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I

Wanneer blijkt dat gepromoveerden in exacte wetenschappen eerder in het bedrijfs-
leven een baan vinden dan in de academische wereld, zal hiermee rekening gehouden
moeten worden bij het vaststellen van het onderwijs voor assistenten en onderzoekers
in opleiding.

vgl. LE. Block. Scholars or Problem Solvers, or Both? SIAM News 7, July 1995, p. 7.

IT

Beschouw de lineaire programmeringsproblemen

(P) min {c'z : Aa=b,2>0}

(D) max {bTy: ATy+s=¢ s>0},

¥,

waarin A een m X n matrix is met rang m < n. Zij a; de i-de kolom van 4, z en
(v, s) toegelaten oplossingen van (P) respectievelijk (D), en X = Diag(z1,...,%a)
en S = Diag(s1,...,5n). De verhouding tussen de slack met betrekking tot de i-de

ongelijkheidsrestrictie en de Euclidische afstand tot de rand van de Dikin-ellipsoide

in de richting orthogonaal op die restrictie wordt in (D) gegeven door (Vaidya, 1989)

Si

oi(y,s) = .
i(@:9) VaT(AS-2AT)-1g;

Het analogon van deze afstandsmaat voor (P) is

1
—zla] (AX2AT) 1a;

Ei(x) = \/1

Er geldt oi(y,s) > 1, &i(z) > 1, en

n

Z Uz(y, 5)? =m Z &(3)2 =n-m

Bovendien, als ¢ en (y,s) op de centrale paden van (P) respectievelijk (D) liggen,

eldt
& 1 1

+
&(x)?  oi(y,s)?
In gedegenereerde problemen geeft het limietgedrag van deze afstandsmaten geen
uitsluitsel over de optimale partitie van (P) en (D).

=1, voor alle:.

P.M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Proceedings of the
30th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Press, Los
Alamitos, CA, USA, 1989, pp. 338-343.

Hoofdstuk 2 van dit proefschrift.



I

Het studieprogramma voor de afstudeerrichting Beslissingstechnologie (Operations
Research) van de opleiding Technische Wiskunde aan de Technische Universiteit Delft
bevat op het terrein van de Operationele Analyse, naast hoorcolleges‘en afstudeerop-
dracht, slechts één (niet verplicht) practicum van 60 studiebelastinguren. Voor een
gedegen voorbereiding op de praktijk van de Operationele Analyse is dit onvoldoende.

v

Wanneer het referee—prdces van manuscripten niet versneld wordt, zullen elektronische
tijdschriften geen oplossing betekenen voor het probleem dat veel wetenschappelljke
artikelen pas gelezen worden als zij al verouderd zijn.

Vv

In een mathematisch model ter ondersteuning van strategische beleidsbeslissingen
dient met name aandacht te worden besteed aan onzekerheid van externe factoren,
alsmede hoe op deze onzekerheid kan worden gereageerd en geanticipeerd.

VI

In het licht van Stelling 5 i1s de volgende uitbreiding van het depotlocatie probleem
interessant. Bepaal beslissingen die efficient zijn met betrekking tot variantie in de
waarde van de beslissingsvariabelen en gemiddelde kosten in het model

min 3.3 es(¥is — F;)°

2,9,9 ‘
ng“’ija:l ' iel,seS
mijssyjs ZEI:JE']:SES
Zie[Disl'ijs S-Pgs jEJ, seS
ZiEI,jEJ,sES Cijstijs + ZjEJ,sGS Fjsyjs = |S| Cr
ISWJ- = ZsES Yis jed
zi5s 2 0, yjs € {0,1}, iel,jelJ s€S,

waarin

I,J,S verzamelingen klanten (), resp. locaties (j), resp. scenarios (s)

Tijs percentage van de vraag van ¢ geleverd door j in s

Yjs 1, als j open in s, 0 anders

J;  gemiddelde waarde y;,

Dy, vraag ¢ in § P;; capaciteit jin s

Cijs variabele kosten voor ¢ door j in s F;, vaste kosten voor j in s

Cr richtwaarde gemiddelde kosten.



VII

Het bestaan van meerdere optimale oplossingen in een kwadratisch mean-variance
model, dat-door Michaud (1989) als een nadeel wordt gezien, geeft de vrijheid om uit
deze oplossingen één te kiezen die het best aan een gesteld nevendoel voldoet. Kennis
van de tripartitie van het probleem is hiervoor van wezenlijk belang.

R.O. Michaud. The Markowitz optimization enigma: Is ‘optimized’ optimal? Financial Analysts
Journal, January /February 1989, pp. 31-42.
Hoofdstuk 5.1 van dit proefschrift.

VIII

Bij het plannen van grote projecten voor de bouw van nieuwe woningen in Nederland
dient niet alleen rekening gehouden te worden met de actuele vraag, maar even-
zeer met de bevolkingsopbouw, de demografische ontwikkeling en de aard van het
bestaande woningarsenaal.

IX

Het positieve effect op de doorstroming van het verkeer op een snelweg, dat nitgaat
van het vergroten van het aantal rijbanen, wordt verkleind, wanneer dit tevens leidt
tot een toename van het aantal overtredingen van artikel 3 lid 1 RVV 1990.
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Chapter 1

Introduction

We first give an historical account of research on interior point methods. Then we describe
the research performed in this thesis and the new results obiained. Finally, we summarize
the notation to be used.

1.1 Historical background

Major breakthroughs in mathematical programming are often related to linear programming
(LP). First of all, the introduction of the simplex method by Dantzig in 1947 [39] had both a
theoretical and practical impact in the field, maybe even initiated it. As direct consequences
we mention the development of LP and its extensions [41], network problems and algorithms
[57], nonlinear programming (NLP) [152], decomposition schemes [43], complementarity the-
ory [35, 154], stochastic programming [40], cutting plane methods for large integer programs
[42], etc. The reader is referred to [155] for an overview of the early history of mathematical
programming. When in 1979 Khacijan [136] showed that the ellipsoid algorithm applied to
the LP problem runs in polynomial time, this was not only of importance for the complexity
theory of LP, it also had important implications for the complexity theory of many combi-
natorial optimization problems, as shown by Grotschel et al. [93]. Unfortunately, the good
complexity didn’t lead to good computational efficiency in practice, causing the method to
become merely a theoretical tool. However, no single development since the introduction
of the simplex method has influenced the field of mathematical programming to such an
extent as did the 1984 paper by Karmarkar [132] which had (and still has) a great impact on
both the theory and practice of mathematical programming. Describing a new polynomial
time algorithm (called projective scaling algorithm) for LP with better complexity than the
ellipsoid method and claiming it to be extremely efficient in practice, Karmarkar triggered
a tremendous amount of research on what is now commonly called interior point methods.
Hundreds of researchers all over the world went into the subject, over 2000 papers were
written (see Kranich [150] for a bibliography). For an overview of the developments in the
theory of interior point methods for LP the reader is referred to surveys by Gonzaga [88]
and Den Hertog {101]; the computational state—of-the-art is described in Lustig et al. [163].

The massive interest in interior point methods is even more remarkable if one takes into
account that interior point techniques were extensively investigated in the 1960s (see Fiacco
and McCormick [54]) and beginning 1970s as part of sequential unconstrained minimization
techniques. One of the important techniques is the logarithmic barrier method, introduced
by Frisch [63] in 1955. Also, the affine scaling algorithm proposed by Barnes [17] and
Vanderbei et al. [243] as a simplified version of Karmarkar’s method appeared to be just a
rediscovery of a method developed by Dikin [44] in 1967.
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Several reasons can be given why interior point methods were out of sight since the early
1970s, but regained so much interest in the mathematical programming society after Kar-
markar’s work. The first is of theoretical nature. Interior point techniques were originally
developed to solve NLP problems with inequality constraints. For LP the simplex method
performed reasonably well, and there was no incentive to investigate the theoretical proper-
ties of the interior methods when applied to LP, as theoretical complexity of the algorithm
was not regarded to be an issue in the 1960s. In fact it was only around 1970 that complex-
ity theory was developed, mainly in the field of combinatorial optimization (see Karp [133]
and Garey and Johnson [68]), and for convex optimization by Judin and Nemirovskii [130].
It was shown by Klee and Minty [137] that certain variants of the simplex method need,
in the worst case, an exponential number of arithmetic operations. Since then, the search
for a polynomial method being efficient in practice was alive, without considering the pos-
sibility that existing methods, when sufficiently adjusted, could satisfy these requirements.
Shortly after the publication of Karmarkar’s paper Gill et al. [72] showed that Karmarkar’s
projective algorithm was closely related to the logarithmic barrier method. Following this
connection theoretical work on interior point methods soon led to the introduction of the
analytic center by Sonnevend [224] and analysis of the central path in a primal-dual setting
by Megiddo [174] which are the central themes in both theoretical work as well as in prac-
tical implementations of interior point techniques. In 1987 Roos and Vial [216] derived a
very elegant and simple complexity proof of the basic logarithmic barrier method, showing
a new property of an essentially old method. Renegar [212] derived the complexity of a
method using analytic centers which can be traced back to Huard [109]. Anstreicher [9]
analyzed SUMT [195], an old implementation of an interior point method and showed it to
be polynomial.

A second reason for the revival and popularity of interior point methods comes from the
computational side. Hardware and software (particularly for sparse linear algebra) have been
improved so much in the last decade that the computationally expensive task in any interior
point method (viz., solving a sparse linear system) can be performed efficiently and with
great accuracy. Particularly, new preprocessing techniques and research on sparse Cholesky
factorization with various ordering heuristics have contributed to the success of interior
point methods, see e.g., Lustig et al. [163]. Recently, solving sparse indefinite systems has
become popular, see e.g., Fourer and Mehrotra [59] and Gondzio and Terlaky [84]. The use
of new theoretical insights on the intrinsic nature of interior point techniques when applied
to the LP problem has enhanced the implementation of interior point methods in such a
way that very efficient codes now exist and are available at both commercial and academic
level; we mention CPLEX (37], OSL [202], LOQO [242], IPMOS [252], LIPSOL [260].
To be honest we have to mention that the improvements in the simplex codes have been
equally flabbergasting since the early 1980s. Bixby claims! an improvement in computation
time with a factor 1000000, where a factor 1000 is due to more sophisticated methods and
the other factor 1000 to evolving computer hardware.

A third reason that interior point techniques were out of sight for fifteen years can be
found in the difference between applying the logarithmic barrier method to an LP problem
as compared to an NLP problem. First, as was shown by Lootsma [158] and Murray

!Talk at ” Workshop Optimization in Production and Transportation”, November 10, 1994, Scheveningen,
The Netherlands
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[194] the Hessian of the logarithmic barrier function (with which a system needs to be
solved in each iteration) becomes increasingly ill-conditioned when the iterates approach
an optimal solution. This was experienced in SUMT ([195]. However, in the linear case this
behavior is less apparent and typically doesn’t influence the efficiency and effectiveness of
interior point methods in practice (see e.g., Stuart [229], Wright [250] and Vavasis [244]).
For certain NLP problems Wright [250] extends the results in [158] and [194], and more
importantly, suggests a way to get around the indicated difficulties in practice. Secondly,
the LP environment proposed a natural opportunity to develop primal-dual methods (i.e.,
methods generating primal and dual solutions in each iteration), initially by Monteiro and
Adler [186] and Kojima et al. [145]. Comparing early computational results with pure
primal or dual methods and primal-dual implementations (compare e.g., (170] and [162])
shows a big decrease in computational effort with the use of the latter. Using infeasible
iterates as proposed by Lustig [161] among others, improved the codes even more, as was
the case with Mehrotra’s proposal [176] to use a predictor—corrector scheme. Incidentally,
after the success of infeasible primal-dual predictor-corrector methods for LP it has, with
some success, been tried to transfer the use of primal-dual techniques to NLP, see e.g., Vial
[245] and Yamashita [254].

Apart from its impact on LP, Karmarkar’s algorithm is also ultimately responsible for
several other trends in optimization. We mention the revival (c.q., rehabilitation) of de-
composition schemes (see e.g., Goffin and Vial 75, 78], Bahn et al. [14], Den Hertog et al.
[103]), the revival of Newton’s method in NLP combined with a beautiful analysis of certain
interior point methods for NLP by Nesterov and Nemirovskii [199], the use of semidefinite
programming (SDP), e.g., in control theory, linear algebra and combinatorial optimization
(see Boyd et al. [29, 30], Alizadeh [6]), the development of efficient practical algorithms for
NLP problems (see Yamashita [254], Vial [245], Shanno [221], Andersen and Ye [8], Breitfeld
and Shanno [32] and Ben-Tal and Roth [20]) and reconsidering sensitivity analysis (Adler
and Monteiro (3], Jansen et al. [112], Greenberg [92]). Some of these developments were, to
a certain extent, pointed to by Karmarkar (see {132, pp. 394-396]), others are still surprising,

1.2 Scope of the thesis

In this thesis interior point methodology is used to derive new results, develop and analyze
some new primal-dual interior point algorithms, and unify (and extend) existing literature
in interior point methods. Specifically, it is investigated how initial results and methods for
LP can be extended to NLP. As a consequence this thesis contains results in various areas of
mathematical programming, viz., linear, quadratic, nonlinear, combinatorial and semidefi-
nite optimization. The leading thread running through this thesis is complementarity which
we view as a basic concept in mathematical programming and in interior point methods
in specific. Fundamentally, complementarity is a certificate for optimality. For nonoptimal
solutions the (error in) complementarity is a measure for the distance of the solution to
optimality; for optimal solutions the complementarity is zero. Among all optimal solutions
the strictly complementary solutions are of special interest. While much of the literature on
interior point techniques (specifically those for NLP) concentrates on the central path and
considers methods in (small) neighborhoods of the central path, we will not make such a
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restriction. In this thesis we will use (strict) complementarity to derive results in the theory
and sensitivity analysis for LP (Chapter 2). This concerns well-known results for which we
provide new proofs, as well as some new results. Here we also introduce the v—space of the
LP problem which gives a characterization of nonoptimal solutions. The v-space is used in
the development of a new class of primal-dual algorithms for (non)linear complementarity
problems (Chapter 3) and in developing a unifying, called target—following, framework for
analyzing interior point methods (Chapter 4). Finally, we use complementarity in three
other subjects: we investigate sensitivity analysis in quadratic programming, analyze two
applications of semidefinite programming and consider interior point based decomposition
methods (Chapter 5). The thesis is concluded with a section containing a summary, conclu-
sions and directions for further research. We will now explain the results obtained in this
thesis in some more detail.

1.2.1 Theory and sensitivity

In all classical textbooks on LP, developing the dual problem, weak and strong duality and
the complementary slackness theorem are contained in one of the first chapters. While
for optimal solutions the complementarity is zero, this is not true for feasible but nonopti-
mal solutions. A less well-known property of the LP problem is the existence of a strictly
complementary solution first shown by Goldman and Tucker [81] in 1956. A strictly com-
plementary solution is an optimal solution with a useful special property. While historically
these theoretical results are taught using a basis (which is intimately related to the simplex
method) a natural question is whether they can also be obtained using ideas from interior
point techniques. For the theory of LP this was first done by Giiler et al. [97]. In Chapter
2 of this thesis we derive these results much more easily using a new skew-symmetric refor-
mulation of the LP problem. We give new proofs for duality and the existence of a strictly
complementary solution in the general LP problem, using only analytical arguments. The
idea of using a skew-symmetric reformulation is due to Tucker [240] and Dantzig [41]. Re-
cently, Ye et al. [259] put new life into the skew-symmetric formulation by showing that an
interior point method applied to it can easily handle infeasible starting points and provide
a certificate for infeasibility.

For a long time it was generally believed that sensitivity analysis based on interior point
solutions were impossible, since in principle no optimal basis is obtained; instead, interior
point methods compute a strictly complementary solution (see Giler and Ye [98]). Megiddo
[175] developed a strongly polynomial algorithm to compute an optimal basis from a strictly
complementary solution, which was implemented by Bixby and Saltzmann [25], among
others. Normally (in textbooks and in software) sensitivity analysis is performed using one
optimal solution; however, this may give ambiguous results in case of degeneracy, see e.g.,
Gal [66]. We propose a unifying analysis of sensitivity based on optimal sets, stressing
the important connection with the optimal value function of a perturbed LP problem. The
importance of a strictly complementary solution here is that it provides the optimal partition
of the problem which can be used to describe the optimal set. Within this framework we
compare three ways of describing optimal sets: using bases, using the optimal partition and
using the optimal value. Since the optimal partition is provided by interior point solutions
we then derive a way of performing sensitivity analysis in LP on the basis of interior point
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methods. These three approaches have been applied to a practical LP model used at and
provided by SHELL.

We also introduce the so—called v-space, or the space of complementarity products of the
LP problem, which will play an important role in the chapters to follow. The v—space gives
a description of the set of strictly feasible solutions, since any point in the v-space can be
shown to be in one-to-one correspondence with such a strictly feasible solution (Kojima et
al. [142]). The v-space provides us a tool for developing new interior point algorithms as
well as for describing and analyzing many interior point methods in a uniform and coherent
way.

1.2.2 Primal-dual Dikin—affine scaling

In Chapter 3 we introduce and analyze a new class of algorithms, called primal-dual Dikin—
affine scaling algorithms. The derivation and the analysis are almost exclusively done within
the v-space introduced in Chapter 2. Dikin’s original primal affine scaling algorithm [44]
in each iteration only generates a feasible solution of the primal LP problem, and it is
generally believed not to have a polynomial complexity bound. In 1987 Monteiro et al.
[188] introduced an algorithm that could be interpreted as a primal-dual variant of the
affine scaling algorithm, and proved its polynomial complexity. Specifically, their algorithm
requires at most O(n(In(1/¢))?) iterations, where n is the number of variables and € the
required accuracy in the duality gap. We show that there is a more natural generalization
of the affine scaling idea to the primal-dual setting, which leads to an algorithm having
better complexity than the one in [188]: it requires at most O(nln(1/€)) iterations, with
the same amount of work per iteration as in [188]. The search-direction in the algorithm
is derived by minimizing the complementarity over an ellipsoid in the primal-dual feasible
space. We show that in the v-space the resulting direction is exactly Dikin’s direction.

The algorithm being originally derived for LP in Jansen et al. [114] can be transferred to
linear and nonlinear complementarity problems. The class of linear complementarity prob-
lems (LCPs) contains LP and convex quadratic programming (CQP) as special cases; the
class of (monotone) nonlinear complementarity problems ((M)N CPs) contains for instance
convex programming problems. It is an analysis for the LCP that we present in this the-
sis. Due to second order effects in the computation of the search-direction we investigate
whether the use of corrector steps can improve the complexity of the algorithm. Correc-
tors have shown great potential in implementations of interior point methods for LP, see
e.g., Mehrotra [176]. We prove that correctors improve the theoretical complexity of the
algorithm to (asymptotically) the best known bound for LP.

The scaling used in the algorithm can be modified, which leads to a family of algorithms
including both the classical primal-dual affine scaling algorithm of [188] and our new primal-
dual Dikin-affine algorithm as special cases. We analyze the family for NCPs. The analysis
is more complicated than in the linear case since it requires a smoothness condition on
the nonlinear mapping involved. We introduce such a condition and relate it to conditions
used in the literature, namely the scaled Lipschit: condition [263], the relative Lipschitz
condition [124] and the self-concordance condition [199]. An advantage of our condition
over the others is that it can also be applied to nonmonotone mappings. Moreover, we
show that our condition is suitable for analyzing primal-dual algorithms working in a large
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neighborhood, while the others are typically used for small neighborhood methods. To
investigate the computational behavior of the family of algorithms we apply it to several
NLP problems arising in statistics. Specifically, we consider nonlinear statistical regression
problems, entropy optimization problems and maximum likelihood estimation. From our
experiments we may conclude that the primal-dual Dikin-affine algorithm performs best
within the family, is stable and requires little tuning. So our new primal-dual Dikin—affine
scaling method not only theoretically outperforms the algorithm of Monteiro et al. [188], it
also does so in practice.

1.2.3 Target—following

A major application of the v-space or space of complementarity products is a unifying
framework for the analysis of primal-dual interior point methods for LP and dual methods
for nonlinear problems, which we develop in Chapter 4; we call it the target—following
approach. Here we make use of the one-to—one correspondence between points in the v—
space and strictly feasible primal-dual solutions. For LP we first prove general results on
the behavior of the complementarity, feasibility and distance to the central path after a
step, which we then specialize to different methods. The methods and their analysis are
described in the v—space, which appears to be very convenient.

Our approach leads to simple and uniform complexity proofs for various methods that
were previously analyzed in several separate papers in the literature. Furthermore, the
analysis in the v-space suggests some new methods, for which an evenly simple analy-
sis is provided. These methods use the Dikin-affine step derived in Chapter 3 and have
the important property of combining approaching optimality as well as the central path
simultaneously. So we analyze central path—following methods (e.g., [145, 186)), weighted
path~following methods [47, 105], variants of the primal-dual Dikin—affine scaling algorithm
(114], a variant of the cone-affine scaling method [230], Freund’s shifted barrier method [60],
and computing analytic or weighted centers [11, 105, 180, 182]. We first consider short-step
algorithms which have the best known complexity bound for LP. We extend the results to
the more practical long-step methods which unfortunately have a worse theoretical complex-
ity (cf., Den Hertog [101]). One of the outcomes of this work is a negative influence upon
the complexity when a method does not closely follow the central path.

We derive a similar target-following methodology for NLP problems as well as for vari-
ational inequalities, thereby analyzing several methods for which the analysis has not yet
been transferred from LP to NLP. Here we use the self-concordance condition introduced
by Nesterov and Nemirovskii {199]. A major conceptual difference with their approach is
that in our applications the self-concordance parameters involved change from one iteration
to another, which requires some new machinery to be developed. In the nonlinear case we
restrict ourselves to the usual logarithmic barriers (cf., Den Hertog [101]) and show that the
target-following concept is closely related to the use of weighted barrier functions.

In the study of (monotone) variational inequalities we extend some of our results to
more general spaces, not restricting to logarithmic barriers. Here we take a new approach
by considering a self-concordant barrier operator which can be viewed as a mapping having
similar properties as the gradient of a barrier function. This has the advantage that we may
analyze target—following methods for problems defined on cones other than the nonnegative
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orthant.

1.2.4 Other subjects

In Chapter 5 we group together some results on the use of interior point methods and
complementarity in different fields of mathematical programming. First, we investigate to
what extent the approach to sensitivity analysis using optimal partitions in Section 2.2.5
can be generalized to CQP. A major difference is that in CQP no strictly complementary
solution need to exist. Instead, we use mazimal complementary solutions (see Giiler and Ye
[98]) which define the tripartition of the problem. We characterize the optimal value function
using tripartitions. An application we briefly consider is Markowitz’s mean—variance model
for portfolio analysis [169].

For some time, it has been attempted to use interior point methods in combinato-
rial optimization. Mitchell and Todd [179] and Borchers and Mitchell [27] implemented a
branch-and—cut respectively branch-and-bound method using interior point methods for
solving the LP subproblems. However, the results are comparable or worse than using sim-
plex based solvers®. One of the reasons for this is that a good warm-start strategy is still
missing in interior point methods, see e.g., Andersen and Ye [7]. The application of interior
point methods in combinatorial optimization, however, comes from a different side, namely
from nonlinear relaxations to combinatorial problems. Such a relaxation scheme was devel-
oped by Lovasz and Schrijver [160], see also Lovasz [159] and Grétschel et al. [93]. Often,
these approximations appear to be problems defined over the cone of positive semidefinite
matrices, so-called semidefinite programming (SDP) problems. Nesterov and Nemirovskii
(199] analyzed an interior point method for SDP, being theoretically efficient; practical
primal-dual versions were developed by Boyd and Vandenberghe [30] among others. It is to
be attributed to Alizadeh [6] to have brought the possible applications of SDP and interior
point methods in combinatorial optimization to the foreground. Goemans and Williamson
[73] showed that a solution of the semidefinite relaxation of certain combinatorial problems
(as MAXCUT and MAXSAT) can be rounded to a provably good solution, with a better
worst—case bound than for previous algorithms. This initiated an extensive new field of
research, see e.g., Laurent and Poljak [153], Poljak et al. [206], Helmberg et al. [100]. In
this chapter we consider a relaxation of the problem of minimizing a general quadratic form
over ellipsoids, which can be used in approximating quadratic 0 — 1-problems. We show
that our relaxation is essentially equivalent to other relaxations in Shor [223] and Boyd and
Vandenberghe [30]. The main difference is that our relaxation is nonlinear, while the others
are linear in a higher dimension. Other applications of SDP can be found in, e.g., control
and system theory and linear algebra. In the latter area we analyze a method for computing
the smallest eigenvalue of a symmetric matrix. Although the method itself is closely related
to well-known Newton—Raphson type methods our interior point methodology enables us
to derive strong theoretical results as polynomiality and quadratic convergence.

Finally, we present a result on the use of interior point methods in decomposition
schemes. Dantzig-Wolfe [43] and Bender’s decomposition [23] were supposed to be slow
for solving large linear problems with a specific structure. However, as noted by Magnanti

2In our computational experiments on the radio link frequency assignment problem interior point methods
behaved dramatically worse [1].



10 Chapter 1. Introduction

et al. [164, 166] for Bender’s decomposition an enhancement can drastically reduce computa-
tion time. Paying the price of solving one extra LP problem per iteration a Pareto-optimal
cut can be computed, being in a certain sense the best cut that can locally be obtained.
We show that modern interior cutting plane methods (e.g., Goffin and Vial [78], Bahn et
al. [14]) generate such a Pareto—optimal cut for free. We also give a condition guaranteeing
a Pareto—optimal cut to be obtained for free in the classical setting, where this condition
appears to be weakest if a strictly complementary solution to the subproblem is computed.

1.3 Contents and references

This thesis is based on a number of papers and technical reports, some of which already
appeared in refereed journals and proceedings and others will in the near future. The
thesis aims at unifying and improving the results in these papers and presenting them in
a coherent way. Although there is a definite structure in the ordering of the chapters and
some cross—referencing takes place, they can be read independently.

Section 2.1 on the theory of LP is based on [115]. The interior view to sensitivity anal-
ysis in LP in Chapter 2 simplifies and extends results in [111, 112, 118]. The computational
results presented were mainly done by De Jong [128]. In Chapter 3 the primal-dual (Dikin-
)affine scaling algorithms and their extensions are introduced and analyzed for LCPs and
NCPs. This chapter is based on the papers [113, 114, 122, 123], but contains various im-
provements. The computational results are new. The target—following concept for LP, NLP
and variational inequalities in Chapter 4 was developed in [117, 119, 120]; the presentation
in this chapter contains many improvements. Chapter 5 mainly contains unpublished ma-
terial. The algorithm for the smallest eigenvalue problem and its analysis are adapted from
[116].

1.4 Notational preliminaries and abbreviations

To simplify formulas we allow ourselves some notational abuse with regard to manipulation
of vectors. Specifically, if z,s € R™ then zs, z/s, \/z and z° for @ € R denote the vectors
obtained from componentwise operations. For instance,

w=gxs means w € R", w;=2;s;.

Alternatively, in convenient situations we adopt the approach taken in earlier literature on
interior point methods: if z € R", then X is the diagonal matrix with the elements of z on
its diagonal; then w = X's has the same meaning as w = zs.

With respect to norms, (-,-) represents a general inner product. Given z,y € R" and a
positive semidefinite matrix H we define

el := VaTHz, and Hiz,y]:= zTHy.

For a trilinear form H in R™"*" and z,y,2 € R" we define

H[$7y7z] = Z miyjzkH}i)7

2,5,k=1
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For z,s € R*, a € R: For X € R™™:

X
w=zs
w=Xs
u =z
v=yzs
& =z/s
z(@)
o(x)
min(z)
w(z)
x>0
z>0

X = Diag(z1,...,%,) X = 0 | X positive semidefinite

w; =x8;, t=1,...,n | X > 0| X positive definite

w; =28, t=1,...,n | tr(X) | the trace of X

=z, i=1,...,n [ X|| | Frobenius norm, /5, ; X%

vi=/Z5;, i=1,...,n | || X|le | max:;|X;]|

& =z;/s;, i=1,...,n |e all-one vector

z at parameter value o | (9 sth unit vector

{i:z;>0} R% {zeR": 2>0}

min;<ign T R, |{zeR":z>0}

maxj<i<n T S* {XeR™ : X=XT,X>0}
min(z)/max(z)

:E,'ZO, i=1,...,n

>0, i=1,...,n

Table 1.1: Notation used in the thesis.

where H®) are n x n matrices. Table 1.1 summarizes the notation.
We use the following abbreviations:

LP
CQP
NLP
LCP
(M)NCP
SDP

linear programming

convex quadratic programming

nonlinear programming

linear complementarity problem

(monotone) nonlinear complementarity problem

semidefinite programming
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Chapter 2

Theory and sensitivity in linear
programming

In the first part of this chapler we show how duality and the existence of a strictly com-
plementary solution in linear programming can be derived using an interior point approach
and a self-dual reformulation of the primal and dual problem. In the second part we analyze
the use of optimal sets in sensitivity analysis, and show how the standard approach using
optimal bases, an interior point approach with optimal partitions, and an approach using
optimal values can be incorporated.

2.1 The theory of linear programming

2.1.1 Complementarity and v—space

In textbooks and papers that consider the theory of linear programming (LP) various tech-
niques are used to prove strong duality and the existence of a strictly complementary so-
lution (Goldman-Tucker’s Theorem [81]). Among others, Balinski and Tucker [15] and
Dantzig [41] basically use the simplex method, Farkas Lemma is used by Schrijver [220] and
Stoer and Witzgall [227], mathematical induction by Goldman and Tucker [81] and Tucker
[240], while Von Neumann and Morgenstern [201] and Rockafellar [213] apply a separation
theorem for convex sets. Recently, Giiler et al. [97] presented a complete duality theory
for LP based on the concepts of interior point methods, making the field of interior point
methods for LP self-supporting. Their proofs of the well-known results use almost only
analytical arguments. .

A fundamental concept in LP is self-duality. By a self-dual LP problem we mean one
which equals its own dual program. From the early days of LP symmetric self-dual struc-
tures and algorithms have been recognized for their importance. Tucker [240] considered a
skew—symmetric self-dual system. The existence of a strictly complementary solution for
this system was proved by induction. Using this construction, Goldman and Tucker [81]
proved the existence of a strictly complementary solution for general LP problems. Dantzig
[41] presented a self-dual parametric algorithm for LP. He also discussed the symmetric form
of the primal and the dual LP problems. Later, Terlaky [233] constructed a simple self-dual
pivot algorithm, called criss—cross. Recently, Ye et al. [259] introduced the notion of self-
duality in the field of interior point methods. They formulated a new self-dual problem, to
which a standard interior point method can be applied to derive the best known complexity
bound for an infeasible start interior point method. The approach is also computationally
efficient and very effective in discovering primal and/or dual infeasibility (Xu et al. [252]).
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The purpose of this section is to give a very easy proof of strong duality and the existence
of a strictly complementary solution in LP by combining the methodology in [97] with a
new self-dual formulation like the one in [259]. We first introduce some notation and state
the two results mentioned above. Let ¢,z € R", b € R™ and A an m x n matrix. The
primal LP problem in standard form is given by

(P) min ch:Azzb,a:ZO}.
The associated dual problem is
(D) n;a,sx{bTy:ATy—i-s:c,sZO}.

The sets of feasible solutions of (P) and (D) are denoted by P and D respectively. Problem
(P) is called feasible if the set P is nonempty; if P is empty then (P) is infeasible; if there is
a sequence of feasible solutions for which the objective value goes to minus infinity then (P)
is said to be unbounded; analogous statements hold for (D). We assume throughout that
A has full row rank. This implies that y follows from a given feasible s > 0 in a unique
way, and we may identify a feasible solution of (D) just by s. The first theorem is the main
result in the theory of LP.

Theorem 2.1.1 (Strong duality) For (P) and (D) one of the following alternatives holds:
(i) (P) and (D) are feasible and there exist * € P and (y*,s*) € D such that Tz* = bTy*;
(7t) (P) is infeasible and (D) is unbounded;

(tii) (D) is infeasible and (P) is unbounded;

(iv) Both (P) and (D) are infeasible.

An alternative way of writing the optimality condition in Theorem 2.1.1(z) is the comple-
mentary slackness condition
zis; =0, i=1,...,n

Because of the nonnegativity condition on z* and s* this is also equivalent to (z*)7s* = 0.
Note that for arbitrary complementary solutions we might have z¥ = sf = 0. In the
analysis of interior point methods strict complementarity is a central theme; it is involved
in theoretical analyses, in sensitivity analysis as well as in the development and analysis of
polynomial time interior point methods.

Theorem 2.1.2 (Strict complementarity) If (P) and (D) are feasible then there exist
z* € P and (y*,s*) € D such that (z*)7s* =0 and 2} + s} >0, i = 1,...,n. The solution
(z*,s*) is called strictly complementary.

The strict complementarity condition implies that for each index ¢ exactly one of z} and

s} is zero, while the other is positive. This result was first shown in 1956 by Goldman and
Tucker [81]. For convenience we define the support of a vector z € R™ as follows

o(z):={t:2;>0}.

Then a feasible solution (z,s) is optimal if and only if o(z) N o(s) = ¢, and strictly com-
plementary if and only if it is optimal and o(z) U o(s) = {1,...,n}. Using a strictly
complementary solution the optimal partition of the LP problem is defined as follows.
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Definition 2.1.3 (Optimal partition) Let (z*,s*) be a strictly complementary solution
of (P) and (D). The partition 7 = (B, N) of the indez set {1,...,n} defined by B = o(z*)
and N = o(s*) is called the optimal partition of (P) and (D).

Combining the conditions for feasibility and optimality, optimal solutions for (P) and (D)
are characterized by solutions of the nonlinear system of equations

Az = b, x>0,
ATy+s = ¢, s>0,
8 = 0, t=1,...,n.

All methods for LP use this system. Dantzig’s simplex method {39] is an iterative method
that relaxes one of the sets of inequality constraints s > 0 (primal simplex) or z > 0
(dual simplex) for intermediate iterates. Interior point methods are characterized by the
fact that they keep one or both sets of inequality constraints strictly satisfied during the
process. Instead the set of nonlinear complementarity constraints is relaxed; in infeasible
start methods this is combined with a relaxation of the linear equality constraints. In
(feasible) primal-dual interior point methods each iterate satisfies the system

Az = b, >0,
ATy+s = ¢, s>0, (2.1)

Z;8; — wy, i:l,...,n.

for some positive vector w € R}, . Observe that for (z,s) satisfying the system the (error
in) complementarity is given by

Q’JTS = eTw.

In most interior point methods system (2.1) with w; = g > 0 for all ¢ plays a special role,
since its solutions for varying g characterize the central path of the problem. The central
path in this primal-dual setting was introduced and investigated by Megiddo [174], Bayer
and Lagarias (18] and Sonnevend {224]. For decreasing values of u the central path leads to
a strictly complementary solution of the problem (cf. Theorem 2.1.14), hence it is used as
a guideline to optimality in path—following methods. We introduce the following definition.

Definition 2.1.4 (Positive primal-dual pair) Let = be feasible in (P) and (y,s) in (D)
such that z > 0 end s > 0; then we call (z,s) a positive primal-dual pair.

The following theorem establishes a one-to—one correspondence between positive primal-

dual pairs (z,s) and positive vectors in R®. The theorem was proved by McLinden [172],
Kojima et al. [142], see also Giiler et al. [97].

Theorem 2.1.5 Let there exist at least one positive primal-dual pair for (P) and (D).
Then for each w € R}, there exists a unique positive primal-dual pair (z,s) such that
risi=w;, t=1,...,n.

We now define the v—space of a given LP problem as the space of (the square roots of) the
complementary products of positive primal-dual pairs:

V={veR": v,=x5, Az =b, ATy+s=¢c, z>0,5>0}.
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Note that if v = /zs then ||v]|* = 27s, so in the v—space the points with constant norm
represent all positive primal-dual pairs with a fixed duality gap. Observe that all optimal
pairs (z,s) correspond to the vector v = 0. In Chapter 3 we will use the v-space to derive
a new primal-dual (affine scaling) interior point method. In Chapter 4 we will extensively
use it in the analysis and development of algorithms.

To derive the duality results with an interior point approach we proceed as follows. In
Section 2.1.2 we first discuss a very special, almost trivial skew-symmetric self-dual LP
problem. Using the logarithmic barrier approach, the concept of the central path and the
special structure of the problem, it is quite simple to prove the results for this problem. In
Section 2.1.3 these results are applied to derive the strong duality and the existence of a
strictly complementary solution for general LPs. Theorem 2.1.5 will follow as a byproduct
of the results in this section.

2.1.2 Duality theory for skew—symmetric self-dual LPs

We define a specific skew-symmetric self-dual LP problem in the following form

(SP) mxin{aTa: : CzZ—-a,xEO},

where C is an n x n skew-symmetric matrix (i.e., CT = —C) and a,z € R". We require
a > 0. Observe that for each z € IR™ it holds
TCz = 0. (2.2)

The associated dual program is given by
(SD) mya,x{ —aTy : CTy<a,y>0 },

with y € R". Obviously the skew-symmetry of C' implies that the primal and dual feasible
sets are identical. The strong duality for these problems is easy.

Lemma 2.1.6 (SP) and (SD) are feasible and for both the zero vector is an optimal solu-
tion.

Proof: Since @ > 0 the zero vector is primal and dual feasible. For each primal feasible =
it holds

0=27Cz > —a"z
by (2.2), so aTz > 0; analogously aTy > 0 for each dual feasible y. Hence the zero vector is
an optimal solution for (SP) and also for (SD). o

Corollary 2.1.7 Let z be feasible for (SP) and define s = Cz + a. Then z is optimal if
and only if 27s = 0.

Proof: Using (2.2) it holds
alz = Tz — 2707z = 7. (2.3)

The statement follows from Lemma 2.1.6. a
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Observe that (SP) is trivial from a computational point of view since an optimal solution is
readily available. However, the problem is interesting from a theoretical point of view. To
complete the duality theory of (SP) we need to prove the existence of a strictly complemen-
tary solution. Since (SP) and (SD) are identical it suffices to work with the primal problem
(SP). The feasible region of (SP) will be denoted by

SP:={(z,8) : Cx—s=—a,2>0,5>0}.
The set of positive vectors in SP is denoted as SP°:
P°:={(z,s) : Czx—s=—a,2>0,s>0}.
The set of optimal solutions of (SP) is denoted by SP*. From Corollary 2.1.7 we have
SP*={(z,8) : Cx~s=—q,27s=0,22>0, s>0}.

We will need the following well-known result from elementary convex analysis, see e.g.
Rockafellar [213].

Lemma 2.1.8 Let f : D — R be a convex differentiable function, where D C R™ is an
open conver set. Then x € D minimizes f over D if and only if Vf(z)=0.

We also use the following straightforward lemma from calculus.

Lemma 2.1.9 Letp € Ryy andp € R}, be given. The function h(z) := pTz—p T2, Inzx;,
where x € R}, has a unigue minimizer.

Proof: We introduce the following notation: h(:c) Y 71,-(:5,-), where ﬁ;(z,-) = px; —
ploz;. Let

h(mz)i—h(x,) g+ plny— ulnp,...y,(p'u' Inp_:ﬁ_l).

The functions h;(z;) are strictly convex and nonnegative on their domain (0, c0); furthermore

hi(z;) — oo as z; — 0 or z; — co. Hence all level sets of the functions ; (a:,) are bounded,
and bounded away from zero. Consider a nonempty 7-level set £ := {z : h(z) <7} of
h(z). Note that £ is nonempty if we take 7 := h(z(®) for some z(® > 0. For z € £ and for
each ¢, we have

i hi(z:) = En:(ﬁi(wf) —p+pnpg—pinp)

=1 =1

h,’(.’l/‘i)

IN

hz) —np(l —lng) - lenp,_‘r-—nul-—ln;z uZlnp,

i=1 =1
So £ is a subset of the Cartesian product of level sets of the functions k;, and we conclude
that the level set £ is bounded. Since k() is continuous, it has a minimizer in £. The
uniqueness of the minimizer follows from the strict convexity of h(z). o
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For g > 0 we define the function fu :RY, xR}, — Rby

fulz,s) :=a"z — (Elnx,+21ns,),

i=1

and f,: R}, - Rby

fulz) = aTz — (Z lnz+ 3 In(eiz + o) ) (2.4)

i=1

where ¢;. denotes the ith row of C'. Note that f,(z) = f.(,s) for (z,s) € SP°. The function
fu is the logarithmic barrier function for (SP) with barrier parameter p. Due to (2.3) the
term a”z can equally well be replaced by z7s, which shows that. f,,,(:c s) is symmetric in
and s on SP.

Lemma 2.1.10 Let o > 0. The following two statements are equivalent:
(i) The function f,(z) has a (unigue) minimizer;
(i) There exist z,s € R" such that

Cxr—s = —a, ,z2>20,s20,
zs = pe.

(2.5)

Further, if one of the statements holds then  minimizes f, if and only if x and s satisfy
(2.5).

Proof: First note that whenever (z, s) solves (2.5), then both z and s are positive, due to
the second equation. So the nonnegativity conditions for z and s in (2.5) can be replaced
by requiring that z and s are positive. One easily checks that f,(z) is strictly convex, and
hence it has at most one minimizer. Since the domain of f, is open, Lemma 2.1.8 applies
and it follows that f, has  as a minimizer if and only if Vf,(z) =0, i.e,

a—pXte—puCTS e =0, (2.6)

where X = Diag (z) and S = Diag (s). Using s = Cz +a and CT = —C, we can write (2.6)
as

pXte—s=C(pS'e—1z).
Rearranging terms we obtain
0=(C—-X"15)8"(pe — Xs).

Since C is skew-symmetric and the matrices X~1S and S~! are positive definite and diag-
onal, the last equation holds if and only if X's = pe. This proves the lemma. 0o

Assume that SP° is nonempty and let (2@, s(9) € SP°. By (2.2) we have for any (z,s) €
SP
(z — 2T (s — 59) = (z — 2 TC(z — D) = 0. (2.7)
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Property (2.7) is known as the orthogonality property and often used in pivoting algorithms,
see, e.g., Terlaky and Zhang [236]. Equivalently it holds,

(N2 4 (¢NTs = 275 + (2)T (@) = aTz + o720,
which gives
ale = (s(o))T.z + (2 Ts — T2, (2.8)
Defining the function g, : R}, x R}, — R by

n n
9u(2,8) := (sNTz + (N5 — (Z Inz;+ Y In si) ,

i=1 =1
we have for any (z,s) € SP°
gu(z,8) = fu(z) + N
8o g,(x,s) and f,(z) differ by a constant on SP°. We now prove the following theorem.

Theorem 2.1.11 Let u > 0. The following statements are equivalent:

(i) The set SP° is nonempty;

(i) The function f,(z) defined in (2.4) has a (unique) minimizer;

(iii) The system (2.5) has a (unique) solution.

Proof: The equivalence of (¢2) and (é7z) is contained in Lemma 2.1.10. Earlier we noted the

obvious fact that (7i¢) implies (¢). So it suffices to show that () implies (iz). Assuming (%),

let (z(@,s®) € SP°. Due to (2.8) minimizing f,(z) over R is equivalent to minimizing

9u(z,s) over SP°. So it suffices to show that g, has a minimizer in SP°. Note that g, is

defined on the intersection of R?,_”+ and an affine space. By the proof of Lemma 2.1.9 the

level sets of g, are bounded, hence g, has a (unique) minimizer. This completes the proof.
[m)

Observe that Theorem 2.1.11(z), (¢4¢) constitute Theorem 2.1.5 for (SP). In the remainder
of this section, we make the basic assumption that statement (i) of Theorem 2.1.11 holds.

Assumption 2.1.12 SP contains a positive vector (20, s), i.e., SP° is nonempty.

For each positive . we denote the minimizer of f,(z) as z(¢), and define s(u) := Cz(p) +a.
The set { x(u) : > 0} is called the central path of (SP). We now prove that any section
(0 < g < 7) of the central path is bounded.

