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Abstract 

This paper presents a review and classification of traffic assignment models for strategic transport 

planning purposes by using concepts analogous to genetics in biology. Traffic assignment models share 

the same theoretical framework (DNA), but differ in capability (genes). We argue that all traffic 

assignment models can be described by three genes. The first gene determines the spatial capability 

(unrestricted, capacity restrained, capacity constrained, capacity and storage constrained) described 

by four spatial assumptions (shape of the fundamental diagram, capacity constraints, storage 

constraints, and turn flow restrictions). The second gene determines the temporal capability (static, 

semi-dynamic, dynamic) described by three temporal assumptions (wave speeds, vehicle propagation 

speeds, and residual traffic transfer). The third gene determines the behavioural capability (all-or-

nothing, one shot, equilibrium) described by two behavioural assumptions (decision making and travel 

time consideration). This classification provides a deeper understanding of the often implicit 

assumptions made in traffic assignment models described in the literature. It further allows for 

comparing different models in terms of functionality, and paves the way for developing novel traffic 

assignment models.  
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1. Introduction 

1.1 Background 

Traffic assignment models are used all over the world in strategic (long term) transport planning and 

project appraisal to forecast future traffic flows and travel times. Road authorities typically apply 

traditional models on large scale road networks for this purpose. These models describe the 

interaction between road travel demand (in particular passenger cars) and road infrastructure supply 

and were initially developed in the 1950s. The overall structure as depictured in Figure 1 has not 

changed much since (although solution algorithms have become more efficient). Traffic assignment 

models consist of a route choice sub-model that determines path flows and a network loading sub-

model that propagates these path flows through the network and yields travel times. The route choice 

sub-model has a (possibly time-varying) origin-destination travel demand matrix as input, while the 

network loading sub-model considers infrastructure characteristics including road segment length, 

number of lanes, maximum speed, and possibly intersection layout and average green times of traffic 

controls. 

Over the past few decades, there have been many new developments (especially in dynamic network 

loading models) leading to more advanced traffic assignment models that describe flows and travel 

times more realistically and (in certain ways) enhance their applicability. Such advancements can be 

categorised as being spatial, temporal, or behavioural in nature. We will refer to models incorporating 

such advancements as more capable models that have a larger ability to incorporate phenomena 

observed in reality.  

Figure 1: Interaction between travel demand and infrastructure supply 

 

 

There exists a wide range of traffic assignment models proposed in the literature, ranging from static 

to dynamic models, ranging from models that consider only free-flow conditions to models that 

consider congestion with queuing and spillback, and ranging from all-or-nothing assignment to 

equilibrium models. These models differ in capabilities, each making their own underlying 

assumptions.  

In this paper we aim to disentangle some of the characteristics of traffic assignment models and 

explicitly state the assumptions underlying these models. Deeper insights in these assumptions allows 

a better understanding of the capabilities of each model and the circumstances under which models 

may reasonably be applied, as well as develop new more capable models.  
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1.2 Scope 

In this paper we focus on capabilities of traffic assignment models with a focus on motorised private 

transport. This means we do not consider public transport or active modes of transport (such as 

walking and cycling). We would like to point out that “capability” is only one aspect when selecting 

suitable models for strategic transport planning. There are many other relevant aspects, such as ease 

of use (i.e., short run times, easy calibration, low input requirements), accountability (convergence of 

algorithms, existence and uniqueness of solutions, model complexity), and robustness (i.e., does the 

model generate stable outcomes). It is for example likely that a highly capable model has a higher 

computational complexity and less favourable solution properties, so a transport planning analyst 

should always balance these aspects when choosing a suitable model. We refer to Bliemer et al. (2013) 

for a more general discussion on these requirements for traffic assignment models. 

We narrow the scope of this paper further by making the following eight limiting assumptions: (i) 

macroscopic description of traffic flow, (ii) only first order effects are considered, (iii) only pre-trip 

route choice is considered, (iv) no day-to-day dynamics are considered, (v) individual travellers are 

guided by selfish (non-cooperative) behaviour, (vi) inelastic travel demand, (vii) only a single user class 

is considered, and (viii) only travel time is considered in route choice.  

The first five assumptions are made because the focus is on traffic assignment models for strategic 

transport planning purposes, which in general do not consider mesoscopic or microscopic 

representations of traffic flows (with possible random components), ignore dynamical second order 

effects (such as capacity drop, stop-and-go waves, and hysteresis), do not consider en-route travel 

decisions (which are more relevant for short term traffic operations), do not consider learning 

processes and disequilibria (partly due to difficulties when comparing base and future scenarios), and 

does not consider system optimal conditions (which can be  useful for network design).  

The last three assumptions are made to restrict ourselves to core components of traffic assignment 

models in which we assume a given travel demand (and do not include departure time choice, mode 

choice, destination choice, or other travel choices influencing demand) for a single user class 

(passenger cars) considering only travel time (and do not include tolls, travel time reliability, parking 

costs, etc.). These last three assumptions can be relaxed and are not strictly necessary for our 

framework, but they allow a more focussed presentation of the concepts in this paper. For example, 

one can replace travel time with a generalised cost or (dis)utility function that includes travel times 

and travel costs. Further, multiple user classes can be taken into account by considering different 

sensitivities to time and cost in these generalised cost functions (e.g., people with a high or low 

willingness to pay for travel time savings). Taking different vehicle types into account in a macroscopic 

model is usually more challenging due to asymmetric interactions between for example cars and trucks 

(see e.g. Bliemer and Bovy, 2003), which is partly why modellers often choose to convert all vehicle 

types into passenger car units. 

1.3 Genetics 

In this paper we describe the ‘genetics’ of traffic assignment models, which allows us to describe and 

characterise models in a qualitative fashion. Although the various traffic assignment models proposed 

in the literature may seem very different and sometimes incompatible, they share the same DNA and 

can be seen as descendants of the same ancestors having different genes. 

In biology, DNA is the blueprint of life that consists of instructions that control the functions of cells. 

