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Phase-Based Classification for Arm Gesture
and Gross-Motor Activities Using
Histogram of Oriented Gradients

Ronny Gerhard Guendel, Graduate Student Member, IEEE, Francesco Fioranelli , Senior Member, IEEE,
and Alexander Yarovoy, Fellow, IEEE

Abstract—Micro-Doppler spectrograms are a conventional
data representation domain for movement recognition such
as Human Activity Recognition (HAR) or gesture detection.
However, they present the problem of time-frequency resolu-
tion trade-offs of Short-Time Fourier Transform (STFT), which
may have limitations due to unambiguous Doppler frequency,
and the STFT computation may be onerous in constrained
embedded environments. We propose in this paper an alter-
native classificationapproach based on the radar phase infor-
mation directly extracted from high-resolution Range Map
(RM). This novel approach does not use the aforementioned
micro-Doppler processing, and yet achieves equivalent or
even superior classification results. This shows a potential
advantage for low-latency, real-time applications, or computationally constrained scenarios. The proposed method
exploits the Histogram of Oriented Gradients (HOG) algorithm as an effective feature extraction algorithm, specifically
its capability to capture the unique shape and patterns present in the wrapped phase domains, such as their contour
intensity and distributions. Validation results consistently above 92% demonstrate the effectiveness of this method on
two independent datasets of arm gestures and gross-motor activities. These were classified with three algorithms,
namely the Nearest Neighbor (NN), the linear Support Vector Machine (SVM), and the Gaussian SVM classifiers using
the proposed phase information. Feature fusion of different data domains, e.g. the modulus of the RM fused with the RM
phase information, is also investigated and shows classification improvement specifically for the robustness of activity
performances, such as the aspect angle and the speed of performance.

Index Terms— Micro-Doppler radar, assisted living, range map, phase, classification, Histogram of Oriented Gradients
(HOG), feature fusion, human activity recognition (HAR).

I. INTRODUCTION

THE amount of research on human activity recog-
nition (HAR) with radar sensors has tremendously

increased over the past decades, with significant progress
made in almost every area related to activities of daily living
(ADL) [1], [2]. Closely associated are the areas of gesture
and arm motion recognition which attracted interest for their
potential for remote control of smart devices [3]–[6]. This
field has seen the development of many different classifica-
tion approaches, including those inspired by deep learning
techniques, such as Recurrent Neural Networks (RNN) with
their bidirectional implementations known as Bidirectional
Long Short-Term Memory (BI-LSTM) [7], frameworks to
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generate synthetic radar signatures via Generative Adversarial
Networks (GANs) [8], and effective cross-frequency train-
ing for multiple radar sensors used for HAR [9]. These
techniques for HAR and gesture classification also include
multimodal frameworks where different sensing modalities
can be combined together with radar. For example, in recent
studies, magnetic induction systems and more in general
wearables are also used for HAR in conjunction with radar
applications [10], [11].

Nonetheless, the majority of research work in radar for HAR
and gestures has focused mostly on the modulus (magnitude)
of the micro-Doppler (μD) spectrogram, and in part on the
Range Map (RM), the range-Doppler (RD), or the Range-
Doppler-Surface (RDS) as radar data domains to start the
classification process [12]–[16].

In this paper, we propose a different and innovative
approach based on the usage of the phase information directly
extracted from complex high-resolution RM matrices. To the
best of our knowledge, this data domain has been very
marginally explored for radar-based HAR and gesture clas-
sification, whereas other researchers have for example applied
Phase Unwrapping Techniques (PUT) on the phase of the μD

1558-1748 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 15,2021 at 07:15:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8254-8093


GUENDEL et al.: PHASE-BASED CLASSIFICATION FOR ARM GESTURE AND GROSS-MOTOR ACTIVITIES USING HOG 7919

Fig. 1. Matrix representation for the received radar signal of the Humatics
P410 radar.

spectrograms [17]. In this work we compare conventional
radar data domains, such as the μD spectrograms and RM,
with different formats of the proposed phase-based domain
information, namely the phase of the μD spectrogram and
the phase of the RM. In both cases, their original form (which
includes all recorded range bins) and a “cropped” form (which
only considers a spatial window, e.g. of approximately 1m
around the detected target for the RM) are considered.

