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Estimation of energy models from data is an important part of advanced fault detection and diagnosis
tools for smart energy purposes. Estimated energy models can be used for a large variety of management
and control tasks, spanning from model predictive building control to estimation of energy consumption
and user behavior. In practical implementation, problems to be considered are the fact that some mea-
surements of relevance are missing and must be estimated, and the fact that other measurements, col-
lected at low sampling rate to save memory, make discretization of physics-based models critical.
These problems make classical estimation tools inadequate and call for appropriate dual estimation
schemes where states and parameters of a system are estimated simultaneously. In this work we develop
dual estimation schemes based on Extended Kalman Filtering (EKF) and Unscented Kalman Filtering
(UKF) for constructing building energy models from data: in order to cope with the low sampling rate
of data (with sampling time 15 min), an implicit discretization (Euler backward method) is adopted to
discretize the continuous-time heat transfer dynamics. It is shown that explicit discretization methods
like the Euler forward method, combined with 15 min sampling time, are ineffective for building reliable
energy models (the discrete-time dynamics do not match the continuous-time ones): even explicit meth-
ods of higher order like the Runge–Kutta method fail to provide a good approximation of the continuous-
time dynamics which such large sampling time. Either smaller time steps or alternative discretization
methods are required. We verify that the implicit Euler backward method provides good approximation
of the continuous-time dynamics and can be easily implemented for our dual estimation purposes. The
applicability of the proposed method in terms of estimation of both states and parameters is demon-
strated via simulations and using historical data from a real-life building.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

There is a growing interest in research and industry to extract in
real-time additional insights from data collected by building
automation systems (BAS). Examples of the additional value
include real-time fault detection and diagnostics [1], energy saving
supervisory control [2–5], real-time performance validation and
energy usage analysis [6], real-time estimation of energy consump-
tion in connection with user behavior [7–9], real-time estimation
of the user behavior for improved control decisions [10–13], real-
time estimation of thermal comfort models [14]. These real-time
applications share the common goal of checking correct evolution
of energy dynamics and/or thermal comfort, and detecting
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Nomenclature

Tz zone temperature
Tn neighbor zone temperature
To outside temperature
Tm building mass (envelope) temperature
Ca thermal capacitance of zone air
Cm thermal capacitance of building mass
aam conductance zone air/mass
aom conductance outside air/mass
v̂�
k predicted (augmented) state estimate

P�
k predicted covariance estimate

~yk innovation residual
Sk innovation covariance
Kk near-optimal Kalman gain
Pk updated covariance estimate
v̂k updated (augmented) state estimate
x state of the system

u input to the system
w parameters of the system
y output of the system
v process noise of the system
n observation noise of the system
f ; F state transition maps
h;H output maps
Ts sample time
vk augmented state (state and parameters)
Qk covariance of process noise
Rk covariance of observation noise
Xðk k� 1j Þ matrix of sigma vectors

Lkf h Lie-derivative of order k

dG (nonlinear) observability matrix
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anomalies and their causes [15]. To this purpose it is necessary to
develop appropriate estimation tools that can detect, online from
real-time collected data, whether the system is running according
to a nominal model, or it is deviating from it.

In building applications the practical aspect and constraints are
particularly important, since the majority of customers (building
owners, landlords and tenants, as well as facility managers and
energy service companies) are not willing to substantially invest
in the solutions, at least until a short payback period is guaranteed.
As a result, there is an opportunity for analytic engines capable of
operation on legacy BAS systems which log only limited number of
data points with limited sampling rate and resolution. While in
industry there exists a variety of rule-based solutions for the indi-
vidual BAS application listed above (e.g. Attune by Honeywell [16],
SmartStruxure Lite solution by Schneider Electric [17], envisage⁄

Energy Management System by General Electrics [18] and many
others), researches have shown that a model-based approach is
expected to provide a common basis to be shared by most of the
advanced features and outperform rule-based methods [19–22].
The model-based approach requires the development of an
appropriate model for the system dynamics, and the use of data
to interpret in real-time the model parameters and their possible
variations.

A model is a product that represents a system of interest, and
quoting George Box ‘‘all models are wrong, but some are useful”:
in the following we will elaborate on which models are useful to
our real-time purposes. Several building energy models and related
software are available, which can be categorized as steady-state
building energy simulation models and dynamic building energy
simulation models. Models like the ISO 13790 [23] fall in the first
category, because of the steady-state assumption that the building
is heated or cooled for the thermal comfort of people. Models like
EnergyPlus, TRNSYS, Modelica and RC models [24,25] fall in the
second category, because they take into account (to different
extent depending on the specific software) the dynamic behavior
of heat and mass transfer. Steady-state building energy simulation
models are used for long-term simulations and predictions, espe-
cially given the fact that in many buildings energy use is collected
on monthly or weekly basis. However, they cannot be adopted for
real-time energy monitoring and control. For real-time purposes
we need to use dynamic building energy simulation models, well
suited for buildings equipped with automated meter reading,
where data are collected at a rate typically in the range from units
of minutes to one hour. Taking into account hourly or per minute
thermal dynamics allows using these models not only for
long-term simulations and predictions, but also for real-time man-
agement and control purposes. Collection of data on a weekly or
monthly basis makes not only real-time monitoring and control
impossible, but it has been also identified as one of the main rea-
sons for having huge gaps between the estimated and the actual
building energy consumption [26].