Each species (e.g., humans) shares more or less the same DNA. The building blocks of DNA are called 

nucleotides, which store genetic information. Genes describe basic functions of living organisms and 

consist of a specific sequence of nucleotides. The genetic code therefore describes all characteristics 

of the organism. DNA is inherited from parents through recombination, and evolves through mutation 

(i.e., genetic variation). 
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Traffic assignment models can be thought of as being characterised by a genetic code containing model 

assumptions and genes that describe functionality. Each traffic assignment model for strategic 

transport planning shares the same theoretical framework (namely, DNA). We identify three different 

genes: (i) a gene that describes spatial interactions, (ii) a gene that describes temporal interactions, 

and (iii) a gene that describes behaviour. These genes are composed of nucleotides that delineate each 

individual assumption that impacts on the functional capability of the model. By combining different 

temporal, spatial, and behavioural assumptions, different traffic assignment models are created. 

A very capable organism with many positive characteristics is sometimes said to have ‘good genes’. 

Advanced traffic assignment models may be thought of as having ‘better’ genes than their simpler 

traditional counterparts regarding realism. An organism is defined by physical appearance and its 

behaviour, both defined by genes.1 In strategic macroscopic models, the network loading sub-model 

can be seen as a physical process in which traffic flow is modelled as a fluid following hydrodynamic 

theories. While traffic flow is a result of underlying individual driving behaviour (e.g., speed choice and 

lane choice), this level of behaviour is not described by macroscopic models; instead it is aggregated 

to a physical relationship through a cost function or the fundamental diagram of traffic flow (see 

Sections 2.1 and 3.2). Thus, the network loading sub-model is physical in nature and described by a 

spatial and temporal gene. In contrast, the route choice sub-model describes a behavioural process 

and is described by a, third, behavioural gene.  

Just like living organisms, traffic assignment models have evolved over time, often by small mutations 

in one of the underlying assumptions, sometimes by recombination of existing models into a new 

model. By discovering basic underlying assumptions of each model (genetic code), we can investigate 

model functionality and limitations, as well as propose improved models. It also allows genetic 

modifications of existing models to develop novel models. 

1.4 Paper outline 

In Section 2 we describe the DNA of traffic assignment models, which allows us to classify each traffic 

assignment model. Section 3 describes the first gene using four nucleotides that represent the spatial 

assumptions. Section 4 describes the second gene, consisting of two nucleotides that represent the 

temporal assumptions. Section 5 discusses the third gene, consisting of two nucleotides representing 

behavioural assumptions. Section 6 establishes the genetic code for a selection of traffic assignment 

models proposed in the literature based on the spatial, temporal, and behavioural assumptions. 

Finally, we draw conclusions in Section 7 and state some potential for new model development.  

2. DNA of traffic assignment models 

In the literature, the main distinction that is often made between models is with respect to temporal 

assumptions, i.e. whether a model is static or dynamic. Dynamic models are typically seen as superior 

over static models. However, in terms of spatial interactions, certain static models are capable of 

accounting for queues and even spillback while certain dynamic models may not. Also, regarding the 

underlying route choice behaviour, some simple static models may be more advanced than certain 

dynamic models. We therefore need a more elaborate classification of traffic assignment models that 

describes their characteristics and capabilities in greater detail.  

In this section we propose a unified theoretical framework (DNA) for traffic assignment models. This 

classification leads to model types and capabilities that result from three different genes that describe 

spatial, temporal, and behavioural assumptions, see Figure 2. Details of these underlying assumptions 

will be discussed in Sections 3, 4, and 5. 

                                                
1 Although there is debate in the literature whether behaviour is determined by genes or by the environment (or 

both), in biology the field of study called behavioural genetics examines the origins of individual differences in 

behaviour.  
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Gene 1 describes the assumptions regarding spatial interactions, resulting in four distinct model classes 

(see Section 2.1). Gene 2 describes the assumptions regarding temporal interactions, resulting in three 

model classes (see Section 2.2). Finally, Gene 3 describes the behavioural assumptions, leading to three 

model classes (see Section 2.3). Combining the different model classes, the framework in Figure 2 

describes in total 36 different model types, each with their own capabilities. The most capable model 

type according to this framework is a dynamic capacity and storage constrained equilibrium traffic 

assignment model, while the least capable model type is a static unrestrained all-or-nothing traffic 

assignment model. Each less capable model type is a special case of a more capable model type. In 

other words, less capable models can typically be derived from more capable models by making 

simplifying assumptions. 

Figure 2: DNA of traffic assignment models 

 

2.1 Model classes and capabilities resulting from spatial assumptions 

As a result of spatial assumptions (Gene 1), the following model types are distinguished (in increasing 

order of capability): 

• Unrestrained models; 

• Capacity restrained models; 

• Capacity constrained models; 

• Capacity and (queue) storage constrained models. 

The most capable traffic assignment models are models that constrain both the capacity (of flow) and 

the storage (of queues) on road segments. These models ensure that flow does not exceed capacity 

by diverting traffic to routes with spare capacity or by buffering vehicles in a physical queue. If the 

length of the queue exceeds the length of the road segment, the queue will spillback to upstream road 

segments. A capacity constrained model is a special case in which there are no constraints on the 

(queue) storage and as such spillback does not occur. An even more simplified model class is the 

capacity restrained model. In this model class, flows can exceed the physical road capacity and 

therefore queues are not described explicitly. To mimic the effect of queues (in these models) travel 
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times simply increase with increasing levels of flow. Finally, the simplest and least capable model is an 

unrestrained model with fixed (usually free flow) travel conditions and travel times. 

Capacity restrained models are the most common model class in strategic transport planning, although 

the use of capacity (and storage) constrained models is gaining in popularity. Unrestrained models are 

rarely used. Each model class has different capabilities and a particular model should ideally only be 

used in cases where the underlying spatial assumptions are valid; however, as remarked above, there 

are many other factors which may influence model choice. 

