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Joint Reconstruction-Segmentation on Graphs*

Jeremy M. Budd\dagger , Yves van Gennip\ddagger , Jonas Latz\S , Simone Parisotto\P , and

Carola-Bibiane Sch\"onlieb\P 

Abstract. Practical image segmentation tasks concern images which must be reconstructed from noisy, dis-
torted, and/or incomplete observations. A recent approach for solving such tasks is to perform this
reconstruction jointly with the segmentation, using each to guide the other. However, this work
has so far employed relatively simple segmentation methods, such as the Chan--Vese algorithm. In
this paper, we present a method for joint reconstruction-segmentation using graph-based segmen-
tation methods, which have been seeing increasing recent interest. Complications arise due to the
large size of the matrices involved, and we show how these complications can be managed. We then
analyze the convergence properties of our scheme. Finally, we apply this scheme to distorted ver-
sions of ``two cows"" images familiar from previous graph-based segmentation literature, first to a
highly noised version and second to a blurred version, achieving highly accurate segmentations in
both cases. We compare these results to those obtained by sequential reconstruction-segmentation
approaches, finding that our method competes with, or even outperforms, those approaches in terms
of reconstruction and segmentation accuracy.

Key words. image reconstruction, image segmentation, joint reconstruction-segmentation, graph-based learn-
ing, Ginzburg--Landau functional, Merriman--Bence--Osher scheme, total variation regularization

MSC codes. 05C99, 34B45, 35R02, 65F60, 94A08

DOI. 10.1137/22M151546X

1. Introduction. Two tasks which lie at the heart of many applications in image pro-
cessing are image reconstruction---the task of reconstructing an image from noisy, distorted,
and/or incomplete observations---and image segmentation, the task of separating an image
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912 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

into its ``important"" parts. But in practice, the latter task is not independent of the for-
mer: when we seek to segment an image, we will not typically have access to the true image,
but rather must reconstruct the image from imperfect observations. That is, in practice a
segmentation task is often a reconstruction-segmentation task.

Over the last decade, the framework of ``PDEs on graphs"" has yielded highly effective tech-
niques for image segmentation. In this paper, we will exhibit a technique for reconstruction-
segmentation within this framework. In particular, we will incorporate into this framework the
method of joint reconstruction-segmentation, which is an approach that performs the recon-
struction and segmentation together, using each to guide the other, with the goal of improving
the quality of the segmentation compared to performing the tasks in sequence. Previous im-
plementations of this approach have employed relatively simple segmentation techniques. The
key contribution of this paper will be to show how the more sophisticated graph-PDE-based
segmentation techniques can be employed in joint reconstruction-segmentation.

1.1. Image reconstruction background. The general setting for image reconstruction is
that one has some observations y of an image x\ast , which are related via

(1.1) y = \scrT (x\ast ) + e,

where \scrT is the forward model , typically a linear map, and e is an error term (e.g., a Gaussian
random variable). Solving (1.1) for x\ast ---given y, \scrT , and the distribution of e---is in general an
ill-posed problem. A key approach to solving (1.1), pioneered by Tikhonov [46] and Phillips
[40], has been to solve the variational problem

(1.2) argmin
x

\scrR (x) + D(\scrT (x), y),

where \scrR is a regularizer , encoding a priori information about x\ast , and D enforces fidelity to
the observations and encodes information about e.

1.2. Image segmentation background. One of the most celebrated methods for image
segmentation is that of Mumford and Shah [37]. This method segments an image x : \Omega \rightarrow \BbbR 
by constructing a piecewise smooth \~x \approx x and a set of contours \Gamma (the boundaries of the
segments) minimizing a given segmentation energy, namely the Mumford--Shah functional

(1.3) MS(\~x,\Gamma ) :=

\int 
\Omega \setminus \Gamma 

| \nabla \~x| 2 d\mu + \alpha 

\int 
\Omega 

(x - \~x)2 d\mu + \beta | \Gamma | ,

where \mu is the Lebesgue measure. As MS is difficult to minimize in full generality, Chan and
Vese [17] devised a method where \~x is restricted to being piecewise constant.1 This simplifies
(1.3) to an energy which can be minimized via level-set methods. Some key drawbacks of
these methods are that they can be computationally expensive, as one must solve a PDE;
can be hard to initialize [23]; can perform poorly if the image has inhomogeneities [51]; and
are constrained by the image geometry, and so are less able to detect large-scale nonlocal
structures.

1Chan and Vese also add an extra energy term proportional to the area ``inside"" \Gamma .
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 913

These Mumford--Shah methods are related to Ginzburg--Landau methods (see, e.g., [21]),
because the Ginzburg--Landau functional \Gamma -converges to total variation [36]. Because of this \Gamma -
convergence (which also holds on graphs [47]), Bertozzi and Flenner [7] were inspired to develop
a segmentation method based on minimizing the graph Ginzburg--Landau functional using the
graph Allen--Cahn gradient flow. Soon after, Merkurjev, Kosti\'c, and Bertozzi [34] introduced
an alternative method using a graph Merriman--Bence--Osher (MBO) scheme. These ``PDEs
on graphs"" methods have received considerable attention, both theoretical (see, e.g., [6, 33, 48])
and in applications (see, e.g., [14, 15, 24, 31, 35, 42]). In previous work, Budd and van Gennip
[12] showed that the graph MBO scheme is a special case of a semidiscrete implicit Euler
(SDIE) scheme for graph Allen--Cahn flow, and Budd, van Gennip, and Latz [13] investigated
the use of this SDIE scheme for image segmentation and developed refinements to earlier
methods that resulted in improved segmentation accuracy.

1.3. Joint reconstruction-segmentation background. Reconstruction-segmentation was
traditionally approached sequentially : first reconstruct the image, then segment the recon-
structed image. The key drawback of this method is that the reconstruction ignores any
segmentation-relevant information. At the other extreme is the end-to-end approach: first
collect training data \{ (yn, un)\} of pairs of observations and corresponding segmentations,
then use this data to learn (e.g., via deep learning) a map that sends y to u. However,
this forgoes explicitly reconstructing x\ast and can require a lot of training data, and the map
can be a ``black box"" (i.e., it may be hard to explain its segmentation or prove theoretical
guarantees).

Joint reconstruction-segmentation (a.k.a. simultaneous reconstruction and segmentation)
lies between these extremes, seeking to perform the reconstruction and segmentation simul-
taneously, using each to guide the other. It was first proposed by Ramlau and Ring [43] for
CT imaging, with related (but extremely varied) methods later developed for other medical
imaging tasks (for an overview, see [19, section 2.4]). An extensive theoretical overview of task-
adapted reconstruction was developed in Adler et al. [2], which found that joint reconstruction-
segmentation produced more accurate segmentations than both the sequential and end-to-end
approaches. These methods were enhanced in Corona et al. [19] using Bregman methods,
and a number of theoretical guarantees were proved about this enhanced scheme. However,
these approaches have mostly relied on Mumford--Shah or Chan--Vese methods for the
segmentation.

1.4. Contributions and outline. The primary contribution of this work will be a joint
reconstruction-segmentation method based around the joint minimization problem

min
x\in \BbbR N\times \ell ,u\in \scrV 

\scrR (x) + \alpha \| \scrT (x)  - y\| 2F + \beta GL\varepsilon ,\mu ,f (u,\Omega (\scrF (x), zd)),

where x is the reconstruction, u is the segmentation, the first two terms describe a recon-
struction energy as in (1.2), and the final term is a segmentation energy using the graph
Ginzburg--Landau energy. The use of this energy is motivated by the success of the graph
Ginzburg--Landau-based segmentation methods described in subsection 1.2. These objects,
and other groundwork required for this paper, will all be defined in section 2. In particular,
in this paper

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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914 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

i. we will present an iterative scheme for solving this minimization problem, which
alternately updates the candidate reconstruction and the candidate segmentation
(section 3);

ii. we will devise algorithms for computing the steps of this iterative scheme (sections 4 to
6); we compute the reconstruction update by linearizing the corresponding variational
problem (section 4), and we compute the segmentation update via the SDIE scheme
(section 5);

iii. we will demonstrate the convergence of this iterative scheme to critical points of the
joint minimization problem (section 7);

iv. we will apply this scheme to highly noised and to blurred versions of the ``two cows"" im-
age familiar from [7, 11, 13, 34] (section 8). Our scheme will exhibit very accurate seg-
mentations which compete with or outperform sequential reconstruction-segmentation
approaches.

2. Various groundwork.

2.1. Framework for analysis on graphs. We begin by giving a framework for analysis on
graphs, abridging Budd [11, section 2], which itself is abridging van Gennip et al. [48].

Let (V,E,\omega ) be a finite, undirected, weighted, and connected graph with neither multi-
edges nor self-loops. The finite set V is the vertex set , E \subseteq V 2 is the edge set (with ij \in E if
and only if ji\in E for all i, j \in V ), and \{ \omega ij\} i,j\in V are the weights, with \omega ij \geq 0, \omega ij = \omega ji, and
\omega ii = 0, and \omega ij > 0 if and only if ij \in E. We define function spaces

\scrV := \{ u : V \rightarrow \BbbR \} , \scrV X := \{ u : V \rightarrow X\} , \scrE := \{ \varphi : E \rightarrow \BbbR \} 

if X \subseteq \BbbR . For a parameter r \in [0,1], and writing di :=
\sum 

j \omega ij for the degree of vertex i \in V ,
we define inner products on \scrV and \scrE (and hence inner product norms \| \cdot \| \scrV and \| \cdot \| \scrE ):

\langle u, v\rangle \scrV :=
\sum 
i\in V

uivid
r
i , \langle \varphi ,\phi \rangle \scrE :=

1

2

\sum 
i,j\in V

\varphi ij\phi ij\omega ij .

Next, we introduce the graph variants of the gradient and Laplacian operators:

(\nabla u)ij :=

\Biggl\{ 
uj  - ui, ij \in E,

0 otherwise,
and (\Delta u)i := d - r

i

\sum 
j\in V

\omega ij(ui  - uj),

where the graph Laplacian \Delta is positive semidefinite and self-adjoint with respect to \scrV . As
shown in [48], these operators are related via \langle u,\Delta v\rangle \scrV = \langle \nabla u,\nabla v\rangle \scrE . We can interpret \Delta as a
matrix. Define D := diag(d) (i.e., Dii := di, and Dij := 0 otherwise) to be the degree matrix .
Then writing \omega for the matrix of weights \omega ij we get

\Delta := D - r(D - \omega ).

The choice of r is important. For r = 0, \Delta = D  - \omega is the standard unnormalized (or
combinatorial) Laplacian. For r = 1, \Delta = I  - D - 1\omega (where I is the identity matrix) is the
random walk Laplacian. There is also an important Laplacian not covered by this definition:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 915

the symmetric normalized Laplacian \Delta s := I  - D - 1/2\omega D - 1/2. For image segmentation it is
important to use a normalized Laplacian (see [7, section 2.3]), so we shall henceforth take
r = 1.

2.2. The graph Ginzburg--Landau functional. In this paper, we shall use graph-based
segmentation methods based on minimizing the graph Ginzburg--Landau functional. The basic
form of this functional is

GL\varepsilon (u) :=
1

2
| | \nabla u| | 2\scrE +

1

\varepsilon 
\langle W \circ u,\bfone \rangle \scrV ,

where W is a double-well potential and \varepsilon > 0 is a parameter. In particular, following Budd
[11], we shall be taking W to be the double-obstacle potential :

W (s) :=

\Biggl\{ 
1
2x(1  - x) for 0 \leq x\leq 1,

\infty otherwise.

Furthermore, we define the graph Ginzburg--Landau functional with fidelity by

GL\varepsilon ,\mu ,f (u) :=
1

2
| | \nabla u| | 2\scrE +

1

\varepsilon 
\langle W \circ u,\bfone \rangle \scrV +

1

2
\langle u - f,M(u - f)\rangle \scrV ,

where M := diag(\mu ) for \mu \in \scrV [0,\infty ) the fidelity parameter and f \in \scrV [0,1] is the reference. We
define Z := supp(\mu ), which we call the reference data. Note that \mu i paramaterizes the strength
of the fidelity to the reference at vertex i. We may assume without loss of generality that f
is supported on Z.

It is worth briefly describing why minimizing GL\varepsilon ,\mu ,f is a good way to segment an image.
The first term penalizes the segmentation u if two vertices with a high edge weight are in dif-
ferent segments, encouraging the segmentation to group similar vertices together. The second
term wants the segmentation to be binary. The third term penalizes u for disagreeing with
an a priori segmentation, propagating those a priori labels to the rest of the vertices.