Summarizing, we are interested in dynamic building energy
simulation models. Using the classification of Lawrence Berkeley
National Laboratory [27], when can further distinguish dynamic
building energy simulation models into:

� Procedural energy modeling (like EnergyPlus and TRNSYS).
� Equation-based energy modeling (like Modelica and RC
models).

Procedural modeling is usually more complex, because it is
based on partial differential equations. For this reason modeling
the physics is mixed with the implementation of numerical solu-
tion algorithms, and these building simulation programs typically
do not allow specifying initial conditions for all state variables,
which makes it impossible to use these models for model predic-
tive control purposes or anti windup of control action or other
optimization and monitoring tasks. Equation-based modeling is
usually simpler, because based on ordinary differential equations
with lumped parameters: this simplifying assumption allows
defining state variables, specifying their initial conditions and con-
trolling their evolution. Within the scopes of this paper, estimation
of energy models from equation-based modeling is to be preferred
over procedural modeling, because they allow easier real-time
interpretation of the (lumped) model parameters [28].

Estimation of equation-based energy models is equivalent to
estimating the parameters of the heat transfer equations (thermal
resistance, conductance etc.) and/or some variables that cannot be
measured (e.g. envelope temperatures). Estimation of equation-
based energy models from data becomes challenging when com-
bined with the following two issues:

(1) In most practical cases, many measurements are missing,
due to the expensive sensors that would be required to
acquire these measurements. For example, in building ther-
mal dynamics, it is easy to get zone temperatures, but more
difficult to get envelope temperatures. Envelope tempera-
tures can be as important as zone temperatures in under-
standing the state of the building, so it is relevant to
estimate them.
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(2) The measurements are logged at low sampling rate to save
memory. In most practical cases, and in particular for
buildings running legacy BAS systems, the logging rate is
low compared to the thermal response of the respective
subsystem of the building. The thermal dynamics of the
walls of many conventional buildings is of the order of
one hour [29]. Recall the Nyquist–Shannon sampling theo-
rem and classical recommendation to set the logging rate
approx. 10-times faster than the fastest dynamics of inter-
est [30]. Thus, we consider – for real-time purposes –
15 min to be a low sampling rate. Since the sampling rate
usually cannot be significantly increased, the low rate
makes it difficult to construct reliable discrete-time models
out of continuous-time equation-based dynamics. By relia-
bility we intend that the dynamics of the discretized energy
model (with estimated states and parameters) should
match the actual continuous-time dynamics of the
building. Unfortunately, large discretization steps put this
reliability at stake.

These two issues reveal the need for developing methods that
can estimate missing measurements, estimate relevant parame-
ters, and cope with low sampling rate. In this work we focus on
estimation of building heat transfer dynamics, and we tackle the
aforementioned challenges via a dual estimation scheme where
states and parameters of the thermal system are estimated simul-
taneously. The estimated variables can be consequently used to
extract aforementioned insights from the logged data. For example,
faults can be detected and diagnosed from the fact that changes in
the building thermal parameters and/or anomalous behavior of
estimated variables can be related to degradation of materials,
changes in building usage, or faults.

We develop two dual estimation schemes, based on Extended
Kalman Filtering (EKF) and Unscented Kalman Filtering (UKF),
respectively: in order to cope with the low sampling rate of data
(15 min sampling time), an implicit discretization (Euler
backward method) is adopted to discretize the continuous-time
thermal dynamics. Typically, estimated building thermal models
are constructed based on explicit discretization methods like
the Euler forward method. In this work it is shown that explicit
discretization methods, combined with 15 min sampling time,
are ineffective for reliable building heat transfer models: the
discrete-time dynamics do not match the continuous-time ones,
and even explicit methods of high order (Runge Kutta and
Multistep) fail to provide a good approximation of the continuous
dynamics with such long time step. Either smaller time steps or
alternative discretization methods are required. We verify that
the implicit Euler backward discretization method provides good
approximation of the continuous-time dynamics and can be also
easily implemented for our dual estimation purposes. Further-
more, we provide a rigorous observability analysis to check a
priori when the dual estimation problem is well posed, or when
the model to be estimated must be redesigned because it leads
to an unobservable model. The applicability of the proposed
method in terms of estimation of both states and parameters is
demonstrated via simulations and using historical data from a
real-life building.
1.1. Related work

Estimation problems are ubiquitous in smart energy
applications, and in building thermal dynamics in particular. Auto
regressive models with exogenous inputs are widely used for
parameters estimation: in [31] statistical models for solar
radiation and outdoor air temperature are used to calculate room
temperatures and heating load in office buildings; the authors of
[32] obtain the physical meaning of wall parameters by estima-
tion and deduction from a thermal network model; convective
and radiative heat interchanges for photovoltaic integrated
facades and roofs are estimated in [33]. The work in [34] develops
methods for estimating thermal conductivity and resistance,
related to heat exchanger design. Most of the methods based on
auto regressive models, including the aforementioned ones, are
not dual estimation methods: in fact, they use a prediction error
setting, where parameters are estimated, but no state estimation
is performed. Other estimation methods from literature worth
mentioning are the temperature-based approach to detect per-
sisting small increase or decrease in the normal building energy
consumption in [35]: this method identifies an abnormal energy
consumption fault according to the deviation between the mea-
sured and simulated consumption. In [36], a simplified thermal
network model is combined with parameter estimation tech-
niques, for determining the most representative parameter set
for thermal load estimation. Worth mentioning are also machine
learning techniques for building energy management: their adop-
tion had been increasing during the years, with applications in
fault detection and diagnosis of HVAC systems [37], building load
prediction [38,39], forecasting of energy consumption [40,41].
Machine learning approaches are complementary to the proposed
physic-based approach, since they build models from example
inputs (rather than from first principles), and they are completely
data-driven.