Lemma 2.1.13 Let 7 > 0. The set { (z(p),s(p)) : 0 < g <} is bounded.
Proof: Let (z(®,s®) € SP°. Using the orthogonality property (2.7) and the fact that
(2.5) holds with z(u) we get for any 7, 1 <i < n,

sO2) < () a() + (@) s(u) = 2(e)s() + (20)7 s
= np+ (m(o))Ts(O) <ng+ (m(o))Ts(o).
This shows that z; () < (np’+(x(°))Ts(°))/s,(-0). Sotheset { z(p) : 0 < u <%} is bounded.
The proof for { s(p) : 0 < g <7} is similar. (=

We proceed by showing the existence of a strictly complementary solution (z*,s*) € SP
under Assumption 2.1.12, that is, a solution satisfying (z*)Ts* = 0 and z* + s* > 0.
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Theorem 2.1.14 If Assumption 2.1.12 holds, then there exist (z*,s*) € SP* such that
¥+ > 0.

Proof: Let {y:}52, be a positive sequence such that p, — 0 if £ — co. By Lemma 2.1.13
the set { (z(ut), s(#x)) } is bounded, hence it contains a subsequence converging to a point
(z*,s%). Since (z*,s*) € SP and z(uz)Ts(ur) = nux — 0, we conclude (z*)Ts* = 0, so
(z*,s*) is an optimal solution. We show that (z*,s*) is strictly complementary. By (2.7)

(@(me) ~ 2*) (s(x) = 87) = 0.
Rearranging terms and noting that z(u;)7s(ux) = nux and (2*)7s* = 0, we arrive at
Y alsilw) + D wiuk)si = np
i€o(z*) i€o(s*)

Dividing both sides by g and recalling z;{(pz )si(pr) = g, we obtain

* *
Z; S

+
icotee) Zilw) g(;.) silpr)

Letting k — oo, we see that the first sum becomes equal to the number of nonzero coordi-
nates in z*. Similarly, the second sum becomes equal to the number of nonzero coordinates
in s*. We conclude that (z*,s*) is strictly complementary. a

Observe that the proof of Theorem 2.1.14 shows that the central path has a subsequence
converging to an optimal solution. This suffices for proving the existence of a strictly
complementary solution. However, it can be shown that the central path is an analytic
curve and converges itself. Since this will be used in the following chapters, we also prove it
here. The limiting behavior of the central path as 4 — 0 has been an important subject in
the research on interior point methods since long. In the book by Fiacco and McCormick
[54] the convergence of the path to an optimal solution is investigated for general convex
programming problems. McLinden [172] considered the limiting behavior of the path for
monotone complementarity problems and introduced the idea for the proof-technique of
Theorem 2.1.14, which was later adapted by Giiler and Ye [98]. Megiddo [174] extensively
investigated the properties of the central path, which motivated Monteiro and Adler [186]
and Kojima et al. [145] for research on primal-dual algorithms.

Lemma 2.1.15 If Assumption 2.1.12 holds then the central path converges to a unique
primal-dual feasible pair.

Proof: The proof very much resembles the one of Theorem 2.1.14. Let T be optimal in
(SP) and (§,3 = C§ + a) in (SD), and let (z*,s*) be the accumulation point of the central
path as defined in Theorem 2.1.14. It easily follows that

T; 3i
> = > i
i€o(z*) 1 i€o(s*) Tt
Using the arithmetic-geometric mean inequality we obtain

= . 1/n - .
M2 ) <[ S5+ % 2)=t
iea'(x*)'z

*
i i€o(s*) Si n

i€o(z*) z; i€Ea(s*) S5
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Applying the inequality with § = s* gives

H zZ; < H z;,

i€a(z*) i€o(x*)

and with T = z* it gives
H §,’ S H S:.
i€o(s*) i€o(s*)
This implies that #* maximizes the product [lico(s+) ©: and s* the product [Tieo(s) 8i over
the optimal set. Hence the central path of (SP) has a unique limit point. o

The proof of the lemma shows that the limitpoint of the central path solves an optimization
problem over the optimal set. Actually, we proved that the limitpoint is the analytic center
of the optimal set.

Definition 2.1.16 (Analytic center) Let D C R" be a bounded conver set. The analytic
center of D is the unique minimizer of

min{ —Inz; : z€D}.

The analytic center was introduced by Sonnevend [224] and plays an important role in
interior point methods. We will further encounter it in the next chapters. We remark that
the central path is the set of analytic centers of the level-sets of the LP problem.

2.1.3 Duality theory for general LPs

The results of the previous section can easily be applied to prove the strong duality theorem
of LP. In this way we present a new proof of this classical result. We also obtain Goldman—
Tucker’s Theorem for the general case. In this section we consider the LP problem in
symmetric form instead of in the standard form (P). Obviously, this can be done without
loss of generality since every LP problem can be rewritten from one of these forms to the
other, without increasing the number of variables and constraints. So let the primal be
given by
P) min {ch : Az > b, a:_>_0},

where A is an m X n matrix, ¢,z € R", and b € R™. The associated dual problem (D) is
(D) max {bTy : ATy <o, yZO}.
Yy
Expressed in this form, a pair (z*,y*) is strictly complementary if z* is feasible in (P), v*
is feasible in (D) and moreover

(Az* — b)Ty* = (c — ATy*)Tz* = 0,
y*+ (Az* —b) > 0,
z* + (c— ATy") > 0.

We formulate a new skew-symmetric self~dual LP problem, that incorporates the infor-
mation contained in (P) and (D). A similar embedding of the primal and dual problem
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in a skew-symmetric self-dual problem was considered in [81, 259]. Let z(,r® € R},,
y©@,u ¢ RY, and do, 7o, o, vo € Ry be arbitrary. Further, we define € € R*, b ¢ R™
and «, 8 € R as follows:

(70b — Az© 4 7/ 9,,
— (rac— ATy — )3,
= (ST = 87y 1 o)
B = an+ ETy(O) — 2@ 4y = (D)7 + (N TuO® + rop0)/F0 + 0.

QL o o4

It is worthwhile to note that if 2(% is strictly feasible for (P) and +(© := Az® — b, then we
have b = 0 by setting 9y = 70 = 1. If y(@ is strictly feasible for (D) and u® := ¢ — ATy,
then € = 0 if 9o = 70 = 1. So, b and € measure the infeasibility of the given vectors
2(9, 7 40 and (. We define the problem

GR) 2 89
s.t. Az + W — br >0,
—ATy - ¢+ et 20,
—ZTy + o — ar > —pB,
Wy — e + ad >0,
y >0, z >0, 3 >0, >0

The selection of the parameters implies that the positive solution z = 2@, y =y, 9 =
Yo, T = 7o is feasible for (SP), hence Assumption 2.1.12 holds. Also, the coefficients in
the objective function are nonnegative. So the results of the previous section apply to this
problem, and we can derive the following theorem.

Theorem 2.1.17 For (P) and (D) one of the following alternatives holds: .
(i) (P) and (D) are feasible and there ezists a strictly complementary solution (z*7%);
(ii) (P) is infeasible and (D) is unbounded;

(iii) (D) is infeasible and (P) is unbounded;

(i) Both (P) and (D) are infeasible.

Proof: Problem (SP) is skew—symmetric and self~dual, the objective has nonnegative co-
efficients and Assumption 2.1.12 holds. Hence Theorem 2.1.14 guarantees the existence of a
strictly complementary solution (z*,y*,9*,7*). By Lemma 2.1.6 we also know that 9* = 0,
since # > vp > 0. Two possibilities may occur. If 7* > 0 then 7* := z*/7* and ¥* := y*/7*
are feasible in (P) and (D) respectively, and they constitute a strictly complementary pair.
So case (i) holds. On the other hand, if 7* = 0 then it follows that Az* > 0, z* > 0,
ATy* <0,y* > 0 and 6Ty* — cTz* > 0. If bTy* > 0 then (P) is infeasible, since by assuming
T to be primal feasible one has 0 > 77 ATy* > bTy*, which is a contradiction. Also, it follows
immediately that if (D) is feasible then it is unbounded in this case. If ¢<’z* < 0 then (D)
is infeasible, since by assuming ¥ to be dual feasible we have 0 < 57 Az* < ¢Tz*, which is a
contradiction; also, (P) is unbounded if it is feasible. If Ty* > 0 and ¢Tz* < 0 then both
(P) and (D) are infeasible, which can be seen in just the same way. O



2.2. Sensitivity analysis in linear programming 23

The proof reveals that the construction (SP) cannot always determine which of the alter-
natives in the theorem actually applies. It is an open question whether a variant of this
approach can be found that does not solve an additional feasibility problem, nor uses a ‘big
M’-parameter, and still identifies exactly which of the four holds for a given pair of LP
problems. Now we only have the following corollary.

Corollary 2.1.18 Let (z*,y*,9%,7*) be a strictly complementary solution of (SP). If * > 0
then (i) of Theorem 2.1.17 applies; if T* = 0 then one of (ii), (iii) or (iv) holds.

2.2 Sensitivity analysis in linear programming

2.2.1 Introduction

The merits of LP are nowadays well-established and it is widely accepted as a useful tool
in Operations Research and Management Science. In many companies this way of modeling
is used to solve various kinds of practical problems. Applications include transportation
problems, production planning, investment decision problems, blending problems, location
and allocation problems, among others. Often use is made of some standard code, most of
which use a version of Dantzig’s simplex method as solution procedure (for a recent survey
we refer to [222]).

Many LP packages do not only solve the problem at hand, but provide additional in-
formation on the solution, in particular information on the sensitivity of the solution to
certain changes in the data. This is referred to as sensitivity analysis or postoptimal analy-
sis. This information can be of tremendous importance in practice, where parameter values
may be estimates, where questions of type “What if...” are frequently encountered, and
where implementation of a specific solution may be difficult. Sensitivity analysis serves as
a tool for obtaining information about the bottlenecks and degrees of freedom in the prob-
lem. Unfortunately, interpreting this information and estimating its value is often difficult
in practice; misuse is common, which may lead to expensive mistakes (see e.g., Rubin and
Wagner [218]). In the literature there are several references where (often partially) the
correct interpretation of sensitivity results is stressed. We mention Gal [65, 66], Ward and
Wendell [247], Rubin and Wagner [218], Greenberg [91], among others.

The purpose of this section is manyfold. Qur first objective is to convince the reader of a
correct way of considering and applying sensitivity analysis in LP. The important observation
is that knowledge of the set of optimal solutions is needed, instead of knowing just one
optimal solution. Second, we show that, contrary to a popular belief, sensitivity analysis
with interior point methods is possible and even natural, using the optimal partition of the
LP problem. Research in this area was triggered by Adler and Monteiro [3] and Jansen et
al. [112] (see also Mehrotra and Monteiro [177]). Greenberg [92] gives some examples where
the interior approach has important practical impact. Third, we unify various viewpoints on
sensitivity analysis, namely approaches using optimal bases (‘simplex approach’), optimal
partitions (‘interior approach’), and the optimal value (‘value approach’). This unification
lingers on the fact that these are three approaches to characterize the optimal set. Finally, we
present some computational results obtained with these approaches to sensitivity analysis

applied to an LP model of oil distribution and sales developed by SHELL (KSLA, The
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Netherlands).

2.2.2 Illustrative example

We first give an example showing that different LP packages may give different sensitivity
information on the same problem. We focus on the output that most commercial packages
give, viz.

¢ the optimal value,
¢ an optimal solution,

e an optimal dual solution,

e a range for each of the coefficients in the objective function and the right-hand side.

Example 2.2.1 Consider the (unbalanced) transportation problem with three suppliers
and three markets. Each supplier can serve each of the markets at a transportation cost
of 1 per unit. The capacity of the suppliers is equal to 2, 6 and 5 units respectively. The
markets each require at least 3 units. We formulate this problem as an LP problem with
variables

z;; : the amount of units transported from supplier 7 to market j,
s; : excess supply at supplier z,
d; : shortage demand at market j.

Then we solve

3 3
min ZE:IJZ’J'

nad d=

st. T+ Tiz+T3+s51 =2, (2.9)
To1 + Taz + T2z + 52 = 6, (2.10)
T3 + T3z + L33 + 53 = 5, (2.11)
Tu+Tnt+Tn—di =3, (2.12)
Tyt TntTn—d =3, (2.13)
T13 + To3 + T3z — d3 = 3, (2.14)

Zij, 8y d; 20 4,5 =1,2,3.

The cost structure implies that any solution that exactly transports the total required
demand of 9 units is optimal. The results of five commercially available LP packages are
given in Tables 2.1 and 2.2.

Even in this simple example no two packages yield the same result: four different optimal
solutions are given and all packages return different ranges for the coefficients in the objective
function. Note that CPLEX and OSL give the same optimal solution, but that the ranges
for the objective coefficients are not all the same. Even though the dual solutions are equal
in all packages, the ranges for the right-hand side coefficients are not. <
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Package Optimal primal solution Optimal dual solution
11 Ti12 213 T21 Toy 23 31 T3z ZT33 (29) (210) (211) (2.12) (213) (2.14)
CPLEX 0 2 0 2 1 3 1 0 0 0 0 0 1 1 1
LINDO 2 0 0 0 0 2 3 1 0 0 0 1 1 1
OSL 0o 2 o0 2 1 3 1 0 0 {0 0 0 1 1 1
PC-PROG { 0 0 0 0 3 1 3 0 2 0 0 0 1 1 1
XMP 0 0 2 3 3 0 ¢ o0 1 |0 0 0 1 1 1
Table 2.1: Optimal primal and dual solution in Example 2.2.1.
Package COST-ranges
Z11 Z12 z13 Z21 Z32 ZT3 T3 T3z Z33
CPLEX [Loo) (0,1 [Leo) [L1] [L,1] [00] [1,]] [L,00) [L,00)
LINDO (—00,1] [l,00) [lLeo) [Loo) [Leo) [L,1] [L,1] [0, [1,1]
OSL [Leo)  [1,1] [leo) [1,1] [1,3] [1,1] [1,1] [t,00) [1,00)
PC-PROG | [l,00) [Lieo) [leo) [lo0) [0,1] [L1] [0,1] [L,00) [1,1]
XMP (e0d] L (01 1,1 i1
Package RHS-ranges
(29) (2.10) (211) (212) (213) (2.19)
CPLEX [03] @47 [leo) [271 [25 [2,5]
LINDO 1,3 (200 47 (24 [1,4 (L7
OSL 03] 47 [Leo) [2,77 [28] [2.5)
PC-PROG | [0,00) [4,00) [3,6] [2,5] [0,5] [2,5]
XMP [0,3] [3.6] [lo0) (371 [3,6] [27]

Table 2.2: Ranges in Example 2.2.1.

Although the differences are completely explainable, showing the above tables to users of
LP often gives reactions of unbelief and mistrust. Hence the interpretation of the output
should be carefully considered. We feel, that in many textbooks on LP this is not properly
done. Particularly, the relation between solutions and ranges is often not stressed enough.
A correct interpretation, as we show in this section, is as follows.

1. The primal and dual values given are optimal (basic) solutions to the primal and dual
problem; they are not necessarily unique.

2. The primal solution gives the rate of change in the objective value if the corresponding
coefficient in the objective is changed within the range provided for this coefficient;
the primal solution remains optimal in this range.

3. The dual solution gives the rate of change in the objective value value if the corre-
sponding coefficient in the right-hand side is changed within the range provided for
this coefficient; the dual solution remains optimal in this range.
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It is important to mention that the ranges where the primal or dual solutions remain optimal
can be larger than the ones provided by the package. This can be seen from Table 2.2 for
the dual solution, since all the packages return the same optimal solution. Taking the RHS-
coefficient for constraint (2.13), we can conclude that the dual solution remains optimal at
least in the interval [0, 6] (which is the union of the ranges provided by the packages).

2.2.3 Optimal value functions, optimal sets and optimal parti-
tions

We consider the primal and dual LP problems (P) and (D) from Section 2.1.1. The sets of
feasible solutions are denoted by P and D, the sets of optimal solutions are given by P*
and D", respectively. Let the index sets B and N be defined as and

B = {i: z;>0forsomez € P},
N = {1 : s;> 0 for some (y,s) € D* }.

Combining the Duality Theorem 2.1.1 with the existence of a strictly complementary solu-
tion (Theorem 2.1.2) it is easy to see that B and N form the optimal partition (Definition
2.1.3) of the LP problem, so # = (B, N). Using the optimal partition we may rewrite the
primal and dual optimal sets as

P = {z:Az=b,2520,2y=0},
D = {(y8) : ATy+s=¢,sp=0, 5820}

Since we assume A to have full rank we can identify any feasible s > 0 with a unique y such
that ATy + s = ¢, and vice versa; hence we sometimes just use y € D* or s € D* instead of
(y,8) € D~

We study the pair of LP problems (P) and (D) as b and ¢ change; the matrix A will
be constant throughout. Therefore, we index the problems as (P(b,c)) and (D(b,¢)). We
denote the optimal value function by z(&, c). We will call the pair (b, ¢) a feasible pair if both
(P(b,¢)) and (D(b,¢)) are feasible. If (P(5,c¢)) is unbounded then we define z(b,¢) := —o0;
if (D(b,c¢)) is unbounded then we define z(b,c) := co. If both (P(b,¢)) and (D(b,c)) are
infeasible then z(b,c) is undefined. We are specifically interested in the behavior of the
optimal value function as one parameter changes. Although this is a severe restriction, it
is both common from a theoretical and a computational point of view, since the multi-
parameter case is very hard (see e.g. Ward and Wendell [247] for a practical approximative
approach). So, let Ab and Ac be given perturbation vectors and define

b(B) :=b+ BAb,  f(8) == z(b(8),c¢),
c() ==c+vAc,  g(7) = 2(b, (7).

In the next lemma we prove a well-known elementary fact on the optimal value function.

Lemma 2.2.2 The optimal value function f(83) is convez and piecewise linear in 3, while
g(7) is concave and piecewise linear in «.
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Proof: By definition
f(8) =max {8(8)7y: yeD}.

If f(B) has a finite value, the optimal value is attained at the analytic center of one the
faces of D (Lemma 2.1.15). Since the number of faces is finite it holds

f(B) =max {b(B)Ty : ye S},

where § is the finite subset of D consisting of the analytic centers of its faces. For each
y € S we have

(8)"y = b7y + BANTY

which is linear in 8. So f(f) is the maximum of a finite set of linear functions, which implies
the first statement. The second can be shown similarly. ]

The proof of the lemma is an ‘interior point variation’ of a well-known proof using for &
the vertices of D. The intervals for 8 (or 7) on which the optimal value function f(8) (or
9(7)) is linear are called linearity intervals. The points where the slope of the optimal value
function changes are called breakpoints. We give four typical questions a user might ask
once an LP problem has been solved for a certain value of, say, 3:

Question 1 What is the rate of change the optimal value is affected with by a change in
B8?
Question 2 In what interval may 3 be varied such that this rate of change is constant?

Question 3 In what interval may 4 be varied such that the optimal solution of (D) obtained
from our solution procedure remains optimal?

Question 4 What happens to the optimal solution of (P) obtained from our solution pro-
cedure?

Questions 1 and 2 clearly have an intimate connection with the optimal value function. It
will need some analysis to show that the same is true for Questions 3 and 4. The answer
to Question 1 is that the derivative (slope) of the optimal value function is the rate at
which the optimal value changes. This rate of change is called the shadow price (in case
of varying objective we speak of shadow cost). However, if 8 is a breakpoint then we
distinguish between increasing and decreasing f3, since the rate of change is different in
these cases. Moreover, the shadow price is constant on a linear piece of the optimal value
function. Hence the answer to Question 2 must be a linearity interval. One of the reasons
that Questions 3 and 4 are more involved is that the answer depends on the type of solution
that is computed by the solution procedure used.

The next two lemmas show that the set of optimal solutions for (D(b(8),c)) (being
denoted by Dj) is constant on a linearity interval of f (B) and changes in its breakpoints.
Similar results can be obtained for variations in ¢ and are therefore omitted.

Lemma 2.2.3 If f(B) is linear on the interval [, B;) then the optimal set D} is constant
on (B, Bz).
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Proof: Let B € (B;,5:) and 7 € D be arbitrary. By definition
- f(B) = bTy + BAbY.
Since 7 is feasible in (D(5(f4),c)) for all 3 it holds
b(B)'T = b7+ AANT < f(B), and ()" = bTG+ FATT < f(Ba).

Using the linearity of f(3) on [, 82] yields

sty < B =1B) _ fB)=1B) _ pyro

B2~ B B— b
So the above inequalities are equalities and we obtain f/(f) = AbTF, which in turn implies

f(B) = 6Ty + BAVT = b(B)Tg, VB € (B, P2

Hence § € D} for all B € [B1, B;]. From this we conclude that the sets D} are constant for
B € (B, Ba). o

Corollary 2.2.4 Let f(B) be linear on the interval [y, ] and denote D := Dy, for arbi-
trary B € (B1,B2). Then D C D and D C Dj,.

Observe that the proof of Lemma 2.2.3 reveals that AbTy has the same value for all y € D}
for all B € (f1, B2). We next deal with the converse implication.

Lemma 2.2.5 Let £y and B; be such that D} = Dj, =: D". Then D = D" for B €[5, Bal
and f(B) is linear on this interval.

Proof: Let 7 € D be arbitrary. Then

F(B1) =b(5)"g, and f(B2) = b(B2)"7.

Consider the linear function A(8) := b(8)7y. Note that k(8;) = f(B1) and 2(5:) = f(52).
Since f is convex it holds f(8) < &(f) for 8 € [B1, B2]- On the other hand, since ¥ is feasible
for all B we have

F(B) = b(8)7 = h(B).

Hence f(8) is linear on [$,,5,] and § € D} for all B € [81,B3]. So D is a subset of the
optimal set on (B, 82). From Corollary 2.2.4 we know that the reverse also holds, hence for
all B € (By, B2) the optimal set equals D" 0

As we have seen in the proof of Lemma 2.2.3 the quantity AbTy is the same for all y € Dy
for B in a linearity interval. The next lemma shows that this property distinguishes a
linearity interval from a breakpoint. Gauvin [69] was one of the first' to show this result
and to emphasize the need to discriminate between left and right shadow prices, i.e., between
decreasing and increasing the parameter.

!Personal communication 1992; Gauvin’s paper is not mentioned in the historical survey by Gal [66].
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Lemma 2.2.6 Let f.(B) and fi(B) be the left and right derivative of f(-) in 8. Then
f2(8) = min {A¥y : yeD;}
P max { AbTy : y e D }

Proof: We give the proof for f/ (f); the one for f’(B) is similar. Let 8 be in the linearity
interval just to the right of 3 and let 7 € D3. Then

I

f(B) = 8(B)"y > (b+ BAb)Ty, Vye D
Since § € Dj by Corollary 2.2.4 we also have (b+ BAb)Ty = (b+ BAb)TY, Vy € Dj. Hence
AbTy < AT, Vye D

Since ¥ € D} and f},(B) = f'(B) = AbTF the result follows. o

Next we show how a linearity interval can be computed.

Lemma 2.2.7 Let $, 3 be two consecutive breakpoints of the optimal value function f(B).
Let B € (f,B2) and define D = =D5. Then

B = nﬁlin{ﬂ:Aw—ﬁAbzb,mZO, s =0 Vseﬁ*},
B = rgax{ﬂ:Az—ﬂAb:b,:cZO, zTs=0 VseD" }.

Proof: We only give the proof for $y; the one for f, is similar. Lemma 2.2.3 shows that D"
1s the optimal set for all # € (B, 32). Observe that the minimization problem is convex; let
(8*,z*) be an optimal solution. Obv10usly, z* is also optimal in (P(8(8*), c)) with optimal
value (b+ B*Ab)Ty for arbitrary y € D°. Hence §* > $;. On the other hand, let z(!) be
optimal in (P(6(5;),¢)). By Corollary 2.2.4 it holds (x(l)) s=0,VseD. Hence the pair
(B1, ™) is feasible in the minimization problem and we have B* < 1. This completes the
proof. (]

Summarizing our results sofar we conclude that correct shadow prices and linearity intervals
are obtained with the use of optimal sets. While usually Just one optimal solution is used
in sensitivity analysis, we next give three approaches based on the use of optimal sets,
motivated by three different but equivalent ways of describing the optimal set. The first
uses (optimal) bases, the second optimal partitions and the third optimal values.

2.2.4 Using optimal bases

Using the simplex method for solving an LP problem gives an optimal basic solution. A
basis B of A is a set of m indices, such that the submatrix Ag of A is nonsingular. The
corresponding variables are the basic variables. The indices of the remaining nonbasic
variables are in A. For basis B, the associated primal basic solution z is given by

(z)-(%)
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and the dual basic solution by

0
= A_T R = B = .
et (SN) (QM—Aﬁy)

If zz > 0 then B is a primal feasible basis; if sy > 0 then B is dual feasible. We call a basis
optimal if it is both primal and dual feasible; a basis is called primal optimal if the associated
primal basic solution is optimal for (P); analogously, a basis is called dual optimal if the
associated dual basic solution is optimal for (D). Note that a primal (dual) optimal basis
need not be dual (primal) feasible. A basis B is called primal degenerate if the associated
primal solution z has z; = 0 for some i € B. Analogously, a basis B is called dual degenerate
if the associated dual solution s has s; = 0 for some 7 € N.

Shadow prices and shadow costs

An important aspect of postoptimal analysis is the determination of shadow prices (shadow
costs). As follows from Lemma 2.2.6 the left and right shadow prices (costs) can be obtained
from solving auxiliary LP problems. Let Ab:= '), where e is the ith unit vector. Let us
denote the shadow prices by p; and pf. Then

+

- . k k
pr =min{y}, pF=max{y"}, (2.15)

where y®), k = 1,..., K, are the optimal dual basic solutions. This result has been derived
in [5, 12, 69, 91, 138]. We illustrate the notion of left and right shadow prices with the
following example, where the dual variables are not necessarily equal to a shadow price.

Example 2.2.8 Consider the primal-dual pair of LP problems:
Ir%vin {—2zy + 223 + 424 + 525 + 626 : —z1— 222+ 24 +25=1,
—2y—z3—T4+z6=-1,2>0},

max {y—y2 0 901<0,~2y — 92 <~2, 42 <2, y1—y2<4, 11 <5, 52 <6 }.

The optimal dual basic solutions are y() = (2,-2)7, y® = (5,1)T. Using (2.15) the left
and right shadow prices are

P =2, pf =5 p;=-2 pf=1

The optimal objective value is 4. From y(!) it could erroneously be concluded that a unit
increase in b; (from 1 to 2) would yield a value 6, whereas the correct value is 9; also y®
suggests that decreasing by from —1 to —2 gives an optimal value 3 instead of 6. &

The theory and the example show that in case of multiple optimal dual basic solutions
(primal degeneracy) one has to distinguish between the rate of change as a consequence
of decreasing and increasing the parameter B. In this case, the widespread belief that the
shadow price is given by the dual value is not valid. Rubin and Wagner [218] indicate the
traps and give a number of tips for correct interpretation of results of the dual problem in
practice. Analogously, shadow costs are not uniquely defined in a breakpoint of the optimal
value function g() (cf. Greenberg [91]). This leads to the introduction of left and right
shadow costs for which similar results can be derived. The validity of a shadow price (cost)
can be checked by computing the range where it is correct, which is our next subject.
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Linearity intervals

The classical approach to sensitivity analysis is to pose the question in what interval the
objective coefficient ¢; (or right-hand side b;) can vary such that a given (computed) optimal
basis B remains optimal. In fact, one is interested in the range where the shadow price (cost)
is valid. Let us consider the case of varying primal objective, and assume that Ac = e,
Hence we are interested in the problem (P(b,¢(v))) and its dual. Let us denote by T the
interval for -y for which B is an optimal basis. Then

Te={y : {(z,y,8) : Az=b,25>0, zy5 =0,
ATy +s=cH+yAc, s5=0, sy >0} #4}.

It is well known that T is an interval which can be computed at low cost by twice com-
puting m ratios and comparing them. The results in Tables 2.1 and 2.2 were produced as
outlined above. The reason that this approach gives so different answers is explained by
the degeneracy apparent in the problem, whence the optimal basis might not be unique
and/or the optimal primal or dual solution might not be unique. Recall from Section 2.2.3
that optimal sets should be used, which in the context of the simplex method implies (by
definition) that primal optimal bases are required. Let z* be the optimal basic solution for
the original problem and denote the set of primal optimal bases associated with z* by S(z*).
Ward and Wendell [247] introduce the optimal coefficient set of an optimal solution z* of
(P(b,¢)) as
T(z"}:={v : z* is an optimal solution of (P(b,c(%))) }.

A similar definition is given by Mehrotra and Monteiro [177]. Let us also define

R(z"):= {7 : g(7) = 9(0) +yz}}.

Since 2* is optimal in (P(b,c)), R(z*) is either a linearity interval of g(7y) with slope 7, or
the set {0}; in the latter case 7 = 0 is a breakpoint of g(). The following lemma contains
the main result of this paragraph.

Lemma 2.2.9 (i) If x* is an optimal solution of (P(b,c)) then T(z*) = R(z*);
(ti) If z* is an optimal basic solution of (P(b,c)) then T(z*) = Upes(+) Ts-

Proof: (i) For v € T(z*) it holds
51 = e+ 7eDTa = Tt 427 = 6(0) + a5,
so v € R(z*). If v € R(z*) then
9(7) = 9(0) + 72} = "&" + 72} = (c+ ve)Ta",
which shows that z* is optimal in (P(b, ¢(7))).
(4) If v € Upes(er) I's then clearly z* is optimal in (P(b,c(7))), so v € T(z*). Conversely,
if v € T(2*) there is a basis B which is optimal in (P(b,c(7))) and associated with z*; so

v € Tp. Since B is primal feasible for (P(b,¢(y))) it is primal feasible for (P(b,c)). Hence
B € S(z*) by the definition of a primal optimal basis. o
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A few remarks are in order. Item (ii) of the lemma was shown by Ward and Wendell [247,
Th. 17], probably being the first to stress the use of primal optimal bases. Note that the
basis B used in its proof is primal feasible for (P(b,c)) but not necessarily dual feasible.
From Lemma 2.2.9 we may conclude that either the optimal basic solution is only optimal
in the breakpoint, or it corresponds to a linearity interval of the optimal value function in
the sense that for each value of the parameter in this interval this solution is an optimal
solution of the corresponding problem. If ¥ = 0 is a breakpoint of g(-y) then obviously
there exist multiple optimal basic solutions of (P(b,¢)). The following lemma implies that
whenever the intersection of optimal coefficient sets corresponding to different optimal basic
solutions is nontrivial, then the sets coincide.

Lemma 2.2.10 Let z* and T* be optimal basic solutions of (P(b,c)) and let T(z*)NT(Z*) #
{0}. Then T(z*) = T(z*).

Proof: By assumption, there exists 7 # 0 such that

97 = 9(0)+7z; =c"2" +71;
9(M) = 9(0)+7%; =T +75;.

T T

From c’z* = ¢'z* we may conclude z} = Z}. From this the result immediately follows. O

To the best of our knowledge, all commercial LP packages offering the opportunity of per-
forming sensitivity analysis take the approach using one optimal basis, independently of
whether degeneracy is present or not; also this approach is standard in textbooks often
without referring to degeneracy problems. Earlier attempts have been made to circumvent
the shortcomings of this classical approach, e.g.; [52, 65, 66, 91, 138]. They suggest to
compute the interval for v where at least one of the optimal bases associated with z* re-
mains optimal. Obviously the overall critical region given by such an approach is the union
of intervals, each being one where an optimal basis remains optimal. This requires more
computational effort, since (possibly) all optimal bases have to be generated. Evans and
Baker [52] suggest to solve a sequence of LP problems to find this interval. Knolmayer [138]
proposes an algorithm which does not need to generate all optimal bases associated with
z*; however, the statement of his algorithm is not clear nor complete. Gal [67] provides
a parametric algorithm inspired by [165] that does not necessarily need all optimal bases
associated with z*; however, this approach still does not generate the complete linearity in-
terval as desired. The following example illustrates the difference between using one optimal
basis, optimal bases and primal optimal bases for the computation of intervals in sensitivity
analysis.

Example 2.2.11 Consider the pair of primal-dual LP problems with parameter 7:

IIEH{—2$2+(1+’7).’L‘3+4$4+5$5+6$6 < —$1—2$2+£L’4+$5=0,
—zy—23—x4+2T6=—-1,2>0}

max { —yz : —=$1 <0, -2~ 92 <=2, —yp<1+7, - <4y <5, y2<6}.
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Yo
. ®
hd ¥
5
bi .
o 4 ‘® B ={1,3} |B ={3,5}
i.
@
1\i . @ B = {2/3}
" IR B={3,4)
-1
3 IB={2,4}

Figure 2.1: Feasible region of the dual problem in Example 2.2.11; constraint 3 is being
shifted. The ranges where the different bases are optimal are denoted by the arrows.

In Figure 2.1 the dual feasible region is depicted. Solving these problems for the initial value
Yo = 0, the unique optimal primal solution is 2§ = 1, =¥ = 0, 7 # 3; the optimal dual basic
solutions are y") = (1.5, -1)7 and y® = (3,—1)7. The set of optimal bases associated with

z* is
F(‘T*) ={ {2a3}> {374} }
Figure 2.1 shows that the bases in F(z*) are optimal in the following intervals for ~:
By = {2a3} — Y€ ["3’ 1]7
By={3,4} — ~ye[-21]

The set of primal optimal bases associated with z* is given by

S(x*) = { {173}a {2’ 3}v {3’4}a {375} }
For the bases that are not dual feasible we have the intervals

Bs = {1’3} — 7Y€ [_7’ _3]7
By={3,5} — ~e[-7,-2].

The union of the intervals of the primal optimal bases gives the complete linearity interval
(Lemma 2.2.9), namely v € [-7,1]. Only using the optimal bases we find the subinterval
[~3,1]. Using any of the individual bases we only find subintervals of the linearity interval.
Indeed, the optimal value function is linear on [—7,1], a breakpoint occurs at v = 1, while
for ¥ < —7 the primal problem is unbounded. Observe that the initial value v = 0 is
outside the intervals implied by the (at 75 = 0) dual infeasible bases B3 and By. <
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Example 2.2.1 (continued)

The approach outlined in this section has been applied to Example 2.2.1. Table 2.3 gives
the ranges and left and right shadow costs for the objective coefficients. The ranges are
obtained by considering primal optimal bases. Observe that still different linearity intervals
or just a breakpoint may be obtained, since different optimal solutions may have different
optimal coefficient sets.

Package COST-ranges
11 12 13 21 L22 23 31 32 33
CPLEX [1,00) (-o0,1] [lLe0) [1,3] [, [0,3] [1,1] [l,00) [1,00)
LINDO | (—o01] [Lo) [Leo) [Loo) [Leo) [L1] [11] [0 [11]
OSL lleo)  (oo,d] [Leo) (L] [11] [01] (1,1 [Loo) ([1,00)
PC-PROG [1,00) [1,0) [l,00) {l,00) [0,1] [1,1] [0,]] [l,00) ([1,1]
XMP [1100) [1,00) ("0071] [071] [0’1] [1,00) [1700) [1100) [1:1]
shadow costs [ 2 0 2 0 2 0 3 03 03 03 03 0 3 O
RHS-ranges
(2.9) (2.10) (2.11) (2.12) (2.13) (2.14)
range [0,00) [2,00) [l,e0) 0,77 [0,7] [0,7)
shadow price | 0 0 0 1 1 1

Table 2.3: Ranges and prices in Example 2.2.1 using primal optimal bases.

2.2.5 Using optimal partitions

In Section 2.1 we showed that in each LP problem a strictly complementary solution ex-
ists (Theorem 2.1.17); such a solution uniquely determines the optimal partition of the LP
problem. In this section we analyze an approach to sensitivity analysis using optimal par-
titions. The important result is that the linearity intervals of the optimal value function
correspond to intervals where the optimal partition is constant, while in the breakpoints
different partitions occur. Recalling from Section 2.2.3 that the optimal partition gives a
complete description of the set of optimal solutions this should not be a surprise after having
proved Lemmas 2.2.3 and 2.2.5.

This approach to sensitivity analysis is natural in the context of interior point methods.
From Lemma 2.1.15 it follows that the limitpoint of the central path is strictly comple-
mentary, hence determines the optimal partition. Most interior point methods intrinsically
follow the central path and, as shown by Giiler and Ye [98], many of them actually yield
a final iterate from which (at least theoretically) the optimal partition can be obtained.
Mehrotra and Ye [178] propose and analyze a projection technique that yields the optimal
partition in practice. Andersen and Ye [7] apply a similar technique based on [98]. In this
section we show that not only we can compute linearity intervals but also the optimal par-
titions in the breakpoints; when computing shadow prices (costs) we automatically obtain
the optimal partitions in the neighboring linearity intervals.
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Perturbations in the right—hand side

As before we use the notation

b(B) :=b+ BAb, f(B) := z(b(B), ).

For each  we denote the corresponding optimal partition by 73 = (Bg, Ng), with a strictly
complementary solution (z(4), y(#), s(4)),

Lemma 2.2.12 Let the value function f(B) be linear for B € [B1,bs]. Then ng is indepen-
dent of B for all B € (B, B2)-

Proof: Follows immediately from Lemma 2.2.3, observing that the optimal partition exactly
identifies the optimal set. o

Let us assume that 8 = 0 and B = 1 are two consecutive breakpoints of the optimal value
function f(B). We show that the optimal partition in the linearity interval 0 < 8 < 1
can be determined from the optimal partition at the breakpoint 8 = 0 by computing the
right shadow price at 8 = 0. To this end we define the following primal-dual pair of LP
problems?:

(P2) min { "z : Aw=Ab, an, 20},
(D2%) max { AbTy @ ATy+s=c, s, =0, 88, >0}

Note that in (PA?) the variables z;, ¢ € By, are free, hence we need to define its optimal
partition T = (B, N) in this case. Let (Z,,3) be a strictly complementary solution of this
pair of auxiliary problems. Since the dual variables 3; for ¢ € By are identically zero, it is
natural to let them be element of B. So, we have B= By U{i € Ny : 3 =0 }. We now
derive the following theorem.

Theorem 2.2.13 Let 8 € (0,1). For the primal-dual pair (P2%) and (DA?) it holds:
(i) The optimal partition is (Bg, Ng);
(it) y® is optimal in (D2%);
(iii) The optimal value AbTy () is the right shadow price at B = 0.
Proof: Note that (i¢) and (ii:) follow from Lemma 2.2.6. Let 0 < 8 < 1 be arbitrary and
consider

@0
Ti= ————

B

Since (z(D)n, = 0 we have Zy, > 0. Obviously AT = Ab, so T is feasible in (P2?). Observe
that the dual problem (D?2?) admits (y(®, s) as a feasible solution. We conclude the proof
by showing that the pair (Z,y, s)) is strictly complementary and that it determines
7g = (Bg, Ng) as the optimal partition. Recall that the support of (%) is By and the
support of z(® is By. So, for i € Ny we have 7; > 0 if and only if £ € Ny \ Ng. On the

(2.16)

2The notation ~ (and later «+, v~ and —) refers to the starting position and the direction of change.
For instance, + means starting in the breakpoint and increasing the parameter; »— means starting in a
linearity interval and decreasing the parameter.
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other hand, if 7 € Np, then we have (s)); > 0 if and only if i € Ns. This proves that the
given pair of solutions is strictly complementary with optimal partition 75 = (Bg, N3). The
statement in (¢¢) follows immediately. Using (2.16), we obtain for 8 € (0,1)

f(8) = cTa® = Ta® 4 Tz = T2@ + B(AB)Ty®,
which shows (4iz). O

Starting from the breakpoint at # = 1 and using the optimal partition (B;, N;) a similar
result can be obtained using the primal-dual pair of LP problems

(P2)) min { To:Az=—Ab, ay, 20},
(D2%) max { —AbTy : ATy+s=c sp, =0, sy, >0 }
Without further proof we state the following theorem.

Theorem 2.2.14 Let B € (0,1). For the primal-dual pair (P2) and (D?) it holds:
(i) The optimal partition is (Bg, Ng);

(ii) y®) is optimal in (DAY);

(iii) The value AbTy®) is the left shadow price at B = 1.

For future use we include the following result.

Lemma 2.2.15 Let 8 € (0,1). It holds AbT(y®) — y©) > 0 and AW (y® — y®) > 0.

Proof: Theorem 2.2.13 shows that maximizing AbTy over the dual optimal face gives y(®
as an optimal solution, and Ab7y(¥) as the right shadow price. As a consequence of Theorem
2.2.14 minimizing AbTy over the optimal face at § = 0 gives the left shadow price at 8 = 0;
let 7 denote an optimal solution for this problem. Since the value function f(8) has a
breakpoint at § = 0, its left and right derivatives are different at 8 = 0, so we conclude
ATy < AbTy®). Tt follows that AbTy is not constant on the dual optimal face. Since y(®
is an interior point of this face, we conclude that AbTg < AbTy® < AbTy®) which implies
the first result. An analogous proof using # = 1 gives the second result. m]

Now we consider the case that the optimal partition associated to a linearity interval is
known. We will show that the breakpoints and the corresponding optimal partitions can be
found from the given partition and the perturbation vector Ab. This is done by observing
that we may write the problems in Lemma, 2.2.7 as LP problems.

For convenience we assume that 8 = 0 belongs to the linearity interval under consid-
eration, and that the surrounding breakpoints, if they exist, occur at = < 0 and g+ > 0
respectively. To determine #~ we consider the following primal-dual pair

(PnA—b) n[}m {18 : A.’E—*ﬂAb:b, T By ZO, Z N =0})
(D24 max {bTy : ATy +5=0, AbTy = —1, s, > 0 }
Theorem 2.2.16 For the primal-dual pair (P2%) and (DA?) it holds:
(i) The optimal partition is (Bs-, Ns-);

(it) 7 is optimal in (P2Y);
(ii) The optimal value is B~.
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Proof: Items (i2) and (Ziz) follow from Lemma 2.2.7. The proof of (i) follows the same
line of reasoning as the proof of Theorem 2.2.13. We construct feasible solutions for both
problems and prove that they are strictly complementary with the correct partition. Since
(¥, s©) is optimal in (D(b(8),c)) (Corollary 2.2.4), we obtain the inclusion Ny C Njs-.
This shows that

z:=2zF) g:=p"
is feasible for (P2%). We will show that

Y- y©

y:= AbT (y(©) — y(87))

is feasible for (D2%). First we deduce from Lemma 2.2.15 that AbT(y(© — y(F7)) is positive,
so y is well defined. Clearly AbTy = —1. Furthermore,

(AbT(y(O) - y(ﬁ‘))) ATy = AT(yE7) — y©@) = 50 _ 567,

(2.17)

Since (s()g, = 0 and s¥7) > 0, it follows that (s©®)g, — (s¥7)g, = —(s¥*))g, < 0. So y
is feasible for the dual problem. Since for ¢ € By we have z; > 0 if and only if z € Bg-, and
s; = 0 if and only if : € Bs-, the given pair is strictly complementary with the partition
(Bg-, Ng-). This proves (z) and also (7). To give also a proof of (i7%), it follows from the
linearity of the optimal value function on [8~,0] that

b(87)Ty 47 = f(87) = 6Ty + ATy,
or equivalently
5 (y7) —y ) = B~ AT (y@ - 7). (2.18)
Multiplying (2.17) with &7 we obtain that the optimal value equals
B —y®)
AT (GO @)y P
where the equality follows from (2.18). o

The breakpoint 8+ and the corresponding optimal partition are found by solving the pair
of LP problems:

(PX) max {f: Az—pBAb=b, o5, 20, 2 =0},
(D24 nynsn {—bTy : ATy+s=0, AbTy =1, 33020}.

Theorem 2.2.17 For the primal-dual pair (PA%) and (DA?) it holds:
(i) The optimal partition is (Bg+, Ng+);

(i) £8*) is optimal in (P2Y);

(i1i) The optimal value is B*.