It will be useful for our joint reconstruction-segmentation scheme to redefine GL\varepsilon ,\mu ,f as a
function of both u and \omega . A simple calculation gives that

GL\varepsilon ,\mu ,f (u,\omega ) =
1

2

\sum 
i,j\in V

\omega ij(ui  - uj)
2 +

1

2\varepsilon 

\sum 
i,j\in V

\omega ij(W (ui) + W (uj))

+
1

4

\sum 
i,j\in V

\omega ij

\bigl( 
\mu i(ui  - fi)

2 + \mu j(uj  - fj)
2
\bigr) 
.

Note that this is linear in \omega . We can therefore define G\varepsilon ,\mu ,f : \scrV \rightarrow \BbbR V\times V as

(G\varepsilon ,\mu ,f (u))ij =
1

2
(ui  - uj)

2 +
1

2\varepsilon 
(W (ui) + W (uj)) +

1

4

\bigl( 
\mu i(ui  - fi)

2 + \mu j(uj  - fj)
2
\bigr) 

such that

GL\varepsilon ,\mu ,f (u,\omega ) = tr(G\varepsilon ,\mu ,f (u)T\omega ) =: \langle G\varepsilon ,\mu ,f (u), \omega \rangle F ,

where \langle \cdot , \cdot \rangle F denotes the Frobenius inner product. Furthermore, note that if vi := 1
2u

2
i +

1
2\varepsilon W (ui) + 1

4\mu i(ui  - fi)
2, then G\varepsilon ,\mu ,f (u) =  - uuT + v\bfone T + \bfone vT .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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916 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

2.3. Turning an image into a graph. To represent an image as a graph, we first let our
vertex set V be the set of pixels in the image and consider the image as a function x : V \rightarrow \BbbR \ell ,
where \ell depends on whether the image is grayscale, RGB, or hyperspectral, etc. To build our
graph, we construct feature vectors \scrF (x) =: z : V \rightarrow \BbbR q where \scrF is the feature map (which
we shall assume to be linear). The philosophy behind these vectors is that vertices which are
``similar"" should have nearby feature vectors. What ``similar"" means is application-specific,
e.g., [49] incorporates texture into the features, [7, 14] give other options, and there has been
recent interest in deep learning methods for constructing features; see, e.g., [20, 35]. Next, we
construct the weights on the graph by defining \omega ij to be given by some similarity function
evaluated on zi and zj . There are a number of standard choices for the similarity function;
see, e.g., [7, section 2.2]. For our choices for feature map and similarity measure see subsection
8.2 and (3.1), respectively.

2.4. The Nystr\"om extension. A key practical challenge is that V is usually very large,
and hence matrices such as the weight matrix \omega \in \BbbR V\times V and \Delta are much too large to store
in memory. Instead, we shall compress these matrices using a technique called the Nystr\"om
extension, first introduced in Nystr\"om [39] and developed for matrices in Fowlkes et al. [22].
Consider an N \times N symmetric matrix A, written in block form

A =

\biggl( 
AXX AXXc

AXcX AXcXc

\biggr) 
,

where X is the interpolation set , with | X| =: K \ll N . Let AXX = UX\Lambda UT
X , and let uiX

be a column eigenvector from UX with eigenvalue \lambda i. The idea of the Nystr\"om extension is
to extend this eigenvector to a vector ((uiX)T (uiXc)T )T which is defined on all of V , using
a quadrature rule. That is, uiXc is defined by \lambda iu

i
Xc = AXcXuiX , which can be observed to

resemble a quadrature rule for the eigenvalue problem Au = \lambda iu. Let UXc :=
\bigl( 
u1Xc \cdot \cdot \cdot uKXc

\bigr) 
.

Then UXc\Lambda =AXcXUX and so (assuming that A - 1
XX exists) UXc = AXcXUX\Lambda  - 1. Finally,

A\approx 
\biggl( 
UX

UXc

\biggr) 
\Lambda 
\bigl( 
UT
X UT

Xc

\bigr) 
=

\biggl( 
AXX AT

XcX

AXcX AXcXA - 1
XXAT

XcX

\biggr) 
=

\biggl( 
AXX

AXcX

\biggr) 
A - 1

XX

\bigl( 
AXX AT

XcX

\bigr) 
,

(2.1)

where in the first equality we used that UXc = AXcXUX\Lambda  - 1. The upshot of (2.1) is that we
only need to store and calculate with AXX and AXcX , which are much smaller than A. Also,
(2.1) yields an efficient way to approximate matrix-vector products Av.

3. A joint-reconstruction-segmentation scheme on graphs.

3.1. Set-up. We will begin by formally stating our reconstruction-segmentation task.

Problem 3.1. Let x\ast : Y \rightarrow \BbbR \ell be the image to be reconstructed and segmented. Let
y = \scrT (x\ast ) + e be observed data where the forward model \scrT is differentiable and e is a random
variable describing observation error. Let xd : Z \rightarrow \BbbR \ell be an already reconstructed and seg-
mented reference image with a priori segmentation f : Z \rightarrow \{ 0,1\} . Here Y and Z are disjoint
finite sets. Given y, \scrT , xd, and f , reconstruct x \approx x\ast and find u : Y \cup Z \rightarrow \{ 0,1\} such that
u| Y segments x and u| Z is close to f .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 917

Next, we must incorporate this into a graph framework, following subsection 2.3. Let
V := Y \cup Z be the vertex set of our graph, and let the edge set E be given by E := \{ ij | i, j \in 
V, i \not = j\} . Let N := | Y | and Nd := | Z| . To encode the candidate reconstruction x : Y \rightarrow \BbbR \ell and
the reference image xd in the weights on this graph, we define feature maps \scrF and \scrF d and
feature vectors z : Y \rightarrow \BbbR q and zd : Z \rightarrow \BbbR q by z := \scrF (x) and zd := \scrF d(xd). Since xd and \scrF d

are given, we hereafter treat zd as given. We then define the edge weights via \omega = \Omega (z, zd),
where \Omega (z, zd) is given by (for \bfz := (z, zd))

(3.1) \Omega ij(z, zd) := e - 
\| \bfz i - \bfz j\| 

2
F

q\sigma 2

with \| \cdot \| F denoting the Frobenius norm.2 The q in the denominator averages over the q
components of \bfz so that parameter choices for \sigma generalize better.

Note 3.2. The feature vectors z and zd are defined so that z does not depend on xd and
zd does not depend on x. This is a simplification, since x and xd might be different parts
of the same image and hence one might want z to partially depend on xd. However, this
simplification greatly aids in the following analysis, and in computation, as it means that the
edge weights between vertices of Z can be considered fixed and given.

3.2. The joint reconstruction-segmentation scheme. To solve Problem 3.1, we will em-
ploy a variational approach. We will consider our candidate reconstructions x and segmenta-
tions u to be candidate solutions to the following joint minimization problem:

(3.2) min
x\in \BbbR N\times \ell ,u\in \scrV 

\scrR (x) + \alpha \| \scrT (x)  - y\| 2F + \beta GL\varepsilon ,\mu ,f (u,\Omega (\scrF (x), zd)),

where \scrR is a convex regularizer, which following Appendix B we shall assume can be written
as \scrR (x) = R(\scrK (x)) for \scrK a linear map and R convex and lower semicontinuous (l.s.c.) with
convex conjugate R\ast 3 proper, convex, l.s.c., and nonnegative. The first two terms in the
objective functional are a standard Tikhonov reconstruction energy as in (1.2), and the final
Ginzburg--Landau term is the segmentation energy. As this problem (and related variational
problems considered in this paper) are nonconvex, by ``solving"" we will mean finding adequate
local minimizers.

To avoid needing to solve the difficult problem (3.2) directly, we will use the following
alternating iterative scheme4 to approach solutions (where \alpha ,\beta , \eta n, \nu n are parameters):

xn+1 = argmin
x\in \BbbR N\times \ell 

\scrR (x) + \alpha \| \scrT (x)  - y\| 2F + \beta GL\varepsilon ,\mu ,f (un,\Omega (\scrF (x), zd)) + \eta n\| x - xn\| 2F ,(3.3a)

un+1 = argmin
u\in \scrV 

\beta GL\varepsilon ,\mu ,f (u,\Omega (\scrF (xn+1), zd)) + \nu n\| u| Y  - un| Y \| 2\scrV .(3.3b)

We can understand this scheme intuitively as iterating the following steps:
I. Given the current segmentation, update the reconstruction using the segmentation

energy as an extra regularizer and the previous reconstruction as a momentum term.
II. Given the current reconstruction, update the segmentation using the previous segmen-

tation of the image to be reconstructed as a momentum term.

2This choice of edge weight function is not arbitrary. The fact that it has a particularly well-structured
derivative will be used in Appendix A and the fact that it is analytic will be used in section 7.

3That is, R\ast (p) := supx\prime \langle p,x\prime \rangle  - R(x\prime ).
4Note that the \| \cdot \| \scrV term depends on the degrees given by the weights \Omega (\scrF (xn+1), zd).
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918 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

3.3. Initialization. The simplest initial reconstruction x0 would be x0 := \scrT +(y), where \scrT +

is the (Moore--Penrose) pseudoinverse of \scrT (see [27, section 5.5.2]). However, in practice \scrT +(y)
can be too poorly structured to give a good initial segmentation. Also, the pseudoinverse can
be highly unstable [27, section 5.5.3] and does not exist for nonlinear \scrT . Thus, we favor initial-
izing by applying a cheap and better behaved reconstruction method to y. The initial segmen-
tation u0 is constructed by segmenting x0 via the SDIE methods to be described in section 5.

4. Solving (3.3a). We now describe how we compute (approximate) solutions to (3.3a).
This minimization problem is highly computationally challenging, so we will simplify it by
linearizing (3.3a). This reduces the problem to one which can be solved by standard methods.

4.1. Linearizing (3.3a). The challenging term in (3.3a) is the Ginzburg--Landau energy
term. Recall from subsection 2.2 that this can be written

\beta \langle Gn,\Omega (\scrF (x), zd)\rangle F \simeq \beta \langle (Gn)Y Y ,\Omega Y Y (\scrF (x))\rangle F\underbrace{}  \underbrace{}  
=:F1(\scrF (x))

+ 2\beta \langle (Gn)Y Z ,\Omega Y Z(\scrF (x), zd)\rangle F\underbrace{}  \underbrace{}  
=:F2(\scrF (x))

,

where for a matrix A, AY Z := (Aij)i\in Y,j\in Z and likewise for AY Y , and where

(4.1) Gn := G\varepsilon ,\mu ,f (un) =  - unu
T
n + vn\bfone 

T + \bfone vTn ,

for vn defined by (vn)i := 1
2(un)2i + 1

2\varepsilon W ((un)i) + 1
4\mu i((un)i  - fi)

2. Let us assume that our
candidate minimizer for (3.3a) is close to xn (this assumption will become more reasonable
the higher the value of \eta n is). Then we can make the following approximation:

F1(\scrF (x)) + F2(\scrF (x))

\approx F1(\scrF (xn)) + F2(\scrF (xn)) + \langle x - xn,\nabla xF1(\scrF (xn)) + \nabla xF2(\scrF (xn))\rangle 
= \langle x, gn\rangle + constant terms (in x),

where gn := \nabla xF1(\scrF (xn))+\nabla xF2(\scrF (xn)). We will describe how to compute gn in Appendix
A. Using this approximation, we can approximate (3.3a) by solving

(4.2) argmin
x\in \BbbR N\times \ell 

\scrR (x) + \langle x, gn\rangle F + \alpha \| \scrT (x)  - y\| 2F + \eta n\| x - xn\| 2F .

Defining \~xn := xn  - 1
2\eta 

 - 1
n gn, (4.2) is equivalent to

(4.3) argmin
x\in \BbbR N\times \ell 

\scrR (x) + \alpha \| \scrT (x)  - y\| 2F + \eta n\| x - \~xn\| 2F .

This is of the form of a standard variational image reconstruction problem (1.2). To solve
(4.3), we shall be employing an algorithm of Chambolle and Pock [16]; see Appendix B.

Note 4.1. Due to difficulties in employing the algorithms of [16] for nonlinear \scrT , we will
henceforth take \scrT to be linear (except in section 7). The framework we describe in this paper
is however applicable for general \scrT , so long as one is able to efficiently solve (4.3) for that \scrT .

4.2. The algorithm for (3.3a). We use Algorithm 4.1 to approximately solve (4.3),
thereby approximately solving (3.3a).
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 919

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone Algorithm for solving the linearized (3.3a).

