local coherence window
size equal to one (M = 1). The data sets were obtained using a layered model, consisting of
four dome-like reflecting interfaces, as shown in Figure 5-2. The corresponding depth velocity
and density models are shown in Figures 5-2(a) and 5-2(b), respectively, where we can see
that with increasing depth, the velocity rises from 1200 up to 2700(m/s) and the density from
1150 to 1600 (kg/m3). The acoustic impedance computed is shown in Figure 5-2(c) and, in
all experiments, the source used was a Ricker wavelet (Figure 5-2(d)) with a central frequency
of Fc = 10(Hz), recorded at a sampling rate equal to 4(ms) during 2(s). Ray tracing was
used as the modeling engine where only primaries are considered and perfect NMO correction,
ignoring stretching and other side effects, is assumed.

To correct for receiver-side statics using our eGA, three experiments were designed. For the
first and second experiments the synthetic data was generated using 101 receiver channels per
shot in a moving spread-geometry, with an increasing offset from 25 up to 2475(m) on each
side of the CMP. The receivers, located at the surface every 50(m) from a starting point x = 0,
were contaminated with random static time-shifts varying from −200 to +200(ms). On the
source side, 100 locations were defined every 50(m), starting from x = 25(m). Consequently,
200 CMP gathers with varying folds were obtained but, in order to imitate the reality, only
the closest 40 traces of each gather were used to build the first data set.

The ideal noiseless CMP stack image obtained for the first experiment is illustrated in Figure
5-3(a). However, to make the demo even more realistic, in the second experiment, Gaussian
noise was added to the data set so that the SNR becomes 5; the resulting CMP stack image is
illustrated in Figure 5-3(b). For the third experiment, a more challenging data set was built:
a total of 201 receiver channels, contaminated with statics ranging from −300 to +300(ms),
were used to more densely sample the subsurface with a spacing of 25(m). As a result, 400
CMP gathers with a SNR = 5 were sorted and processed to contain the 80 nearest offset
traces only. Table 5-1 summarizes the design parameters of all experiments.

The random statics introduced per channel in each experiment are shown in Figure 5-4. In
order to see the effect these time shifts have on the data set, the first CMP gather of the noisy
data sets with statics introduced are shown in Figure 5-5. As it can be seen in Figure 5-6,
noise and statics have severely degraded the quality of the CMP stack image, compromising
its resolution and thus resulting in blurred and intertwined seismic events, compared to the
original noiseless and statics-free CMP stack image in Figure 5-3.

August 10, 2018

32 Application onto a synthetic 2D static correction demo

(a) Velocity model (b) Density model

(c) Acoustic impedance (d) Ricker wavelet

Figure 5-2: (a) Velocity and (b) Density models, (c) Acoustic Impedance computed and (d)
wavelet type used as source.

5-2-1 Convergence condition

Given the discrete character of this data set and the round-off problems associated with it,
in this demo we found convenient to use a local search as the convergence condition for the
eGA. This local search had to be computationally lighter than the eGA and provide faster
convergence towards the actual result in order to speed up the search process. Therefore,
to fulfill these requirements, a greedier version of the Back and Forth Coordinate Descent
(BFCD) search proposed by [Nocedal and Wright, 1999] was designed and used as the
stopping criterion for the execution of our eGA. In other words, the eGA was run for a
considerable number of fixed iterations tBFCD, after which the local search was applied;
when the local search found the true solution the search finished, otherwise the eGA just
continued. The pseudo-code of our Greedy BFCD is given in Appendix A.

August 10, 2018

5-2 Synthetic data set 33

The original BFCD local search [Nocedal and Wright, 1999] is one of the many coor-
dinate descent methods and searches cyclically along all coordinate directions. Even-though
its rate of convergence is often slower than that of steepest descent methods, e.g. quasi-
newton method, they are commonly preferred because no gradient information is required,
making it more versatile, specially when handling non-continuous functions.

Item Experiment 1 Experiment 2 Experiment 3

X dimension 5 (km) 5 (km) 5 (km)
Z dimension 1.77 (km) 1.77 (km) 1.77 (km)
Sampling interval 4 (ms) 4 (ms) 4 (ms)
Record length 2 (s) 2 (s) 2 (s)
Number of receivers 101 (m) 101 (m) 201 (m)
Receivers Interval 50 (m) 50 (m) 25 (m)
Number of sources 100 100 200
Sources Interval 50 (m) 50 (m) 25 (m)
Source Wavelet Ricker Ricker Ricker
Central Frequency 10 (Hz) 10 (Hz) 10 (Hz)
Total number of CMP gathers 200 200 400
CMP interval 25 (m) 25 (m) 12.5 (m)
fold 40 40 80
SNR ∞ 5 5
Min. statics - 200 (ms) - 200 (ms) - 300 (ms)
Max. statics +200 (ms) +200 (ms) +300 (ms)

Table 5-1: Design parameters of the three experiments built to generate the synthetic datasets
used for the receiver-side statics-correction demo.

The parameters for the eGA in each of the experiments, as defined in subsection 3-2-1, are
summarized in Table 5-2.