To conclude this paragraph we mention that the auxiliary LP problems given here can be
used to compute the optimal value function of a parametric LP problem. For instance, given
some initial value By with corresponding optimal partition, the part of the function to the
right of 8o is computed by alternately solving (P2?) (for the breakpoint to the right) and
(DA%) (for the right shadow price in that breakpoint).
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Perturbations in the objective

Let us now consider the effect of variations in the objective vector ¢ on the optimal value
function. By ‘dualizing’ the results above we obtain the appropriate results. Just as in the
previous section we show that the ‘surrounding’ partitions of a given partition can be found
by solving appropriate LP problems, which are formulated in terms of the given partition and
the perturbation Ac. The proofs are based on the same idea as for their dual counterparts:
one checks that natural candidate solutions for both problems are feasible indeed, and then
shows that these solutions are strictly complementary with the correct partition. Therefore,
we state these results without proofs. The discussion is facilitated using

() = c+7le, g(v) = z(b,c(v)),

where b and c are such that the pair (b, ¢) is feasible. For each v we denote the corresponding

optimal partition by ., = (B,, N,) and strictly complementary solutions by (2, y, (),

We start with the case that the given partition belongs to a breakpoint. Without loss of

generality we assume again that v = 0 and v = 1 are two consecutive breakpoints of g(7).
Consider the following pair of LP problems.

(P29 min {AcT:v : Az =b, zg, 20, an, =0 },

(D2°) max { by : ATy+s=Ac, sp, >0 }
Theorem 2.2.18 Let y € (0,1). For the primal-dual pair (P2°) and (DA°) it holds:
(i) The optimal partition is (B,, N,);

(ii) ) s optimal in (PA°);
(ii) The optimal value Acfz®) is the right shadow cost at vy = 0.

A similar result can be obtained for the optimal partition at 4 = 1. Defining the pair of LP
problems

P2°) max { Aclz : Az =b, 25, 20,2y, =0,
T 1

(D29) nynsn { ~bTy : ATy +s=—Ac, s, >0 },
one has the following theorem.

Theorem 2.2.19 Let v € (0,1). For the primal-dual pair (PA7) and (D27) it holds:
(i) The optimal partition is (B, N.);

(i) 27 is optimal in (P2°);

(i) The optimal value AcTz") is the left shadow price at ¥y =1.

Using these results we derive the following corollary.
Corollary 2.2.20 Let v € (0,1). It holds AcT(z() — 20) < 0 and A (z) — 2™) < 0.

The next results concern the determination of the size of the linearity interval and the
optimal partition in the breakpoints, given that the optimal partition associated to the
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linearity interval is known. Assume that v = 0 belongs to the linearity interval under
consideration, and that the surrounding breakpoints, if they exist, occur at v~ < 0 and
vt > 0 respectively. We consider the following pair of problems.

(P29) max {-—cTa: : Az =0, ATz =1, zp, 20},
(Df-c) {l{lylg {7 : ATy+S—7Aé=C, SBo=07 SNOZO}-

Theorem 2.2.21 For the primal-dual pair (P2°) and (D2°) it holds:
(i) The optimal partition is (B,-, N,-);

(ii) y©7) is optimal in (D2°);

(iit) The optimal value is v~ .

Similarly, the breakpoint 4% is obtained from the pair of LP problems:
(P29) min Tz : Az =0, ATz =~1, z5, > 0 },

(D2°) max {'y : ATy +s—yAc=c, sp, =0, sn, 20}.
Theorem 2.2.22 For the primal-dual pair (PA%) and (DA°) it holds:

(i) The optimal partition is (By+, N,+);

(it) y*) is optimal in (DAY);

(iti) The optimal value is y*.

Example 2.2.1 (continued)

Let us show the results obtained with the outlined approach for Example 2.2.1. An interior
point solution is given in Table 2.4. This solution is strictly complementary: B corresponds
to the variables z;;, 4,7 = 1,...,3 and s;, ¢ = 1,...,3, while the variables d;, j = 1,...,3
are in N. Note that the number of variables with a positive value is larger than for the
basic solutions. In certain applications this is unpreferable, while in others (e.g., finding
critical paths in project planning) this is attractive [92]. The coefficients in the objective
function and the right-hand side vector are varied one at a time, so Ab = e() and Ac = e,
for all 7,j. Notice that all the cost—coefficients are at a breakpoint. The intervals for the
right-hand side coeflicients are the same as in Table 2.3.

The 100% rule

An interesting and useful, but not widely known, extension to the standard sensitivity
analysis using one parameter is the 100% rule. It was introduced by Bradley et al. [31]
for multi-parameter variations in the context of optimal bases. For each of the parameters
a separate sensitivity analysis is performed, keeping the other parameters constant. This
gives an interval for each of the parameters. The rule says that for combined variations in
all parameters the given basis remains optimal if the sum of the percentages of the variation
w.r.t. the maximal variation is not larger than 100%. Stated otherwise, the optimal basis
remains optimal in the ‘diamond’ determined by the end-points of the separate intervals.
Note that the rule only gives a sufficient condition, while the actual region where the basis
remains optimal might be larger. The following example clarifies the rule.
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Method Optimal primal solution
11 Ti2 %13 21 %2 Taz T3 ¥3z Tas
IPM 05 05 05 14 14 14 11 11 1.1
COST-ranges
range (L, [, [,y [y [, [,y [ @1 [

shadowecosts |2 0 2 0 2 0 30 30 30 30 30 320

Method Optimal dual solution
(29) (210) (211) (212) (213) (2.14)
IPM 0 0 0 1 1 1
RHS-ranges
range [0,00) [2,00) [l,00) [0,7] [0,7] [0,7]

Table 2.4: Results from interior approach in Example 2.2.1.

Example 2.2.23 Consider again Example 2.2.1. Let the right-hand sides of (2.9) and
{2.10) be varied. We consider the solution computed by CPLEX. The dark area in Figure
2.2(Left) is given by the 100%-rule; however, also in the light-shaded area the basis from
CPLEX is optimal. <

Figure 2.2: (Left) Regions for optimal basis in Example 2.2.23; the current value is (2,6).
(Right) Regions for optimal partition in Example 2.2.23.

We show that the 100% rule can be extended to regions where the optimal partition remains
constant. This is the contents of the next lemma, which considers the case of varying right-
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hand side coefficients.

Lemma 2.2.24 Let the problems (P) and (D) have optimal partition 7 = (B, N) with
strictly complementary solution (Z,7,3). Let I C {1,...,n}. Define

b(B;) = b+ Bie®.
Let for each i € I, B} # 0 be such that the problems (P(b®)(87),c)) and (D(b)(B}),c))
have the same optimal partition w. Let Ab satisfy
Ab=0igl, Sos0ier, YAy
ﬂ' . iel ﬂ

1 13

Then 7 is also the optimal partition of the pair
(Pa) min {To: Ac=b+Ab x>0}
(Das) max { b+ A0y : ATy+s=¢,5>0 }
Proof: Define, for i € I, f; := Ab;/B} and f := ;¢ fi- Observe that f; > 0 and f <1 by

assumption. Let (z(),y®@, s)) be strictly complementary solutions for (P(6¢)(8{),c)) and
(D(B9)(B), c)). We show that

$:=(1~f)§+2ﬂz(i)’ y:==9y, s:=5,
i€l

is a strictly complementary solution of (Pas) and (Das). Obviously, (y, s) is feasible in the
dual problem. Also,

Az=(1-f)Az+ Y fide® = (1~ b+ fi(b+ BFe®) = b+ Ab.
iel i€l

From f; > 0 and f <1 it follows that zp > 0 and zy = 0, which completes the proof. 0O

Example 2.2.25 Consider again Example 2.2.1. Asin Example 2.2.23 the right-hand sides
of constraints (2.9) and (2.10) are varied. The dark area in Figure 2.2(Right) is given by the
100%-rule for optimal partitions. Notice, that this area is much larger than the one given
by the optimal basis from CPLEX in Figure 2.2(Left). However, also in the light-shaded
area this partition remains optimal. O

2.2.6 Using optimal values

In Section 2.2.3 we showed that correct shadow prices and linearity intervals can be obtained
by solving appropriate LP problems over the optimal face of the original primal or dual
problem, that is, using the set of optimal solutions. However, once knowing the optimal
value 2* of the LP problem, we can trivially describe the optimal faces as follows:

{z:Az=b,2>0, Tz =2},
{(y,8) : ATy+s=¢, 520, bTy=2*}.



42 Chapter 2. Theory and sensitivity in linear programming

We may use this description in the results of Section 2.2.3. For instance, linearity intervals
of f(f) are computed by (cf. Lemma 2.2.7)

B = nﬁlin{ﬂ : Az —BAb=b, 2 >0, Tz = (b+BAb)TY" },
By = r%ax{ﬁ . Az—BAb=b, >0, Fz = (b+ ANy }.

where y* € D*. Similarly, left and right shadow prices are found by

f(B) = min { AbTy : ATy+s=c, s>0, (b+ ATy =b"y" },

Y8

fi(f) = max {AFy : ATy+s=c, 520, (b+BAHTy =bTy" }.

An advantage of the approach is that we do not need to know the optimal partition, just the
optimal value. In the literature few explicit references to this idea can be found, e.g., Akgiil
[5], De Jong [128], Gondzio and Terlaky [84] and Mehrotra and Monteiro [177]. Similar
ideas appear in Magnanti and Wong [166], who use a subproblem defined on the optimal set
to compute certain cuts in Benders decomposition [23] and in Terlaky {234], who considers
marginal values in £,-programming.

2.2.7 Computational results

In De Jong [128] an extensive computational study is made to compare the three approaches
to sensitivity analysis described in Sections 2.2.4, 2.2.5 and 2.2.6, using the NETLIB set of
LP problems [70]. The approaches in the last two sections were programmed within OSL,
while CPLEX was used for the standard simplex approach. In this section we report on
the results obtained for an LP model which is a small representative of the type of models
used in daily decision making by SHELL. The model concerns an oil refinery and contains
production, transportation and product exchange during three periods. The model has 2110
variables and 1101 constraints. Although the number of LP subproblems to be solved is
quite large, all the sensitivity information for this model was obtained within 15 minutes on
an HP9000-720 workstation.

We compare the sensitivity information from CPLEX with the results obtained from
the interior approach. First consider shadow costs. Recall from Section 2.2.4 that different
situations may occur: either the number given by CPLEX will be the shadow cost, a left
or a right shadow cost (a one-sided shadow cost) or it has no meaning as a shadow cost. In
the latter case, the value is in between the left and the right shadow price. In the refinery
model, we found that for 4% of the coefficients the number returned by CPLEX was just a
one-sided shadow cost while for 0.7% it was no shadow cost at all. Moreover, for 36.4% of
the coefficients the range CPLEX reported was not equal to the complete linearity interval.
For 2.9% of the coefficients a breakpoint was given. To see whether the differences in the
ranges are significant, we split them up into six categories, depending on the ratio between
the length of the linearity interval and the length of the range computed by CPLEX. A
histogram of this is given to the left in Figure 2.3. Here, the category breakp means that
the coefficient is in a breakpoint while CPLEX reports a range. If the linearity interval
has infinite length then we use the category inf. A similar comparison was done for the
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shadow costs. We compared the CPLEX outcome with both the left and right shadow cost
and categorized the largest difference (that is, either the difference between the CPLEX
outcome and the left shadow cost or between CPLEX and the right shadow cost); if the
current value of the objective coeflicient is not a breakpoint, then the CPLEX number will
be the unique shadow cost (see the right part of Figure 2.3; the category inf means that the

LP problem becomes unbounded as soon as the objective coefficient is either increased or
decreased).
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Figure 2.3: Differences in objective coeflicient ranges and shadow costs (%).

For the right-hand side elements of the refinery model it appeared that CPLEX reported
a one-sided shadow price for 25.4% of the coefficients and no shadow price for 2.8%. For
45.5% of the coefficients the interval returned was not equal to a complete linearity interval.

Again, we made histograms to split the differences with respect to their magnitude, see
Figure 2.4.
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Figure 2.4: Differences in right-hand side ranges and shadow prices (%).
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We conclude that the standard approach to sensitivity analysis gives different results
than the one based on optimal sets, and that a commercial LP code often only gives partial
sensitivity information. In De Jong [128] and Jansen et al. [111] a more detailed analysis
of the differences is found in comparison with the physical meaning of the various variables
and constraints.



Chapter 3

Primal—dual affine scaling

We develop a new class of interior point methods, relate it to methods in the literature and
prove its complexity for linear complementarity problems. We show that the use of corrector
steps improves the complezity asymptotically to the best known bound for such problems.
We embed the algorithm in a family and analyze it for nonlinear complementarity problems,
using a new smoothness condition on the mappings involved. We give computational results
on some problems arising in stalistics.

3.1 Introduction

The introduction of Karmarkar’s polynomial time algorithm for linear programming (LP)
[132] in 1984 is responsible for an enormous production of research papers on LP in the
last decade. Two of the early papers were Barnes [17] and Vanderbei et al. [243], who
independently proposed the affine scaling algorithm as a simplification of Karmarkar’s al-
gorithm. While Karmarkar performed a projective scaling in each iteration, this algorithm
used a simpler affine scaling. Convergence of the iterates to optimality was shown (under
nondegeneracy assumptions), but no complexity proof was given. Implementations soon
showed that the affine scaling algorithm was very efficient, see Adler et al. [2]. After the
publication of Vanderbei’s paper, the editor of Mathematical Programming received a let-
ter [46] from the Russian researcher Dikin, revealing that the affine scaling algorithm was
already proposed by him in 1967 [44], see also [45]. Around the same time a paper by Gill
et al. [72] showed that Karmarkar’s algorithm has close connections with the logarithmic
barrier method, introduced by Frisch [63] in 1955 and extensively investigated by Fiacco
and McCormick [54] among others.

All the methods mentioned above are either primal or dual algorithms, i.e., methods
generating either primal or dual feasible solutions in eackh iteration of the method. In 1987,
Monteiro and Adler [186] and Kojima et al. [145] independently proposed a primal-dual
logarithmic barrier algorithm, that works with the primal and dual of the LP problem
simultaneously. Monteiro et al. [188] then gave a simplified version of the algorithm in
[186] which they considered to be a primal-dual version of Dikin’s affine scaling algorithm.
This algorithm is normally referred to as the primal-dual affine scaling algorithm. In this
chapter we introduce and analyze a new and different generalization of Dikin’s algorithm to
the primal-dual setting. The generalization is more natural and leads to a better complexity
bound than the one in [188]. The algorithm is named the primal-dual Dikin—affine scaling
algorithm. In Jansen et al. [114] the polynomial complexity of this algorithm was first shown
for LP. In the analysis a homogeneous potential function was used, viz. f : R}, - R
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defined by
f):=nl|v)® - Inv} —nlnn,

i=1
where v := /T3 represents a point in the v-space (Section 2.1.1). This function was
introduced by Tanabe [232] and used by Todd and Ye [237] and Kojima et al. [142], among
others. Later Ling [156] simplified and improved our analysis in [114] using a different way
to measure proximity to the central path. Surprisingly, he showed that the complexity of
the algorithm remains unchanged when working with large neighborhoods of the central
path.

After a short introduction in primal (or dual) and primal-dual affine scaling and loga-
rithmic barrier methods in Section 3.2 we will derive the new algorithm in an LP context
in Section 3.3. We prove the polynomial complexity of the algorithm for the class of linear
complementarity problems (LCPs) with P, (or sufficient) matrices, for which interior point
methods are as difficult to analyze as for LP (cf. Kojima et al. [142]). The class of LCPs
contains LP and convex quadratic programming (CQP) as special cases. We further ex-
tend the algorithm and its applicability in several ways. In Section 3.4 we analyze the use
of corrector steps, which aim at diminishing the second order effect when using Newton’s
method. We show that the complexity bound can asymptotically be improved to the best
one currently known for LCPs. In Section 3.5 we propose a family of algorithms obtained by
the use of different scaling parameters in the basic Dikin-affine method. We show that both
the primal-dual affine as well as the Dikin-affine algorithm are special cases of the family.
In this section we apply the algorithm to (not necessarily monotone) nonlinear complemen-
tarity problems (NCPs). The class of NCPs contains convex programming problems and is
closely related to variational inequalities; for a survey see, e.g., Cottle et al. [36], Pang [204]
and Harker and Pang [99]. For general NCPs the analysis requires smoothness conditions
on the mappings involved. We introduce a new condition, since previous conditions in the
literature (Zhu’s scaled Lipschitz condition [263], the relative Lipschitz condition [124] and
self-concordance, by Nesterov and Nemirovskii [199]) are only applicable to monotone map-
pings, and are not suitable for our primal-dual algorithms working in a large neighborhood.
The theoretical analysis we provide shows that within the family the Dikin-affine scaling
method has the best complexity bound. In Section 3.6 we discuss how to handle feasibility
in the algorithms and give some other extensions. Finally, in Section 3.7 we report on com-
putational experience with primal-dual affine scaling algorithms; we apply them to various
estimation problems from statistics that can be written as NCPs.

3.2 Logarithmic barrier and affine scaling

We give a short survey of logarithmic and affine scaling methods to later place the new
primal-dual Dikin-affine scaling method in a proper context. More elaborate surveys can
be found in Gonzaga [88] and Den Hertog [101]. Consider the primal and dual LP problem
in standard form:

P) mzin{cTz':Aa:=b,:c20},
(D) rr;%x{bTy:ATy+s=c,320},
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where ¢,z € R®, b € R™ and A is an m x n matrix. We make the standard assumptions
that A has full rank and that there exists a positive primal-dual pair (Definition 2.1.4). The
primal and dual feasible sets are denoted by P-and D. The logarithmic barrier algorithm for
(P) was introduced in 1955 by Frisch [63] and extensively investigated in the 1960s and 1970s
(Fiacco and McCormick [54]). The primal logarithmic barrier method uses the logarithmic
barrier function fp : R}, x Ryt — R:

T n
fe(z;p) = _c_'u_a: - Y In(zs).

=1

The barrier parameter y is used to balance the original objective with the distance to the
inequality constraints # > 0. The optimality conditions for minimizing fp(z; ) over P, for
fixed g, are given by the system

Az = b, >0,
ATy + s ¢, >0, (3.1)
zs = pe.

The existence of a solution to (3.1) is guaranteed from Theorem 2.1.5, and is denoted by
(2(1),y(4), 5(n)). The sets

{2(k) : >0} and {(y(u),s(p)) : p>0}

are the central paths of (P) and (D), alternatively defined in primal-dual form as the set

T
C={(m,s) tz€P,s€D, zs:i—se}.

In the latter form, the central path was introduced and investigated by Bayer and Lagarias
(18], Megiddo [174] and Sonnevend [224]. As zTs — 0, this path leads to a strictly comple-
mentary solution of (P) and (D) (cf. Lemma 2.1.15), hence it can be used as a guideline to
optimality. The generic path—following method works as follows. Given a value p compute
an approximate minimizer of fp(z;u); update y and proceed. Different methods are ob-
tained by varying the updating scheme for y, the method for minimizing the barrier function
and the criterion that judges approximation to the exact minimizer. The latter aspect is
related to the use of neighborhoods of the central path. These neighborhoods include

T
NoB) = {(z,s) : 2€P, s€D, |lzs — pell < Bu, where u=$}

T
Neo(B) = {(x,s) :2€P, sED, ||zs— pe|lw < Bu  where u:%—i}.

for some 3 € (0,1). Algorithms based on the larger NV, neighborhood are called long—step
algorithms, and those based on the smaller A are called shori-step algorithms. Among all
existing path-following (infeasible or feasible) algorithms for LP, the theoretical iteration
complexity to obtain an e-approximate solution with a short-step algorithm is O(y/n1n1 /€)
(e-g-, Renegar [212], Gonzaga [85], Roos and Vial [216], Kojima et al. [145] and Monteiro and
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Adler [186]). The complexity of the long—step algorithms is at least O(nL) (e.g., Gonzaga
[86], Mizuno et al. [185), Den Hertog [101], Anstreicher and Bosch [10] and Jansen et al.
[121)). In contrast, long-step algorithms outperform short-step ones by a big margin in
practice (e.g., Lustig et al. {162, 163) and Mehrotra [176]). Nesterov [197] discusses several
long-step strategies in a general (nonlinear) setting.

In the primal logarithmic barrier (path-following) method the search-direction is ob-
tained by minimizing the second order Taylor approximation of fp(z;p) over P at a given
iterate T > 0, i.e., by Newton’s method. The search-direction obtained in this way is given
by

Az =X(I - XAT(AXAT) " AX)(pe — Xc). (3.2)

Dikin’s primal affine scaling method does not use the central path as a guideline. Instead, the
search—direction is obtained by solving a subproblem in which the nonnegativity constraints
z > 0 are replaced by an ellipsoidal constraint:

min { Tz : Ae=b, | X '(-2)[ <1}
Taking its solution z+ as the new iterate, the affine scaling direction is
Az =2t —7=-X(I - XAT(AX AT) AX)XCc. (3.3)

Note that the search-direction in (3.3) can be obtained from (3.2) by putting y = 0, i.e., by
not using the centering direction

Az = X(I — XAT(AX AT) 1 AX ) pe. (3.4)

Hence, the main difference between affine scaling and path—following algorithms is that in
the former the direction only depends on the current iterate, while in the latter target-points
(on the central path) are used. Den Hertog and Roos [104], Yamashita [253] and Gonzaga
[87), among others, have shown that in many interior point methods the search—direction
used is a linear combination of the affine scaling direction and the centering direction.

We noted before that the minimizer of the logarithmic barrier function fp(z;¢) over P
is characterized by the system (3.1). This system is also the KKT-system for minimizing
the primal-dual logarithmic barrier function

T n
E - Zln(x,-si).

ko =
over both P and D. Using (3.1) Monteiro and Adler [186] and Kojima et al. [145] proposed
a primal-dual algorithm in which the search—directions Az, Ay, As are determined from

fro(z,s;p) =

AAz = 0,
ATAy+As = 0, (3.5)
TAs +3Az = pe—T5,

where (Z,7,3) is the current iterate. The last equation is motivated from the desire to
compute Az and As such that

(Z + Az)(3+ As) = pe.
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Note that in the last equation of (3.5) the term AzAs is not included (the effect of this
linearization will be studied in detail in Chapter 4). A short—step version of the method was
shown to be polynomial in {145, 186). In Jansen et al. [121] the algorithm was interpreted and
analyzed completely using the primal-dual logarithmic barrier function; moreover, long-step
algorithms of this type were investigated. By analogy with the primal affine scaling direction
Monteiro et al. [188] proposed to simplify the direction of the primal-dual algorithm by
setting ¢ = 0 in (3.5), and to call the resulting direction the primal-dual affine scaling
direction. This terminology has become standard since 1987. The method was shown to
have a polynomial complexity bound of O(n(In(1/¢))?) iterations to obtain an e-accurate
solution.

In the next section we show that in the primal-dual case Dikin’s affine scaling idea of
replacing the entangling inequality constraints by an ellipsoid and optimizing the objective
(the duality gap) can also be done in the primal-dual setting. As we will see, this gives rise to
a new affine scaling algorithm, named hereafter primal-dual Dikin—affine scaling algorithm.
The search direction used is different from the one in Monteiro et al. [188]. We will show
that our algorithm has a complexity bound of O(nln1/e) iterations, which is better than
that for the primal-dual affine scaling algorithm. This improvement is due to the fact that
the new direction contains a centering effect as opposed to the primal-dual affine scaling
direction. Moreover, we will show that it can be argued that the primal-dual affine scaling
direction in [188] is obtained without scaling at all.

3.3 The primal-dual Dikin—affine scaling algorithm

In this section we introduce and motivate the new primal-dual Dikin-affine scaling method
for LP as derived and analyzed in Jansen et al. [114]. Then we analyze the complexity of
the algorithm for the more general class of LCPs with matrices in P,.

3.3.1 Deriving the search—direction
Let (z,s) be a positive primal-dual pair, that is
Az = b, z>0,

ATy+s = ¢, s>0.
Let Az,Ay,As denote search—directions in the respective spaces. For the equality con-
straints, feasibility is maintained if

AAz =0, ATAy+As=0.

Observe that Az and As are orthogonal. Following Dikin’s idea [44], we replace the non-

negativity conditions by requiring the next iterates (z + Az,y + Ay, s + As) to belong to a
suitable ellipsoid. In our primal-dual setting we define it as follows

|z~ Az + s7TAs|| < 1,

and call it the (primal-dual) Dikin-ellipsoid. The duality gap {complementarity) after a
step is given by :
(z 4+ Az)T(s + As) = 2Ts + 2T As 4+ sTAz.
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Minimizing the new duality gap over the Dikin—ellipsoid amounts to solving the following
optimization problem:

N nginA { sTAz +2TAs : AAz =0, ATAy+As=0, |z~ Az + s As|| < 1 } (3.6)
Z,aY,88

We proceed by showing that this problem uniquely determines the search-direction. We
apply a common rescaling of the variables (see e.g., Gonzaga [88]). Let the vectors d and v

be given by
d:=+Vzs, v:=./zs. (3.7

Using d we rescale both z and s as follows: d~'z = ds = v; likewise we define
pz :=d'Az, p,:=dAs. (3.8)

Note that the orthogonality of Az and As implies that p, and p, are orthogonal as well.
The important property of this scaling is that it maps both = and s to the same vector v.
As we will see this implies that the scaled search-directions can be expressed as orthogo-
nal complements of a vector (this property has been generalized to a nonlinear setting by
Nesterov and Todd [200]). Now we may write

TzAs + sAzx zd Y dAs + sdd Az = v(pz + Ps)s
g Az + s 1As = z7'dd"'Az + s71ddAs = v (p, + p,).

The affine constraints can be reformulated as
ADp, =0, DATAy+p, =0,

where D = Diag (d). Clearly p, and p, are uniquely characterized as the components of the
vector

Pv = Pz + Ps,

in the null space and the row space of the matrix AD, respectively. Therefore, we may
reformulate (3.6) in terms of the vector p,:

min { v7p, ¢ [lbpf| <1} (3.9)

The solution of this problem is given by

3

v
Py = =y
I [
with objective value vTp, = — ||v?||. The solution of the original problem is then:

Az = DP,pp,, As= D'Qupp.,

where Pyp and Qap denote the orthogonal projections onto the null space and the row
space of AD, respectively.
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Observe that these directions are uniquely determined by the system

AAz = 0,
ATAy+As = 0,
2242 (3.10)
zAs+sAz = ——.
[|lzsl|

Note that the directions differ from the primal-dual affine scaling directions: recall from
(3.5) with u = 0 that the latter have —xs as the right-hand side of the third equation.
The relation between the two directions becomes more apparent by noting that, up to some
scalar factor, the primal-dual affine scaling dlrectlons are given by DP4pg, for the m-space
and D~'Q pgq, for the s-space, where

Gy = ——.
el

Note that g, is the solution of the problem
R T .
min {vTa : llaull <1} (3.11)

Recall that Theorem 2.1.5 implies that we may identify any positive primal-dual pair with a
positive vector v, where v = 1/zs; this mapping is one-to—one. So both types of affine scaling
directions are actually obtained in the v-space (see Section 2.1.1). Comparing problems
(3.9) and (3.11) one sees that the objectives are the same (minimize the complementarity).
The Dikin-affine scaling algorithm is obtained using the maximal ellipsoid contained in
the v-space; observe that this is exactly the way in which Dikin defined the affine scaling
direction for the primal problem. The primal-dual affine scaling direction is obtained using
a sphere in the v-space, which corresponds to a steepest descent step'. The analogy just
described justifies the name affine scaling direction for the new direction more than for the
old direction. In fact, we may say that the primal-dual affine scaling directions are obtained
without scaling at all. In Figure 3.1 we show the difference between the two directions in
a two-dimensional v—space. In the v-space we measure distance to the central path by the

ratio
min(v)

w( ) - ('U)

This measure was proposed by Ling [156]. Note that 0 < w(v) < 1. On the central path
it holds w(v) = 1. Observe, that the Dikin-affine scaling direction has a centering effect in
the v-space, while the primal-dual affine scaling direction keeps w(v) unchanged.

In [196) Nazareth gives a different perspective on the Dikin-affine scaling direction. Let
us consider the centering conditions

Az = b, z>0,
ATy+s = ¢, s>0, (3.12)
z,'ls,' %‘, t=1,...,n

1See Gonzaga [88] for an extensive discussion on the difference between steepest descent (Cauchy) and
scaled steepest descent (Dikin).
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Figure 3.1: Primal-dual affine and Dikin-affine scaling directions in the v-space.

Obviously, the system is equivalent to (3.1). Nazareth showed that the Newton direction
for (3.12) is given by

AAz = 0,
ATAy+As = 0,
zAs+sAz = :—;—s(pe — z3).

The resulting direction is a linear combination of the primal-dual affine scaling direction
and the primal-dual Dikin-affine scaling direction. As g converges to zero it approaches
the primal-dual Dikin—affine scaling direction.

3.3.2 The linear complementarity problem

We perform the analysis of the primal-dual Dikin-affine scaling algorithm introduced above
for the class of LCPs, which contains LP as a special case. As proposed by Ling [156] we use
w(v) as a measure of proximity to the central path, hence we analyze a large neighborhood
algorithm. We extend our analysis in Jansen et al. [113], allowing nonmonotone linear
mappings in the definition of the LCP; the class of LCPs considered is that of P, or sufficient
matrices, defined below (cf. [142]). '

Let M be a given n x n matrix and ¢ € R". The LCP is defined as follows.

(LCP) Find (z,s) € R* such that s = Mz + g, (z,s) >0 and z7s = 0.
We denote the sets of feasible and interior—feasible points of (LCP) by:

F {(z,s)eR*™ : s=Mz+gq, (z,5)20},
F° {(z,s) e R™ : s=Mz+gq, (2,5)>0}.
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We assume that F° is nonempty, or stated otherwise, that an interior point exists. For
an introduction in complementarity problems and traditional solution methods we refer
to the book of Cottle et al. [36]. The monograph by Kojima et al. [142] analyzes certain
interior point methods for complementarity problems. Special classes for matrices M have
been distinguished to guarantee the existence of a solution. These include PSD (M positive
semidefinite), P (M has positive principal minors), P, (see below) and C'S and RS (column-
sufficient resp. row—sufficient). Some known implications are

PSDcCP.CcCS, PCP, P.=CSNRS,

see e.g., Cottle [36], Den Hertog et al. [107], Valiaho [241] and Kojima et al. [142]. In this

section we will be interested in the class P, (i.e., the class of sufficient matrices).
Definition 3.3.1 (P,—matrices) Let « > 0. The matriz M € R™" is in Py(x) if

(L+48) D &(ME):i+ D &(ME):20, V{eR,

i€l (¢) iel_(¢)

where
L&) ={:: &ME: >0}, I(§={i: &MEi<0}.

The matriz M is in P, if it is in P(x) for some k.
Throughout this section, we impose the following condition on the matrix M.
Condition 3.3.2 There erists a constant k > 0 such that M is in P.(k).

If & = 0 then the complementarity problem is called monotone, since for any (z,s) € F and
(Z,3) € F it holds ‘

(z-2)T(s-3)=(z-7)"M(z-7) > 0.
In practice, it might be hard to compute the actual value of «; fortunately, an implemen-
tation of our algorithm does not need its knowledge, although the theoretical complexity
depends on &.

Observe that the skew-symmetric self-dual reformulation of the LP problem we devel-
oped in Chapter 2 is in fact an LCP. Letting (SP) be as in Section 2.1 we may define

0 A ) 0
AT 0 -% ¢ 10
& F 0 | T8
T - a 0 0

In this case M is skew—symmetric which implies that EME=0forallf e R™™*% so M
is in P,(0). Also, the CQP problem

mrin{ch-l—%zTQx : Asz,xZO},
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where @ is a symmetric positive semidefinite matrix, can be written as an LCP. The dual
problem is given by

max {bTy—-;-xTQx : ATy —Qz <, yZO}.

Y,

The corresponding LCP is defined by

(3 7)o ()

In this case we have (T M¢ = f{Tl,mm}Qf{l,,,_,n} > 0, so again M is in P.(0).
Observe from these two examples that complementarity problems offer a natural frame-
work for primal-dual algorithms.

3.3.3 The algorithm and its convergence analysis

The primal-dual Dikin-affine scaling method is easily extended to the LCP. Let a strictly
feasible pair (z,s) € F° be given. We determine the search-direction (Az,As) from which
the next iterate follows by

z(0) =z + 6Az, s(0)=s+0As,
for some step size § € (0,1). The componentwise product z(§)s(8) can be expressed as
z(0)s(0) = (z + 0Az)(s + 8As) = zs + 8 (sAz + zAs) + 8> AzAs.
For the search-direction we consider (cf. (3.10))

Alniél (z8)T(z Az + s71As)
s.t. —MAz + As =0, (3.13)

lz=tAz + s7tAs|] <1,

Using the same construction as in Section 3.3.1 the search—direction is obtained from the
system of equations
—MAz+As = 0,

r3)?

3.14
zAs + sAz = _%I"’_-’)W' ( )

Since M is in P.(«) this system has a unique solution (cf. Kojima et al. [142, Lemma 4.1]).
The algorithm is formally described in Figure 3.2.

As in Section 3.3.1 we may reformulate the system (3.14) in terms of the v—space using the
usual scaling (see (3.7)-(3.8)), which gives

—-DMDp, +p, = 0,

(3.15)
p.’E +p3 pll’

where p, = —v*/||v?||. We now prove the following lemma. Similar lemmas can be found
in, e.g., Mizuno et al. [185], Kojima et al. [142] and Jansen et al. [113]. The lemma (and
its variants) is important to prove the polynomiality of many primal-dual algorithms ([139,
144, 145, 141, 142, 181, 186}, etc.).
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Input

(29, s(): the initial pair of interior—feasible solutions;
Parameters

¢ is the accuracy parameter;

# is the step size;
begin

z = 2; 5 :=5O);

while zTs>¢ do

calculate Az and As from (3.14);

z:=2z+ 0Axz;
s:=5+0As;
end

end.

Figure 3.2: Primal-dual Dikin-affine scaling algorithm

Lemma 3.3.3 Let p., ps, and p, be as defined above. Then, it holds
() Il < ol < ol

(i) —slpul* < Az" s = p, < [Ipl*/4;

(iii) | AzAsl|,, = [Ipepslloo < (1 +46)Ipo|1?/4.

Proof: (i) Obvious from the definition p, = —v°/||?||.

(1) The vectors p, and p, satisfy system (3.15). Applying Lemma 3.4 in Kojima et al. [142]
gives

Peps 2 —£|pl’. (3.16)
Note that the cited lemma applies since the P.(k) property is preserved by pre- and post—

multiplication with a positive definite diagonal matrix (cf. [142, Theorem 3.5]). Defining
Gv = Pz — Ps, it holds

1 1
oo = 3l ~ llal?) < Zlmol” (317)
(432) Using (3.16) and (3.17) we obtain
lgoll® < (1 +46)lpo]l*.
Since pyp, = (p? — ¢2)/4 it holds

1 1 1
Ipepelleo < 7 max(lipullzes lullZ.) < 7 max(llpoll?, lgul?) < S+ 4)llpll*.

— 4
This completes the proof. ]
Defining v(6)? = z(0)s(8) we derive
v(0)? = (z + 0Az)(s + 6As) = v* + fup, + 6°p.p,. (3.18)

We first give an estimate for the new complementarity, then show that v(f) can be kept
sufficiently close to the central path.
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Lemma 3.3.4 I[f 0 < 2/\/n then the new complementarity satisfies

2(6)7s(68) < (1 - %) oTs.

Proof: With (3.18) and the definition of p, we have

2 1
z(6)Ts(8) = eTv? - + 0*pIp, < v — OM + 8~ |v|i?,
( o vt
where the inequality follows from the Cauchy-Schwarz inequality and Lemma 3.3.3. Using
the bound on # the lemma is proved. O

We proceed with a condition on the step size that guarantees feasibility of the new iterates.

Lemma 3.3.5 If 0 is such that v(8)% > 0 for all 0 < 8 < § then z(8) > 0 and 5(8) > 0.

Proof: If § satisfies the hypothesis of the lemma then z(6) and s(#) cannot vanish for any
8 € [0,8). Hence, by continuity, z(8) and s(#) must be positive for any such 6. o

In the analysis we use a large neighborhood of the central path defined by the ratio w(v) =
min(v)/max(v) in the v-space. Specifically, we require for all iterates that w(v) > p for
some p € (0,1). This neighborhood is essentially the same as the large neighborhood
N (B) introduced in Section 3.2, which can be seen by rewriting its condition in terms of
the v-space as

eTy? eTy?

Svis(1+8)——

(1-58)

So, if v is in Noo(B) it satisfies w(v) > /(1 — B)/(1 + B). Naturally, the complexity of the
algorithm will depend on the value of p used. In fact, if (29, s(9) is an arbitrary interior-
feasible starting point and v := vz(©50), we may take p := w(v(®). The next theorem
makes clear that, with a suitable step size, the new iterates not only stay feasible, but also
that the ratio w(v) remains bounded by p.

i1=1,...,n.
n

Theorem 3.3.6 If (z,s) € 7°,0<p <1, w(v) > p, 0 >0 and

| 2u(v) W0 wl) | w@NE 41— )
0<mm( 1+4n( Y s /a0 +4,g)) g (1+4/c)(1+p2)\/77)
(3.19)

then (2(9),s(8)) € F° and w(v(8)) > p.

Proof: The hypothesis of the theorem provides three upper bounds for the step size §. As
we will see below, the first upper bound guarantees feasibility of the new iterates, the last
guarantees that w(v(9)) > p, both under the premise that the second bound holds.

Recall from (3.18) and the definition of p, that

v(0)? = v? — 0——”—4— + 6%p.p,.
o2l
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Consider the function o
)=t —0-—:. (3.20)
l[o*l
One easily verifies that ¢ is monotonically increasing on the interval [0, max(v)?] if § <
[v?)|/(2max(v)?). Note that
2 ()2 2
W yAmin@) _ yae®)?, )

- bl

2max{v)? T 2max(v)? 2

hence if we enforce the second upper bound in (3.19) the largest and smallest coordinates
of v(f) can be estimated, upon also using Lemma 3.3.3, as follows:

max(v(0)) < muwr-omﬁﬁy+wﬂl+ﬁﬁmdwﬁ
win(o(@) 2 min(o)? — ool - UL (322)

Lemma 3.3.5 implies that the new iterates will be feasible if min(v(#)?) > 0. After dividing
(3.22) by min(v)? this is certainly true if 8 satisfies

fmin(v)?  6%(1 + 4k) >0

1— —
Pl dwlo)?
Using the inequality in (3.21) this certainly holds if
2
1 6 0(1+4n)20.

vno dw(v)?
Elementary calculations make clear that this condition is satisfied due to the first upper
bound on @ in (3.19). So the new iterates are feasible. Using again the monotonicity of
(3.20) and the fact that

min(v)? = w(v)?max(v)? > p?max(v)?,

we derive
(1 4 4x)max(v)?

p“ma.x(v)‘* _ 02 .

min(u(9))" 2 p'max(o)’ ~ 0y t

Now w(v(6)) > p will certainly hold if

max(v)* L 02(1 + 4x)max(v)?
flo?l 4

By rearranging the inequality we see that it is equivalent to

1+4n( 1) max(v)? 2
9 14 =) <2200 1 _ ),
T\t ) S Ty )

pimax(v)* 0 1+ 4n)ma.x(v)2'

max(v)? — ¢
o2l 4p?

< max(v)? — 0

Finally, using

max(v)® 1
[ IV
the third bound on  in (3.19) is obtained. This completes the proof. o

Now we are ready to derive the complexity of the algorithm.
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-Theorem 3.3.7 Let ¢ > 0, (z00,5©) € F° be given, such that w(v®) > p for some

0 < p < 1, and let 0 satisfy the conditions of Lemma 3.8.4 and Theorem 3.3.6. The
primal-dual Dikin—affine scaling algorithm stops with a feasible solution (z*,s*) for which
(2*)7s* < € and w(v*) > p holds, after at most

(O©T 5(0)
2\9/ﬁln (z )6 s

iterations.

Proof: By Lemma 3.3.4 in each iteration the duality gap reduces by at least the factor

So, after k steps the (error in) complementarity will be less than € if

0 \*
_ Y o0 <
(1 2\/5) () sV <e
Taking logarithms gives

0 €
kln (1— m) Slnm,

which is certainly true if
€

0
'_k2\/1_z <In (m(ﬂ))Ts(o)'

From this the bound follows. The statement w(v*) > p is contained in Theorem 3.3.6. O

To derive the actual complexity it should be checked which of the conditions on 8 in Lemma
3.3.4 and Theorem 3.3.6 is strongest. From the bounds it can be seen that for n sufficiently
large the third bound in Theorem 3.3.6 will dominate the step size computation. For
instance, we may derive the following corollary.

Corollary 3.3.8 If (z(9,5%) € F0 is such that w(v®) > p and n is sufficiently large then
the primal-dual Dikin-affine scaling algorithm requires at most

n(l +4k) . (z@)Ts0)
© (p"'(l - %) e )

iterations.

Specifically, it follows that for ‘standard’ large neighborhood algorithms in which p = (1)
the algorithm stops after at most O(n(1 + 4x)In(z(®)7 5 /¢) iterations, which is the same
as for other algorithms as in Mizuno et al. [185] and Kojima et al. [139]. Observe, that the
theoretical step size depends on &, which might be hard to compute. However, in practice
we may compute the step size with a line search by requiring w(v) = p for all iterates, which
means that the actual step size is at least as large as the theoretical one.
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3.4 Higher—order correctors

3.4.1 Motivation

To compute a search—direction interior point methods for LCPs typically use (nonlinear)
systems of the form

Mz—s = —¢q, £>0,s>0,
s = T, (3.23)

for some T € R%, (cf. Chapter 4). As in the previous section we assume that M is in P.(x)
for some & > 0 and that F° is nonempty. Let (Z,5) € F° be the current iterate. Similar to
the derivation of (3.5) a direction can be computed from the (linear) system

MAz - As = 0,

FAs+3Az = T —ES.

Obviously, the new iterate obtained in this way will not satisfy equation (3.23) due to
the linearization. Moreover, the major computational effort per iteration is to compute a
factorization of a n x n matrix, which makes it important to take the utmost advantage of
it. This led Monteiro et al. [188] and Mehrotra {176] to the idea of using corrector steps
to diminish the error that is made by the linearization. The use of one such corrector step
appeared to be very useful in practice and is related to the predictor—corrector algorithm (see
e.g., Mehrotra [176] and Lustig et al. {162, 163]). The use of several correctors per iteration
has been investigated computationally by Mehrotra [176], Carpenter et al. [34] and Gondzio
[83] among others. Recently, Hung and Ye [110] developed an r—order predictor—corrector
primal-dual algorithm, similar to the ones mentioned, and analyzed the theoretical behavior
of the algorithm, hereto inspired by Zhang and Zhang [262]. Their algorithm uses a large
neighborhood, namely

NZ(B) = {(a:,s) € F%:zs > (1 — B)ue where p= :—tﬁ} ,

n

where 3 is a fixed constant in (0,1). Consequently, the algorithm is a large neighborhood
long-step algorithm. They showed their algorithm to need at most O(nt /) In1/e)
iterations where r € [1,n] equals one plus the number of corrections per iteration. Each
iteration requires O(n?® + rn?) arithmetic operations. Note that if 7 = n then the iteration
bound is asymptotically @(,/nL), so the complexity approaches the bound for short-step
algorithms.

In this section, we prove that an r—order version of the primal-dual Dikin-affine scaling -
algorithm also possesses iteration complexity O(n("+1/(")In1/e), where r € [1,n]. This
implies that the affine scaling algorithm is not only polynomial but can also asymptoti-
cally achieve the best complexity bound as r and n increase. In the analysis we use the
neighborhood N, (), defined in Section 3.2. Recall from the previous section that this
neighborhood is essentially equivalent to the one using w(v). The results in this section
were derived in Jansen et al. [122] for LP and monotone LCPs and is extended here to
LCPs with a P,—matrix.
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3.4.2 A generic r—order algorithm

We describe a generic high—order version of primal~dual interior point algorithms, where (for
the moment) the search—direction is determined by a vector A(1). We use the neighborhood
No(B) and denote the order of the algorithm by the positive integer r. We use the notation

T T,2 2
z's e'v v

v=xs, p=—-= , and w=—, (3.24)
n n @

and also (0)7s(0)
z(0)" s
v(8)* = 2(6)s(0), w(0) ==,
to refer to the complementarity after a step of size 8. Algorithms fitting in the general
scheme are specified by the choice of A, for instance

Y = yye —v? forsome 0 <<y <1 : primal-dual path-following
W = —v? : primal-dual affine scaling

1)4

A = —m : primal-dual Dikin-affine scaling.
The second choice was studied by Monteiro et al. [188] and the first choice was analyzed in
Hung and Ye [110] for LP. Later in this section we consider the third choice for A(*). The

generic algorithm is described in Figure 3.3.