Figure 3 indicates a fundamental diagram describing the theoretical relationship between flow and 

density that can be empirically observed from traffic counts, and depends, among other things, on the 

number of lanes, the maximum speed limit, and the road type. Such a fundamental diagram may be 

assumed to hold for each cross-section on a homogeneous road segment (and is independent of the 

length of the road segment). Each point on this diagram represents a specific steady-state traffic state.2 

While the diagram only shows flows (veh/h) and densities (veh/km), the speed of a vehicle (km/h) can 

be determined using the fundamental relationship that (space-mean) speed equals flow divided by 

density. For low densities (indicated by A and B in Figure 3) there is no congestion and no queues 

appear. Such traffic states are called hypocritical states (below the critical density) in which flow 

increases with density (i.e., throughput increases with more vehicles on the road).  High densities 

(indicated by C and D) are a result of congestion and queues on the road. These traffic states are called 

hypercritical states in which flow decreases with density (i.e., throughput deteriorates with more 

vehicles on the road). The jam density provides an upper bound on the number of vehicles that can be 

stored on a certain road segment (assuming zero speed). For more information on the fundamentals 

of traffic flow theory and the fundamental diagram we refer to e.g. Cascetta (2009).  

Figure 3: Spatial assumptions and model capabilities 

 

Unrestrained models are only suitable for light traffic conditions (A) in which flow increases linearly 

with density, indicating that vehicles drive at maximum speed. Capacity restrained models are only 

suitable for light to medium traffic conditions (A and B) in which the flow does not exceed capacity, 

but some slight delays may occur due to increasing density. These models do not describe the 

hypercritical part of the fundamental diagram. Capacity constrained models are suitable for light to 

                                                
2 In other words, this relationship only describes first order effects and does not explicitly describe transitions 

between traffic states (which requires explicit modelling of braking and acceleration as second order effects). As 

mentioned in Section 1.2, second order effects are usually not considered in large scale strategic transport 

planning for tractability reasons, but also to avoid illogical behaviour such as negative flows and traffic going 

backwards as outlined by Daganzo (1995b). 
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heavy traffic conditions (A, B, and C) in which short queues can form.3 These models cannot describe 

queues longer than the length of the road. Most capable is a capacity and storage constrained model, 

which can be applied to all traffic conditions (A, B, C, and D); including very heavy traffic when queues 

can grow longer than the road length and spillback to upstream road segments occurs.  

Section 3 describes the underlying assumptions of these model classes in more detail. 

2.2 Model classes and capabilities resulting from temporal assumptions 

As a result of temporal assumptions (Gene 2), the following model types can be distinguished (in 

increasing order of capability): 

• Static models; 

• Semi-dynamic models; 

• Dynamic models. 

Dynamic models consider time-varying travel demand and multiple time periods for route choice and 

within each time period there exist (smaller) time steps for network loading in which flows are 

propagated through the network. These models explicitly account for variations over time in path 

flows, link flows, and travel times, and are the most capable models considered. Semi-dynamic models 

are special cases that only consider part of the dynamics. They often consider only a single time step 

for network loading within each route choice period, but may propagate traffic flows between route 

choice periods. Finally, static models are the simplest and least capable models that consider a 

stationary travel demand and only a single time period (with a specified or unspecified duration) for 

both route choice and network loading.  

Some models are referred to as quasi-dynamic, which can be confusing. Quasi-dynamic models only 

consider a single time period and do not explicitly model time-varying flows. As such, these models are 

essentially static; they may be thought of as static models with certain dynamic elements (such as 

queues), see Miller et al. (1975) and Payne and Thompson (1975). Due to lack of a formal definition, 

we define quasi-dynamic models as static models that impose capacity and/or storage constraints and 

thereby can explicitly account for queues (similar to more advanced dynamic models).  

Static models are the most common model class adopted for strategic transport planning purposes, 

although semi-dynamic models are used in some countries. Dynamic models are increasing in 

popularity, but applications for strategic planning purposes remain relatively rare due to the much 

higher model complexity and related needed computation times. As before, model classes defined by 

temporal assumptions have different capabilities and should ideally only be used in cases where these 

assumptions are valid; however, as remarked above, there are many other factors that may influence 

model choice. 

Figure 4 illustrates how static, semi-dynamic, and dynamic models represent travel demand. The solid 

red line indicates the actual travel demand for a single origin-destination pair, and the grey bars 

represent the average demand in the model during each period. The areas of the grey bars (indicating 

the number of vehicles) are equal to the areas underneath the demand curves.  

A static model considers a single time period, typically consisting of an entire peak period (e.g., a three 

hour period from 6.30am till 9.30am), and assumes that traffic outside this time period does not 

influence flows or travel times in the considered period. In other words, traffic in different periods can 

be assigned separately. Route choice proportions are assumed stationary during this period and 

network loading also considers a single time period in which all traffic reaches the destination and link 

flows are interpreted as average flows during this period.  

                                                
3 Note that the line that separates traffic conditions C and D in Figure 2 is plotted somewhat arbitrary between 

the critical density and jam density since it is case specific, i.e. depends on the inflow rate and the link length.  
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In a semi-dynamic model multiple time periods are considered (e.g., one hour time slices, such as 

periods 6-7am, 7-8am, 8-9am, and 9-10am). It can be seen as a sequence of static models, however it 

takes the result from a previous period (such as vehicles in a queue) into account, for example by 

passing on residual traffic to the next period. As such, semi-dynamic models are more capable in 

describing travel demand variations as well as interactions of vehicles across time periods. Route 

choice proportions are assumed stationary during each time period, while network loading within each 

time period is usually done in a simple fashion similar to a static model. However, this typically does 

include the limitation that vehicles cannot be propagated for more than the duration of each period. 

In other words, vehicles that do not reach their destination within a single time period may be 

transferred to the next time period.  

Dynamic models are capable of describing interactions between vehicles within and across each time 

period. They usually consider many smaller time periods (e.g., time slices of 15 minutes), which allows 

them to more accurately represent time-varying travel demand. Route choice proportions are typically 

assumed stationary during each time period. Network loading is much more sophisticated and similar 

to simulation models, i.e. they typically consider small time steps (e.g., 1 second) in which vehicles are 

propagated through the network.  