Different features to be extracted from the aforementioned
data domains are investigated. We tested that conventional
well-performing feature extracted by the Two-Dimensional
(2-D) Principal Component Analysis (PCA) were not able
to capture the relevant information for HAR and gesture
classification from the unique shapes in the phase of the RM
matrices. On the contrary, features derived from the Histogram
of Oriented Gradients (HOG) technique proved to be suitable
when applied to phase matrices, as they are capable to capture
the salient patterns in terms of strength and orientation of the
typical “line structures” in such plots, while still retaining a
relatively simple mathematical formulation compared to less
easily explainable convolutional neural networks.

The paper is organized as follows. In Section II, the radar
signal model along with the HOG feature extraction method
and the data domains are presented. In Section III, the exper-
imental setup is outlined together with the detailed results on
the gross-motor activities and the arm gesture datasets. Finally,
concluding remarks are provided in Section IV.

II. SIGNAL REPRESENTATION AND FEATURE SELECTION

In this section the different radar data domains are pre-
sented, specifically the phase domain information to be used in
combination with the HOG features for HAR and arm gesture
classification.

A. Radar Data Representation
The Humatics (former PulsON) P410 radar provides the

Range Map (RM), Smn, as shown in Fig. 1, where, smn,
represents the real samples (in-phase components) for the
individual range and slow time bins with index m and n,
respectively. Each range bin in the m-direction has a time sep-
aration, τ , of 61.024ps. The resulting range bin resolution, r ,
is computed as follows by, r = τ ·c

2 = 9.153mm. This leads to
an area of coverage, R, of 4.39m with 480 received range bins,
m = 1, · · · , M. The slow time samples, n, are indicated by,
n = 1, · · · , N, for the total time T [18]. Cleaning steps, such
as MTI filtering, mean subtraction, and adaptive thresholding
are applied to generate the RM, indicated as RM-O in Fig. 2.

Fig. 2. Schematic representation of the feature extraction by the
Histogram of Oriented Gradients (HOG) algorithm for the individual data
domains, with feature fusion shown in the yellow box.

B. Range Map and Phase Angle Representation
As this radar provides only the in-phase components as pre-

sented in the matrix Smn in Fig. 1, a common practice is using
the Hilbert transform for reconstructing the complex signal
along the range (R). The process is repeated across each col-
umn vector [s1n, s2n, · · · , smn]T for n = 1, · · · , N [19]. The
Hilbert transform creates a complex-valued causal function
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from the purely real-valued range profile with the property
of a π

2 (90◦) phase shift, such that Ŝmn = Hil(Smn) =
Re(Ŝmn) + i · Im(Ŝmn) with i = √−1. Now, Ŝmn represents
the complex signal matrix of the RM with in-phase samples,
Re(Ŝmn), and quadrature samples, Im(Ŝmn) [20], [21].

From the Euler representation of complex numbers,
the phase angle φmn of the signal Ŝmn can be computed
as φmn = � Ŝmn, with φmn in the value domain of φmn ∈
{R| − π < φmn ≤ π}. In fact, the matrix φmn has the same
range and slow time resolution as Smn and Ŝmn. The resulting
RM phase plot can be seen in Fig. 2 indicated as, RM-PO,
originating from the phase angle block in the flow chart.

We introduce the “cropped” RM, since studies have shown
that the arm span to body height ratio is between 0.98 and
1.08, so that the range stretch of an arm towards the radar
is approximately 1/2 × bodyheight, which is roughly equal
to 1/2 × armspan. Accounting for this, the tallest test person
in the dataset with 1.84cm height can stretch their arms at a
maximum of about 92cm towards the radar [22]. To capture
effectively the span of all motions, also including possi-
ble torso movements when performing fast gesture motions,
we are capturing 20% beyond the expected maximum range
which results in 1.10m. In other words, a “cropped” version
of the RM matrices and their phases is considered using this
spatial window centred on the target range. In this paper,
the location of the subject to perform the cropping operation is
provided by the Derivative Target Line (DTL) [23] which can
determine the person’s distance to the radar (the DTL could
also be replaced by other suitable target trackers [24]). This
cropped phase plot is shown in Fig. 2 as RM-PC, originating
from the cropping block of the flow chart. The cropped
window of 1.10m is also applied to the original RM, with
an example shown in Fig. 2 and denoted as RM-C.

