
 
 

Delft University of Technology

Test Code Quality and Its Relation to Issue Handling Performance

Athanasiou, Dimitrios; Nugroho, Ariadi; Visser, Joost; Zaidman, Andy

DOI
10.1109/TSE.2014.2342227
Publication date
2014
Document Version
Submitted manuscript
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Athanasiou, D., Nugroho, A., Visser, J., & Zaidman, A. (2014). Test Code Quality and Its Relation to Issue
Handling Performance. IEEE Transactions on Software Engineering, 40(11), 1100-1125.
https://doi.org/10.1109/TSE.2014.2342227

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2014.2342227
https://doi.org/10.1109/TSE.2014.2342227


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 1

Test Code Quality and Its Relation to Issue
Handling Performance

Dimitrios Athanasiou, Ariadi Nugroho Member, IEEE , Joost Visser Member, IEEE Computer Society and Andy
Zaidman Member, IEEE Computer Society

Abstract—Automated testing is a basic principle of agile development. Its benefits include early defect detection, defect cause localization and
removal of fear to apply changes to the code. Therefore, maintaining high quality test code is essential. This study introduces a model that
assesses test code quality by combining source code metrics that reflect three main aspects of test code quality: completeness, effectiveness
and maintainability. The model is inspired by the Software Quality Model of the Software Improvement Group which aggregates source code
metrics into quality ratings based on benchmarking. To validate the model we assess the relation between test code quality, as measured by
the model, and issue handling performance. An experiment is conducted in which the test code quality model is applied to 18 open source
systems. The test quality ratings are tested for correlation with issue handling indicators, which are obtained by mining issue repositories. In
particular, we study the (1) defect resolution speed, (2) throughput and (3) productivity issue handling metrics. The results reveal a significant
positive correlation between test code quality and two out of the three issue handling metrics (throughput and productivity), indicating that good
test code quality positively influences issue handling performance.

Index Terms—Testing, Defects, Bugs, Metrics, Measurement.

F

1 INTRODUCTION

Software testing is well established as an essential part of
the software development process and as a quality assur-
ance technique widely used in industry [1]. Furthermore,
literature suggests that 30 to 50% of a project’s effort is
consumed by testing [2]. Developer testing (a developer
test is “a codified unit or integration test written by devel-
opers” [3]) in particular, has risen to be an efficient method
to detect defects early in the development process [4]. In the
form of unit testing, its popularity has been increasing as
more programming languages are supported by unit testing
frameworks (e.g., JUnit, NUnit, etc.).

The main goal of testing is the detection of defects.
Developer testing adds to this the ability to point out where
the defect occurs [5]. The extent to which detection of
the cause of defects is possible depends on the quality of
the test suite. In addition, Beck explains how developer
testing can be used to increase confidence in applying
changes to the code without causing parts of the system
to break [6]. This extends the benefits of testing to include
faster implementation of new features or refactorings. Con-
sequently, it is reasonable to expect that there is a relation

• D. Athanasiou and A. Nugroho are with the Software Improvement
Group, Amstelplein 1, 1096HA Amsterdam, The Netherlands.
E-mail: dmitri.athanasiou@gmail.com, ariadi.nugroho@computer.org.

• J. Visser is with the Software Improvement Group, Amstelplein 1,
1096HA Amsterdam, The Netherlands and the Model-Based Software
Development Group, Radboud University Nijmegen, Heijendaalseweg
135, 6525 AJ Nijmegen, The Netherlands.
E-mail: j.visser@sig.eu.

• A. Zaidman is with the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, Mekelweg 4,
2628CD Delft, The Netherlands.
E-mail: a.e.zaidman@tudelft.nl.

between the quality of the test code of a software system
and the development team’s performance in fixing defects
and implementing new features.

Therefore, in this study we investigate the existence of
such a relation to provide empirical evidence of the value
of testing. In particular, we hypothesize that the higher the
quality of the test code of a software system, the higher the
development team’s performance in handling issues, i.e.,
fixing defects and implementing new features goes faster.

To evaluate the aforementioned hypothesis, we formulate
the following research questions:

RQ1 How can we evaluate the quality of test code?
RQ2 How effective is the developed test code quality

model as an indicator of issue handling perfor-
mance?

The assessment of test code quality is an open chal-
lenge [1]. Monitoring the quality of a system’s test code
can provide valuable feedback to the developers’ effort
to maintain high quality assurance standards. Several test
adequacy criteria have been suggested for this purpose [7].
The applicability of some of these criteria is limited since,
for instance, some of them are computationally too expen-
sive. A combination of criteria that provides a model for
measuring test code quality is desirable and the target of
exploration within the scope of this study. In this paper
we propose a test code quality model that is inspired by
the Software Improvement Group (SIG)1 quality model [8].
The model that we propose is solely based on source
code metrics and does not require any other sources of
information; in the proposed model test code quality has
three dimensions, namely completeness, effectiveness, and

1. For more information, visit http://www.sig.eu



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 2

maintainability. Several test adequacy criteria are then de-
fined to assess those dimensions at the test code level.

To measure the issue handling performance of software
development teams, Issue Tracking Systems (ITSs) can be
mined. We expect that defect resolution time for a software
system is reflected in its associated ITS as previous work
suggests [9], [10], [11], [12], [13]. In addition, further in-
dicators of issue handling performance, such as throughput
and productivity, can be derived by studying ITS data as
shown in [14]. Similar to [15], in this paper we measure
issue handling performance as the speed of fixing issues.

The rest of this paper is structured as follows: we
first provide some necessary background information in
Section 2. Subsequently, we build our test code quality
model in Section 3. In Section 4 we describe a case study to
determine the alignment of our test code quality model with
the opinion of experts. Section 5 explains the design of our
study and Section 6 details the correlation study. Threats
to validity are identified and discussed in Section 7, while
related work is presented in Section 8. Section 9 concludes
and identifies future research opportunities.

2 BACKGROUND

Providing answers to the study’s research questions requires
knowledge foundations on the topics involved, namely: test
code quality, issue handling and the Software Improvement
Group (SIG) quality model. This section summarizes the
existing literature related to these topics.

2.1 Test Code Quality

What makes a good test? How can we measure the quality
of a test suite? Which are the indicators of test effec-
tiveness? Answers to these questions have been sought
by software and reliability engineering researchers for
decades. However, defining test effectiveness remains an
open challenge [1]. Zhu et al. [7] provide an overview of
test adequacy criteria up to 1997. We now provide a brief
overview of the state of the art by looking at the work of
Zhu et al. and complementing it with more recent research.

The main role of test adequacy criteria is to assist
software testers to monitor the quality of software in a
better way by ensuring that sufficient testing is performed.
In addition, redundant and unnecessary tests are avoided,
thus contributing to controlling the cost of testing [7], [16].

We follow the classification of test adequacy criteria
as proposed by Zhu et al. [7]. We distinguish program-
based criteria, which assess testing of the production code,
and specification-based criteria, which assess testing of the
specifications of a software project. Specification testing
is not in the scope of this study because it depends on
specification languages while we aim at assessing the
quality of test code. Program-based test adequacy criteria
can be subdivided into categories for structural testing
(Section 2.1.1), fault-based testing (Section 2.1.2) and
error-based testing (Section 2.1.3). Other concepts (e.g.,
assertions, test smells, etc.) that can be used to measure
test code quality will be discussed in Section 2.1.4

2.1.1 Structural Testing Adequacy Criteria

This category consists of test criteria that focus on mea-
suring the coverage of the test suite upon the structural
elements of the program. These criteria can be further split
between control-flow criteria and data-flow criteria. They
are mostly based on analysis of the flow graph model of
program structure.

Control-flow criteria are concerned with increasing the
coverage of the elements of the graph as much as possible.
Different criteria assess coverage in a different scope: state-
ment coverage, branch coverage or path coverage. Based
on these criteria, metrics can be derived to measure the
quality of the test code. Important work in this area is by
Hetzel [17], Gourlay [18], Howden [19], Bently et al. [20],
Myer [21] and Woodward et al. [22].

Data-flow criteria are concerned with analysing whether
paths associating definitions of variables to their uses are
tested. Research in this area was performed by Frankl and
Weyuker [23], Rapps and Weyuker [24], Ntafos [25], Clarke
et al. [26] and Laski and Korel [27].

In addition, efforts have been made to combine both of
the aforementioned criteria [28].

2.1.2 Fault-based Testing Adequacy Criteria

Criteria that fall inside this category focus on measuring the
defect detection ability of a test suite. Error seeding and
mutation analysis are the main approaches to fault-based
test adequacy criteria. These techniques can be applied to
acquire test effectiveness indicators. Error seeding is the
technique of planting artificial errors in a software system
and subsequently testing the system against these artificial
errors and counting the successfully detected ones [29].
Mutation analysis, is a more systematic way of performing
error seeding [30], [31].

2.1.3 Error-based Testing Adequacy Criteria

This category of test criteria focuses on measuring to what
extent the error-prone points of a program (as derived from
the current knowledge level, e.g., our knowledge about
how programs typically depart from their specifications) are
tested [7]. To identify error-prone points, a domain analysis
of a program’s input space is necessary [7]. Relevant work
in this area is presented by White and Cohen [32], Clarke et
al. [33], Afifi et al. [34] and Howden [35]. Unfortunately,
the application of error-based testing is limited when the
complexity of the input space is high or when the input
space is non-numerical [7].

2.1.4 Assertions and Test Code Smells

In addition to the criteria discussed in previous sections,
researchers have also developed other indicators of the
quality of test code.

Assertions: Kudrjavets et al. [36] defined assertion
density as the number of assertions per thousand lines
of code and showed that there is a negative correlation
between assertion density and fault density. Voas [37]
researched how assertions can increase the test effectiveness



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 3

by increasing the error propagation between the compo-
nents of object oriented systems, so that the errors are
detected more easily. Assertions are the key points of test
cases at which something is actually tested, therefore, it is
reasonable to expect assertion density to be an indicator of
the effectiveness of the tests.

Maintainability: Test code has similar requirements
for maintenance as production code. It is important to
ensure that it is clear to read and understand, to ease its
modification. Moreover, integrating the execution of the
tests in the development process requires that the tests are
run efficiently. Thus, the need for test code refactoring is
obvious. To detect possible points of low quality in the
test code that require refactoring, van Deursen et al. [38]
introduced test smells. Meszaros [5] extended the test smell
catalogue, while Reichart et al. [39] and Van Rompaey
et al. [40] worked towards automated test smell detection.
Greiler et al. present strategies for avoiding test smells [41].

2.2 Issue Handling

2.2.1 Issue Tracking Systems and the Life-Cycle of an Issue

ITSs are software systems used to track defects as well
as enhancements or other types of issues, such as patches
or tasks. ITSs are commonly used [42] and they enable
developers to organise the issues of their projects. In this
study, we focus on defects and enhancements.

When defects are discovered or new features are re-
quested, they are typically reported to the ITS. Issues that
are reported follow a specific life-cycle. Even though there
is a variety of implementations of ITSs (e.g., BugZilla2,
Jira3, GitHub4), they all adopt the same general process.

We now briefly describe the life-cycle of an issue re-
port [43]. Initially, the report is formed and submitted as
an unconfirmed issue. After it is checked whether the issue
has already been reported or the report is not valid, the issue
status is changed to new. The next step is to assign the issue
to an appropriate developer, an action which results in the
issue state assigned. Next, the developer will examine the
issue to resolve it. The possible resolutions are:
• Invalid : The issue report is not valid (e.g., not

described well enough to be reproduced).
• Duplicate : The issue has already been reported.
• Fixed : The issue is fixed.
• Won’t fix : The issue will not be fixed (e.g., what the

reporter thought of as a defect is actually a feature).
• Works for me : The issue could not be reproduced.
The issue is marked as resolved and then it is closed,

unless it was a fixed issue. In that case, the correctness of
the fix is checked and if it is confirmed the issue is marked
as verified and then it is deployed, resulting in the status
change to closed. It is possible that the issue will emerge
again in the future. If this occurs, the issue’s state is set to
reopened and part of the process starts again.

2. http://www.bugzilla.org/
3. http://www.atlassian.com/software/jira/
4. http://github.com/

2.2.2 Defect Resolution Time
Defect resolution time is an indicator of the time that is
needed to resolve a defect (enhancements are excluded from
this metric). As previously discussed, high quality testing is
translated into better detection of the cause of defects and
consequently, it is expected to result in the reduction of the
time necessary to resolve a defect (or a lower percentage of
reopenings). However, before this claim can be evaluated,
a representative measurement of the defect resolution time
has to be defined.

Issue resolution is tracked by logging a series of possible
actions. For each action in the ITS that changes the status
of an issue, the date and time are recorded. An arguably
straightforward measurement of the defect resolution time
is to measure the interval between the moment when the
defect was assigned to a developer and the moment it
was marked as resolved. Complicated situations where the
issue is reopened and resolved again can be dealt with by
aggregating the intervals between each assignment and its
corresponding resolution.

In fact, this practice has been followed in most studies
that involve defect resolution time. In particular, Luij-
ten [44] showed that there exists negative correlation be-
tween defect resolution time and the software’s maintain-
ability. Giger et al. [11] worked on a prediction model of the
fix time of bugs, acquiring the fix time from ITSs in the
same way as described above. Nugroho [45] investigated
the correlation between the fixing effort of defects related to
modelled behaviours of functionalities and defects related
to non-modelled behaviours of functionalities.

Ahsan et al. [13] also proposed a bug fix effort esti-
mation model. They obtained the defect resolution time as
described above, but they further normalized the time by
taking into account the total number of assignments of a
developer to defects at a given time.

Different approaches towards measuring the defect res-
olution time follow. Weiss et al. [10] predict the defect
fixing time based on the exact duration of the fix as it
was reported by developers in Jira, an example of an ITS
that allows the specification of the time spent on fixing a
defect. Unfortunately, this has a restricted application either
because of the fact that many projects use a different ITS or
because even when their ITS supports this, few developers
actually supply this information (e.g., In JBoss, which was
used in [10], only 786 out of the 11,185 reported issues
contained effort data).

Finally, Kim et al. [12] obtained the defect-fix time
by calculating the difference between the commit to the
Version Control System (VCS) that solved the defect and
the commit that introduced it: they spot the commit that
solved the defect by mining VCS logs for keywords such as
“fixed”, “bug” or references to the identification number of
the defect report. They identify the commit that introduced
the defect by applying the fix-inducing change identification
algorithm by Sliwerski et al. [46], an approach based on
linking the VCS to the ITS. Bird et al. [47] investigated
the bias in such approaches and concluded that they pose
a serious threat for the validity of the results.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 4

There are many threats to validity for such a measure-
ment, mainly because the information in ITSs is prone
to inaccuracies. For instance, defects that have actually
been resolved, sometimes remain open for a long time.
Furthermore, even though it seems that a defect is being
fixed during a certain time interval, the developer might not
have been working on that issue continuously. Additionally,
there is no information on whether more than one developer
was working on the defect, increasing the actual fixing
effort. Guo et al. noticed that bug reassignments happen
frequently and while these reassignments add to the defect
resolution time, they also observe that reassignments are
not always harmful and are typically beneficial to find the
best person to fix a bug [48].