1: \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn ReconUpdate(xn, un, y,\scrT , zd, f, V,Y,Z,\scrF , q, \sigma ,R,\scrK ,W,\alpha ,\beta , \eta n,K)
2:  \triangleleft Computes xn+1 solving (4.3). Note: assumes that \scrT is linear
3: vn = 1

2(un)2 + 1
2\varepsilon W (un) + 1

4\mu \odot (un  - f)2  \triangleleft Squaring elementwise
4: zn = \scrF (xn)
5: w1 = CProd(zn, (zn, zd), un, vn, \sigma ,V,Y,Z,K)  \triangleleft See Algorithm A.1
6: w2 = CProd(zn,\bfone V , un, vn, \sigma ,V,Y,Z,K)

7: gn = 4\beta 
q\sigma 2\scrF \ast (w1  - w2 \odot zn)

8: \~xn = xn  - 1
2\eta 

 - 1
n gn

9: proxG : (x, \delta t) \mapsto \rightarrow ((\delta t - 1 + 2\eta n)I + 2\alpha \scrT \ast \scrT ) - 1(2\alpha \scrT \ast (y) + 2\eta n\~xn + x/\delta t)  \triangleleft See (B.3)
10: proxRS : (x, \delta t) \mapsto \rightarrow prox\delta tR\ast (x)  \triangleleft Recall that \scrR (x) = R(\scrK x)
11: xn+1 = PrimalDual(xn,2\eta n,\scrK ,\scrK \ast ,proxRS,proxG)  \triangleleft See Algorithm B.1
12: \bfr \bfe \bft \bfu \bfr \bfn xn+1

13: \bfe \bfn \bfd \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 

5. Solving (3.3b). After rescaling by \beta  - 1, we rewrite the objective function in (3.3b) as

GL\varepsilon (u,\Omega (\scrF (xn+1), zd)) +
1

2

\sum 
i\in V

di\mu i(ui  - fi)
2 +

1

2

2\nu n
\beta 

\| u| Y  - un| Y \| 2\scrV 

= GL\varepsilon (u,\Omega (\scrF (xn+1), zd)) +
1

2

\sum 
i\in V

di\mu 
\prime 
i(ui  - f \prime 

i)
2

= GL\varepsilon ,\mu \prime ,f \prime (u,\Omega (\scrF (xn+1), zd)),

where \mu \prime := \mu + 2\nu n\beta 
 - 1\chi Y and f \prime := f + un \odot \chi Y (where \chi Y denotes the indicator function of

the set Y ). We have used that \mu | Y = f | Y = \bfzero .

5.1. The SDIE scheme for minimizing GL\bfitvarepsilon ,\bfitmu \prime , \~\bfitf \prime . Following [11, 13], in order to minimize
GL\varepsilon ,\mu \prime , \~f \prime we shall consider its Allen--Cahn gradient flow :

\varepsilon 
du

dt
(t) + \varepsilon \Delta u(t) + \varepsilon M \prime (u(t)  - f \prime ) +

1

2
\bfone  - u(t) = \beta (t),(5.1)

where M \prime := diag(\mu \prime ) and \beta (t) arises from the subdifferential of W ; see [11, section 3.3.3] for
details. Following [11, section 4], we compute solutions to (5.1) via an SDIE scheme, defined
by

(5.2)
\Bigl( 

1  - \tau 

\varepsilon 

\Bigr) 
um+1  - \scrS \tau um +

\tau 

2\varepsilon 
\bfone =

\tau 

\varepsilon 
\beta m+1,

for \tau > 0 a time step, \beta m+1 a subdifferential term (see [11, Definition 4.1.1]), and \scrS \tau the
solution operator for fidelity-forced graph diffusion, described by the following theorem.

Theorem 5.1 (see [11, Theorem 3.2.6]). The fidelity-forced graph diffusion of u0 \in \scrV is

du

dt
(t) =  - \Delta u(t)  - M \prime (u(t)  - f \prime ), u(0) = u0.(5.3)
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920 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffive .\bfone Algorithm for solving (3.3b) using the SDIE scheme.

1: \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn SegUpdate(un, xn+1, zd,\scrF , q, \sigma ,V,Y,Z,K, \delta ,\beta , \nu n, \tau , \varepsilon ,\mu , f, ks)  \triangleleft Computes
2: the minimizer of (3.3b) by computing an SDIE sequence as in Appendix C
3: \mu \prime = \mu + 2\nu n\beta 

 - 1\chi Y

4: f \prime = f + un \odot \chi Y

5: \omega : ij \mapsto \rightarrow \Omega ij(z, zd, q, \sigma )  \triangleleft Defined as in (3.1)
6: [U1,\Lambda ,U2] = Nystr\"omQR(\omega ,V,Z,K/2,K/2)  \triangleleft See Algorithm C.1
7: F : x \mapsto \rightarrow ( - U1\Lambda (UT

2 x)  - \mu \prime \odot (x - f \prime ))
8: \^v = ode solver(F, [0, \tau ],\bfzero )  \triangleleft Solves \^v\prime (t) = F (\^v) on [0, \tau ], \^v(0) = \bfzero , e.g., as in [34]
9: b = \^v(\tau )  \triangleleft b := F\tau (\Delta + M \prime )M \prime f \prime 

10: \Sigma = IK  - \Lambda 
11: (a1, a2) = (exp( - \tau /ks(\mu 

\prime + \bfone )), exp(\tau /ksdiag(\Sigma ))  - \bfone K)  \triangleleft See (C.1)
12: a3 = sqrt(a1)  \triangleleft See (C.1)
13: u0 = 1

2\chi Y + f  \triangleleft As an example initial condition
14: m = 0
15: \bfw \bfh \bfi \bfl \bfe \| um  - um - 1\| 22/\| um\| 22 \geq \delta \bfd \bfo 
16: v = um

17: \bff \bfo \bfr r = 1 to ks \bfd \bfo 
18: v = a1 \odot v + a3 \odot (U1(a2 \odot (UT

2 (a3 \odot v))))  \triangleleft Strang formula iteration (C.1)
19: \bfe \bfn \bfd \bff \bfo \bfr 
20: v = v + b  \triangleleft Approximates v = \scrS \tau u

m

21: V1 = \{ i\in V | vi \in [\tau /2\varepsilon ,1  - \tau /2\varepsilon )\} 
22: V2 = \{ i\in V | vi \geq 1  - \tau /2\varepsilon \} 
23: um+1 = (1  - \tau /\varepsilon ) - 1(v - \tau /2\varepsilon \bfone ) \odot \chi V1

+ \chi V2
 \triangleleft Applies the (5.4) thresholding

24: m = m + 1
25: \bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
26: \bfr \bfe \bft \bfu \bfr \bfn um

27: \bfe \bfn \bfd \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 

For t, x \in \BbbR , let Ft(x) := (1  - e - tx)/x, and extend Ft to (real) matrix inputs via its Taylor
series. Then, for any given u0 \in \scrV , (5.3) has a unique solution, given by the map

u(t) = \scrS tu0 := e - t(\Delta +M \prime )u0 + Ft(\Delta + M \prime )M \prime f \prime .

The solution to (5.2) is then given by the following theorem.

Theorem 5.2 (see [11, Theorem 4.2.1]). For \tau \in [0, \varepsilon ), (5.2) has unique solution

(5.4a) (um+1)i =

\left\{       
0 if (\scrS \tau um)i <

\tau 
2\varepsilon ,

1
2 +

(\scrS \tau um)
i
 - 1/2

1 - \tau 

\varepsilon 

if \tau 
2\varepsilon \leq (\scrS \tau um)i < 1  - \tau 

2\varepsilon ,

1 if (\scrS \tau um)i \geq 1  - \tau 
2\varepsilon .
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 921

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfsix .\bfone Graph-based joint reconstruction-segmentation algorithm using (3.3).

1: \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn JointRecSeg(y,\scrT , zd, f, V,Y,Z,\scrF , q, \sigma ,R,\scrK ,W,\alpha ,\beta , \delta , \eta n, \nu n, \tau , \varepsilon ,\mu ,K,N,ks)
2:  \triangleleft Computes the first N iterates of (3.3)
3: x0 = cheap reconstruction(y,\scrT )  \triangleleft Initial cheap reconstruction
4: u0 = SegUpdate(f,x0, zd,\scrF , q, \sigma ,V,Y,Z,K, \delta ,1,0, \tau , \varepsilon ,\mu , f, ks)

 \triangleleft Initial SDIE segmentation; see Algorithm 5.1
5: \bff \bfo \bfr n = 0 to N  - 1 \bfd \bfo  \triangleleft The iterations of (3.3)
6: xn+1 = ReconUpdate(xn, un, y,\scrT , zd, f, V,Y,Z,\scrF , q, \sigma ,R,\scrK ,W,\alpha ,\beta , \eta n,K)

 \triangleleft Solves (3.3a); see Algorithm 4.1
7: un+1 = SegUpdate(un, xn+1, zd,\scrF , q, \sigma ,V,Y,Z,K, \delta ,\beta , \nu n, \tau , \varepsilon ,\mu , f, ks)

 \triangleleft Solves (3.3b)
8: \bfe \bfn \bfd \bff \bfo \bfr 
9: \bfr \bfe \bft \bfu \bfr \bfn \{ xn\} Nn=0,\{ un\} Nn=0

10: \bfe \bfn \bfd \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 

For \tau = \varepsilon , (5.2) has solutions

(5.4b) (um+1)i \in 

\left\{     
\{ 1\} , (\scrS \tau um)i > 1/2,

[0,1], (\scrS \tau um)i = 1/2,

\{ 0\} , (\scrS \tau um)i < 1/2.

Note 5.3. The \tau = \varepsilon special case described by (5.4b) is the graph MBO scheme, which
has seen widespread use in image segmentation, pioneered by Merkurjev, Kosti\'c, and Bertozzi
[34].

We describe how to compute this SDIE scheme in Appendix C.

5.2. The algorithm for (3.3b). We summarize the above as Algorithm 5.1.

6. The full pipeline. We summarize the full pipeline as Algorithm 6.1.

7. Convergence analysis. In this section, we will show that (3.3) converges to critical
points of (3.2), using the theory from Attouch et al. [5]. From Note 4.1 we recall that in this
section we do not require \scrT to be linear. We first rewrite (3.2) abstractly:

min
x\in \scrX ,u\in \scrV 

F (x) + G (u,x) + H (u) =: \scrJ (u,x),

where \scrX :=\BbbR N\times \ell , F (x) := \scrR (x) + \alpha \| \scrT (x)  - y\| 2F ,

G (u,x) := \beta \langle  - uuT + \bfone vT + v\bfone T ,\Omega (\scrF (x), zd)\rangle F ,

vi := 1
2u

2
i + 1

4\varepsilon ui(1 - ui) + 1
4\mu i(ui - fi)

2, and H (u) := 0 if u\in \scrV [0,1] and H (u) := \infty otherwise.

Note 7.1. Both F and H are proper and l.s.c., and G is C\infty (indeed, analytic), so [5,
Assumption (H )] is satisfied. Furthermore, G (u,x) + H (u) = GL\varepsilon ,\mu ,f (u,\Omega (\scrF (x), zd)).
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922 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

Then (3.3) can be written as

xn+1 = argmin
x\in \scrX 

F (x) + G (un, x) + \eta n\| x - xn\| 2F ,(7.1a)

un+1 = argmin
u\in \scrV 

G (u,xn+1) + H (u) + \nu n\| u| Y  - un| Y \| 2\scrV ,(7.1b)

and our partially linearized iterative scheme can be written as

\~xn = xn  - 
1

2
\eta  - 1
n \nabla xG (un, xn),(7.2a)

xn+1 = argmin
x\in \scrX 

F (x) + \eta n\| x - \~xn\| 2F ,(7.2b)

un+1 = argmin
u\in \scrV 

G (u,xn+1) + H (u) + \nu n\| u| Y  - un| Y \| 2\scrV .(7.2c)

However, the presence of the seminorm \| \cdot | Y \| \scrV in (7.1b) is an obstacle to the deployment
of the theory from [5]. Hence, we will make an assumption that for all n, un| Z = f . In
practice, we have observed that this approximately holds, and furthermore the larger the
value of \mu the more closely this will hold. Thus, defining \scrV f := \{ u \in \scrV | u| Z = f\} and
\scrV f
[0,1] := \{ u\in \scrV [0,1] | u| Z = f\} , under this assumption (7.1) becomes

xn+1 = argmin
x\in \scrX 

F (x) + G (un, x) + \eta n\| x - xn\| 2F ,(7.3a)

un+1 = argmin
u\in \scrV 

G (u,xn+1) + H f (u) + \nu n\| u - un\| 2\scrV ,(7.3b)

where H f (u) := 0 if u \in \scrV f
[0,1] and H f (u) := \infty otherwise. Let \scrJ f (u,x) := F (x) + G (u,x) +

H f (u), which is equal to \scrJ (u,x) if u\in \scrV f . We begin by making some key definitions.5

Definition 7.2 (Kurdyka--\Lojasiewicz property). A proper l.s.c. function g : \BbbR n \rightarrow ( - \infty ,\infty ]
has the Kurdyka--\Lojasiewicz property at \=z \in dom\partial g6 if there exist \eta \in (0,\infty ], a neighborhood
U of \=z, and a continuous concave function \varphi : [0, \eta ) \rightarrow [0,\infty ) such that

\bullet \varphi is C1 with \varphi (0) = 0 and \varphi \prime > 0 on (0, \eta ), and
\bullet for all z \in U such that g(\=z) < g(z) < g(\=z) + \eta , the Kurdyka--\Lojasiewicz inequality

holds:

\varphi \prime (g(z)  - g(\=z))dist(\bfzero , \partial g(z)) \geq 1.