Item Experiment 1 Experiment 2 Experiment 3

n 101 101 201
Pm range (1/101)*[1,3] (1/101)*[1,3] (1/201)*[1,3]
Nj range [50,100] [50,100] [50,100]
Pc range [0.3,0.8] [0.3,0.8] [0.3,0.8]
tes 50 50 50
tcom 20 5 5
Ni 4 4 5
nα 100 100 100
tSADE 40 40 30
α0 2 2 2
mmax 6 6 6
tBFCD 500 500 500

Table 5-2: eGA parameters used by the eGA in each experiment.

August 10, 2018

34 Application onto a synthetic 2D static correction demo

(a) Noisless CMP stack image

(b) Noisy CMP stack image

Figure 5-3: CMP stack image of the subsurface (a) without and (b) with Gaussian random noise.

August 10, 2018

5-2 Synthetic data set 35

(a) Experiments 1 and 2: Random statics ranging from −200 to +200(ms) introduced
in 101 receivers.

(b) Experiment 1: Random statics ranging from −300 to +300(ms) introduced in 201
receivers.

Figure 5-4: Random statics introduced in the experiments (a) 1 and 2 and (b)3.

August 10, 2018

36 Application onto a synthetic 2D static correction demo

(a) Experiment No. 2

(b) Experiment No. 3

Figure 5-5: First CMP gather of the experiments a) 2 and b) 3 with random statics introduced.

August 10, 2018

5-2 Synthetic data set 37

(a) Experiment No. 1

(b) Experiment No. 2

(c) Experiment No. 3

Figure 5-6: CMP stacked image before static correction for the experiments a) 1, b) 2 and c) 3.

38 Application onto a synthetic 2D static correction demo

5-3 Results

For all of the experiments, the statics obtained after the eGA (blue crosses) and the Greedy
BFCD (yellow filled circles) optimization are shown in Figure 5-7. It can be seen in this figure
that, compared to the noiseless data set (Figure 5-8(a)), the number of outliers obtained using
the eGA increases with the difficulty added by the noise (Figure 5-8(b)) and the wider statics
range (Figure 5-8(c)). Although the statics obtained using the eGA are already close to the
true solution, the application of the Greedy BFCD search lead to the global maximum (yellow
filled circles) in all the experiments.

The CMP stack images after optimization by the eGA are shown in Figure 5-8. As it can be
seen in these figures, the seismic events are already very well aligned and far better resolved
compared to the statics-contaminated CMP stack images in Figure 5-6. However, due to a
few outlier statics obtained with the eGA (blue crosses) in Figure 5-7, some artifacts (red
dashed boxes) are present, resulting even in one false seismic event (green dashed box) in
the Experiment 3, as illustrated in Figure 5-8(c).

Finally, the results obtained after application of the Greedy BFCD are shown in Figure 5-9,
where it can be seen that the stacking power within the the target zone is further maximized
and resulted in the same perfectly aligned CMP stack image for all of the three experiments,
as shown in the noisy statics-free CMP stack image of Figure 5-3(b).

5-4 Summary

The eGA was successfully applied to correct for receiver-side statics in a 5(km) length 2D
seismic section containing 5 dome-like reflecting interfaces, whose CMP gathers were simulated
using ray tracing. To this end, three different scenarios were proposed: an ideal noiseless data
set and two more realistic noise-contaminated setups.

The statics were estimated by maximizing the stacking power of the CMP gathers via the
eGA whose convergence condition was dictated by a Greedy BFCD local search.

August 10, 2018

5-4 Summary 39

(a) Experiment No. 1

(b) Experiment No. 2

(c) Experiment No. 3

Figure 5-7: Random statics introduced (filled yellow circles) and calculated after eGA (red cir-
cles) and Greedy BFCD (blue crosses) for the experiments a) 1, b) 2 and c) 3.

40 Application onto a synthetic 2D static correction demo

(a) Experiment No. 1

(b) Experiment No. 2

(c) Experiment No. 3

Figure 5-8: CMP stack image after optimization by eGA for experiments a) 1, b) 2 and c) 3.

5-4 Summary 41

(a) Experiment No. 1

(b) Experiment No. 2

(c) Experiment No. 3

Figure 5-9: CMP stack image after Greedy BFCD search for the experiments a) 1 b) 2 and c) 3.

42 Application onto a synthetic 2D static correction demo

August 10, 2018

Chapter 6

Application onto a synthetic 2D CRS
demo

The purpose of CMP stacking is to enhance the quality of an ideal ZO section by using
traces sharing a CMP but generated by source-receiver pairs separated a distance larger than
zero. To do so, before stacking, the wave travel-time has to be corrected to account for this
offset. This correction, also known as Normal Moveout time correction (tNMO), is given by
the following equation [Waldeland et al., 2017]:

t2CMP = t20 +

(
2h

VNMO

)2

, (6-1)

where h is the half-offset of each source-receiver pair, t0 the two-way traveltime and vNMO is
the NMO velocity. In this equation it is straightforward to see that the stacking velocity has
to be determined first, in a model or data-driven fashion.