Additionally, there are a number of factors that influence
the lifetime of bug reports (and thus potentially also the
defect resolution time). Hooimeijer and Weimer [49] report
that easy-to-read issue reports are fixed faster. There are
also a number of factors that influence whether bug reports
are picked up sooner, namely: the presence of attachments,
the presence of stack traces and the inclusion of code
samples. Bettenburg et al.’s conjecture is that developers
are likely to pick up on such cues since this can lessen the
amount of time they have to deal with the bug [50].

2.2.3 Throughput and Productivity

Bijlsma [14] introduced additional indicators of issue han-
dling performance, namely throughput and productivity.
Unless mentioned otherwise, we discuss these measures
at the level of issues and thus comprise both defects and
enhancements. Both measures capture the number of issues
that are resolved in a certain time period, corrected for
respectively the size of the system and the number of
developers working on the system.

When thinking of high quality test code, it seems logical
to assume that developers working on a system benefiting
from having high-quality test code will be able to get more
done, both in terms of fixing defects, but also in terms of
adding new functionality. This reasoning is instigated by
the fact that these high-quality tests will make sure that the
functionality that is not supposed to be changed can easily
and quickly be tested through those tests that are already
in place [51].

Throughput

Throughput measures the total productivity of a team
working on a system in terms of issue resolution.

throughput =
# resolved issues per month

KLOC

The number of resolved issues is averaged per month so
that fluctuations of productivity because of events such as
vacation periods, etc. have less impact. Moreover, to enable
comparison between systems of different size, the number
of resolved issues per month is divided by the volume of
the system in lines of code.

Productivity

Throughput measures how productive the whole team that
works on a system is. However, many other parameters
could be affecting that productivity. One of the parameters
is the number of developers within the team. This is solved
by calculating productivity, the number of resolved issues
per developer. Again the number of resolved issues is
averaged per month so that fluctuations of productivity
because of events such as vacation periods, etc. have less
impact. Productivity is defined as follows:

productivity =
# resolved issues per month

# developers

When the indicator is used in the context of open source
systems, as in this study, the challenge in calculating
productivity is to obtain the number of developers of the
team. In [14] this is performed by mining the VCS of
the system and counting the number of different users that
committed code at least once. However, Mockus et al. [52]
raise the concern that in open source teams, the Pareto
principle applies: 80% of the work is performed by 20%
of the members of the team. This 20% comprises the core
team of the system. This suggests an investigation into the
difference of the productivity indicator when the number of
developers includes the whole team or just the core team.

Unless otherwise mentioned throughput and productivity
are considered at the level of issues, i.e., combining defects
and enhancements.

2.3 The SIG Quality Model

The Software Improvement Group, or SIG, is an
Amsterdam-based consultancy firm specialized in quanti-
tative assessments of software portfolios. It has developed
a model for assessing the maintainability of software [53].
The SIG quality model (SIG QM) defines source code
metrics and maps these metrics to the quality characteristics
of ISO/IEC 9126 [8] that are related to maintainability.

In a first step, source code metrics are used to collect
facts about a software system. The source code metrics
that are used express volume, duplication, unit complex-
ity, unit size, unit interfacing and module coupling. The
measured values are combined and aggregated to provide
information on properties at the level of the entire system.
These system-level properties are then mapped onto the
ISO/IEC 9126 standard quality characteristics that relate
to maintainability, which are: analysability, changeability,
stability and testability. The process described above is also
depicted in Figure 1.

In a second step, after the measurements are obtained
from the source code, the system-level properties are
converted from metric-values into ratings. This conver-
sion is performed through benchmarking and relies on
the database that SIG possesses and curates; the database
contains hundreds of systems that were built using various
technologies [55]. Using this database of systems, the SIG
QM model is calibrated so that the metric values can be



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 5

Volume

Duplication

Unit complexity

Unit size

Unit interfacing

Module coupling

Analysability

Changeability

Stability

Testability

Maintainability

ISO/IEC 9126

system propertiessource code measurements

Fig. 1. The SIG Quality Model maps source code measurements onto ISO/IEC 9126 quality characteristics (image taken
from [54]).

converted into star ratings that reflect the system’s perfor-
mance in comparison with the benchmark. This process
results in a system getting attributed 1 to 5 stars (after
rounding an intermediate score in the range of [0.5 . . .5.5)).

The five levels of quality are defined so that they cor-
respond to a 〈5,30,30,30,5〉 percentage-wise distribution
of the systems in the benchmark. This means that a system
that is rated 5 stars (i.e., top-quality) on a property performs
similarly to the best 5% of the systems in the benchmark
(indicated by the last value in the vector). At the same time,
a 2 star rating means the system performs better than the
5% worst systems (the first value in the vector) and worse
than the 65% best systems (the sum of the 3rd, 4th and 5th
value in the vector) in the benchmark. More information
on this quality model can be found in [53].

While the SIG QM solely takes into account the pro-
duction code, the test quality model that we are proposing
takes into account test code. The test code quality model
will be discussed in more detail in Section 3 and is built
and calibrated in a similar fashion to the SIG QM.

3 BUILDING A TEST CODE QUALITY MODEL

In this section RQ1 is addressed: How can we evaluate
the quality of test code? Using a Goal-Question-Metric
(GQM [56]) approach, we first investigate how test code
quality can be measured and what information is needed
to assess the various aspects of test code. Afterwards,
metrics that are related to each of the identified aspects
are presented. By mapping the metrics to the main aspects
of test code quality, a test code quality model is created and
presented. The model combines the metrics and aggregates
them in a way that extracts useful information for the
technical quality of test code. Finally, the benchmarking
technique is applied to calibrate the model and convert its
metrics into quality ratings.

3.1 Research Questions

To answer the question “how can we evaluate the quality of
a system’s test code” we consider the following subques-
tions:
Q1 How completely is the system tested?

To answer Q1 we can consider different ways to
measure how completely a system is tested. As shown

in Section 2.1.1, there are various code coverage
criteria. In fact, An and Zhu [57] tried to address
this issue by proposing a way to integrate different
coverage metrics in one overall metric. However, their
approach is complicated. For example, it requires an
arbitrary definition of weights that reflect the criticality
of the modules of the system and the importance of
each of the coverage metrics. To increase simplicity,
applicability and understandability of the model, we
will answer Q1 by refining it into:
Q1.1 How much of the code is covered by the tests?
Q1.2 How many of the decision points in the code are

tested?
Q2 How effectively is the system tested?

To answer Q2, we have to consider what makes
test code effective. When test code covers a part of
production code, it can be considered effective when
it enables the developers (1) to detect defects and
(2) to locate the cause of these defects to facilitate
the fixing process. Consequently, the following sub-
questions refine Q2:
Q2.1 How able is the test code to detect defects in

the production code that it covers?
Q2.2 How able is the test code to locate the cause of

a defect after it detected it?
Q3 How maintainable is the system’s test code?

To answer Q3, we adopt and adapt the quality model
that was developed by SIG [8], [53].

3.2 Metrics

The metrics that were selected as indicators of test code
quality are defined and described as follows.

3.2.1 Code Coverage

Code coverage is the most frequently used metric for
test code quality assessment and there exist many tools
for dynamic code coverage estimation (e.g., Clover5 and
Cobertura6 for Java, Testwell CTC++7 for C++, NCover8

for C#). The aforementioned tools use a dynamic analysis

5. http://www.atlassian.com/software/clover/
6. http://cobertura.sourceforge.net/
7. http://www.testwell.fi/ctcdesc.html
8. http://www.ncover.com/



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 6

approach to estimate code coverage. Dynamic analysis has
two main disadvantages. First, the analyser must be able
to compile the source code. This is an important drawback
both in the context of this study and in the intended context
of application. In this study an experiment is performed
where the model is applied to a number of open source
projects. Compiling the source code of open source systems
can be very hard due to missing libraries or because a
special version of a compiler is necessary [3]. Furthermore,
application in the context of industrial systems’ evaluation
by an independent third party would be difficult because
a working installation of the assessed system is rarely
available [58]. Second, dynamic analysis requires execution
of the test suite, a task that is time consuming [59], [60].

Alves and Visser [58] developed a code coverage esti-
mation tool that is based only on the static analysis of the
source code. In summary, the tool is based on slicing the
static call graphs of Java source code and tracking the calls
from methods in the test code to methods in the production
code. A production code method that is called directly
or indirectly (the method is called by another production
code method, which in turn is called directly or indirectly
by some test code method) is considered covered. The
final coverage percentage is calculated by measuring the
percentage of covered lines of code, where it is assumed
that in a covered method all of its lines are covered. Their
static estimation approach showed strong and statistically
significant correlation with dynamic coverage estimation
using Clover (with a mean of the absolute differences
around 9%). As such, we use this approach to obtain a
code coverage metric in our test code quality model.

3.2.2 Assertions-McCabe Ratio
The Assertions-McCabe ratio metric indicates the ratio
between the number of the actual points of testing in the test
code and of the decision points in the production code. The
metric is inspired by the Cyclomatic-Number test adequacy
criterion [7] and is defined as follows:

Assertions-McCabe Ratio =
#assertions

cyclomatic complexity

where #assertions is the number of assertion statements
in the test code and cyclomatic complexity is McCabe’s
cyclomatic complexity [61] for the whole production code.

3.2.3 Assertion Density
Assertion density aims at measuring the ability of the test
code to detect defects in the parts of the production code
that it covers. This could be measured as the actual testing
value that is delivered given a certain testing effort. The
actual points where testing is delivered are the assertion
statements. At the same time, an indicator for the testing
effort is the lines of test code. Combining these, assertion
density is defined as follows [36]:

Assertion Density =
#assertions

LOCtest

where #assertions is the number of assertion statements in
the test code and LOCtest is lines of test code.

3.2.4 Directness

As explained in Section 3.1, an effective test should provide
the developers with the location of the defect to facilitate
the fixing process. When each unit is tested individually by
the test code, a broken test that corresponds to a single unit
immediately pinpoints the defect. Directness measures the
extent to which the production code is covered directly,
i.e. the percentage of code that is being called directly
by the test code. To measure directness, the static code
coverage estimation tool of Alves and Visser [58], which
uses slicing of static call graphs, was modified so that it not
only provides a static estimation of test coverage, but also
outputs the percentage of the code that is directly called
from within the test code.

3.2.5 Maintainability

As a measurement of the maintainability of test code,
various metrics are used and combined in a model which
is based on the SIG quality model (see Section 2.3). The
SIG quality model is an operational implementation of
the maintainability characteristic of the software quality
model that is defined in the ISO/IEC 9126 [62]. The SIG
quality model was designed to take into consideration the
maintainability of production code.

However, there are certain differences between produc-
tion and test code in the context of maintenance. In order
to better assess the maintainability of test code, the SIG
quality model was modified into the test code maintain-
ability model which is presented in Table 1. In the rest
of this section, we discuss the design decisions that were
considered while modifying the maintainability model. The
relevance of each one of the sub-characteristics and the
system properties of the model to test code quality is
evaluated. Furthermore, test code smells [5] are considered
during the process of adjusting the maintainability model so
that the metrics of the model capture some of the essence
of the main test code smells.

Te
st

C
od

e
M

ai
nt

ai
na

bi
lit

y

properties

duplication unit unit unit
size complexity dependency

analysability × ×
changeability × × ×
stability × ×

TABLE 1
The test code maintainability model as adjusted from the

SIG quality model [53]

As explained in Section 2.3, the original SIG quality
model has 4 sub-characteristics: analysability, changeabil-
ity, stability and testability. Within the context of test code,
each of the sub-characteristics has to be re-evaluated in
terms of its meaningfulness.

Analysability is “the capability of the software product
to be diagnosed for deficiencies or causes of failures in
the software, or for the parts to be modified to be identi-
fied” [62]. Test code is also analysed when necessary both
for verifying that it performs the desired functionality and



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 7

for comprehending what should be modified when the tests
have to be adjusted to changes in the system.

Changeability is “the capability of the software product
to enable a specified modification to be implemented” [62].
Changes in the test code are often necessary when changes
in the requirements lead to changes in the system [63].

Stability is “the capability of the software product to
avoid unexpected effects from modifications in the soft-
ware” [62]. Tests can start failing because of modifications
in utility test code or because of changes in parts of the
production code on which the tests depend.

Testability is “the capability of the software product to
enable modified software to be validated” [62]. This would
mean that it should be easy to verify that test code is
correctly implemented.

Analysability, changeability and stability are clearly as-
pects of test code maintainability. However, testability,
although applicable, implies that we would be interested in
testing the test code. Such a step is not common practice
as the adequacy of test code is mostly determined through
other means, e.g., mutation analysis [31].

After the sub-characteristics of the model have been
defined, the system properties have to be re-evaluated and
mapped to the sub-characteristics. The system properties
used in the SIG quality model are volume, duplication, unit
size, unit interfacing, unit complexity and module coupling.

Volume in production code influences the analysability
because the effort that a maintainer has to spend to com-
prehend a system increases as the volume of the system
increases. There is an important difference between the
maintenance of test code and production code: maintenance
of test code is performed locally, on the piece of test
code that is currently under a maintenance task. This is
happening because of the very low coupling that typically
exists among test code. In practice, most of the times, in
test code written using xUnit frameworks a test is self-
contained in a method or function. Understanding the test
might require analysing the production code that is being
tested, but this is covered by assessing the analysability of
the production code. We do not consider the volume of the
test code to directly influence its analysability, because unit
tests are typically independent of each other, which means
that it is typically enough to analyze a single unit test (as
captured in the unit size metric). We therefore chose not to
use the volume metric.

Test code duplication occurs when copy-paste is used as
a way to reuse test logic. This results in many copies of
the same code, a fact that may significantly increase the
test maintenance cost. Test code duplication is identified as
a code smell [5]. Duplication affects changeability, since
it increases the effort that is required when changes need
to be applied to all code clones. It also affects stability,
since the existence of unmanaged code clones can lead to
partially applying a change to the clones, thus introducing
logical errors in the test code.

The relation between unit size and maintainability is
recognized both in the context of production code [64] and
test code [5]. As unit size increases, it becomes harder to

analyse. Unit size could be a warning for the Obscure Test
and the Eager Test code smells [5]. An obscure test is hard
to understand. The consequences are that such a test is
harder to maintain and it does not serve as documentation.
An eager test attempts to test too much functionality.

Unit interfacing seems to be irrelevant in the context of
test code. Most of the test code units have no parameters
at all. Utility type methods or functions exist, but are the
minority of the test code.

Unit complexity on the other hand, is something that
should be kept as low as possible. As mentioned above, to
avoid writing tests for test code, the test code should be
kept as simple as possible. This is also underlined in the
description of the Conditional Test Logic code smell [5],
which advocates to keep the number of possible paths as
low as possible to keep tests simple and correct. High unit
complexity is therefore affecting both the analysability and
the changeability of the test code.

Module coupling measures the coupling between mod-
ules in the production code. In the context of test code,
the coupling is minimal as it was previously discussed.
Nevertheless, there is a different kind of coupling that is
interesting to measure. That is the coupling between the
test code and the production code that is tested.