Section 4 describes the underlying assumptions of these model classes in more detail. 

Figure 4: Temporal interaction assumptions and model capabilities 

 

2.3 Model classes and capabilities resulting from behavioural assumptions 

As a result of behavioural assumptions (Gene 3), the following model types can be distinguished (in 

increasing order of capability): 

• All-or-nothing models; 

• One shot models; 

• Equilibrium models. 

Equilibrium models are the most capable models in which travellers consider congested travel times 

when choosing their route. In an equilibrium state, often referred to as a user equilibrium in which 

travellers are assumed to be non-cooperative (i.e., exhibit selfish behaviour), no traveller can 

unilaterally change routes to improve his or her travel time (Wardrop, 1952). This is in contrast to 

system optimal models that assume travellers cooperate and minimise the total (or average) travel 

time in the system. In this context, in this paper, only user equilibrium models are considered. One 

shot models are simplified models in which there is no feedback from previous travel time experience 

but rather a single network loading is performed based on initial path flow proportions. Such path flow 

proportions are either pre-determined or based on instantaneous travel times considering current 

traffic conditions. Finally, the simplest and least capable is an all-or-nothing model that is a special case 

Flow (veh/h) Flow (veh/h) Flow (veh/h)

Time (h) Time (h) Time (h)

Static                                                         Semi-dynamic                                                    Dynamic
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of a one shot model in which all travellers follow the fastest route based on given (typically free-flow) 

travel times.   

Each of these model classes can be further differentiated into deterministic and stochastic models. 

Deterministic models usually assume perfect information, such that travellers base their decisions on 

actual travel times. In contrast, stochastic models assume imperfect information, such that travellers 

make decisions based on perceived travel times (Daganzo and Sheffi, 1977).  

Equilibrium models are the most widely used model class in strategic transport planning, while system 

optimal assignments are mainly used to provide a benchmark solution. One shot models are often 

applied to simulate traffic using a more advanced (dynamic) network loading model based on route 

choice proportions from a simpler (static) model. All-or-nothing assignments, static or time-

dependent, are not that common (anymore), but are often sub-models in equilibrium models.  

Section 5 describes the underlying assumptions of these model classes in more detail. 

3. Gene 1: Spatial assumptions 

The first gene represents the spatial assumptions, which describe how traffic flows in network loading 

spatially interact and directly impact on the realism of the model (see also Figure 2). These spatial 

interactions are a combination of assumptions on the link level (shape of the fundamental diagram, 

capacity and storage constraints), and the node level (turn flow restrictions yielding turn reduction 

factors). These spatial interactions have been analysed separately or jointly in the literature and can 

be calibrated empirically.  

The four specific assumptions (nucleotides) within this gene are summarised in Table 1 and are 

discussed in more detail in the following subsections. The nucleotide level refers to the spatial level at 

which interactions are described. The spatial assumptions of a traffic assignment model can be 

indicated using a sequence of letters representing the genetic code. For example, the most widely used 

assignment model for strategic transport planning purposes is a static capacity restrained model with 

the following code for Gene 1: CN-UU-U-N. The most sophisticated and capable model according to 

this classification is defined by genetic code CC-CC-C-F. 

Table 1: Genetic code for Gene 1 (spatial assumptions) 

Nucleotide Level Type Code Explanation 

Shape of the 

fundamental diagram 
Link 

Hypocritical L, P, Q, C 
Linear / Piecewise linear / Quadratic 

/ Concave  

Hypercritical 
L, P, Q, C,       

H, V,  N 

Linear / Piecewise linear / Quadratic 

/ Concave / Horizontal / Vertical /                    

Not available 

Capacity constraints Link 

Inflow U, C Unconstrained / Constrained  

Outflow U, C Unconstrained / Constrained  

Storage constraints Link 
 

U, C Unconstrained / Constrained  

Turn flow restrictions Node 
 

F, O, N First order / Other / No restrictions 

 

3.2 Nucleotide 1 – Shape of the fundamental diagram 

All traffic assignment models explicitly or implicitly assume a fundamental diagram. The shape of the 

fundamental diagram plays an important role in traffic flow theory and different shapes lead to 

different traffic patterns on a link (some more realistic than others). We indicate the maximum flow 
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through any part of a homogeneous road segment by physical road capacity ,C  also referred to as the 

saturation flow, which depends among other things on the number of lanes and the speed limit. The 

inflow and outflow capacity, however, are at best equal to C  and in many cases lower. For example, 

the outflow capacity may be restricted due to traffic controls and competing traffic (e.g., a merge) and 

the inflow capacity may be restricted due to spillback of a downstream bottleneck. This does not 

influence the fundamental diagram itself, but rather means that only specific traffic states on the 

diagram are observed in practice.  

Figure 5: Shapes of the fundamental diagram 

 

The fundamental diagram is generally defined by an increasing concave hypocritical branch (for 

densities lower than the critical density, indicated in blue in Figure 5, consistent with traffic conditions 

A and B in Figure 3) and a decreasing concave hypercritical branch (for densities higher than the critical 

density, indicated in red in Figure 5, consistent with traffic conditions C and D in Figure 3). The shape 

of such a general function can be indicated by CC using the coding from Table 1. 

The first fundamental diagram was described by Greenshields (1935). He proposed a linear relationship 

between speed and density, which results in a quadratic fundamental diagram QQ, see Figure 5(b). 