As mentioned in subsection 1-2-2, the purpose of CRS is also to transform multicoverage
seismic reflection data into a higher quality ZO section and, in turn, provide more attributes
useful for a broader variety of inversion problems than the standard stacking velocity alone. As
the NMO travel-time approximation assumes all traces have the same midpoint, the number
of traces used for its computation is dictated by the number of traces sharing the same
midpoint. Conversely, when computing the CRS stack, not only traces belonging to the
same CMP but also traces from nearby CMP gathers are used, which leads to a stacked
image with an even higher SNR. Therefore, one super-gather is arranged at each central
midpoint m0 and contains those traces whose midpoints m are within the maximum aperture
md,max = mmax −m0 defined for that stacking surface.

In CRS, the final ZO section is the result of summing the amplitudes of moveout corrected
prestack data. This travel-time correction is given by a second-order hyperbolic approxima-
tion (stacking surface) described by 8 kinematic attributes in 3D or 3 in 2D and defined as
a function of midpoint and half-offset coordinates, as illustrated in Figure 6-1. According

August 10, 2018

44 Application onto a synthetic 2D CRS demo

Figure 6-1: CRS stacking surface with md,max = 0.75(km) at a fixed point P0 = (m0, t0) of
the ZO section, as a function of half-offset h and midpoint m coordinates. The solid
black curves highlights common-offset traces and dashed curves traces with a CMP.

to the model-space formulation of the travel-time approximation in 2D (Equation 6-2), the
triple of parameters are related to the emergence angle of the normal central ray, β0, and
the radii of wavefront curvatures of the Normal Incidence Point RNIP (Figure 6-2(a)) and
Normal Wave RN (Figure 6-2(b)), respectively. Furthermore, based on its data-space defini-
tion (Equation 6-3), these three parameters are the first- and second-order derivatives of the
travel-time approximation with respect to its midpoint m and half-offset h coordinates, as
expressed in Equation 6-4. The last parameter is of special interest because it is related to
VNMO and then carries information that can be used in subsequent stages of processing as a
preliminary macrovelocity model.

These three parameters have to be defined for each sample in the simulated ZO section,
which is why their simultaneous estimation can become a computational challenge. Then,
the search strategy is to find the best combination of parameters for the super-gather that
result in the ZO section with the maximum semblance. To lighten this burden and facilitate
the convergence towards the global maximum, the lower and upper boundaries of the search
space can be defined based on a priori knowledge of the field. After analyzing the geological
complexity, the boundaries of β0 can be set to define a dip filter of the zone whereas the limits
for RNIP range around the maximum and minimum values of an a priori stacking velocity
model. Finally, as the radius of curvature of the Normal Wave approaches infinite for planar
wavefronts, then to define its boundaries large values are used in practice. Nevertheless, when
no a priori information is available, the search space can also be defined in a fully automated
manner by assuming the extreme cases: −∞ < RN , RNIP < +∞ and −π

2 < β < +π
2 .

August 10, 2018

6-1 The Common Reflection Surface operator 45

(a) Normal Incidence Point wave (b) Normal wave for the exploding reflector at R

Figure 6-2: Hypothetical experiments to define (a)RNIP and (b) RN . The former is the result
of inducing an up-going normal incidence-point (NIP) wave at R whereas the latter
results from a simultaneous excitation of up-going Normal waves along reflector R.

6-1 The Common Reflection Surface operator

The CRS stacking operator is a hyperbolic second-order Taylor approximation that relates
the two-way travel-time of a reflection caused by one source located at xs and recorded by
one receiver at xr, as described in the Equation 6-2 illustrated in Figure 6-1:

t2CRS(h,m) = (t0 +
2sinα

v0
(m−m0))

2 + (
2tccos

2α

v0
)(

(m−m0)

RN
+

h2

RNIP
), (6-2)

where t0 is the two-way travel time of normal incidence from m0 down to the seismic event
of interest, h = xR−xS

2 the half-offset, m = (xR+xS)
2 the midpoint between source and receiver

positions and m0 its central midpoint. Note that Equation 6-2 is a valid approximation as
long as neither h nor (m−md) are too big.

Although this model-space definition is more intuitive and descriptive, when estimating the
parameters it is more convenient to use the data-space definition:

t2CRS(m,h) = (t0 +A(m−m0))
2 +B(m−m0)

2 + Ch2, (6-3)

where the parameters A, B and C are its first and second order derivatives [Waldeland et al.,
2017], as follows:

A =
∂t

∂m

∣∣∣∣
m=m0
h=0

,

B = t0
∂2t

∂m2

∣∣∣∣
m=m0
h=0

,

C = t0
∂2t

∂2h

∣∣∣∣
m=m0
h=0

.

(6-4)

August 10, 2018

46 Application onto a synthetic 2D CRS demo

To ease notation, Equation 6-3 can also be written as:

t2CRS(h,md) = (t0 +Amd)
2 +Bm2

d + Ch2, (6-5)

where md = m−m0 is the aperture of the stacking surface, i.e. difference between the trace
midpoint m and the central midpoint m0.