In unit testing, ideally every test unit tests one production
unit in isolation. In many cases, additional units of the
production code must be called to bring the system in
an appropriate state for testing something in particular.
In object oriented programming for instance, collaborative
objects need to be instantiated to test a method that interacts
with them. A solution to avoid this coupling is the use of
test doubles, such as stubs and mock testing (see [5]).

To measure the dependence of a test code unit to produc-
tion code we count the number of calls [65, p.29] from a test
code unit to production code units. This metric is mapped
to a new system property which is named unit dependency.
Unit dependency affects the changeability and the stability
of the test code. Changeability is affected because changes
in a highly coupled test are harder to apply since all the
dependencies to the production code have to be considered.
At the same time, stability is affected because changes in
the production code can propagate more easily to the test
code and cause tests to brake (fragile test code smell [5]),
increasing the test code’s maintenance effort.

As a conclusion of the analysis of the relevance of
each system property to test code quality, the system
properties that were selected for assessing test code quality
maintainability are duplication, unit size, unit complexity
and unit dependency. The explanation of the metrics used
for duplication, unit size and unit complexity can be found
in [8]. Briefly, duplication is measured as the percentage
of all code that occurs more than once in identical code
blocks of at least 6 lines (ignoring white lines). Unit size
is measured as the number of lines of code in a unit. For
unit complexity, the cyclomatic complexity of each unit
is measured. Finally, unit dependency is measured as the
number of unique outgoing calls (fan-out) from a test code
unit to production code units, as mentioned earlier.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 8

3.3 The Test Code Quality Model

Now that we have selected the metrics, we can present
the test code quality model. The sub-characteristics of the
model are derived from the questions Q1, Q2 and Q3. In
detail, they are: completeness, effectiveness and maintain-
ability. The mapping of metrics to the sub-characteristics
is done as depicted in Table 2, with the note that the
adjusted SIG quality model combines duplication, unit size,
unit complexity and unit dependency into a maintainability
rating (see Table 1).

Te
st

C
od

e
Q

ua
lit

y

properties

C
od

e
C

ov
er

ag
e

A
ss

er
tio

ns
-M

cC
ab

e
R

at
io

A
ss

er
tio

n
D

en
si

ty

D
ir

ec
tn

es
s

SI
G

Q
ua

lit
y

M
od

el
(a

dj
us

te
d)

Completeness × ×
Effectiveness × ×
Maintainability ×

TABLE 2
The test code quality model and the mapping of the system

properties to its sub-characteristics

The aggregation of the properties per sub-characteristic is
performed by obtaining the mean. For maintainability, this
is done separately in the adjusted maintainability model
(see Section 3.2).

The aggregation of the sub-characteristics into a final,
overall rating for test code quality is done differently. The
overall assessment of test code quality requires that all three
of the sub-characteristics are of high quality. For example, a
test suite that has high completeness but low effectiveness is
not delivering high quality testing. Another example would
be a test suite of high maintainability but low completeness
and effectiveness. Therefore, the three sub-characteristics
are not substituting each other. In order for test code to be
of high quality, all three of them have to be of high quality.
For this reason, a conjunctive aggregation function has to
be used [66]. We chose the geometric mean:

TestCodeQuality = 3
√

Completeness ·E f f ectiveness ·Maintainability

3.4 Calibration

The metrics on which the test code quality model is based
were calibrated to derive thresholds for risk categories and
quality ratings. Calibration was done against a benchmark,
following the methodology that was also used to calibrate
the SIG quality model [67], [55].

TABLE 3
The open source systems in the benchmark. Volume of

production and test code is provided in lines of code (pLOC
and tLOC respectively).

System Version Snapshot Date pLOC tLOC

Apache Commons Beanutils 1.8.3 2010-03-28 11375 21032
Apache Commons DBCP 1.3 2010-02-14 8301 6440
Apache Commons FileUpload 1.2.1 2008-02-16 1967 1685
Apache Commons IO 1.4 2008-01-21 5284 9324
Apache Commons Lang 2.5 2010-04-07 19794 32920
Apache Commons Logging 1.1.1 2007-11-22 2680 2746
Apache Log4j 1.2.16 2010-03-31 30542 3019
Crawljax 2.1 2011-05-01 7476 3524
Easymock 3.0 2009-05-09 4243 8887
Hibernate core 3.3.2.ga 2009-06-24 104112 67785
HSQLDB 1.8.0.8 2007-08-30 64842 8770
iBatis 3.0.0.b5 2009-10-12 30179 17502
Overture IDE 0.3.0 2010-08-31 138815 4105
Spring Framework 2.5.6 2008-10-31 118833 129521

3.4.1 Set of benchmark systems

The set of systems in the benchmark includes 86 proprietary
and open source Java systems that contained at least one
JUnit test file. From the 86 systems, 14 are open source,
while the others are proprietary.

Table 3 provides some general information on the open
source systems in the benchmark. We observe that the
systems’ production Java code volume ranges from ∼ 2
KLOC to ∼ 140 KLOC. For the proprietary systems the
range is entirely different: from ∼ 1.5 KLOC to ∼ 1
MLOC. For test code, the range for open source systems
is from ∼ 1.7 KLOC to ∼ 130 KLOC. For the proprietary
systems test code ranges from 20 LOC to ∼ 455 KLOC.
Further information about the proprietary systems cannot
be published due to confidentiality agreements.

3.4.2 Descriptive statistics

Before applying the calibration methodology, we studied
the distributions of the various metrics. Table 4 summarizes
descriptive statistics for the metrics. Fig. 2 shows box-plots
that illustrate the distributions of the system level metrics
and a quantile plot that shows the distribution of one of the
unit level metrics9.

For the system level metrics, we observe that they cover
a large range starting from values that are close to zero.
Code coverage ranges up to ∼ 92%, with a large group of
systems ranging between 40% and 70%, and the median
at ∼ 46%. Assertions related metrics as well as directness
appear to be skewed with most of the systems having a very
low value in both of the metrics. Duplication in test code
ranges from 0% to 23.9% with a median value of 12.9%
duplicated test code in our set of 86 benchmark projects.

The unit level metrics resemble a power-law-like distri-
bution. The summary statistics in Table 4 as well as the
quantile plot in Fig. 2 show that most of the values of
these metrics are low but there is a long tail of much
higher values towards the right, confirming observations
from earlier studies [69], [55].

9. Only the quantile plot for unit complexity is shown, the plots for
unit size and unit dependency can be found in [68].



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 9

TABLE 4
Metrics and their summary statistics (all 86 systems in the

benchmark)

Metric Sc
op

e

M
in

Q
1

M
ed

ia
n

M
ea

n

Q
3

M
ax

ST
D

V

Code Coverage (%) System 0.1 29.8 45.9 44.1 60.8 91.8 22.3
Assertions-McCabe System 0.001 0.086 0.27 0.372 0.511 1.965 0.371Ratio
Assertion Density (%) System 0.0 5.9 8.4 9.1 12.0 36.4 5.8
Directness (%) System 0.06 8.0 21.0 23.6 36.6 71.0 18.6
Duplication (%) System 0.0 9.6 12.2 13.3 18.6 23.9 5.7
Unit Size Unit 1 8 15 23.3 27 631 30.8
Unit Complexity Unit 1 1 1 1.9 2 131 3.07
Unit Dependency Unit 1 1 2 3.05 4 157 3.70

From these observations, we conclude that the test code
metrics we selected behave in similar ways to other source
code metrics, in particular to those used in the SIG quality
model, which means that we can apply the same calibration
methodology for the test quality model as for the SIG
quality model.

3.4.3 Risk categories and quality ratings

In a similar fashion to the SIG quality model (Section 2.3
and [67], [55]), we want to come to a star rating with a
5-point scale for the test code quality of software systems.
We define the quality levels so that they correspond to a <
5,30,30,30,5> percentage-wise distribution of the systems
in the benchmark. This means that a system that is rated 1
star is situated amongst the 5% worst performing projects
in terms of test code quality, that a 2-star system is doing
better than the 5% 1-star systems, but 65% of the systems
are doing a better job at test code quality, etc. Finally, the
top-5% systems are attributed a 5-star rating.

System level metrics

Having established this top-level < 5,30,30,30,5 > dis-
tribution in terms of star-ratings, our calibration approach
translates this star-rating into thresholds for system level
metrics, i.e., between what thresholds should metrics for a
system be to fall into a star-category.

For the system level metrics, the thresholds that result
from the aforementioned calibration are shown in Table 5.
All these threshold values are determined using the database
of 86 proprietary and open-source Java systems as dis-
cussed in Section 3.4.1. For example, to score five stars on
code coverage, a system should have coverage of at least
73.6%, while to score two stars, 0.6% is enough. Intuitively,
this last threshold may seem too lenient, but it reflects the
quality of the systems in the benchmark, indicating that at
least 5% of the systems are tested inadequately.

Unit-level metrics

For the unit level metrics, calibration is performed in two
steps. First, thresholds are derived to categorize units into
four risk categories (low, moderate, high and very high).
We define the thresholds for these four risk categories based
on metric values that we observe in our benchmark of 86
Java systems. More specifically, we use the 70, 80, and

TABLE 5
Thresholds for system level metrics

Metric ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Code Coverage 73.6% 55.2% 40.5% 0.6% -
Assertions-McCabe Ratio 1.025 0.427 0.187 0.007 -
Assertion Density 18.9% 10% 7.2% 1.5% -
Directness 57.4% 28.5% 12.3% 0.29% -
Duplication 5.5% 10.3% 16.4% 21.6% -

TABLE 6
Thresholds for unit level metrics

Metric Low Moderate High Very High
Risk Risk Risk Risk

Unit Size 24 31 48 > 48
Unit Complexity 1 2 4 > 4
Unit Dependency 3 4 6 > 6

90 percentiles of metric-values to determine the boundaries
between the four risk categories. We reused the volume
percentiles 70, 80 and 90 that were successfully used on
metrics with power-law distributions in the SIG quality
model [55]. Alves et al. [55] settled on these 70, 80 and
90 volume percentiles after empirically assessing that these
boundaries correspond to volumes of code that typically
fall in the category low risk [0%, 70%[ or needs to be
fixed in long-term, to [90%, 100%[, which would indicate
that this code needs to be improved in the short-term. The
derived thresholds that correspond to these code volume
percentiles are shown in Table 6. For instance, when we
look at unit size, the 70, 80 and 90 percentile correspond
to respectively 24, 31 and 48. Translating this into the risk
categories means that a unit with a size of less than 24 (lines
of code), is easy to maintain, thus we classify it as low risk.
Similarly, when 24 < unitsize≤ 31, we classify the unit as
having moderate risk or we classify it as having high risk
when unit size is between 31 and 48. A unit of size greater
than 48 is classified as being very high risk, indicating that
the maintenance of such a test unit can become difficult.

Secondly, thresholds are derived to map the relative
volumes of the risk categories into star ratings, shown in
Table 7. For example, to qualify for a 5-star rating (and
hence belong to the 5% best systems) on the unit size
property, a maximum of 12.3% of the units can belong to
the moderate risk profile, 6.1% of the code can fall into the
high risk category and 0.8% of the code can be categorized
as very high risk (and as a consequence at least 80.8% of
the code falls into the low risk category — not shown in
Table 7). As such, a snapshot of a software system belongs
to the highest star rating for which all thresholds hold.

4 TEST CODE QUALITY MODEL ALIGNMENT

We wanted to know whether the test code quality model
aligns with the opinion of experts, i.e., whether a software
system that gets a good score according to our test code
quality model would also be seen as having high-quality
tests by software engineers. To verify this, we performed a
preliminary investigation involving two industrial software
systems which were entrusted to the Software Improve-
ment Group to perform a source code quality assessment



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 10

0.0 0.2 0.4 0.6 0.8 1.0

Code Coverage

● ● ●●

0.0 0.5 1.0 1.5 2.0

Assertions−McCabe Ratio

● ●●

0.0 0.1 0.2 0.3

Assertion Density

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Directness

0.00 0.05 0.10 0.15 0.20 0.25
Duplication

Assertions−McCabe Ratio

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0

0
5

10
15

20
25

30

● ● ●●

Distribution of Assertions−McCabe Ratio

Distribution of Unit Size

Percentile

Li
ne

s 
of

 C
od

e 
pe

r U
ni

t

100

200

300

400

500

600

0 20 40 60 80 100

Distribution of Unit Complexity

Percentile

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

20

40

60

80

100

120

0 20 40 60 80 100

Distribution of Unit Dependency

Percentile

U
ni

qu
e 

O
ut

go
in

g 
C

al
ls

 fr
om

 T
es

t t
o 

Pr
od

uc
tio

n 
U

ni
ts

50

100

150

0 20 40 60 80 100

Code Coverage

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Distribution of Code Coverage

Assertion Density

Fr
eq

ue
nc

y

0.0 0.1 0.2 0.3 0.4
0

5
10

15
20

25
30

35

● ●●

Distribution of Assertion Density

Directness

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8

0
5

10
15

20
25

Distribution of Directness

% Redundant Lines of Code

Fr
eq

ue
nc

y

0 5 10 15 20 25

0
5

10
15

20
25

Distribution of Duplication

Fig. 2. The distributions of the metrics

TABLE 7
Profile thresholds for Unit Size, Unit Complexity and Unit

Dependency

rating
maximum relative volume of code (in %)

Unit size Unit Complexity Unit dependency

m
od

er
at

e

hi
gh

ve
ry

hi
gh

m
od

er
at

e

hi
gh

ve
ry

hi
gh

m
od

er
at

e

hi
gh

ve
ry

hi
gh

? ? ? ? ? 12.3 6.1 0.8 11.2 1.3 0.3 10.0 4.3 1.2
? ? ? ? 27.6 16.1 7.0 21.6 8.1 2.5 19.3 13.9 7.8
? ? ? 35.4 25.0 14.0 39.7 22.3 9.9 33.5 24.1 14.6
? ? 54.0 43.0 24.2 62.3 38.4 22.4 52.1 38.9 24.1
? - - - - - - - - -

on them. The experts involved are consultants from the
Software Improvement Group who perform source code
assessments using the SIG quality model on a daily basis.

The investigation was set up as a focused interview [70]
with the consultant responsible for the particular system. In
order to avoid introducing bias in the experts evaluations,
the experts had no knowledge about the test code quality
model while they were answering the questions. They are
however expert users of the SIG quality model, which
uses the same star-based rating system. After the questions
were answered, the model’s results were presented to the
interviewee together with the logic behind the model.
Finally, there was an open discussion on the results and
the reasons behind the discrepancies between the models

TABLE 8
Test code quality ratings of the experts for systems A and B.

Aspect System A System B
Model Expert Model Expert

Completeness 2.8 3.0 3.1 3.5
Effectiveness 2.8 2.0 3.6 4.0
Maintainability 2.1 3.0 3.7 -

Overall Test Code Quality 2.5 3.0 3.5 4.0

TABLE 9
Test Code Quality Model Ratings for System A.

Properties Value Rating Sub- Rating Test Code
characteristics Quality

Coverage 50% 3.1 Completeness 2.8

2.5

Assert-McCabe Ratio 0.16 2.4
Assertion Density 0.08 2.7 Effectiveness 2.8Directness 17.5% 2.8
Duplication 16% 2.6

Maintainability 2.1Unit Size - 2.0
Unit Complexity - 2.5
Unit Dependency - 1.5

ratings and the experts’ evaluation.