Such a symmetric fundamental diagram may describe hypocritical traffic conditions quite accurately, 

but performs poorly for hypercritical states. A popular choice in traffic flow theory due to 

computational advantages has been an asymmetric triangular fundamental diagram LL (Newell, 1993) 

as shown in Figure 5(c). While a linear relationship in the hypercritical branch is often considered 

sufficiently realistic, a linear relationship in the hypocritical branch is less realistic (since it assumes 

that the speed at capacity is equal to the maximum speed). Therefore, piecewise linear fundamental 

diagrams PP as shown in Figure 5(d) have been proposed (e.g., Yperman, 2007), which maintain many 

of the computational benefits. A special case of such a piecewise linear fundamental diagram is the 

trapezoidal fundamental diagram (Daganzo, 1994) shown in Figure 5(e).  
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Diagrams shown in Figure 5(a)-(e) result in models with physical queues since they have a downward 

sloping hypercritical branch, while the diagrams in Figure 5(f)-(g) do not result in any queues since the 

hypercritical branch is absent. Other shapes of the hypercritical branch of the fundamental diagram 

have been proposed that result in specific types of queues. A fundamental diagram with a horizontal 

hypercritical branch as shown in Figure 5(h) is consistent with a model with vertical (non-spatial) 

queues, while a vertical hypercritical branch as shown in Figure 5(i) yields a model with horizontal 

(spatial) queues in which all queues are assumed to have a fixed queuing density, either equal to the 

jam density (leading to very compact queues) or some other fixed queuing density (Bliemer, 2007). 

Fundamental diagrams have been used extensively in more advanced capacity and storage constrained 

dynamic traffic assignment models; in contrast, static models have mainly relied on link performance 

functions (also called volume-delay functions or travel time functions or cost-flow functions), which 

describe the relationship between link travel time and link flow (volume) or between speed and flow. 

Branston (1976) reviews link performance functions. The most well-known link performance function 

is the BPR link performance function (Bureau of Public Road, 1964). The corresponding fundamental 

diagram that is implicitly assumed is plotted in Figure 5(f). Two things can be observed from this CN 

shape. First, the BPR function gives rise to only the hypocritical branch of the fundamental diagram 

and ignores the hypercritical branch. Secondly, the hypocritical branch increases beyond the physical 

road capacity C, making it suitable only for capacity restrained models. Another popular choice in 

capacity restrained models is the conical link performance function proposed by Spiess (1990), which 

exhibits less rapid increases in link travel times when flows exceed capacity.  

Davidson (1966) proposed a specific function in which the travel time goes to infinity as the flow 

approaches capacity (as suggested by Beckmann et al., 1956). Such a function is called a barrier 

function and guarantees that flows do not exceed the road capacities, hence this function can be used 

in a capacity constrained model. The corresponding fundamental diagram is shown in Figure 5(g) in 

which the hypocritical branch has a horizontal asymptote at capacity. However, this model may give 

rise to computational problems and perhaps unrealistic travel times when flow approaches capacity. 

Several others have discussed modifications to eliminate these problems (e.g., Daganzo, 1977; Taylor, 

1984; Akçelik, 1991).  

Link performance functions have also been used in several dynamic models (e.g., Janson, 1991; Friesz 

et al., 1993; Ran and Boyce, 1996; Bliemer and Bovy, 2003) in which travel times are calculated for 

vehicles at the time of link entrance (based on the flow at link entrance or all flows that previously 

entered or exited the link). These computed travel times, also referred to as predictive travel times, 

are then used to calculate the link exit times for flow propagation. Such link performance functions  

cannot realistically describe flows and travel times under (very) heavy traffic conditions (at densities C 

and D in Figure 3) since these functions do not represent the hypercritical branch of the fundamental 

diagram and do not explicitly describe queues.  

3.3 Nucleotide 2 – Capacity constraints 

Some models consider capacity constraints, while others assume no upper bounds on traffic flows. In 

case no constraints on the link entrance and exit flows are assumed, i.e., UU in Table 1, no queues 

build up. This is consistent with fundamental diagrams of the shape shown in Figure 5(f). When 

considering both link entrance and exit capacity constraints, i.e. CC, these are typically set to the single 

physical link capacity .C  In this case, residual queues will form upstream the bottleneck link. Some 

models consider UC, in which only link exit capacities are considered. In other words, flow is not 

restricted to flow in, but is restricted when flowing out. Such an assumption leads in some situations 

to queues inside the bottleneck link. Finally, models can also consider CU with link entrance capacity 

constraints and no explicit outflow constraints. 

3.4 Nucleotide 3 – Storage constraints 

When the number of vehicles in a queue exceeds the available link storage, the queue will spill back 

to upstream links. The theoretical maximum number of vehicles that can be physically stored on a link 
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should be equal to the jam density times the link length, although in moving queues (with a density 

lower than the jam density) the number of vehicles that can be present on the link is much lower. 

Some models do not consider spillback, thereby implicitly assuming no storage constraints (U). This 

essentially means an infinite jam density, which is consistent with the fundamental diagram presented 

in Figure 5(h). Models that take storage constraints into account (C) have a finite jam density, 

consistent with the fundamental diagrams in Figures 5(a)-(e) and 5(i).  

3.5 Nucleotide 4 – Turn flow restrictions 

Given that queues and travel time delays mainly arise due to interactions at the node level (i.e., 

merges, intersections), it is perhaps surprising to see that many static traffic assignment models and 

some dynamic models completely lack a node model description. In case there are no capacity 

constraints on the link entrance or exit flows, queues will never occur and hence a node model can 

often be omitted (N). In addition to node models (or sometimes instead of node models), junction 

models can be used to calculate additional delays per turn and may also impose turn capacities as well 

(based on junction configurations and controls). 

In the presence of capacity constraints, node models determine the turn flows at intersections, 

merges, and diverges. Tampère et al. (2011) describes requirements for a first order node model for a 

node with any number of incoming and outgoing links. These requirements include flow maximisation, 

non-negativity, satisfying demand and supply constraints, satisfying the conservation of turn fractions 

(CTF) and the invariance principle (see Lebacque and Khoshyaran, 2005). Merge constraints that follow 

the capacity based weighted queuing rule (Ni and Leonard II, 2005) satisfy the invariance principle, in 

which the outflow rates are capacity proportional in case both in-links are congested. An often used 

merge constraint that does not satisfy the invariance principle is the fair merging rule in which inflow 

rates are demand proportional (Jin and Zhang, 2003).  