If \varphi (s) := cs1 - \theta is a valid concave function for the above with c > 0 and \theta \in [0,1), then we will
say that g has the Kurdyka--\Lojasiewicz property with exponent \theta at \=z.

Definition 7.3 (semianalyticity and subanalyticity). Following, e.g., \Lojasiewicz [32], we
define A \subseteq \BbbR n to be a semianalytic set if for all z\ast \in \BbbR n there exists a neighborhood U
containing z\ast and a finite collection of analytic functions (aij , bij) such that

A\cap U =
\bigcup 
i

\bigcap 
j

\{ z \in U | aij(z) = 0 and bij(z) > 0\} .

5With respect to the question of what these definitions are for, we ask the reader to bear with us, with the
hope that within a page or two their purpose will become clearer.

6We denote by domg the set of z such that g(z) < \infty and by dom\partial g the set of z \in domg such that the
(limiting) subdifferential of g at z, \partial g(z) (defined in [5, Definition 2.1]), is nonempty.
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 923

Following Hironaka [28], we define A to be a subanalytic set if for all z\ast \in \BbbR n there exists a
neighborhood U containing z\ast , m\in \BbbN , and a bounded semianalytic set B \subset \BbbR n+m such that

A\cap U = \{ z \in \BbbR n | \exists y \in \BbbR m such that (z, y) \in B\} .

We define g : \BbbR n \rightarrow ( - \infty ,\infty ] to be a semianalytic function if its graph Grg := \{ (z, z\prime ) \in 
\BbbR n\times \BbbR | z\prime = g(z)\} is a semianalytic set and define g to be a subanalytic function if its graph is
a subanalytic set. Both of these collections of sets are closed under elementary set operations.

We collect some key results regarding these definitions in the following lemma.

Lemma 7.4.
i. If g is proper and l.s.c., and \=z \in domg with \bfzero /\in \partial g(\=z), then for all \theta \in [0,1), g has the

Kurdyka--\Lojasiewicz property with exponent \theta at \=z.
ii. If g is proper and subanalytic, domg is closed, and g is continuous on its domain,

then for all \=z \in domg with \bfzero \in \partial g(\=z), there exists \theta \in [0,1) such that g has the
Kurdyka--\Lojasiewicz property with exponent \theta at \=z.

iii. If g :\BbbR n \rightarrow ( - \infty ,\infty ] is subanalytic and h :\BbbR n \rightarrow \BbbR is analytic, then g+h is subanalytic.
iv. If g : \scrV f\times \scrX \rightarrow ( - \infty ,\infty ] is subanalytic, then h : (u,x) \mapsto \rightarrow g(u,x)+H f (u) is subanalytic.

Proof.
i. Proved in Li and Pong [30, Lemma 2.1].

ii. Proved in Bolte, Daniilidis, and Lewis [8, Theorem 3.1].
iii. Fix (z\ast ,w\ast ) \in \BbbR n\times \BbbR . Since g is subanalytic, there exists U containing (z\ast ,w\ast  - h(z\ast ))

and a bounded semianalytic set B \subset \BbbR n+1+m such that

Grg \cap U = \{ (z,w) \in \BbbR n \times \BbbR | \exists y \in \BbbR m such that (z,w, y) \in B\} .

Since h is continuous, there exists a neighborhood V containing (z\ast ,w\ast ) such that for
all (z,w) \in Gr (g + h) \cap V , (z,w - h(z)) \in Grg \cap U , and hence (z,w - h(z), y) \in B for
some y \in \BbbR m. Let B\prime := \{ (z,w + h(z), y) | (z,w, y) \in B\} . Since h is analytic, B\prime is a
bounded semianalytic set, and for all (z,w) \in Gr(g + h)\cap V , there exists y \in \BbbR m such
that (z,w, y) \in B\prime . It follows that g + h is subanalytic.

iv. Grh = \{ (u,x, y) | u \in \scrV f
[0,1] and (u,x, y) \in Grg\} = (\scrV f

[0,1] \times \scrX \times \BbbR ) \cap Grg. It is simple

to check that \scrV f
[0,1], \scrX , and \BbbR are semianalytic, and hence subanalytic, and therefore

if Grg is subanalytic, then so is Grh.

Assumption 7.5. Suppose that \scrR is subanalytic, continuous on its domain, and bounded
below, and dom \scrR is closed. Suppose also that \scrT is analytic and that F (x) \rightarrow \infty as \| x\| F \rightarrow \infty .

Note 7.6. Examples of \scrR satisfying this assumption are \scrR (x) := \| Ax\| 1 (commonly used
in compressed sensing; see Adcock and Hansen [1]), where A is any matrix, and \scrR given by a
feedforward neural network with a ReLU activation function (commonly used as regularizers;
see, e.g., Arridge et al. [4]); see Theorem D.1 for proofs. Examples of F satisfying the
assumption are when \scrT is an invertible linear map or \scrR is coercive.

Theorem 7.7 (see [5, Lemma 3.1]). If Assumption 7.5 holds and, for some 0 < a < b and
all n, \eta n, \nu n \in (a, b), then (un, xn)n\in \BbbN solving (7.3) are well-defined, and furthermore,
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924 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

i. \scrJ f (un+1, xn+1) \leq \scrJ f (un, xn) with equality if and only if xn+1 = xn and un+1 = un;
ii. limn\rightarrow \infty \| xn+1 - xn\| F +\| un+1 - un\| \scrV = 0 (indeed, the differences are square-summable);

iii. for all bounded subsequences (un\prime , xn\prime ), dist(\bfzero , \partial \scrJ f (un\prime , xn\prime )) \rightarrow 0.

Proof. Note that, by Assumption 7.5, \scrJ f (u,x) is bounded below and that for all x \in \scrX ,
\scrJ f (\cdot , x) is proper. Hence given the assumption on \eta n and \nu n, [5, Assumption (H1)] is satisfied,
and therefore the result follows by [5, Lemma 3.1].

Lemma 7.8. Let Assumption 7.5 hold. Then for all \=u \in \scrV f
[0,1] and for all \=x \in dom\scrR , there

exists \theta \in [0,1) such that \scrJ f has the Kurdyka--\Lojasiewicz property with exponent \theta at (\=u, \=x).

Proof. Note first that dom\scrJ f = \scrV f
[0,1] \times dom\scrR , which is therefore closed by the assump-

tion. Next, note that by the assumption and the continuity of G and H f (in the latter case,
on its domain), \scrJ f is continuous on its domain. Finally, since G is analytic, \| \scrT (x)  - y\| 2F is
analytic, and \scrR is subanalytic, it follows by Lemma 7.4(iii)--(iv) that \scrJ f is subanalytic.

Let \=u \in \scrV f
[0,1] and \=x \in dom\scrR . If \bfzero \in \partial \scrJ f (\=u, \=x), then by the above Lemma 7.4(ii) applies.

Thus there exists \theta \in [0,1) such that \scrJ f has the Kurdyka--\Lojasiewicz property with exponent
\theta at (\=u, \=x). If instead \bfzero /\in \partial \scrJ f (\=u, \=x), then by Lemma 7.4(i)---as \scrJ f is proper and l.s.c.--- for
all \theta \in [0,1), \scrJ f has the Kurdyka--\Lojasiewicz property with exponent \theta at (\=u, \=x).

Lemma 7.9. Suppose that, for some 0 <a< b and all n, \eta n, \nu n \in (a, b), and that Assumption
7.5 holds. Then for all u0 \in \scrV f

[0,1] and for all x0 \in dom \scrR , if (un, xn)n\in \BbbN is defined from (u0, x0)

by (7.3), then \| (un, xn)\| := \| un\| \scrV + \| xn\| F is bounded.

Proof. As un \in \scrV f
[0,1] for all n, it suffices to show that \| xn\| F is bounded. For all u \in \scrV 

and for all x \in \scrX , G (u,x) + H f (u) \geq 0, and, by Theorem 7.7(i), \scrJ f (un, xn) \leq \scrJ f (u0, x0) for
all n. By Assumption 7.5, F (x) \rightarrow \infty as \| x\| F \rightarrow \infty ; hence \| xn\| F is bounded.

Theorem 7.10 (see [5, Theorems 3.2, 3.3, and 3.4]). Suppose that for some 0 < a < b and
all n, \eta n, \nu n \in (a, b); (un, xn)n\in \BbbN is defined from (u0, x0) by (7.3), and Assumption 7.5 holds.

Then for all u0 \in \scrV f
[0,1] and all x0 \in dom \scrR , (un, xn) converges to a critical point of \scrJ f .

Furthermore, suppose that \=u \in \scrV f
[0,1], \=x \in dom \scrR , and (\=u, \=x) is a global minimum of \scrJ f .

Then there exists a neighborhood U containing (\=u, \=x) and \eta > 0 such that if (u0, x0) \in U and
min\scrJ f <\scrJ f (u0, x0) < min\scrJ f + \eta , then (un, xn) \rightarrow (u\ast , x\ast ), a global minimizer of \scrJ f .

Finally, let (un, xn) \rightarrow (u\infty , x\infty ) where u\infty \in \scrV f
[0,1] and x\infty \in dom \scrR . If \theta \in [0,1) is the

Kurdyka--\Lojasiewicz exponent of \scrJ f at (u\infty , x\infty ) (which exists by Lemma 7.8), then
i. if \theta = 0, then (un, xn) converges in finitely many steps;

ii. if \theta \in (0, 12 ], then there exist c > 0 and \zeta \in [0,1) such that \| (un, xn) - (u\infty , x\infty )\| \leq c\zeta n;

iii. if \theta \in (12 ,1), then there exists c > 0 such that \| (un, xn)  - (u\infty , x\infty )\| \leq cn - (1 - \theta )/(2\theta  - 1).

Proof. Given the suppositions [5, Assumptions (H ) and (H1)] hold, by Lemma 7.8, for
all \=u\in \scrV f

[0,1] and \=x\in dom \scrR there exists \theta \in [0,1) such that \scrJ f has the Kurdyka--\Lojasiewicz

property with exponent \theta at (\=u, \=x), and by Lemma 7.9, \| (un, xn)\| does not tend to infinity.
Therefore the results follow immediately from [5, Theorems 3.2, 3.3, and 3.4], respectively.

Note 7.11. The above convergence results concerned (7.3), in which everything is solved
without linearization. In Bolte, Sabach, and Teboulle [9], similar convergence results as in [5]
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 925

Figure 1. Two cows: the reference data image, the image to be segmented, the reference f (which is a
segmentation of the reference data image), and the ground truth segmentation associated to Example 8.1. Both
segmentations were drawn by hand by the authors.

were proved for fully linearized alternating schemes for energies with the Kurdyka--\Lojasiewicz
property. It is beyond the scope of this work to extend such results to (7.2), which is only
partially linearized, but it is the authors' belief that such an extension is likely to be straight-
forward.

8. Applications. We will test our scheme on distorted versions of the ``two cows"" images
familiar from [7, 11, 13, 34].7

Example 8.1 (two cows). We take the image in the top left of Figure 1 as the reference
data Z and the segmentation in the bottom left as the reference labels f , which separate the
cows from the background. The image x\ast to be segmented is the top-right image of Figure 1,
with the ground truth segmentation in the bottom right. Both images are RGB images of
size 480\times 640 pixels. Figure 2 shows the result of segmenting x\ast via Algorithm 5.1, as in [11,
section 5.3.3].

8.1. Computational set-up. All programming was done in MATLAB R2020b with the
relevant toolboxes Computer Vision Toolbox Version 10.1, Image Processing Toolbox Version
11.4, Signal Processing Toolbox Version 8.7, and Deep Learning Toolbox Version 14.3. In this
section, all functions in typewriter font will refer to built-in MATLAB functions.