C. Spectrogram Representation
From the Hilbert transformed signal, Ŝmn, the Fast Fourier

Transform (FFT) across each scan is computed. Then,
the Short-Time Fourier Transform (STFT) is applied to the
vector of the 4GHz frequency for the computation of the μD
spectrogram [25], [26]. Using a fPRF of 121.95Hz yields
to an unambiguous Doppler frequency of ±60.97Hz. Thus,
the unambiguous velocity is ±2.17m/s and is computed as
±vun = c0 · fPRF/(4 · fo), with, c0, the speed of light and, f0,
the center frequency of 4.2GHz (operational frequency band:
3.1 − −5.3GHz) [14]. An example of the μD is shown in
Fig. 2 as μD-O. The phase angle and the cropped phase angle
of the μD are computed from the RM explained in Sec. II-B.
The phase information of the micro-Doppler spectrograms are
also computed. The original phase angle and the cropped phase
angle of the μD can be seen in Fig. 2 as μD-PO and μD-PC,
respectively. Specifically, the μD-PC is resized by a factor
0.25 in the cropping process, leading to a maximum Doppler
frequency extent of ±15.24Hz around the OHz Doppler bin.

To summarize, the data representation domains in Fig. 2
are:

RM-PC Cropped phase of the range map
RM-PO Phase of the range map

Fig. 3. The impact on the HOG features illustrated for the extent and
speed variation for the push and pull arm activity.

RM-O Original range map
RM-C Cropped range map
μD-O Original micro-Doppler
μD-PO Phase of the micro-Doppler
μD-PC Cropped phase of the micro-Doppler

D. Histogram of Oriented Gradients (HOG)
The Histogram of Oriented Gradients (HOG) is a powerful

tool for edge and contour detection and has been widely used
in the computer vision and optical character recognition fields
due to the ability to characterize strength and regularities of
line patterns and contours in images [27]. This method first
determines the gradients, gx , and gy, by the partial derivative
as, ∂ f

∂x and ∂ f
∂y , so that the gradient vector is defined as

∇ f (x, y) =
�

gx

gy

�
=

⎡
⎢⎣

∂ f

∂x
∂ f

∂y

⎤
⎥⎦ =

�
f (x + 1, y) − f (x − 1, y)
f (x, y + 1) − f (x, y − 1)

�

(1)

for a matrix f (x, y), where x and y represent the individual
samples or pixels. From the ∇ f (x, y) two important attributes
are extracted, specifically

• The magnitude of the vector by computing the L2-norm

as, g = �∇ f (x, y)�2 =



gx
2 + gy

2

• The directional orientation as, θ = arctan
�

gy
gx

�
It is noted that f (x, y) defines only an area of the whole
image matrix, where in our experiments the HOG sizes are
[16, 16] or [32, 32] pixels. Examples of the visualized HOG
features are shown in Fig. 3 on the bottom, where the top
shows the related RM-PC matrices. Specifically, the contours
in the RM-PC appear to be mainly horizontally orientated
with an approximate variance of up to ±45◦. Hence, vectors
which are vertically orientated have almost zero length, which
relates to the magnitude of g. The extracted features are
represented by histograms, examples are shown in the flow
chart of Fig. 2 for RM-PC and RM-O and denoted as “HOG
feature vector”. Then, the “HOG feature vectors” are the input
for the classifiers [27]–[30].

Back to Fig. 3, we show the HOG features for the activity
of push and pull arms. Here, we illustrate the differences in
performing the motion with (b) small arm extent, (c) large
arm extent, (d) slow speed, (e) fast speed, and compare
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Fig. 4. Pictures of the activities and related cropped phase matrices: six gestures (top, green-shaded), and eight gross-motor activities performed
bidirectionally (bottom, yellow-shaded).

those to the (a) normal performed motion. Specifically, two
regions where deliberately selected, the red and green circled
areas to characterize the features. Body movements occur
typically in the middle regions, as those marked with the red
rectangles. It can be seen that the small extent leads to little
body movements, since the torso is mainly static on a fixed
position, thus resulting in mostly horizontal HOG vectors.
Furthermore, the green framed areas contain HOG vectors
mostly originating from the arm movement towards the radar.
As a result by performing the activities with large extents,
the HOG feature vectors become more steeply orientated
and diagonal in contrast to the small extent case. Another
important difference can be seen by performing the motion
with fast speed, where the inertia of the torso and the arms
lead inevitably to a larger backward movement of the torso
than for slower speed. As a result, the HOG features emphasize
the backward movement of the torso in a very distinctive way.