3.4.3 Complexity analysis

To stay in the neighborhood defined by 3, we choose 8 as large as possible but still satisfying
the inequalities

(1= Bu(Q)e < () < (1 + Au(C)e, YO <O, (3.27)

Although in practice one will choose a different value for # in each iteration (namely, by
checking for condition (3.27)), our analysis guarantees the existence of a fixed value for 8
that gives the desired complexity bound. Without loss of generality we assume that p =1
(otherwise we perform a scaling to accomplish this), hence (3.24) implies

~

v 2
w=— =7 3.28
Pl (3:28)
and we have the bound
(1-Be<w< (14 Pe. (3.29)

We first derive some general lemmas, without making an explicit choice for A(%).

Lemma 3.4.1  Using the directions defined by (3.25) and (8.26) in Figure 3.3 it holds

v(6)* = 2(0)s(6) = v* + 6™ + ‘22 (0" Z Ax“)As(f-‘)). (3.30)

j=r+1 t=j-r
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Input

(2@, s) € Noo(B): the initial pair of interior—feasible solutions;
Parameters

€ > 0 is the accuracy parameter;

r € [1,n] is the order;

B € (0,1) is the accuracy parameter;

RM) specifies the algorithm;
begin

z:=z0; s := 50

while zfs>¢ do

solve the first order direction (Az™, As()) from

MAz® — As® = 0,

zAs) + sAzD) = O, (3.25)

for j = 2,3,....r, solve the jth order direction (Az(), As()) from

MAzG) — Ast) = 0,
i-1
zAs)  sAz0) = _— ZAx(t)As(j—t);

t=1

(3.26)

choose a step size § > 0 such that

z(0) = z+3 A s(0) =5+ 0 AsY),

j=1 7=1

is in Noo(B) and p(8) as small as possible;
z:=z(0), s:=s(8);
end
end.

Figure 3.3: Generic r-order algorithm

Proof: We prove the lemma by induction on r. For r =1 it holds

v+ 0(sAz® + 2AsM) 4 2Az (VAW
= v 4 0rM + 2AzMWAM),

(8)s(0)

which is the desired equality. Assume the result is true for r — 1. Denote

r—1 -1
AUz =¥ g Az ), AUV =391 As0),

j=1 =1
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Then for r we have
z(0)s(0) = (z+ A0 Vg 40" Az)(s + ACVs 4 g7 As)
(z+ AU V) (s + AUDs) 4 07(2As™) + sAZD) +
o (Ax(’)A("”s + AsOAENzZ) + 67 Az AsD

2(r-1) r—1 ) r—1
= v 46 4+ YV Y AzOALT gy Az 4
j=r t=j—(r-1) t=1

r—1 r—1
o (AM Y oA + A Y GjA:v(j)) + 67 Az As),

J=1 J=1

The right-hand side is a polynomial in 8. It is easy to see that the coefficient of @7 is zero
for 2 < j < r. For j = r, the coefficient is also zero due to cancellation of terms. The
coeflicient for , r+1<j <2(r—1),is

r-1 T
¥ (Aw(t)As(J‘—tJ) + AzPASUT) 4+ AsDALI) = 3 AzALL,

=j—r41 t=g—r
For 6*—! we find
AcASTD L ADALD = T AgDAsEI,
t=2r—1-r
and for %" we have the coefficient
AzIAsT) = zr: AzAE ),
t=2r—r
Combining gives the required equality for » and completes the proof. o
Using (3.28) and (3.30) we observe that condition (3.27) is certainly satisfied if

:Y_‘: (gj 3 A:c(')As(j“‘))

j=r+1 t=j—r

S (L4 B)u(6) - (wi+0hY), i=1,...,n, (331)

and also
2r r
3 (af‘ ) Ax(’)As(j")) <w;+ 0 — (1= B)u®), i=1,...,n.  (3.32)
J=r+1 t=j—r .

For ease of notation we introduce the vectors

£9) = ‘\:_: AzAg-D

t=j—r

for j =r+1,...,2r. Using the Cauchy-Schwarz inequality we may bound ¢(6) from below
by
T (1) ()
eh +_1_ 2 pieT el >1+9e A _\/L_ Z 0.1”5(1)"

j=r+1 J=r41

pO)=1+90
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and from above by

@ <1402 L LS gy (3.33)
p(O) <1+ +— . :
n \/ﬁj=7+1

The main task in the complexity analysis is to analyze the effect of the higher-order correc-
tions. For this purpose, it appears that we can use very weak bounds. Observe that

2r 27
3 gD < 3 ). (3.34)
J=r+1 . j=r+1

Combining (3.34) with the bounds on u(f) it follows that (3.31) and (3.32) are certainly
satisfied if @ satisfies

2r ) ) n eTh(l] )
3 D) < 1—+;/_~+—ﬁ ((1+ﬂ) (1+o m )—(w,-+oh§1>)), i=1,...,n,
J=r+1
: (3.35)
and also

eTp(V)

i gjné(i)“ < ___\/ﬁ— (wi + thl) —(1-0) (1 +6

1-8+n )), i=1,...,n (3.36)
j=r+1

n

We will proceed as follows. First, we show that the terms ||(()|| can be bounded in terms
of ||h())||. Then we consider bounds for the right-hand side quantities in equations (3.35)
and (3.36). Let d = (zs7!)!/2, so the usual primal-dual scaling vector. Define p¥) :=
dAsY 4 d~1Az(), 1 < j < r. Observe that

V) = w20, (3.37)
Now for j > 1, we have
[dASOI? + [|d A |? = [[dAsD) 4 ¢ AcP|? — 2 AP A < (1+ 20)|[p2,
where the inequality follows from Lemma 3.3.3. So
max(||d* AzD|, [ dAsD) < VI +2x]|p?||. (338)
In the following lemma a bound on the norm of p¥) is derived.
Lemma 3.4.2 Forj=1,2,...,7, it holds

(1+26)""19(4)

()
Il < = ﬂ)(]’_l)/g

™M), (3.39)

where the integer sequence ¢(j) is defined recursively as follows:

=1, 66)= S 409G -1, =23,..
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Proof: The proof is by induction on j. Note that (3.39) trivially holds for j = 1. Assume
(3.39) holds for all £ with 1 < £ < j. We will show it to hold for j.
-1

j—1
w12 (’Z Az® Asu—u)
1 J - 142 4
(f————QZIId LAz ||dAastY)| < = l/zZIIP“ [ 1p4=2)

1+2" 12: ((1 +2n)t 1¢( )”p(l)"t(l +2K') i ¢( )” (1)”3 t)

i—1
||p(j)|| JE:Ax(t)AS(J'-f)

<o, 8

B)1/2 B)-1)/2 (1 — g)li-t-1)/2

1+26)71 2] 1+ 2x)7~ ;
- (—ﬁ——’?—lm(zqﬁ )n wp = GRS o,

In the second inequality we use (3.29); in the third we invoke (3.38); the last inequality
follows from the induction hypothesis. a

Next, we establish an upper bound for ||¢V)|| in terms of ptV).

Lemma 3.4.3 Forj=r+1,..,2r, it holds

. r ) (M7 167
G — WAsG-0] « & +26) 71 [pM]]
€] tqz;r AzPAs < (1— p)ire-1 &

Proof: Using Lemma 3.4.2 and (3.38) we have for j =r+1,...,2r

< X Nl A jdAst))

t=j~r

t-1 J=t=1g40s .
e 35 (I o L7 0 )

3 AzOAsH0

t=j—r

t=j—r

(L + 26y lpM|F & :

= - t -1

g 3 08—

(14 26)H|pO

S (1 _ ﬂ)j/z_l ¢(2T)-

The inequality in the lemma follows from the solution of the recurrence relation for ¢(j) in
Lemma 3.4.2, which is given by

¢(j)=1.( (’_1))5 297,

J\ J-1 J
(]
In the primal-dual Dikin-affine scaling algorithm the vector A{Y is given by (recall v? = w
by assuming u = 1)

B = e
ool
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Since (1 — B)e < w < (1 + B)e, we have (recall (3.37))

[|w®2e]|?
M7 = T S < % <1+ 8.

This estimation enables us to make the bound in Lemma 3.4.3 independent of j, since the

functions "
1+ 8y i
(1 — ﬂ) and (14 2k)
are increasing in j. Hence it holds for j =r +1,...,2r
Y AzOASI] < (14 26)7 7 (1 + ﬁ) (1-B)16" (3.40)
t=j—r 1-— ﬂ 87'
We introduce - .
2(0) =1+ 6500 1 e W _q _glll
n n||w]| n

In the next lemma we obtain bounds for the right-hand sides of conditions (3.35) and (3.36)
for our choice of A1)

Lemma 3.4.4 Let 5(0) =1 —08|w||/n, 8 < /n/2 and 1 — B < w; <1+ B, Vi. Then the
following bounds hold:

min [ (- 028 ) - 1 - pyace)] > 2=,

wia (14 00— (w05 | > 72

Proof: To prove the first inequality we use the fact that w; — fw?/|jwl| as a function of w;
attains its minimal value at one of the bounds 1 — 8 or 1 + 8. In the first case we have

1-p - W87 (1—ﬂ)ﬁ(0)=(1—ﬁ)(1—0(—ﬁ5“ﬂ—(1—M))

and

el n
— p1_g (el _1-8 _ 1 1- ﬁ) 0801 —-8)
- w-p () 20 (51 2) =R
where the inequality follows from the fact that flw|| > /. In the second case we have
_ B s _e+p? (l_ﬂw_ll)
01 +p)* (A1-BO _,,_ 98
> 28— Tn + NG —2ﬂ—\/_(3+ﬂ)

_ ﬁ(zf 5+ ﬂ)) 0ﬁ(‘1/ﬁ B)
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where the last inequality follows from # < /n/2. This completes the proof of the first
inequality in the lemma. The second inequality can be proved in a similar way, where
instead of using |[w|| > /n, the upper bound on ||w|| from Lemma A.2 should be used. This
is left to the reader. o

We combine the bounds obtained so far to give a (stronger) condition on 8 such that it
certainly satisfies (3.35) and (3.36). Notice that for n > 2 it holds

Y R NV N
148+vr " 47 1-B+n &
Using (3.40) and the bounds in Lemma 3.4.4 we now require # to satisfy
1+ 8\ (1-8)16" _ 68(1—B)
< .
1= ﬂ) &  — 4y (3-41)
to replace conditions {3.35) and (3.36). Hence we obtain the (sufficient) condition that 6

satisfies
2 1 1-8\" B8
I - 42
< 167 (1 + 2k)%-1 (1 +ﬂ) NG (3.42)

We can now derive the complexity for the primal-dual Dikin-affine scaling algorithm with
corrector steps.

Ter+l(1 + 2n)2r—l (

Theorem 3.4.5 Let be given an initial point (z(?,s®) € F° and in Noo(B) for some
B € (0,1) and let r € [1,n] be an integer. Then after at most

O( (r+1)/(2r)(1+2,c)2 1/rl (z (0))1'3(0))
(-8B €

iterations the r—order primal-dual Dikin—affine scaling algorithm has generated a feasible
pair (z*,8%) such that (2*)Ts* < € and (2*,5*) € Noo(B); each iteration of the algorithm
uses O(n® + rn?) arithmetic operations.

Proof: From (3.27) and (3.42), it immediately follows that in any iteration we can choose

the step size
1
v/26.
(14 2x)2-1/r 16 1 +ﬂ)

9 = n~1/)

Using (3.33), the definition of 2 and Cauchy—Schwarz we have (recall u = 1, so eTw = n),

#(0)51—% \/_' Z 671D

J=r+1

The last term can be bounded with (3.40), giving

0 1
<1 — 41 2r-1
p) <1l-—+ —\/ﬁra (1+2¢) <

NG

14 8Y (1= 8)16
1-8 &
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Using inequality {3.41) we obtain

B1-) .,

4n 23/’

for n > 2. Combining this with the bound on ¢ implies that no more

2/ rr 16(L48) 1 (20)Ts©
i L+ 2T e e

iterations are needed to obtain a solution (z*,s*) for which (z*)Ts* < e. This implies the
iteration bound. In each iteration, one factorization of an n X n matrix has to be performed,
together with r backsubstitutions. This gives the number of arithmetic operations per
iteration. 0

u(@gl—%Jr

The theorem shows that asymptotically only O(y/n In(z(®)7s( /¢) iterations are required
with O(n®) arithmetic operations per iteration. In practice, however, computational expe-
rience with analogous techniques have shown that the use of one corrector is very effective,
while using more than a few correctors is not worth the effort {e.g., Carpenter et al. [34]).
In Section 3.7 we will see the same phenomenon.

3.5 Nonlinear complementarity problems

3.5.1 Introduction

(Monotone) Nonlinear complementarity problems ((M)NCPs) form a large class of mathe-
matical programming problems with many applications. For instance, any convex program-
ming problem can be modeled as an MNCP. This class of problems is closely related to the
class of variational inequalities, which play an important role in the study of equilibria in,
e.g., economics, transportation planning and game-theory. We refer to Cottle et al. [36] and
Pang {204] for surveys on complementarity problems. A survey on variational inequalities
is provided by Harker and Pang [99].

The study of interior point methods for LP also led to the use of barrier methods for
nonlinear convex programming problems, see Nesterov and Nemirovskii {199], Jarre [124],
Den Hertog et al. {101, 102, 106], Kortanek and Zhu [149], Monteiro and Adler [187], Zhu
[263], etc. An important difference between applying these algorithms to linear versus
nonlinear problems is that for the latter the convergence rate has only been established
for problems satisfying certain Lipschitz conditions. A general and unifying analysis was
provided by Nesterov and Nemirovskii [199] for the study of central path—following methods
for NLP problems satisfying the self-concordance condition. Jarre [124] and Den Hertog et
al. [106] used the relative Lipschitz condition, which was later shown (see e.g. [126]) to be
essentially equivalent to self-concordance. Zhu et al. [149, 231, 263] used the scaled Lipschitz
condition to analyze path—following methods.

Several interior point algorithms for LCPs and NCPs have been developed as well, see
e.g., [95, 96, 142, 143, 144, 189, 205, 251, 257, 258] and the references therein. Only in
the beginning 1990s it appeared that many of them are related to fundamental work of
McLinden {172]. The global convergence of these algorithms has been shown using the
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existence of the central path and relying on a barrier function. For NCPs the study of
the convergence rate has been restricted to mappings satisfying a smoothness condition,
similarly as for convex programming. Chapter 7 in [199] is completely devoted to the
study of variational inequalities, and uses a generalization of the self-concordance condition
for convex programming. Some drawbacks of the analysis in [199] are that it focuses on
central path—following methods, that the type of search—direction to be used is prescribed
(Newton’s direction w.r.t. a self-concordant function), that the algorithm is purely primal,
and that small neighborhoods of the central path are used. These negative aspects have
been improved upon in subsequent papers. Nesterov [197] uses various strategies with
potential functions to be able to make long steps; Nesterov and Todd [200] use a symmetric
primal—dual conic reformulation of nonlinear convex problems for the analysis of primal-
dual potential reduction methods. Potra and Ye {208, 209] deal with a primal-dual potential
reduction algorithm for solving MNCPs, and study the global and local convergence rate
and the complexity of the algorithm. Their smoothness condition can be regarded as a
generalization of Zhu’s condition [263]. Kortanek et al. [148] employ this algorithm to solve
entropy optimization problems. However, we are not aware of results concerning other
search~-directions, neither of large neighborhood -algorithms nor an analysis for problems
with nonmonotone mappings.

In this section a complexity analysis for a new family of primal-dual affine scaling
algorithms for NCPs is developed. The family is constructed by varying the amount of
scaling in the primal-dual (Dikin-)affine scaling direction, and is characterized by a scaling
parameter v. Special cases include the primal-dual affine scaling direction with » = 0
and the primal-dual Dikin-affine scaling direction with » = 1. Neither the algorithm nor
its analysis use a barrier function. We use wide neighborhoods of the central path as in
the previous sections. An implication is that we may not hope for a complexity bound
better than O(nln1/e), and that we need to consider separate components of the vector of
complementarity products instead of its norm. The latter, and the fact that we allow for
nonmonotone mappings, require us to reconsider the use of several smoothness conditions
for this type of analysis. We introduce a new condition (Condition 3.5.2), which is trivially
satisfied in the linear case. An advantage of this condition is that it does not require
monotonicity of the mapping while this seems to be indispensable for the scaled Lipschitz
condition and self-concordance condition, even if the mapping is linear.

3.5.2 Problem statement and search—mappings

Let us consider the NCP:
(NCP) Find (z,s) € R™ such that s= f(z), (z,8) >0 and 2Ts=0.

Here f is a C'-mapping from R, to R”. We denote the sets of feasible and interior—feasible
points of (NCP) by:

= {(x’S)G]R'zn : 5=_f($), (.’IZ,S)ZO},

F
FO {(z,s) e R*™ : s = f(2), (z,5)>0}.
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We assume that 70 is not empty, stated otherwise, that an interior point exists. Obviously,
the LCP is the special case where the mapping f is given by

f(z) = Mz +q,

for M € R™™" and q € R". Throughout this section we impose the following condition on
the mapping f (recall Definition 3.3.1).

Condition 3.5.1 There exists a constant & > 0 such that the Jacobian V f(z) of the map-
ping f is in Py(k) forall z > 0.

Notice that if x = 0 then f is a monotone mapping. In practice, it might be hard to compute
the actual value of «; fortunately, our algorithm does not need its explicit knowledge. As in
Section 3.3 we use the following notation:

v = (23)}/2, w(v) = min(v)/max(v).

Let us now define a search-mapping and derive some of its properties. Suppose that we
have an interior-feasible point (z,s) € F°. Given displacements Az and As, we define

z(0) = z+0Az, (3.43)
g(6) = f(z+0Az)— f(z) - 0V f(z)Ax, (3.44)
As(8) = As+g(8)/9, (3.45)
s(0) = s+0As+ g(0) = s+ 0As(8). (3.46)

The mapping s(#) was introduced in [146] as a modification of the one in [187] for the convex
programming problem. The mapping g(f) contains the second order effect introduced by
the displacement. For a linear mapping f the term g() vanishes and we obtain

z(0) = z + 0Az, s(0)=s540As,

which means a usual linear search-mapping; absence of g(8) accounts for the fact that no
smoothness conditions are required in the linear case. Hence, one of the major tasks in this
section will be to accommodate the analysis of Section 3.3 to the presence of g(6).

Obviously, it holds (z(0), s(0)) = (z, s). We require our search—directions to satisfy the
following (linear) system of equations

— Vf(z)Az + As=0. (3.47)
Then it follows

s(6) — f(=(9))

s+ 0As+ f(z + 0Az) — f(z) — OV f(z)Az — f(z + 0Ax)

= s— f(z}+ 8-V f(z)Az + As)

= 0, (3.48)
for every 8 > 0, i.e., feasibility is preserved by construction. Consequently, if we can find
0 such that (z(8),s(8)) > 0 then (z(8),s(9)) is also interior{feasible. The term g¢(@) is
continuous and higher—-order in 4, i.e., limg_.q ||g(#)||/@ = 0; hence we have
ds(6)

36 = As.

=0
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The componentwise complementarity product z(#)s(8) can be expressed as follows:
z(0)s(8) = (z + 0Az)(s + As(0)) = xs + 9 (sAz + 2As(8)) + 8> AzAs(8). (3.49)

Using as before the primal-dual scaling vector defined by d = (xs~*)1/2 the search—directions
in scaled space are
p: =d Az, p, = dAs = DVf(z)Az. (3.50)
Let us define the vector p, as
Pv = Pz + Ps- (351)
For convenience in further discussions we define the mappings:

ps(8) = dAs(b) =p, +dg(6)/9,
po(0) = po+ps(8) = p. +dg(6)/9, (3.52)
v(0) = (x(0)s(8))V/>
Using these definitions we may write

sAz + zAs(8) = vp,(9),
AzAs(8) = pops(6).

Hence equation (3.49) can be rewritten as

’U(9)2 = z(8)s(0) = v+ fvp, () + ozp:cps(o)' (3.53)
Our next task is to prove results analogous to Lemma 3.3.3 for the vectors Az and As(f).
For this purpose we introduce the following smoothness condition and impose it on the
mapping f.
Condition 3.5.2 Let z € R}, s = f(z) € R}, be given. Let p, and py(6) be as defined
above. There ezist © > 0 and v > 0 such that

Is(6) = psl| < v 0[]

for every 8 € (0,0].
The following identity is useful in the analysis:
»(0)—p, = ps(0) — ps.
Notice that the inequality ||p,(0) — p,|| < 78||ps|| is equivalent to

J ( flz + OA;:) 1@ _ g4 Az)

< 70|ldV f(z)Az|, (3.54)

or stated otherwise
20

6

Note that the condition depends not only on the mapping f but also on the displacement
(Az,As) used in an algorithm. If the mapping f is linear, however, the above condition
holds with © = 400 and 7 = 0, independent of the search—directions. In Section 3.5.5 we
will show how Condition 3.5.2 is related to other smoothness conditions on the mapping f.
We derive the following lemma.

< 7b||dAs|.
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Lemma 3.5.3 Let p,, p,(6), p, and p,(0) be as defined above and let Condition 3.5.2 hold.
Then for any 6 € (0, 0] it holds
(i) Ipu(@)I < (1 + 16T Zw) Inol;
(i9) [po(0) = pul < 1OVTF Zr e < vOVTT TR v/Alpulf(lpe)-
Proof: Applying Lemma 3.3.3(é¢) to relations (3.51) and (3.47) yields
2ol = lipoll® — 207 s — llpoll® < (1 + 26) 0| (3.55)

Since Condition 3.5.2 holds, we have

22O < llpoll + 1125 (6) — psll < llpoll + ¥0llpsll < (1 + 48V + 2)|Ip. |

which is the assertion of (z). Similarly,

|pv(0) - Pvt = |Ps(0) - pa| < ’YGHPsHG < ')'BV 14+ 25"1)11"6-

Finally, we derive

—1 —1 vnmax(|p.|) Vvn
e =||pfip, Po < < - = .
”pU” ”P ”P Po ”pU“ |pv ' |pv, Inm(|pu|) !Pul w(lpul) |Pu'
This completes the proof of (i7). o

The following lemma serves a similar goal as Lemma 3.3.3 in the linear case.

Lemma 3.5.4 Let p;, p,, ps(9), p» and p,(6) be. as defined above and let Condition 3.5.2
hold. Then, for any 0 € (0,0, it holds

() —(1+9)(1 + 26)l[p.||* < AxTAs(6) = pps(9) < (1+0yv1+26)|Ips|*/4;
(1) |AZAS(O)],, = Ipeps (oo < (1 +07VTF28)*/4 + (1 +70)(1 + 26)) lIpo|I*-
Proof: By (3.44)-(3.47) and (3.52), we have

pa(6) = dAs(8) = d (f(“” +08z) - f(x)) '

Using also (3.50) we obtain
1
AzTAs(0) = prpi(6) = gpid(f(c +6Az) - f(2)).
From (3.54) we derive

d(f(z + 0Az) — f(@)I| < (1 +19)0l|dV f()Az|| = (1 ++0)6][p.|.
Just as in (3.55) it holds
llp<ll® = lpoll* — 20725 — llpsll® < (1 + 26)llpu |- (3.56)

Consequently,

|AzT As(0)|

IA

Sleall I(f(@ +0A2) — FE)I| < Slpell (1 +¥0)0lip
(L +70)(1 + 25) 1. 1%, (3.57)

IA
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where the last inequality follows from (3.55) and (3.56). This proves the left inequality in
(2); for the right we proceed as in the proof of Lemma 3.3.3. By (3.52) we have

pv(o) =ps+ pa(o)-
Letting ¢,(0) = p. — ps(#), we obtain the following bound:
1 1 1
27p+(0) = L(lIpo O ~ lla. (I < 7UpoOI? < (1 +0yVT+26)%Ipull",  (3.58)

where the last inequality follows from Lemma 3.5.3. This shows the bounds in (). For (4%)
observe that combining (3.57) and (3.58) leads to the bound

1 1
@I < U+ 90VTTZR ol + (1 + 7001 + 26|

Hence, using
1
pop(6) = 30 (0)" - u(0)?)

we have
lpeps@le < 5 max(pO)in lu(IZ) < max(lpu(OIF, lau(I)
< T HBVITZR Il + (L +10)(1 4+ 20) ol
This completes the proof of the lemma. O

The lemmas derived above enable the analysis of primal-dual algorithms for NCPs. Before
proceeding we mention that for MNCPs the bounds in Lemma 3.5.4 can be improved using

AzTAs(0) = ;—Z(Mx)T( f(z + 0Az) — f(z)) >0,

which is the monotonicity property.

3.5.3 A family of affine search—directions

Up to this point the analysis was general in the sense that we did not specify our search-
directions explicitly. We now derive the family of affine scaling directions introduced in
Jansen et al. [113]. The directions are obtained by minimizing the complementarity (suitably
scaled) over the Dikin—ellipsoid, which is the idea of Dikin’s primal affine scaling algorithm
[44]. Consider the problem

IB,i,n zTs 1 (z,8) e.’F}.

The NCP satisfying Condition 3.5.1 is equivalent to the above problem in the sense that
(z, ) is a solution of the NCP if and only if it is a minimum solution of the above problem
with objective value zero. According to the search-mapping defined by (3.43) and (3.46),
the complementarity after a step is given by

2(0)7s(8) = &"s + 8 (T Ac + 3T As(0)) + 6 AzT As(8).
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It follows from definition (3.44) of ¢(@) that

Ba(0)'s(0)| _ . =(6)7s(6) —aTs
20 =% 9

=0

= sTAz + 2T As. (3.59)

This relation points to the following idea for the determination of the search-direction
(Az,As). Let v be a fixed nonnegative constant (the order of scaling in the algorithm).
Taking account of the equation —V f(z)Az + As = 0, we consider the following subproblem,
which for v = 1 is essentially the same as (3.13)

Ami&l (zs)) (27 Az + 572 As) : =V f(z)Az+As =0, ||z Az + s As]| < 1 }

For v = 1 the solution of this subproblem minimizes the derivative (3.59). Proceeding as in
Section 3.3 it follows that the solution satisfies the KKT-system:

—Vf(z)Az+As = 0,
2
sAz+zAs = ————

llo2 ]
The reader may observe that in case of LP or CQP for v = 0 this system exactly determines
the primal-dual affine scaling direction of Monteiro et al. [188]. From this point on p, will
have the following definition:

,U2u+1 ( )
Py = . 3.60
o>l
Using the definitions in (3.50), the above optimality system can be rewritten as
—DVf(z)Dps +ps = 0, (3.61)
Pz+pPs = Do (362)

Since the Jacobian V f(z) is in P.(«) the system has a unique solution for every z € R™ (cf.
[142, Lemma 4.1}).

3.5.4 Convergence analysis
General results

We analyze the behavior of the family of primal-dual affine scaling algorithms as follows.
First, we derive general results for v > 0. These regard the complementarity and the
feasibility of the iterates after a step. Throughout this section, we impose the following
condition on the mapping f which is a special case of Condition 3.5.2.

Condition 3.5.5 There ezists a constant 7 € [0,1) and @ value © such that for all p, and
ps(8) the algorithm computes, it holds

rwlv 2v+1

Ipa(®) - pull < T2

9 |lps
T lips |

Jor every 8 € (0,0].
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Obviously, we impose the condition for those p, and p;(6) generated in the algorithm under
consideration. Hence, in this section we will further assume that p, is given by (3.60) for
certain constant v > 0, and that p.,ps,ps() etc., are obtained from solving (3.61)—(3.62).
From Lemma 3.5.3 and Lemma 3.5.4 we obtain the following result, which is a key for the
behavior of v(8)? = z(6)s(9).

Lemma 3.5.6 Suppose that Condition 3.5.5 holds. Then for every 8 € (0,0] we have
() llpo (Ol < (1L + 7 (0)* /1 + 26/ \/n)|[olles < (1 + O1(v)* VT + 26/y/n)||v]);
(i1) ~(1 + 671+ 26)v>+2/|[v* < vp,(0) < —(1 — Ox/T ¥ 26)0™*2/||v?|;
(ii6) BZpa(8) < (1 + brw() ™+ VT T 25//R) [lol[2/4;
(iv) Ipeps(O)lloo < (1 + Orw(v)> VT +2x//0)? 4+

H(1 + Orw(v)**1[/n)(1 + 26)) [[vllZ,.

Proof: The vector p, is given by p, = —v?*!/||[v?]|. Hence we have
G
= < < |lv
”p'"" ”112”” - ”'UNOO — ” ”7
w(lpol) = w(v)™*,
|po| = —py
Substituting these in Lemmas 3.5.3 and 3.5.4 we complete the proof. c

Let us introduce some notation:

= w1+ 2k,
= W)™ (2yR), (3.63)
= qw(v)¥ 1§ 2k//n = 270.

Notice that ¥ and 7 depend on v; however, in this paragraph we are concerned with the
behavior in one iteration so v can be considered to be fixed. Later we will derive uniform
bounds for these quantities. We are now ready to show that the complementarity can be
reduced with a suitable step size 6.

2 | N
i i

Lemma 3.5.7 Let 7,9,7 be as in (3.63). After a step it holds
(1) If 0 <v <1 and § < min(0,1/(27), 1/(v/n(1 + 9)?)) then

xm%m=mes@—77)w2
(i) If v > 1 and 6 < min(0, 1/(27),w(v)*2/(v/n(1 + 9)?)) then

+(O)Ts(6) = [v(O)I < ( L2Z0) o

Proof: Since § < 1/(27) we have 1 + 67 < 1 + 9. Using (3 53) and Lemma 3.5.6 the new
complementarity is bounded by

eT,vzu +2 1

ev(0)" < |lol|* - 6(1 - 67) - Bz + 072 (1 + 07)%|lolI"
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Applying Lemma A.3 and the third bound assumed on 8 it holds

ToOf < ol - 00+ 0L Tl = (1- 102 ) ol

The proof of (i7) is similar. o

In the following lemma we derive a bound 8 such that (z(6), s(6)) € F° for every § < 8, i.e.,
the new iterate is interior—feasible.

Lemma 3.5.8 Let v > 0 be a given constant and let T,9,7 be as in (3.63); define also

7= i(l -}-5)2 + (1 + 2\/_7),—(119:—57);) (1 + 2x). (3.64)

Suppose that Condition 3.5.5 holds. If (z,s) € F° and

. 1 1 2v/nw@)® wv) 9w(v)?  3w(v)
0§0<m1n(®,2ﬁ-_,‘/ﬁ(1+§)2, 30 +2) 7 ( 1+ Ton7? 4\/ﬁﬁ)) (3.65)
then (z(9),s(9)) € F°.
Proof: From the fact that the search-direction satisfies (3.47) we have feasibility from
(3.48). We still need to show that (z(#),s(#)) is interior-feasible. The first upper bound
8 < O follows from Condition 3.5.5. The second bound on # implies 1 + 67 <1+ 3. Using
also the third bound on @ and Lemma 3.5.6(zv) we get

llpops(B)llee < 7 M|0ll2-
Relation (3.53) and Lemma 3.5.6 imply then for every 8 € (0, 0]

+
0(0)2 < v? — 0(1 )” 2,,“ + 02 “v”2
+2
0(9)2 Z 0(1 + 97") ” 2v ll ﬁznv”goe'
Let a > 0 and consider the function
ty+1

#t) =t = bagpg.

For every «, ¢(-) is monotonically increasing on the interval [0, max(v)?] if 6 < |Jo®||/((1 +
v)amax(v)?). Note that
o) N I+ L _2/Amin(f_ 2/mu(o)
(L+v)(1 - 67)max(v)? = (14 v)(1 + 67)max(v)? ~ 3(1 + v)max(v)>* ~ 3(1+v) ’
hence if we enforce the fourth upper bound in (3.65) the largest coordinate max(v(#)) of
v(f) and the smallest coordinate min(v(#)) can be estimated as follows:
max{v)?+2
ll“”ll
min(v)?+

l[o?]

max(v(8))? < max(v)? — (1 — 07)——>— + 0’7’ max(v)?, (3.66)

min(v(9))®> > min(v)? — (1 4 7)) ———-— — 0*FPmax(v)>. (3.67)
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By the continuity of the mapping v, dividing relation (3.67) by min(v)? gives the following
condition to ensure min(v(6)) > 0:
72

min(v)?” 7
1-4(1+67) T 02w(v)2 > 0.

Since
min(v)? min(v)? 1

e = Vamin@) ~ Va°
and 1 + 6% < 3/2 the condition certainly holds if
3 —2

a2

The last upper bound in the lemma ensures the inequality above. This completes the proof
of the lemma. o

Polynomial convergence for v > 0

We now prove the polynomiality of the class of primal-dual affine scaling algorithms for
v > 0. As in Section 3.3 each algorithm in this class generates a sequence of iterates
{(z®,s®) : & = 1,2,...} satisfying w(v™) > p for some constant p € (0,1). Suppose
that the current point (z,s) € F° satisfies w(v) > p. Our algorithm determines the next
point along the curve ((6), s(6)) given by (3.43) and (3.46) by choosing a step size §. The
following theorem ensures the existence of § > 0 for which (z(8), s(8)) € F° and w(v(8)) > p
for every 8 € (0, 6).

Theorem 3.5.9 Let v > 0 be a given constant, let 7,9,5 be as in (3.63) and 7% as in
(3.64). Suppose that Condition 8.5.5 holds. If (z,s) € F°, w(v) > p, and 0 satisfies (3.65)

and L2 21 - o)
. —p” p(1—p~
<8< .

0_0_mm(2?(1+p2”)’2ﬁ2(1+p2)\/ﬁ)’ (3.68)
then (z(9),s(0)) € F° and w(v(8)) > p.
Proof: The part (z(0),s(8)) € F° is obvious from Lemma 3.5.8. Hence we only need
to show that w(v(8)) > p, i.e., p?max(v(8))? < min(v(8))?. Using the relation min(v) =
w(v)max(v) > pmax(v), the same discussion for finding the bounds (3.66) and (3.67) leads
to the following relation:

min(v(0))? > p? (max(u)2 -1+ 0‘)9——W—é“)2—m- 6? ;—2max(v)2) . (3.69)

Hence, from (3.66) and (3.69) we derive a sufficient condition for 8 as follows:
max(v)?+2
o>l

2|/Ina.x v 2v42 =2
< P (max(v)2 o1+ of)”wﬁu—”)— - ozg;max(uy) .

7 (o) - 2 - 0m + O man(o)
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Rearranging this inequality gives

=2 2 v
o7 (1;Fp ) < maxgv)
p llv?||

(1 -o0m) — (1 +6m)p™).

Since ||v*|| < y/nmax(v)?, we obtain the bound
p* (1 - 07) — (1 + 07)p™)
PA+Ave
Using the first bound in (3.68) we find that 6§ will certainly satisfy this inequality if
2 2v
Pl —p™)
0< 71— ——.
= 221+ )

Thus we obtain the theorem. m}

g <

We are now in the position to derive the complexity of our algorithms.

Theorem 3.5.10 Let v > 0 be a given constant and let 0 < p < 1 be given. Suppose that
Condition 3.5.5 is satisfied. Let € > 0, (z(®,s®) € F°, such that w(v(®) > p, be given and
let 0 satisfy the conditions in Lemma 3.5.7, (3.65) and (3.68). Then the primal-dual affine
scaling algorithm with order of scaling v stops with a solution (z*,s*) for which (z*)Ts* < e
and w(v*) > p holds, after at most

(0T 4(0)
Fo) (V/TT—‘ In (L_%.S__)

iterations if 0 < v < 1, and after at most

o (p\/,—l (1(0)):‘3(0)>

2v—-24 1

tterations if v > 1.
Proof: Follows from Lemma 3.5.7 and Theorem 3.5.9. (]

To be more specific about the complexity we have to check which of the various conditions
on the step size 4 is strongest and how 8 depends on the input parameters. It is easy to
verify the following bounds for the quantities in (3.63)

0 < 7™ < V1+26<1+k,
PP (2y/n) < 9 < 1/(2v/),
0 < 7 < VI+2//n,

where we use w(v) > p. Using also n > 2 we get from (3.64)

Zg#si(przlﬁ) +<1+21/(\2/_\2/§)) (1+42&) <3(1+ &) (3.70)
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We analyze the bounds in (3.65) consecutively. Notice,

Ly 1

™ T T 2%
1 S 1 S 1
VA(L+9) = V(1 +1/(2v2)? © 2V’

2o | 2y/mp
3(1+v) “3(1+v)

We have
3w(v) < 3

4T T 402, /5/4

since the function ¢(t) = /1 + ¢? — ¢ is monotonically decreasing we obtain

w(v) ( 14 Jw(v)? 3w(v)) > w(v)(\/i_ 1> p
7 2 e

<l

16n7?  4/nf 7 5/1+ &
For the bounds in (3.68) it holds
1-— p2u 1— p2u
1+ %) > AT+ AT )
pPA=ps") _ pP0-p)
T+ e = 801+ R0+ e
Finally, for the bound in Lemma 3.5.7(¢¢) we have

w(,v)2u—2 p2u—2

a0 2/m

Thus we obtain the following result as a corollary of Theorem 3.5.10.

Corollary 3.5.11 Let us take the situation as in Theorem 3.5.10 and specify p = 1//2.
Then
(1) If 0 <v <1 and n > 2 we may choose

1-27v
0 = mi —_—
o (6’ 18v/a(1 + n)) ’
hence the number of iterations required by the algorithm is

O (e (4204 1, 7Y

(i) If v =1 and n > 2 then we may choose
1

0= min (0, 7).
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hence the number of iterations required by the algorithm is

0 (e (4.t ) E2).

(4ii) If v > 1 and n sufficiently large we may choose

# = min (9, 57'\/5—(11;}_))

hence the number of iterations required by the algorithm is

o (max <2u\/ﬁ,4”n(1 + /c)) In M) .

©

Observe that for v > 1 the complexity bound gets worse as v increases; similarly, for v < 1
the complexity bound inclines as v decreases to zero. From a theoretical point of view the
complexity is ‘optimal’ if » = 1, i.e., for the primal-dual Dikin-affine scaling algorithm.
This behavior is also apparent from the computational results we will present in Section
3.7.

Polynomial convergence for v =0

Now we show that, with suitable step size, the primal-dual affine scaling algorithm of
Monteiro et al. [188] can be applied to NCPs satisfying Condition 3.5.1, with a polynomial
complexity bound. We believe that this is the first proof of polynomial convergence of this
affine scaling algorithm for NCPs. Mizuno and Nagasawa [184] already showed (using a
potential reduction approach) that the complexity of the algorithm is not affected using
large neighborhoods of the central path.

So assume that v = 0. It is easily verified that Lemma 3.5.7 and Lemma 3.5.8 still
apply. Theorem 3.5.9, however, is not valid for » = 0. In fact, taking the limit in (3.68) as v
tends to zero one obtains that the step size § becomes zero. Hence, it cannot be guaranteed
that the iterates remain in the neighborhood determined by a given p € (0,1). Below we
show that by a step w(v) may well decrease, but that the decrease can be bounded from
below. This is the contents of the next lemma.

Lemma 3.5.12 Let 7,9 be as in (3.63) and 7 as in (3.6{). If (z,s) € F° and

. 1 1 2vn w(v) w(v)?  3w(v)
0S0<m1n(®,2—_ﬁ,\/ﬁ(1+3)2, 3 g ( 1+W~4\/ﬁﬁ)> (3.711)

then (z(8),s(0)) € F° and

2 1+ w(v)?
L2 G ) A a0 )

(3.72)
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Proof: From Lemma 3.5.8 it is clear that (3.71) guarantees feasibility of (z(#), s(9)). So it
remains to show (3.72). Observe that (3.66) and (3.67) still hold for » = 0. Hence, using
the notation w? := w(v)? =: o/ with a and B such that ae < v? < fe, one has

(1-6(1 +67)//n)a — 07’8 _ (v —6(1 +07)) — 0*7°V/n

w(v(8))* > =5 = — — —
(A= 0(1 —6m)//m)B+ P8 ~ (/n— 81 + 7)) + 077/ + 20°%
w¥(y/n — (1 + 67)) — 0%52\/n — 26°%

= (Vn—0(1+67)) + 0252 /n + 207
Adding one to both sides and rearranging terms gives (3.72). a

Now we are ready to prove the polynomial complexity. We denote by (z(¥), s¥)) the iterate
after k iterations and use wy := w(Vz(®s(®),

Theorem 3.5.13 Let an initial interior point (z(?,s©) € F°, with wy < 1 and 0 < € <
(zNT5(0) /2 be given. We define parameters L and T as follows:
(0))T 4(0)
NI Gl iy ,:=§_0(_1;r_ﬁ)+i
€ wé nL

Let t be the smallest real number in the interval (1,7 4+ 1/(4nL?)] such that K := 4tnL? is
integral. If 0 := 1/(t\/nL) < O, then after O(nL?/(w?)) iterations the algorithm yields a
solution (z*,s*) such that (2*)7s* < € and w(v/z*s*)? > wi/2.

Proof: For the moment we assume that in each iteration the step size § = 1/(¢,/nL)
satisfies the conditions of Lemma 3.5.12. Later we will justify this assumption. Taking
logarithms in (3.72) and substituting the given value of § we obtain

0*(7*v/n + 27) 6%(7*y/n + 27)
Flo (1 A ) S F AT
R (ERL)T + 2E)vm 7P 42T
v —2/(t\/nL) tL(tnL —2)’

where we used ¥ < T/n and 67 < 1 in the third inequality. Hence we certainly have
P> wi/2if
wi 2 wg/21i

2
ln1+wg
1+wk

IA

72+ 2% <In 1+ w?
tL(tnL —2) = 1+ wd/2
Since ¢(o) :=1In((1 4+ ¢)/(1 + ¢/2)) is concave and ¢(0) =0, ¢(1) > 1/4, it holds

(3.73)

2 2
1+ w) Wy

"Tra2c e
As a consequence, (3.73) is certainly satisfied if

k< witL(tnL — 2)

< W (3.74)
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We conclude that if the total number of iterations satisfies (3.74) then the inequality
w§ > w}/2 holds. Since Lemma 3.5.7 is (assumed to be) valid and we employ a fixed
step parameter #, the algorithm stops after at most k iterations, where

(ONT 4(0)
k24\0/ﬁln(x )'s

€

= 4inl?,

after which (z®)Ts¥) < e. Note that the definition of ¢ guarantees that 4tnL? is integral.
This number of iterations respects (3.74) if

tnl —2
Mnl? < L2 "2
nE S et o

Dividing by w2tL and rearranging terms gives the condition

16(72 4 27)

> T I (3.75)
which is satisfied by the value assigned to ¢ in the theorem, since 7% < 3(1+«) and 7 < 14 «.