From Equation 6-5 it is straightforward to see that tNMO is an special case when only traces
whose midpoint is the central midpoint itself (m = m0) are used, i.e. when the maximum
aperture of the super-gather is zero (observe the thickest dashed line of Figure 6-1):

t2CRS(h, 0) = tNMO = (t0)
2 + Ch2. (6-6)

After the move-out correction is performed, the process to create the final ZO section is the
same as CMP stacking.

6-2 Common Reflection Surface Demo

6-2-1 Synthetic dataset

The model parameters used to simulate the synthetic CMP gathers are summarized in Table 6-
1 and the velocity and density models are shown in Figures 6-3(a) and 6-3(b), respectively.
The subsurface model accommodated one anomaly to make this demo more challenging.
Furthermore, to illustrate the power of CRS, Gaussian noise was added to our simulated
data. The first noise-contaminated data set has a SNR equal to 3 and the second one equal
to 1.

Data generation

Acoustic wave propagation is simulated via the finite difference method ((2, 4) scheme, i.e.
2nd order in time, 4th order in space) using first-order equations. Furthermore, Perfectly
Matched Layer (PML) absorbing boundary condition is applied at all sides of the model in
order to neglect edge reflections. After the data were generated, a heavy pre-processing stage
was done prior to optimization. This pre-processing was aimed at reducing the computational
burden of CRS alignment and stacking. As a result, for the data set we work on, only 373
CMP gathers with a constant fold equal to 51 were selected.

In our demo the maximum aperture was set to md,max = 50(m). Therefore, to build each
super-gather at every CMP, four additional CMPs were used on either side. To illustrate
this, the super-gathers built at the CMP No. 187, located right in the middle of the section,
for the data sets with SNR = 3 and SNR = 1 are shown in Figures 6-4(a) and 6-4(b),
respectively. Furthermore, to better understand the fitting of the seismic data with the
stacking surface shown in Figure 6-1, the same super-gather (for the SNR = 3 data set) is
arranged accordingly and shown in Figure 6-5. Last but not least, it is worthwhile mentioning
that, as these extra CMP gathers are not available at the boundaries, and we strive to keep
the symmetry and consistency of the problem in the whole data set, no super-gathers were
built at the first and last four CMPs, being these locations also excluded from the final CRS
stack image. Therefore, a total of 365 super-gathers were built from CMP number 5 to 369.

August 10, 2018

6-2 Common Reflection Surface Demo 47

Item Data set 1 Data set 2

Sampling rate 4 (ms) 4 (ms)
Record length 2 (s) 2 (s)
X dimension 6 (km) 6 (km)
Z dimension 2.5 (km) 2.5 (km)
Receivers Interval 12.5 (m) 12.5 (m)
Sources Interval 12.5 (m) 12.5 (m)
Source Wavelet type Ricker Ricker
Dominant Frequency 17.5 (Hz) 17.5 (Hz)
Maximum Frequency 60 (Hz) 60 (Hz)
Total number of CMP 475 475
Number of CMP gathers used 373 373
Total number of super-gathers 365 365
CMP interval 12.5 (m) 12.5 (m)
Fold 51 51
SNR 3 1

Table 6-1: Parameters of the synthetic data sets built for the CRS demo.

(a) Velocity model (b) Density model

Figure 6-3: (a) Velocity and (b) Density models of the subsurface. Notice the low velocity and
density anomaly in the subsurface.

August 10, 2018

(a) Data set 1: SNR = 3.

(b) Data set 2: SNR = 1.

Figure 6-4: Re-sorted data set: individual CMP gathers are plotted next to each other in 2D for the two synthetic data sets with a) SNR = 3
and b) SNR = 1. Observe that the maximum aperture is 50 (m) and thus, to construct the super-gather No. 187 (in full color),
4 more CMP gathers were used at each side of the central midpoint of interest (CMPx = 3000(m)).

Figure 6-5: Super-gather built for the CMP No 187, located right in the middle of the section, of the noisy data set with SNR = 3.

50 Application onto a synthetic 2D CRS demo

6-2-2 CRS parameters estimation

Even though the computational complexity of a global search is significantly increased com-
pared to the pragmatic search proposed by Mann et al. [1999]; Jäger et al. [2001] and Walde-
land et al. [2017], where the three parameters are searched for sequentially, and the propaga-
tion of the errors obtained after every step compromises the accuracy of the CRS attributes
and subsequently the quality of the final ZO section. In a pragmatic search, the attributes are
determined individually in a three-steps single-parameter search procedure. For this reason,
in this work we propose using our eGA to do a global optimization on the coherence-based
objective function of Equation 6-5, by simultaneously determining the three CRS parameters
in a single search procedure.

As aforementioned, the CRS parameters have to be estimated for every t0 and m0 such
as those for which the amplitude of all seismic traces fitting the stacking surface are the
most coherent. If so, all of the traces within tCRS(h,m) should ideally refer to the same
seismic event. However, considering the dimensions of our original data set, accomplishing this
optimization for every (t0,m0) point of the seismic section can become computationally very
expensive. For this reason, based on a-prior knowledge, the first 700(ms) (or 170 samples)
containing the water layer were neglected from the 2(s) (or 500 samples) of recording, as
there are no seismic events. Then, in the 330 samples left, only 8 representative samples
or nodes (separated every 50 samples along the time dimension) were anchored, which after
the optimization procedure, were linearly interpolated to have dense CRS parameters at each
(t0,m0) point.