4.1 System A

System A is a logistics system developed by a Dutch
company. The programming language used is Java, with a
lot of SQL code embedded into the Java code. The system’s
production code volume at the moment of the case study
was ∼ 700 KLOC, with ∼ 280 KLOC JUnit code.

The system has been in maintenance since 2006 with no
new functionality being added. In 2010 a re-structuring of
the system has been performed, with extensive modulariza-
tion and the addition of a lot of testing code.

Table 9 shows the results of the application of the
test code quality model. With an overall rating of 2.5, it
indicates many weaknesses of the system’s test code.

4.1.1 Test Code Quality Assessment by the Expert

For System A, an expert technical consultant with experi-
ence on the system was interviewed.

How completely is the system tested? The expert reported
poor code coverage for System A, with only lower layers
of the system’s architecture being tested. The expert had
coverage data for one module of the system. However, this
module comprises 86% of the whole system. The reported
code coverage (dynamic estimate) of this module is ∼ 43%.
Extrapolating this value to the whole system we obtain a
code coverage level between 37% and 51%.

How effectively is the system tested? The expert reported
that the system’s testing effort is “immense and costly”.
Testing effort could potentially be reduced by developing
more automated tests. However, defects are detected with
satisfactory effectiveness. The expert estimates that 50% of
the detected defects are due to the unit testing. Integration
and manual testing adds 30% to the defect detection ability.

How maintainable is the system’s test code? Focus on
test code’s maintainability was not a high priority for the
development team according to the expert. Furthermore,
maintainability is hindered by high complexity and cou-
pling between the test code and the production code.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 11

To which extent is the test code targeting unitary or
integration testing? The expert reported high coupling of
the tests and the production code, implying that a significant
part of the test code is integration testing.

How would the expert rate the aspects of the test code
quality of the system? The expert’s ratings of the aspects
of the test code quality of the system are shown in Table 8.
The expert claimed to have had significant experience in
analysing the software.

4.1.2 Comparison between the expert’s evaluation and the
model’s ratings

The system’s overall test code quality is rated at 2.5, while
the expert’s evaluation was 3.0. The difference is only one
unit in the scale of measurement which was used by the
expert to rate the system’s test code quality. In particular,
completeness was calculated as 2.8 by the model, a rating
that is aligned to the expert’s evaluation (3.0). However,
for effectiveness and maintainability, the model’s ratings
deviate from the expert’s evaluation by more than one unit
(2.8 against 2.0 and 2.1 against 3.0 respectively).

4.2 Case Study: System B

System B involves a designing system for engineers, de-
veloped by a Dutch-based software company. The size of
the development team is approximately 15 people. The
system’s production code volume is ∼ 243 KLOC, with
another ∼ 120 KLOC JUnit code. Test-driven development
(TDD) was adopted over the past 18 months; most of the
testing effort came during that period.

The architecture of the system has recently undergone
some major changes: the system’s main modules were
rewritten, although the system is still using the old, legacy
modules. This coexistence of old and new modules sepa-
rates the system in two parts, also in terms of quality. This
is reflected in the maintainability ratings of the system: the
SIG quality model gave a rating of 3.3 stars for the whole
system; analyzing only the newly written modules the rating
rises to 4.0 stars, reflecting the team’s focus to increase the
quality.

4.2.1 Test Code Quality Model Ratings

Table 10 shows the results for System B. The completeness
of the test code was rated at 3.1 with coverage and
assertions-McCabe ratio being relatively close (3.3 and 2.9
respectively). Coverage is at 52.5%, while the Assertions-
McCabe ratio is at a lowly 0.29.

Effectiveness was rated at 3.6, which is higher than
completeness, indicating that the parts that are tested, are
tested fairly effectively. In particular, assertion density (3.7)
indicates that the system’s defect detection ability in the
parts that are tested is adequate. Directness falls a bit lower
(3.4), with only 27% of System B being tested directly.

Maintainability at 3.7 indicates that the system’s test
code is written carefully. Duplication is kept at low levels
(5.8%) and unit size and unit dependency are higher than

TABLE 10
Test Code Quality Model Ratings for System B.

Properties Value Rating Sub- Rating Test Code
characteristics Quality

Coverage 52.5% 3.3 Completeness 3.1

3.5

Assert-McCabe Ratio 0.29 2.9
Assertion Density 0.12 3.7 Effectiveness 3.6Directness 27% 3.4
Duplication 5.8% 4.5

Maintainability 3.7Unit Size - 3.7
Unit Complexity - 3.3
Unit Dependency - 3.5

average. Unit complexity (3.3) reveals a possible space for
improvement of the test code’s maintainability.

Overall, the system’s test code quality is assessed as 3.5.
The model reveals that the system’s test code is effective
and maintainable, but not enough to cover the system.

4.2.2 Test Code Quality Assessment by the Expert

For system B, an expert technical consultant with experi-
ence on the system was interviewed.

How completely is the system tested? According to
the expert, the legacy modules are tested weakly. Code
coverage is around 15%. The newly developed modules
have higher code coverage: 75%. To get an overall image
of the system’s code coverage it is important to know the
size of the legacy modules compared to the rest of the
system. Legacy modules are ∼ 135 KLOC of the system’s
total of ∼ 243 KLOC. Thus, the fact that more than half
of the system is poorly covered leads to the expectation of
the system’s overall coverage at ∼ 40−45%.

How effectively is the system tested? The expert reported
that since the development team adopted Test-Driven De-
velopment (TDD) a decrease in the number of incoming
defect reports was noticed.

How maintainable is the system’s test code? The expert
reported that he has no insight on the system’s test code
maintainability.

To which extent is the test code targeting unitary or
integration testing? The test code was developed mainly to
perform unit testing. Mock testing was also used. However,
the expert reports that parts of the test code serve as
integration tests, calling several parts of the system apart
from the one tested directly.

How would the expert rate the aspects of the test code
quality of the system? The expert’s ratings of the aspects
of the test code quality of the system are shown in Table 8.

4.2.3 Comparison between the expert’s evaluation and the
model’s ratings

The model’s ratings for System B are consistently lower
than the expert’s opinion (where available). The difference
is in the magnitude of 0.5 for each sub-characteristic and
the overall test code quality. One possible explanation for
the discrepancies in this case would be the role of bench-
marking in the ratings of the model. The expert evaluated
the System B based on his own knowledge and experience.
The benchmarking seems to cause the model to assign
stricter ratings than the expert in a consistent way in this



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 12

case. Another possibility would be that the expert’s opinion
was biased towards evaluating the system according to the
quality of the new modules of the system. It is interesting to
see that when applying the model only to the new modules
the ratings are aligned to those of the expert. Completeness,
effectiveness, maintainability and overall test code quality
are 4.1, 3.9, 3.9 and 4.0 respectively.

4.3 Discussion

Even though the lack of data does not enable us to
draw strong conclusions from the comparison between the
experts’ evaluations and the model’s estimates, it is still
useful to perform such an analysis. When there is lack of
expertise on a system, the model can be used in order to
obtain an assessment of the quality of test code. Therefore,
it is important to know how close to the experts’ evaluations
the estimates of the model are.

By looking at Table 8 we see that for the sub-
characteristics of the test code quality model (completeness,
effectiveness and maintainability) the ratings of the expert
and the model diverge at most 0.9 (for the maintainability
of System A). For most sub-characteristics, the ratings of
the expert and the model are relatively close together and
diverge for at most 0.5. For the overall test code quality
rating, the opinion of the two experts and the test code
quality model diverges for 0.5 on the quality rating scale.
This does indicate that the model is relatively closely
aligned to the opinion of experts and that the model’s
accuracy is promising.

At the same time, several limitations are identified. These
limitations are listed below:
• Interpretation of the model’s results should take into

consideration that the model is based on benchmark-
ing, sometimes leading to ratings that can be counter-
intuitive, e.g. directness rated at 2.8 when direct cov-
erage is at a low 17.5%.

• Custom assertion methods are not detected by the tool
leading to underestimation of the metrics that involve
measuring the assertions in the test code (assert-
McCabe ratio, assertion density).

• The current implementation of the model takes into
consideration only JUnit test code.

5 DESIGN OF STUDY

In this section, the design of the study to answer RQ2 is
discussed.

5.1 Design of the Experiment

As stated in RQ2 in Section 1, the main goal of the study
is to assess the relation between test code quality and issue
handling performance. To answer that question, subsidiary
questions were formed. The questions are:
• RQ2.1 : Is there a relation between the test code

quality ratings and the defect resolution time?
• RQ2.2 : Is there a relation between the test code

quality ratings and the throughput of issue handling?

• RQ2.3 : Is there a relation between the test code
quality ratings and the productivity of issue handling?

An overview of the experiment is shown in Fig. 3.

5.2 Hypotheses Formulation

In RQ2.1, RQ2.2 and RQ2.3, we aim at investigating the re-
lation between test code quality and defect resolution time,
throughput and productivity. We use the test code quality
model that was presented in Section 3 as a measurement of
test code quality. We extract issue handling measurements
from the ITSs of several open source Java projects.

As seen in Section 1, we assume that systems of higher
test code quality will have shorter defect resolution times,
and higher throughput and productivity. To investigate
whether these assumptions hold, we assess whether there
are correlations between the test code quality rating of
systems and the three issue handling indicators.

We translate the three questions into hypotheses:

H1null : There is no significant correlation between test code quality
and defect resolution time.
H1alt : Higher test code quality significantly correlates with lower
defect resolution time.

H2null : There is no significant correlation between test code quality
and throughput.
H2alt : Higher test code quality significantly correlates with higher
throughput.

H3null : There is no significant correlation between test code quality
and productivity.
H3alt : Higher test code quality significantly correlates with higher
productivity.

All three hypotheses are formulated as one-tailed hy-
potheses because we have a specific expectation about the
direction of the relationship between the two variables:
higher test code quality correlates with higher issue han-
dling performance.

5.3 Measured Variables

The measured variables are summarised in Table 11.

TABLE 11
Measured Variables

Hypothesis Independent Variable Dependent Variable

H1 Test code quality Defect resolution speed rating
H2 Test code quality Throughput
H3 Test code quality Productivity

The independent variable in all three hypotheses is the
test code quality, measured using the model presented in
Section 3. The outcome of the model is a rating that reflects
the quality of the test code of the system. The ratings are in
interval scale and the values are in the range of [0.5,5.5].

The dependent variables are defect resolution speed
rating, throughput and productivity for hypotheses 1, 2
and 3 respectively. Starting from the last two, throughput
and productivity are measured as shown in Section 2.2.3.
To derive the resolution time of a defect, we rely on the
approach presented in [15]. The summary of the approach
follows.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 13

Project 
site

VCS repository

ITS repository

Extract

Data
Mining

Snapshots

Issues

Data
Cleaning Calculate Spearman

Cleaned 
snapshots

Cleaned 
issues

Test code 
quality ratings

Issue Handling 
Indicators

Correlation

Fig. 3. Procedure Overview

5.3.1 Defect Resolution Speed Rating

The dependent variable of Hypothesis 1 is the resolution
time of defects in a system, which is measured by calcu-
lating a rating that reflects the defect resolution speed.

In Section 2.2.2 we explained that to measure the reso-
lution time of a defect, the time during which the defect
was in an open state in the ITS is measured. To acquire a
measurement of the defect resolution speed of a system’s
snapshot during a particular period of time, all the defects
that were resolved during that period are mapped to the
snapshot. The individual resolution times of the defects
need to be aggregated in a measurement that represents
the defect resolution speed. The distribution of defect
resolution times resembles a power-law-like distribution as
illustrated by Bijlsma et al. [15]. In their study, Bijlsma
et al. observed that the resolution times of most of the
defects were at most four weeks, but at the same time there
were defects with resolution times of more than six months.
Thus, aggregating the resolution times by taking the mean
or the median would not be representative.

The technique of benchmarking that was used for the
construction of the SIG quality model and the test code
quality model is also used in this case. This way defect
resolution times can be converted into a rating that reflects
resolution speed. The thresholds for the risk categories and
the quality profiles that are used in this study are the ones
that were acquired by the calibration that was performed
in [15]. In [15] Bijlsma et al. used 10 projects (e.g.,
webkit, tomcat and hibernate) to perform this calibration.
The thresholds of the risk categories are shown in Table 12
and the thresholds for the quality ratings are shown in
Table 13.

TABLE 12
Thresholds for risk categories of defect resolution time

Category Thresholds

Low 0 - 28 days (4 weeks)
Moderate 28 - 70 days (10 weeks)
High 70 - 182 days (6 months)
Very high 182 days or more

As with the test code quality model, the thresholds for
the risk categories are applied on the measurement of a
defect’s resolution time to classify it in a risk category.
Afterwards, the percentage of defects in each risk category

TABLE 13
Thresholds for quality ratings of defect resolution time

Rating Moderate High Very High

***** 8.3% 1.0% 0.0%
**** 14% 11% 2.2%
*** 35% 19% 12%
** 77% 23% 34%

is calculated. Finally, the thresholds for the quality ratings
are used to derive a quality rating for the defect resolution
speed. Interpolation is used once again to provide a quality
rating in the range of [0.5,5.5] and to enable comparisons
between systems of the same quality level. This rating is
used to measure the dependent variable for Hypothesis 1.
It should be noted that higher rating means shorter defect
resolution times.

5.4 Confounding Factors

In this experiment we aim at assessing the relation of
test code quality to issue handling and we expect test
code quality to have a positive impact. Of course, test
code quality is not the only parameter that influences the
performance of issue handling. There are other factors that
possibly affect issue handling. The observations of the
experiment can be misleading if these co-factors are not
controlled. Identification and control of all the co-factors is
practically impossible. Several co-factors and confounding
factors were identified and they are discussed below.
• Production code maintainability : While issues are

being resolved, the maintainer analyses and modifies
both the test code and the production code. Therefore,
issue handling is affected by the maintainability of the
production code.

• Team size : The number of developers working on a
project can have a positive or negative effect on the
issue handling efficiency.

• Maintainer’s experience : The experience of the
person or persons who work on an issue is critical
for their performance on resolving it.

• Issue granularity : The issues that are reported in
an ITS can be of different granularity. For example,
an issue might be a bug that is caused by a mistake
in a single statement and another issue might require
the restructuring of a whole module in the system.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 14

Therefore, the effort that is necessary to resolve an
issue may vary significantly from issue to issue.

• System’s popularity : High popularity of a project
may lead to a larger active community that reports
many issues. The issues could create pressure on the
developers, making them resolve more issues.

To control these factors we have to be able to measure
them. The maintainability of the production code is mea-
sured by applying the SIG quality model to the subject
systems. Team size is measured by obtaining the number of
developers that were actively committing code in a system
during a period of time.

Measuring the experience of the maintainer, the granu-
larity of issues and the system’s popularity is difficult. The
maintainers (committers) of open source systems are many
times anonymous and there is no reliable data to assess their
experience at the time of their contributions to the projects.
As far as the granularity of issues is concerned, most ITSs
offer a field of severity for each issue. However, this field is
often misused making it an unreliable measurement for the
granularity of the issues [50]. For the project’s popularity,
the potential of obtaining the number of downloads was
explored but the lack of data for all subject systems was
discouraging. Thus, these three factors are not controlled
and will be discussed in Section 7 as threats to validity for
the outcome of the experiment.