It remains to show that in each iteration of the algorithm the specified step size @ satisfies
condition (3.71) of Lemma 3.5.12, to justify the assumption made at the beginning of this
proof. First, observe that § < © by assumption. From (3.75) we have ¢ > 32?/1.00 The
condition # < 1/(27) is equivalent to t > 27/(y/nL), hence certainly satisfied if wi < 164/nL,
which is guaranteed by the assumption on L. The third condition in (3.71) is satisfied if

1
' maTiem)

which is satisfied since ¢ > 80 from the definition of 7. The fourth condition is trivially
guaranteed, so it remains to deal with the condition that for each &

Wi ng Juwy,
< — 1+ —= - .
< 7 ( + 16n72  4y/n7

Using n > 2 and 77 > 1/5/4 (see (3.70)), we have

3wk

4\/7777

<@l
2 2

Therefore, since

\/1+02—a>% if OSG<%’

it is sufficient to show that 8 < w;/(27) for each k. As we have seen before, with the given
step size we have wy > wp/ (\/— ) for each k. So is it sufficient that 8 satisfies § < wo/(2v/27)
or even § < wg/(2\/_\/1 + ). This amounts to woty/nL > 2v/6+/1 F &, which is easily
shown to hold using the definition of 7 and the assumption on L. Hence the proof of the
theorem is complete. a
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3.5.5 Smoothness conditions on the nonlinear mapping

In the literature on interior point methods for NLP problems some smoothness conditions
on the functions involved have been proposed, with the purpose to bound the second order
effect not taken into account by Newton’s method. In this section we show how these
conditions are generalized to NCPs and indicate their use for analyzing algorithms in wide
neighborhoods. All the conditions given below only apply to monotone mappings, which is
the major difference with Condition 3.5.2.

Zhu’s scaled Lipschitz condition

In Zhu [263] the scaled Lipschitz condition was introduced to analyze a path—following
algorithm for convex programming problems. It was used by Kortanek et al. [148] and
Potra and Ye {209] for an analysis of a primal-dual potential reduction method for entropy
optimization problems and by Sun et al. [231] for min-max saddle problems. Potra and Ye
[208] modified the condition for use in the analysis of interior point methods for MNCPs.
Let us first give the definition.

Definition 3.5.14 (Scaled Lipschitz) Let G be a closed convez domain in R™, with non-
empty interior Q := int(G). A single-valued monotone operator f : Q — R™ satisfies the
scaled Lipschitz condition if there is a nondecreasing function (a) such that

IX(f(z + k) — f(2) = VF(2)R)]| < $()hTVf(2)h
for all > 0 and h satisfying ||z7 A < .

We show that any mapping satisfying the scaled Lipschitz condition also satisfies Condition
3.5.2 with certain values for 4 and ©.

Theorem 3.5.15 Let the mapping f satisfy the scaled Lipschitz condition. Then there exist
values for v and © such that f satisfies Condition 3.5.2.

Proof: For § and Az satisfying
|8z~ Az|| < a, (3.76)

we have (recall (3.54))

“ p (f(z + 0on) ~ i) _o f() Am)

ll2(6) — ps

< gl ullel (e + 0A2) - £(z) — 0V (z)A2)|
< I e (@0 A27V () < O™ fot() |47 Azl 4V f(x) Aa]
< Ol (@ llolalle™ Acl |49 f(2) Az ] < 0—7<(e) S lp,].

(v)

The last inequality follows from the fact that (3.76) should specifically be satisfied for ©.
We compute © and v from
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which yields © = at(a)/(w(v)7). This completes the proof. O

Observe that Theorem 3.5.15 leaves some freedom in the choice of v and ©; however, ©
and 7 influence the complexity at the same rate. Definition 3.5.14 of the scaled Lipschitz
condition implies that ATV f(z)h > 0 for every z > 0 and h with |lz~'4|| € @. Hence, using
this condition seems not to be possible for nonmonotone mappings. In fact, even if f is
linear, i.e. given by f(z) = Mz + ¢, the condition does not necessarily hold for the matrices
M in P,. On the other hand, Condition 3.5.2 does not need the monotonicity and holds for
any linear mapping with a matrix in P,, which is an advantage of the condition.

Self-concordance and relative Lipschitz condition

The most important (and most general) smoothness condition is self-concordance, intro-
duced by Nesterov and Nemirovskii [199], later used by Jarre [125], Den Hertog [101] and
Den Hertog et al. [102], Nesterov and Todd [200], among others. The crux of the condition
is that it bounds the first and the third order derivative of a convex function in its second
order derivative.

Definition 3.5.16 (Self-concordance) Let G be a closed convez domain in a finite—di-
mensional real vector space E and let a,9 > 0. A function F : int(G) — R is called
a-self-concordant if F' € C® is a convez function on int(G) that for all y € int(G) and
h € E satisfies the condition
[V*F(y)[h, b, b < 20772 (V”F(y)[h 1)™*;

F' is called strongly a-self~concordant if it is a—self-concordant and is unbounded above for
a sequence of points converging to the boundary of G; F is called an (a,9)-self-concordant
barrier for G if F is strongly a—self-concordant and moreover for all y € int(G) and h € E

IVF(y)[hll < V3 (V2F(y)[h, b))

A main difference with the scaled Lipschitz condition is that in the analysis of interior point
methods self-concordance does not apply to the mapping itself; instead a self-concordant
barrier for the domain is needed. In our case the domain is R7}; it is easy to verify that the
function — Y%, In x; is a self-concordant barrier for this domaln We also need the following
definition, relating the mapping defining the complementarity problem to a self-concordant
barrier for the domain.

Definition 3.5.17 (f—compatibility) 4 C2-smooth monotone operator f : R} — R” is
called B-compatidble with F(z) = —Y"  Inz; if for all z > 0 and h®) ¢ R™, i = 1 2,3, the
following inequality holds:

[V2f(z)[h®, K™, B3| < 33/28 H{Vf(m ) h"’]”sllm-lh“)n‘“}
=1

If the mapping f is S-compatible with the function — 3"" , In z; then the barrier function
fe(z) := (14 B)*{t f(z) + =1} is strongly self-concordant for all ¢ > 0 [199, Prop. 7.3.2]. A
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similar property can be obtained if the mapping f is strongly self-concordant itself. For all
a > 0 and B > 0, if the mappings ¢ and ¢ are self-concordant then the mapping a¢ + B is
also self-concordant with some parameter. Self-concordant mappings satisfy the following
condition, which is called the relative Lipschitz condition, introduced by Jarre [124], see also
[199, Prop. 7.2.1] and [126, Sec. 2.1.4]).

Definition 3.5.18 (Relative Lipschitz) Let G be a closed conver domain in R, with
nonempty interior Q := int(G). A single—valued monotone operator f : Q — R" satisfies
the relative Lipschitz condition if for all 2,y € Q for which 7 := \/(y - )TV f(z)y—-2) <1
the inequality

1

—— T z)h.
= 1) TV f(z)h

IKF(V f(y) - V()] < (
holds for all h € R".

In the following lemma, we will show that S—compatibility and the relative Lipschitz condi-
tion can be used to bound the inner product pIp,(8), which plays an important role in the
complexity analysis of the primal-dual algorithms for NCPs, see Lemma 3.5.4.

Lemma 3.5.19 Let = and s = f(z) be in F° and Az, As displacements satisfying (3.47).
Let p, and p,(0) be as in (3.52) and let 8 satisfy

Ollz~ Azl < % and 0 (3.77)

If the mapping f is B—compatible with F(z) = — ¥ ", Inz;, then

AzTAs

2Ip,(8) < AzTAs + 638 ( a(o)?

e -leuZ) min o).
Proof: Using Taylor’s expansion, we have

9(6) = f(z +052) = f(2) - OV f(z) Ax = 20V f(y)[rz, A, ],
where y = z + XAz for some X € R} with A; <1. Then it holds

PIps(0) = Az (As + gg )) = AzTAs + lGVQf(y){Amr:, Az, Az]

3/2

ATAs + B—ﬂOVf(y)[Aw Ad] [y Ac]

IA

INA

AzTAs + TﬂG (an{((g))z + Y'z) [Az, Az] ||y~ Az||min(v)?, (3.78)

where the first inequality follows from the S—compatibility and ¥ = Diag (y). We apply the
relative Lipschitz condition with y and z to the self-concordant mapping

f(=z) _ !
min(v)?

€.
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Using Az”V f(z)Az = AzTAs and the definition of y we have
Vf(z) AzTAs

min(v)2 min(v)?

where the last inequality follows from (3.77). The relative Lipschitz condition gives

(GAA;E)T( +X’2) (6AAz) < 0 ( +le —lAmHZ) %

Vi) | -2 1 Vf(z)
< —_—— A
(min(v)2 +Y | [Az,Az] £ {14 A= 1v3) 1} {A2T min(v)? + X2} Az
AzTAs 1A
< 2<m (o )2-}—” Aw[])
Furthermore, it holds
-1 1 -1 -1

S — < .

I~ Al < —gresrgple ™ Al < 20 s

Substituting the latter results in (3.78) gives

3/
prs(a) S A.’ETAS -+ 3___ﬁ912 (A:I: (A)s
min

+ 7 AalP ) min)?,

+ ||= _1A$||2) 2||z~! Az|jmin(v)?

AzTAs
min(v)?

which completes the proof. O

IN

AzTAs + 638 (

From the lemma we derive the following corollary in case of applying our primal-dual affine
scaling algorithms to MNCPs.

Corollary 3.5.20 Consider the situation as in Lemma 3.5.19 and let f be a monotone
mapping. If Az and As are determined with a primal-dual affine scaling algorithm with
parameter v > 0 and 8 < w(v)/2, then

PEpu(0) < (5 + T98)max(v)”

Proof: Analogously to Lemma 3.3.3 and the fact that ||p,|| < max(v) for any valueof v > 0
it follows

AzTAs < imax(v)z.

From ||z7'Az 4+ s7*As|| <1 and AzTAs > 0 (since f is monotone), it follows

1
“IALZ = lo-ld-1AglZ < d-'AzlI?
A N e
1 -
< (I Al + 28570 + sl
1 —1 2 __ 1 -1 -1 2
= A
min(o )2||d Az +dAs||* = in('v)znv(m Az + s As)||
max(v)?, A2 < 1
< min(0)? lz7' Az + s As||? < o)
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Using also § < w(v)/2 it follows that the conditions on 8 in (3.77) are satisfied. Consequently,

ngs(o) < ima.x(v)2 + 633 (%w(:))z + ﬁ) min(v)?

1 min(v)?
w(v)? max(v)?

< Lnax(v)? + 798 max(v)? = G + 795) max(v)?.

4

This completes the proof. ‘ ]

The result of this corollary gives an alternative proof for a bound of the type as in Lemma
3.5.6(¢i). Unfortunately, our analysis of the primal-dual affine scaling algorithms is based
on large neighborhoods. This implies that also bounds on |[p;ps(8)[leo and [[g(6)l|c are
required (cf. Lemma 3.5.6(iv)). We have not been able to derive such a bound using self-
concordance and relative Lipschitz. Moreover, it is not clear how self~concordance can be
generalized to nonmonotone mappings. However, to have more insights into the relationship
between the self-concordance and our condition, we will enforce more strict conditions on
the mapping. Recall from (3.54) that Condition 3.5.2 is equivalently written as

ld(#(e +0Az) - f(z) — 0V f(2)Az) || <+0]|dV f(z)Az].
Using Taylor’s expansion we obtain

ld(f(z + &) = f(z) = V(@) || = [|d(VF(y) - V() Al

where y = z + A for some vector A satisfying A; < 1, Vi. It is not difficult to derive the
following results from these observations.

Lemma 3.5.21 Let G be a closed convez domain in R™ with nonempty interior Q :=
int(G). Let f be a single-valued monotone operator f: Q — R”, and let

M, :=Vf(z) and Npy:=Vf(y)—Vf(z).

Then

() if —(1/(1=7))—1)M, < Noy <= (1/(1=7)3)—1)M, forallz € Q, y € Q such
that (y — )" M,(y — z) < 7 then f satisfies the relative Lipschitz condition;

(i) if NI, D’ N, < 0*y*MID*M, forallz € Q, y := z+0Az € Q such that ||z~ (y—z)|| <
7 for every 8 € (0,0] and D = Diag (d) with d > 0, then f satisfies Condition 8.5.2 with ©.

While this lemma seems to be quite trivial, it may be practical since the conditions in the
theorem can be more easily checked than the original conditions. In fact, we can find some
mappings satisfying the relative Lipschitz condition and/or Condition 3.5.2 using the above
theorem.

Example 3.5.22 (LCP) Consider the LCP with f(zr) = Mz+¢, and M a positive semidef-
inite matrix. Then V f(z) = M and all of the smoothness conditions are satisfied. Specif-
ically, Condition 3.5.2 is satisfied with ® = oo and 7 = 0. The last statement also holds
true if M isin P,. &
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Example 3.5.23 (Entropy function) Let u € ]Ri_,_ and let ¢(z) be an entropy function
of the form
n z;
$(z) =D z;log (—) .
=1 Ui
Let us define f(z) = V¢(z), that is fi(z) = logz; —logu; +1 for all s = 1,2,...,n. Then
f satisfies all of the smoothness conditions (cf. [263, Theorem 4.1]). o

Example 3.5.24 (Power function) The mapping f(z) : R} — R" defined by
filz) = &7

satisfies the scaled Lipschitz condition for & > 0. However, it satisfies Condition 3.5.2 for
all @ € R. <

3.6 Miscellaneous topics

3.6.1 Starting points and infeasibility

In the algorithmic development in this chapter it is always assumed that an initial interior—
feasible point were available. While this may be the case in certain applications, in general
the problem of finding an initial point is as hard as solving the complementarity problem
itself. We briefly discuss some approaches to handle this facet of the algorithm.

Using a ‘big M’

A traditional way to deal with starting points is the use of a ‘big M’, which essentially means
that the error generated by an infeasible solution is penalized with a large number in the
objective function. Kojima et al. [142] show that for the LCP the following procedure can
be used.

Let the LCP be specified by f(z) = Qz +p, for @ € R™" and p € R”. Let z(¥ € R},
be arbitrary and define 5© = Q20 4 p and M > eTz©® sufficiently large. Typically s(®
will contain nonpositive elements. In that case, define

= Q e Y __ z(©
N R )]

Consider the LCP with f(¢) = Q¢ + 7; it is easy to see that £ = T is interior—feasible, since
T > 0 and f(%) > 0. Comparing the conditions for complementarity in both LCPs it follows
that the auxiliary problem will give a solution to the original LCP as long as M is large
enough (theoretically M = 2°)). Unfortunately, a practically acceptable value is often
hard to compute.
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Using Newton’s method

A second way to overcome infeasible starting points is motivated as follows: whenever New-
ton’s method is efficient in solving the nonlinear constraints in the KK T-systems evolving
in interior point methods, then it is likely that Newton’s method will also be able to handle
infeasibility in the linear equations in those systems. For LP the resulting infeasible interior
point methods were analyzed by Kojima et al. [140], Zhang [261] and Mizuno [183], for LCPs
by Potra [207] and Wright [251], among others. Extensive and encouraging computational
experience by Lustig et al. [162, 163] and Mehrotra [176] motivated this theoretical work. A
similar procedure for complementarity problems was outlined in Kojima et al. [142]. Kojima
et al. [146] studied global convergence of this type of approach in a general framework.

We describe the resulting procedure for NCPs with mapping f(z). Let an arbitrary
point (z,s) € R, be given. The search-mappings Az and As as used in Section 3.5 (see
(3.43)—(3.46)) are taken as combinations of two directions as follows:

(Az,As) = (Az°+ AAzf, As® + AAsT),
sAz°+zAs® = h,
—Vf(z)Az°+ As®° = 0, (3.79)
sAzf + zAsf 0,
=Vf(z)Azf + Asf = —(s~ f(z)).

where A € R, and h depends on the specific algorithm used. Using z(#) and s(8) as in
(3.43) and (3.46) we have

s(0) — f(=(9))

s+ 0As + f(z + 0Az) — f(z) — OV f(z)Az — f(z + 0Az)
— f(@) + 8(=Vf(2)Az + As) = (1 - ON)(s ~ f(x))

for every 8 > 0, i.e., if s— f(z) # 0 then the infeasibility is decreased with the factor (1—61)
and otherwise feasibility is maintained for every 6 and .

Using an auxiliary problem

Recently, Andersen and Ye [8] proposed for solving MNCPs a homogeneous auxiliary pro-
blem, as an extension of similar problems for LP in Ye et al. [259] and Jansen et al. [115]
for LP (Section 2.1.3) and in Ye [256] for LCPs. The basic idea is to consider the monotone

mapping
S e
Hen: (-—w’-”fwr))’

and to compute a solution to it using straightforward interior point techniques. Given
z(® = 5 = ¢, 75 = ko = 1 initial residuals are defined by

r® = 5O 7, f(zO15), 29 = ko + ()T F(2Q/70).

In [8] it is shown that the system
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s—rfle/r) = w9,

K+ fe/r) = pz©,
s = pe,
TR = p,

has a unique solution for all 0 < s < 1. Furthermore, a limiting solution (z*,s*,7*,£*)
as 4 goes to zero renders a solution to the original MNCP (if 7* > 0) or shows that it is
strongly infeasible («* > 0), which means that there is no sequence of iterates for which the
infeasibility converges to zero. An interior point method based on this system was shown
to run in polynomial time. Initial computational experiments reported in [8] are promising,
although fairly easy test problems are used. Moreover, in case k* = 7* = 0 it remains
undecided whether the problem is infeasible or is feasible but does not have a solution.
Recall that this is a similar problem as with the embedding presented in Section 2.1.3.

3.6.2 Long-step algorithms

In the theoretical analysis of primal-dual affine scaling algorithms short steps are taken
to be able to prove polynomiality. Unfortunately, such strategies are rather unpractical.
Various long-step strategies have been proposed in the literature, of which we mention a
few. First, we recall that the theoretically guaranteed (worse case) step size can be (much)
smaller than what could be obtained in practice; in that case it is important whether large
or small neighborhoods are used. Mehrotra [176] and Lustig et al. [162, 163] advocate the
use of predictor-corrector algorithms. The idea is to take a long affine step to compute a
‘target—point’ on the central path and to use a corrector step to try to approximate this
target sufficiently. A drawback of this approach is that the target on the path is chosen
to depend in a specific way on the affine step; the actual way this is done is motivated by
extensive computational experiments.

Gonzaga [89] proposes a theoretical way as follows. Given a proximity measure for being
close to the central path and a threshold value for this measure, take the step size such that
the value of the proximity for each iterate exactly equals the threshold. Gonzaga has shown
this method to be quadratically convergent. Nesterov [197] analyzes similar techniques using
potential functions rather than proximity measures. In our case this approach would mean
to compute the step size such that w(v) = p for all iterates.

Roos and Vial [215] and Den Hertog [101] analyze yet a different approach for central
path—following algorithms. Instead of updating the centering parameter g with a small
amount, they divide it by a constant; then several damped Newton steps are needed to
reach the vicinity of this new target (cf. Section 4.3).

In the analysis of primal affine scaling methods (see e.g., Vanderbei et al. [243], Tsuchiya
et al. [239]) it is proposed to compute the step size that leads to the boundary and to take a
fixed proportion of this maximal step. Kojima et al. [141] analyze such a long-step variant
for a primal-dual method. Similar to the analysis in [141] it can be shown that such long-
step variants of the primal-dual Dikin-affine scaling method are globally convergent and
polynomial under certain conditions. In our computational experiments we use this type of
long-step algorithms.
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3.6.3 Other primal-dual directions

Tsuchiya [238] proposed a family of algorithms related to those in Section 3.5. The search—
direction is obtained from the system

Adz = 0,
ATAy +As = 0,
H7'Az 4+ HAs = (XS)™+0r2,

where H = X{#+1/25(e=1)/2 414 o € [~1,1]. Notice, that the difference with our system
(3-10) is that not only the right-hand side in the third equation is scaled, but also the left-
hand side. For a = 0, Tsuchiya’s algorithm gives the primal-dual affine scaling direction,
while for @ = 1 (a = —1) the primal (dual) affine scaling direction is obtained.

Sturm and Zhang [230] introduced a primal-dual cone-affine scaling algorithm, as an
extension of the primal cone-affine scaling direction in Padberg [203] and Goldfarb and
Xiao [80]. The main difference with the Dikin-affine scaling algorithm, is that instead of
an ellipsoid a cone inscribed in the feasible set is used. The search—direction in Sturm and
Zhang [230] is a linear combination of the primal-dual affine scaling and a new centering
direction; it also has the property of combining centering and decreasing complementarity.
The algorithm only requires O(y/n In 1/e) iterations, however, the iterates are confined to a
small neighborhood of the central path.

3.7 Computational results

To conclude this chapter we report computational experience with different variants of the
primal-dual affine scaling algorithm for some classes of nonlinear problems. The purpose of
these experiments is to investigate whether the theoretical properties derived in this chapter
show themselves in practice. More specifically, we are interested in the effect of correctors
as suggested in Section 3.4, in the performance for various orders of scaling as in Section
3.5, as well as in the influence of the step. size strategy.

First, we apply the algorithm to a class of ill~conditioned LCPs, derived from a convex
regression problem (e.g., Jongbloed [129], Dykstra [48]). Second, we apply the algorithm to
nonlinear entropy optimization problems used for estimating minimally informational dis-
tributions given marginal information (e.g., Meeuwissen [173], Agmon et al. [4] and Ben-Tal
et al. [22]). Finally, we consider maximum likelihood estimation problems as in Jongbloed
(129] and Terlaky and Vial [235].

The family of algorithms has been implemented in MATLABTM (version 4.2c) with
efficient sparse matrix handling facility [171]. For the computations we used an HP9000 /720
workstation; the memory requirement was less than 16 MB. We use Newton’s method to
handle infeasibility as in (3.79) with A = 1; the starting point used is a multiple of the vector
of all ones for both = and s. Corrector steps are used as outlined in Section 3.4. Systems
of equations are solved using Cholesky or LU-decomposition. The maximal step size such
that z(8) > 0 and s(f) > 0 is computed with bisection; for the actual step size we take in
principal 2/3 of the maximal step. As stopping criteria we use similar ones as in Terlaky
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and Vial [235] and Shanno [221]. For the infeasibility we require

lls — f(=)ll
o < €15
L+f@N
for the complementarity we require
zTs
— < €. 3.80
T el < © (3:50)

Since the type of implementation is comparable with the one reported in [235] for the primal
and primal-dual logarithmic barrier method, we will be able to compare our algorithms with
these on the maximum likelihood problems.

3.7.1 Convex regression problems

The convex regression problem is an estimation problem from statistics. Special algorithms
have been constructed by Dykstra [48] and Jongbloed [129]. The problem is a convex
quadratic programming (CQP) problem, however, in general very ill-conditioned.

The problem is stated as follows. We have been given two vectors y and ¢ in R™.
The values y; are sample points and the values ¢; are observed values. The problem is to
find a convex (regression) function with function values &; in the sample points y;, such
that the ‘distance’ between the observations ¢ and function values ¢ is minimal. Assuming
Y1 < y2 < -++ < yn, we formally have the following CQP problem

min  30(6 <)

=1
i1 =& S £ — &
Yivr = ¥Yi ~ Yi — Yi1

s.t. forall ¢=2,3,...,n—1.
Obviously, the optimal values of ¢ will be the values of a convex piecewise linear function
with breakpoints at y;. Rewriting the problem as an LCP was done as in Section 3.3.2.

To analyze variants of the algorithms random problems have been generated. In the
test set the values y; are taken randomly from a uniform distribution on the interval [—1, 1].
We define ¢; = (y; — 0.5)? 4 (;, where (; is randomly generated from the normal distribution
with zero mean and variance 0.1. As n increases the resulting problem will be more difficult
to solve. An important reason for this is the following. The average value of y;,, — y; over
all 7 will be 2/(n 4 1). However, the probability that min;(y;; — %:) is smaller than 2/(n?)
is equal to 1 — (1 — 1/n)™, i.e., converging to 1 — 1/e for large n. Consequently, it is very
likely that one of the distances y;1 —y; is very small. This implies that the matrix involved
in the LCP will contain very large as well as small numbers and will be ill-conditioned.

In Table 3.1 the average number of iterations needed to reach a solution satisfying the
convergence criteria with ¢; = 1077 and ¢, = 1079 is presented. Table 3.2 gives the minimal
and maximal number of iterations needed over the problems involved. The numbers of
sample points n are in the range 100-500, the scaling parameter v varies from 0 to 10 and
the parameter r is taken to be 1 (i.e., no corrector) to 4. For each setting of the parameters
10 problems have been solved. In a few cases (indicated by superscripts in Table 3.1) the
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method failed to attain the required precision in complementarity. The reason for focusing
on the number of iterations is that in interior point methods the major amount of work is
performing one Cholesky factorization per iteration, while in our case the work per iteration
does not depend on the scaling. Moreover, since the use of corrector steps increases the
amount of work per iteration a drastic decrease in the number of iterations is necessary for

corrector steps to be computationally efficient.

Chapter 3. Primal-dual affine scaling

v|0 0.01 (0.1 0.5 1 2 5 10
n r
100 1471 [ 472 | 46.0 | 42.6 | 42.8 | 425 | 54.2 | 72.0
‘ 2 (342 1351 |33.8 342 |330 |332 |449 | 688
31351 348 342 | 349 | 333 (342 | 45.3 | 69.2
41334 354 (326 |31.2 {350 | 352 | 44.9 | 69.9
200 11550 |54.0 (535 [49.8 | 46.8 | 47.9 | 59.0 | 78.3
2 (365 1368 | 373 | 359 | 353 (382 | 476 | 727
3 (364 {372 | 36.3 | 35.1 | 38.0 [39.6 | 47.3 | 74.0
43863 [37.3 (37.6 | 36.7 |38.2 |37.7 | 47.6 | 73.0
300 1596 |60.1 | 60.5'585 |54.2 |53.7 | 63.4 |83.1
2 (400 {390 | 382 |37.8 |39.1 [40.1 | 486 |75.3
31382 1381 {39.0 384 393|393 |495 |73.7
4 {39.7 | 388 |39.0 [38.0 |37.7 [39.2 | 50.0 | 73.8
400 1 ]66.7 |68.5 [68.4 | 60.0 [ 57.9 |58.1 | 64.8 | 87.5
21406 | 41.3 | 40.3 | 40.3 | 39.0 | 42.8 | 51.2 | 75.3
3 |40.0 | 41.9 | 41.3 | 40.6 | 40.2 | 42.6 | 51.3 | 76.7
41402 | 41.3 | 41.8 | 40.0 | 404 [ 413 | 505 | 77.8
500 1702|733 |684 |662 |652 |67.4 |80.6'| 9042
2| 44.6 | 42.0 [ 439 | 445 | 444 | 55.8 | 76.11 | 94.47
3433 | 432 (449 | 436 | 476 | 65.4 | 68.41 | 94.0°
4444 [ 423 | 44.1 | 440 | 50.1 | 50.3* ] 74.9?| 80.8*

Table 3.1: Average iteration numbers and number of failures for various values of n and r
for primal-dual affine scaling algorithms with scaling v.

From the experiments we conclude the following.

e When using no correctors (r = 1):
— the number of iterations increases approximately linearly in n;
— the number of iterations is smallest for v € {0.5,1,2};

— for larger values of v and n the number of failures increases, due to the huge

numbers arising in the computations.

e When using correctors (r > 2)
— the number of iterations is (much) smaller (up to 60%) than without correctors;
— the number of iterations does not benefit significantly from using more than one

corrector;

— the influence of the scaling v is much smaller than without using correctors.
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0 001 01 0.5 1 2 5 10

100 43/52 | 41/52 | 40/55 | 37/49 | 39/47 | 37/51 | 49/60 | 66/80
30/38 | 29/42 | 26/41 | 30/39 | 29/37 | 28/36 | 42/49 | 67/71
29/40 | 29/39 | 30/40 | 30/39 | 28/42 | 31/37 | 42/50 | 67/71
29/37 | 30740 | 30/35 | 26/41 | 31/40 | 32/39 | 44/47 | 69/72
49/62 | 45/71 | 46/63 | 43/58 | 42/53 | 42/52 | 53/68 | 71/83
28/42 | 32/41 | 33/41 | 34/38 | 30/38 | 34/46 | 44/53 | 68/79
31/41 | 34/41 | 32/42 | 31/38 | 34/44 | 35/46 | 46/53 | 69/92
31/41 | 32/41 | 33/43 | 32/42 | 34/43 | 32/48 | 46/50 | 69/80
51/67 | 52/67 | 54/66 | 53/76 | 47/59 | 50/60 | 53/74 | 74/90
33/47 | 35/48 | 33/41 | 33743 | 36/42 | 36/46 | 46/54 | 72/92
33/41 | 33/48 | 36/44 | 32/44 | 34/43 | 35/50 | 46/54 | 70/82
33/45 | 34/42 | 30/44 | 34/43 | 32/46 | 34/52 | 46/67 | 70/83
57/72 | 60/75 | 60/81 | 52/66 | 48/70 | 49/74 | 58/72 | 78/96
35/48 | 37/47 | 37/46 | 35/47 | 34/44 | 37/48 | 49/54 | 73/80
35/46 | 38/46 | 37/47 | 35/50 | 35/46 | 38/46 | 50/54 | 75/81
35/44 | 36/46 | 34/46 | 31/48 | 37/44 | 36/49 | 48/54 | 72/91
55/84 | 57/90 | 59/78 | 49/83 | 517104 50/13(| 65/139 79/119
35/57 | 39/50 | 35/55 | 34/60 | 34/57 | 39/146 50/176 73/171
36/54 | 35/54 | 34/56 | 34/61 | 34/67 | 39/177) 49/126 75/180
35/63 | 32/63 | 34/62 | 37/67 | 37/103 38/75 | 49/194 76/95

200

300

400

500

I -l I U R B O S o KU S Iy B U U I T

Table 3.2: Minimal and maximal iteration numbers for various values of n and  for primal—
dual affine scaling algorithms with scaling .

Besides the number of iterations the computational effort per iteration needs to be taken
into account. Not using corrector steps has two advantages: (i) the corrector needs not be
computed, and (42) the maximal step size can be computed with a ratiotest. In Table 3.3
we give the average number of floating point operations (measured by the ‘flops’~command
in MATLAB?M) required by the Dikin-affine scaling algorithm (v =1). We conclude that
the algorithm with 1 corrector performs best for all problem sizes. A similar behavior was
found for the other scaling factors.

The other problems used in our testing are computationally more easily than the convex
regression problem. Henceforth, we mainly use the primal-dual Dikin-affine method.

3.7.2 Maximal entropy distributions
Let be given two random variables X and Y on A = [~1/2,1/2] x [-1/2,1/2], which

are known to have a bivariate distribution with uniform marginals (having mean 0 and
standard-deviation 1/4/12) and correlation p. The question is to find a distribution that
adds minimal information (in entropy sense) of all distributions with the given marginals
and correlation. Although the problem is actually a continuous optimization problem, it is
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r\n| 100 200 300 400 500
1 [210 478 850 1177 1655
2 (196 421 739 956 13.98
3 |247 587 982 1274 19.35
4 |321 713 1050 1581 24.36

Table 3.3: Average number of megaflops for various values of n and r for the primal-dual
Dikin-affine scaling algorithm (v=1).

common to use grids. Let n be a given grid-size. Define

z 2-1-n z;, t=1 n
1T Ty Yi =Ty, =400, N,
2n
and variables p;; for i,7 = 1,...,n. The variables represent values of the density on sub-

squares of the square A. The mathematical problem is

n
min ;; 1n py;
i) Z Di; In pi;

,j=1
Z 1
s.t. Zpij:_’ ]=1,...,n,
i=1 n
n
1 .
Zpii =—, 1=1,...,n,
=t n

n

Z TiY;iPis = %-

ij=1

The problem described here is taken from Meeuwissen [173); similar problems can be found
in e.g., Ben-Tal et al. [22]. Since the probabilities sum to one, the problem can also be
viewed as a dual geometric programming problem.

This problem is written as an NCP as follows. First notice, that we may change the
first two sets of equality constraints in inequality constraints, since they will certainly be
binding in any optimal solution. The Lagrangian is given by

L(p; 7, 6,¢,() = En: pij Inp;; + Xn:/\j (zn:l’-'j - l)

=1 i=1 i=1 n

+i€z‘ (im - l) +(¢=9) (Xn: TiY;ipij — ‘1%) .

i=1 =1 n =1
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Then the mapping f : R” 22 _, R™+2"*2 given by

fi) = np + 1+ X+ &+ (= Qziys, k=(G—1)n+7,
fn2+j(') = “21—117:;, ] =1,...,n
fargnri(t) = ; - j=1 pij t=1,...,n,
fwrranna () = Tijzaipiy — 35
frasania() = - Xl wiyipij,

defines the NCP. The definition of f(-) combines the primal feasibility with the dual feasibil-
ity constraints; duality theory for entropy problems is contained in Kas and Klafszky [134],
among others. The size of the Jacobian of f is n? +2n +2, which means that factorizing the
Jacobian is computationally prohibitive. Fortunately, the search-direction can be computed
by solving systems of size 2n + 2 only by first solving explicitly for the displacement in the
p-variables. The computational effort per iteration is therefore dominated by the number
of times vectors of size n? have to be manipulated with, i.e., in the computation of the
displacement in p and in the line-search via function evaluations. The parameters in the
stopping criteria are ¢; = €; = 1078, The starting point is taken to be 2@ = s = \/ne.

In Table 3.4 we give iteration numbers of the primal-dual Dikin-affine scaling algorithm
without corrector, for various sizes n of the grid and values p of the correlation. The last
column contains the number of variables z in the NCP to be solved. Two different step sizes
have been used, namely 2/3 and 0.95. For n = 25 the latter appeared to be too optimistic,
since some of the elements in s converged to zero too fast. Observe that the number of
iterations grows very slowly with the gridsize, and is still small for the NCPs with over
15000 variables. When the algorithm stops the infeasibility and complementarity are of the
same order of magnitude. The number of iterations increases with p because the condition
of the problem changes with p: for p = 0 all variables are equal in the optimum, while for
larger p there is a large difference in the optimal variable values.

Experimentation with the use of correctors showed that a small decrease in the required
number of iterations can be achieved, however, at the cost of increasing total computa-
tional effort measured in megaflops used. This is caused by the fact that every corrector
requires manipulations with an extra vector of O(n?) elements, which is highly unattractive
in MATLABTM,

We also experimented with the use of a linear update as in [8]; then the computation of
the maximal step size is very cheap. We found that for the small problems (and using 2/3
of the maximal step) the number of iterations increased with 10-20%, while the number of
megaflops decreased. For larger problems, however, the method failed to obtain the required
precision in the infeasibility.

Solving these problems with the primal-dual affine scaling algorithm (v = 0) it appeared
that the number of iterations for the ‘easier’ problems (p < 0.3) can be drastically reduced
(up to 40%). However, this algorithm halted for the more difficult ones due to numerical
difficulties. It was also tried to solve these entropy optimization problems with AIMMS-
CONOPT {24] and GAMS-MINOS [33}; however, both packages already failed to solve them
for values of n larger than 20.
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n\p 0 0.1 0.3 0.5 0.7 0.9 | # vars.
25 | 24/19 25/19 26/20 26/21 26/21 26/24 677
50 | 26/17 26/19 27/20 27/20 28/21 28/22 | 2602
75 | 27/16 27/20 28/20 28/21 29/21 29/20 | 5777
100 |27/17 28/20 28/20 29/20 30/21 30/20 | 10202
125 | 28/18 28/20 29/20 29/20 31/21 31/21| 15877
150 |29/18 29/20 30/21 30/21 32/21 31/21| 22802

Table 3.4: Iteration numbers for various values of grid-size n and correlation p. The left
number in each cell is obtained with step size 2/3, the right with 0.9 for n = 25 and 0.95
for n > 50.

3.7.3 Maximum likelihood estimation

In Terlaky and Vial [235] two algorithms are tested on various maximum likelihood estima-
tion problems having a convex nonlinear objective and linear constraints. The algorithms
are the primal logarithmic barrier method and the primal-dual method developed by Vial
[245]. We have tested the primal-dual Dikin-affine method on the same set of problems.
The statistical problem is as follows.

Let Y be a real-valued random variable with (unknown) convex density function g :
Ry — Ry. Let {y1,---,y»} be an ordered sample of n outcomes of Y with 0 < y; <
-+ < Yn. Let us define yo = y_; = 0. The problem is to compute the maximum likelihood
estimator of the sample, i.e., a convex function having values &; in the sample points y;, ¢ =
0,...,7n — 1 such that the log-likelihood function

n—1
L(&) =D In&
1=0
is maximized. As in the convex regression problem, the estimator of g is a piecewise linear
function, where we assume £, = 0 for decreasing densities. The optimization problem can
now be stated as follows.

n—1
min — Z In¢;
3 =0
i1 — & S &— & i219
Yit1 — Y Yi — Yi—1 T
1 n—-1
3 > (i —yi-1)& =1,

=1

&£>0, i=1,2,....n—1, & =0.

s.t.

The first set of constraints models the convexity requirement. The second constraint models
the condition that the estimator must be a density function. The constraint &, = 0 ensures
that the total probability below the computed function will be one. Using the optimality
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conditions it is easy to write the problem as a monotone complementarity problem with
mapping f(z). The set of test problems is drawn from the distributions in Table 3.5. Since
the arcsine law has a nondecreasing density, the constraint &, = 0 is dropped for problems
with this law, as well as the last of the convexity constraints.

law | distribution I density | domain
exponential 1-e¥ ey y>0
arcsine 2 arcsine(/7)/7 | 1/(nv/y(1=9)) | 0<y<1
quadratic y—y2/4 1-y/2 0<y<2
inverse 1-1/y 1/y? y>1

Table 3.5: Distributions used in testing.

For each law we randomly generated 30 problems, 10 per number of observations being
500, 1000 and 2000 each. The algorithm used is the primal-dual Dikin—-affine scaling method
(v =1) with 1 corrector.

The stopping criteria for the complementarity is as in (3.80) with e; = 107%. For the
infeasibility we use the condition

min fi(z) > —¢; 1= 1075

In all problems the starting point was taken to be z = s = v/2ne. It appeared to be hard
(and often impossible) to solve the problems using the nonlinear update (3.46) in s, used
before in the theory and computational experiments. Instead, we used a simple update

st =5+ aAsY + a?As),

where o is the step size. A similar strategy is used in Andersen and Ye [8]. For the step size
we first used a fraction 2/3 of the maximal step to the boundary. However, experimentation
showed the following procedure to perform significantly better on these problems. It is
inspired by the desire to stay in a large neighborhood of the central path. Starting from
o = 0.95, check whether

min; (z;(a)s;(a))

z()Ts(a)

If this condition is not yet satisfied we multiply o by 0.95 and check again, which is repeated
until the condition is met.

Terlaky and Vial [235] report computational difficulties for increasing sample sizes when
the distance between observations is very small (see also the discussion in Section 3.7.1).
To circumvent this they cluster observations that are closer to each other than a threshold,
taken to be 107%.

In Table 3.6 we report the results obtained for the set of problems. For the larger
problems, it sometimes appeared to be impossible to attain the required accuracy. Using
the clustering scheme all problems were solved without numerical difficulties, see Table 3.7.
Note that the clustering improves the efficiency of the algorithm for these problems as well.

> 0.05.
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There appeared to be no need to incorporate an iterative refinement scheme (Golub and
Van Loan [82]) for the computation of the search-direction as needs to be done in [235].

Comparing the performance of our algorithm with those in [235] we conclude that our
algorithm shows the same behavior with respect to the order of difficulty of the various
distribution laws and problem sizes. With respect to number of iterations our algorithm
performs much better than the primal logarithmic barrier method, and slightly worse than
Vial’s [245] method. With respect to megaflops used our algorithm is much worse; this is due
to the fact that we have to compute corrector steps, and as a consequence, the line—search
is more expensive. Since we use no explicit targets (on the central path) in our algorithm
the use of correctors is necessary to stay sufficiently away from the boundary.

n gap inf iter mflops gap inf iter mflops
exponential quadratic®

min | 7.6E-10 0 29 7.3 | 5.5E-10 0 24 6.1

500 | average | 2.6E-7 1.7E-9 31.1 83| L7E-7T 38E-10 27.6 7.2

max 6.7E-7 8.8E-9 36 10.2 | 89E-7 35E-9 31 8.6

min | 4.8E-12 0 32 16.9 | 4.4E-14 0 26 13.1

1000 | average | 8.7E-8 1.1E-9 34.7 18.7| 1.3E-8 1.8E-9 34.9 18.9
max 2.3E-T 9.0E-9 46 26.4 | T.0E-8 8.0E-9 56 34.6
min 1.4E-10 0 35 36.5 | 4.1E-15 0 31 31.1
2000 | average | 1.6E-8 2.8E-9 40.0 443 | 4.3E-10 2.5E-9 414 46.0
max 4.0E-8 8.1E-9 49 58.6 | 2.2E-9 9.3E-9 56 74.7
arcsine inverse

min | 3.0E-11 0 29 741 1.2E-14 0 30 8.4
500 | average | 1.0E-7 2.6E-9 33.9 9.2 | 89E-8 6.2E-10 35.8 10.2
max 3.8E-7 1.0E-8 42 124 | 84E-7 42E9 42 13.0
min 7.2E-10 0 33 17.7 | 1.9E-14 0 31 17.7
1000 | average | 14E-7 1.1E-9 375 20.8 | 6.4E-9 5.1E-10 40.2 23.8
max 6.1E-7 T7.7E-9 42 23.7{ 51E-8 24E-9 50 31.2
min | 7.3E-10 0o 38 40.5 | 1.2E-13 4.6E-11 36 41.8
2000 | average | 5.2E-8 3.8E-9 41.8 46.8 | 3.0E-9 18E-9 47.0 58.9
max 2.0E-7 9.5E-9 47 54.1 | 1.9E-8 48E-9 75 110.0

“For n = 2000 one problem could not be solved with the required accuracy for the quadratic law, and
three were not solved for the inverse law.

Table 3.6: Results for maximum likelihood problems, without clustering. For each size and
law 10 problems were solved.
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n cluster gap inf iter mflop | cluster gap inf iter mflop
exponential quadratic
min 498 1.3E-11 0 28 7.2 495 1.0E-10 0 24 6.0

500 | av 499.2 26E-7 13E9 306 7.9 ] 498.3 24E-7 25E9 269 6.8
max | 500 5.8E-7 8.8E8 35 8.7 500 96E-7 9.8E-9 33 8.4
min 992 3.2E-8 0 28 14.3 | 988 1.5E-9 0 25 12.4
1000 | av 995.7 42E-7 17E-9 313 16.2 | 992.8 9.7E-8 1.1E-9 283 14.4
max | 999 78E-7 8.1E-8 34 18.3 | 996 3.8E-7 6.3E-9 31 16.6
min | 1974 2.4E-8 0 31 31.8 1 1962 3.2E-10 0 26 25.8
2000 { av | 19810 14E-7 18E-9 34.1 35219732 5.0BE-8 2.1E9 314 319
max | 1987 3.0E-7 T77E-8 38 40.1 | 1981 1.9E-7 8.0E-9 38 40.3

arcsine inverse

min 489 6.0E-12 0 29 79| 497  6.0E-17 0 28 7.5

500 | av 493.1 34E-8 0 319 8.9 | 499.1 1.1E-7 99E-10 34.1 9.6
max | 497 1.7E-7 0 35 9.6 | 500 84E-7 4.7E-9 49 13.2

min 967  3.8E-10 0 32 17.5 | 990 1.0E-9 0 27 15.3

1000 | av 976.5 5.5E-9 0 344 19.7 | 996.0 2.0E-7 0 329 19.1
max | 984 1.7E-8 0 40 23.2 | 998 9.8E-7 0 38 23.4

min | 1893 8.1E-12 0 29 33.1 | 1976 2.3E-11 0 30 34.3

2000 | av | 1917.2 54E-8 94E-10 385 46.1 | 1985.7 1.6E-7 1.3E-10 38.7 46.9
max [ 1932 4.1E-7 9.3E-9 - 48 60.1 | 1993 74E-7 9.1E-10 51 69.1

Table 3.7: Results for maximum likelihood problems, with clustering. For each size and law
10 problems were solved.
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Chapter 4

Target—following methods

In this chapter we propose a unifying framework, the ‘target-following approach’, for (the
complezity analysis of ) primal-dual interior point methods for linear programming, in which
we incorporate many algorithms from the literature as well as some new methods we propose.
We exztend the approach to convex programming and variational inequalities, giving a first
complezity proof for certain methods well known for linear programming, but not analyzed
for nonlinear programming before.