E. Data Representation and Classification
In the previous section, the HOG feature extraction was

explicitly described. From here, the orientated gradients are
collected over the 2D detection windows (specifically [16, 16]
or [32, 32] pixels) to provide the histograms and the feature
vector, while the orientation is discretized in histogram angular

bins of 20◦ from 0◦ to 160◦. It is noted that vectorial gradients
are proportionally split into the histogram bins if their orien-
tation value is between the bins’ nominal values. Furthermore,
HOG only considers gradients from 0◦ to 180◦ since a contour
in an image is nondirectional. Also, the histogram bin of
180◦ does not exist since it is equivalent to the 0◦ bin. This
processed feature vector is then used for classification.

In this paper, we test our proposed method with few of
the most common yet effective supervised learning classifiers,
the Nearest Neighbor (NN), the linear Support Vector Machine
(linear SVM), and the Gaussian SVM classifier. Specifically,
the NN classifier was used with a number of neighbors of five
with Euclidean distance computation. For the linear SVM and
the Gaussian SVM classifier, we apply the multi-class setting
one-versus-one.

The yellow-shaded square box in Fig. 2 shows that
we also apply feature fusion for classification. For that,
the individual feature vectors stemming from the individ-
ual radar data domains are joined into a concatenated fea-
ture vector, e.g., κFuall , which is expressed as κFuall =
[κT

RM-PC, κT
RM-PO, . . . , κT

μD-PC]T. We show that concatenating
all possible feature vectors from different radar domains
does not lead to the best classification results. In this
regard, the best accuracy was achieved by using a subset

Authorized licensed use limited to: TU Delft Library. Downloaded on March 15,2021 at 07:15:39 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
AVERAGE PERFORMANCE OF GESTURE EXPERIMENTS FOR TWO DIFFERENT fPRF FOR THE FEATURE FUSION CASE

(3 LEFT SIDE COLUMNS) AND INDIVIDUAL DOMAINS (7 RIGHT SIDE COLUMNS). AVERAGE TEST

PERFORMANCE PRESENTED FOR AA OF 45◦ , A SLOWER SPEED, AND A SMALLER EXTENT

Fig. 5. Validation and test performance of gesture experiments for the different fPRF related to Tab. I. Red, yellow, green data labels for testing
performance match in color those in Tab. I.

of features, namely, the cropped phase of the RM (RM-PC),
the cropped RM (RM-C), and the μD spectrogram (μD-O),
so that the concatenated feature vector is formed as κFubest =
[κT

RM-PC, κT
RM-C, κT

μD-O]T.
On the other hand, very promising results were achieved by

excluding the μD spectrogram and focusing deliberately on the

RM which is directly provided by the radar, so that an addi-
tional STFT calculation or even more complex time-frequency
distributions can be omitted. Computing the μD spectrogram
requires some computational resources and time. Considering
the STFT as the simplest approach to calculating spectrograms
via time-frequency analysis, a measure of its complexity as the

Authorized licensed use limited to: TU Delft Library. Downloaded on March 15,2021 at 07:15:39 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. The revealing scheme to extract the features from the range only
as, κFurange, and with containing theμD spectrogram feature as, κFubest

,
which implies the STFT.

number of floating-point operations (FLOPS) can be computed
as,

k · log2(n
n)

with: k = N − L

n − L
(2)

with n the STFT window function length, L the overlap length,
and N the signal length. By using the STFT with the Discrete
Fourier Transform (DFT) the FLOPS from Eq. 2 changes to
kn2 [31], [32]. It is noted, the simplified FLOP calculation
does not consider additional smoothing window multiplication,
i.e., the Hamming window. In this respect, avoiding the STFT
leads to the concatenated feature vector consisting of κFurange =
[κT

RM-PC, κT
RM-C]T, and includes only the cropped RM and the

cropped phase of the RM. The scheme is illustrated in Fig. 6.