In summary, our optimization problem narrows down to estimating 8 CRS triples for each
of the 365 super-gathers cautiously built. To this end, real-valued chromosomes, containing
the 24 CRS attributes, were defined as candidate solutions, with each gene represented with
float numbers; the optimization process was repeated 365 times for each super-gather. On
the other hand, as no a-prior information was available, there was no guide to restrict the
search space. Then, a trial-and-error preliminary search was conducted, where a wide range
of possible boundaries were tried until the most plausible solution ranges were found within
a reasonable time framework. Finally, it is worth mentioning that, considering the physical
meaning of C in Equation 6-2, i.e. proportional to inverse of the squared VNMO, it was
constrained to be a decreasing function of time.

6-3 Results

In this section we present some results that further validate the improved convergence speed
of our eGA when applied to the CRS global optimization problem on true synthetic noisy
data sets. To do so, first, the aGA is allowed to run a maximum number of tmax = 100
iterations and, as the true solution is unknown, its result is assumed to be our target solution.
Then, our eGA is run for 30 iterations or until the difference between our and the target
fitness is less than 3%. As a result our eGA finished its job approximately in half the time
used by the aGA, with the workstation running in parallel at full capacity.

The final CRS stack image after the optimization is done on the noisy data with SNR = 3,
using both aGA and eGA are shown in Figures 6-6(a) and 6-6(b), respectively. It can be

August 10, 2018

6-4 Summary 51

seen in these figures that both algorithms produce high quality ZO sections with very good
continuity of the seismic events. However, it deserves pointing out that due to the way our
synthetic data was pre-processed, i.e. only near-offset traces are available, after the CRS
optimization, one internal multiple event (red dashed box) was also aligned and became
visible. We believe that if further offset traces were included in the data set, this event should
be stacked out.

Additionally, the CMP gathers located at the extremes of the section (CMP No. 1 and 373)
are illustrated in Figure 6-7. In these figures it is straightforward to see that the original
CMP gathers, shown in Figures 6-7(a) and 6-7(b), were almost perfectly aligned after the
optimization by aGA (Figures 6-7(c)) and 6-7(d)) and eGA (Figures 6-7(e)) and 6-7(f))).

The same process was repeated for the noisy data set with SNR = 1, shown in 6-4(b),
and the ZO sections obtained using aGA and eGA, are shown in Figures 6-8(a) and 6-8(b),
respectively. As observed, due to the complexity added by the noise, the continuity of the
seismic events is not as good as in the previous data set. In particular, this undesired effect is
more notorious in curved reflectors, like the ones encircled by the white dashed lines. However,
keeping in mind the low SNR of this data set, the overall quality of the final CMP stack image
proves the real power of CRS stacking. Furthermore, once again, the original CMP gathers
shown in Figures 6-9(a) and 6-9(b), were also almost perfectly aligned after the optimization
by aGA (Figures 6-9(c)) and 6-9(d)) and eGA (Figures 6-9(e)) and 6-9(f))).

Finally, the CRS attributes A, B and C, in Equation 6-5, retrieved with both GAs, for the
CMP No. 163, are shown in Figure 6-10. As it can be observed, the results obtained by
our eGA (red circles) closely follow those obtained by the aGA (blue crosses), except for the
attribute B that is slightly deviated in both data sets. However, in spite of the different noise
levels, the C attribute, which is of most interest, is consistent in both cases for every data
set.

6-4 Summary

The aGA was applied to solve the 2D CRS stacking optimization problem in a single-search
procedure, i.e. simultaneously determining the three CRS attributes and its solution was
used as our target solution. Later the eGA was challenged to reach that target solution by a
difference of up to 3% in less number of iterations and the results are promising.

August 10, 2018

52 Application onto a synthetic 2D CRS demo

(a) optimization by aGA

(b) optimization by eGA

Figure 6-6: CRS stack images after optimization by a) aGA and b) eGA of the noisy CMP
gathers with SNR = 3.

August 10, 2018

6-4 Summary 53

(a) CMP No. 1 (b) CMP No. 373

(c) CMP No. 1 (d) CMP No. 373

(e) CMP No. 1 (f) CMP No. 373

Figure 6-7: First (left) and Last (right) CMP gathers of the noisy data set with SNR = 3, (a,b)
before and after optimization using (c,d) aGA and (e,f) eGA .

August 10, 2018

54 Application onto a synthetic 2D CRS demo

(a) optimization by aGA

(b) optimization by eGA

Figure 6-8: CRS stack images after optimization by a) aGA and b) eGA of the noisy CMP
gathers with SNR = 1.