4.1 Introduction

In Chapter 3 we analyzed a family of primal-dual affine scaling algorithms, using a direction
having the property of combining centering and moving towards optimality. As discussed
in Section 3.2 the main difference between affine scaling algorithms and path—following
algorithms is that in the former the search—direction only depends on the given iterate,
while the latter use reference—points (¢arget—points) in the v-space (see Section 2.1.1). Not
using targets may cause the step size to become extremely small if for some reason an iterate
comes close to the boundary of the feasible region. This behavior can specifically be observed
in the primal-dual affine scaling algorithm of Monteiro et al. [188] that does not contain a
centering effect. In efficient primal-dual methods for linear programming (LP), developed
by Monteiro and Adler [186], Kojima et al. [145], Lustig et al. [162, 163] and Mehrotra [176] -
among others, the central path is therefore used to keep the iterates sufficiently away from
the boundary. So-called weighted paths have been used with the same objective in e.g.,
Den Hertog et al. [105], Ding and Li [47] and Mizuno [180]. In this chapter we propose the
use of a different path, that, unlike the weighted paths improves the centering along the
path. More specifically, such a path may start in any non-central point but is tangential
to the central path in the limit. The path can be viewed as a continuous extension of the
primal-dual Dikin-affine scaling direction. A path-following algorithm is developed that
uses such a path as a guideline to optimality; this will be called the Dikin~path—following
algorithm. We stress that centering is very important in interior point methods. A sequence
of iterates that approximate the central path (in the limit) will generate points converging
to the analytic center of the optimal face (Giler and Ye [98]). It is well known that this
center is a strictly complementary solution, thereby defining the optimal partition of the
problem, which is very useful in sensitivity analysis (see Chapter 2). Also, the asymptotic
analysis of certain interior point methods uses the centering to prove superlinear or quadratic
convergence of algorithms, e.g., [89, 90].

The analysis of the new Dikin-path—following method offers a general framework for
the convergence analysis of primal-dual interior point methods. This framework is general
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enough to apply to very diverse existing methods and still yield simple convergence proofs.
The methods being analyzable in this context are called target—following. These methods
appeared to be closely related to the methods using a-sequences developed by Mizuno
[180, 182] for LCPs. The basic observation for the development and analysis of target—
following methods is contained in Theorem 2.1.5. To be more specific we use the LP problem
in standard form

(P) mxin {cT:v : Az = b, :1:20},

and its dual

(D) n;a;’x{bTy : ATy +s=c 520}.

Under the assumption of the existence of a positive primal-dual pair for (P) and (D) the
system

Ar = b, z>0
ATy+s = ¢,5>0 (4.1)
zs = B2,

has a unique solution for any 7 € R}, see Theorem 2.1.5. The existence of the solution
follows from the observation (cf. Theorem 2.1.11) that the given system is the KK T-system
for minimizing the weighted logarithmic barrier function

n
f(z,57) =2"7s = Y w?Inz;s:.
=1

Recall from Section 2.1.1 that the v-space of a given LP problem is defined as the space of
the square roots of the complementary products of positive primal-dual pairs:

V={veR": v= 3, Az=b ATy+s=0¢,2>0,5s>0).

Note that if v = /s then |[v]|* = zTs, so in the v-space the points with constant norm
represent all positive primal-dual pairs with a fixed duality gap. Observe that all optimal
pairs (z,s) correspond to the vector v = 0. The image of the central path in the v-space is
the main diagonal; also the image of the weighted path that passes through an initial point
(2@, 5©) is the positive ray passing through v(@ = v/z©@s0), Atkinson and Vaidya [11]
discuss how the efficiency of Newton’s method is affected by differences in the elements of
a weight-vector. They give a simple example demonstrating that when the ratio between
the smallest and the largest weight decreases, the region where Newton’s method converges
gets smaller. Hence, a natural way of measuring the closeness of a point to the central path
appears to be this ratio, which is denoted as

(4.2)

w(?) := max()’
Note that 0 < w(7) < 1, with equality if and only if 7 is on the central path. To combine
centering and improving complementarity we will be interested in trajectories of which the
image in the v-space passes through v(%) and is tangent to the main diagonal at the origin
of the positive orthant.
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To analyze primal-dual algorithms we focus on a few general concepts. The basic
algorithmic step in path—following primal-dual interior point methods is a Newton step
in the (z,s)-space. This step is defined with respect to some target(—point) v in the v-
space. The fundamental property in interior point methods is that the step is feasible (i.e.,
preserves the interior point property) if the current iterate (z,s) is close enough to the
target U, where closeness is defined with some appropriate measure of proximity. With this
in mind, we can define the concept of a target-sequence, by which we mean any sequence of
vectors in the v—space. A traceable target-sequence is a target-sequence with the property
that: (¢) it can be approximated, in the sense of the above mentioned proximity measure, by
a sequence of points in the (z, s)-space, such that (i) successive points in the (z, s)-space
are obtained by some ‘easy’ computations such as one or a few Newton steps. If the target-
sequence converges to some point, then we may enforce convergence of the associated (z,s)-
sequence to the target limit. We now define a target—following algorithm as an algorithm
that generates iterates (z*), s*)) which are close to their corresponding targets ¥, In the
standard (central) path—following methods the targets are points on the central path. Then
the (traceable) target—sequence is determined by

0 = poe, T = /1 6,00,

for certain values po > 0 and 0 < 8; < 1, where k is the iteration number. A weighted—path
following algorithm has a given o > 0 and sets 3**) = /T—§;5®*). The one-to-one
correspondence between points in the v—space and positive primal-dual pairs (z, s) suggests
that, to solve the LP problem, we can follow any sequence of targets {7} in the v-space
for which eT(7(*)? tends to zero, hence leads to optimality. The same methodology can be
used to solve other problems, like computing weighted centers. Note that a target-sequence
may consist of an infinite as well as a finite number of targets; a target-sequence can be
predetermined, but also adaptively constructed during the algorithm.

The striking feature of the convergence analysis we propose is that it is essentially
performed in the v-space. We express a simple condition on the target-sequence to be
traceable by a sequence of primal-dual pairs (z, s). By verifying that a given target-sequence
satisfies the condition, we have a simple methodology to derive complexity bounds. The
general results are developed in Section 4.2. In this way we are able to analyze and prove
convergence of a great variety of algorithms (see Sections 4.2.3 and 4.2.4) such as two variants
of the Dikin-path—following method (cf. Chapter 3), the standard path—following method
[145, 186], the weighted path-following method [47], a variant of the cone-affine scaling
algorithm [230], a variant of Freund’s shifted barrier method [60], algorithms for computing
analytic centers [101, 180] and algorithms for computing weighted centers [11, 182]. The
convergence proofs are short and similar, thereby demonstrating the unifying value of an
analysis focusing on the v-space.

Whereas the applications considered so far are all short-step methods, we show how to
transfer the target—following methodology to long-step algorithms (cf. Roos and Vial [215],
Gonzaga [86], Den Hertog [101] and Jansen et al. [121]). In the analysis in Section 4.3
we introduce a weighted logarithmic barrier function which serves the role of a proximity
measure between primal-dual pairs and targets in the v—space. One of the striking outcomes
will be that the complexity of long-step methods is negatively influenced by the use of
weights.
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For convex nonlinear programming (NLP) Nesterov and Nemirovskii [199] gave an anal-
ysis of the standard (primal) short-step logarithmic barrier method. They introduced the
self-concordance (smoothness) condition (Definition 3.5.16), which generalizes earlier con-
ditions by Zhu [263] and Jarre [124], and is generally accepted as the one suitable for the
analysis of short-step methods. In Section 4.4 we show that the target—following framework
can be applied to convex programming problems as well, thereby generalizing the analysis
of Nesterov and Nemirovskii [199] to interior point methods not necessarily following the
central path. Here, we use the fact that the primal-dual system (4.1) is also the KKT-
system for minimizing the primal {or dual) barrier function over the primal (dual) feasible
region. The main difference of our analysis compared to the one in {199] is that in our case
the self-concordance parameters are not constant but change from one iteration to another,
depending on the change in the targets. As far as we know, many of the methods we analyze
in this section have been analyzed and applied to LP, but not analyzed for NLP problems.

Nesterov and Nemirovskii [199] also consider variational inequalities, which is a class of
problems including as special cases many equilibrium problems in economics, transportation
planning and game-theory, as well as convex programming itself (for a survey see Harker
and Pang [99]). The variational inequality is not an optimization problem, but a feasi-
bility problem. Still, in [199] it is shown how an interior point method can be adopted
to (approximately) solve the problem. In Section 4.5 we generalize these results to the
target—following setting. The observation that for the analysis of variational inequalities no
objective function is involved, implies that we do not need to consider a barrier function
explicitly. Instead, we show that it suffices to apply mappings that have the same self-
concordance type properties as gradients of a barrier function; we will call such mappings
self-concordant barrier—operators. The advantage of this approach is that it provides a way
of dealing with non—central path—following methods for cones other than the nonnegative
orthant, as the cone of positive semidefinite matrices and the second order cone.

4.2 Short-step primal-dual ‘algorithms for LP

4.2.1 Directions in v—space and (z, s)-space

In this section we analyze the (iteration) complexity of primal-dual methods for LP that
follow a traceable target-sequence. Methods of this type have an iterative nature, meaning
that in every iteration a direction is computed that leads from the current iterate to the next.
Let (z, s) be a pair of primal-dual interior-feasible solutions, and let v be the corresponding
point in the v—space, i.e., v = /zs. Furthermore, let ¥ be the current target—point in the
v-space. Our aim is to find an approximate solution of the system of equations (4.1), or
stated otherwise, we seek directions (Az, Ay, As) such that

A(z + Az)
AT(y + Ay) + s+ As
(z+ Az)(s+As) = 7o

|
al

1
o
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Applying Newton’s method to this system we remove the nonlinear term in the last equation
and obtain the following relations for the displacements:

AAr = 0,
ATAy+ As = 0, (4.3)
zAs + sAzr = o —vi

For the analysis it is convenient to work in scaled space as has become more or less standard
in the literature on primal-dual methods for LP (see Gonzaga [88]). To this end we introduce

the vector
d:=Vazst.

Using d we can rescale both z and s to the same vector, namely v:
dlz =ds=v.

The main property of the scaling is that it maps both z and s to the vector v; this property
is extended to a nonlinear setting by Nesterov and Todd [200]. We also use d to rescale Az
and As: _

pgi=d Az, ps := dAs.

Note that the orthogonality of Az and As implies that p, and p, are orthogonal as well. In
scaled space, the search-directions p, and p, are orthogonal components of a vector. Indeed,
we may write

zAs + 3Az = 2d"1dAs + sdd ™' Az = v(p. + ps).

Obviously Ay should not be scaled, hence we define p, = Ay. So, Newton’s direction is
determined by the following linear system:
ADp, = 0
D Apr +ps =
Pr + Ps

Il
<
1
-
—~
<|
5
|
<
(%
~—

Denoting

Py = v7? (52 = U2) R (4.4)
we have p, + ps = p», and p, and p, are simply the orthogonal decomposition of p, in the
nullspace of AD and the row space of AD respectively. Note that this is established by the
scaling with d. We mention here that this is the last time that the data A, b, c explicitly
appear in this section, and that the data only come in via an initial starting point. This
has the advantage that we work completely in the v-space from now on.

4.2.2 Analysis of the Newton step

Since we will use Newton’s method for following a traceable target-sequence we need to
analyze its behavior. Let us define the vector g, as follows:

Qv = P2 — Ps-
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Note that the orthogonality of p, and p, implies that ||¢,|| = {|p.]|- We also have

Pz = (Pt ),
pPs = %(Pu - Qv)a
whence
PzPs = (pu - qﬂ) (4"5)

The product p.p, plays an important role in the analysis. It represents the second order
effect in the Newton step, which needs to be small to prove efficiency of Newton’s method.
Indeed,

(z + Az)(s + As) = 25 + zAs + sAz + AzAs = v* + vp, + PoPs = V° + PaPs.

Unless the nonlinear term AzAs (that was left out in (4.3) to obtain a linear system) is
zero, the vector of complementarity products after the step will not be exactly 72. We relate
the euclidean and the infinity norms of this product to the norm of p, as follows (cf. Lemma
3.3.3; a similar lemma for the case 7 is on the central path is proved by Mizuno et al. [185]).

Lemma 4.2.1 It holds ||ppsleo < llpol* /4 and |lpapill < [Ipll” /(2V2).
Proof: Using (4.5) we may write

2 2
Ipepalloo < 3 max ([lpll%, lgoll2) < 3 max (lIpol®, llgoll®) = 3 llpoll®-

Using (4.5) once more we obtain

e’ (P;Ps)z = 1—16'6T( - qv) = _1E
(120 + el < %WM"+MN)=§wm%

+
This proves the lemma. o

”pz:ps”2

IA

0

P2

In the analysis of target—following algorithms we need a measure for the proximity of the
current iterate v to the current target . For this purpose we introduce the following
proximity measure:

§(v; @) := 7o (4.6)

] lpoll =

‘Zmln(v me( ) v

We point out that this proximity measure is in the spirit of the Roos-Vial measure [216],
and the primal~dual measures discussed in Jansen et al. [121]; note that it is not symmetric
in the iterate v and the target . Defining .

(4.7)

the measure can be rewritten as

2 .2 1 - -1
§(v;0) = m" (v —v)||=m||v(u—u )“ (4.8)
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If * = pe for some positive y then the measure is
N N T
5(v,v)—§||u—u “,

which is up to the factor 1/2 equal to the proximity measure used in [121}. A similar

measure, namely

2 2

1 ¢ —v

2 min(7)

— ’
v

was used by Mizuno [180, 182]. This proximity measure differs from ours by a factor
involving
v

v -
e = 2] and 0 =
o

0

The next lemma is concerned with bounding these quantities. Moreover, our analysis will
show that these quantities are very important for the proximity in the v—space.

Lemma 4.2.2 Let § := 6(v;7) and u as defined in (4.6) and (4.7). Then it holds

where

p(8):=6+v1+ 6% (4.9)

Proof: Observe that

1o, L o ]
*= g |7 (=) 2 gy ® e - = g =7

So, for each 7,1 < i < n,
—26 < uil —u; < 26
Since u; is positive, this is equivalent to
—2u;6 <1-— u? < 2u;d,
or
u?—2u,~6-—1 SOSU?+2ui6—1.
One easily verifies that this is equivalent to p(6)~! < u; < p(8). This proves the lemma. O

We proceed by investigating when the (full) Newton step to the target—point T can be made
without becoming infeasible, i.e., under which conditions the new iterates z+ := z+ Az and
st := s + As are positive.

Lemma 4.2.3 The Newton step is feasible if |5~ 2pgps|lw < 1. This condition is satisfied
if § :=6(v;7) < 1.
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Proof: Let 0 < o < 1be a step length along the Newton direction. Define z(c) = z + Az
and s(a) = s + aAs. Then we have

m(a)s(a) (U + Otp,;)(l) + ap-?) =0+ av(ps + Ps) + azpmps

= v’ 4 (0 — v?) 4 a®pep,s = v3(1 — @) + oB® (e + a6‘2pzps> . (4.10)

Il

We obtain that z(a)s(a) > 0if ||772p,p,|[e0 < 1 and & < 1, which proves the first statement.
The condition on § follows from the observation

2
< Mpepslleo N2l _ 0
o~ min(7)? ~ 4min(7)?

PzPs

62

where the last inequality follows from Lemma 4.2.1. a
Letting o = 1 in (4.10) and denoting (v*)? = z*s+ we get the useful relation

(v*)? =7 + pop,. (4.11)
The following lemma shows that if the current iterate v is close enough to the target 7, then

the Newton step ensures quadratic convergence of the proximity measure.

Lemma 4.2.4 Assume that § := 6(v;T) < 1 and let v* result from a Newton step at v with

respect to G. Then it holds
54
+.5)2 <«
6(v*;7)* < S5

Proof: Lemma 4.2.3 implies that ¥ and s are feasible. For the calculation of §(v*; %) we
need v*. From (4.11) and Lemma 4.2.1 we get

min(v*)? > min(7)? — ||psps|ee > min(T)? — i”pvn(l = min(?)*(1 — §?). (4.12)
Using this relation, (4.8) and (4.11) we derive
1
52 = —— |(oFVt (52 — (2
50 = 4 min(7)? H(” )@ - (") )”
L llpepsll®
4 min(7)? min(vt)?’
Substitution of the bounds in Lemma 4.2.1 and (4.12) yields
6(U+"—U—)2 < 1 ”p1’”4
"7 32min(?)? min(7)2(1 - 62)
Performing the substitution ||p,|| = 2min(%)é gives
4
<
= 2(1-62)
which proves the lemma. =
For 6 := 6(v; ) < 1/2/3 it holds §(v*;?) < 6, implying convergence of the sequence of New-
ton steps, while for § < 1/v/2 it holds 6(v*;T) < 62, guaranteeing quadratic convergence.

The Newton step has another important property, namely that the duality gap after the
step has the same value as the gap in the target T.

2 1 PR 2
—W"(‘U ) PzPs

§(vt;T)?
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Lemma 4.2.5 Let the primal-dual feasible pair (z+, s) be obtained from a full Newton step
with respect to T. The corresponding duality gap achieves its target value: (z+)Tst = 7).

Proof: Using (4.11) and orthogonality of p, and p, we have
(@*)7st = T (v*)? = €"8" + pLp, = €70 = |7
[}

This lemma has two important implications. First, if subsequent Newton steps would be
taken with T fixed then the duality gap would remain constant. Furthermore, if we take
only full Newton steps in an algorithm (as is typically done in short—step methods) we do
not have to bother about the duality gap in the iterates themselves, it suffices to consider
the duality gap in targets.

To complete the general results we analyze the effect on the proximity measure of a
Newton step followed by an update in the target. This is technically a bit more easy than
analyzing the effect of an update in the target followed by a Newton step, since now we can
just use p, as defined before. Although the latter might seem more natural both approaches
are of course equivalent. We perform the analysis in a general setting, such that in the sequel
it will be an easy task to apply this theorem and derive polynomial complexity bounds for
various applications.

Theorem 4.2.6 Let v and T be such that § := §(v;v) < 1/2. Let vt be obtained from v by
a full Newton step with respect to T and let v+ € R}, be arbitrary. Then

+ _1_ min(7)
24/6 min(vt)’
Proof: From Lemma 4.2.3 it follows that v* is well-defined. By definition we have

(5 = 1)
vt

§(vhv) < —2\/—65(6;5*)

1
+.51) —
80T = S

Recall from (4.11) that (v*)2 = %? + p.p, and from (4.12) that
min(vt)? > min(7)3(1 — §%). (4.13)
Using these and Lemmas 4.2.1 and 4.2.2 gives

1
2min(7Y)

ek

b vt

1
2 min(o+)
5o |2+ s P
U e T 2min(et) min(ot) 2v2 P

8(m; 77 )p(6(v*; 7)) + ﬁmi:;()ﬁznin(“) 2

o ot T min(7) 82

DzPs
vt

§(vt;v) <

IN

(AN

IA
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where the last inequality follows from (4.13). Finally, from Lemma 4.2.4 we obtain

2
s(v*;v) < d

)‘,h(y-yy

Substituting 6 < 1/2 yields 62/1/2(1 — 62) < 1/(2v/6) and p(6(v*;7)) < v/6/2. This gives
the required bound. a

We will later apply this theorem several times in the following way. Given v close to a
target ¥ such that 6(v;T) < 1/2, we need to determine a condition on the new target o
such that v* will be in the region of quadratic convergence around T+, in other words, such
that §(v*;T%) < 1/2. The theorem implies that this can be done measuring the proximity
6(v;7+) between the targets, and the ratio min(%)/min(7+).

4.2.3 Algorithms using Dikin—affine steps
Motivation

In Section 3.3 we introduced the primal-dual Dikin-affine scaling direction at © using the
solution of the subproblem

rrA1ivn {7TAv : ”6’1Av|| <1},

defined in the v-space. This problem can be interpreted as finding the direction in the
v-space that aims at a maximum decrease in the duality gap within the Dikin—ellipsoid in
the v—space. The solution Awv is given by —%%/||[7?||. Let us now use the vector field of
the primal-dual Dikin direction and its associated set of trajectories. The equation of the
trajectory passing through ¥ € R’ , and tangent to the vector field is given by

B(£:7) = ——r £>0 (4.14)

' VPt t+e T )

It holds ®(0;%) = 7 and, for t — oo, ®(¢;7) tends to zero tangentially to the vector e.
We first show that ®(¢;7) defines a path in the v-space, henceforth called the Dikin—path
starting at 7, and derive some interesting properties.

Lemma 4.2.7 Let ®(t;7) be as defined in (4.14).
(i) For any t;,ty > 0 it holds

O(t1 + t2;7) = B(t; ®(t1;9));

(i) For any t > 0 it holds that if 5; < T; then ®;(t;7) < ®;(1;7);
(iii) For any t > 0 it holds w(®(t;7)) > w(T), where w(-) is defined in (4.2).

Proof: (7) It holds

72

2 = 2y
B(t; +t2;7)% = = = ——-ate = $(ty; (43 0))%
(1 2 ) U2(t1+t2)+6 Eﬁ%tg'f-e (2 (1 ))
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(12) If 5; < 7; then it also holds 53(v2¢ + 1) < v%(v?¢ + 1), from which the statement follows.
(¢42) Using the fact from (i) that the ordering of the coordinates of T is the same along the
path we have

=y _ min(®(#7))  min(v) | max(v)?t 41 o |max(D)?t 41 _
w (@) = max(®(;7))  max(v)\| min(7)2t + 1 = w(®) min(7)% + 1 z w(o)-

O

We consider two algorithms. The first is called a Dikin-path—following method. Given an
initial target (), the other targets will all be at the Dikin—path starting at 3(®). The second
algorithm we consider uses the tangent at 5 and moves the target with a certain step
size in this direction. This brings the new target to a different Dikin—path, from which the
algorithm proceeds, see Figure 4.1. We will show that from a complexity point of view both
algorithms behave similarly. Observe, that in the case of a weighted path~following method
both approaches are equivalent.

¥
central path

A2) D
'A3)
@
)

0 ' v,

Figure 4.1: The Dikin-path—following in the v-space uses targets 7(¥); the algorithm using
Dikin steps has targets 9*) on different paths.

Algorithm 1, properties and complexity

Let the initial target be denoted by 7 and let (z(®, s() be such that for v(® := /z(©)5(0)
we have §(v(®;5(?) < 1/2. The target-sequence is determined by values t; > 0 and the

targets are defined by
7®) = 'I)(tk;ﬁ(k_l)).

In view of Lemma 4.2.7(3¢) we assume

min(b{o)) = T)(lo), max(ﬁ(o)) =70
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and know that the ordering of the elements of 7 is the same for all targets. Since we are
interested in the behavior of Newton’s method per iteration we just denote T := T,
ot :=9®*) and ¢ := t,. We also use & := w(7) (recall the definition from (4.2)). Taking for
Az and As the displacements according to a full Newton step with respect to the target—
point ¥, we can now formally state the algorithm as in Figure 4.2.

Input

(2, 5©®): the initial pair of interior-feasible solutions;
Parameters

€ is the accuracy parameter;

t is the step size (default value w/(3+/n%2));
begin

z:=z; 5:=5); 7:= /zs;

while z7s>¢ do

T =TV +¢

compute (Az, As) from (4.3);

z:=2 + Az;
s:=38+4+ As;
end

end.

Figure 4.2: Dikin—path—following algorithm.

From Section 4.2.2 it is clear that the only thing remaining to analyze a target-following
method, is to guarantee that a sufficiently large step size in the v—space can be taken, and
to use this to compute the number of steps needed by the algorithm. Specifically, we should
check for which value of t the conditions of Theorem 4.2.6 hold.

Lemma 4.2.8 Let o™ result from a step along the Dikin—path with step size t := @/(3,/nv2).

Then (@) 9
min(7
—— el d T ot) <
min(7+) ~ 8 and (V) <

Proof: Using min(7) = %) and min(7*) = 77, the first bound follows from

Ez 2 =1/ < __,1__ 1 g
= Vot + 1 \/w/(3\/h‘)+1_,/3\/§+ <3

| =

Furthermore
575t = L la‘l ((ﬁ’f)2 —62)" = yoitl) o
’ 26-1,- 251 ﬁzt + €
@3/(3 1 E15d
< @*/(3v/n) + w _ Un Jn
A 3Vt @ /(3y/n) +1
1 1

= ——_— <

6/ (3vm) +1 6
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This completes the proof. ]

Assuming 6(v;?) < 1/2, combining Theorem 4.2.6 with Lemma 4.2.8 shows that we can
compute vt in one Newton step such that §(vt;©ot) < 1/2. We proceed by considering
the reduction of the duality gap in the algorithm. Recall from Lemma 4.2.5 that after a
full Newton step the duality gap attains its target value, so we only need to consider the
duality gaps e7o? resulting from successive target values. Using this, we prove the following
theorem.

Theorem 4.2.9 Let (¢(®,5©) be a given initial point and let
7@ = V2050  and Ty 1= w(@@?).
If the step size t has in every iteration the value @/(3/nv2) then after at most

o ({2 E22)

—3
Wy

sterations the Dikin-path—following algorithm stops with a positive primal-dual pair (z*, s*)
satisfying (z*)Ts* < e.
Proof: At the start of the algorithm the duality gap is given by

(@O = [

If, as before, the target—point at the beginning of some iteration is denoted as T and at the
end of the same iteration as Tt, then we have

2 eTp? eTH
7% +e) S+l BBV +1

where © := w(?). Since @ > @y by Lemma 4.2.7(ii7), at each iteration the duality gap is
reduced by at least the factor

o=

1

T+ w8/Bva)

From this the theorem follows. o

The theorem implies that the target—following algorithm runs in O(/mln1/e) iterations
whenever (z(®)7s(® = O(1) and T = Q(1). Unfortunately, whenever @ is smaller than
O(1) the complexity bound is heavily negatively influenced. We will later show how the
bound can be improved by adjusting the analysis and using the fact that the proximity &
increases along the Dikin—path.

Algorithm 2, properties and complexity

The second algorithm we consider determines the target—sequence by moving from one target
to the other using tangents to successive Dikin—paths. Specifically, given a current target ©
let us define the next target by the Dikin step

=3 =2
= U _ v )
V=V~ =0 e~ a5
il ( =2/
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for some positive number a. Since we require 7+ to be positive, it is well defined only if

RO ..
T max(7)2

Defining the step size 8 by 8 := o/ amax we have 0 < 8 < 1 and

53 2

F::v—av—)z=5(e—0——”—). (4.15)

max(T max(7)?

Note that each element of 7+ is smaller than the corresponding element of 7. This property is
important, since the Newton process in the (z, s)-space forces equality between the duality
gap and eT(7+)?, see Lemma 4.2.5. So the duality gap will be decreasing and is bounded by

ol (1 - ) < |7 < I (1 - 0‘“““5)2) — ol (1 - 62), (4.16)

max(7)?

where & := w(7). If we choose § < 1/3 then the Dikin step has two interesting properties,
which are similar to the ones in Lemma 4.2.7: it preserves the ranking of the coordinates of
U, and it causes the ratio @ to increase monotonically.

Lemma 4.2.10 Assume that 0 <% <7 < --- <7, and let § < 1/3. Then

0<of <7y <--- <
Proof: Let : < 5. We have
0
st _=t = = = _38) _ = = Y (=2, == 2
v -7 = v]-—v,—%(vj—vi)—(vj—v,)(l—vz(vj+v,vj+vi))

> (Ej —5,')(1 —39) > 0.

Thus it follows that 3} <7} with equality if and only if 7, = ;. o

Remark 4.2.11 An alternative proof of Lemma 4.2.10 can be given using the function
¢(t) = t(1 — 6¢%)/(1 — 9). Assuming T, = 1, after the Dikin step it holds TF = ¢(%;) if the
mazimal component of Tt is rescaled to 1. The function §(t) is monotonically increasing
and concave for 6 < 1/3.

In the sequel we use § < 1/3, hence we may assume that the coordinates of 7 are ranked as
in Lemma 4.2.10. So 7, is the smallest and ,, the largest element of ¥ and @ = 7, /7,.

Lemma 4.2.12 Assume that § < 1/3 and let &t := w(T*). Then

1 - 6w?
—t __>_ .1
wr = <——1 7 )w__ R (4.17)

and

1—w+5(1—£)(1—w). ’ (4.18)
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Proof: Since § < 1/3 Lemma 4.2.10 implies that &+ = o] /o}. Hence, from the definition
of o} and T} we get

> w.

€}

w_@i_ﬁ_ll—e'wﬂ_ 1—6?
T v, 1-6 \1-4

n

For (4.18), note that

: — 02 — 0 — T 10T _ T4 P
-5+ - 1_1 0w5=1 -+ 1 0(l+w+w)1

19 -0 Ty Gl
(1—"'(%"—?-2—)) (1-) < (1_1”%) (1-).

This proves the lemma. a

I

Remark 4.2.13 If we use a value § > 1/3, the ranking of ¥ may not be preserved and
the proof of Lemma 4.2.12 does not go through. However, it is still possible to prove the
monotonicity of @ for § < 1/2. We omit the proof since this property will not be used in the
analysis.

Again it is important to analyze the influence of a target update on the proximity measure
by applying Theorem 4.2.6.

Lemma 4.2.14 Let 5+ result from a Dikin step at & with step size 8 < 1/3 using (4.15).
Then o 0
min(v) < ! and §(v;7t) < 1 —\/ﬁ

min(z+) = 1 -0 “1-0 @

Proof: Lemma 4.2.10 guarantees the same ordering for 7+ as for 7. So
min(7t) = 57 = 7y (1 — 62%) > 7y(1 — §) = min(T)(1 — 6). (4.19)
By definition and Lemma 4.2.10 we have
1
by — |1 ()2 _ 2
§(w;vt) = o7 |7 ()2 -]
Since Tt < ¥ it holds 7% + 7 < 20 < 20,e. Using also the definition of T+ we get

o7 (@) -7*)| = |o'@* +9)@ -5)| < 26m.

_— -
7| < 260,+/n.
vn
Using (4.19) we obtain
1 1 6y/n

§(T;5) < ———— 207, = —— X

7)< 57 = gy, 207V
This proves the lemma. O
Assuming 8(v;¥) < 1/2 and taking § = w/(6+/n), application of Theorem 4.2.6 gives
8(v*t;ot) < 1/2. Since @ increases during the course of the algorithm (Lemma 4.2.12)

the default value § = wy/(6+/n) guarantees that one Newton step per target update is
sufficient. The following theorem can be proved analogous to Theorem 4.2.9.
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Theorem 4.2.15 Let (2%, s©)) be a given initial point and let

79 = V2030  and @ := w(@).
If the step size 6 has its default value @o/(6+/n) in every iteration then after at most

o ( Vi (@) )

o3
@ €

iterations the algorithm using Dikin steps stops with a positive primal-dual pair (z*, s*)
satisfying (z*)Ts* < e.

Comparing Theorem 4.2.15 with Theorem 4.2.9 we see that this target—following algorithm
has exactly the same complexity as the Dikin-path—following method analyzed before. Still,
there is a major conceptual difference between the two algorithms, since one chooses its
targets on one smooth path, while the other has targets on various Dikin—paths. Moreover,
when starting at the same point in the v-space, a Dikin step as in the second algorithm
moves the target closer to the central path than a step along the Dikin—path; this can be
verified by comparing the values of @+ in Lemma 4.2.7(35¢) and Lemma 4.2.12.

Improved analysis and complexity

Unfortunately, when @, is smaller than (1), the complexity bound of the target—following
algorithms considered above is highly affected. For instance, when &y = Q(1/+/n) we only
obtain O(n? In1/e) iteration algorithms. However, the straightforward analysis given above
can be improved significantly to yield a bound of

o (v (Lt 4= =))

wWo  Wo

iterations, using the fact that @ increases in each iteration. Actually, @ will reach a value of
constant order in a limited number of steps, as is clear from Lemmas 4.2.7(443) and 4.2.12.
From that point on we can use this new value to bound @ from below. The first goal is thus
to bound the number of iterations to have @ ‘close to’ 1. We only show this procedure and
analysis for the second Dikin-type algorithm. Similar results are straightforwardly obtained
for the Dikin~path—following method. '

Lemma 4.2.16 Let § < 1/3. After at most

1.1
L) _._)
© (o " %
target updates using Dikin steps with step size § we have @* > 1/2.

Proof: Using (4.17) we have for @% < 1/2

1-62° _ 1-0/2 9/2
> = ———,
=6 2129 ~ 1773
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So @? > 1/2 will certainly hold if

(1 + liiz—g)% (w?)2 >1/2,

(14222 510 (22).

Using In(1 + ¢) > ¢/2 for ¢ < 1, this will certainly be satisfied if
P2 s (1_—/2-) .
(@o)?

Hence we find that the number of iterations required is at most

A (2@10)2) ’

which is of the order specified in the lemma. O

or equivalently, if

From the discussion succeeding Lemma 4.2.14 we know that § = wo/(6+/7) is an acceptable
choice. Thus we reach a point with ©? > 1/2 in O ((/n/®@,)In1/@,) iterations; in that
process ¥ and hence e7%? decreases. From then on, we can use # = 1/(6+/2n) and we need
O(y/n1n((z°)7s°)/¢) more iterations to terminate. We have proved the following theorem.

Theorem 4.2.17 The algorithm tracing targets determined by Dikin steps requires at most
1 (0T 4(0)
0 (ﬁ(_—lné+lnu
wWo wo €

iterations to obtain an e-approzimate solution.

Unfortunately, this complexity bound is not better than the one obtained for weighted
path—following algorithms (see Ding and Li [47] or Section 4.2.4); still, the new algorithm
has the advantage of generating, in theory and in practice, increasingly centered pairs. Let
us define ‘close to the central path’ by requiring that the iterate is in the region of quadratic
convergence of some point on the central path. We can relate ‘closeness’ to the value of w
as follows.

Lemma 4.2.18 Ifw :=w(v) > n/(n + 1), then there exists a target—point U on the central
path such that § := §(v;T) < 1//2.
Proof: If 52 = pe for some p > 0 then § reduces to

1
9 \/ﬁv_l -

L
VB
This measure is minimal for g = |jo|{ / ||o |} with value

1
WAL LK
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Hence we will have § < 1/+/2 if
lell o™ —n < 1.

Using the bounds ||v]| < v/nmax(v) and |v~"|| < \/n/min(v), this implies that it suffices to
have 1/w < n +1/n. o

The next lemma estimates the number of updates needed to reach a target with @ >
nf(n +1).
Lemma 4.2.19 Let § < 1/3. After at most

Gwo

0 (Lln(n + 1))

iterations we have @ > nf(n +1).

Proof: From equation (4.18) we need £ to satisfy

00 \* 1
~oy < (1 - =22 — &) € ——.
(]. (5] )_(1 1_0) (1 u)o)_n+l

Taking logarithms and using In(1 — t) < —t for ¢ < 1 we obtain that k should satisfy

1-6 _
k2 In((n + 1)(1 — @),

which gives the order in the lemma. O

Other scaling factors

The analogy between the Dikin-affine scaling algorithm and a target-following algorithm
using Dikin steps suggests that a family of target-following analogons for the family of
algorithms derived in Section 3.5 is possible. So, we consider algorithms with v—order
scaling and target-updates of the form

™2v
VUn

=
a+=6(e—a"—-), v >0 (4.20)

In this setting the Dikin step has » = 1 and weighted path—following has » = 0. Again it
is easy to analyze the resulting algorithms. We assume that v = (1), since otherwise the
computations may require exponentially large or small numbers, and the step size might
become exponentially small. First observe that

Il < lIzll(1 - &™)

It is left to the reader to verify the following lemmas, which can be proved similarly as in
the case v = 1.

Lemma 4.2.20 If 0 < 1/(2v + 1) then Tt has the same ranking as T; moreover, 3+ > @
with equality only if o =1.
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Lemma 4.2.21 Let Tt result from U by a target update using (4.20) with step size 8 <
1/(2v +1). Then

min(7) 1 _ 1 6y/n
—L <~ gnd bmwt) < — "
min(Tt) ~ 1-46 o 6(U’U)_l—0 w
We find that the algorithm using v-order scaling for the target update requires

o ( VA (xm))rs(m)

vt €

iterations to obtain an e-approximate solution. In a similar way as in Lemma 4.2.16 and
Theorem 4.2.17 we can improve the convergence analysis and improve the complexity bound

to
O\T (0
o (ﬁ (_im—_l- +lnM)> .
_ Wy Wwo €

Comparing the resulting complexity bound with the ones derived for the affine versions in
Section 3.5 we observe a (seemingly) striking difference. In the affine versions the complexity
depends on v and is best for » = 1. In the path—following variants the worst—case bound
does not depend on the value of the scaling while the theory allows the largest possible step
for » = 0. However, observe that for v = 0 the proximity in terms of & does not improve,
hence the worst—case bound in terms of @ is tight; for variants using v > 0 the proximity
to the central path improves, which implies that in practice larger steps can be taken than
predicted by the theory.

4.2.4 Other applications

We now apply the approach taken in Section 4.2.2 to various primal-dual algorithms found
in the literature, and to some new primal-dual variants of pure primal or dual methods that
appear in the literature. The reader should recall that the missing element to complete the
convergence analysis of a target—following method is to determine the step size that can be
taken. The step size is obtained from the condition that after a Newton step the iterate
should be close to an updated target, in the sense that it belongs to the region of quadratic
convergence around the target (cf. Theorem 4.2.6). The number of iterations required then
follows from analyzing the effect of the step size on the measure of progress. Some of the
applications are also given in Mizuno (180, 182).

Path—following methods

The standard path—following methods were derived and analyzed by Monteiro and Adler
(186] and Kojima et al. [145], being inspired by studies on the central path by Megiddo
(174] and Bayer and Lagarias [18], among others. Ding and Li [47] analyzed primal-dual
weighted path-following methods [47] (see also Mizuno [180]; a primal version was studied
by Den Hertog et al. {105, 214]). In the weighted path—following methods the centering
phase is by-passed and the iterates keep (approximately) the distance to the path as in the
initial point. Let 7® be given; define

7 = /1T — g1
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for some 0 < @ < 1. It is evident that
w(@®) = w(@E®), V.

Lemma 4.2.22 Let U be given and let @ = min(?)/max(v); using the target update T+ =

V1 — 07, we have

;r::ln((v—v—;)) - \/11— 5 and §(m;07) < L &

W1-0 @’

Proof: The first statement is trivial. The second follows from

1 (1—8)p% -2 1 1 f6yn
-

2/1 — Bmin(7) v - 2+/1 — fmin(v) el < 2v/1-46

s(mot) =

ju|

Combining Lemma 4.2.22 with Theorem 4.2.6 gives that §(v*;7t) < 1/2 for 8 = w/(3/n).
Since ||[T*||? = (1 — ) ||7]|*, we get by Lemma 4.2.5 that the number of iterations required
for the algorithm is O(y/n/@In(z(®)T5(®) /). Note that for central path—following methods
@ = 1, so the complexity bound is negatively influenced by non—central starting points. The
bound is in accordance with [47] for weighted path—following.

Cone-affine scaling

Recently, Sturm and Zhang [230] proposed a new search-direction, which they used in a
cone-affine scaling method. Their direction is a linear combination of the primal-dual affine
scaling direction and a new centering direction (cf. Section 3.6.3). Here we analyze a method
following a target-sequence constructed with cone-affine scaling steps. The target update
is as follows. Let 7 := 7(*~1) denote 7+ := 7(*), and define

7t 1= \/fmin(7)7, (4.21)

for some 4 < 1. The new duality gap satisfies
T (7*)? = min(7)e’T < G772,

hence the algorithm requires at most O(1/(1 — 8) In(eT (7)?/¢)) iterations to obtain an e~
accurate solution. As in the Dikin-path—following algorithms the ordering of the elements
of the targets remains the same:

7 <...<Ty oF <...<7.

l

For the ratio w(7t) we derive

w(@?) = Z——{— = \/\/;i; = /w(?) = w(T).

Lemma 4.2.23 Let © be given and let © = min(?)/max(v); using the target update ({.21)

we have )
(z-0)va
@

min(7) _

L
min(T*) /@

| .

and §(v;v) <

S

2
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Proof: The first statement is trivial. The second follows from

5 = 1 fmin(T)v — V2 _ 1 min(Ble — T
6(2;9%) 2v/0min(7) v 2/0min(7) |fmin(?) I
L (max(®) N 1 (1 N\ -

S e (min(ﬁ) 0) Vh= 3V (5 0> Ve

O

Applying Theorem 4.2.6 with the bounds in Lemma 4.2.23 we can compute the minimal
value of § such that 6(vt;7%) < 1/2 will hold given 6(v;T) < 1/2. Unfortunately, this
requires a condition on @. If we require

1
5/n’
and choose § = 1 — 1/(54/n), then it holds §(v*;o*) < 1/2 and the algorithm has an

O(y/nln1/e) iteration complexity. Observe that even in a target—following framework the
algorithm is required to stay in a small neighborhood of the central path.

1
=<1+
@

Freund’s shifted barrier method

Freund [60] analyzes a shifted barrier method for the primal LP problem, to allow the
logarithmic barrier method to start with an infeasible point. We will outline his method
and then analyze a primal-dual variant. Let (%) be given such that Az(® = b and define
h € R™ and po € R such that 2(® + poh > 0. As Freund, we make the following assumption.

Assumption 4.2.24 The shift h is chosen such that for all dual feasible slacks s the con-
dition ||hs|| < 4/n holds.

Note that the assumption can be satisfied if the dual feasible region is bounded. Freund
shows, that when an approximation 3 to the analytic center of the (bounded) dual feasible
region is known then the algorithm can be started with this approximation, the shift A =
57!/n and a suitable value for yo. The system to be (approximately) solved in an iteration
is given by

Az = b, z+4uph>0,
ATy+s = ¢, s>0,
(z+ph)s = pe.
While Freund’s algorithm does not necessarily generate feasible dual iterates in each itera-

tion, our primal-dual variant does. The main task it to estimate the effect of updating the
target \/pie in the v—space, in which we use the distance measure

1
N/

(z + ph)s — pe
\/(a: + ph)s

Sp(x + ph,s;\fpe) = 3

We define the following notion.
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Definition 4.2.25 The vectors = and s are called (i, B)-approzimate solutions if
Ar = b, z+ph>0,
ATy+s = ¢, s>0,
and Sp(x + ph,s; /pe) < B for some constant B < 1.
We have the following lemma.

Lemma 4.2.26 Let  and s be (u,1/4)~-approzimate solutions and let y* = (1 — O)u for
6 =1/(16+/n). Then we can compute (ut+,1/4)-approzimate solutions z+ and st with one
Newton step.

Proof: Using Lemma 4.2.2 it holds for all ¢

1 < i

—Fr <
p = V(@i + phi)s —°

where p i=1/44+4/1+4 (1/4)? < ,/5/3. Consequently,

£
2

ot W

(zi + phi)si > = >

.

A~

Then,
(zi + pthids; = (:ci + ph)si + (pt — phis; > gu ~ OQuh;s;

1 43

‘” O = (5 16) =5t 0

8
so we can use the pair (¢ + p*4,s) as starting point for Newton’s method toward the new
target \/ute. We first establish that this pair is still close to the current target VEe:

v

1 *h)s —
5p(z + uth, 55 lie) = (x\/JE = iih)f e
T
1 l(z+ ph)s — pe+ (ut — p)hs
2\/1 \/(a: + uth)s
(z + ph)s Op hs
< bp(z + ph, s;\/ue
F(z + ph, s;\/ue) (z + pth)s - 2./ \/($+“+h)s

Lp/E_ O va__ [e0 1\/§+£L 1L
4\/43;1/80 2\/;‘_\/43;1/80 T V43 \4V3 216 2
Let (z* 4 pu*h, s*) result from a Newton step with respect to the new target /uFe. Then
Theorem 4.2.6 implies

Sp(zt +pth, s+,\/#—+e)_ {20\/_ +2\1/_\/11
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Since, 1 — 8 > 1 — 1/(16+/2), we have 1/v/1 — 8 < 44/43, hence

61 44 1 4 1
ot + uthy sty ey < YO L 44 14 1
r@” +uth s Ve S e s T oveds < 4

So, the pair (z*,s%) is a (u*, 1/4)-approximate solution. o

We let the algorithm run until (z+uh)7s < ¢; from the condition of approximate solutions it
then follows that np < 2¢. Hence after O(+/n1n(1/¢)) iterations the algorithm has generated
¢* and a pair (z*, s*) such that

(%)Ts* = (2" + w*h)Ts* — p*hTs* < e+ p*Vn||hs*|| < e+ np* < 3¢,
and

2
=2 pth— pth > —pth > —;lf||h||°o.