III. EXPERIMENTAL RESULTS

Two data sets were collected in the radar laboratory at
the Delft University of Technology (TU Delft), consisting of
a comprehensive number of classes for the gesture and the
gross-motor experiments that are presented in this section.
Both sets were recorded with Humatics (former PulsON)
P410 pulsed radar systems. Four participants were involved
in the experimental data collection, with a height between
1.65m and 1.84m, and a weight between 65kg and 86kg. The
amount of data samples for the training sets is 280, 282, and
300 samples per class for the gross-motor activities with a
fPRF of 12.2Hz, and the gesture activities with a fPRF of
12.2Hz, and 122Hz, respectively.

The test set for gross-motor activities includes 120 samples
by considering an aspect angle of 45◦. The amount of test data
for the gesture activities for both fPRF amounts to 94, 78, and
84 samples for the aspect angle of 45◦, the slow speed, and
the small extent, respectively.

Each of the considered radar data domain (e.g. RM-O,
RM-PC, or μD-O) was resized to a matrix size of 128 ×
128, from which further processing extracts the HOG feature
vectors (κi), with, i, the seven different domains as listed in
Section II-C. The collection of the training and validation

data was performed under controlled aspect angle, spatial
extent, and speed of the movement. For further validation,
we collected a separate test set for the gesture activities with
(1) an aspect angle (AA) of about 45◦, (2) a slower speed, and
(3) a smaller extent as shown in Tab. I. The training/validation
data of the gross-motor activities was collected with the same
conditions, whereas the test set contains only data with aspect
angle of 45◦, since a slower speed or a smaller extent can be
difficult for some gross-motor activities, e.g. falling. It is noted
that the training/validation set does not include data samples
which are reflecting the test set conditions (AA, slower speed,
or smaller extent). In fact, the classifier is requested to classify
data without being explicitly trained in those conditions.

A. Arm Gesture Results
The first data set consists of six gesture activities, namely,

(a) push and pull arms, (b) close arms, (c) open arms,
(d) rolling arms, (e) stop sign, and (f) clap hands. The individ-
ual gesture activities and the related RM-PC are shown in the
green-shaded box in Fig. 4. The movements were performed
facing the radar with a body center distance of 3.20m to the
radar. For performance comparison, we collected two subsets
with the fPRF of 122Hz and 12.2Hz.

The validation and test performance of the gesture activities
can be found in Tab. I. Specifically, the test data set includes
three different cases, namely (1) higher Aspect Angle (AA),
(2) slower speed, and (3) smaller spatial extent compared to
the training/validation data. The results are visualized in Fig. 5
related to Tab. I. In the table, we show the test performance
of the gesture activities only for the Gaussian SVM classifier
which gives the best results and outperformed the kNN and
the linear SVM classifier.

Remarkably, we illustrate that our proposed method of
the phase of the RM (RM-PC) and HOG features is still
able to classify gestures with sufficient accuracy when the
unambiguous Doppler frequency of the μD spectrogram
decreases by a factor 10x by using the lower fPRF = 12.2Hz
instead of the fPRF = 122Hz. As expected, because of
the resulting ambiguity in micro-Doppler, the classification
accuracy decreases when using the μD-O domain by more
than 9% with the best-performing classifier, Gaussian SVM
(99.76% → 90.27%). The RM and especially the RM-PC
is almost unaffected by lowering the radar fPRF by such
significant amount. Regarding the HOG feature extraction,
the highest classification results were obtained by using a HOG
cell size of [16,16] samples. Other HOG cell sizes of [8,8] or
[32,32] have also been tested, but provided lower classification
results.

B. Gross-Motor Activities Results
The second data set contains an even larger number of

classes, while the activities were performed away from the
radar in addition to facing the radar. The activities are (g) bend-
ing from standing, (h) bending from sitting, (i) kneeling
down, (j) kneeling up, (k) sitting down, (l) standing up,
(m) falling, and (n) standing up from falling. Accounting for
the bidirectional orientation, 16 classes were collected and
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TABLE II
AVERAGE PERFORMANCE OF GROSS-MOTOR EXPERIMENTS FOR TWO DIFFERENT HOG CELL SIZES FOR THE FEATURE FUSION CASE

(3 LEFT SIDE COLUMNS) AND INDIVIDUAL DOMAINS (7 RIGHT SIDE COLUMNS). AVERAGE TEST PERFORMANCE PRESENTED

FOR 45◦ AA FOR THE THREE DIFFERENT CLASSIFIERS KNN, LINEAR SVM, AND GAUSSIAN SVM

Fig. 7. Validation and test performance of gross-motor experiments for two different HOG sizes related to Tab. II. Red, yellow, green data labels for
testing performance match in color those in Tab. II.

considered for classification. The activities can be seen in
Fig. 4 in the yellow-shaded box, together with the relevant
bidirectional RM-PC plots.