5.5 Data Collection and Preprocessing

To investigate the relation between test code quality and
issue handling, we need (1) source code and (2) issue
tracking data of systems. Open source systems provide their
source code publicly and in some of them, the ITS data is
also publicly available. We chose to go with open source
systems because of the availability of both the source code
and the ITS data, which — from our own experience — is
not always the case with industrial systems.

To compare the technical quality of a system with the
performance in issue handling it is necessary to map the
quality of the source code of a specific snapshot of the
system to the issue handling that occurred in that period.
For this reason we perform snapshot-based analysis. Snap-
shots of systems were downloaded and analysed to acquire
quality ratings. We consider each snapshot’s technical qual-
ity influential on the issue handling that occurred between
that snapshot and the next one.

Certain criteria were defined and applied during the
search for appropriate systems. The criteria are summarised
as follows:
• The system has a publicly available source code repos-

itory and ITS.
• Systems have to be developed in Java due to limita-

tions of the tooling infrastructure.
• More than 1000 issues were registered in the ITS

within the period of the selected snapshots to make
sure that we have a diverse population of issues.

Further selection was applied to omit irrelevant data from
the dataset. All the issues that were marked as duplicates,

wontfix or invalid were discarded. Furthermore, issues of
type task and patch were omitted. We discarded tasks
because these kinds of issues typically also include non-
technical elements, e.g., requirements analysis. Patches are
not taken into account because these issues typically already
contain (part) of the solution that needs to be tested and
integrated [71]. While it would be interesting to see whether
patches get accepted more quickly with high-quality tests
in place, we defer this investigation to future work.

Finally, the issues that were resolved (resolution field set
to fixed and status field set to resolved or closed) were
selected for participation in the experiment.

Some additional selection criteria were applied to mit-
igate the fact that snapshots of the same system are not
independent. In particular, snapshots were taken so that
(1) there is a certain period of time (1 year) and (2) there
is a certain percentage of code churn [72] (at least 30%;
production and test code together) between two consecutive
snapshots. The actual thresholds for these criteria were
defined by experimenting to find the balance between the
austerity for snapshot independence and the preservation of
sufficient amount of data.

Important to note is that a snapshot can be an arbitrary
commit (and does not have to be marked as release).

In addition, data cleaning was necessary to remove incon-
sistencies in the way the ITSs were used. Manual inspection
of a sample of the data revealed that there are occasions
where large numbers of issues are closed within a short
period of time. This happens because the developers decide
to clean the ITS by removing issues whose actual status
changed but it was not updated accordingly in the system.
For instance, an issue was resolved but the corresponding
entry in the ITS was not updated to resolved. We remove
such issues automatically by identifying groups of 50 or
more of them that were closed on the same day and with the
same comment. This threshold of 50 was established after
studying the distribution of the number of issues closed the
same day with the same message and witnessing a very
sharp rise around that point.

A final step of data cleaning occurred by removing snap-
shots with less than 5 resolved defects for the hypothesis
related to defect resolution speed, and with less than 5
resolved issues for the hypotheses related to throughput and
productivity (we followed the approach from Bijlsma for
this step [15]).

5.6 Data Measurement and Analysis

This section discusses the tools that were used to obtain the
experiment’s data as well as the methods that were used to
analyse the data.

Source code was downloaded from the repositories of the
subject open source systems. The necessary metrics were
calculated using SIG’s Software Analysis Toolkit (SAT) [8].
The test code quality model ratings were calculated by
processing the metrics with the use of R10 scripts.

10. The R project for statistical computing, http://www.r-project.org/



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 15

To obtain the issue handling performance indicators the
ITSs of the subject systems were mined. For this, the
tool that was created by Luijten [9] and later reused by
Bijlsma [14] was used for this study. The tool supports
Bugzilla, Issuezilla, Jira and Sourceforge and extracts the
data from the ITSs. In addition, the VCS history log is
extracted. Afterwards, the issue tracking data, the VCS log
and the source code metrics are stored in a database, of
which the object model is shown in detail in [44, p.15].
The database can then be used for further analyses.

Correlation tests were performed to test the formulated
hypotheses. Data of test code quality and defect resolution
time does not follow a normal distribution. Therefore, a
non-parametric correlation test is suitable. We chose to
use Spearman’s rank-correlation coefficient. Based on the
expectation that higher test code quality decreases the
defect resolution time, the hypotheses are directional and
thus one-tailed tests are performed.

In addition, to assess the influence of the confounding
factors to the issue handling indicators we performed mul-
tiple regression analysis. This analysis indicates the amount
of variance in the dependent variable that is uniquely
accounted for by each of the independent variables that are
combined in a linear model. We want to select the indepen-
dent variables that have significant influence on the depen-
dent variable. For that reason we use stepwise selection.
In particular, we apply the backward elimination model,
according to which one starts assessing the significance
of all the independent variables and iteratively removes
the least significant until all the remaining variables are
significant [73].

6 CORRELATION STUDY

To address RQ2 an experiment was conducted aiming at
assessing the relation between test code quality and issue
handling performance. This section presents the results.

6.1 Data

In Section 5.5, criteria were defined to guide the search of
suitable systems as well as selection and cleaning criteria
for preprocessing the data. The search for suitable systems
led to 18 open source systems. Among the selected systems
there are very well-known and researched ones (notably
ArgoUML and Checkstyle), and also systems that were in
the list of the top-100 most popular projects in SourceForge,
even though they are not so well known.

The total number of snapshots that were collected is 75.
All systems have non-trivial size, ranging from 17 KLOC
for the most recent snapshot of the Stripes framework to
163 KLOC for ArgoUML. It should be noted that code
which was identified as generated was disregarded from
the scope of the analysis as it is not maintained manually.
The total number of collected issues for the 18 systems
is almost 160,000, where around 110,000 are defects and
49,000 are enhancements. An overview of the dataset is
shown in Table 14.

Coverage
Asser*ons-‐McCabe

Ra*o
Asser*on	  Density

Directness

Duplica*on

Unit	  Size

Unit	  Complexity

Unit	  Dependency1
2

3
4

5
6

7
8

1 2 3 4 51 2 3 4 5
Ra*ng

Fig. 4. Boxplots of the ratings of the test code quality model’s
properties

Please note that we use different open source systems in
this correlation study (RQ2) as compared to the calibration
of the test code quality model (RQ1). This ensures that both
sets are independent.

After performing the data cleaning step described in
Section 5.5, we end up with two different datasets as shown
in Table 14: one for defect resolution speed (63 snapshots)
and another for throughput and productivity (54 snapshots).

6.2 Descriptive Statistics

Before the results are presented, descriptive statistics of the
measured variables are presented. Test code and ITSs of
75 snapshots belonging to 18 open source systems were
analysed. Fig. 4 shows the distributions of the properties
of the test code quality model.

It is interesting to observe that for code coverage,
assertions-McCabe ratio, assertion density and directness
the vast majority of the systems is rated below 4.0. This
does not apply for the properties that are related to the
test code maintainability where we can see the ranges
of the ratings to be wider. The subject systems seem to
perform well in duplication. Half of the snapshots were
rated approximately 4.0 and above. On the other hand, the
systems do not perform well in assertions-McCabe ratio and
directness, where more than 75% of the snapshots received
a rating that was less than 3.0. In particular, the median
in these two properties is approximately 2.0. Finally, it is
interesting to observe that there are a few snapshots that
are rated very low in code coverage, revealing that some
of the snapshots have almost zero code coverage.

Fig. 5 shows the distributions of the ratings of the
model’s sub-characteristics and the overall test code quality.
Overall, test code quality was rated from ∼ 1.5 to ∼ 3.5,
which means that the spread between the test code quality
of the snapshots was rather small. This is a potential
limitation for our study because we cannot generalise our
findings for systems that would receive a higher rating than
3.5. We observe that none of the snapshots was rated higher
than 4.0 for completeness and effectiveness. In contrast,
there are snapshots of very high quality with regard to
maintainability.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 16

TABLE 14
Snapshots and issues per system after selection and cleaning

Project General information Data for Defect Resolution Speed Data for Throughput & Productivity

K
L

O
C

(l
at

es
t)

D
ev

el
op

er
s

(m
ax

)

pC
od

e
M

ai
nt

ai
na

bi
lit

y
(l

at
es

t)

tC
od

e
Q

ua
lit

y
(l

at
es

t)

E
ar

lie
st

Sn
ap

sh
ot

D
at

e

L
at

es
t

Sn
ap

sh
ot

D
at

e

Sn
ap

sh
ot

s

Is
su

es

D
ef

ec
ts

E
nh

an
ce

m
en

ts

Sn
ap

sh
ot

s

Is
su

es

D
ef

ec
ts

E
nh

an
ce

m
en

ts

Apache Ant 100 17 3.201 2.693 18/07/2000 13/03/2008 6 2,275 1,680 595 5 1,944 1,467 477
Apache Ivy 37 6 3.022 3.330 17/12/2006 26/09/2009 2 331 228 103 2 467 309 158
Apache Lucene 82 19 2.795 2.917 02/08/2004 06/11/2009 3 2,222 1,547 675 4 4,092 3,274 818
Apache Tomcat 159 13 2.531 1.595 21/10/2006 07/03/2009 2 295 268 27 2 275 244 31
ArgoUML 163 19 2.915 2.733 12/03/2003 19/01/2010 7 758 635 123 6 621 508 113
Checkstyle 47 6 3.677 2.413 05/02/2002 18/04/2009 6 251 248 3 4 203 200 3
Hibernate code 105 14 2.934 2.413 18/04/2005 15/08/2008 2 270 166 104 3 999 620 379
HSQLDB 69 8 2.390 2.039 06/10/2002 09/09/2009 4 295 295 0 3 356 354 2
iBatis 30 4 2.999 2.868 16/05/2005 12/10/2009 3 266 150 116 3 266 150 116
JabRef 83 17 2.574 2.727 28/11/2004 02/09/2009 4 480 480 0 4 480 480 0
jMol 92 9 2.208 1.814 06/06/2006 10/12/2007 2 64 63 1 2 64 63 1
log4j 12 6 3.966 2.365 17/05/2002 05/09/2007 4 384 323 61 2 101 86 15
OmegaT 112 6 3.278 2.448 20/06/2006 12/02/2010 3 353 192 161 3 353 192 161
PMD 35 15 3.865 2.975 14/07/2004 09/02/2009 4 176 153 23 3 98 77 21
Spring framework 145 23 3.758 3.123 13/05/2005 16/12/2009 3 5,942 2,947 2,995 1 3,829 1,923 1,906
Stripes framework 17 6 3.704 3.123 29/09/2006 28/10/2009 3 340 197 143 2 317 179 138
Subclipse 93 10 2.348 2.449 11/04/2006 11/08/2009 3 156 95 61 3 190 113 77
TripleA 99 4 2.493 2.449 21/07/2007 06/03/2010 2 204 204 0 2 187 187 0

18 63 15,062 9,871 5,191 54 14,842 10,426 4,416

Test	  Code	  
Quality

Maintainability

Effec5veness

Completeness

1 2 3 4 5
Ra5ng

Completeness

Effectiveness

Maintainability

Test Code Quality

1 2 3 4 5

!"#$%&'("
)*+,-$.

/+-0$+-0+1-,-$.

23"456"0"##

&'78,"$"0"##

9+50:

Fig. 5. Boxplots of the ratings of the test code quality model’s
sub-characteristics and overall test code quality

1 2 3 4 5

R
at
in
g

1 2 3 4 5

R
at
in
g

1 2 3 4 5

R
at
in
g

!"#$%

1 2 3 4 5

R
at
in
g

1 2 3 4 5

R
at
in
g

1 2 3 4 5

R
at
in
g

!"#$%

1 2 3 4 5

R
at
in
g

1 2 3 4 5

R
at
in
g

1 2 3 4 5

R
at
in
g

!"#$%

1 2 3 4 5

R
at
in
g

1 2 3 4 5

R
at
in
g

1 2 3 4 5

R
at
in
g

!"#$%

1 2 3 4 5
Ra(ng

Fig. 6. Boxplot of the defect resolution speed ratings

Next, descriptive statistics about the dependent variables
are presented. Fig. 6 show the distribution of the ratings for
defect resolution speed and Table 15 summarises statistics
for throughput and productivity.

The ratings for defect resolution speed cover the whole
range of the model’s scale. However, at least 75% of the
snapshots is rated less than 3.0.

Throughput has a median of 0.13 and a mean of 0.39.
We observe that the maximum value (5.53) is in a different
order of magnitude. Further investigation reveals that the
highest values in throughput belong to snapshots of differ-
ent systems (i.e. Apache Ant 1.1, Apache Lucene 1.4.1 and

TABLE 15
Descriptive statistics for the dependent variables throughput

and productivity
Metric Min Q1 Median Mean Q3 Max STDV

Throughput 0.02 0.06 0.13 0.39 0.42 5.53 0.81
Productivity 0.12 0.50 0.99 1.77 1.68 14.54 2.72

Spring Framework 3.0). Manual inspection of a sample of
their issues did not reveal any peculiarity that would justify
considering these snapshots as outliers.

The median for productivity is 0.99. In the fourth quartile
we observe that, similarly to throughput, productivity is in
a different order of magnitude. Again, no justification for
considering the snapshots as outliers could be found.

6.3 Results of the Experiment

As discussed in Section 5, the relation between test code
quality and issue handling performance is assessed by
testing three hypotheses. In particular, we test whether
there is correlation between test code quality and three
issue handling performance indicators, namely defect res-
olution speed, throughput and productivity. Additionally,
for throughput and productivity, we subdivided the issues
into defects and enhancements. For each of these tests, a
Spearman correlation test was performed. Table 16 shows
the results of the correlation tests.

All the correlations are significant at the 99% confidence
level except for the correlation between test code quality
and defect resolution speed. No significant correlation was
found in that case. Therefore we cannot reject the hy-
pothesis H1null : there is no significant correlation between
test code quality and defect resolution speed. Throughput
and productivity have strong and statistically significant
correlations with test code quality. The correlation coef-
ficient is 0.50 and 0.51 for throughput and productivity



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 17

TABLE 16
Summary of correlations with the test code quality rating of

the systems
ρ p-value N

Defect Resolution Speed 0.06 0.330 63
Throughput 0.50** 0.000 54

Defect Throughput 0.43* 0.001 54
Enhancement Throughput 0.64** 0.000 54

Productivity 0.51** 0.000 54
Defect Productivity 0.45* 0.000 54
Enhancement Productivity 0.60** 0.000 54

*medium effect size; **large effect size

respectively in the 99% confidence level. This enables us
to reject H2null and H3null and maintain the alternative
hypotheses: significant positive correlations exist between
test code quality and throughput, and test code quality and
productivity. In more detail, Table 16 also shows that there
is significant positive correlation between test code quality
and throughput and productivity at the level of defects and
enhancements. In particular, the correlations are slightly
stronger when only considering enhancements.