Despite the good results of the aforementioned approaches,
most of them rely on ad-hoc methods, that cannot be easily gen-
eralized to other settings, like the dual estimation setting. Estima-
tion methods based on Kalman filtering [42], which would allow
for this generalization, are to a large extent not adopted in smart
energy applications. Some exceptions are the following: in [43]
recursive estimation (i.e. parameter estimation) is proposed in
conjunction with adaptive control. In [44] several lumped-
parameter building thermal models are compared to evaluate
the model complexity needed to capture the basic thermal behav-
ior of the entire building: an extended Kalman filter is used to
estimate the missing states, but no parameter estimation is per-
formed. In [45] a combination of Kalman filter and real-time least
squares is used to estimate the unknown heat flux on the inner
wall of a tube from measured temperature on the outer wall. In
[46] a Kalman Filtering approach is used to estimate the indoor
thermal sensation: again, these are state estimation problems,
where no parametric estimation is performed. On the other hand
Kalman filtering methods are becoming largely adopted in speci-
fic fields complementary to energy efficient buildings, namely
wind speed prediction [47,48], battery state of charge estimation
[49–51], parameter estimation of solar cells [52,53]. Notice, how-
ever, that none of these fields deals with dual estimation prob-
lems for joint estimation of states and parameters. A notable
exception is represented by Maasoumy et al. [54], where a dual
estimation scheme is introduced, but the problem of low sam-
pling rate is not addressed, as well an observability analysis is
not performed. To the best of the authors’ knowledge, this is
the first smart energy study that deals with dual estimation with
low sampling rate.

The rest of the paper is organized as follows: Section 2 pre-
sents the (continuous-time) building thermal model under con-
sideration. Section 3 introduces the dual estimation problem
and the EKF and UKF to solve it. Section 4 discusses issues
related to discretization with low sampling rate. Section 5 per-
forms an observability analysis to verify that the dual estimation
problem is well-posed. Section 6 shows the performance of the
resulting dual estimation scheme in simulation, while Section 7
using data from a real-life building. Section VIII concludes the
paper.



Fig. 1. Heat exchange under consideration.
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2. A building heat transfer model

The building heat transfer model under consideration com-
prises a thermal zone exchanging heat with the outside ambient
and a neighborhood zone. The model has been derived using the
lumped parameter approach leading to the RC model, as described
e.g. in [55–57]. The diagram of Fig. 1 represents the heat exchange
situation. It is the result of the tradeoff between model descriptive-
ness and its observability from the available measurements, as
elaborated in Section 5. The heat transfer equations are as follows:

dTz

dt
¼ aam

Ca
ðTm � TzÞ

dTm

dt
¼ 1

Cm
aamðTz � TmÞ þ aamðTn � TmÞ þ aomðTo � TmÞ½ � ð1Þ

where Ca is the thermal capacitance of the zone air and Cm is the
thermal capacitance of the building mass (envelope). The other
coefficients in (1) are the conductances between zone air and mass
(aam) and between outside air and mass (aom). The variables
Tz; Tn; To and Tm are the temperature of the zone under considera-
tion, of the neighborhood zone, of the outside air, and of the build-
ing mass. In (1) no external solar radiation or internal heating gains
are assumed, in order to keep the presentation as simple as possi-
ble. These terms can be easily included without jeopardizing the
correctness of the proposed approach.

It is now convenient to introduce the following concepts for the
dynamic model of a system:

� State: is a collection of variables that include what is needed to
give a complete description of the system. In (1) the state is
given by Tz and Tm which describe the (thermal) state of zone
and envelope.

� Input: is a collection of exogenous variables that are fed to the
system and influence its evolution. In (1) the input is given by
Tn and To which come from outside the system and influence
the evolution of the (thermal) state of zone and envelope.

� Parameters: is a collection of constants whose values character-
ize the model. In (1) the parameters are given by the thermal
capacitance Ca and Cm and by the conductances aam and aom.
Notice that in our case the parameters can slowly vary during
the evolution of the system.

After grouping some terms together, (1) can be equivalently
written as

dTz

dt
¼ bm2aðTm � TzÞ

dTm

dt
¼ ba2mðTz � TmÞ þ ba2mðTn � TmÞ þ bo2mðTo � TmÞ ð2Þ

where the coefficients represent the thermal exchange coefficients
air-to-mass (ba2m), mass-to-air (bm2a), outside-to-mass (bo2m). The
representation (2) is typically more convenient than (1) because
all coefficients appear linearly. Notice that the temperature of the
zone under consideration, of the neighborhood zone, of the outside
air can be easily measured, while the temperature of the building
mass requires expensive intrawall sensors, whose measurements
are not always reliable. In most practical application it is thus
impossible to measure Tm and such variable must be estimated.
Furthermore, the coefficients ba2m;bm2a; bo2m depend on the envelop
materials and they can even change with building usage: it is thus
of interest to estimate them. Given these considerations, we formu-
late the problem as follows:

Problem formulation: Develop an algorithm that can, from mea-
surements of the temperature of the zone under consideration, of
the neighborhood zone and of the outside air, derive estimates of
the temperature of the building mass Tm and of the heat transfer
coefficients ba2m; bm2a; bo2m in (2). Furthermore, in case the heat
transfer coefficients change with time, the algorithm should be
able to detect such changes.