Bliemer (2007) combines a first-in-first-out diverging rule and the fair merging rule into a closed form 

demand proportional model for general cross nodes. Several node models for general nodes have been 

proposed in the last decade (e.g., Jin and Zhang, 2004; Jin, 2012a; Jin, 2012b), none of them satisfy 

both CTF and the invariance principle and are therefore classified under other turn flow restrictions 

(O). More recently, models have been proposed that satisfy all requirements for first order node 

models (F), including CTF and the invariance principle, see e.g. Tampère et al. (2011), Flötteröd and 

Rohde (2011), Gibb (2011), and Smits et al. (2015). 

4. Gene 2: Temporal assumptions 

In this section we consider temporal assumptions in network loading identified in the second gene. 

Temporal assumptions determine whether a model is static, semi-dynamic, or dynamic. These 

assumptions consider interactions within time periods (wave speeds and vehicle propagation speeds) 

as well as across time periods (residual traffic transfer). They can be used to remove or simplify time 

dynamics within the model. 

The three specific assumptions (nucleotides) within this gene are summarised in Table 2 and are 

discussed in more detail in the following subsections. Note that the level refers to the temporal level 

(within-period or across periods) at which the interactions are described. The temporal assumptions 

for traditional static models can be described by the following code for Gene 2: IN-IN-N. The most 

capable dynamic model is defined by genetic code KK-VV-T.  
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Table 2: Genetic code for Gene 2 (temporal interaction assumptions) 

Nucleotide Level Type Code Explanation 

Wave speeds Within 

Hypocritical K, V, I Kinematic / Vehicular / Infinite 

Hypercritical K, I, Z, N Kinematic / Infinite / Zero / Not available  

Vehicle propagation 

speeds 
Within 

Hypocritical V, I Vehicular / Infinite 

Hypercritical V, I Vehicular / Infinite / Not available 

Residual traffic transfer Across 
 

T, N Transfer / No transfer 

 

4.1 Nucleotide 5 – Wave speeds 

Temporal interactions on a network are described by wave speeds as well as vehicle propagation 

speeds. Wave speeds are used to propagate traffic states through the network while vehicle 

propagation speeds describe how vehicles move through the network. Vehicle propagation speeds are 

discussed in the next nucleotide. 

We first consider wave speeds in the hypocritical branch (i.e., forward waves). In the first order 

kinematic wave model proposed by LWR (Lighthill and Whitham, 1955; Richards, 1956), traffic 

conditions travel at the kinematic wave speed (K) equal to the slope of the hypocritical branch of the 

fundamental diagram as shown in Figure 6(a) for traffic flow rate q. It is important to realise that the 

speeds at which traffic states propagate and the speeds at which vehicles are propagated through the 

network are in general not the same. In case of a concave hypocritical branch, the kinematic wave 

speed is always smaller than (or equal to) the vehicular speed (V), which is equal to the flow divided 

by the density and hence equal to the slope of the line connecting the origin to the traffic state as 

shown in Figure 6(b). Only if the hypocritical branch is linear, these speeds are equal. More recent 

dynamic models consider kinematic wave speeds, but especially earlier dynamic models and semi-

dynamic models consider vehicular speeds.  

All static models simplify the within-period interactions by implicitly assuming infinite forward wave 

speeds (I) in which traffic states instantaneously propagate through the network and reach their 

destination within the single period. This situation is illustrated in Figure 6(c). This assumption 

effectively removes the necessity (and possibility) to track traffic states over time.  

Figure 6: Speeds in hypocritical branch 

 

Backward waves track how traffic states in the hypercritical branch propagate backwards on a road 

segment, and are responsible for queue build up and possible spillback to upstream road segments. In 

the LWR model traffic conditions travel at the (negative) kinematic wave speed (K) equal to the slope 

of the hypercritical branch of the fundamental diagram as shown in Figure 7(a) for traffic state q. 

0

Flow

Density 0

Flow

Density 0

Flow
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(a) Kinematic wave speed (K)           (b) Vehicular speed (V) (c) Infinite speed (I)
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Similar to forward waves, it requires a dynamic model to explicitly deal with the effects of such 

backward kinematic waves over time. 

An unconstrained static model gives rise to a fundamental diagram, which does not have a hypercritical 

branch; and so backward wave speeds are not available (N). A capacity constrained static model 

however does give rise to a hypercritical branch. In these fundamental diagrams two different 

temporal assumptions regarding backward waves can be made (since the time dimension does not 

exist in a static model). The most widely adopted assumption is that backward wave speeds are zero 

(Z) as shown in Figure 7(b). In this case, traffic conditions never move backwards, which usually means 

vertical non-spatial queues and no spillback. (Note that stationary physical queues are also consistent 

with zero backward wave speeds.) The zero speed assumption is consistent with fundamental 

diagrams of the shape shown in Figure 5(h). Another assumption is that there is a (negative) infinite 

speed (I) as depicted in Figure 7(c); this allows the model to describe spillback when the number of 

vehicles in the queue exceeds the available link storage. Note that an infinite backward wave speed 

does not mean that queues build up indefinitely, since the length of the queue is constrained by the 

number of vehicles in the queue. The fundamental diagram in Figure 5(i) is consistent with the infinite 

speed assumption.  

4.2 Nucleotide 6 – Vehicle propagation speeds 

Instead of looking at the speeds at which traffic states propagate, we now look at the assumption on 

the speed with which vehicles propagates on a road segment. As mentioned in the previous section, 

traffic states and vehicles in general do not move at the same speed.  

In the hypocritical branch, traffic states and vehicles both move forward, but vehicles never move 

slower than traffic states (see Figure 6). In static models, the vehicle propagation speed is assumed to 

be infinite (I) such that vehicles move instantaneously through the network within a single time period. 

Note that although vehicles are propagated instantaneously in static models, this does not mean that 

the travel times are zero, since travel times are calculated separately from vehicular speeds. In 

contrast, dynamic models consider finite vehicular speeds (V), such that travel times are consistent 

with vehicle propagation speeds.   