Hence the pair (z*, s*) is an approximately feasible and approximately optimal solution if €
is chosen sufficiently small.

Efficient centering

The next application of the target—following concept is the problem of efficient centering,
which is stated as follows. Given an arbitrary interior—feasible point (z, s) compute a point
close to the central path. In this section we give a simple analysis of an algorithm, inde-
pendently proposed by Den Hertog [101] and Mizuno [180]. The idea of the algorithm is to
successively increase the smaller elements of the target—vector until they all become equal
to the largest element. Let (7(9)? = (%5 be given; update ¥ to obtain o+ as follows:

o7 = max(v;, V1 + 0 min()), i=1,...,n; (4.22)

if min(¥+) > max(7), then we set ¥+ = max(v) e which is on the central path. We denote
@ := w(?) and @t := w(vt). The goal of the algorithm is to obtain a vector which is a
multiple of the all-one vector. Since

max(v+)\ > o1 (max(D) 2
min(@*)/ ~ 148\ min(?) ) ’
or equivalently (@*)2 > (1 + §)@?, it follows that reaching this goal will require at most
1 1

iterations, where @y = w(7®). The appropriate value of § is determined from the following
lemma.

Lemma 4.2.27 Let  be given; using the target update ({.22) we have

mjn(ﬁ)

1
— < ot < = .
min(o?) <1 and é(7;7") < 20\/1_1.
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Proof: If we are not at the last iteration then from (4.22) it follows for any i
% 2 V1 + 6min(v) > min(7);

when 7+ = max(D)e at the last iteration we have 5} > min(7), hence the first bound. Let J
be the set of indices for which 7; is increased. Then we have o =7; for ¢ J and

0<(¥f)* ~% < Omin(?)® forie J.

Consequently,
1 (Th)? —v? 1 fmin(v)%es|| 1
6 __;_" = < —0 .
@) = @ | 5| < 2 min (o) 7 < 30vn
where e is the 0-1 characteristic vector of indices in J. O

Combining this result with Theorem 4.2.6 gives that we can take § = 1/(3./n) to have
6(v*;7%) < 1/2. So we obtain that the algorithm needs at most O(y/n1n1 /@) iterations.

If we combine the above centering scheme with the standard primal-dual path—following
algorithm we obtain an algorithm for the LP problem needing at most

o (\/E (m%o +1n"—mﬂ>)

iterations, starting from any interior—feasible point. This is done by first centering, and
then working to optimality. Note that in the centering phase the duality gap in subsequent
target points increases, but is bounded by n max(7(%)2.

It is interesting to consider the seemingly equivalent scheme of moving the larger com-
ponents of 7 downwards. One can check that the analysis does not yield as good a bound as
before. Due to the asymmetry of the proximity measure, there is a factor @ that appears in
the bound on §(%; T*). It is also clear that if we combine the efficient centering scheme with
a standard path—following algorithm, we can reach the target (min(7®))e with complexity
proportional to \/n without @w—factor. So the observed asymmetry is not intrinsic to the
problem.

Computing weighted centers

In this application we discuss some algorithms to find an approximate solution to the KKT-
system

Az = b, z>0,
ATy+s = ¢, s20, (4.23)
zs = w?

?

where w € R}, is a prespecified weight—vector. Approximate means that we will compute
a feasible pair (z, s), such that
S(vw) < 172,

where v = /zs as usual. We make the assumption that a (specific) point on or close
to the central path is available. Note that we might use the centering algorithm of the
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previous subsection to find such a point. This problem has interesting special cases that
are considered by Atkinson and Vaidya [11], Freund {61] and Goffin and Vial {79], namely
to obtain the weighted analytic center of a polytope. If b = 0 and (z,y,s) is a solution
to system (4.23) then y is the weighted analytic center of the dual space, if the latter is
bounded; when ¢ = 0 and (z,y, s) satisfies the given system then z is the weighted analytic
center of the primal space, if it is bounded.

We first analyze an algorithm proposed by Mizuno [182], which is similar to the algorithm
for finding a center as discussed in the previous subsection. Then we give a simplified
analysis of the algorithm proposed by Atkinson and Vaidya [11] for computing weighted
analytic centers. We extend their algorithm to the case of computing weighted primal and
dual centers, i.e., for finding a solution to the system (4.23).

Mizuno’s algorithm Assume that we start close to the center pe, with g = max(w?).
The aim is to get close to the weighted center w. The first target point is set to T = max(w)e.
We then gradually decrease the elements of the vector T until they all reach the correct value.
This is performed updating the target as follows:

o = max(w;, V1 — 07;). (4.24)
Each component ; is decreased until it reaches its final value w;.

Lemma 4.2.28 Let 7 be obtained from ¥ with an update of the target using ({.24). Then

min(7) 1

min(7t) = /1—0 )< 2\/1”1'50‘/5'
Proof: The first bound is trivial. The components of T that are decreased by a factor
v/1 — 8 have not yet achieved their final value w;. Since they all start with the same value,
they have all been reduced by the same cumulated factor and thus

and §(v;vt

U;’ =vV1-6v; = ;= min('ﬁ).
So for all 7 it holds |(7F)? — 72| < f min (D)2 Hence

1
2min(T)

(@2 -7

v

1
~ 2¢/1 — Bmin(7)

fmin(v)%e

v

L o /m

TRTRE — < )
é(w; o) S Vi=d

[}

Using Theorem 4.2.6 gives 6(vt;3) < 1/2 for § = 1/(34/n). The number of iterations to
be performed is determined by the condition

(1 — ) max(w)? < min(w)?,

k>2ln(M).

implying

— 8 min(w)?
Consequently the number of Newton steps to compute the weighted center is at most

O(vrnlnl/w(w)).
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Atkinson and Vaidya’s algorithm (dual) Atkinson and Vaidya [11] propose an al-
gorithm for the special case b = 0. This corresponds to computing the weighted analytic
center of the dual feasible region. The algorithm is completely different from the one in the
previous paragraph. We give a simple analysis for the algorithm using two nested trace-
able target-sequences. Moreover, we extend the algorithm to the general case (i.e., solving
(4.23)) and show that this algorithm has a complexity bound which is worse than the one
for Mizuno’s algorithm.

So, first consider the case b = 0. Assuming w? > e and w? integral, Atkinson and Vaidya
suggest to start with a target vector 7 = e, and to successively increase the weights using
a scaling technique & la Edmonds and Karp [50]. The basic idea is to recursively solve
the given problem with all weights w? replaced by the maximum of 1 and |w?/2]. Let

p = |log, max(w?)|. Then w? can be written in binary notation as

w? =B By Bi

where f;, € {0,1} for all 7,j. Elements of the weight—vector w? which do not need p digits
for their binary description start by convention with a string of zeroes. Now, at iteration k
the target is defined by

@) = Bi B, < B
where we set B¢ = 1 if B, ---B;, = 0. Note that an update of the target to get o*)
from 7"~V amounts to doubling the target (i.e., adding a zero to the binary description)
and possibly adding 1 (if 8;, = 1) or subtracting 1 (if 8;,8;, - -- Bi, = 0). This is the outer
target-sequence in the algorithm. For ease of notation we denote 7 := 7(*~1) and 7+ := 7.
Summarizing, the technique boils down to a scheme that updates ¥; in the following way:

W1 ifieh={i: BBy B =0}
(@) =1 207 frelL={i: Bifiy - Pu,#0and B, =0} (4.25)
2 +1 ifiel={i: ffy By, #0andf;, =1)}.

Observe that
ieh=vf=7=1 (4.26)

The number of updates in the outer target-sequence is determined by the condition
2F > max(w)?,

which implies that there will be |log, max(w?)] + 1 updates.

We next need to compute the complexity of one outer update. This will be done by
defining an inner target-sequence that leads from % to 7. In [11] a pure dual algorithm
is used which means that doubling all weights does not change the position of the dual
weighted center. Hence, the only Newton steps needed are to get from 252 to (v+)?, which
are quite close to each other. Let (z,s) and T be given such that §(v;v) < 1/2, where
v := \/z3. Since b = 0, by setting

gt =2z, st =g, vt =Vatst (4.27)
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we have a feasible pair (z*, s%) for which

1
§(vt;v2m) = 5
In the analysis we consider the target-sequence that leads from /27 to ©". For this purpose

we use the following scheme. Let j = 0 and (#(”)? = 252, Define

=&~ i€,
9; = 0 ifi € I, (4.28)
—52= i€,

where o > 0 is a certain constant. Update #¢) for j > 1 in the following way:
(@) = @ =9 V) (4.29)

Of course, we do not overshoot the target value. The conditions

a Y =2 -2 ey
1~ (2'01)52'01“1 leEIl,
vivn
3
1+~—) 20?) > 207 +1 ifi € I,
(1+552)

determine the number of updates to be performed. For i € I, it suffices to have

. E‘\/ﬁ 202

> — —t— .

127y ln(2ﬁf—l>

Since from (4.26) we have 7; = 1 it follows that at most

ﬁan
Iy

iterations are needed for ¢ € I. Fori € I3, j satisfying

1
=1 + o
v,\/_
suffices. This leads to the condition that j > v/n/ (20@-) suffices; using the fact that 7; > 1,
this proves that the number of updates to be performed is not larger than +/n/2c. We need
to show now that the specific choice of the update guarantees that one Newton step suffices
per inner update.

1+

Lemma 4.2.29 Define 0 := of\/n. Let 19 be obtained from 5U~1) with an update of the
target using (4.28) and (4.29). Then

min($0-1))

< R 1e%
min(5()) ~ /1 -9

1-6

and §(UY; 5V < 5
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Proof: For ease of notation, let # = /-1 and &+ = . Then
min(5%)? > (1 — 6)min(5)?,

and hence we have

1/2
. 1 (5+)2 — 2 1 ( —9;) - )2
(5 5%) = < e
(#5%) 2 min(9t) 0] ~ 2y/1 - f min(3) iegla b
1/2 . o o\ 1/2
= (19 v, = Z (—’:z>
21 — ﬂmln(v i€Lul 2\/1 — 0min(v) i€Luly \/ﬁvi
2\ 1/2
< 2 < 0 3vn
- 2\/1—9mln CEIlUI:i v1 - 2V1_01mn(f)) "
2v1 — 0 mm(v)
Since min(9) > 1 the lemma follows. =

Using Theorem 4.2.6 it follows from the lemma that for & = 1/7 we can get close to 4/
from a point close to ¥~ in one full Newton step. So the entire algorithm performs at

most :

O(v/nlog, max(w)) (4.30)
Newton steps, and for this pure dual algorithm we get the same complexity as in [11] using
a much simpler analysis.

Atkinson and Vaidya’s algorithm (primal-dual) We now analyze the same strategy
for the problem of finding the primal-dual weighted centers, i.e., the solution of system
(4.23). The outer iteration is the same as before, i.e., doubling the target and subtracting
or adding one if necessary, see (4.25). The number of Newton steps needed to get close to
a new target is more than one now, since the update of ¥ is big: the trick in (4.27) cannot
be used anymore. Again, to compute an iterate in the quadratic convergence region of 7+
another target-sequence is constructed by which we reach o+ from 7. The following scheme
is used. Let ® =7 and define

g — 0 ifiel,
T —52= fieL U,

where o > 0 is a certain constant. Update 4%) for j > 1 in the following way:

() = (1= 9)(0F )
Note that the proof of Lemma 4.2.29 is easily adapted for this sequence and that its result
remains the same. Using the condition (&; e ))2 > (vF)% 0

i
(41 e
(1+5’_\/ﬁ> 72 > 277 ifi eIy,

J
o ep -
(1+“T;ﬁ) 7> % 41 ifiel
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must be of the order O(max(v)4/1), so an upper bound expressed in the data is

and using the fact that 7; > 1, it follows that the number of inner updates per outer iteration

O(max(w)/n).
Hence, the total number of Newton steps required is

O(max(w)+/n log, max(w)).

This is a factor max(w) worse than the result in (4.30) and in [11]. This difference can be
explained by noticing that doubling all weights does not have any effect in a pure primal or
dual method, but has quite an effect in a primal-dual method.

4.3 Long-step primal-dual algorithms for LP

4.3.1 OQutline

In Section 4.2 applications are given of the target—following approach with target-sequences
having the property that in each step the target is only slightly changed. Stated otherwise,
short-step methods were investigated. In this section we are concerned with the analysis
of medium-step and long-step methods in the spirit of Den Hertog [101], Gonzaga [86]
and Jansen et al. [121], among others. From the cited literature it appears that these
algorithms are much more efficient from a practical point of view, however, possess a worse
theoretical complexity bound. In general, the long-step methods use a step size which is
O(1) and converge in O(nIn1/€) iterations, whereas the medium-step methods converge in
O(y/nIn1/c) iterations with a step size O(1/y/n).

The main implications of using long steps are: (¢) it is not feasible to do full Newton
steps, instead damped Newton steps should be used, (#4) no longer one (damped) Newton
step suffices to reach the region of quadratic convergence of the new target. This implies
that for the analysis of long—step methods a different machinery should be used. In this
section we adopt the approach by Den Hertog [101] and Jansen et al. [121]. The generic
long—step algorithm is described in Figure 4.3. Observe that algorithms of this form contain
two nested loops. In each outer iferation the target is kept constant, while a number of
inner iterations (i.e. damped Newton steps) is performed to obtain an approximation to
the target. We introduce a barrier function f(v;7) that measures proximity to the target.
We will establish properties of this barrier function and its relationship with the proximity
measure 6(v;7) in (4.6).

We give some applications of the long-step approach. We first analyze the family of
path—following algorithms of which both the weighted logarithmic barrier method and the
Dikin-path—following algorithm are special cases. Then we use the present methodology to
analyze long-step algorithms for the problem of computing a point on the central path and
for the computation of a weighted center.
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Input
(2, 5©): the initial pair of interior—feasible solutions;
Parameters
€ is the accuracy parameter;
£ is the proximity parameter (default £ = 1/4);
# is the step size;
begin
z = 2(0; 5 := 5; 5:= \/z3;
while z¥s>¢ do
v:= (1 - 0)7;
while §(v;%) > ¢ do
compute (Az, As) from (4.3);
find o s.t. f(z+aAz,s+aAs;T)— f(z, s;7) is sufficiently negative;

z =z + alz;
s$:= s+ als;
end
end
end.

Figure 4.3: Long-step algorithm.

4.3.2 Barrier function and its properties

We use the weighted logarithmic barrier function defined by

f(z,87) = ; ?n_;ma: Bk Inz;s; — !2';)2 +§;ma:z ) In®?
We can rewrite this function in terms of v = /zs,
b(0;7) = ﬁ— ( Jol]? - ; 2no? — [[o? + Zlv w?)
= o (0 o () )

- zn: #zv)? (f: In (g) - 1) . (4.32)

=1 1

A slightly different weighted barrier function was used by Ding and Li {47]. Observe that
#(v;T) = f(=,s;7) and that ¢ has n parameters, namely the weights oy, ...,,. Note also
that it is homogeneous in the sense that ¢(Av; A7) = ¢(v; %) for 0 < A € R. Moreover, each
term in the summation in (4.32) is minimal for v; = ¥;, hence

¢(v;7) > ¢(7;7) =0 VveR],.
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Observe that in case the target is on the central path, say T = /e, the function f(-) reduces

to
T

flz,8;\/pe) = x—ﬂ—i - Zln:c,-s; —n+nly,

=1
which is (up to a constant) the primal-dual logarithmic barrier function used in [121]. In
this case the number of parameters reduces to one. We will show that a damped Newton
step gives a sufficient decrease in the value of the barrier function. Recall from (4.6) that

6(v;0) = éﬁ(ﬁ)llmll, (4.33)

where p, is defined in (4.4), and from (4.9) p(6) = § + V1 + 2. We define

2 2

roe /122 b (4.34)
v v
and observe
< Vi Tl = (4.35)
Lemma 4.3.1 Let § := §(v;7) and @ := w(T). Let the step size be given by
o=t max(®)? (4.36)

v lpoll? + rmax(v)?’
where r is defined by ({.34). Then

262—4
Af(e) = f(z + aAz,s + aAs;7) - f(z,57) < T 26 + 26p(8)@" 2?,,(5)“—,2-

Proof: First observe that 0 < ar < 1, so it holds z + aAz > 0 and s + aAs > 0. It holds
Af(e) = flz+ aAz,5+ aAs;v) — f(z, 57)
As;

_ _._1__2(a<AsTx+sw zv’ln(w %) (1+452)

max(v) i=

Applying Lemma A.1 to the concatenation of the vectors ap, /v and aps/v we obtain

n

(aeT(ﬁz _ v az v; (vi(ps): + v,(ps)z)

i=1 i

Af(a) <

max(7)?

—ar max(v)? — max(7)? In(1 ~ ar))

= — (eT(ﬁz —v?) ¢l (Z—Z(# - m)) —ar —In(1 - ar)

max(7)

ool _ o 1n(1 - ar), (4.37)

= _amax(v)2
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where the last equality follows from the observation
=2
T (52 — v?) = T (%(52 _ 02)) = —¢T (v—z (1—)2 _ vz)z) = —eTp2.

The right-hand side of (4.37) is minimal for the value of « defined in (4.36). By substitution
of this value we obtain

Afa) < -2y (1 P i ) ,

rmax(7)? rmax(7)?
Since this bound is monotonically decreasing in ||p,||*/(rmax(v)?), we may replace this
quotient by a smaller value. Using (4.33) and (4.35) it follows
lpell® o min)lipoll _ . _pmin(v) _ 2657
> = —_— D —
rmax(7)? T max(?)? 260 min(7) ~ p(8)’

where the last inequality uses the fact that for any i we have v;/min(v) > v;/v; > 1/p(6) by
Lemma 4.2.2. So we find

26w? 26w?
Af(Ot) < —;(‘67 +1In (1 + /)(—6)) .

Using the inequality

$2

2(1+z)’
the bound for Af(a) follows. o

As a result we have the following corollary.

Corollary 4.3.2 If 6 := §(v;D) > 1/4 then Af(a) < —w*/(14 + 62?).

—z+In(l+z)< -

x>0,

We relate the proximity measure §(v;7) to the value of the barrier function for points close
to a target.

Lemma 4.3.3 If § := 6(v;7) < 1/4 then

#(v;0) < —o —In(1 — o),
where o := 26p(6) < 13/20.
Proof: Observe that for ¢ > 0 it holds ¢ — 1 - In¢ > 0. Hence,

N3 2 2 2 ny2
#(v;T) = Ev—‘<%—l—ln;—;)§eT(%—2——e)—ZIn%

i=1 max(v)? i i=1
= eTh— Y In(l + k),
=1

where b := 5~%v? — e. Using Lemma 4.2.2 and definition (4.6) of 6, we get

IAfl = 13

< fubd
20

ve _
w7

| ell < p(8)[7 oo 2min(2)8 = 260(6) <

<1. (4.38)
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So upon application of Lemma A.1 we find
¢(v;0) < —||Al| — In(1 — ||R][) < ~26p(6) — In(1 — 26(5)).

This completes the proof. =

Corollary 4.3.4 If § := é(v;v) < 1/4 then ¢(v;) < 2/5.

The next lemma relates the duality gap in an arbitrary positive primal-dual pair to the
duality gap in (arbitrary) targets.

Lemma 4.3.5 Let § := 6(v; D). It holds ||v||?> < p(6)*||7]|®. If moreover § < 1/4 then

loll® < IB11* + 117%)] < |I7* + max(@)*v/n.
Proof: By Lemma 4.2.2 it holds v < p(6)v. This makes the first statement trivial. We

have
or(5-)

where the last inequality follows from (4.38). So

lloll* < I1BlI* + [I9%]] < |[71]* + max(5)*v/n.

2
P _
lilol|* = |12l = |e"v? — €77%| = <IP°ll |= — e < IF°!l,

This proves the second bound. O

Assume now that an iterate v and target U are given such that 6(v;7) < 1/4. The target is
updated to T+. We proceed by deriving a bound for the number of inner iterations needed
to compute a primal-dual approximation to o+. Note that during this outer iteration the
target is fixed and §(-; %) is greater than 1/4.

Theorem 4.8.6 Let v and T be such that § := §(v;T) < 1/4. For arbitrary vt € R}, the
number of inner iterations in the outer iteration with respect to TF is bounded by
14 + 6(wt)?

S (st + 22 s saptorva (| ok - )

Proof: Assume that & iterations have been performed w1thout any further updating of the
target; denote the corresponding iterates in the v—space by v, where v(® = v. Then we
have §(v();w+) > 1/4, for all 0 < j < k. Since the hypothesis of Corollary 4.3.2 holds at
each inner iteration we can bound the total decrease of the barrier function by

k(@)
¢(U(0)§5+) - ¢(”(k);w) > ﬁw‘_—)z

—2

-1

&y

Since ¢(v®);T+) > 0 we thus obtain

14 + 6(w™)?
k< %%?¢(u<°);w).
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So, it remains to bound $(v; 7). Using definition (4.31)

) = (-+ 07 A v} — 0} v?
HoiTh) = 3 G N R T

=1 max 'U,
n —t\2 -2 2 2 -2 2
_ o+ vi) (W (v vl N I 4
= 4@ )+,§mx@+ ((v,-*)z (v% “‘vf 1)*((@*)2 1)1“53)
n =2 2
< et max( ) _‘U,-_ _ v_'
s ame) s e+ £ ol (1 m s

From Corollary 4.3.4 it follows ¢(v;7) < 2/5. Note that for any ¢ the term in the remaining
sum is positive only if the quantities

2

vi d 1 U?
W -1 an n % (439)

have the same sign. Let I be the set of indices for which both are positive. Then

P ([ v (@
A R R Y In =
L (577 ((W)Z ) i -rf‘é‘?‘( Gl )% =

Notice that,

Eln(1+—‘:—1) <z(—§—1) < VI|[T~%? — || < v/n26p(6),

el t i€l vy

where the second inequality follows from Cauchy-Schwarz and the last from (4.38). The
same bound holds for the indices for which both quantities in (4.39) are negative. After
combining, we obtain the required bound. m]

Observe that this theorem serves a similar role as Theorem 4.2.6 in small-step algorithms.
To compute the number of damped Newton steps we need to investigate @+ and the value
#(7;v*). The number of outer iterations depends on the number of target updates needed
to finish the algorithm.

4.3.3 Applications
Path—following

We apply the obtained results to a method using Dikin steps with v—order scaling as in
(4.20), assuming v = O(1). The main task is to establish the effect of a target update

vt=7v (e - ol) (4.40)

max(7)%

with step size 0 < § < 1/(2v + 1). Recall that v = 1 corresponds to the usual Dikin step
and v = 0 to weighted path—following. From Lemma 4.2.20 it is assured that w(T) > w(?)
and that we may assume T to be ordered as in Lemma 4.2.10, so 7; < --- < ¥, and
vf < .-+ <7}, In the next lemma we estimate the quantities in Theorem 4.3.6.
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Lemma 4.3.7 Let T result from (4.40) with 0 < § < 1/(2v + 1) and assume that § :=
6(v;0) < 1/4. Then

3n6? max(7)? < .
(1—0)” max(v)? = (1-0) 1£%n
Proof: Note that

#(7;77) <

T2 1 : 1

1
= <
@)~ G- =~ (- 0F
wherefrom the second and third bound easily follow. It remains to bound ¢(7;"). Straight-
forward calculus shows

I

_ _ n —2(1 _ 0—21//——211) 1 1
¢(Uaﬁ+) = Z 72(1 — 6)? ((1 — o2 [v2v)2 - h.l (1- %?u/ﬁiu)z - 1)

i=1

1 n 52 —211 —2u —211 2
- wwne (el 0—) n(1-0%5) - (1-55)

- i=1 “n Un Un Uy

1 n §2 —2u —05-2" 2u 541/
< —* —t ] 251
< (1—0)2262(( -oE) "ﬂ)

v 2
; 2 Vi 300 < 3no" 3nd
(% %) <o

completing the proof. a
Combining Lemma 4.3.7 with Theorem 4.3.6 we deduce the following corollary.

Corollary 4.3.8 Let T+ result from (4.40) with 0 < 6 < 1/(2v + 1) and assume that

6(v;v) < 1/4. Then at most
1 2
o ((w+)4 (n6? + \/770))

damped Newton steps are required to obtain a primal-dual feasible pair (z%,st) such that
6(vt;ot) < 1/4, where vt = Vztst.

Typically, long-step methods apply a large update § = O(1). In this case Corollary 4.3.8
reveals that O(n/w?) (damped) Newton steps will be needed within an outer iteration. For
medium-step algorithms using § = O(1/4/n) the number of steps is O(1) per outer iteration.
Next we have to compute the number of outer iterations, i.e., the number of target updates.

Theorem 4.3.9 Let (z(9,5©) be a givén initial point and let
79 := V2050  and Ty 1= w(@@?).

1 2(z(@)T s
o (058" In P

After at most

target updates the algorithm stops with a primal-dual pair (z*,s*) satisfying (z*)Ts* < e.
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Proof: At the start of the algorithm the duality gap is given by
(@O)s® = [oO

Since the duality gap in an approximate center is closely related to the duality gap in the
exact center (Lemma 4.3.5), and at the end of each outer iteration we have a point whose
proximity to the target is less than 1/4, we may consider the reduction in the gap in exact
centers. If, as before, the target point at the beginning of some iteration is denoted as T
and at the end of the same iteration as v+, then we have by (4.16)

7| < o (1 - ™),

where @ = w(7). Hence, in the iteration under consideration the duality gap in the exact
center is reduced by at least the factor

(1 - 052")'2 .

Since @ > @o, this factor is smaller than (1 — 8(@p)?)?, and we deduce that after the given

number of iterations it holds ||7]|? < €/2. Using Lemma 4.3.5 and 6 < 1/4 it follows that
loll* < p(6)* 115" < 2fI7))° < e,

completing the proof. 0

Combining Theorem 4.3.9 and Corollary 4.3.8 we obtain the total iteration bound for the
general long-step and medium-step algorithm using update (4.40).

Corollary 4.3.10 For step size § < 1/(2v + 1) the path—following algorithm with v—order

scaling needs at most
n 2(z(@)T5©
(@] 1
(wgv+4 . €

inner iterations (damped Newton steps) in total. If, moreover, 8 = O(1/+/n) then only

(ONT 4(0)
0( vn 1n2($‘€) 2 )

L'Egll+4
are needed.

The iteration bound in the corollary is rather bad in terms of @g. We can improve it by
computing the number of iterations needed to have @? > 1/2, cf. Lemma 4.2.16. This gives
the following corollary.

Corollary 4.3.11 For step size 0 < 1/(2v + 1) the path—following algorithm with v—order

scaling needs at most N of
1 9(2OT 5(0)
Wy Wo €

inner iterations in total.
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Computing a central point

We will now consider the problem of computing a point on the central path, given an
arbitrary positive primal-dual feasible pair (cf. Section 4.2.4). Here we propose a long-step
algorithm. Observe, that we only need to quantify the potential value in the current point
with respect to a point on the central path. Let (z,s) be an arbitrary positive primal-dual
feasible pair, and let v? = zs. The target on the central path will be defined as the one with
the same duality gap as (z,s).

Lemma 4.3.12 Define y := eTv?/n and the target on the central path T := \/pe. Then,

1

.3y < .
é(v;7) < 2nln (0]
Proof: Using (4.31) and the definition of ¥ it holds

vt —e'T ? v; U3 e v
) = i lp-t=%"1
¢(v;7) max(?)? + 'Z:; max(?)? . v? 2 . nv?
1
1 =
< n nw(v)2 2nt w(v)’
which proves the result. 0

Combining Lemma 4.3.12 with Theorem 4.3.6 it follows that the centering can be done by
minimizing the barrier function in at most O(nIn1/w) iterations. Observe that in the long-

step algorithm we may choose the point 7 := 1/eTv?/n e on the central path, whereas in the
g y p p

small-step algorithm in Section 4.2.4 we had to choose ¥ := max(v) e. The following lemma
analyzes this and still another variant. The different strategies are depicted in Figure 4.4.

Lemma 4.3.13 (i) If v := max(v) e then ¢(v;7) < 2nlnl/w(v).
(i%) If 7 := min(v) e then ¢(v;7) < n(l — w(v)?)/w(v)?.
Proof: Left to the reader. o

Computing a weighted center

We consider the problem of computing the weighted center corresponding to 7, given a
positive primal-dual pair (z,s). Let v? := zs and define y := eTv?/n and 7 := eTv%/n. We
propose the following three—step procedure: the first target is /e on the central path; the
second target is +/f e on the central path; the final target is 7.

Lemma 4.3.14 With v and T as given above, w := w(v) and @ := w(7), the three-step
algorithm requires at most

L Flylnl LB L(_l_ )
(’)(n(lnw—{—ﬁ 1+'lnﬂ\+w41nw)+\/r_z(max(l = 1 -}-54 = 1

damped Newton steps.
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vz central path

max(v) e

min(v) e

Vi

Figure 4.4: Different centering strategies in long-step algorithms.
Proof: By Lemma 4.3.12 we have ¢(v; \/fie) < 2nlinl/w. For the second stage, it holds

¢(\/ﬁe;\/ﬁe)=zﬁ—;—@—§:ln43n(;—_- )+n

For the final stage, we have

- T2 n 2 =2 n w2 52
_ nfi — e’ T2 v? 7% nv?
.5 = Yy — Sy — %
H(Ve;7) max(7?) + = max(v?) ln E o max(v?) eI
= V7 1 1 1
< S —2 _In= <nln— =2nln=.
T {5 max(9?) In @? ~ nln w2 2nln w

The other quantities in Theorem 4.3.6 are easy to compute. Combining leads to the com-
plexity bound. o

Of course, other applications of the long-step target—following approach can be proposed
and analyzed in the general framework approached in this section.

4.4 Target—following for convex programming

In this section we analyze target—following methods for convex programming. The analy-
sis uses the self-concordance condition introduced by Nesterov and Nemirovskii [199], see
Definition 3.5.16, and some results from Den Hertog [101]. A major difference with their
approaches is that here the self-concordance parameters change from one iteration to an-
other, instead of being constant. In NLP complexity of algorithms means the number of
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arithmetic operations required to compute a feasible solution with objective value within e
of the optimal value (Judin and Nemirovskii [130]). Since all methods in this section require
O(n3) operations per (Newton) step, we are mainly interested in the number of Newton
steps to be performed.

4.4.1 Self-concordant barriers

The problem we consider is
(CP) IIIleI{ fﬂ(y) : _‘ft(y) 2 0, 1= 13”‘7"1 y€ R™ }

We assume that the functions fi(y), ¢ = 0,...,n, are convex and three times continuously
differentiable. Without loss of generality we may assume fo(y) to be linear. The feasible
set is denoted by

F={yeR" : —fily)20,i=1,...,n},
and the set of positive solutions in F as

Fo={yeR™: —fi(y)>0,i=1,...,n }.
We make the following assumption.

Assumption 4.4.1 F° is not empty and the level-sets of (CP) are bounded.

The Wolfe—dual of (CP) is given by

(CD) mm{fg Zw fily) : ix,-Vf,-(y):Vfg(y), z;>0,i=1,...,n }.

=1 i=1

Let us consider the following system of nonlinear equations:

fily) £ 0, 2,20, i=1,...,n,
T zVii(y) = Vie(y) (4.41)
_mif"(y) = wi,

for some w € R}, . The following theorem isvana,logous to Theorem 2.1.5 and follows from
Monteiro and Zhou [191].

Theorem 4.4.2 If Assumption {.4.1 holds then system ({.41) has a unique solution for
anyw € R},

The proof of the theorem uses the fact that (4.41) is the KKT-system for minimizing the
weighted logarithmic barrier

f( fO y)— zwz ln( fz y)) (4'42)

i=1

over F. This permits us to interpret target—following in the v-space as using different
weights w in a weighted logarithmic barrier method. Henceforth, speaking of a target w will
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have the interpretation of a weight w in a barrier function. Since (4.41) contains nonlinear
and nonconvex dual constraints it is hard to analyze primal-dual (feasible) algorithms.
Instead only primal or dual target—following methods will be considered. Nesterov and Todd
[200] are able to analyze primal-dual potential reduction methods for convex problems by
transforming the problem in a conic formulation. However, the practical merits of such
reformulations are unclear.

In the analysis we use self-concordant barriers (Definition 3.5.16). We use the self-
concordance properties of the barrier function to measure proximity to a target (cf. Den
Hertog [101] and Section 4.3). The following lemma is a fundamental result for constructing
self-concordant functions for intersections of convex spaces.

Lemma 4.4.3 LetG;, i = 1,...,n, be closed conver domains in R™, such that G = N, G;
has a nonempty interior, and let Fi(y) be a (1,9;)-self-concordant barrier for G;. Let
w € RY. Then

)= Y wiFi(y)

i=1
is a (min(w), Y7, wi¥;)-self-concordant barrier for G.
Proof: Elementary; cf. Propositions 2.1.1 and 2.3.1 in [199]. O

To analyze target—following methods for (CP) we assume that the functions — In(—f;) are
(1,9;)-self-concordant barriers for the spaces { ¥ : fi(y) < 0 }. Asin [101] we restrict
ourselves to the use of logarithmic barriers. Although this may seem to be a real restriction,
up to now (as far as we know) all convex programming problems that have been handled by
the notion of self-concordance use some type of logarithmic barrier. Moreover, the general
case will be handled in the context of variational inequalities in Section 4.5. Furthermore,
the existence of weighted centers has only been extensively studied in the logarithmic case
(Monteiro and Zhou [191]). From Remark 2.3.1 and Corollary 2.3.3 in [199] it follows that
we may assume ¥; > 1. As mentioned, we assume fo(y) to be linear (following Nesterov and
Nemirovskii [199] and Den Hertog et al. {102] we could use the notion of compatible objec-
tive functions, which would unnecessarily complicate the discussion). The self-concordance
property has been shown for many classes of convex programming problems as: linear and
convex quadratic programming with convex quadratic constraints, primal geometric pro-
gramming, £,—approximation, matrix—norm minimization and finding a maximal inscribed
ellipsoid (Nesterov and Nemirovskii [199]) and dual geometric programming, extended en-
tropy programming and £,—programming (Den Hertog et al. {102]).
Motivated by (4.42) and Lemma 4.4.3 we use the following weighted barrier function

b(y;w) := o) _ i‘

min(w) mm(w)

In(-fi(y)),

where w € R},. Applying Lemma 4.4.3 it follows that ¢(y;w) is an (a(w), 9(w))-self-
concordant barrier, with

n

aw)=1, dw)=Y ——a—y,. (4.43)

& min(w)
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Since a(w) is independent of w, we henceforth ignore it and just talk about ¢(;w) as a
9(w)-self-concordant barrier. We denote by g(y; w) and H(y;w) the gradient respectively
Hessian of ¢(y;w). We use the notation

blyiv) = =3 —2in(—fi(y)) (4.44)

= min(w)

for the barrier term only. Because of the linearity of fo(y), ¥(y;w) is also a ¥(w)-self-
concordant barrier. Observe that the Hessians of ¢(y; w) and 9(y; w) are equal, so

H(y; w) = V¥ o(y, w) = V9(y; w).
We denote H; := VZ(—In(—f;)).

4.4.2 Analysis of the Newton process

As in the previous sections the major task is to analyze the Newton process. Since the
function ¢(y;w) is a self-concordant barrier it can be minimized efficiently by a (damped)
Newton-type method. Some basic results are obtained from Nesterov and Nemirovskii [199,
Chapter 2] and Den Hertog [101, Chapter 2] and are quoted below. Then we study the
effect of the Newton step on the objective value and proximity measure. In the analysis we
denote the current iterate and weight by y and w respectively, while the next iterate and
new weight are denoted by y* and wt. We denote by p(y;w) the Newton step at y with
respect to the barrier function ¢(y;w), so

p(y;w) = —H(y;w) " g(y; w).

The proximity measure used is the Hessian norm of the Newton step

8(y; w) = 1p(y; ) g1y = V(¥ )T H(y; w)p(y; w)-
The first result is important for self-concordant barriers and is called the semiboundedness
property.
Lemma 4.4.4 Let z € F°, y € F. Then Vip(z;w) (y — z) < d(w).
Proof: See Proposition 2.3.2 in [199]. . o
The following lemma. concerns feasibility and quadratic convergence of the Newton step.

Lemma 4.4.5 Let p := p(y;w) be the Newton step at y € F° and assume that §(y;w) < 1.
Then

()y+p€F°
(it) The prozimity after the Newton step satisfies

ly+pw) £ ———=——.
WHp) S T s w)p
Proof: See Lemmas 2.20 and 2.21 in [101]. o

The next lemma gives a bound for the value of the barrier function in an approximate
minimizer of ¢(y; w).
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Lemma 4.4.6 Let y(w) denote the minimizer of ¢(y;w), and assume that § := §(y; w) <
1/3. Denote ¥(6) := 1 — (1 — 386)}/. Then

B(y;w) — p(y(w)iw) < év(a)ﬁ—f%.

Proof: See Theorem 2.2.2 in [199]. O

The next result enables us to estimate the duality gap in points close to the minimizer of
#(y; w). Its contents and proof are similar to p.68(A) and Proposition 3.2.4 in [199].

Lemma 4.4.7 Let y* be an optimal solution of (CP), y(w) the minimizer of ¢(y;w) and y
suck that 6(y; w) < 1/3. Let y(6) be as defined in Lemma 4.4.6. Then

(i) o(y(w)) — fo(y") < min(w)d(w);

(i6) foly) - fo(y(w)) < min(w) ((w) + 1/27(6Y(1 +2(6))/(1 —1(6)));

(i) Jo(y) < foly®) + min(w) (20() + 1/24(6)X1 +~(E)/(1 — ~(8))).

Proof: (7) Since fo(y) is linear and y(w) minimizes ¢(y;w) we have

fo(y(w)) = foly™) = Vfoly(w))"(y(w) - y*) = —min(w)(Vi(y(w); w))* (y(w) — y*)
< min(w)d(w),

where the inequality follows from Lemma 4.4.4.
(7¢) We have

foly) = min(w)(d(y; w) — P(y;w)) + fo(y(w)) — min(w)($(y(w); w) — P(y(w); w))
= fo(y(w)) + min(w)(¢(y; w) — ¢(y(w); w)) + min(w)(H(y(w); w) — P(y; w))
1+4(6)

< fofule) +minu)37(F T2 + min()(V(u()i ) (v() ),

where the inequality follows from the convexity of ¥(y;w) and Lemma 4.4.6. To complete
the proof of (¢), we use that [199, Th. 2.1.1] shows that for z := y(w) + (y(w) — y) it holds
z € F°. Then Lemma 4.4.4 gives

Vip(y(w); w)” (y(w) ~ y) = Vip(y(w); w)) (= - y(w)) < I(w).
(#27) Follows from (¢) and (31). ]

The following lemma will be important in the proof of the main result.

Lemma 4.4.8 Let-y(y;w) be as defined in (4.44) and denote H := H(y;w). Let « € R},

and consider
n

Gly;w,0) === L S— In(—fi(y))-

£ in(a)min()
Lety € F° and w € R}, be arbitrary. Define xg := VG(y;w,a) and Hg := VG(y; w, a).
Then :

xeH 'xe < (2—?:((—3)2)219(11:).
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Proof: The self-concordance parameters of G(y; w, ) satisfy

;W
> < S J—
ag(w,a) 21, delw,a) < E mm(a)mm(w)ﬂ”
as follows from Lemma 4.4.3. Observe that
n . . .
_ Z Z . a,w,' Himm(a) - min(e) He,
— min(w ‘= min(a)min(w) o; max{a)
since H; is positive definite for any ¢. Then we have
XTH—IXG < MXTH_IXG < ma.x(a)ﬂc(w Ot)
¢ = min(a) "¢ % *“ = min(a) ’
ma.x(a) ;w; max(a)\’
min(c) 4 min(a)min(w) min(a)
where the second inequality can be shown as follows'. Let pg := —Hg'xc. Then

XeHg ' xe = —pExa < \/19@(0, w)\/péHcpa = \/ﬂa(a, w)\/X£H51XGa

where the inequality follows from Definition 3.5.16. Hence

\/XEHEIXG < \/@a, w).

This completes the proof. o

We estimate the effect of a target update on the proximity measure. For that purpose we
impose the following condition on the new target w*.

Condition 4.4.9 There exist a constant T € (0,1) such that wt satisfies

+
Sico,

T< i=1,...,n.

i

w;

Observe that the condition implies w* > 0; moreover, for any ¢ it holds

+
0 Wy w; 1w
< — . 4.45
7 min(w) ~ min(wt) = 72 min(w) (4.45)
Also, we have
min{w?) = wf > Tw; > 7min{w). (4.486)

Whenever the target is updated, the self~concordance parameter of the barrier function
changes. This is the major difference with the analysis in [199]. The new parameter can be
bounded as follows.

1Den Hertog {101, Lemma 2.25] uses an argument based on eigenvalues in a similar proof for a different
result.
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Lemma 4.4.10 Let wt satisfy Condition 4.4.9. For the self-concordance parameters of
Hy; w) and ¢(y; wt) it holds

9 (w) < d(wt) < :—zﬂ(w).

Proof: By Lemma 4.4.3 we have d(w*) = ey (w] /min(w*))¥;. The desired inequalities
immediately follow from (4.45). a

To bound the proximity after a Newton step followed by a target update, we first relate the
new Hessian matrix to the old one (for simplicity we write f; for fiy)):

n

Hywt) = 3 — _v2(Cin(—fy)

= min(w+)

min(—@(l)w+) (z": ) Vz(—ln(—fi)))

min(wt) w = min(w)

Y

min(w)
min(w*)

Y

H(y; w), (4.47)
where y € F° is arbitrary. We now prove the main theorem.

Theorem 4.4.11 Let g := g(y;w), H := H(y;w) and p := —H'g, such that §(y;w) =
lplle < 1/3. Let wt be a target satisfying Condition {.4.9. Define gt = g(yt;wt),
H** := H(y*;wt) and let p*+ .= Pyt wt) i= —(H**+)"1g*+ be the Newton step in y+
with respect to ¢(-;wt). Then, it holds

1 8(y; w)? (1 )
o)< [ —2 T - — J . 4.48
strwt) < 3 (28 (L) i) (4.49
Proof: Let us further define g* := g(yt;w), HY := H(y*;w) and p*t = p(ytiw) =
—(H*)"'g*. From (4.47) we derive
_ 1min(w+) _
++)-1 ¢ 2 +)-1
) = ) )

Writing f; and V f; for fi(y*) and Vfi(y+) respectively, we obtain

(o lges = \/(g++)T(H++)—lg++S_\}_; %\/@H)T(Hﬂ—lgw
_ L [mew)y v o wr vy
B VT min(w) min(w*)' =1 min(wt) - f; (H+)-1
_ 1 | min(w) | V£ ~_ Wi Vi Ewf-wVf
= 7\ e |minte) * & o)+ i) |
L - - _wf_w__"_VLﬂ 9
L)
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In the first inequality we use (4.47), in the second we apply (4.46) and the triangle-inequality.
Observe that the first part in the last term is bounded by the quadratic convergence result
of Lemma 4.4.5. We apply Lemma 4.4.8 to estimate the norm in the second part. Let
us define [ := {i : wf < w}, L == {i : w} = w} L := {i : w} > w;}, and split

HY =37 Hi(y*t;w) =t H'* + H** + H3 according to these sets. Then it holds

“wl —w VS wf —w; Vf; wf —w; Vf;
g min(w) —f; @ ien min(w) —J; . + IGZIZ min(w) —f; =
+ E w;'i —w.-V_f;
i, wmin(w) —f; (4
wi —w; Vf; wi —w; V§;
= & i) 5| ey 2 omlw) —f sy

For the indices in I; we let o; :=1 — w;"/w,- > 0, and using Lemma 4.4.8 it holds

wi —w; Vf; in(a) || 3 ;w; Vi
. — = min 7
ich mm(w) _fi (H1+)-1 i€ly mm(a)mm(w) —f" (H1+)—1
. max(a)
< mln(a)m\/ﬂ(w) < (A =t/ (w).
For the indices in I3 we define o; := w /w; — 1, and the inequality
wi —w; V ( 1
i WiVl < ——1) NI
t€l3 mln(w) _fi (H3+)—1 T
follows similarly. Combining these bounds, we have proved (4.48). ]

The following corollary can be derived.