The stated problem can be solved within the framework of dual
estimation, which consider the problem of jointly estimating the
state and the parameters of a dynamical system.

3. Dual estimation

We consider the problem of estimating both the (unmeasur-
able) states xðkÞ 2 Rn and parameters w 2 Rs of a discrete-time
(nonlinear) dynamic system

xðkþ 1Þ ¼ FðxðkÞ;uðkÞ;vðkÞ;wÞ
yðkÞ ¼ HðxðkÞ;uðkÞ;nðkÞ;wÞ ð3Þ
where the first equation is the state transition function and the sec-
ond equation is the measurement function. In (3) uðkÞ 2 Rm is an
exogenous input to the system, yðkÞ 2 Rp is the output of the sys-
tem, while vðkÞ and nðkÞ are the process and observation noise,
respectively. The functions Fð�Þ and Hð�Þ are the state transition
and output maps of appropriate dimension. Notice that the building
heat transfer model (2) is linear in the states and in the parameters,
but since the dual estimation formulation is general enough, we will
explain the nonlinear case (which can be handled both by the EKF
and the UKF). Furthermore, we will concentrate on the discrete-
time case because of the way the data are saved and consequently
the way Kalman filters are implemented. Let Ts be the sampling
time. Section 4 explains more in details how to obtain a discrete-
time model out of the continuous-time dynamics. In order to sim-
plify the presentation, we introduce the notation xk ¼ xðkÞ and
rewrite

xkþ1 ¼ Fðxk;uk;vk;wÞ
yk ¼ Hðxk;uk;nk;wÞ ð4Þ

In the joint Kalman filtering dual estimation, the state and
model parameters are concatenated within a combined state vec-
tor, and a single EKF or UKF is used to estimate both quantities
simultaneously. Let us call vk ¼ ½x0k w0

k�0 2 Rnþs and rewrite (4) as

vkþ1 ¼ f ðvk;vkÞ
yk ¼ hðvk;uk;nkÞ ð5Þ
In (5) the state is augmented in such a way that the uncertain
parameters w are represented as additional state variables. The
original state vector is augmented with these new state variables
which we may denote the augmentative states. As a consequence,
the functions f ð�Þ and hð�Þ are the state transition and output maps
of the augmented system of appropriate dimension. A Kalman filter
must then be used to estimate the augmented state vector.
To set up an augmentative model an assumption must be made
about the behavior of the augmentative state. The most common
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assumption is that the augmentative state is (almost) constant or
slowly varying. The corresponding differential equation is

wkþ1 ¼ wk þ mk ð6Þ
which is often referred to as randomwalk. In (6) m is a white process
noise that models slow variations. The (almost) constant assump-
tion is not the only one: an (almost) constant rate can be used to
model parameter drifts (e.g. to estimate degradations). Once the
augmented model has been defined, a Kalman filter can be designed
and implemented in the usual way, to estimate both the original
states and the augmentative states. In the following, define
L ¼ nþ s, and Qk and Rk the covariance matrices of the extended
process and observation noise, possibly depending on time. We
briefly recall how to implement an Extended Kalman Filter and an
Unscented Kalman Filter for the augmented model.

3.1. Extended Kalman Filter

The classical Kalman filter calculates the optimal prediction and
optimal gain term exactly in the linear case. For nonlinear models,
however, the classical Kalman filter is not optimal anymore: the
Extended KF approximates the optimal prediction and optimal gain
term as:

v̂�
k ¼ f ðv̂k�1;uk�1Þ

P�
k ¼ Ak�1Pk�1A

0
k�1 þ Qk�1

~yk ¼ yk � hðv̂�
k ;uk�1Þ

Sk ¼ CkP
�
k Ck þ Rk

Kk ¼ P�
k C

0
kS

�1
k

Pk ¼ ðI � KkCkÞP�
k

v̂k ¼ v̂�
k þ Kk~yk

where v̂�
k is the predicted (augmented) state estimate, P�

k the pre-
dicted covariance estimate, ~yk the innovation residual, Sk the inno-
vation covariance, Kk the near-optimal Kalman gain, Pk the updated
covariance estimate, and v̂k updated (augmented) state estimate.
The covariances are determined by linearizing the dynamic
equations

vk � Ak�1vk�1 þ Bk�1uk�1 þ Lvk

yk � Ckvk þ Dkuk�1 þ nk

with Ak�1 ¼ @f
@v

���
v̂k�1 ;uk�1

; Bk�1 ¼ @f
@u

���
v̂k�1 ;uk�1

; Ck ¼ @h
@v

���
v̂�
k
;uk�1

and

Dk ¼ @h
@u

��
v̂�
k
;uk�1

. As such, the EKF can be viewed as providing ‘‘first-

order” approximations to the optimal terms (in the sense that
expressions are approximated using a first-order Taylor series
expansion of the nonlinear terms around the mean values).