7These images are taken from the Microsoft Research Cambridge Object Recognition Image Database, avail-
able at https://www.microsoft.com/en-us/research/project/image-understanding/, accessed 4 March 2022.
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926 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

Figure 2. Image masked with MBO segmentation for Example 8.1, reproduced from [11, Figure 5.9(d)]. The
segmentation accuracy is 98.4622\%.

Timings were taken with implementations executed serially on a machine with an Intel
Core i7-9800X @ 3.80 GHz (16 cores) CPU and 32 GB RAM.

8.2. The feature map and its adjoint. In the following applications, we will define \scrF 
(and likewise \scrF d mutatis mutandis) as follows. Recall that x : Y \rightarrow \BbbR \ell . For each pixel i \in Y ,
suppose we have a map \scrN i : \{ 1, . . . , k\} \rightarrow Y which defines the k ``image-neighbors"" of i in Y
and we likewise have a kernel K : \{ 1, . . . , k\} \rightarrow \BbbR . Then for each channel s \in \{ 1, . . . , \ell \} of x,
i\in Y , and p\in \{ 1, . . . , k\} , we define (\scrZ (xs))ip := K (p)xs\scrN i(p)

, and we define z = \scrF (x) \in \BbbR N\times k\ell 

by z :=
\bigl( 
\scrZ (x1) \scrZ (x2) . . . \scrZ (x\ell )

\bigr) 
. We now derive \scrF \ast : \BbbR N\times k\ell \rightarrow \BbbR N\times \ell , the adjoint of \scrF 

with respect to \langle \cdot , \cdot \rangle F . Write w =
\bigl( 
w1 w2 . . . w\ell 

\bigr) 
, where ws \in \BbbR N\times k. Then since

\langle \scrZ (xs),ws\rangle F =
\sum 
i\in Y

k\sum 
p=1

xs\scrN i(p)
K (p)ws

ip =
\sum 
j\in Y

xsj

\left(  \sum 
\{ (i,p)| \scrN i(p)=j\} 

K (p)ws
ip

\right)  ,

it follows that \scrZ has adjoint \scrZ \ast :\BbbR N\times k \rightarrow \BbbR N given by

(\scrZ \ast (ws))j =
\sum 

\{ (i,p)| \scrN i(p)=j\} 

K (p)ws
ip.

Finally, by construction, \scrF \ast (w) =
\bigl( 
\scrZ \ast (w1) \scrZ \ast (w2) . . . \scrZ \ast (w\ell )

\bigr) 
.

For this section we will take k = 9, the image-neighbors of pixel i to be the 3 \times 3 square
centered on i (with replication padding at the boundaries), and K to be 9 multiplied by a 3\times 3
Gaussian kernel with standard deviation 1, centered on the center of that square, computed
via fspecial(`gaussian'). As the images are RGB, \ell = 3, and z \in \BbbR N\times 27.

8.3. Measures of reconstruction and segmentation accuracy. In the following examples,
we will measure the accuracy of a reconstruction x relative to a ground truth of x\ast by the
peak signal-to-noise ratio (PSNR) (defined as in [1, (2.6)]).
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 927

Figure 3. Typical observed data y for Example 8.2.

We will measure the accuracy of a segmentation u relative to a ground truth u\ast by its
Dice score, defined as 2TP/(2TP + FP + FN), where TP is the number of pixels which are
true positives (``positives"" will here be pixels identified as ``cow""), FP of false positives, and
FN of false negatives. That is (since ``positive"" pixels will be given label ``1""):

Dice score of u relative to u\ast :=
2u \cdot u\ast 

2u \cdot u\ast + u \cdot (1  - u\ast ) + (1  - u) \cdot u\ast 
.

8.4. Denoising the ``two cows"" image. As our first application, we will test our method
on a highly noised version of Example 8.1.

Example 8.2 (noised two cows). Let Z, f , and x\ast (the true image that is to be reconstructed
and segmented) be as in Example 8.1. Let the observed data y (see Figure 3) be x\ast plus
Gaussian noise with mean 0 and standard deviation 1, created via imnoise. Thus, \scrT is the
identity. This is a very high noise level, with a typical PSNR of y relative to x\ast of 6.2 dB.

8.4.1. Parameters and initialization. Unless otherwise stated, all parameter values were
chosen through manual trial and error. We let \alpha = 0.75, \beta = 10 - 5, \eta n = 0.1, \nu n = 10 - 6, and
\sigma = 3. For the SDIE scheme for (3.3b), we choose \tau = \varepsilon = 0.00285, \mu = 50\chi Z , ks = 5, and
stopping condition parameter \delta = 10 - 10. For the Nystr\"om-QR scheme (see Appendix C) we
take K = 100. As regularizer \scrR we use Huber-TV [29]:8

\scrR (x) = R(\scrK x) = 10
\sum 
i\in Y

\Biggl\{ 
\| (\nabla x)i\| 2  - 0.005 if \| (\nabla x)i\| 2 > 0.01,

\| (\nabla x)i\| 22/0.02 if \| (\nabla x)i\| 2 \leq 0.01,

8This choice of regularizer from among the various commonly used candidates is somewhat arbitrary; we
have not yet explored the impact of the choice of regularizer on the behavior of this scheme.
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928 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

where \scrK x := \nabla x, with (\nabla x)i = (xi\downarrow  - xi, xi\rightarrow  - xi)
T , where xi\downarrow is the x-value at the pixel

directly below pixel i in the image and xi\rightarrow the x-value at the pixel directly to the right of
pixel i (with replication padding at boundaries).

The initial reconstruction x0 was computed via a standard TV-based (i.e., Rudin--Osher--
Fatemi [44]) denoising, with fidelity term 1.05. That is,

x0 = argmin
x\in \BbbR N\times \ell 

TV(x) + 1.05\| x - y\| 2F ,

where TV(x) :=
\sum 

i\in Y \| (\nabla x)i\| 2; this is solved using the split Bregman method from Getreuer
[25], using code from https://getreuer.info/posts/tvreg/index.html (accessed 10 August 2022),
with 50 split Bregman iterations and a tolerance of 10 - 5. The initial segmentation u0 of x0 was
computed via the SDIE scheme with the above parameters and initial state u0 = 0.47\chi Y + f .

8.4.2. Example results. Before discussing the choice of parameters, timings, and accuracy
in more detail, we present an example run of the reconstruction-segmentation method for the
noisy data and set-up described in Example 8.2 and subsection 8.4.1, respectively.

We show the results of our denoising-segmentation in Figure 4. In the figure we see that
the reconstruction is not particularly good by itself (as one would expect given the very high
noise level), but the segmentation is very good (compared to the baseline achieved by other
methods; see subsection 8.4.4). Importantly, the reconstruction increases the contrast between
cows and background, which aids the segmentation.

Figure 4. Reconstruction and segmentation of Example 8.2 from a single run of the reconstruction-
segmentation algorithm using the parameters from subsection 8.4.1. Each column contains the reconstruction
(top) and segmentation (bottom). We show (left to right) initialization, the final iteration (= 25), and the
output with the best scores over the run.
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 929

8.4.3. Parameters, accuracy, and timings. We now study the denoising-segmentation
of Example 8.2 more quantitatively. We consider timings of the total runs but also of the
most important steps, as well as reconstruction and segmentation accuracy. In order to
understand the dependence on the algorithm's parameters we consider four settings: the
setting from subsection 8.4.1, a change in the segmentation parameters compared to subsection
8.4.1 (K = 70 (decrease), \varepsilon = \tau = 0.003 (increase)) (as used in [13]), a doubling of the
segmentation weight (\beta = 2 \cdot 10 - 5), and a decrease in the reconstruction weight (\alpha = 0.5). We
list the results of these settings in Table 1 and present them in Figures 5 to 9.

Table 1
Results averaged over 50 runs for different parameter settings for Example 8.2. Values are given as

``mean(standard deviation)."" Total timing is for 25 iterations of the algorithm. Details of the changes are
described in the main text.

Changes to subsection 8.4.1 \emptyset K,\varepsilon , \tau \beta \alpha 

Figure 6 7 8 9

Accuracy Dice score [\%] 85.84(1.68) 85.46(1.28) 87.14(1.45) 86.51(1.59)
PSNR [dB] 17.19(0.03) 17.22(0.03) 17.74(0.05) 17.54(0.04)

Timings [s] total 150.19(1.52) 128.86(1.23) 154.00(1.81) 153.80(1.25)
initialization 1.49(0.03) 1.52(0.03) 1.51(0.08) 1.49(0.03)
reconstruction 3.43(0.08) 3.31(0.07) 3.57(0.08) 3.56(0.07)
segmentation 2.52(0.03) 1.79(0.03) 2.53(0.04) 2.53(0.03)

K, ,  (PSNR: 17.2173 dB)   (PSNR: 17.7815 dB)  (PSNR: 17.5659 dB)

Figure 5. Example reconstruction results obtained from the denoising-reconstruction method for the differ-
ent parameter settings for Example 8.2 described in subsection 8.4.3.
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Figure 6. Results averaged over 50 runs of the reconstruction-segmentation scheme in the denoising case.
The line plots (left) show the evolution of the Dice score (\%) and PSNR (dB) over the 25 iterations of the
algorithm. The images (center and right) show mean and standard deviation of the segmentation at t = 25
which are used as weights for the ground truth images. The setting is that of subsection 8.4.1.
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Figure 7. Results averaged over 50 runs of the reconstruction-segmentation scheme in the denoising case.
The line plots (left) show the evolution of the Dice score (\%) and PSNR (dB) over the 25 iterations of the
algorithm. The images (center and right) show mean and standard deviation of the segmentation at t = 25
which are used as weights for the ground truth images. The setting is that of subsection 8.4.1, subject to the
changes K = 70, \tau = \varepsilon = 0.003.
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Figure 8. Results averaged over 50 runs of the reconstruction-segmentation scheme in the denoising case.
The line plots (left) show the evolution of the Dice score (\%) and PSNR (dB) over the 25 iterations of the
algorithm. The images (center and right) show mean and standard deviation of the segmentation at t = 25
which are used as weights for the ground truth images. The setting is that of subsection (8.4.1), subject to the
change \beta = 2 \cdot 10 - 5.
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Figure 9. Results averaged over 50 runs of the reconstruction-segmentation scheme in the denoising case.
The line plots (left) show the evolution of the Dice score (\%) and PSNR (dB) over the iterations of the algorithm.
The images (center and right) show mean and standard deviation of the segmentation at t= 25 which are used
as weights for the ground truth images. The setting is that of subsection 8.4.1, subject to the change \alpha = 0.5.
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 931

In all of the settings, we obtain a quick and accurate segmentation. The PSNR of the re-
construction is similar in all settings, suggesting that this low accuracy is intrinsic to this noise
level. The initial segmentation is very fast, but in all settings is not as accurate as the joint
reconstruction-segmentation. Of the results, some observations are particularly remarkable:

\bullet For the pure MBO segmentation discussed in [13], the Nystr\"om rank K and \tau = \varepsilon 
were chosen as in the second setting presented here (Figure 7). While this choice was
optimal for pure segmentation, and the smaller rank leads to a smaller computational
cost, the obtained Dice scores are worse than all the other settings.

\bullet The larger \beta value (Figure 8; see also Figure 5, third from left) puts more weight on
the Ginzburg--Landau energy, leading to the best Dice average, but (unexpectedly)
also the highest PSNR average.

\bullet The Dice values have relatively large standard deviations. This is likely caused by the
very high noise level, but also by the inherent randomness of the Nystr\"om extension.

\bullet We attain near peak Dice and PSNR values in fewer than 10 iterations in all cases.

8.4.4. Comparison to sequential reconstruction-segmentation. Finally, we compare the
accuracy of our joint reconstruction-segmentation approach to the more traditional sequential
approach. That is, we will first denoise the image of cows, and then segment it. Segmentations
will be performed using the graph MBO scheme with the same set-up as in subsection 8.4.1.

One example of this sequential approach is our initialization process (i.e., TV denoising
followed by MBO segmentation), which we observed gave worse PSNR and Dice scores than
the joint reconstruction-segmentation output. However, this is perhaps unfair because that
initialization was specifically chosen because it is quick (around 1.5s; see Table 1), while the
whole joint reconstruction-segmentation scheme takes about 2.5 minutes to run (although as
was mentioned above, the scheme achieves near peak accuracy in closer to 1 minute).