Even though only the correlations between the overall
test code quality rating and each of the issue handling
performance indicators are required to test the formulated
hypotheses, we present the correlations between all the
underlying levels of the test code quality model and the
issue handling indicators to acquire an indication of which
aspects of test code are particularly influential on issue
handling performance.

To indicate the effect size of correlations, we follow the
guideline suggested by Cohen [74]. ρ = 0.1 is considered
having a small effect size, while ρ = 0.3 and ρ = 0.5 are
considered having medium and large effect sizes respec-
tively. We indicate effect size for correlations having at
least medium effect sizes.

6.3.1 Hypothesis 1 : The relation between test code quality
and defect resolution speed

Table 17 presents the correlation between the test code
quality model’s ratings and the defect resolution speed
rating for the subject snapshots. No significant correlation is
found between test code quality and defect speed rating, as
such, no conclusion can be drawn regarding this hypothesis.
Among the properties of test code quality, only code
coverage has a significant correlation with defect resolution
speed. However, code coverage is weakly correlated with
defect resolution speed (ρ = 0.28).

6.3.2 Hypothesis 2 : The relation between test code quality
and throughput

Looking at Table 17, test code quality is significantly
correlated with throughput at the 99% confidence level.
Therefore, this hypothesis is maintained. In fact, it has
the highest correlation coefficient (ρ = 0.50) compared to
the sub-characteristics and properties levels. At the sub-
characteristics level, completeness and effectiveness have
similar, significant correlations with throughput. Maintain-
ability is not significantly correlated with throughput. We

can also differentiate the results between the properties that
relate to completeness and effectiveness, and the properties
that relate to maintainability. Code coverage, assertions-
McCabe ratio, assertion density and directness are all
significantly correlated with throughput. The higher cor-
relation is between throughput and the assertions-McCabe
property (ρ = 0.48 and p-value � 0.01).

If we consider defect throughput and enhancement
throughput separately, we see that both are significantly cor-
related with test code quality at the 99% confidence level.
The correlation is stronger for enhancement throughput.

6.3.3 Hypothesis 3 : The relation between test code quality
and productivity

Table 17 presents the correlation between the test code
quality model’s ratings and productivity. The overall rating
of test code quality has a significant correlation with
productivity (ρ= 0.51 and p-value� 0.01). Therefore, this
hypothesis is maintained. At the sub-characteristics level of
the model, completeness’s correlation with productivity is
the highest (ρ = 0.56 and p-value � 0.01). Effectiveness
is also significantly correlated with productivity. Once
again, maintainability lacks correlation with productivity.
We observe that the correlations behave similarly to those of
throughput. Code coverage, assertions-McCabe ratio, asser-
tion density and directness are significantly correlated with
productivity. The completeness related properties appear
to have a stronger correlation with productivity than the
effectiveness related ones. The properties that are related
to test code maintainability are not significantly correlated
to productivity.

If we again consider defect productivity and enhance-
ment productivity separately, we observe that both show
significant correlation with test code quality, with stronger
correlation for enhancement productivity.

6.4 Interpretation of the Results

Defect resolution speed

Contrary to our expectations, test code quality was not
found to be significantly correlated with defect resolution
speed in our experiment. None of the model’s properties
was correlated with defect resolution speed except for
code coverage, which was weakly correlated. Of course,
absence of significant correlation in the experiment we
performed does not mean that there is no correlation.
Further replications of the experiment have to be conducted
to be able to draw a more definitive conclusion. However, a
close examination of the process of software development
might provide a hint to explain this result.

During development changes are applied to the produc-
tion code to implement new features, fix defects or refactor
the current code. One of the main ideas behind automated
tests is that after a change the tests are executed, to make
sure that the change did not cause any test to fail. In the
scenario where the execution of the tests results in a failed
test, the developer will realise that his change introduced
some problem in the system; the developer will re-work the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 18

TABLE 17
Correlation results for defect resolution speed, throughput and productivity.

Defect Resolution Throughput (N = 45) Productivity (N = 45)
Speed (N=63) Defects Enhancements Combined Defects Enhancements Combined

ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value

Code Coverage 0.28 0.013 0.27 0.026 0.39* 0.000 0.28 0.021 0.51** 0.00 0.43* 0.000 0.49* 0.000
Assertions-McCabe Ratio 0.01 0.480 0.41* 0.000 0.57** 0.000 0.48* 0.000 0.48* 0.000 0.56** 0.000 0.53** 0.000
Assertion Density 0.02 0.427 0.24 0.036 0.34* 0.000 0.29 0.017 0.26 0.026 0.32* 0.008 0.33* 0.007
Directness 0.08 0.260 0.26 0.029 0.45* 0.000 0.31* 0.012 0.32* 0.009 0.43* 0.000 0.36* 0.004
Duplication −0.45 0.999 0.09 0.248 −0.04 0.611 0.10 0.246 −0.13 0.833 −0.14 0.846 −0.13 0.827
Unit Size −0.11 0.800 0.03 0.408 −0.03 0.596 0.06 0.330 −0.11 0.786 −0.02 0.566 −0.09 0.747
Unit Complexity −0.09 0.747 0.07 0.289 −0.10 0.771 0.06 0.321 −0.07 0.682 −0.13 0.825 −0.08 0.719
Unit Dependency −0.17 0.905 0.06 0.327 0.02 0.442 0.10 0.236 −0.25 0.963 −0.06 0.678 −0.20 0.927

Completeness 0.12 0.182 0.38* 0.002 0.52** 0.000 0.42* 0.001 0.54** 0.000 0.53** 0.000 0.56** 0.000
Effectiveness 0.07 0.282 0.33* 0.006 0.57** 0.000 0.41* 0.001 0.41* 0.001 0.55** 0.000 0.49* 0.000
Maintainability −0.29 0.989 0.07 0.299 −0.04 0.623 0.10 0.244 −0.26 0.971 −0.13 0.838 −0.24 0.957

Test Code Quality 0.06 0.330 0.43* 0.001 0.64** 0.000 0.50** 0.000 0.45* 0.000 0.60** 0.000 0.51** 0.000
*medium effect size; **large effect size

source code, to make sure that his change does not make
any test fail. This is how automated tests prevent defects
from appearing.

Conversely, a defect that is reported in an ITS is probably
a defect that was not detected by the test code. Therefore,
the resolution speed of defects listed in ITSs turns out
not to be influenced by the test code of the system. This
is one possible reason why no significant correlation was
found between test code quality and defect resolution speed.
Another reason would be the limited reliability of the ITS
data. As discussed in Section 7, issues may have been
resolved earlier than the moment they were marked as
closed, or not marked as closed at all [50].

Throughput and productivity

On the other hand, throughput and productivity confirm
our expectation that they are related to the quality of test
code. Fig. 7 and 8 compare throughput and productivity
with the different levels of test code quality. In particular,
the snapshots were grouped in quality levels according
to their test code quality rating. Snapshots with ratings
between 0.5 and 1.5 are one star, 1.5 and 2.5 two star,
and so on. Unfortunately, our dataset has no snapshots
with test code quality that is above 3 stars (> 3.5). The
extreme values depicted in Fig. 7 and 8 as circles are not
considered outliers due to the lack of evidence after manual
inspection as discussed in Section 6.2. Note that some of the
extreme values were removed from the figures to improve
readability.

For throughput we observe that there is a significant in-
crease between 3-star snapshots and 1- and 2-star snapshots.
However, the difference between 1- and 2-star snapshots
is very small, with the 2-star snapshots having a median
that is lower than the median for 1-star snapshots. This
can be explained by examining the thresholds of most of
the properties as shown in Section 3.4. There we saw that
the thresholds of several properties that separate 1- and 2-
star systems are very low, thus significantly decreasing the
difference between 1- and 2-star systems.

The same observations apply for productivity. Even
though the median of 2-star snapshots is a bit higher than

Te
st
	  C
od

e	  
Q
ua
lit
y	  
Le
ve
ls

1

2

3

0.2 0.4 0.6 0.8 1.0
Throughput

0.0

!!!

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.41.2 1.4

Fig. 7. Comparison between throughput and different test
code quality levels

Te
st
	  C
od

e	  
Q
ua
lit
y	  
Le
ve
ls

1

2

3

Produc7vity
0 5

!

!

0 1 2 3 4 5 6 71 2 3 4 6 7

Fig. 8. Comparison between productivity and different test
code quality levels

the median of 1-star snapshots, the difference is small.
Productivity significantly improves for 3-star systems.

We also note that correlations for throughput and produc-
tivity are slightly stronger when only considering enhance-
ments compared to only considering defects. This hints at
the fact that high quality test code is more beneficial for
implementing enhancements than it is for fixing bugs.

Sub-characteristics

As far as the influence of each of the sub-characteristics
is concerned, we observe that completeness and effec-
tiveness are both significantly correlated with throughput
and productivity. On the other hand, maintainability is



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 19

not significantly correlated with either one. Completeness
and effectiveness have a direct relation to the benefits
of automated testing during development. Completeness
reflects the amount of the system that is searched for
defects, while effectiveness reflects the ability of the system
to detect defects and locate their causes. Maintainability’s
role is different as it has no direct influence on the testing
capability of the system. It rather focuses on the effort that
is necessary to maintain the test code so that it remains as
complete and as effective as it is. This may explain the lack
of correlation between maintainability and issue handling
performance indicators.

In addition, it is interesting to note that assertions-
McCabe ratio has the highest correlation among the prop-
erties of the model both for throughput and productivity.
This finding implies that assertions per decision point are
potentially a better indicator of test code quality than simply
measuring the percentage of lines that are covered.

Finally, an interesting observation is the discrepancy of
the result between defect resolution speed, and throughput
and productivity. As it has already been discussed, the lack
of correlation between defect resolution speed and test code
quality could be explained by, among others, the expecta-
tion that the defects reported in an ITS are those that were
not detected by the test code. This observation is also partly
supported by the fact that when we consider throughput
and productivity separately for defects and enhancements,
the correlation is stronger for enhancements than it is for
defects.

6.5 Controlling the confounding factors

In Section 5.1 we identified several factors that could be
influencing issue handling performance. In this section we
are assessing the influence of the confounding factors which
we can measure on issue handling. There are two factors
which we measure, namely production code maintainability
and team size. Production code maintainability is measured
by applying the SIG quality model on the source code of the
systems. Team size is measured by counting the users that
committed code at least once in the VCS of the systems.

In the case of the correlation between test code quality
and defect resolution speed, no significant correlation was
found. However, it could be that the correlation could not
be observed because of the effect of confounding factors.
In the cases of throughput and productivity, confounding
factors might be the reason correlation was found. To
establish a clearer view on the relations between test code
quality and issue handling indicators, we will use the
method of multiple regression analysis.

In particular, we apply stepwise multiple regression
analysis. The method involves constructing linear models
that express the relationship between a dependent variable
and the independent variables that influence it. The linear
models under analysis are the following:

TABLE 18
Results of multiple regression analysis for throughput and

productivity
Model Coefficient Std. Error t p-value

Throughput

(Constant) -1.512 0.598 -2.529 0.015
Test Code Quality Rating 0.614 0.229 2.682 0.010
Team Size 0.040 0.019 2.120 0.039
Model Summary: R2 = 0.193; p≤ 0.01

Productivity
(Constant) -3.406 2.004 -1.699 0.095
Test Code Quality Rating 2.081 0.793 2.624 0.011
Model Summary: R2 = 0.117; p = 0.011

Def. Res. Speed Rating = tCode Quality Rating + pCode Maintainability Rating + Team Size + c

Throughput = tCode Quality Rating + pCode Maintainability Rating + Team Size + c

Productivity = tCode Quality Rating + pCode Maintainability Rating + Team Size + c

(1)

where Def. Res. Speed Rating is the defect resolution
speed rating, tCode Quality Rating is the test code quality
rating, pCode Maintainability Rating is the production code
maintainability rating.

The results of applying the multiple regression analysis
for defect resolution speed did not qualify any of the
independent variables as significant predictors of defect res-
olution speed. The results for throughput and productivity
are shown in Table 18.

The results of the multiple regression analysis for
throughput qualify test code quality and team size as
significant predictors of throughput. Production code main-
tainability was eliminated from the selection after the first
step of the regression analysis as it was a weaker predictor
(for an explanation of stepwise multiple regression analysis
see Section 5.6). The results of the same analysis for
productivity indicate test code quality alone as a significant
predictor of productivity.

These results increase our confidence that our results
(Section 6.3) hold after we control for the influence of
production code maintainability and team size. The fact
that test code quality appears to have a stronger influence on
throughput and productivity than production code maintain-
ability is an interesting finding and intrigues future research.

7 THREATS TO VALIDITY

In this section factors that may pose a threat to the validity
of the study’s results are identified. We follow the guide-
lines that were proposed by Perry et al. [75] and Wholin
et al. [76], and organize the factors in four categories:
construct, internal, external and conclusion validity.

7.1 Construct Validity

Do the variables and hypotheses of our study accurately
model the research questions?

Test code quality measurement: The test code quality
model was developed by following the GQM approach [76].



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 20

The most important aspects of test code quality were identi-
fied and metrics that were considered suitable were selected
after studying the literature. However, more metrics can
be used. For example, mutation testing (see Section 2.1.2)
could be used as a metric that indicates the effectiveness
of test code. Thus, the model is not complete, but it is our
belief that the metrics that were used in combination with
the layered structure and the benchmark-based calibration
of the metrics provide a fair assessment of test code quality.

Indicators of issue handling performance: Three indi-
cators were used to measure different aspects of issue
handling performance. Nevertheless, more aspects of issue
handling can be captured. For example, the number of
issues that are reopened would indicate inefficiency in
the resolution process. In addition, the used indicators are
focusing on quantitative aspects of issue handling, but
qualitative analysis could provide further insights, e.g.,
while not trivial to perform, the difficulty of resolving each
issue could be assessed. It is clear that the set of issue
handling indicators used in this study is not complete, but
it captures important aspects of issue handling performance.

Quality of data: Our dependent variables are calculated
based on data that are extracted from ITSs. The data in these
repositories are not sufficiently accurate [50]. Issues may
be registered as closed later than the time when the actual
work on the issues has stopped. Some others may have been
resolved despite the fact that it has not been registered in
the ITS. An additional case is when a clean-up is performed
on the ITS and issues are closed massively after realising
that they have been resolved but not marked as such in the
issue tracker. We tried to mitigate this problem by applying
data cleaning to reduce the noise in the ITSs data.

Number of developers: The number of developers was
measured (1) to calculate productivity and (2) to measure
the influence of team size as a confounding factor. The
number of developers was calculated by counting the num-
ber of users that committed code at least once in the VCS.
This is an indication of how many people were active in the
project, but it is not guaranteed to be a fair representation
of the amount of effort that was put in the project. This
is because (1) commits can vary significantly with regard
to the effort that they represent, (2) new members of
open source development teams often do not have the
rights to commit code and instead, senior members of the
project perform the commit on their behalf, (3) sometimes
team members uses different aliases and (4) it has been
demonstrated by Mockus et al. [52] that in open source
projects there is a core team that performs the majority
of the effort. The first two problems remain threats to the
validity of our study. For the fourth problem we performed
a similar analysis as done in [52] to calculate the number
of developers in the core team.