In this paper, we show the average classification results
for the gross-motor activities in Tab. II and visualize the
results in Fig. 7. In this case, the data set was collected with
only a fPRF of 122Hz, but two HOG cell sizes of [16,16]

and [32,32] are compared. These are shown in Tab. II by
the gray-shaded and yellow-shaded boxes, respectively. The
results show that doubling the HOG cell size does not lead to
a drastic classification performance reduction and both results
are rather comparable. As a side note, doubling the HOG size
reduces the computational load since the resulting input feature
vector (κi ) is shortened by factor 1/2.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 15,2021 at 07:15:39 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE III
AVERAGE PERFORMANCE OF GESTURE EXPERIMENTS BY COMPARING THE HOG ALGORITHM (FIRST SUB-TABLE) AND 2D-PCA

(SECOND SUB-TABLE) FOR DIFFERENT CELL SIZES AND BY USING DIFFERENT PRINCIPAL COMPONENT (PC) VECTORS, RESPECTIVELY.
THE LAST SUB-TABLE SHOWS THE PERFORMANCE BY ADDING DIFFERENT NOISE LEVELS. THE 3 LEFT COLUMNS ARE THE

FEATURE FUSION ACCURACY VALUES AND THE 7 RIGHT COLUMNS ARE THE INDIVIDUAL DOMAINS

For the training/validation accuracy, it can be seen that the
Gaussian SVM classifier gives slightly higher accuracy for the
proposed method based on RM-PC data domain. When feature
fusion is considered, the advantage of using the Gaussian
SVM classifier with the HOG cell size of [32,32] is less
dominant compared to the NN or the linear SVM classifier.
Additionally, for classification based on single data domain,
the proposed method of RM-PC yields a performance improve-
ment of +1.71% compared to the best μD-O classification
(μD-O [kNN] 91.61% → RM-PC [Gauss SVM] 93.32%).
Although small in absolute terms, this improvement can be
considered significant accounting for the large number of
classes (16).

The test performance in Tab. II shows the results for the
AA of 45◦ when using the three different classifiers of
kNN, linear SVM, and Gaussian SVM. This is different from
Section III-A where the test gesture activities were performed
at slower speed and with smaller spatial extent. Specifically,
the Gaussian SVM classifier outperforms the other tested
classifiers in almost every category, except for the Fusion all
case, which will be discussed in the next section.

C. Comparative and Noise Analysis
In this section, a comparison between the investigated

method of the HOG classification and the 2D-PCA clas-
sification is demonstrated, as well as a noise performan-
nce analysis on the gesture data set. Regarding Tab. III
and Fig. 8, it can be seen that the phase domains, such
as RM-PC, RM-PO, μD-PC, μD-PO, as well as their
fusion are better classified by the HOG algorithm. The typ-
ical μD-spectrogram (μD-O) classification performs almost
equal with both methods. This leads to the conclusion that

Fig. 8. Comparison between the HOG and the 2D-PCA feature extraction
algorithm followed by the Gaussian SVM classifier for the HOG cell
sizes 8, 16, and 32, as well as the principal component vectors (PC)
of 2, 4, and 8.

2D-PCA cannot capture phase-related patterns as well as done
by the HOG algorithm.

Fig. 9 shows the effect of decreasing the SNR by
−3.010dB, −10.42dB, and −20.04dB, respectively. The
change in the phase pattern can be seen in Fig. 9b for push
and pull arms. The reduction of the SNR by −3.010dB to the
original signal shows almost comparable classification results,
specifically for the proposed method (RM-PC). A further SNR
reduction leads to an expected classification drop for almost
all feature domains, as provided in Tab. III.