3.2. Unscented Kalman Filter

The Unscented Kalman Filter is based on the unscented trans-
formation [58]. The unscented transformation is a method for cal-
culating the statistics of a random variable which undergoes a
nonlinear transformation. Consider propagating the random vari-
able v̂k (of dimension L) through a nonlinear function given by
the system dynamics. To calculate the statistics of the propagated
variable, we form a matrix Xðkjk� 1Þ of 2Lþ 1 sigma vectors

Xðkjk� 1Þ ¼ X0ðkjk� 1Þ � � �X2Lþ1ðkjk� 1Þ½ �
The unscented filter (UF) propagates the estimates as follows
W0 ¼ j
Lþ j

Wi ¼ 1
2

1
Lþ j

; i ¼ 1; . . . ;2L

v̂�
k ¼

X2L
i¼0

WiXiðkjk� 1Þ

P�
k ¼

X2L
i¼0

WiðXiðkjk� 1Þ � v̂�
k ÞðXiðkjk� 1Þ � v̂�

k Þ0

Yðkjk� 1Þ ¼ hðXðkjk� 1Þ;uðk� 1Þ; P1=2
nn Þ

ŷ�k ¼
X2L
i¼0

WiYiðkjk� 1Þ

P~yk~yk ¼
X2L
i¼0

WiðYiðkjk� 1Þ � ŷ�k ÞðYiðkjk� 1Þ � ŷ�k Þ0

P~xk~yk ¼
X2L
i¼0

WiðXiðkjk� 1Þ � v̂�
k ÞðYiðkjk� 1Þ � ŷ�k Þ0

v̂k ¼ v̂�
k þ P~xk~ykP

�1
~yk~yk

ðŷk � ŷ�k Þ
Pk ¼ P�

k � P~xk~ykP
�1
~yk~yk

P0
~xk~yk

Remark 1. Notice that even if (2) is linear in the states and in the
parameters, the augmentation in (6) makes the augmented model
bilinear. For this reason nonlinear estimation techniques are
required for dual estimation.
4. Discretization issues in building heat transfer models

Consider the model in (2). If the model were linear, one could
use exact discretization methods based on zero-order hold, namely

_xðtÞ ¼ AxðtÞ þ BuðtÞ ) _xkþ1 ¼ Adxk þ Bduk

Ad ¼ eTsA Bd ¼
Z ðkþ1ÞTs

kTs

eAðt�sÞBds ð7Þ

However, there are two reasons why this method cannot be used in
the dual estimation case at hand. The first is the fact that the coef-
ficients in (2) appear in a bilinear fashion in the augmented model
and can be even slowly time-varying. Another reason for not con-
sidering the exact discretization (7) is that it might become intract-
able in large buildings with many states due to the heavy matrix
exponential and integral operations involved. Based on these con-
siderations, it is convenient to calculate an approximate discrete-
time model. Starting from a general continuous-time (nonlinear)
model

_xðtÞ ¼ f ðxðtÞ;uðtÞÞ
the most commonly used approximation method is the Euler For-
ward Method, i.e.

_xkþ1 ¼ xk þ Tsf ðxk;ukÞ
where Ts is the sampling time. The Euler forward method is said to
be explicit, since the solution xkþ1 is an explicit function of xi; i 6 k.
The method increments the solution through an interval Ts while
using derivative information from only the beginning of the inter-
val. As suggested by intuition, the Euler forward method is more
accurate if the step size Ts is smaller. The Euler forward method
can also be considered as the Taylor expansion of the function f
truncated to the first order. This consideration allows us to state
that since the quadratic and higher-order terms are ignored, the
local truncation error is of order OðT2

s Þ.
It is well known that the Euler forward method can be numer-

ically unstable, especially for stiff equations: however, we will
show numerically that the Euler forward method can be numeri-
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cally unstable also for non-stiff building heat transfer model (2).
Let us assume that the model parameters in (2) are perfectly
known, so that no parameter estimation is necessary. Fig. 2 shows
the evolution of the zone temperature coming from the
continuous-time model (2) versus the evolution of the zone tem-
perature coming from the model discretized with the Euler for-
ward method. It is evident that after already few steps the Euler
forward method has an oscillatory unstable behavior. Furthermore,
we will show that higher-order discretization techniques can be
similarly inaccurate.

4.1. Higher order explicit methods

In order to increase the accuracy of the discretization method,
more complex methods can be adopted e.g. by using more function
evaluations. The most common is the midpoint method (also called
second order Runge–Kutta method) which uses two function eval-
uations in the following way:

xkþ1 ¼ xk þ Tsf xk þ 1
2
Tsf ðxk;ukÞ;ukþ1

2

� �
:

The name of the method comes from the fact that the function f giv-
ing the slope of the solution is evaluated at t ¼ kTs þ 1

2 Ts, which is
the midpoint between kTs at which the value of xðtÞ is known and
ðkþ 1ÞTs at which the value of xðtÞ needs to be found. The midpoint
method can be demonstrated to have local truncation error of the
order of OðT3

s Þ (more precise than the Euler forward method).
The other possibility for increasing accuracy of discretization is

to use more past values, for example as in the two-step Adams–
Bashforth method:

xkþ1 ¼ xk þ 3
2
Tsf ðxk;ukÞ � 1

2
Tsf ðxk�1;uk�1Þ:

which has also local truncation error of the order of OðT3
s Þ (more

precise than the Euler forward method). Fig. 3 shows the evolution
of the zone temperature coming from the continuous-model (2)
versus the evolution of the zone temperature coming from the
model discretized with the midpoint method and the two-step
Adams–Bashforth. It is evident that also these higher-order dis-
cretization methods fail to catch the continuous-time behavior after
already few steps. Notice that the two methods would work per-
fectly if a smaller sampling time were adopted, as revealed by
Fig. 4, which is obtained for Ts ¼ 2 min. We conclude that explicit
discretization methods are not suitable for low sampling rate. Either
smaller time steps or alternative discretization methods are
required. Implicit methods are investigated, and we will consider
the simplest implicit discretization method, namely the Euler back-
ward method.