In [52] the Pareto principle seems to apply since 20%
of the developers perform 80% of the effort (measured in
code churn). In our study, we applied the Pareto principle
to calculate the number of developers that account for
80% of the commits. The commits per developer were
calculated and sorted in decreasing order. Subsequently, we

determined the cut-off point for 80% of the total commits
and determined the core team.

In our dataset the Pareto principle does not seem appar-
ent. In fact, the core team is 20±5% of the total number
of developers in only 18.5% of the snapshots. This implies
a large group of active developers. Again, the granularity
of commits is a threat to the measurements.

After calculating productivity as the number of resolved
issues per month divided by the number of core team
developers, we rerun the correlation test between test code
quality and team core productivity. The results revealed no
radical change in the correlation in comparison with the
whole team productivity (ρ = 0.44 and p-value� 0.01).

Test coverage estimation: dynamic test coverage estima-
tion techniques are known to provide greatly fluctuating
values in the context of state-based software systems [77].
Our test code quality model does not make use of dynamic
coverage estimation techniques, but rather uses the slice-
based approach by Alves and Visser [58]. In theory, this
approach should not be susceptible to the issue of state.

7.2 Internal Validity

Can changes in the dependent variables be safely attributed
to changes in the independent variables?

Establishing causality: The experiment’s results are a
strong indication that there is a relation between the test
code quality model’s ratings and throughput and produc-
tivity of issue handling. However, this is not establishing
causality between the two. Many factors exist that could
be the underlying reasons for the observed relation, factors
which we did not account for.

Confounding factors: In Section 5.4 a subset of possible
confounding factors was identified. We did not control
for the granularity of the issues, the experience of the
developers or the project’s popularity. Additional factors
possibly exist as it is impossible to identify and control all
of them. However, we attempted to measure and control
for the effect of production code maintainability and team
size, and established that they do not influence the relation
of test code quality with throughput and productivity.

A final remark over confounding factors concerns the
correlation between test code quality and production code
maintainability. Significant positive correlation of medium
strength was found (ρ = 0.42 and p-value � 0.01). How-
ever, it is hard to draw any conclusion. The reason behind
this finding could be either of the following three: (1) better
production code makes it easier to develop better test code,
(2) better test code facilitates writing better production code
or (3) the skill of the development team is reflected both
in test code and production code quality.

Unequal representation and dependence of the subject
systems: In the dataset, each snapshot is considered as a
system. The systems are represented with unequal numbers
of snapshots. The number of snapshots ranges from 2 for
jMol to 7 for ArgoUML and Ant. Therefore the contribution
of each system to the result is not equal. In addition,
the snapshots of the same system are not independent.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 21

We address these threats by establishing strict criteria for
snapshot selection: a period of at least one year and at least
30% code churn between two consecutive snapshots.

Experts’ experience with the case studies: The selection
of the experts was mainly based on their knowledge about
the measurements of the case studies. Both experts are
working on analysing and evaluating the quality of software
systems on a daily basis. In particular, expert for system A
has more than 7 years of experience and expert for system
B has 4 years of experience.

7.3 External Validity

Can the study’s results be generalised to settings outside of
the study?

Generalisation to commercial systems: The data used in
the experiment were obtained from open source systems.
The development process in open source systems differs
from that in commercial systems. Therefore, strong claims
about the generalisability of the study’s results for commer-
cial systems cannot be made. Nevertheless, a number of
open source practices (such as the use of ITSs, continuous
integration and globally distributed development) appear to
be applied in commercial systems as well [78], leading us
to believe that development practices in open source and
commercial systems are not that far apart.

Technology of development: All subject systems in our
experiments are developed in Java. To generalize our re-
sults, in particular to other programming approaches such as
procedural or functional programming, we need to carry out
additional experiments. On the other hand, programming
languages that share common characteristics (i.e., object
oriented programming, unit testing frameworks) with Java
follow similar development processes and therefore the
results are believed to be valid for them.

The bias of systems that use ITSs: The systematic use
of an ITS was established as a criterion for the selection of
subject systems. The development teams of such systems
appear to be concerned about the good organization of their
projects. Therefore, the relation between test code quality
and issue handling cannot be generalised to systems whose
teams are at lower maturity levels.

Absence of systems whose test code quality is rated 4 and
5 stars: Unfortunately, none of the snapshots in the dataset
was rated above 3.5 for test code quality. Thus, we cannot
claim that the correlation between test code quality, and
throughput and productivity will remain positive for such
systems. Future replications are necessary to generalise our
results for the whole scale of the test code quality rating.

Limited number of experts: In Section 4 we asked two
experts to judge the test code quality of two industrial
systems in order to determine how closely the model aligns
with expert opinion. We realize that two expert opinions are
limited to draw a strong conclusion from and we consider
adding more case studies as future work.

7.4 Conclusion Validity

To which degree conclusions reached about relationships
between variables are justified?

Amount of data: The correlation tests run for the three
hypotheses of the experiment contained 63, 54 and 54
data points for the correlations between test code quality
and defect resolution speed, throughput and productivity
respectively. The number of data points is considered
sufficient for performing non-parametric correlation tests,
such as Spearman’s ranked correlation test. The statistical
power of the results for throughput and productivity can be
considered highly significant, since the p-values were lower
that 0.01. In addition, the correlation coefficient in both
cases was approximately 0.50, an indication of a medium
to strong correlation. However, it would be desirable to have
a larger dataset, with snapshots of solely different systems
to increase the strength of the results.

8 RELATED WORK

8.1 Test code quality models

To our knowledge the efforts of assessing test code quality
are mainly concentrating in the area of individual metrics
and criteria such as those presented in Section 2.1. In this
study we aim at constructing a test code quality model in
which a set of source code metrics are combined. Nagappan
has similar intentions as he proposed a suite of test code
related metrics that resulted in a series of studies [79].

The Software Testing and Reliability Early Warning
(STREW) static metric suite is composed of nine metrics
which are separated in three categories: test quantification,
complexity and object-orientation (O-O) metrics, and size
adjustment. The group of the test quantification metrics
contains four metrics: (1) number of assertions per line
of production code, (2) number of test cases per line of
production code, (3) the ratio of number of assertions to
the number of test cases and (4) the ratio of testing lines of
code to production lines of code divided by the ratio of the
number of test classes to the number of production classes.

To validate STREW as a method to assess test code qual-
ity and software quality a controlled experiment was per-
formed [80]. Students developed an open source Eclipse11

plug-in in Java that automated the collection of the STREW
metrics. The student groups were composed of four or five
junior or senior undergraduates. Students were required to
achieve at least 80% code coverage and to perform a set of
given acceptance tests.

The STREW metrics of 22 projects were the independent
variables. The dependent variables were the results of 45
black-box tests of the projects. Multiple regression analysis
was performed assessing the STREW metrics as predictors
of the number of failed black-box tests per KLOC (1 KLOC
is 1000 lines of code). The result of the study revealed a
strong, significant correlation (ρ = 0.512 and p-value �
0.01). On that basis they concluded that a STREW-based
multiple regression model is a practical approach to assess
software reliability and quality.

As mentioned previously, in our study we also aim at
selecting a set of metrics to assess test code quality. The

11. http://www.eclipse.org/



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 22

STREW metrics provide the basis for selecting suitable
metrics. However, our goal is to go a step further and
develop a model which is based on the metrics. This quality
model is inspired on the SIG quality model and makes it
easier to compare systems, which would otherwise have to
be done by comparing raw metrics’ values. In addition, we
also identified a weak point of the STREW metrics suite,
in particular, the lack of coverage-related metrics.

8.2 Software quality models

If we do not confine ourselves to test code quality models,
but focus on more general software quality models, we see
that a lot of work has been done in this area [81]. One
of the earliest quality models was presented by McCall et
al. in 1977 [82]. This model, sometimes also known as
McCall’s Triangle of Quality, has three major perspectives
for defining and identifying the quality of a software
product: product revision (ability to undergo changes),
product transition (the adaptability to new environments)
and product operations (its operation characteristics —
correctness, efficiency, ...).

Another important step is represented by Boehm’s quality
model [83], which attempts to define software quality by
a given set of attributes and metrics. Boehm’s model is
similar to McCall’s model in that it also presents a hier-
archical model structured around high-level characteristics,
intermediate level characteristics, primitive characteristics,
each of which contributes to the overall quality level.

Somewhat less known are the FURPS quality model,
originally proposed by Grady [84] and later on extended
by IBM Rational into the FURPS+ model and Dromey’s
quality model [85].

More recently, the ISO 9126 standard has been estab-
lished [62], which is based on McCall’s and Boehm’s
quality model. The standards group has recommended six
characteristics to form a basic set of independent quality
characteristics, namely: functionality, reliability, usability,
efficiency, maintainability and portability. It is the main-
tainability characteristic that forms the basis for the SIG
quality model that we use (also see Figure 1).

8.3 On the evolution of test code

Pinto et al. [86] investigated how unit test suite evolution
occurs. Their main findings are that test repair is an often
occurring phenomenon during evolution, indicating, e.g.,
that assertions are fixed. Their study also shows that test
suite augmentation is also an important activity during
evolution aimed at making the test suite more adequate.
One of the most striking observations that they make is
that failing tests are more often deleted than repaired.
Among the deleted failing tests, tests fail predominantly
(over 92%) with compilation errors, whereas the remaining
ones fail with assertion or runtime errors. In a controlled
experiment on refactoring with developer tests, Vonken and
Zaidman also noted that participants often deleted failing
assertions [51].

In similar style Zaidman et al. propose a set of visualiza-
tion to determine how production code and (developer) test
code co-evolve [3]. In particular, they observed that this co-
evolution does not always happen in a synchronized way,
i.e., sometimes there are periods of development, followed
by periods of testing. Lubsen et al. have a similar goal,
albeit they use association rule mining to determine co-
evolution [87]. In response to observations of the lack of
co-evolution, Hurdugaci and Zaidman [88] and Soetens et
al. [89] proposed ways to stimulate developers to co-evolve
their production and test code.

The aforementioned investigations can be placed in the
research area of mining software repositories [90].

9 CONCLUSIONS AND FUTURE WORK

Developer testing is an important part of software develop-
ment. Automated tests enable early detection of defects in
software, and facilitate the comprehension of the system.
We constructed a model to assess the quality of test code.
Based on the model, we explored the relation of test code
quality and issue handling performance.

9.1 Summary of Findings and Conclusions

We now summarise the findings of the study which enable
us to provide answers to the research questions.

9.1.1 RQ1: How can we evaluate the quality of test code?

The first goal of the study was to establish a method to as-
sess the quality of test code. Towards this end, we reviewed
test code quality criteria in the literature. Subsequently, we
identified the main aspects of test code quality and selected
a set of metrics that would provide measurements that en-
able the assessment of these aspects. The three main aspects
of test code quality that we identified are: completeness,
effectiveness and maintainability. Completeness concerns
the complete coverage of the production code by the tests.
Effectiveness indicates the ability of the test code to detect
defects and locate their causes. Maintainability reflects the
ability of the test code to be adjusted to changes of the
production code, and the extent to which test code can serve
as documentation.

Suitable metrics were chosen based on literature and
their applicability. Code coverage and assertions-McCabe
ratio are used to assess completeness. Assertion density and
directness are indicators of effectiveness. For maintainabil-
ity, the SIG quality model was adjusted to be reflective of
test code maintainability. The metrics are aggregated using
a benchmarking technique to provide quality ratings that
inform the user of the quality of the system in comparison
with the set of systems in the benchmark.

The main aspects of test code quality were used to define
corresponding sub-characteristics as a layer of the test code
quality model. In the next layer, the metrics are mapped to
each of the sub-characteristics. The model aggregates the
metrics into sub-characteristics, and the sub-characteristics
into an overall test code quality rating.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 23

9.1.2 RQ2: How effective is the developed test code quality
model as an indicator of issue handling performance?

To validate the usefulness of the test code quality model,
we formulated and tested hypotheses based on the expected
benefits of developer testing. The benefits include the
localization of the cause of the defects and the removal
of fear of modifying the code, since the tests serve as
safety nets that will detect defects that are introduced by
applying changes. Therefore, we tested whether there is
positive correlation between test code quality and three
issue handling performance indicators: defect resolution
speed, throughput and productivity.

To test the aforementioned hypotheses, we collected data
from 75 snapshots belonging to 18 open source systems,
including source code, VCSs logs and ITSs data. After
controlling for the effects of the maintainability of the
production code and the size of the development team, we
have found that test code quality is positively correlated
with throughput and productivity.

At the same time, no significant correlation was found
between test code quality and defect resolution speed, a
result that contrasts our expectations. However, possible
explanations for this observation exist, such as the fact that
the defects that are being reported in ITSs are the ones
that the test code failed to detect. In addition, the ability to
obtain an accurate estimation of the resolution time of an
issue from ITS data is limited. Further experimentation is
necessary to draw conclusions about the relation between
test code quality and defect resolution speed.

The findings of the experiment suggest that test code
quality, as measured by the proposed model, is positively
related to some aspects of issue handling performance.

9.2 Contributions

The contributions of this study can be summarised as
follows: we constructed a model that combines metrics to
provide a measure of test code quality. We subsequently
calibrated that model with 86 open source and commercial
Java systems so that the ratings of a system’s test code
reflect its quality in comparison with those systems. We
performed an empirical investigation that demonstrated a
significant positive correlation between test code quality
and throughput and productivity of issue handling.

9.3 Future Work

During the study several questions emerged. In this section
we identify interesting topics for future research.

The current test code quality model is solely based on
source code measures. It might be interesting to extend
the model with historical information that would bring
additional insight as to the number of previous bugs (defects
that were not caught by the test code).

In Section 2.1.2 we presented mutation testing as a test
effectiveness evaluation method. An experiment with the
mutation testing score as dependent variable would provide
further validation of the test code quality model.

To assess the relation between test code quality and issue
handling performance we used three issue handling indica-
tors. However, other indicators reflect different aspects of
issue handling, e.g., the percentage of reopened issues could
provide an indication of issue resolution efficiency. Future
research that includes additional indicators will contribute
to the knowledge of which aspects of issue handling are
related to test code quality in particular.

In our study, positive and statistically significant corre-
lation was found between test code quality, and throughput
and productivity. This is an indication that higher test
code quality leads to higher throughput and productivity.
However, it would be interesting to quantify the magnitude
of the improvement, as well as the costs that are involved.
This would facilitate managers in taking decisions related
to investments in improving test code quality.

Related to the previous item of future work is to quantify
the effect of test code quality on productivity and through-
put and identify a critical mass, e.g., a minimal level of, for
example, test coverage a test suite needs to fulfill in order
to have a true impact on throughput and productivity.

It would also be interesting to study whether having high
test code quality is more beneficial to pre-release defects
or post-release defects.

Looking at Table 14 we see that several of the open
source projects exhibit a greatly differing number of defects
that are reported, e.g., when comparing Apache Ant to
Apache Ivy we observe respectively 1,680 and 228 reported
issues. In future work we want to investigate whether
the number of developers, the number of installations, the
number of major/minor release per year, and other process
related differences could explain this difference.