For a potentially fairer comparison, we consider three more sophisticated denoisers: de-
noising with total generalised variation (TGV) regularization [10] through code by Condat
[18] and downloaded from https://lcondat.github.io/software.html (accessed 21 May 2022);
the block-matching and 3D filtering (BM3D) algorithm [38] via code by M\"akinen, Azzari,
and Foi and downloaded from https://webpages.tuni.fi/foi/GCF-BM3D/ (accessed 18 May
2022); and the built-in MATLAB pretrained denoising convolutional neural network (CNN)
(defined in Zhang et al. [52]) loaded via denoisingNetwork(`DnCNN') and implemented via
denoiseImage. Remarkably, however, we observe that the BM3D denoiser barely outperforms
TV, the TGV denoiser performs slightly worse than TV, and the CNN denoiser performs much
worse;9 see Figure 10. Comparing with the PSNR scores in Table 1, we note that the TV,
TGV, BM3D, and CNN denoisers are all outperformed by the reconstruction from our scheme.

The mean Dice score \pm standard deviation (over 50 trials) for MBO segmentations of
the TGV denoised image is 0.7138\pm 0.0578, of the BM3D denoised image is 0.8180\pm 0.0130,
and of the CNN denoised image is 0.5167 \pm 0.0094. Typical segmentations are shown in
Figure 11. Similarly to the reconstructions, all of the segmentations are worse or considerably
worse than the segmentations obtained from our scheme. However, the sequential denoising-
segmentations are notably faster than our scheme; we report the timings in Table 2.

9We expect this poor performance to be because the network is pretrained; this performance is somewhat
concerning and may not be representative of the general capabilities of CNNs for this denoising task.
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932 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

Figure 10. Typical denoised output for the TV-based, TGV-based, BM3D, and CNN denoisers.

Figure 11. The ground truth image masked with typical MBO segmentations of the TGV, BM3D, and CNN
denoised images.

Table 2
Timings averaged over 50 runs for the three sequential denoising-segmentation methods. Values are given

as ``mean(standard deviation).""

TGV BM3D CNN

Reconstruction time [s] 8.51(0.05) 14.67(0.14) 0.19(0.14)

Segmentation time [s] 5.99(0.89) 5.84(0.04) 5.87(0.03)

Total time [s] 14.50(0.89) 20.51(0.14) 6.06(0.13)

8.5. Deblurring the ``two cows"". For our next example, now with \scrT not equal to the
identity map, we consider a blurred version of Example 8.1.

Example 8.3 (blurred two cows). Let Z, f , and the true image x\ast (that is to be reconstructed
and segmented) be as in Example 8.1. Let the observed data y (see Figure 12) be a horizontal
motion blurring of x\ast of distance 75 pixels (with symmetric padding at the boundary) created
via imfilter, plus Gaussian noise with mean 0 and standard deviation 10 - 1 created via
imnoise. This y has a typical PSNR relative to x\ast of around 17.9 dB.

8.5.1. \bfscrT , its adjoint, and (B.3). In Example 8.3, the forward model \scrT works by con-
volving x with a motion blur filter \scrM (computed using fspecial(`motion')). The adjoint
\scrT \ast therefore corresponds to convolution with a filter \scrM \prime defined by reflecting \scrM in both axes.
In the case of motion blur, \scrM = \scrM \prime , so \scrT is self-adjoint. Furthermore, \scrM has nonnegative
values, and so \scrT is represented by a nonnegative (symmetric) matrix.

In order to solve (4.3), recall that we need to compute (B.3). That is, we need to be able
to compute solutions to equations of the form ((2\eta n + \delta t - 1)I + 2\alpha \scrT 2)x = z. We will do this
via a fixed-point iteration. That is, we let x0 := z and iterate
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 933

Figure 12. Typical observed data y for Example 8.3.

(8.1) xm+1 :=
1

2\eta n + \delta t - 1
z  - 2\alpha 

2\eta n + \delta t - 1
\scrT 2xm.

By the Banach fixed-point theorem, if \zeta := 2\alpha (2\eta n+\delta t - 1) - 1\| \scrT 2\| < 1, then \| x - xm\| F = \scrO (\zeta m)
as m\rightarrow \infty . As \| \scrT \| = 1,10 it suffices to take \alpha < \eta n + 1

2\delta t
 - 1 for convergence of (8.1).

8.5.2. Parameters and initialization. We take \alpha = \eta n = 2, \tau = \varepsilon = 0.002, K = 200, and
parameters \beta , \nu n, \sigma , \mu , ks, and \delta as in subsection 8.4.1. We take \scrR as in subsection 8.4.1
except that we change the multiplicative factor from 10 to 1. Another change is the number
of iterations of the algorithm: while we iterate for 25 steps in the denoising problems, in
preliminary runs (not reported) we noticed in the deblurring case that 15 steps are sufficient.

The initial reconstruction x0 is computed via TV deblurring with fidelity term 45, i.e.,

x0 = argminx\in \BbbR N\times \ell TV(x) + 45\| \scrT (x)  - y\| 2F .

This is solved by the split Bregman method of Getreuer [26], using code from https://getreuer.
info/posts/tvreg/index.html (accessed 10 August 2022), with 50 split Bregman iterations and
a tolerance of 10 - 5. The initial segmentation u0 of x0 is computed via the SDIE scheme with
the above parameters and initial state u0 = 0.47\chi Y + f .

8.5.3. Example results. Before discussing the choice of parameters, timings, and accuracy
in more detail, we present an example run of the reconstruction-segmentation method for the
noisy data and set-up discussed in the beginning of this section. Here, we use the parameter
setting from subsection 8.5.2. We show the results of this example run in Figure 13.

10As \scrT is self-adjoint, \| \scrT \| is the modulus of the largest eigenvalue of \scrT . Let \scrT x= \lambda x, where \lambda \in \BbbR since \scrT 
is real and symmetric. Since \scrT (\bfone ) = \bfone , \scrT is represented by a nonnegative matrix, and  - \| x\| \infty \bfone \leq x\leq \| x\| \infty \bfone 
elementwise, by applying \scrT to the latter we get  - \| x\| \infty \bfone \leq \lambda x\leq \| x\| \infty \bfone elementwise, and so | \lambda | \leq 1.
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934 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

Figure 13. Reconstruction and segmentation of Example 8.3 from a single run of the reconstruction-
segmentation algorithm using the parameters from subsection 8.5.2. Each column contains the reconstruction
(top) and segmentation (bottom). We show (left to right) initialization, final iteration (= 15), and the output
with the best scores over the run.

The effect of an increasing contrast between cows and background in the reconstruction,
which we already observed for the denoising results in subsection 8.4.2, is even more visible
in this deblurring reconstruction. In contrast to the denoising setting, here this even leads to
reconstructions with PSNRs that deteriorate over the run time of the algorithm.

8.5.4. Parameters, accuracy, and timings. As in subsection 8.4.3, we now study the
deblurring-segmentation of Example 8.3 more quantitatively. We again consider timings of
the total runs and of the key steps, as well as reconstruction and segmentation accuracy.
Again, we look at four parameter settings: the setting from subsection 8.5.2, a change in the
segmentation parameters compared to subsection 8.5.2 (K = 100 (decrease), \varepsilon = \tau = 0.00285
(increase), u0 = 0.45\chi Y + f (lower constant on Y )), an increase in the segmentation weight
(\beta = 1.52 \cdot 10 - 5), and an increase in the reconstruction parameters (\alpha = \eta n = 10). We list the
results of these settings in Table 3 and present them in Figures 14 to 18.

We now comment on those simulation results. As mentioned before, we see that in most
settings, the reconstruction PSNR is reduced over the course of the algorithm. The joint
reconstruction-segmentation algorithm enhances the constrast between segments to a point
where the reconstruction quality suffers (see Figure 14). Unlike in most settings we used in the
denoising problem, here the segmentation accuracy is not always monotonically increasing.

It is interesting to note that (as shown in Figure 16) \varepsilon , \tau should be chosen smaller for the
deblurring problem than for Example 8.2 or the noise-free problem (see [13]). In the Allen--
Cahn equation, a smaller \varepsilon leads to a smaller interface and, thus, a harder thresholding.
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 935

Table 3
Results averaged over 50 runs for different parameter settings for Example 8.3. Values are given as

``mean(standard deviation)."" Total timing is for 15 iterations of the algorithm.

Changes to subsection 8.5.2 \emptyset K,\varepsilon , \tau , u0 \beta \alpha ,\eta n

Figure 15 16 17 18

Accuracy Dice score [\%] 86.99(0.63) 77.23(12.96) 85.11(0.98) 85.79(0.82)
PSNR [dB] 24.16(0.15) 22.30(3.52) 18.80(0.23) 27.32(0.06)

Timings [s] total 179.73(0.97) 124.21(4.73) 179.60(0.58) 177.53(0.39)
initialization 3.31(0.09) 3.93(0.18) 3.30(0.09) 3.29(0.06)
reconstruction 5.91(0.11) 5.44(0.77) 5.97(0.09) 5.87(0.06)
segmentation 5.85(0.08) 2.58(0.24) 5.78(0.06) 5.75(0.06)

K, , , u0  (PSNR: 21.7962 dB)   (PSNR: 18.5902 dB) , 
n
 (PSNR: 27.3303 dB)

Figure 14. Example reconstruction results obtained from the deblurring-reconstruction method for the dif-
ferent parameter settings for Example 8.3 described in subsection 8.5.4.

0 5 10 15
84

85

86

87

88
Segmentation DICE
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Figure 15. Results averaged over 50 runs of the reconstruction-segmentation scheme in the deblurring case.
The line plots (left) show the evolution of the Dice score (\%) and PSNR (dB) over the 15 iterations of the
algorithm. The images (center and right) show mean and standard deviation of the segmentation at t = 15
which are used as weights for the ground truth images. The setting is that of subsection 8.5.2.

A harder thresholding should lead to a stronger regularization which aids the deblurring.
Indeed, the softer thresholding in Figure 16 leads to more parts of the background being
incorrectly identified as cow. Moreover, an even larger Nystr\"om rank K is required. If
K = 100, the results have a large variance and barely improve the initial segmentation on
average.

When increasing \beta , we see a slight increase in the Dice standard deviation, which might
imply that the method becomes more unstable when increasing the influence of the Ginzburg--
Landau energy. When increasing \alpha , as expected, we see an increased reconstruction accuracy.

In the case where \beta = 1.5 \cdot 10 - 5 (Figure 17), we see a certain long-term instability: the
Dice score reaches its maximum at iteration step 9 but is considerably lower at the end of the
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Figure 16. Results averaged over 50 runs of the reconstruction-segmentation scheme in the deblurring case.
The line plots (left) show the evolution of the Dice score (\%) and PSNR (dB) over the 15 algorithm iterations.
The images (center and right) show mean and standard deviation of the segmentation at t= 15 which are used
as weights for the ground truth images. Setting is as in subsection 8.5.2, with changes \varepsilon = \tau = 0.00285, K = 100,
u0 = 0.45\chi Y + f .
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Figure 17. Results averaged over 50 runs of the reconstruction-segmentation scheme in the deblurring case.
The line plots (left) show the evolution of the Dice score (\%) and PSNR (dB) over the 15 iterations of the
algorithm. The images (center and right) show mean and standard deviation of the segmentation at t = 15
which are used as weights for the ground truth images. The setting is that of subsection 8.5.2, subject to the
change \beta = 1.5 \cdot 10 - 5.
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Figure 18. Results averaged over 50 runs of the reconstruction-segmentation scheme in the deblurring case.
The line plots (left) show the evolution of the Dice score (\%) and PSNR (dB) over the 15 iterations of the
algorithm. The images (center and right) show mean and standard deviation of the segmentation at t = 15
which are used as weights for the ground truth images. The setting is that of subsection 8.5.2, subject to the
change \alpha = \eta n = 10.
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 937

Figure 19. Typical deblurred output for the TV-based deblurrings, BM3D deblurring, and BM3D denoising
followed by TV deblurring.

Figure 20. The true image masked with three typical MBO segmentations of the BM3D denoised and TV
deblurred image.

algorithm. In iteration step 9, we obtain an average Dice of 0.8754 (\pm 0.0073), beating all of
the results reported in Table 3. Hence, the number of iterations is also an important tuning
parameter as the system can experience metastability.

8.5.5. Comparison to sequential reconstruction-segmentation. As in the denoising case,
we observe that (except in the setting of Figure 16) our joint scheme outperforms the sequential
TV-based initialization in terms of Dice score (and in the setting of Figure 18, also in PSNR).

For a fairer comparison, we seek to compare the performance of our scheme to that of
a sequential method using a more sophisticated deblurrer. We consider three alternative
deblurrers:11 the TV-based deblurrer but with 500 split Bregman iterations and tolerance
10 - 10; the BM3D deblurrer from M\"akinen, Azzari, and Foi [38] (i.e., BM3DDEB in the associated
software); and a BM3D denoising followed by a TV deblurring (with fidelity term 150, 100
split Bregman iterations, and tolerance 10 - 7). Typical deblurrings via these methods are
shown in Figure 19.