Traffic states in the hypercritical branch (if considered in the model) move upstream (i.e., have a 

negative speed), while vehicles move downstream (i.e., have a positive speed), see Figure 7. In dynamic 

models the vehicle propagation speed is assumed to be equal to the finite vehicular speed (V). In static 

models that do not describe residual queues the vehicle propagation speed is implicitly assumed to be 

infinite (I), however, in static models that consider residual queues, the vehicle propagation speed is 

assumed to be finite and set to the vehicular speed (V). Note that this does not make the model 

dynamic since it only requires applying capacity and storage constraints to traffic flows instead of 

explicitly tracking vehicles over time. 

Figure 7: Speeds in hypercritical branch 
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4.3 Nucleotide 7 – Residual traffic transfer 

Residual traffic at the end of a time period results when vehicles are not able to reach their final 

destination within the considered time period (or the smaller network loading time step). These 

residual vehicles are either (i) in a residual queue due to a bottleneck downstream, or (ii) simply are 

not able to reach their final destination because the travel time to reach the destination is longer than 

the considered time period. Residual traffic influences traffic flows and travel times in the next time 

period. This dependency of traffic across time periods can be eliminated by assuming that any residual 

traffic has no impact on the next time period, in other words, assuming that the network is empty at 

the beginning of each time period. 

Dynamic models transfer all traffic (T), thereby describing the full temporal interactions within and 

across time periods. Static models have just one (fairly long) time interval and so do not consider 

residual traffic transfer (N).  Thus static models are unsuitable for modelling short time periods in a 

congested network.  The main difference between static and semi-dynamic models is that the latter 

does assume residual traffic transfer across time periods as discussed in Section 2.2. 

5. Gene 3: behavioural assumptions 

The third and final gene represents the behavioural assumptions, which describe travellers’ route 

choice. From biology we know that describing which genes affect behaviour is difficult, since 

behavioural characteristics are complex and polygenic (i.e., influenced by multiple genes).  The same 

holds for describing route choice behaviour in traffic assignment models, and many types of 

behaviours have been described in the literature.  

In this section we put route choice behaviour into a single gene with two nucleotides as summarised 

in Table 3 and discussed in more detail in the following subsections. We note that while we try to be 

as inclusive as possible, this list is not exhaustive and is limited by the scope set out in Section 1.2 (for 

example, we do not consider day-to-day learning effects). The most capable model considered is a 

(equilibrium) model with the following code for Gene 3: BI-E, while the simplest model is a (all-or-

nothing) model defined by genetic code FP-I. 

Table 3: Genetic code for Gene 3 (behavioural assumptions) 

Nucleotide Type Code Explanation 

Decision making 

Rationality F, B Full / Bounded 

Information P, I Perfect / Imperfect 

Travel time consideration 
 

I, P, E Instantaneous / Predictive / Experienced 

 

5.1 Nucleotide 8 – Decision making 

Decision making behaviour has many dimensions. We limit ourselves to the ones that have most often 

been used in the context of route choice, namely rationality, uncertainty, and motivation. 

In terms of rationality, most traffic assignment models consider full rationality (F) which assumes that 

travellers consider all alternatives and eventually all travellers select their own best routes. In reality, 

travellers are unlikely to behave in such an optimal way due to resistance in change (inertia effects) 

and the fact that people often minimise effort and time in decision making. Bounded rationality (B) is 

a term that is often used to describe such decision making behaviour, which includes habitual route 

choice, or route choice in which travellers expose satisficing behaviour and consider routes with travel 

times sufficiently close to the fastest route travel time (see e.g., Di et al., 2013; Han et al., 2015).  
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If travellers have perfect information (P), then decision making can be described by a deterministic 

process. In contrast, if travellers are considered to have imperfect information (I) with a given level of 

uncertainty, then decision making is referred to as probabilistic or stochastic. For example Fisk (1980) 

proposed a stochastic assignment model that adopts a logit model, Zhou et al. (2012) adopt a C-logit 

model, and Kitthamkesorn and Chen (2013) adopt a path-size weibit model, where the latter two aim 

to correct the path choice probabilities for path overlap. Deterministic models can be seen as special 

cases of stochastic models where the level of uncertainty is equal to zero.    

Although outside of the scope, we point out that travellers may be driven by different motivations for 

choosing a certain route. As stated in Section 1.2, here we only consider selfish drivers who minimise 

their individual travel time leading to a user equilibrium based model. Other models exist in which 

drivers are guided by different motivations, yet these models are hardly ever used in the context of 

strategic transport planning.  

5.2 Nucleotide 9 – Travel time consideration 

In (semi-)dynamic models, different types of path travel times can be considered in route choice, see 

e.g., Ran and Boyce (1996) and Buisson et al. (1999). Instantaneous path travel times (I) for a certain 

departure time consider only the traffic states at this time instant and the corresponding link travel 

times, and hence ignores any changes in traffic conditions while driving. Models that consider 

instantaneous travel times are often referred to as reactive. Predictive path travel times (P) consider 

the addition of link travel times based on the traffic conditions at the time of link entrance, hence time-

varying traffic conditions along the path are taken into account. Such travel times can be considered 

as an estimate, since changing traffic conditions while traversing the link are ignored. More recent 

models calculate experienced travel times (E), which consider the actually experienced link travel times 

at the time of link exit (instead of link entrance). In static models (in which no such differences in path 

travel times exist) we assume that travel times are instantaneous. 

6. Classification of existing traffic assignment models 

Many traffic assignment models have been proposed in the literature that we can classify using the 

nine nucleotides in the three genes. Table 4 provides a list of some prototypical models described in 

the literature, which is by no means intended to be complete.  

Looking at temporal assumptions, all static models assume infinite wave and vehicle propagation 

speeds in the hypocritical branch and no residual traffic transfer. In case a hypercritical branch of the 

fundamental diagram is considered, either zero or infinite backward wave speeds are assumed, and 

vehicle propagation speeds equal to vehicular speeds or infinity. On the other hand, all dynamic 

models assume forward wave speeds that are not infinite, i.e. either equal to the vehicular speed or 

kinematic wave speed. Backward wave speeds are equal to the kinematic wave speeds and follow the 

shape of the fundamental diagram (and can therefore be equal to zero or infinity if the hypercritical 

branch of the fundamental diagram is horizontal or vertical, respectively). Vehicle propagation speeds 

are equal to the vehicular speed in both the hypocritical and the hypercritical branch (if considered). 