ACKNOWLEDGMENTS

This work was partly funded by (1) the NWO TestRoots
project (project number 639.022.314) and (2) the RAAK-
PRO project EQuA (Early Quality Assurance in Software
Production) of the Foundation Innovation Alliance (the
Netherlands).

REFERENCES

[1] A. Bertolino, “Software testing research: Achievements, challenges,
dreams,” in International Conference on Software Engineering
(ICSE), Workshop on the Future of Software Engineering (FOSE).
IEEE CS, 2007, pp. 85–103.

[2] M. Ellims, J. Bridges, and D. C. Ince, “The economics of unit
testing,” Empir. Software Eng., vol. 11, no. 1, pp. 5–31, 2006.

[3] A. Zaidman, B. Van Rompaey, A. van Deursen, and S. Demeyer,
“Studying the co-evolution of production and test code in open
source and industrial developer test processes through repository
mining,” Empir. Software Eng., vol. 16, no. 3, pp. 325–364, 2011.

[4] X. Xiao, S. Thummalapenta, and T. Xie, “Advances on improving
automation in developer testing,” Advances in Computers, vol. 85,
pp. 165–212, 2012.

[5] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Prentice
Hall PTR, 2006.

[6] K. Beck, Test-driven development: by example. Addison-Wesley
Professional, 2003.

[7] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Comp. Surveys, vol. 29, no. 4, pp. 366–427,
1997.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 24

[8] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for measur-
ing maintainability,” in Proc. Int’l Conf. on Quality of Information
and Communications Technology. IEEE, 2007, pp. 30–39.

[9] B. Luijten, J. Visser, and A. Zaidman, “Assessment of issue handling
efficiency,” in Proc. of the Working Conference on Mining Software
Repositories (MSR). IEEE CS, 2010, pp. 94–97.

[10] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long
will it take to fix this bug?” in Proc. of the International Workshop
on Mining Software Repositories (MSR). IEEE CS, 2007, pp. 1–.

[11] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proceedings of the International Workshop on Recommendation
Systems for Software Engineering (RSSE). ACM, 2010, pp. 52–56.

[12] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix bugs?”
in Proceedings of the international workshop on Mining software
repositories (MSR). ACM, 2006, pp. 173–174.

[13] S. N. Ahsan, J. Ferzund, and F. Wotawa, “Program file bug fix effort
estimation using machine learning methods for OSS,” in Proc. Int’l
Conf. on Softw. Eng. & Knowledge Eng. (SEKE), 2009, pp. 129–134.

[14] D. Bijlsma, “Indicators of issue handling efficiency and their relation
to software maintainability,” MSc Thesis, Univ. of Amsterdam, 2010.

[15] D. Bijlsma, M. Ferreira, B. Luijten, and J. Visser, “Faster issue res-
olution with higher technical quality of software,” Software Quality
Journal, vol. 20, no. 2, pp. 265–285, 2012.

[16] E. Weyuker, “Axiomatizing software test data adequacy,” IEEE
Trans. Softw. Eng., vol. 12, no. 12, pp. 1128–1138, 1986.

[17] W. C. Hetzel and B. Hetzel, The complete guide to software testing.
Wiley, 1991.

[18] J. S. Gourlay, “A mathematical framework for the investigation of
testing,” IEEE Trans. Softw. Eng., vol. 9, no. 6, pp. 686–709, 1983.

[19] W. E. Howden, “Methodology for the generation of program test
data,” IEEE Trans. on Computers, vol. 24, no. 5, pp. 554–560, 1975.

[20] W. G. Bently and E. F. Miller, “CT coverageinitial results,” Software
Quality Journal, vol. 2, no. 1, pp. 29–47, 1993.

[21] G. J. Myer, The art of software testing. Wiley, 1979.
[22] M. R. Woodward, D. Hedley, and M. A. Hennell, “Experience with

path analysis and testing of programs,” IEEE Trans. Softw. Eng.,
vol. 6, no. 3, pp. 278–286, May 1980.

[23] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Trans. Softw. Eng., vol. 14, no. 10, pp. 1483–
1498, October 1988.

[24] S. Rapps and E. J. Weyuker, “Selecting software test data using
data flow information,” IEEE Trans. Softw. Eng., vol. 11, no. 4, pp.
367–375, 1985.

[25] S. C. Ntafos, “A comparison of some structural testing strategies,”
IEEE Trans. Softw. Eng., vol. 14, no. 6, pp. 868–874, 1988.

[26] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, “A
formal evaluation of data flow path selection criteria,” IEEE Trans.
Softw. Eng., vol. 15, no. 11, pp. 1318–1332, 1989.

[27] J. W. Laski and B. Korel, “A data flow oriented program testing
strategy,” IEEE Trans. Softw. Eng., vol. 9, no. 3, pp. 347–354, 1983.

[28] A. Podgurski and L. A. Clarke, “A formal model of program
dependences and its implications for software testing, debugging,
and maintenance,” IEEE Trans. Softw. Eng., vol. 16, no. 9, pp. 965–
979, 1990.

[29] H. D. Mills, “On the statistical validation of computer programs,”
IBM Federal Systems Division, Report FSC-72-6015, 1972.

[30] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34–41, 1978.

[31] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE
Trans. Softw. Eng., vol. 3, no. 4, pp. 279–290, 1977.

[32] L. J. White and E. I. Cohen, “A domain strategy for computer
program testing,” IEEE Trans. Softw. Eng., vol. 6, no. 3, pp. 247–
257, 1980.

[33] L. A. Clarke, J. Hassell, and D. J. Richardson, “A close look at
domain testing,” IEEE Trans. Softw. Eng., vol. 8, no. 4, pp. 380–
390, July 1982.

[34] F. H. Afifi, L. J. White, and S. J. Zeil, “Testing for linear errors in
nonlinear computer programs,” in Proc. of the Int’l Conference on
Software Engineering (ICSE). ACM, 1992, pp. 81–91.

[35] W. Howden, “Theory and practice of functional testing.” IEEE
Software, vol. 2, no. 5, pp. 6–17, 1985.

[36] G. Kudrjavets, N. Nagappan, and T. Ball, “Assessing the relationship
between software assertions and faults: An empirical investigation,”
in 17th International Symposium on Software Reliability Engineering
(ISSRE). IEEE CS, 2006, pp. 204–212.

[37] J. Voas, “How assertions can increase test effectiveness,” IEEE
Software, vol. 14, no. 2, pp. 118–119,122, 1997.

[38] A. van Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring
test code,” in Proc. of the Int’l Conf. on Extreme Programming and
Flexible Processes in Software Engineering (XP), 2001, pp. 92–95.

[39] B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger, “On
the detection of test smells: A metrics-based approach for general
fixture and eager test,” IEEE Trans. Softw. Eng., vol. 33, no. 12, pp.
800–817, 2007.

[40] S. Reichhart, T. Gı̂rba, and S. Ducasse, “Rule-based assessment of
test quality,” Journal of Object Technology, vol. 6, no. 9, pp. 231–
251, 2007.

[41] M. Greiler, A. Zaidman, A. van Deursen, and M.-A. D. Storey,
“Strategies for avoiding test fixture smells during software evolu-
tion,” in Proceedings of the Working Conference on Mining Software
Repositories (MSR). IEEE / ACM, 2013, pp. 387–396.

[42] A. Hunt and D. Thomas, The pragmatic programmer: from journey-
man to master. Addison-Wesley Longman, 1999.

[43] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann Publishers Inc., 2005.

[44] B. Luijten, “The Influence of Software Maintainability on Issue
Handling,” Master’s thesis, Delft University of Technology, 2009.

[45] A. Nugroho, “The Effects of UML Modeling on the Quality of
Software,” Ph.D. dissertation, University of Leiden, 2010.

[46] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5,
2005.

[47] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: bias in bug-fix datasets,”
Proc. of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations
of software engineering (ESEC/FSE), pp. 121–130, 2009.

[48] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “”not my
bug!” and other reasons for software bug report reassignments,” in
Proceedings of the Conference on Computer Supported Cooperative
Work (CSCW). ACM, 2011, pp. 395–404.

[49] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
Proceedings of the International Conference on Automated Software
Engineering (ASE). ACM, 2007, pp. 34–43. [Online]. Available:
http://doi.acm.org/10.1145/1321631.1321639

[50] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in Proceedings of
the SIGSOFT International Symposium on Foundations of software
engineering (FSE). ACM, 2008, pp. 308–318.

[51] F. Vonken and A. Zaidman, “Refactoring with unit testing: A
match made in heaven?” in Proc. of the Working Conf. on Reverse
Engineering (WCRE). IEEE Computer Society, 2012, pp. 29–38.

[52] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: the apache server,” in Proc. Int’l Conf.
on Software Engineering (ICSE). ACM, 2000, pp. 263–272.

[53] R. Baggen, J. Correia, K. Schill, and J. Visser, “Standardized
code quality benchmarking for improving software maintainability,”
Software Quality Journal, pp. 287–307, 2012.

[54] B. Luijten and J. Visser, “Faster defect resolution with higher
technical quality of software,” in 4th International Workshop on
Software Quality and Maintainability (SQM 2010), 2010.

[55] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds
from benchmark data,” in Proceedings of the International Confer-
ence on Software Maintenance (ICSM). IEEE CS, 2010, pp. 1–10.

[56] V. R. Basili, “Software modeling and measurement: the
Goal/Question/Metric paradigm,” Techreport UMIACS TR-92-
96, University of Maryland at College Park, College Park, MD,
USA, Tech. Rep., 1992.

[57] J. An and J. Zhu, “Software reliability modeling with integrated test
coverage,” in Proc. of the Int’l Conf. on Secure Software Integration
and Reliability Improvement (SSIRI). IEEE CS, 2010, pp. 106–112.

[58] T. L. Alves and J. Visser, “Static estimation of test coverage,” in
Proc. of the Int’l Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE CS, 2009, pp. 55–64.

[59] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Trans. Softw. Eng. Methodol., vol. 6, pp.
173–210, 1997.

[60] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of production
& test code,” in Proc. of the International Conference on Software



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 25

Testing, Verification, and Validation (ICST). IEEE Computer
Society, 2008, pp. 220–229.

[61] T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. 2,
no. 4, pp. 308–320, 1976.

[62] I. 9126-1:2001, “Software engineering - product quality - part 1:
Quality model,” ISO, Geneva, Switzerland, pp. 1–32, 2001.

[63] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “On
the interplay between software testing and evolution and its effect
on program comprehension,” in Software Evolution, T. Mens and
S. Demeyer, Eds. Springer, 2008, pp. 173–202.

[64] R. C. Martin, Clean Code: A Handbook of Agile Software Crafts-
manship. Prentice Hall, 2008.

[65] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice -
Using Software Metrics to Characterize, Evaluate, and Improve the
Design of Object-Oriented Systems. Springer, 2006.

[66] G. Beliakov, A. Pradera, and T. Calvo, Aggregation functions: a
guide for practitioners. Springer Verlag, 2007, vol. 221.

[67] T. L. Alves, J. P. Correia, and J. Visser, “Benchmark-based aggre-
gation of metrics to ratings,” in Proc. of the Joint Conference of the
International Workshop on Software Measurement and the Interna-
tional Conference on Software Process and Product Measurement
(IWSM/MENSURA). IEEE CS, 2011, pp. 20–29.

[68] D. Athanasiou, “Constructing a test code quality model
and empirically assessing its relation to issue handling
performance,” Master’s thesis, Delft University of Tech-
nology, 2011. [Online]. Available: http://resolver.tudelft.nl/uuid:
cff6cd3b-a587-42f2-a3ce-e735aebf87ce

[69] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in
a large object-oriented software system,” IEEE Trans. Softw. Eng.,
vol. 33, no. 10, pp. 687–708, 2007.

[70] R. Yin, Case study research: Design and methods. Sage Publica-
tions, Inc, 2009, vol. 5.

[71] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta, “Threats
on building models from cvs and bugzilla repositories: The mozilla
case study,” in Proc. Conf. of the Center for Advanced Studies on
Collaborative Research (CASCON). IBM, 2007, pp. 215–228.

[72] J. C. Munson and S. G. Elbaum, “Code churn: A measure for
estimating the impact of code change,” in Proc. Int’l Conf. on
Software Maintenance (ICSM). IEEE CS, 1998, pp. 24–31.

[73] A. Field, Discovering Statistics Using SPSS, 2nd ed. London:
SAGE, 2005.

[74] J. Cohen, Statistical power analysis for the behavioral sciencies.
Routledge, 1988.

[75] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of
software engineering: a roadmap,” in International Conference on
Software Engineering (ICSE), Workshop on the Future of Software
Engineering (FOSE). ACM, 2000, pp. 345–355.

[76] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduc-
tion. Kluwer Academic Publishers, 2000.

[77] G. Yorsh, T. Ball, and M. Sagiv, “Testing, abstraction, theorem prov-
ing: better together!” in Proceedings of the international symposium
on Software testing and analysis (ISSTA). ACM, 2006, pp. 145–156.

[78] J. E. Robbins, “Adopting open source software engineering (osse)
practices by adopting osse tools,” in Making Sense of the Bazaar:
Perspectives on Open Source and Free Software, J. Feller, B. Fitzger-
ald, S. Hissam, and K. Lakham, Eds. MIT Press, 2003.

[79] N. Nagappan, “A software testing and reliability early warning
(strew) metric suite,” Ph.D. dissertation, North Carolina State Uni-
versity, 2005.

[80] N. Nagappan, L. Williams, M. Vouk, and J. Osborne, “Early estima-
tion of software quality using in-process testing metrics: a controlled
case study,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–7,
2005.

[81] B. Kitchenham and S. L. Pfleeger, “Software quality: The elusive
target,” IEEE Softw., vol. 13, no. 1, pp. 12–21, 1996.

[82] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software
quality,” in Nat’l Tech.Information Service, no. Vol. 1, 2 and 3, 1977.

[83] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation
of software quality,” in Proc. Int’l Conf. on Software Engineering
(ICSE). IEEE Computer Society, 1976, pp. 592–605.

[84] R. B. Grady, Practical software metrics for project management and
process improvement. Prentice Hall, 1992.

[85] R. G. Dromey, “A model for software product quality,” IEEE Trans.
Softw. Eng., vol. 21, no. 2, pp. 146–162, 1995.

[86] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths and
realities of test-suite evolution,” in Proceedings of the International
Symposium on the Foundations of Software Engineering (FSE).
ACM, 2012, pp. 33:1–33:11.

[87] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production & test code,” in Proc. of the
International Working Conference on Mining Software Repositories
(MSR). IEEE CS, 2009, pp. 151–154.

[88] V. Hurdugaci and A. Zaidman, “Aiding software developers to
maintain developer tests,” in Proc. of the European Conference on
Software Maintenance and Reengineering (CSMR). IEEE, 2012,
pp. 11–20.

[89] Q. D. Soetens, S. Demeyer, and A. Zaidman, “Change-based test
selection in the presence of developer tests,” in Proc. of the European
Conference on Software Maintenance and Reengineering (CSMR),
2013, pp. 101–110.

[90] H. H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and
taxonomy of approaches for mining software repositories in the
context of software evolution,” Journal of Software Maintenance,
vol. 19, no. 2, pp. 77–131, 2007.