August 10, 2018

6-4 Summary 55

(a) CMP No. 1 (b) CMP No. 373

(c) CMP No. 1 (d) CMP No. 373

(e) CMP No. 1 (f) CMP No. 373

Figure 6-9: First (left) and Last (right) CMP gathers of the noisy data set with SNR = 1, (a,b)
before and after optimization using (c,d) aGA and (e,f) eGA.

August 10, 2018

56 Application onto a synthetic 2D CRS demo

(a) CRS attributes 1) A, 2) B and 3) C in Equation 6-5, optimized with the aGA (blue
crosses) and the eGA (red circles).

(b) CRS attributes 1) A, 2) B and 3) C in Equation 6-5, optimized with the aGA (blue
crosses) and the eGA (red circles).

Figure 6-10: Comparison of the CRS attributes obtained at CMP No. 163 for the noisy data
sets with a) SNR = 3 and b) SNR = 1.

August 10, 2018

Chapter 7

Discussion and Conclusions

7-1 Discussion

It is imperative to conclude this research work reminding the reader that, based on the No
Free Lunch (NFL) theorem, the generalisability of the performance of the eGA, with the
parameters here used, on any class of problems is statistically not possible. However, once
again, we reaffirm that the improvements achieved with these parameters are instead the
result of a timely application of the components proposed in this thesis that simultaneously
improved both local and global searches when it was possible.

For the receiver-side statics correction demo, the synthetic data set was constructed from a
known set of parameters and statics and the eGA was used to retrieve those time-shifts back,
in a data-driven fashion. In doing so, it was key to add appropriate levels of random noise to
the data in order to challenge its performance. As a result, the eGA successfully found the
statics introduced in the three scenarios presented. However, given the limited time range
of this thesis, no formal tests were performed on field data and, as future wok, we propose
its application onto real complex structures where, e.g. the statics variation range prevents
using conventional cross-correlation based methods due to cycle skipping.

For the CRS stacking demo, only a small subset was actually used for the optimization
procedure for two reasons. First of all, to overcome the hurdle of excessive computation time
due to CRS stacking calculation being computationally heavy. The second reason was its
easiness of implementation. Using CMP gathers containing only short offset traces helped
us to avoid handling stretching effects caused during move-out correction; it also allowed us
to better meet the CRS approximation adopted for the moveout correction. However, the
disadvantage of this choice is the internal multiple information that is wrongly handled and
results in a false dipping event in the final CMP stack image.

August 10, 2018

58 Discussion and Conclusions

7-2 Conclusions

The main conclusions of this thesis are:

• This thesis presents an enhanced Genetic Algorithm, which takes advantage of the col-
laborative evolution of multiple populations communicating from time to time between
them to transfer fitter solutions to their neighbors in order to accelerate their evolution
process by increasing the overall diversity. Besides, conversely to the aGA, our eGA
is also equipped with an advanced local search scheme, the Self Adaptive Differential
Evolution- based fine tuning, which further improves its local search capability compared
to the aGA.

• The improved performance of the eGA has been demonstrated after using it to optimize
three challenging multi-modal test functions, where the convergence speed was improved
greatly compared to the eGA. Furthermore, it has also been successfully applied onto
two non-linear geophysical problems: static correction and CRS stacking optimization,
where promising results are obtained.

• The success of the eGA is sensitive to the frequency of application of the SADE fine
tuning scheme, the number of islands used and the frequency of communication between
them. The fine tuning mechanism can quickly lead to the global optimum only if it is
applied at a mature stage of the evolution, meaning that it has to be applied cautiously
keeping a good trade-off between both local and global search capabilities. Furthermore,
the number of islands used is a selection of the fitness function complexity and the
number of dimensions to be optimized for, and its frequency of communication is a way
to control the exhaustion of the extra diversity achieved.

August 10, 2018

Appendix A

In this Appendix, the pseudocode of the Greedy Back and Forth Coordinate Descent local
search is provided, as mentioned in chapter 5.

60

Algorithm 1 Pseudocode for Greedy BFCD

Input: chromosomein, fitnessin, LOW,HIGH
Output: chromosomeout, fitnessout

1: n← length(chromosomein)
2: Sentinelinit ← 1
3: chromosometmp ← chromosomein
4: n← length(chromosomein)
5: while StopConditionNotMet() do
6: sentinelcurr ← sentinelinit
7: for i← sentinelcurr to n do
8: for j = LOW (i) to HIGH(i) do
9: chromosometmp[i]← j

10: fitnesstmp ← Fitness(chromosometmp)
11: if fitnesstmp > fitnessout then
12: sentinelinit ← i
13: fitnessout ← fitnesstmp
14: chromosomeout ← chromosometmp
15: end if
16: end for
17: end for
18: if sentinelcurr == sentinelinit then
19: break
20: end if
21: sentinelcurr ← sentinelinit
22: for i← sentinelcurr to 1 do
23: for j = LOW (i) to HIGH(i) do
24: chromosometmp[i]← j
25: fitnesstmp ← Fitness(chromosometmp)
26: if fitnesstmp > fitnessout then
27: sentinelinit ← i
28: fitnessout ← fitnesstmp
29: chromosomeout ← chromosometmp
30: end if
31: end for
32: end for
33: if sentinelcurr == sentinelinit then
34: break
35: end if
36: end while

August 10, 2018

Acknowledgements

. To the only ones deserving all my achievements: ¡papá y mamá!