Further, dynamic models assume residual traffic transfer.  

Regarding behavioural assumptions, all models in Table 4 are (user) equilibrium models. Exceptions 

are Bovy (1990) who describes a one shot model for uncongested situations, while Daganzo (1994, 

1995a), Yperman et al. (2005), Bliemer (2007) and Gentile (2010) mainly describe the network loading 

sub-model and omit behavioural route choice information.  

Finally, looking at spatial assumptions, many models are capacity restrained using a strictly increasing 

link performance function, although more recently several capacity constrained models have been 

proposed that can explicitly account for queues. Relatively few models are storage constrained in 

which spillback is described. A wide variety of shapes of fundamental diagrams has been used. More 

advanced models include turn flow restrictions through the incorporation of a node model, which 

allow more realistic queueing and spillback of traffic.  
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Semi-dynamic models are neither completely static nor completely dynamic. This means with respect 

to the temporal assumptions that they typically assume a sequence of connected static models as 

described in Nakayama and Connors (2014). In such a case, wave speeds and vehicle propagation 

speeds in the hypocritical branch are infinite. However, vehicle propagation speeds in the hypercritical 

branch are considered finite and vehicles that reside in a queue at the end of a time period are 

transferred to the next time period. We have omitted semi-dynamic models from the list in Table 4 

because the papers are either in Japanese (Fujita et al., 1988; Fujita et al., 1989; Miyagi and Makimura, 

1991; Akamatsu et al., 1998; Nakayama, 2009) or have been described as operational procedures and 

algorithms rather than mathematical problems (e.g., Van Vliet, 1982; Davidson et al., 2011), which 

makes them difficult to classify accurately.  

7. Discussion and conclusions 

In this paper we have presented a theoretical framework, which classifies traffic assignment models 

for strategic transport planning purposes. This framework is described in terms of a genetic code with 

three genes and nine nucleotides consisting of four spatial assumptions, three temporal assumptions, 

and two behavioural assumptions. This framework leads to in total 36 different model types, each with 

their own underlying assumptions and their own capabilities. 

As a special case, the widely applied capacity restrained equilibrium static traffic assignment model 

can be derived by assuming (i) a concave hypocritical part and no hypercritical part of the fundamental 

diagram, (ii) no flow capacity constraints, (iii) no storage constraints, (iv) no turn flow restrictions, (v) 

infinite forward wave speeds and no backward waves, (vi) infinite vehicle propagation speeds, and (vii) 

no residual traffic transfer, (viii) perfectly rational travellers with full information, and (ix) 

instantaneous travel time consideration. Such strict assumptions limit the capability and hence realism 

of this particular model in certain instances. At the same time, we acknowledge that more capable 

models often have other less favourable characteristics, such as higher computational complexity and 

possible non-uniqueness of solutions. As a result, transport planners may decide to choose less capable 

models, but should be aware of model limitations when interpreting outputs.  

Capacity constrained (and possibly also storage constrained) models are more capable and can 

explicitly describe queues (and possibly spillback). Several sophisticated dynamic models exist that are 

capable of describing flows and travel times under all traffic conditions. Such static models also exist, 

which extend the capability (realism) of static models in congested situations by sharing the same 

spatial assumptions made in advanced dynamic models. This opens up possibilities for static models 

that are derived from advanced dynamic models by simply using static temporal assumptions. 

Therefore, the framework described in this paper may not only be useful for classifying models, but 

also for developing new models with new genetic codes by combining different spatial, temporal, and 

behavioural assumptions (and hence inherit genetic properties from other models). 

  



 

18 

Table 4: Overview of assumptions made in different traffic assignment models proposed in the literature 

 Gene 1: 

Spatial assumptions 

 Gene 2: 

Temporal assumptions 

 Gene 3: 

Behavioural assumptions 

 fundamental 

diagram 

capacity 

constraints 

storage 

constraints 

turn flow 

restrictions 

 wave      

speeds 

vehicle prop. 

speeds 

residual traffic 

transfer 

 decision  

making 

travel time 

consideration 

Static models            

Bovy (1990) LN UU U N  IN IN N  FI I 

Beckmann et al. (1956) CN UC U N  IN IN N  FP I 

Irwin et al. (1961) CN UU U N  IN IN N  FP I 

Fisk (1980) CN UU U N  IN IN N  FI I 

Smith (1987) LH UC U N  IN IN N  FP I 

Bell (1995) LH UC U N  IZ II N  FI I 

Bifulco and Crisalli (1998) CH UC U N  IZ IV N  FI I 

Lam and Zhang (2000) CH UC U N  IZ IV N  FP I 

Zhou et al. (2012) CN UU U N  IN IN N  FI I 

Smith (2013) LH UC U N  IZ II N  FP I 

Smith et al. (2013) CV UC C N  II IV N  FP I 

Bliemer et al. (2014) LC CC U F  IZ IV N  FI I 

Dynamic models            

Janson (1991) CN UU U N  VN VN T  FP I 

Daganzo (1994, 1995a) PL CC C O  KK VV T  -- -- 

Chen and Hsueh (1998) CN UU U N  VN VN T  FP P 

Li et al. (2000) LH UC U N  KZ VV T  FP I 

Chabini (2001) CN UU U N  KN VN T  FP P 

Bliemer and Bovy (2003) CN UU U N  KN VN T  FP P 

Yperman et al. (2005) LL CC C O   KK VV T  -- -- 

Bliemer (2007) CV UC C O   KI VV T  -- -- 

Gentile (2010) CC CC C O   KK VV T  -- -- 

Friesz et al. (2013) CH UC U N  KZ VV T  FP E 

Han et al. (2015) LL CC C O  KK VV T  BP E 
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