4.2. Euler backward method

A modification of the Euler forward method which eliminates
the stability problems noted in the previous section is the back-
ward Euler method:

xkþ1 ¼ xk þ Tsf ðxkþ1;ukþ1Þ:
This differs from the forward Euler method in that the function f is
evaluated at the end point of the step, instead of the starting point
(see Fig. 5). The backward Euler method is an implicit method,
meaning that the formula for the backward Euler method has xkþ1

on both sides, so when applying the backward Euler method we
have to solve an equation. This makes the implementation more
costly. However, unlike the Euler forward method, the backward
method is unconditionally stable and so allows large time steps to
be taken. Unconditional stability can be shown with this toy
example: assume we want to discretize the (stable) differential
equation _x ¼ ax, with a < 0. The Euler forward method would lead
to

xkþ1 ¼ xk þ Tsaxk ¼ ð1þ TsaÞxk
which becomes unstable for 1þ Tsaj j > 1, i.e. Ts > �2=a. The Euler
backward method would lead to

xkþ1 ¼ xk þ Tsaxkþ1 ¼ 1
1� Tsa

xk

which is always stable no matter what a is.
The rationale behind the backward Euler method is similar to

the forward Euler method, with the difference that in the forward
Euler method the derivative at the end of the interval is used (cf.
Fig. 5).

For the model (2) the backward Euler method becomes:

Tzðkþ 1Þ ¼ TzðkÞ þ Ts bm2aðkþ 1ÞðTmðkþ 1Þ � Tzðkþ 1ÞÞ½ �

Tmðkþ 1Þ ¼ TmðkÞ þ Ts ba2mðkþ 1ÞðTzðkþ 1Þ � Tmðkþ 1ÞÞ½
þbo2mðkþ 1ÞðToðkþ 1Þ � Tmðkþ 1ÞÞ
þba2mðkþ 1ÞðTnðkþ 1Þ � Tmðkþ 1ÞÞ�

which can be written as

Tzðkþ 1Þ
Tmassðkþ 1Þ

� �

¼ N�1 TzðkÞ
TmðkÞ þ Ts ba2mðkþ 1ÞToðkþ 1Þ þ ba2mðkÞTnðkþ 1Þ½ �

� � ð8Þ

with

N ¼ 1þ Tsbm2aðkþ 1Þ �Tsbm2aðkþ 1Þ
�Tsba2mðkþ 1Þ 1þ 2Tsba2mðkþ 1Þ þ Tsbo2mðkþ 1Þ

� �

ð9Þ
The inverse of the 2� 2 matrix can be easily calculated to be

N�1 ¼ 1
D

1þ 2Tsba2mðkþ 1Þ þ Tsbo2mðkþ 1Þ Tsbm2aðkþ 1Þ
Tsba2mðkþ 1Þ 1þ Tsbm2aðkþ 1Þ

� �

with D ¼ ð1þ Tsbm2aðkþ 1ÞÞð1þ 2Tsba2mðkþ 1Þ þ Tsbo2mðkþ 1ÞÞ�
T2
s ba2mðkþ 1Þbm2aðkþ 1Þ. Fig. 6 reveals that the Euler backward dis-

cretization is perfectly able to catch the continuous-time profile,
even for low sampling rate.

Remark 2. Notice that the matrix N is always invertible, because
the determinant is positive
D ¼ 1þ 2Tsba2mðkþ 1Þ þ Tsbo2mðkþ 1Þ þ Tsbm2aðkþ 1Þ
þ T2

s ba2mðkþ 1Þbm2aðkþ 1Þ þ T2
s bm2aðkþ 1Þbo2mðkþ 1Þ

> 0 ð10Þ
This comes from the fact that sample time and heat transfer
coefficients are always positive.

We conclude the section by defining the following measure of
discrepancy

D% ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

k¼0

ðTcont
z ðkÞ � Tdisc

z ðkÞÞ2

ðTcont
z ðkÞÞ2

vuut ð11Þ

which represents, over the simulation horizon ½0; T�, the deviation of
the zone temperature of the discretized model with respect to the
zone temperature of the continuous-time model. The discrepancy
is calculated for all discretization methods (and different time
steps) and shown in Table 1. The result is that the backward Euler
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method with sampling rate Ts ¼ 15 min can represent the continu-
ous time dynamics to a good accuracy (1.04%).

5. Observability analysis

What is often missing in dual estimation problems is an appro-
priate observability analysis: in other words before proceeding
with the augmented state estimation, it is important to check
whether the joint estimation of states and parameters is well-
posed, i.e. states and parameters are observable.

It is well-known that the intuitive notion of observability is:
from observing the sensor(s) for a finite period of time, can I find the
state at previous times?

Since observability is a structural property of the real
(continuous-time) system and not of its discretized model, the
observability analysis is carried out in continuous time. In order
to explain observability we will use a toy example.