We segment only the latter of these (via MBO segmentation), as it is the only one with a
perceptible improvement over the TV deblurring. The mean Dice score \pm standard deviation
(over 50 trials) for MBO segmentations of this deblurred image (with \tau = \varepsilon = 0.00285, K =
200, and initial state 0.45\chi Y + f ; cf. Figure 16) is 0.8737 \pm 0.0143.12 Segmentations from
the first three of these runs are shown in Figure 20. Visually, these segmentations appear
slightly patchier than those we obtain with our joint method (cf. Figure 13), but they have
higher Dice scores (with the exception of the metastable optimal segmentation observed in

11We also tested the built-in MATLAB deblurrers, but these did much worse than the TV deblurring.
12Taking \tau = \varepsilon = 0.002 and initial state 0.47\chi Y + f (as in subsection 8.5.2) performs slightly worse, with

mean Dice score \pm standard deviation (over 50 runs) equal to 0.8679\pm 0.0095.
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938 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

Figure 17, which has a slightly higher mean Dice score). However, the sequential deblurring-
segmentations are much faster than the joint method; over 50 runs, their mean (\pm standard
deviation) reconstruction time is 23.45(\pm 0.16)s, segmentation time 5.85(\pm 0.05)s, and total
time 29.30(\pm 0.17)s.

9. Conclusions and directions for future work. In this paper, we have developed a joint
reconstruction-segmentation scheme which incorporates the highly effective graph-based seg-
mentation techniques that have been developed over the past decade. There are numerous
challenges which arise in the efficient implementation of this scheme, but we have shown how
these obstacles can be navigated. Furthermore, we have shown how the Kurdyka--\Lojasiewicz-
based theory of [5, 9] can be applied to show the convergence of our scheme.

Finally, we have tested our scheme on highly noised and blurry counterparts of the ``two
cows"" image familiar from the literature. In the denoising case, we observed that our scheme
gives very accurate segmentations despite the very high noise level and gives reasonably accu-
rate reconstructions, with a run time of about 2.5 minutes. Moreover, our joint scheme sub-
stantially outperforms sequential denoising-segmention methods, in both segmentation and
reconstruction accuracy, even when much more sophisticated denoisers are employed, albeit
at the cost of a much longer run time.

In the deblurring case, again our scheme gives highly accurate segmentations (with a run
time of about 3 minutes), but in the reconstructions it introduces an artificial level of contrast
between the ``cows"" and the ``background."" This aids the segmentation accuracy at the cost
of the reconstruction accuracy deteriorating over the course of the iterations. Increasing
the reconstruction weighting prevents this effect, at the expense of a lower segmentation
accuracy. Increasing the segmentation weighting has the curious effect of producing a very
accurate but metastable (w.r.t. a change in the number of iterations) segmentation after
nine iterations. Compared to sequential deblurring-segmentation, our scheme produces worse
reconstructions and on the whole slightly worse segmentations (with the exception of the
metastable segmentation, which is slightly better) and runs considerably slower. However, it
should be noted that the deblurring method which was used is more sophisticated than the
one used within our scheme and that our joint scheme does give substantially more accurate
segmentations than sequential deblurring-segmentation using only a TV-based deblurrer (i.e.,
our initialization process).

There are three major directions for future work. First, the scheme in its current form has
many parameters which must be tuned by hand. Future work will seek to develop techniques
for tuning these parameters in a more principled way, so that this scheme can be applied to
a large image set without the need for constant manual retuning.

Second, we have in this work applied our scheme only to artificially noised/blurred images,
and in the comparison to sequential methods we did not exhaust the state of the art. Future
work will seek to test our scheme on real observations, with potentially unknown ground truths
and/or forward maps and compare our scheme to other state-of-the-art methods (including
other joint reconstruction-segmentation methods such as those in Corona et al. [19]).

Finally, there are a number of potential ways to make our scheme more accurate. One
is to use a different regularizer. Candidates of particular interest are implicit regularization
with a ``Plug-and-Play"" denoiser (as in Venkatakrishnan, Bouman, and Wohlberg [50]) and
learned regularization (see, e.g., Arridge et al. [4, section 4]). Another potential improvement
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 939

is the use of more sophisticated feature maps (e.g., the CNN-VAE maps used in Miller et al.
[35]), though in this choice one is constrained by the need to compute both the map and
its adjoint very efficiently. Moreover, the theory in this paper assumes a linear feature map.
A third opportunity for improvement lies in solving (3.3a) without resorting to linearization.

Appendix A. Computing \bfitg \bfitn . In this appendix we explain how we compute gn, which
is defined in section 4. We recall from subsection 3.1 that z := \scrF (x), and likewise we define
zn := \scrF (xn). Then

gn = \scrF \ast (\nabla zF1(zn) + \nabla zF2(zn)).

We now compute each term in turn. To compute \nabla zF1(z), note that

F1(z + \delta z) = \beta \langle (Gn)Y Y ,\Omega Y Y (z + \delta z)\rangle F
= \beta 

\Bigl\langle 
(Gn)Y Y ,\Omega Y Y (z) + [\langle \nabla z\Omega ij(z), \delta z\rangle F ]i,j\in Y

\Bigr\rangle 
F

+ o(\delta z)

= F1(z) + \beta 
\sum 
i,j\in Y

(Gn)ij
\sum 
l\in Y

q\sum 
r=1

(\nabla z\Omega ij(z))lr\delta zlr + o(\delta z)

and thus for all l \in Y and r \in \{ 1, . . . , q\} 

(\nabla zF1(z))lr = \beta 
\sum 
i,j\in Y

(Gn)ij(\nabla z\Omega ij(z))lr.

Now, since (\Omega Y Y )ij(z) = e - \| zi - zj\| 2
2/q\sigma 

2

for i \not = j and (\Omega Y Y )ii(z) = 0, we have

\nabla zlr(\Omega Y Y )ij(z) =
2

q\sigma 2

\left\{     
0, l /\in \{ i, j\} 
(\Omega Y Y )il(z)(zir  - zlr), j = l

(\Omega Y Y )lj(z)(zlr  - zjr), i = l

\right\}     =
2

q\sigma 2
(\Omega Y Y )ij(z)(zir  - zjr)(\delta jl  - \delta il),

where \delta denotes the Kronecker delta. Therefore,

(\nabla zF1(z))lr =
2\beta 

q\sigma 2

\sum 
i,j\in Y

(Gn)ij\Omega ij(z)(zir  - zjr)(\delta jl  - \delta il).

Hence, letting \scrA (z) := (Gn)Y Y \odot \Omega Y Y (z) (where \odot denotes the Hadamard product),

(\nabla zF1(z))lr =
2\beta 

q\sigma 2

\sum 
i,j\in Y

\scrA ij(z)(zir  - zjr)(\delta jl  - \delta il) =
4\beta 

q\sigma 2

\left(  \sum 
j\in Y

\scrA lj(z)zjr  - zlr
\sum 
j\in Y

\scrA lj(z)

\right)  
since \scrA (z) is symmetric, and therefore

\nabla zF1(z) =
4\beta 

q\sigma 2
(\scrA (z)z  - (\scrA (z)\bfone N ) \odot z) .

To compute \nabla zF2(z), note that by a similar argument as the above,

(\nabla zF2(z))lr =  - 4\beta 

q\sigma 2

\sum 
i\in Y,j\in Z

(Gn)ij(\Omega Y Z)ij(z, zd)(zir  - (zd)jr)\delta il
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940 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

for all l \in Y and r \in \{ 1, . . . , q\} . Hence, letting \scrB (z) := (Gn)Y Z \odot \Omega Y Z(z, zd), we get

(\nabla zF2(z))lr =
4\beta 

q\sigma 2

\sum 
i\in Y,j\in Z

\scrB ij(z)((zd)jr  - zir)\delta il =
4\beta 

q\sigma 2

\left(  \sum 
j\in Z

\scrB lj(z)(zd)jr  - zlr
\sum 
j\in Z

\scrB lj(z)

\right)  
and therefore we arrive at a similar formula as for \nabla zF1(z):

\nabla zF2(z) =
4\beta 

q\sigma 2
(\scrB (z)zd  - (\scrB (z)\bfone Nd

) \odot z) .

Tying this all together, we get

gn =
4\beta 

q\sigma 2
\scrF \ast (\scrA (zn)zn + \scrB (zn)zd  - (\scrA (zn)\bfone N + \scrB (zn)\bfone Nd

) \odot zn)

=
4\beta 

q\sigma 2
\scrF \ast 

\biggl( 
\scrC n

\biggl( 
zn
zd

\biggr) 
 - (\scrC n\bfone N+Nd

) \odot zn

\biggr) 
,

(A.1)

where \scrC n := (Gn)Y V \odot \Omega Y V (zn, zd). To compute (A.1), we need to compute matrix-vector
products of the form \scrC nv. Recalling (4.1), it follows that

(Gn)Y V =  - un| Y uTn + vn| Y \bfone TV + \bfone Y v
T
n .

Next, we observe a neat linear algebra result,
13

\bigl( 
( - un| Y uTn + vn| Y \bfone TV + \bfone Y v

T
n ) \odot A

\bigr) 
v =  - un| Y \odot (A(un \odot v)) + vn| Y \odot (Av) + A(vn \odot v),

where in this case A = \Omega Y V (zn, zd). Hence it suffices to be able to compute terms of the form
\Omega Y V (zn, zd)v. Via the Nystr\"om extension (2.1) we have

(A.2) \Omega Y V (\scrF (xn), zd)v\approx 
\bigl( 
\Omega V X(\scrF (xn), zd)\Omega  - 1

XX(\scrF (xn), zd)\Omega XV (\scrF (xn), zd)v
\bigr) 
| Y ,

where X \subseteq V is some interpolation set, so we can compute such products quickly.
These considerations lead us to Algorithm A.1 to compute \scrC nv for v \in \scrV .

Appendix B. Primal-dual optimization methods for (4.3). To solve (4.3), we shall be
employing an algorithm of Chambolle and Pock [16]. Following [16], we rewrite (4.3) as

(B.1) min
x\in \BbbR N\times \ell 

R(\scrK x) + G(x),

where G(x) := \alpha \| \scrT (x)  - y\| 2F + \eta n\| x - \~xn\| 2F . Then the primal problem (B.1) can be refor-
mulated as the primal-dual saddle point problem (where we recall the definition of R\^* from
footnote 3)

(B.2) min
x\in \BbbR N\times \ell 

max
p\in \scrK (\BbbR N\times \ell )

\langle \scrK x,p\rangle + G(x)  - R\ast (p).

13To see this, observe that in suffix notation, for i \in Y and j \in V , the left-hand side is ( - (un)i(un)j +
(vn)i + (vn)j)Aijvj and the right-hand side is  - (un)iAij((un)jvj) + (vn)iAijvj +Aij((vn)jvj).
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 941

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfA .\bfone Definition of the CProd function to be used in Algorithm 4.1.

1: \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn CProd(zn, v, u, vn, \sigma ,V,Y,Z,K)  \triangleleft Approximates \scrC nv as above
2: B : w \mapsto \rightarrow (OmegaProd(w,zn, zd, q, \sigma ,V,Y,Z,K))| Y  \triangleleft See below
3: \bfr \bfe \bft \bfu \bfr \bfn  - u| Y \odot B(u\odot v) + vn| Y \odot B(v) + B(vn \odot v)
4: \bfe \bfn \bfd \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 
5: \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn OmegaProd(v, z, zd, q, \sigma ,V,Y,Z,K)  \triangleleft Approximates \Omega (z, zd)v via the

Nystr\"om extension as in (A.2)
6: \omega : ij \mapsto \rightarrow \Omega ij(z, zd, q, \sigma )  \triangleleft Defined as in (3.1)
7: X = random subset(Y,K/2) \cup random subset(Z,K/2)
8: (\omega XX , \omega V X) = (\omega (X,X), \omega (V,X))
9: \omega XXv\prime = \omega T

V Xv  \triangleleft Solving the linear system for v\prime 

10: \bfr \bfe \bft \bfu \bfr \bfn \omega V Xv\prime 

11: \bfe \bfn \bfd \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfB .\bfone Algorithm for solving (B.1), using [16, Algorithm 2].