D. Discussion on the Results
The introduced method of classifying the RM-PC showed

very promising results, which can be further improved by
using feature fusion (early fusion) along with the RM-C,
or RM-C together with μD-O. However, we do not suggest to
use all available domains, which can be seen for the Fusion
all case, as the classification accuracy can drastically decrease
due to overfitting. Nevertheless, the use of our phase-based
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Fig. 9. Validation performance of gesture experiments for different noise
levels reductions of (II) −3.010dB, (III) −10.42dB, and (IV ) −20.04dB,
respectively, for the fPRF = 122Hz. The related results can be found
in Tab. III.

classification framework is suitable to avoid the calculation of
the STFT completely, and omit any form of μD computation
and related feature extraction, and rather focus on the range
only. This can be a potentially interesting advantage to cut
complexity in view of real-time applications and computa-
tionally constrained environments, as demonstrated in Eq. 2
together with Fig. 6.

The RM-PC plots in Fig. 4 (yellow-shaded box) for facing
the radar can be compared with those recorded for movements
away from the radar, and also with the gesture activities
(green-shaded box in the same figure). Here, the changes in
contour patterns of the phase plots are dominant and still
visible for the human eye, although the differences are less
clear and intuitive than those typically visible in spectrograms.
However, the HOG algorithm can capture well and distinguish
changes in contour patterns in the angular direction and
intensity. Fig. 3 is also notable, where the HOG features for
the same movement (push and pull arms) but performed at
different speed and spatial extent are presented for comparison.
Specifically, the red-framed HOG features represent the torso
movement and are more dominant for a larger spatial extent
or faster speed. Also, the green framed HOG features are
distinguishable in strength and orientation, which represents
mainly the arm movement. Here a difference can easily be
seen between small and large extent.

IV. CONCLUSION

We propose a novel approach for classification of human
gross-motor activities and arm gestures based on the
phase information directly extracted from high resolution
Range Maps (RM). This approach is an alternative com-
pared to the more conventional use of the magnitude
of the micro-Doppler (μD) spectrograms for classification.
We investigated the wrapped phase of RM and μD spec-
trograms, whereas the phase-based RM provides superior
results over the phase-based μD spectrograms. Nevertheless,

the unique shape of those wrapped phases in terms of intensity
and complexity of the line patterns requires a suitable feature
extraction algorithm to capture the relevant information, dif-
ferently from features typically used on a conventional μD
spectrogram. For this, we exploited the Histogram of Ori-
ented Gradients (HOG) algorithm to capture suitable features
towards a phase-based classification by using three commonly
known classifiers, namely the Nearest Neighbor (NN), the lin-
ear Support Vector Machine (SVM), and the Gaussian SVM.

We demonstrate this approach on two experimental datasets,
namely one for gross-motor activities (e.g. sitting, standing,
bending, kneeling, etc.), and the second for arm gestures (e.g.
pushing and pulling arms, waving hands, or pointing, etc.). The
latter dataset is recorded with two different Pulse Repetition
Frequencies ( fPRF). We have shown that the proposed method
can be applied to the arm gesture recognition measured with
a 10-times lower fPRF – which can be beneficial by using
low cost hardware – without any noticeable decrease of
performance while a conventional μD-based approach suffers
with such data due to Doppler ambiguities. The method has
shown to be robust with respect to the test scenario variables,
e.g. the aspect angle to the radar line of sight, the velocity,
and the extent of arm movements are also characterized.

Promising validation results for the proposed phase-based
RM classification of consistently above 92% are demonstrated
for both the arm gestures and gross-motor activities by using
HOG features on the phase-based RM. These results based
on phase domain classification can even be improved by
fusing features from different radar data domains, such as
the original RM and/or the μD spectrograms, which shows
a more robust performance in different operational conditions
(e.g. different aspect angles, extent, or movement velocity).
Superior performance was attained by fusing the proposed
phase-based RM together with the magnitude of the RM.
In regard to the priorly mentioned RM domain fusion, for
the slow fPRF of 12.2Hz of the gesture data set, a remarkable
validation accuracy improvement of greater 10% compared to
the conventional μD spectrogram classification was achieved.
The proposed method may suite for radar systems providing
the complex I and Q signal components directly without
resorting to the Hilbert transform, as well as, for different
operational frequencies and bandwidths.
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