5.1. Toy example

In the following we will consider the simple system

_x ¼ ax

where we assume to estimate both x and a as in the dual estimation
formulation. Notice that (12) is at the same time representative of
some building dynamics (increase/decrease temperature) and sim-
ple enough to allow a simple analysis.

We augment the dynamics as follows:

_x ¼ ax
_a ¼ 0 ð12Þ

Since the augmented system is nonlinear, the observability
analysis must be carried out via a local approach relying on the
Lie derivative [59]. It is crucial to underline that observability for
nonlinear systems is more complex than looking at the observabil-
ity of the linearized model (the linearized augmented model would
result unobservable, but this does not mean that the augmented
model is unobservable). In fact, nonlinear observability is inti-
mately tied to the Lie derivative. The Lie derivative is the derivative
of a scalar function along a vector field. The augmented model in
(12) can be written as

_v ¼ f ðvÞ
x ¼ hðvÞ
where v ¼ x a½ �0, and f and h are defined accordingly. Notice that
the x can be measured, but a not. The Lie derivative of hwith respect
to f is:

Lf h ¼ dh
dv f ð13Þ

We can also define higher-order Lie derivatives:

Lkf h ¼ d
dv Lk�1

f

� �
f ð14Þ

where L0f h ¼ h by definition. Define

G ¼

L0f h

L1f h

..

.

Ln�1
f h

2
6666664

3
7777775



Fig. 5. Representation of the Euler backward method.
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Fig. 6. Zone temperature: continuous-time model (solid), Euler backward dis-
cretization (dash-dot). Sample time ts ¼ 15 min.

1 The system is locally observable, that is distinguishable at a point x0 if there exists
a neighborhood of x0 such that in this neighborhood, v0 – v1 ) hðv0Þ– hðv1Þ [55].
Intuitively, if the sensor readings are different, the states are different.
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We have that in order to have observability, the rank of the gradient
operator

dG ¼

dL0f h

dL1f h

..

.

dLn�1
f h

2
6666664

3
7777775

ð15Þ

must be full. Summarizing, the observability of a nonlinear system
is given by the following theorem.

Theorem [59]. Let G denote the set of all finite linear combinations
of the Lie derivatives of h1; . . . ;hp with respect to f for various values of
u = constant. Let dG denote the set of all their gradients. If we can find
n linearly independent vectors within dG, then the system is locally
observable.

Please notice that the gradient operator becomes the observ-
ability matrix in the linear case. In our case we have that

L0f h ¼ x

L1f h ¼ ax a2x ð16Þ
i.e. we take the Lie derivative up to order 1. The gradient of (16) is

dL0f h ¼ ½I 0�
dL1f h ¼ ½aI ax�
which has rank 2 if a is different than 0. So the system is locally
observable.1

5.2. Observability of the heat transfer model

Let us then verify the observability of the building heat transfer
model (2) using the aforementioned nonlinear observability analy-
sis. We find that the corresponding dG has rank 5, which means
that the two temperatures and three heat transfer coefficients
are (locally) observable. The observability analysis has been carried
out via the Matlab symbolic toolbox, and it is not shown in details
due to the length of the resulting Lie derivatives.

Furthermore, notice that alternative building heat transfer
models lead to unobservable systems. The following RC model, also
arising from the lumped parameter approach [55–57] but with dif-
ferent constants

dTz

dt
¼ bm2aðTm � TzÞ

dTm

dt
¼ ba2mðTz � TmÞ þ bn2mðTn � TmÞ þ bo2mðTo � TmÞ ð17Þ

assumes that the mass interacts differently with the neighborhood
zones, due to bn2m. However, (17) has a dG of rank 5, which means
that not all 4 coefficients are observable. The following alternative
RC model

dTz

dt
¼ bm2aðTm � TzÞ þ bo2aðTo � TzÞ

dTm

dt
¼ ba2mðTz � TmÞ þ ba2mðTn � TmÞ þ bo2mðTo � TmÞ ð18Þ

where an extra term is adopted to model the direct exchange
between zone and outside air, has also a has a dG of rank 5, thus
resulting unobservable. However, if a ‘‘window” term is added, in
the following way

dTz

dt
¼ bm2aðTm � TzÞ þwwb02aðTo � TzÞ

dTm

dt
¼ ba2mðTz � TmÞ þ ba2mðTn � TmÞ þ bo2mðTo � TmÞ ð19Þ

where ww 2 ½0;1� is a known input representing the window open-
ing, then the system would become observable (at least for some
non degenerate inputs).

Remark 3. Notice that, differently than linear systems, the system
input affects the observability of nonlinear systems. For example,
(19) with window always closed (ww ¼ 0) or always open
(ww ¼ 1), would make b02a unobservable. This coefficient would
become observable only with some window opening strategy that
‘excites’ the system. To the best of the authors’ knowledge, there
are no general results explaining which kind of input makes the
coefficient observable, and which do not: in these complex cases,
observability can only be demonstrated a posteriori with extensive
simulations. The analysis of this section has the merit to show a
priori when a dual estimation problem is not well posed (e.g. (17)
or (18)), so that different models must be adopted.
6. Results

6.1. Simulation results

In this part we aim at showing the performance of EKF- and
UKF-based dual estimators via simulations. The continuous time
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Fig. 9. Real-life test case: complete heat exchange, whose dynamics are not
observable via the logged datapoints.