1: \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn PrimalDual(x0, \gamma ,\scrK ,\scrK \ast ,proxRS,proxG)  \triangleleft \gamma must satisfy [16, (35)]
2: p0 = \scrK (x0)
3: \=x0 = x0
4: (\delta t0,1, \delta t0,2) = (1/\| \scrK \| ,0.99/\| \scrK \| )  \triangleleft We must have \delta t0,1\delta t0,2\| \scrK \| 2 \leq 1
5: n = 0
6: \bfw \bfh \bfi \bfl \bfe stopping condition not met \bfd \bfo 
7: pn+1 = proxRS(pn + \delta tn,1\scrK (\=xn), \delta tn,1)  \triangleleft proxRS(p, \delta t) := prox\delta tR\ast (p)
8: xn+1 = proxG(xn  - \delta tn,2\scrK \ast (pn+1), \delta tn,2)  \triangleleft proxG(x, \delta t) := prox\delta tG(x)

9: \theta n = (1 + 2\gamma \delta tn,2)
 - 1

2

10: (\delta tn+1,1, \delta tn+1,2) = (\delta tn,1\theta 
 - 1
n , \delta tn,2\theta n)

11: \=xn+1 = xn+1 + \theta n(xn+1  - xn)
12: n = n + 1
13: \bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
14: \bfr \bfe \bft \bfu \bfr \bfn xn
15: \bfe \bfn \bfd \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 

Reformulating (B.1) as (B.2) suggests approaching the minimizer of (B.1) by alternately up-
dating a sequence of xn and pn. The algorithm we shall be using, i.e., [16, Algorithm 2], is
a sophistication of this basic idea and is summarized as Algorithm B.1. For details and a
convergence analysis, see [16].

We shall assume that for any \delta t > 0 we can efficiently compute the proximal operator
of \delta tR\ast , prox\delta tR\ast .

14

So to employ Algorithm B.1, we need two ingredients: a method for

14For a proper, l.s.c., and convex function f , the proximal (a.k.a. resolvent) operator of f is defined by
proxf (x

\prime ) := argminxf(x)+
1
2
\| x - x\prime \| 2. As mentioned in [16], Moreau's identity allows prox\delta tR\ast to be computed

via prox\delta t - 1R. Since computing prox\delta t - 1R is equivalent to performing a denoising regularized by R, this is a
place where ``Plug-and-Play"" denoising methods (see Venkatakrishnan, Bouman, and Wohlberg [50]) could be
employed instead of the explicit regularization methods we will use in this paper.
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942 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

computing prox\delta tG, and a \gamma obeying [16, (35)], i.e., such that for all x,x\prime \in \BbbR N\times \ell ,

G(x\prime ) \geq G(x) + \langle \nabla xG(x), x\prime  - x\rangle F +
1

2
\gamma \| x - x\prime \| 2F .

First, assume that \scrT is linear. Then it follows that \nabla xG(x) = 2\alpha \scrT \ast (\scrT (x) - y)+2\eta n(x - \~xn)
and thus we require that

1

2
\gamma \| x - x\prime \| 2F
\leq \alpha \langle \scrT (x) + \scrT (x\prime )  - 2y,\scrT (x\prime )  - \scrT (x)\rangle F + \eta n\langle x + x\prime  - 2\~xn, x

\prime  - x\rangle F
 - \langle 2\alpha \scrT \ast (\scrT (x)  - y) + 2\eta n(x - \~xn), x\prime  - x\rangle F

= \alpha 
\bigl( 
\langle \scrT (x) + \scrT (x\prime )  - 2y,\scrT (x\prime  - x)\rangle F  - 2\langle \scrT (x)  - y,\scrT (x\prime  - x)\rangle F

\bigr) 
+ \eta n\| x - x\prime \| 2F

= \alpha \| \scrT (x\prime  - x)\| 2F + \eta n\| x - x\prime \| 2F ,

and hence it suffices to take \gamma = 2\eta n. Finally, recall that prox\delta tG is defined by

prox\delta tG(x) = argminx\prime \in \BbbR N\times \ell G(x\prime ) +
\| x\prime  - x\| 2F

2\delta t
,

which has unique minimizer x\prime solving \nabla xG(x\prime ) + 1
\delta t(x

\prime  - x) = 0. Solving for x\prime , we get

(B.3) prox\delta tG(x) =
\bigl( 
(\delta t - 1 + 2\eta n)I + 2\alpha \scrT \ast \scrT 

\bigr)  - 1
\Bigl( 

2\alpha \scrT \ast (y) + 2\eta n\~xn +
x

\delta t

\Bigr) 
.

If \scrT is nonlinear, things are more difficult. There may not exist a valid \gamma , and if so one must
use a method such as [16, Algorithm 1] to solve (4.3), which has slower convergence. We must
still compute prox\delta tG(x). Since \scrT is assumed to be differentiable, for all x there exists a linear
map D\scrT x such that \scrT (x + \delta x) = \scrT (x) + D\scrT x(\delta x) + o(\delta x). Then it follows that

\nabla xG(x) = 2\alpha (D\scrT x)\ast (\scrT (x)  - y) + 2\eta n(x - \~xn)

and hence x\prime := prox\delta tG(x) solves

(B.4) (1 + 2\delta t\eta n)x\prime + 2\alpha \delta t(D\scrT x\prime )\ast (\scrT (x\prime )  - y) = x + 2\delta t\eta n\~xn.

Finally, (B.4) can be solved by numerical root-finding methods (see, e.g., [41, section 9]).

Appendix C. Computing the SDIE scheme. In this appendix we describe how we com-
pute the SDIE scheme that is described in subsection 5.1. By Theorem 5.2, an SDIE update
has two steps: a fidelity-forced diffusion and a piecewise linear thresholding. The thresholding
is trivial to compute, but the diffusion is nontrivial. Our method for computing fidelity-forced
diffusion was described in detail in [11, section 5.2.6], so here we only reproduce the key
details.

By Theorem 5.1, given un and the parameter \tau > 0, we seek to compute

\scrS \tau un = e - \tau (\Delta +M \prime )un + b,

where b := F\tau (\Delta + M \prime )M \prime f \prime . To compute e - \tau (\Delta +M \prime )un, we use the Strang formula [45]:
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JOINT RECONSTRUCTION-SEGMENTATION ON GRAPHS 943

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfC .\bfone Nystr\"om-QR method for computing an approximate SVD of \Delta or \Delta s.

1: \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn Nystr\"omQR(ij \mapsto \rightarrow \omega ij , V,Z,K1,K2)  \triangleleft Computes U1,\Lambda , and U2, where
2: \Delta \approx U1\Lambda UT

2 is an approximate SVD of rank K := K1 + K2

3: X = random subset(V \setminus Z,K1) \cup random subset(Z,K2)
4: (\omega XX , \omega V X) = (\omega (X,X), \omega (V,X))

5: \^d = \omega V X(\omega  - 1
XX(\omega T

V X\bfone ))  \triangleleft Uses (2.1) to approximate d = \omega \bfone 

6: \~\omega V X = \^d - 1/2 \odot \omega V X  \triangleleft Applying \odot columnwise, i.e., (\~\omega V X)ij = \^d
 - 1/2
i (\omega V X)ij

7: [Q,R] = thin qr(\~\omega V X)  \triangleleft Computes thin QR decomposition \~\omega V X = QR

8: S = R\omega  - 1
XXRT  \triangleleft N.B. S \in \BbbR K\times K

9: S = (S + ST )/2  \triangleleft Corrects symmetry-breaking computational errors
10: [\Phi ,\Sigma ] = eig(S)  \triangleleft Computes eigendecomposition S = \Phi \Sigma \Phi T

11: \Lambda = IK  - \Sigma 
12: Us = Q\Phi  \triangleleft \Delta s \approx Us\Lambda UT

s , so to return the decomposition of \Delta s terminate here

13: U1 = \^d - 1/2 \odot Us  \triangleleft i.e., (U1)ij = \^d
 - 1/2
i (Us)ij

14: U2 = \^d1/2 \odot Us  \triangleleft i.e., (U2)ij = \^d
1/2
i (Us)ij

15: \bfr \bfe \bft \bfu \bfr \bfn U1,\Lambda ,U2

16: \bfe \bfn \bfd \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 

e - \tau (\Delta +M \prime ) =
\Bigl( 
e - 

\tau 

2m
M \prime 

e - 
\tau 

m
\Delta e - 

\tau 

2m
M \prime 

\Bigr) m
+ \scrO 

\bigl( 
m - 2

\bigr) 
=
\Bigl( 
e - 

1

2
\delta tM \prime 

e - \delta t\Delta e - 
1

2
\delta tM \prime 

\Bigr) m
+ \scrO 

\bigl( 
\delta t2

\bigr) 
,

where m \in \BbbN and \delta t := \tau /m. Computing matrix-vector products with e - 
1

2
\delta tM \prime 

is straight-
forward, since M \prime is a diagonal matrix. To compute matrix-vector products with e - \delta t\Delta , we
will compute an approximate eigendecomposition of \Delta using the Nystr\"om-QR method (rec-
ommended by Alfke et al. [3]) described in Algorithm C.1. For details on this method, see
[11, section 5.2.3].

Note C.1. Algorithm C.1 really computes an approximate decomposition Us\Sigma UT
s of \~\omega :=

D - 1/2\omega D - 1/2 and then makes a further approximation \Delta s = I - \~\omega \approx Us(IK - \Sigma )UT
s = Us\Lambda UT

s ,
where IK is the K \times K identity matrix, and so on for the random walk Laplacian.

In [13, 11], this Nystr\"om-QR approximate decomposition was used to approximate the
matrix exponential via e - \delta t\Delta \approx I +U1(e

 - \delta t\Lambda  - IK)UT
2 . But by Note C.1, \Delta \approx I  - U1\Sigma UT

2 is a
slightly more accurate approximation, and so we have the improved approximation:

e - \delta t\Delta \approx e - \delta t
\Bigl( 
I + U1(e

\delta t\Sigma  - IK)UT
2

\Bigr) 
.

Therefore, we compute vm \approx e - \tau (\Delta +M \prime )un by defining v0 := un, and vr for r \in \{ 1, . . . ,m\} by

vr+1 = e - \delta te - \delta tM \prime 
vr + e - \delta te - 

1

2
\delta tM \prime 

U1(e
\delta t\Sigma  - IK)UT

2 e
 - 1

2
\delta tM \prime 

vr

= a1(\delta t) \odot vr + a3(\delta t) \odot 
\bigl( 
U1

\bigl( 
a2(\delta t) \odot 

\bigl( 
UT
2 (a3(\delta t) \odot vr)

\bigr) \bigr) \bigr) 
,

(C.1)

where a1(\delta t) := exp( - \delta t(\mu \prime +\bfone )), a2(\delta t) := exp(\delta tdiag(\Sigma )) - \bfone K , and a3(\delta t) is the elementwise
square root of a1(\delta t) (where exp is applied elementwise, and \bfone K is the vector of K ones).
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944 BUDD, VAN GENNIP, LATZ, PARISOTTO, AND SCH\"ONLIEB

Finally we note that, by Theorem 5.1, b is the fidelity-forced diffusion with initial condition
u0 = \bfzero at time \tau . We compute b via the semi-implicit Euler scheme used for fidelity-forced
diffusion in [34]. To compute this, again we use the Nystr\"om-QR decomposition of \Delta .

Note C.2. We do not use the scheme from [34] for all of the fidelity-forced diffusions because
the Strang formula is more accurate for the e - \tau (\Delta +M \prime )un term, see [11, section 5.2.5--5.2.7] for
details.

Appendix D. Examples of subanalytic regularizers. The following theorem shows that
the examples of regularizers \scrR that are given in Note 7.6 do indeed satisfy the conditions
required by Assumption 7.5.

Theorem D.1. The following functions are semianalytic, bounded below, and continuous
on their domain (which is \BbbR n):

i. f : x \mapsto \rightarrow \| Ax\| 1 for A\in \BbbR m\times n.
ii. A feedforward neural network \scrN \scrN := fL \circ \cdot \cdot \cdot \circ f1 where fj(x

\prime ) := \rho (A(j)x\prime + b(j)),
A(j) \in \BbbR nj\times nj - 1, b(j) \in \BbbR nj , n0 = n, nL = 1, and (\rho (x\prime ))i := max\{ 0, x\prime i\} (the ReLU
function).

Proof.
i. Grf = \{ (x,\| Ax\| 1) | x\in \BbbR n\} can be written as

\bigcup 
e\in \{  - 1,1\} m

m\bigcap 
j=1

\Biggl\{ 
(z1, z2) \in \BbbR n+1

\bigm| \bigm| \bigm| \bigm| \bigm| z2  - 
m\sum 
i=1

ei(Az1)i = 0 and ej(Az1)j \geq 0

\Biggr\} 

and thus Grf is a semianalytic set. The other properties are trivial.
ii. \scrN \scrN is a composition of piecewise linear continuous functions and is hence piecewise

linear and continuous. It follows that it is semianalytic. It is bounded below due to \rho 
applying the ReLU function.
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