First of all, I would like to start thanking Shell for fully sponsoring this dream come true!
I would also like to thank all the people who have contributed to my thesis. My deepest grat-
itude to Yimin Sun for his guidance, constructive comments, and many hours of inspirational
discussions and to Guy Drijkoningen for his very useful suggestions.

A big thanks to my colleagues in Aramco Overseas Company: Hannes Kutscha, Janny Prins,
Rolf Baardman, Rob Hegge, Apostolos Kontakis, Yoo Jewoo and Roald van Borselen, for their
support, motivational talks, laughs and, in general, the great working environment. Finally,
I could not finish without stressing my gratitude to Roald van Borselen and Yimin Sun for
allowing me the opportunity to conduct this research in cooperation with AOC.

Delft University of Technology Yenni Paloma Villa Acuna
Swiss Federal Institute of Technology in Zurich August 10, 2018
RWTH Aachen University

August 10, 2018

62 Acknowledgements

August 10, 2018

Bibliography

Barros, T., Ferrari, R., Krummenauer, R., and Lopes, R. (2015). Differential evolution-
based optimization procedure for automatic estimation of the common-reflection surface
traveltime parametersevolutionary-based CRS method. Geophysics, 80(6):WD189–WD200.

Berryhill, J. R. (1984). Wave-equation datuming before stack. Geophysics, 49(11):2064–2066.

Bevc, D. (1997). Flooding the topography: Wave-equation datuming of land data with rugged
acquisition topography. Geophysics, 62(5):1558–1569.

Biazzini, M., Bánhelyi, B., Montresor, A., and Jelasity, M. (2009). Distributed hyper-
heuristics for real parameter optimization. In Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation, pages 1339–1346. ACM.

Brownlee, J. (2011). Clever algorithms: nature-inspired programming recipes. Jason Brownlee.

Chinnasri, W., Krootjohn, S., and Sureerattanan, N. (2012). Performance comparison of ge-
netic algorithm’s crossover operators on university course timetabling problem. In Comput-
ing Technology and Information Management (ICCM), 2012 8th International Conference
on, volume 2, pages 781–786. IEEE.

Cox, M. J., Scherrer, E. F., and Chen, R. (1999). Static corrections for seismic reflection
surveys, volume 9. Society of Exploration Geophysicists Tulsa.

Douma, H., Haney, M., et al. (2011). Surface-wave inversion for near-surface shear-wave
velocity estimation at coronation field. In 2011 SEG Annual Meeting. Society of Exploration
Geophysicists.

Duret, F., Bertin, F., Garceran, K., Sternfels, R., Bardainne, T., Deladerriere, N., and
Le Meur, D. (2016). Near-surface velocity modeling using a combined inversion of sur-
face and refracted p-waves. The Leading Edge, 35(11):946–951.

Eshelman, L. J. and Schaffer, J. D. (1993). Real-coded genetic algorithms and interval-
schemata. In Foundations of genetic algorithms, volume 2, pages 187–202. Elsevier.

August 10, 2018

64 Bibliography

Gallagher, K., Sambridge, M., and Drijkoningen, G. (1991). Genetic algorithms: An evolu-
tion from monte carlo methods for strongly non-linear geophysical optimization problems.
Geophysical Research Letters, 18(12):2177–2180.

Gomes, C. P. and Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126(1-
2):43–62.

Gong, Y. and Fukunaga, A. (2011). Distributed island-model genetic algorithms using het-
erogeneous parameter settings. In Evolutionary Computation (CEC), 2011 IEEE Congress
on, pages 820–827. IEEE.

Harik, G. R. and Lobo, F. G. (1999). A parameter-less genetic algorithm. In Proceedings
of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 1, pages
258–265. Morgan Kaufmann Publishers Inc.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: The Univer-
sity of Michigan press.

Jäger, R. (1999). The common reflection surface stack: theory and application. Master’s
thesis, Hamburg, University Karlsruhe.

Jäger, R., Mann, J., Höcht, G., and Hubral, P. (2001). Common-reflection-surface stack:
Image and attributes. Geophysics, 66(1):97–109.

Jones, I. F. (2012). Tutorial: Incorporating near-surface velocity anomalies in pre-stack depth
migration models. First Break, 30(3):47–58.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE International
Conference on Neural Networks. Proceedings.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598):671–680.

Koglin, I., Mann, J., and Heilmann, Z. (2006). CRS-stack-based residual static correction.
Geophysical Prospecting, 54(6):697–707.

Liu, Z., Zhang, J., et al. (2013). Elastic full waveform inversion for near surface imaging in
cmp domain. In 2013 SEG Annual Meeting. Society of Exploration Geophysicists.

Maniezzo, A. (1992). Distributed optimization by ant colonies. In Toward a Practice of
Autonomous Systems: Proceedings of the First European Conference on Artificial Life,
page 134. MIT Press.