Fig. 10. Real-life test case: heat exchange under consideration, whose dynamics are
observable via the logged datapoints.

Table 1
Discrepancy continuous/discrete time model.

Forward Euler
(Ts ¼ 15 min)

Midpoint
(Ts ¼ 15 min)

Midpoint
(Ts ¼ 2 min)

Two-step
(Ts ¼ 15 min)

Two-step
(Ts ¼ 2 min)

Backward Euler
(Ts ¼ 15 min)

D% 99.12% 99.99% 0.24 % 99.99% 0.26 % 1.04 %

Table 2
Root mean square errors averaged over 100 simulations.

EKF UKF

RMS Tz 1:684 � 10�8 1:541 � 10�8

RMS Tm 1:732 � 10�8 1:588 � 10�8

RMS bm2a 1:354 � 10�4 1:310 � 10�4

RMS ba2m 0:740 � 10�8 0:721 � 10�8

RMS bo2m 38:542 � 10�8 38:224 � 10�8
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model (2) is taken with bm2a ¼ 5:235 � 10�5; ba2m ¼
9:720 � 10�6; bm2a ¼ 2:141 � 10�4. However, the parameters are not
fixed, but may vary according to an additive Gaussian diffusion
process with variance 9 � 10�3;6 � 10�3;35 � 10�3 (in continuous
time), respectively. The zone temperature can be measured, while
the mass temperature cannot. The zone temperature is subject to
an additive sensor noise with variance 1 � 10�5. Furthermore the
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two equations in (2) are subject to additive Gaussian diffusion
processes with variance 1 � 10�8;3 � 10�8 (in continuous time),
respectively.

The model is discretized with backward Euler method with
Ts ¼ 15 min, and all the continuous-time covariances are trans-
lated into their discrete-time counterpart. The EKF- and UKF-
based dual estimators are derived via the procedures that have
been described. Figs. 7 and 8 show, for two particular realization
of the noises, the performance of the EKF- and UKF-based dual esti-
mators. It is possible to notice that both temperatures are tracked
with great accuracy: in addition the filters are able to track changes
in the parameters.

The performance of EKF- and UKF-based dual estimators is fur-
ther investigated with extensive simulations. In particular, 100
Montecarlo simulations are performed and the estimation perfor-
mance is measured in terms of the average root mean square
(RMS) error between the true temperatures and the estimated
temperatures, and between the true parameters and the estimated
parameters. The RMS is averaged over the 100 simulations. The
results are shown in Table 2. There is possible to notice that the
UKF performs slightly better than the EKF.
6.2. Real-life test case and results

Here we show a real-life application of the UKF-based dual esti-
mator. The pilot building selected is a school located in the pro-
vince of Treviso, Italy, with humid subtropical climate. The
building is equipped with hydronic heating system supplied by a
gas-fired boiler. The heating system is supervised by an IQ1 Trend
building energy management system [60]. The legacy system logs
selected building data at a 15-min rate. The objective of the exer-
cise is to develop a dynamic model of the zone thermal response,
which would be used in model-based analytics as explained in Sec-
tion 1. Fig. 9 depicts the complete heat exchange in one room of the
school. It has to be underlined that the complete heat exchange
dynamics are not observable according to the observability analy-
sis of Section 5. For example, the temperature of the water in the
radiator is not available, and this makes it impossible to observe
some thermal dynamics arising from internal gains. We have thus
to come up with a simplified heat exchange situation whose
dynamics are observable given the available logged datapoints.
The only logged datapoints relevant to the zone response are zone
temperatures (Tz and Tn in model (2)) and outside air temperature
(To in model (2)). Fig. 10 depicts the heat exchange under consid-
eration, whose dynamics are observable via the logged datapoints.
Notice that Fig. 10 is compatible with the model (2). Consequently,
the test is based on historical data collected during night in such a
way that the model (2) is valid. Since this is a real-life experiment,
the real parameters and the real mass temperature are not avail-
able. Figs. 11 and 12 show, for 2 particular nights the good fit of
measured and estimated zone temperature, and the evolution of
mass temperature and heat transfer coefficients. Furthermore, in
order to check the correctness of the results, a Kalman smoothing
technique is used to estimate the initial state at the beginning of
the night: the initial state is used to run the backward Euler dis-
cretized model and compare it with real data. Figs. 13 and 14 show
that the model matches the data with good accuracy. Notice that
the real measurements are subject to a quite big quantization error
due to sensor precision.
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7. Conclusions

This work presented two dual estimation schemes based on
Extended Kalman Filtering (EKF) and Unscented Kalman Filtering
(UKF) for building heat transfer models used in real-time applica-
tions. The dual estimation schemes are used to simultaneously
estimate both missing data (mass temperature) and uncertain heat
transfer coefficients. In order to cope with low sampling rate of
data (with sampling time 15 min), an implicit discretization (Euler
backward method) was used to discretize the continuous-time
heat transfer dynamics. It was shown that explicit discretization
methods (even of high order) are ineffective for building reliable
heat transfer models with low sampling rate. Either smaller time
steps or alternative discretization methods are required. We veri-
fied that the implicit Euler backward method provides good results
and could be also easily implemented for our dual estimation pur-
poses. The applicability of the proposed method in terms of esti-
mation of both states and parameters was demonstrated via
simulations and using historical data from a real-life building.
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