Mann, J., Jäger, R., Müller, T., Höcht, G., and Hubral, P. (1999). Common-reflection-surface
stacka real data example. Journal of Applied Geophysics, 42(3-4):301–318.

Minato, S., Tsuji, T., Matsuoka, T., Nishizaka, N., and Ikeda, M. (2012). Global optimisation
by simulated annealing for common reflection surface stacking and its application to low-
fold marine data in southwest japan. Exploration Geophysics, 43(2):59–69.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

August 10, 2018

Bibliography 65

Müller, T. (1998). Common reflection surface stack versus nmo/stack and nmo/dmo stack.
In 60th EAGE Conference and Exhibition.

Nocedal, J. and Wright, S. J. (1999). Springer series in operations research. numerical opti-
mization.

Reshef, M. (1991). Depth migration from irregular surfaces with depth extrapolation methods.
Geophysics, 56(1):119–122.

Ronen, J. and Claerbout, J. F. (1985). Surface-consistent residual statics estimation by stack-
power maximization. Geophysics, 50(12):2759–2767.

Selvi, R. M. and Rajaram, R. (2007). Performance study of mutation operator in genetic
algorithms on anticipatory scheduling. In Conference on Computational Intelligence and
Multimedia Applications, 2007. International Conference on, volume 1, pages 511–518.
IEEE.

Shtivelman, V. and Canning, A. (1988). Datum correction by wave-equation extrapolation.
Geophysics, 53(10):1311–1322.

Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359.

Sun, Y., Tonellot, T., Kamel, B., and Bakulin, A. (2016). A 2D automatic converted-wave
static-correction algorithm. The Leading Edge, 35(3):280–284.

Sun, Y., Tonellot, T., Kamel, B., and Bakulin, A. (2017). A two-phase automatic static
correction method. Geophysical Prospecting, 65(3):711–723.

Sun, Y. and Verschuur, D. (2012). Solution to the 3D complex near surface problem by esti-
mation of propagation operators. In 74th EAGE Conference and Exhibition incorporating
EUROPEC 2012.

Sun, Y. and Verschuur, D. J. E. (2014). A self-adjustable input genetic algorithm for the
near-surface problem in geophysics. IEEE Transactions on Evolutionary Computation,
18(3):309–325.

Sun, Y., Verschuur, E., and Vrolijk, J. W. (2014). Solving the complex near-surface problem
using 3d data-driven near-surface layer replacement. Geophysical Prospecting, 62(3):491–
506.

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the Turing Test,
pages 23–65. Springer.

Valenzano, R. A., Sturtevant, N., Schaeffer, J., Buro, K., and Kishimoto, A. (2010). Simulta-
neously searching with multiple settings: An alternative to parameter tuning for suboptimal
single-agent search algorithms. In Third Annual Symposium on Combinatorial Search.

Von Neumann, J. (2012). The computer and the brain. Yale University Press.

Vrolijk, J.-W., Haffinger, P., and Verschuur, E. (2012). Multi-datum based estimation of near-
surface full-waveform redatuming operators. Journal of Applied Geophysics, 82:30–45.

August 10, 2018

66 Bibliography

Walda, J. and Gajewski, D. (2015). Global optimization of the CRS operator using a genetic
algorithm. In 77th EAGE Conference and Exhibition 2015.

Waldeland, A. U., Zhao, H., Faccipieri, J. H., Schistad Solberg, A. H., and Gelius, L.-J. (2017).
Fast and robust common-reflection-surface parameter estimation. Geophysics, 83(1):O1–
O13.

Whitley, D., Rana, S., and Heckendorn, R. B. (1999). The island model genetic algorithm:
On separability, population size and convergence. Journal of Computing and Information
Technology, 7(1):33–47.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
transactions on Evolutionary Computation, 1(1):67–82.

August 10, 2018

	Abstract
	Introduction
	Seismic Exploration
	Literature Review
	Static correction
	Commom Reflection Surface Technology
	Genetic Algorithms

	Thesis Outline

	An advanced Genetic Algorithm (aGA)
	Evolution scheme
	Initialization
	Elitism
	Parent selection
	Crossover Operator
	Mutation Operator
	Periodic Boundary Condition (PBC)

	Beating the Premature Condition
	Stopping criteria
	Workflow of the aGA
	Definition of parameters

	An enhanced Genetic Algorithm (eGA)
	Features of the eGA
	Randomized Islands Model
	Self Adaptive Differential Evolution (SADE) fine tuning search

	Workflow of the eGA
	Definition of parameters

	Application onto multi-modal test functions
	Benchmark Functions
	Particle Swarm Optimization (PSO)
	Experimental Results
	Comparison against PSO
	Comparison against aGA

	Summary

	Application onto a synthetic 2D static correction demo
	Definition of the fitness function
	Synthetic data set
	Convergence condition

	Results
	Summary

	Application onto a synthetic 2D CRS demo
	The Common Reflection Surface operator
	Common Reflection Surface Demo
	Synthetic dataset
	Data generation

	CRS parameters estimation

	Results
	Summary

	Discussion and Conclusions
	Discussion
	Conclusions

	
	Acknowledgements
	Bibliography