Corollafy 4.4.12 If é(y;w) < 1/4 and 7 2 1 — 1/(18y/9(w)), then §(y*;wt) < 1/4.
Proof: If n > 2 then 9(w) > 2. The result now follows from Theorem 4.4.11. O

Observe, that we have an easy to check condition on the new target (Condition 4.4.9) to
analyze the Newton process for a specific updating scheme of the weights w. The maximal
step that can be taken with the scheme can be determined with the help of the parameter
7 as in Corollary 4.4.12. We mention that the condition seems more easily than the one
in Theorems 4.2.6 and 4.3.6 for the linear case. However, Lemma 4.2.2 and the discussion
preceding it show that they are almost equivalent. The analysis developed here is related
to the use of self-concordant families (Definition 3.1.1 in Nesterov and Nemirovskii [199]).
Their analysis is more general in the sense that the barriers need not be logarithmic barriers.
On the other hand, their families are parametrized by only one parameter.

4.4.3 Applications

Many interior point algorithms for LP can, when suitably adjusted, be applied to NLP as
well. In this section we analyze just two: the path—following and the Dikin—path—following
algorithm.
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Central and weighted path—following

The weighted path—following algorithm for (CP) was already given in the book of Fiacco
and McCormick [54]. Here we give a first proof of polynomiality. The target update is given
by

wt = (1 - O)w, (4.50)

where @ is a suitable step size; let w(® denote the initial target, and wE = ww®) =
min(w)/max(w). Using (4.43) it holds

dw) = d(w) = d(w?) < iz Z 9. (4.51)

0 =1
We impose the condition that the algorithm computes approximations y to the centers y(w)
such that §(y; w) < 1/4 for all iterates. Observe that the update satisfies Condition 4.4.9

with 7 = 1 — @, hence Corollary 4.4.12 guarantees that we can take 8 < 1/(18y/d({w)).
Observe that § can be bounded from below by

Wo
184/9(e

.=

, (4.52)

3

whose validity follows from (4.51). We compute the number of iterations in terms of 8
needed to solve the problem.

Lemma 4.4.13 The weighted path-following algorithm for (CP) with update (4.50) stops

after at most
ll 3min(w®)d(w®)
-8 €
iterations with y € F for which fo(y) — fo(y*) L e.

Proof: Denote the final iterate by y*). Since 6 := §(y™);w®)) < 1/4, applying Lemma
4.4.6 with y® gives

3 2 1
<5 FEPTEEE <3
From Lemma 4.4.7 we obtain

Fo(y®) — fo(y*) < min(w®) (279(@0(}‘)) + %) < 3min{w®)I(w®) = 3min(w® )9 (w®).

Hence it suffices to require
min(w®)) < S
= 33 (w®)
Using min(w®) = (1 — )*min(w®) it follows that the number of iterations needed is
certainly not larger than
1 <3min(w(0))19(w(°)))
—In{ ——————].
6 €
a

Using (4.52) the complexity of the algorithm can be derived and is given as a corollary.
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Corollary 4.4.14 The weighted path—following algorithm for (CP) requires at most

o (W N <3min(w(°>w(w<°>)))

Wo €

iterations when started from an interior—feasible point y® and an initial weight vector w(®)
Jor which §(y©®;w®) < 1/4.

Dikin—path—following

We analyze the Dikin—path—following algorithm introduced in Section 4.2.3. Recall from
(4.14) that the path starting at some given w(© is given by

U(t; Vw®)? =

w©®

_— 12>
w0t + ¢’ =20

b
and satisfies (Lemma 4.2.7)
U(ty + to; V@) = W(ty; ¥(ty; V@)).

The Dikin-path converges to the central path, in the sense that w(w) increases along the
path (Lemma 4.2.7). We denote w2 := min(w(®)/max(w(®). With (4.43), it holds for any
w on the Dikin—path

n ,w(o) n

a2 w; A 1

i=1 min(w) i=1 W =1

since the ratio w;/min(w) is decreasing along the Dikin—path. We define a step from w to
wt along the path, with step size 9, as

+. w

‘=0w+e'

w

It is easily seen that

1 w} 1
—— < = <1,
w1~ w  Gwi+1

hence Condition 4.4.9 is satisfied with 7 = 1/(fmin(w®)+ 1). Applying Corollary 4.4.12 it
follows that 8 should satisfy

1 1
f < — ;
= min(w) 18, /9(w)
which is guaranteed by taking

Wo 1

0= min(w(o)) 18 ’19(6) (4'53)

Using Lemma 4.4.7 we obtain the sufficient condition for termination

fo(y) = fo(y™) < 3min(w("‘))19(w(k)) < 3min(w("))19(w(°)) <e
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It holds

min(w(*~1) min(w*-1)) 1 k o
< : ).
Frin(w® D) + 1 = min(w®) 11 = \Bmim(w®) 11, ")

min(w(")) =

Hence, it suffices to do at most

1 ) 3min(w®)d(w®)

Omin(w(®) . €

iterations. Substituting the value of 6 from (4.53) gives a complexity of

o ( ¥e) 3min(w(°))19(w(°)))

wWo €

iterations. Observe that this bound is exactly the same as in the weighted path—following
method. Although we know that the deviation of the central path (measured via w(w))
decreases along the Dikin-path, in the analysis above it is not possible to use this extra
information for a better complexity result. Note that the iteration bound is exactly the
same as in Theorem 4.2.9.

Discussion

Other applications of the target—following concept in NLP are omitted as they follow from
the results given above. Notice that a natural choice for the weights could be w; = 1/¥;,
since this leads to ¥(w) = nmax;(J;), independent of w. It is not clear how the target-
following approach can be generalized to the theory of self-concordant barriers for general
convex cones as in [199]. For instance, it is not evident how to include weights in the barrier
—Indet X for the cone of positive semidefinite matrices. However, it is straightforward to
include weights in its derivative —X !, for instance using

—W1/2X_1W1/2

for a diagonal matrix W > 0. This idea will be exploited in the next section, where
variational inequalities are analyzed.

4.5 Variational inequalities with monotone operators

In this section we extend the use of weighted interior point methods (the target-following
approach) to monotone variational inequalities, hence extending the analysis in Chapter 7
of Nesterov and Nemirovskii [199]. Variational inequalities have many applications, e.g.,
in equilibrium problems, saddle—point problems and game theory. For a survey we refer
to Harker and Pang [99]. A nice aspect of the approach we take in this section is that we
do not have to deal with (weighted) barrier functions themselves, but only with operators
(mappings) having similar properties as gradients and Hessians of self-concordant barriers.
This circumvents the problem noted at the end of Section 4.4.3.
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4.5.1 Problem statement and definitions

The problem we consider is stated as follows. Let E be a real vector space? with conjugate
E* and inner product (:,-). Let G be a closed convex subset of £ with nonempty interior

Q = int(G), and let S : G — E* be a C*-smooth single-valued monotone operator, i.e., it
holds

(z-y,8(z) - S(y)) 20, Vz,y€q.

The variational inequality associated with G and § is as follows
(VI) Find z € G such that (S(z),y—x) >0 Vy € G.
Using monotonicity, a solution of (VI) also solves
(V) Find z € G such that (S(y),y—z) >0 Yy € G. (4.54)

It is easy to see that the reverse is also true, i.e., a solution to (VI) is a solution to (VI).
For a discussion on this type of problems, its solvability and the relation with other fields
in optimization we refer to Chapter 7 in [199]. One result needed here is that (VI) has a
solution if G is bounded which we assume to be the case in this section.

Note that (VI) is not an optimization problem, but a feasibility problem. Still, inte-
rior point techniques can be adopted to (approximately) solve the problem. To give an
illustration we show that the monotone nonlinear complementarity problem

(MNCP) Given f: R} — R", find « € R} such that f(z) >0, and (f(z),z) =0,
where f is a continuous monotone mapping, is a specific instance of (4.54).

Lemma 4.5.1 (MNCP) is equivalent to (VI) where G =R} and S = f.

Proof: We first show that a solution F > 0 to (MNCP) also solves (VI). Let y € R}
be arbitrary. Substituting Z7 f(Z) = 0 in the monotonicity condition and using y > 0 and
f(@) 2 0 it follows

@)y -2 29" f@) 20
The reverse implication is shown by contradiction. Suppose T > 0 solves (VI), but fi(Z) < 0
for some . Define
_ { T J#

Yi ZT;+e j=1.
By the continuity of f there exists a positive value for € for which ¥ > 0 and fi(y) < 0.
Then
(Ff(@),7-7) = f(®e <0,
which gives a contradiction. Hence f(Z) > 0. Suppose now that z7 f(Z) > 0, then there is
an z for which Z; > 0 and f;(%) > 0. Define

_={'fj J#i

Yi T;—€ j=1.

2We allow problems other than defined on R".
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By the continuity of f there exists a positive value for € for which § > 0 and fi(g) > 0.
Then

(f(y)ay - 5) = ft(y)(_e) <0,
which gives a contradiction. This completes the proof. 0o

For single-valued monotone operators, the first derivative V.S(z) defines a linear mapping;
from the monotonicity it follows that

(VS(z)h,h) >0, Vh € E.

There is a natural conjugate operator (VS)*(z) : E — E*, which can be used to define a
symmetric and positive semidefinite operator

$(z) = 5 (VS(@) + (VS)"(a) .
We now define the following Euclidean seminorm
Ialls.e = (S()k, B)V*.
In case VS is nondegenerate, the conjugate norm is

lInlls.c = (7,87 ()%, n € E~.
We introduce the following definition (cf. Definition 3.5.16).

Definition 4.5.2 Let G be a closed convex domain in a finite~dimensional real vector space
E, with nonempty interior Q := int(G), and let a,9 > 0. A single-valued monotone operator
F:Q — E* is called a—self-concordant if it is C*~smooth and if the following relation holds
forallz € Q and B € E, i =1,2,3:

3
[V2F (2)[2M, @, 2O < 2672 TT 1A e

i=1

An a-self-concordant operator F is called strongly self-concordant if the sequence of opera-
tors F(z) is unbounded whenever ') € Q form a sequence converging to a boundary point
of Q. A single—valued monotone operator F : Q — E* is called an (a,?)-self-concordant
barrier—operator if it is strongly a—self-concordant and for all h € E:

[(F(2), b)| < VO|hl|Fs-

The first statement is as [199, Definition 7.2.1]>. We introduce self-concordant barrier—
operators since we prefer not to deal with self-concordant barriers themselves, but only with
mappings having ‘self-concordance properties’. From the definitions it is immediate that
if f(z) is an (a,9)-self-concordant barrier then F(z) = Vf(z) is an (a,?¥)-self-concordant
barrier—operator. To solve the variational inequality (4.54) we state the notion of compati-

bility (cf. [199, Definition 7.3.1]).

3For self-concordant functions the given inequality follows from the first inequality in Definition 3.5.16
[199, Appendix 1]. Requiring the inequality here explicitly is necessary, since V2F need not be symmetric.
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Definition 4.5.83 Let F be an (a,?)-self-concordant barrier—operator for G and let 3 > 0.
A C?-smooth monotone operator S : Q — E* is called f—compatible with F if the inequality

1/6

[V25(z)[A®, A, 1@ < ﬂH( o)A h(,)>)‘/3 (Sa“(ﬁ’(z)h(‘),h(‘)))

i=1
holds for every xz € Q and all AW h® p® ¢ E.

Section 7.2 in [199] gives a comprehensive discussion and proof of the solvability of the
equation F'(z) = 0 for a strongly self-concordant operator F. Solving equations of this type
lies at the heart of interior point methods for (VI) to be discussed. While Section 7.3 in
[199] analyzes a central path-following method, the purpose of this section is to introduce
weights w € F, and analyze target—following methods for solving (VI). Hence, we assume
the existence of a mapping F': £ x E; — E* and parameter functions a(w) and ¢9(w) such
that F(z;w) is an (a(w),?(w))-self-concordant barrier-operator for G, and such that S(z)
is f-compatible with F(z;e) where e is the identity in E,. For such a mapping we consider
the following family of operators:

(23 w) = (la;rwf;f (S(2) + Flz;w)) : Q — E". (4.55)

4.5.2 Analysis of the Newton process

The analysis provided here is closely related to the analysis in [199] and follows a similar
line of reasoning. The outlined procedure fits in the target-following framework. First, we
show that ¥(z;w) defined in (4.55) is a strongly self-concordant operator. Then we show
that for a fixed value of the weights w € E, a solution to the equation X(z; w) = 0 provides
certain information about the original problem. In fact, the solution of this equation can be
considered as the weighted center corresponding to w. By adjusting w in the ‘right direction’
a series of solutions is obtained that converges to a solution of (VI). Successive solutions
are computed by the (damped) Newton-type step

t =2+ ofS(x; w))‘lE(m;w) (4.56)

for some o € (0,1). We need to show that approximate solutions to successive problems
defined by weights w can be efficiently computed. We will give conditions on the weights
(cf. Condition 4.4.9), which guarantee this to be possible. First, we show that X(z;w) is a
self-concordant operator,

Lemma 4.5.4 Let S(z) be compatible with an (a(w), ¥(w))-self-concordant barrier-opera-
tor F(z;w) and let T(z;w) be as defined in (4.55). Then Z(z;w) is a strongly 1-self-
concordant operator.

Proof: Let z € Q and ) € E, i = 1,2,3. Then from Definitions 4.5.2 and 4.5.3 we have

V2525 w) [0, b, 19| < (1“(‘ f?z (ﬂH( £)A0, 40)
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(3a(w)‘1<ﬁ'(:g;w)h(f),h(il)) +2a(w)"1? U(F($ w)h® h(t))l/Z)

= (1+ ) a(w) (ﬂﬁ( ()9, B

t=1
(3(F (w3 w)h®, AO))"° +2H B(z; w)h®), A6 ))1/2)
=1

It needs to be shown that the right-hand side is not larger than

21‘[ ((5(a; w)h®, hH)

3
= 2a(w)™ (1 + ) IT ((S@)h, hO) + (Bl w)h®, 19))
i=1
The proof of this fact follows along the same line as in [199, Proposition 7.3.2] and is
therefore omitted. a

The next lemma shows that we can solve (VI) by computing (approximate) solutions of the
equality £(z; w) = 0 for a sequence of weights w for which a(w)d(w) converges to zero.

Lemma 4.5.5 Let S(x) be B—compatible with an (a(w),?(w))-self-concordant barrier—ope-
rator F(z;w). Let z(w) denote the solution of the equation L(z;w) = 0. Then

Yye G: (S(z(w)),z(w) —y) < a(w)d(w).
Proof: Since E(z(w);w) = 0, it follows S(z(w)) = —F(z(w);w). Since F is a self-
concordant barrier operator it holds (cf. Lemma 4.4.4) for all z € Q and y € G that
(F(z;w),y — z) < a(w)d(w); hence the lemma follows. 0

Note that for z,y € @ the monotonicity of .S implies

(S(y)vx - y) < <S($),:L‘ - y)'

The variational inequality is (approximately) solved if the left term is sufficiently small.
The criterion in Lemma 4.5.5 guarantees that this will happen if we choose a series of
weights w such that a(w) and J(w) converge to zero and exact centers are computed. In
the algorithm only approximations to exact centers will be computed. We refer to Nesterov
and Nemirovskii [199, Section 7.3.5], where it is shown that under mild conditions (e.g.,
Lipschitz continuity of the operator S) using approximations is valid.

We impose the following condition on the target updates.

Condition 4.5.6 Let w € E, be a given weight. We say that wt € E, is a valid updated
weight, if there exists W € Ey such that

F(z;w) — F(z;w*) = F(z;w), VzegG, (4.57)
and constants 19, 71,72 € (0,1) such that
(i) roa(w) < a(w*) < a(w);

(i) 9(@) < md(w);
(iii) F(z; @) % noF(z;w).
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In the analysis we use the proximity measure
6(z;w) == ||X(z; w)|g,q-

If 8(z; w) is sufficiently small then the Newton-type iterate (4.56) with respect to equation
E(z;w) = 0 is feasible and the proximity decreases [199, Theorem 7.2.1]. The next lemma
shows that the proximity remains small after target updates satisfying Condition 4.5.6.

Lemma 4.5.7 Let S(z) be B-compatible with an (a(w), (w))-self-concordant barrier—ope-
rator F(z;w). Let ¥(z;w) be as defined in (4.55). Assume that we have z € Q and w € E,
satisfying

6(z;w) = [|E(z; w)llg . < A,

and that wt is a valid updated weight in the sense of Condition {.5.6. Define Tt :=
Y(z;wt). Then it holds

8(z;w) = I12(e;wh)llzr 2 < \/— (A +(1+4) \/?IE )
Proof: Using Condition 4.5.6(¢), (¢¢¢) and (4.57) we have
(1 +8) (8(2) + F(z; ")) L a + B (8(2) + F(z;w) - F(z;9))
a(wt) - a(w)
N (1+58)? (S'(:v) + F(z;w) — 7 F(z; w))
- a(w)
Hence for all A € E it holds

S(z;w')

=(1- 'rg)fl(x;w).

2|zt e = V1 = 7llA]lze,

which imf)lies for all p € E*

1
* < P, *> .
”T]”E"‘,z = m"ﬂ”x,z
Applying this inequality with 5 := X(z;wt) we obtain

a5t € —rmlSes w5 = s
1+ 6)
S'ﬁ%ﬁﬁ_ﬂW@+F@kaWNwth

1+8? () P,
< 2 (e )

where the last inequality follows from the assumption on § in the lemma. To estimate the
norm, observe that the monotonicity of both S and F gives

(1+5) A+8) b
aw) aw) @)=

I15(z) + F(z; 0 ")z,

(1+58)? 2

Taa(w)

B(z;w)

(8(z) + F(z;w)) = F(z;w).
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Consequently,
\/ (‘U))Tz \/ T2 \/ 'w)‘T]T2
F(z;wo)||y, < F(z /(W) < FT———/Y
where the second inequality follows from the definition of self-concordant barrier-operators.
Combining the bounds gives the desired result. O

As in the linear and convex case ‘recentering’ with Newton’s method is a quadratically
convergent process. As shown by Nesterov and Nemirovskii {199, pp.296,Th.7.2.1] to stay
in the region of quadratic convergence we have to require

1525 w5+ - < 5.

We still need to establish the effect of the target update on the self-concordance parameters
a({w) and ¥(w). This dependence is captured within Condition 4.5.6.

Lemma 4.5.8 Let S(z) be B—compatible with an (a(w), d(w))-self-concordant barrier—ope-
rator F(z;w). Let wt be a valid updated weight satisfying Condition 4.5.6. Then F(z;w')
is an (a(w™), d(w*))-self-concordant barrier-operator, with

a(w?) <a(w) and (1-m)d(w) < Hw*) < I(w).

Moreover, S(z) is B-compatible with F(z;w?).
Proof: The statement on a{w*) follows immediately from the condition on w*. Using
(4.57) we have F(z;w) = F(z;w*) + F(z;®W); applying Lemma 4.4.3 it holds

d(w) = I(w®) + I(@),

from which the bounds on ¥(w?) follow. Since f—compatibility does not de;;end on ¢ and
a{wt) < a(w) the last statement in the lemma follows. a

4.5.3 Applications

We give three important spaces for which weighted self-concordant barrier-operators can be
derived: the non-negative orthant, the second order cone and the cone of positive semidef-
inite matrices. These are the same cones as considered by Nesterov and Todd [200]; they
are self-scaled cones.

Non—negative orthant

Let G = R}. The logarithmic barrier function f(z) = — T, In(x;) is a strongly (1,7n)-
self-concordant barrier for G. Its gradient is Vf(2) = —X'e. It is easy to see that Vf is
a (1,n)-self-concordant barrier-operator. Let w € R}, and consider

F(z;w) = - WX e,
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where W = Diag(w). Then F is a (min(w), Y7o, w;)-self-concordant barrier-operator,
which follows as in the proof of Lemma 4.4.3. Observe, that in this case F(z;w) is the
gradient of the weighted barrier function

= w;ln(z;).
i=1 .
Consider the weighted path—following variant with w* = (1—0)w. We check the statements
in Condition 4.5.6. Note that

F(z;w) — F(z;w?) = - WX e+ WHX e = —0WX e = F(z;0W).

Consequently, it follows that 7 = 1 — 6 and 7, = 5 = #. Using these bounds in Lemma
4.5.7 reveals that we may choose § = O(a(w)/d(w)). The ‘usual’ complexity bound of

O(v/n//w(w)In1/e) iterations is obtained using a(w) = min(w), d(w) = X, wid; and
Lemma 4.5.5.
Second order cone

Let G = { (t,z) € R}* : t > |jz|| }. The function f(t,z) = —In(t® — ||z||?) is a 2-self-
concordant barrier for G [199, Prop.5.4.3]. The gradient of f is given by

2 —1
Vf(t,$)=t—zw( . ),

which is a (1,2)-self-concordant barrier-operator. Let w® € R, w® € R} and w =
(w0, w®); let W = Diag (w). Consider

F(t,o:w) = WY (1, 2).

Lemma 4.5.9 F is a self-concordant barrier—operator with parameters

()3
a(w) = mi(lv)_, and d(w) = ma:x(w) .
max(w)? min(w)
Proof: We let y := (¢,z) and define the notation
d
Vif = a_y,f(y)7 V?] ) etc.
Then
n+1 n+l
[V2F(Gw)lh bl = Y VAER()hbshe = 3 wiViif(y)hihihs
1,5,k=1 1,5,k=1
3/2
< (Z Vi f(y)hib; )
4,7=1

i,7=1

3/2
max(.w n+1
mm(w)3/2 (E VE(y ) ’

max(w) {8 2 3
ZW E w; Vi f(y)hih;

1,7=1
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from which the expression for a(w) follows. The one for #(w) can be shown similarly. O

Observe, that for instance for the weighted target update wt = (1 — #)w the complexity
becomes worse than ‘usual’, namely with a factor 1/w(w). This is due to the fact that the
barrier—operator is not the derivative of a separable barrier function. By letting max(w)
converge to zero, it is ascertained that a(w)?¥(w) — 0 as required by Lemma 4.5.5.

Cone of positive semidefinite matrices

Consider G := 8™, the cone of symmetric positive semidefinite n X n matrices. The standard
logarithmic barrier for G is f(X) = ~Indet X, with gradient Vf(X) = —X~!; it is an n-

self-concordant barrier [199]. Let us now consider
F(X;W) = -W'2XW'/2,

where W = Diag (w) for some vector w € R’ .. Then F(X;W) is a self-concordant barrier-
operator, whose parameters can be derived as in Lemma 4.4.3 and 4.5.9. Algorithms and
their analysis based on this barrier-operator are obtained as in the other examples given in
this section.



Chapter 5

Some further subjects

This chapter contains various applications of interior point methods in optimization. We
extend the interior approach to sensitivity analysis in linear programming (Section 2.2.5) to
convezr gquadratic programming. We consider two applications of semidefinite programming,
which currently is the main research topic in interior point methods: we propose a semidefi-
nite relazation for the problem of optimizing a nonconvex quadratic form over ellipsoids, and
we develop a polynomial and quadratically convergent primal-dual method for computing the
smallest eigenvalue of a symmeiric matriz. Finally, we show a reletionship between the use
of Pareto—oplimal cuts in Benders decomposition and inlerior culling plane meihods.

5.1 Sensitivity analysis in quadratic programming

5.1.1 Introduction

This section® is concerned with the convex quadratic programming (CQP) problem

1
(QP) min {cT:c+§:cTQ:v : Az =b, .1720},
where ¢,z € R™, b € R™, A an m X n matrix with full row rank and @ a symmetric positive
semidefinite n X n matrix. The Wolfe-dual of (QP) is given by

(QD) max {bTy—%uTQu : ATy +s—Qu=c, 320}.
Any optimal solution (z, (u,y,s)) of (QP) and (QD) satisfies z7s = 0, i.e., complementary
slackness. Furthermore, there exist optimal solutions for which z = u; we will only be
interested in those and henceforth denote an optimal solution just by (z,y,s). While in
linear programming (LP) the set of optimal solutions can be characterized with the optimal
partition and strictly complementary solutions (see Section 2.2), in CQP -the set of opti-

mal solutions is characterized by mazimal complementary solutions and the corresponding
tripartition (Giiler and Ye [98]). We define

B = {i : ;> 0 for an optimal solution z of (QP) },
N = {i : s;> 0 for an optimal solution (z,y,s) of (QD) },
T {1,...,n}\ (BUN).

1Taken from an unpublished manuscript with A.B. Berkelaar, C. Roos and T. Terlaky, 1995.
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This tripartition of the index set is denoted by 7 := (B N,T). A maximal complementary
solution (z,y, s) is a solution for which

2; >0 < i€B, s5>0 < i€ N;

such a solution was shown to exist by Giiler and Ye [98]. Moreover, they show that interior
point methods generate such a solution (in the limit). Recall from Section 2.1.1 that in
LP the set T is empty, which leads to the existence of a strictly complementary solution.
Presence of the set T is an unpleasant feature in algorithms to solve CQP problems since
it tends to slow down convergence of (interior point) algorithms (Monteiro and Tsuchiya
[190]). For investigating sensitivity analysis in nonlinear programming (NLP) the existence
of a strictly complementary solution is often assumed to introduce some kind of regularity,
see e.g., Fiacco and McCormick [54], Fiacco [53], Harker and Pang [99]. As argued by
Jittorntrum [127] in certain cases this is too restrictive.

In this section we investigate parametric versions of (QP) and (QD) as an extension of
the results for LP in Section 2.2.5. Markowitz [168, 169] was one of the first to consider
this problem, being particularly interested in applications to mean-variance analysis of
investment portfolios. Other early references include Houthakker [108] and Wolfe [249]
who use a parametric algorithm to solve (QP) itself (for a survey see Boot [26]). Eaves
[49] also considers the parametric CQP problem. In the cited papers an extension of the
simplex method and the concept of basis is used; often some type of nondegeneracy is
assumed. Recent papers on mean-variance analysis by Kriens and Van Lieshout [151] and
Vords [246] show similar results but concentrate on differentiability of the optimal value
function. In this section we do not make the assumption that the set T' is empty, that (QP)
is nondegenerate nor that @) is positive definite. Similarly to the analysis in Section 2.2.5
we give a characterization of the optimal value function using the tripartition and maximal
complementary solutions. This is more general than results in Boot [26] and Bank et al.
(16], who do not identify T’ explicitly, but merely consider N and T together. We propose
an algorithm to compute the optimal value function and discuss application to calculating
efficient frontiers for mean—variance models.

5.1.2 The parametric problem

We consider the parametric problem
(QP,) m&in { (c+ o)z + %zTQz Az =b,2z2>0 },

where Ac € R™ is a given vector of variation. For A € R we denote the tripartition by
T = (Bx, N, T») and a maximal complementary solution by (z(,y*, s(")). The dual is

(QD,) max{bTy—%mQ ATy+s—Qm—c+/\Ac,s>0}

,9,8

The optimal value of (QP,) is denoted by ¢()), with the convention that

¢(X) =00 if (QP,) is infeasible,
¢()) = —oo if (QP)) is feasible and unbounded,
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so ¢ : R — RU{—00,}. Since the feasible set of (QP,) does not depend on A, (QP») will
be either feasible or infeasible for all A. We denote by A the set of values A for which (QP))
has a bounded optimal value. For obvious reason we assume that A is nonempty. The first
lemma gives some basic facts on ¢(A).

Lemma 5.1.1 (i) The optimal value function ¢(A) is concave on A;

(i) A is a (possibly unbounded) closed interval;

(iii) If AcTz > 0 for all z satisfying Az = b,z > 0, then é()) is monotonically increasing
on A.

Proof: (i) Let Ay, A2 € A and a € (0,1) be given and define A, := @Ay + (1 — a}A;. Then

we have
606) = a((et 1AcTale) 4 La0)TQatw) +
(1-a) ((c + heAc)Tz0e) 4 %(:c(’\“))TQz("“))
> ag(M) + (1 — a)$(ra),

where the inequality holds since the feasible set of (QP,) is independent of A.
(#2) Follows from (z).
(#2) For Ay > Ay it holds
(M) — $(h2) =
(c+ WA 200 4 1 (z(xl))TQm(xl) (c + AaAc)Tzt — %(m(f\z))TQx('\z)

1\

(c+ MAC)%(M + §($(A1))TQ$(«\1) —(c+ )\ZAC)%(M) — %(x("l))TQm(*‘)
(M = A2)AcTz™) >0,

which completes the proof. a
The next lemma shows that the tripartition is constant on certain intervals.

Lemma 5.1.2 Let Ay and )\ be such that w3, = my, = 7. Then my = for all A € [Ao, M1].
Proof: Without loss of generality we assume that Ao = 0 and \; = 1. Let (2, y(, s(®)

and (z®,y®) s1)) be maximal complementary solutions for the respective problems. We
define for A € (0,1)
z(A) == (1 = )z 4 Az,
y(A) := (1= Ng@ 4+ 2y, s(X) := (1= )@ + xsO.
It is easy to see that Az(\) = b and z()) > 0. Also
ATy(M) + s(A) — Qz(A) = (1 = Ne+ Mc+ Ac) = ¢+ Mec.

So (z(X),y(}), s())) is feasible for (QP) and (QD)). Since mo = 71, we have z(A)Ts(A) =0,
hence the proposed solution is optimal for (QP,) and (QD,). Using the support of z(}A)
and s(A) this implies

(5.1)

BCBy,, NCN, and T2 T (5.2)
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We will show that equality holds. Assuming to the contrary that T' O T, there exists a
maximal complementary solution (z(, y*), s})) of (QP,) and (QD,) such that

(™) 4+ (sM); > 0 for some i € T, i ¢ T). (5.3)
Let us now define for € > 0

3(€) = 2 4 e(z — 7)),
7€) ==y + e(y® — y @), 3(e) := s + (5 — 5O,

For some € > 0 small enough it holds
T(E)B >0, E(E)NuT =0, 3('6-)N >0, E(E)BuT =0, (5.4)

from which it follows that the proposed solutions are optimal for (QP14¢) and (QDi4z).
Finally, we define

(1) . € [
} (1) __;_A+E2(A) + 1.1.,\+E‘7i(£)’ )
g o= 1—f\+€y(/\) + 11;+Ey(€)’ s 2= 1—f\+€5(/\) + 155325(8)

which are feasible in (QP,) and (QD,). Also,

€ 1-2A

SONT (1) _
@8 = T

((@M)73(2) +7(2)TsM) .
Since (5.2) and (5.4) imply

(@)73(e) = (=M)R3(Aw =0
and

(s™)7z(e) = (s")5z(e)p = 0,

(W, 50, 30 is optimal for (QP;) and (QD;). However, if (5.3) would hold, we would have
a solution of (QP,) and (QD;) with either (zM); > 0 or (5M); > 0 for ¢ € T, contradicting
the definition of (B, N, T'). Thus we conclude Ty = T'. Using (5.2) the lemma follows. O

The lemma implies the following corollary on the behavior of the optimal value function on
intervals.

Corollary 5.1.3 If my, = 7y, = 7 then
(i) On [Xo, M1] (A) is the quadratic function given by

$() = ¢(0)+;A—_—AA—Z(bT(y“*)—y<*°>)+(c+ MoAc)T (e — g0)) +
[ —
1 /\-—/\0 2 T (M) . (Qo)y.
2(/\1_/\0) Act (z\M) — o)y,

(ii) $(N) is linear on [Xo, ] if and only if Q%) = Qz(); in this case

B(1) = $(0) + 220 4T(y ) _ 40y,
A —Ag
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Proof: (i) Assuming A = 0 and A; = 1 it follows from the proof of Lemma 5.1.2 that z(A)
defined in (5.1) is optimal in (QP,) for A € (0,1). Hence

$(A)

(c+ AAe)Tz(N) + %x(/\)TQx(/\)

#(0) + AAT 2O 4 AT (2™ — @) + XA (W) — 2©@) 4
1

Az® — zOTQz© + §,\2(3,,(1) —2NTQ(=W — z®)

$(0) + AT (yV — @) 4 T (z® — 2O)) 4+ %/\2ACT((II(1) —zO).
where the last equality follows from twice using

AT (y ™ — y @) 4 50 s = Ac+ Q(x(l) - z(9). (5.5)
The required equality now easily follows.
(i) From (i) we have ¢()) linear on [0,1] if and only if AcT(z(") — z{®) = 0. Using (5.5)
this is equivalent to.

(2 - zOTQ(zW - @) =0
which holds if and only if @Q(z™ — z(9). Observing that
(M — @) = (ATy(O) + 5@ — QzNT (M) — @) = _(Qm(O))T(x(l) —z(9) =,

we obtain ¢(X) = #(0) + A b7 (y) — y©@). o

With the results obtained so far we can prove the next theorem, giving a characterization
of the optimal value function in terms of tripartitions.

Theorem 5.1.4 (i) The interval A can be partitioned in a finite set of subintervals such
that the tripartition is constant on a subinterval.

(i1) The optimal value function ¢(}) is continuous, concave and piecewise quadratic on A.
Proof: (i) Since the number of possible tripartitions is finite and the number of elements of
A is infinite it follows from Lemma 5.1.2 that A can be partitioned into (open) subintervals
on which the tripartition is constant, while it is different in the singletons in between the
subintervals.

(é) Corollary 5.1.3 implies that on each subinterval defined by a tripartition the function
#()) is quadratic. Since ¢(A) is concave (Lemma 5.1.1) it is continuous. ]

5.1.3 Computing the optimal value function

Recall from Section 2.2.5 that in the parametric LP problem the optimal partition changes
exactly where the (piecewise linear) optimal value function is not differentiable, i.e., in the
breakpoints of the function. The next example shows that this is not the case in CQP.

Example 5.1.5 Let the CQP be defined by

20 0
Q=(0 1)1 C=(l), A=(2 1), b=2.

The vector of variation is taken to be Ac? = (1 0). The next table gives maximal comple-
mentary solutions and the corresponding tripartitions as a function of A.
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z z3 $1 S2 B N T

A<0 1 0 0 =A2 | {1} {2} ¢
A=0 1 0 0 0 {1} é {2}
0<A<6|1-X/6 A/3 0 0 {1,2} ¢ ¢
A=6 0 2 0 .0 {2} ¢ {1}
A>6 0 2 A-6 0 {2} {1} 4.

Hence, ¢(}) is given by

2SO0 $A) =1+,
0<A<6 an=1+x-$v,
A6 GA) =4

It is easy to check that ¢()) is differentiable in A = 0 and A = 6, although the tripartition
changes in these points. 3%

Let us call the breakpoints of ¢()) those points A where the tripartition changes; in between
the breakpoints are the curvilinearity intervals?. Below we show that the breakpoints occur
exactly where the second derivative of the optimal value function changes. Moreover, we
prove that when taking maximal complementary solutions for two parameter values in a
curvilinearity interval, a convex combination of these solutions is a maximal complementary
solution for the corresponding parameter value (cf. Lemma 5.1.2). We first deal with the
differentiability of ¢()).

Lemma 5.1.6 If ¢(:) is differentiable in X then AcTz is equal for all optimal solutions z
of (QP»). Otherwise, the left and right derivatives ¢ (A) and #,(}) are given by

¢_(A) = max Acfz : Az=b, 25, >0, zy,ur, =0,

ATy+3—Qz=c+/\Ac, sn, > 0, sBqux=0}, (5.6)
(X)) = min { Az : Az =b, z5, >0, zN,ur, =0,
ATy +s— Qz =c+MAc, sy, >0, sgur, =0 } (5.7)

Proof: For arbitrary A € int(A) and ¢ € R sufficiently small it holds for any optimal
solution z(A) of (QP))

¢(A + e) (c+ ()\ + e)Aé)T:):(’\+€) + %(z('\+£))TQ:IJ('\+€)

IA

(c + AAS)T2()) + %w(/\)TQz(/\) +eATz(\)
#(A) + eAcTz(N),

*In LP the term linearity interval is used since on these intervals the optimal value function is linear;
this is not the case in CQP.



5.1. Sensitivity analysis in quadratic programming 163

so the right and left derivatives at A satisfy

4 = i PAED=IA < Ao,
g = i 8OFIZ8 5 Ao,

If ¢()) is differentiable at A then we necessarily have ¢'(A) = AcTz()) for any optimal
solution z(}) of (QP»). Otherwise, note that the objective value of each z feasible in (QP)
as a function of X is linear with slope AcTz. Since ¢(-) is assumed to be not differentiable
in \ there must be different optimal solutions with different slope; using the concavity of
¢(-) (Lemma 5.1.1) it is obvious that the left and right derivative of ¢()) are obtained for
those solutions optimal at A having the largest respectively smallest value of AcTz. This
implies the definitions (5.6) and (5.7). _ o

Before proceeding, we quote the following well-known result.

Lemma 5.1.7 Let (z*,y*,s*) and (Z*,7*,5*) both be optimal solutions of (QP) and (QD).
Then Qz* = QZ* and Fz* = Tz*.

Proof: Follows easily using the convexity of the objective function of (QP) in . o
The support of a vector u is defined as o(u) :== {7 : w; > 0}.

Lemma 5.1.8 Assume that A = 0 is a breakpoint of the optimal value function with tri-
partition mg = (Bo, No, Tp); further assume that the curvilinearity interval to the right of

zero contains A = 1 with tripartition 7 = (B1, N, Th). Let (z*,s*) belong to a strictly
complementary solution of (5.7) with A = 0. Then o(z*) C By and o(s*) € N;.

Proof: On (0,1] the tripartition is constant, hence linear combinations of maximal com-
plementary solutions for two values in this interval are optimal in between these two values.
Taking limit to zero implies the existence of z, optimal in (QPo) with o(z) € B and
AcTz = ¢/ (0) = AcTz". Since z* and g are both optimal in (QPo), Lemma 5.1.7 implies

(m")TS(l) = ($*)T(C+Ac+Qz(l)—ATy(l)) - CTQ-FACTQ-}-QTQ:L‘(I)—QTATy(l) — QTS(l) —0.
Analogously, one shows that (s*)Tz(!) = 0. Consider now for ¢ € (0,1)
z(e)=(1 -z +ezV, yl)=(0Q—-ey*+ ey, s(e) = (1 —e)s* +esW,

then z(¢) and s(e) are feasible and complementary in (QP.) and (QDc), hence optimal. So
it holds o(z*) C B, and o(s*) C N, ]

Obviously, a similar result can be obtained for the interval to the left of a breakpoint, using

the solution of (5.6).

Corollary 5.1.9 The breakpoints of the optimal value function occur ezactly where its sec-
ond derivative changes.



164 Chapter 5. Some further subjects

Proof: Suppose to the contrary that the optimal value function is quadratic on [-1,1],
while the tripartition is 7o for A = 0, 7_; on [~1,0) and 7; on (0,1]. Since the optimal
value function is differentiable in A = 0, it follows from the proof of Lemma 5.1.8 that
z(e) := (1~ €)zV + ez is optimal in (QP,_,) for € € (0,1), while z(e) := (1—€)z(® + ez
is optimal in (QP,) for € € (0,1). Since the derivative of the optimal value function is linear
on [—1,1] it follows that (z(-1) + 2(1))/2 is optimal in (QP,). This implies B; U B_; C Bo.
Similarly one shows N, U N_; C N,. Combining this result with Lemma 5.1.8 it follows
Bi=B_ ;=Byand Ny =N_,; =N, contradicting the assumption. m]

In Section 2.2.5 we showed that in LP solving the analogon of (5.7) in a breakpoint rendered
the optimal partition in the curvilinearity interval to the right of it for free. This is not the
case in CQP; instead, we still have to solve another CQP problem. Observe from Lemma
5.1.7 that the solution of (5.7) is directionally differentiable. This motivates the following
lemma.

Lemma 5.1.10 Consider the situation as in Lemma 5.1.8. Let (¢*,s*) belong to a strictly

complementary solution of (5.7) for X\ = 0, and define B := o(2*), N := o(s*), T :=

{1,...,n}\ (BUN). Consider

min {ATE+E7QE - At =10, ATn+p—QE=Ac, én =0, pp = 0,7 > 0,7 >0},

(5.8)

and let (€%, p*,n*) belong to a mazimal complementary solution of it. Then By = BU {i :

>0}, M=NU{i:p; >0}, and Ty = {1,...,n} \ (BLUN,).

Proof: It is easy to check that for a feasible solution of (5.8)

ATE+ETQE=ETp=¢Lpr > 0.
The dual of (5.8) is given by

}Igg)g —ALE—ETQ¢ -
AS=0, ATC+7+Q6~2Q€ = Ac, 15 =0, 5y =0, 17 20, 67 >0},
and for a feasible solution it holds
—ATE —£TQE = —6Ty - (5 — )7 Q(6 — £) <.
Consequently, the optimal value of (5.8), if it exists, is zero. Consider the assignment

(=6=20-a" p=q=sV -5, n=(=y0 -y,

which satisfies the first two linear equa,Iitiés in (5.8). Using the fact that B C B, and
N C N; (Lemma 5.1.8) it follows ‘

v=2) —oh =0, tr=2f) —a7 =2 20,

and

pp=sy —sp=0, pr=s —sp=sP >0,
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and so {fpr = 0, implying that the assignment is an optimal solution. The fact that
(z™, sM) is maximal complementary implies that the assignment must be maximal com-
plementary in (5.8) as well, implying the result. a

In case a parameter value is not a breakpoint of the optimal value function the curvilinearity
interval must be computed. This can be done by solving appropriate LP problems.

Lemma 5.1.11 Let (A, ) be an interval on which the tripartition is constant and given by
7 = (B, N,T), and such that 7y # 7 and 75 # 7. Then

A=min {X : Az=0b, 25 >0, zyur =0,

Az,y,8
ATy-i-s—«Q:c—/\Ac:c,sNZO,sBUr=0}, (5.9)
X:ina,x {X : Az=b, 2820, znur =0,
)miys
ATy + s - Qx —Mec=c, sy >0, sBuT=O}. (5.10)

Proof: We prove (5.9). For any A € (A, X) the pair (2™, 4™, sM) is feasible in (5.9). If the
minimum value of the LP problem in (5.9) would be smaller than A than a linear combination
of the corresponding solution and a solution at X € (A, ) would give a contradiction with
the definition of (B, N,T). The proof of (5.10) is similar. a

It need not be the case that a strictly complementary solution of (5.9) or (5.10) gives the
tripartition in the corresponding breakpoint; only some of the primal and dual variables
can be shown to be either in its B or N part. Instead, the CQP problem itself needs to be
solved here, while using the information on some of the variables.

All the ingredients for the computation of the optimal value function have been obtained
at this stage. The algorithm is outlined as follows (note: by ‘solve’ we mean ‘compute a
maximal complementary solution of’)

Solve (QP)) for some initial Ag;
. Solve (5.10) to obtain X, a breakpoint;

. Solve (QP5) to compute the tripartition in X;
Solve (5.7) to obtain the slope and a support;

ok o

Solve (5.8) to obtain the tripartition of the next interval and proceed with Step 2.

Evidently, if the problem in Step 2 or Step 4 is unbounded the algorithm stops. The part
of the optimal value function to the left of Ao can be computed analogously.

5.1.4 Application to mean—variance models

An important application of the parametric CQP problem is the computation of an efficient
frontier for mean—variance models, introduced by Markowitz [169]. Given assets with ex-
pected return r; and covariances v;;, the problem is to find portfolios of the assets that have
minimal variance given a level of total return, and maximal return given a level of total
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variance. Mathematically, let z; be the proportion invested in asset ; and consider the basic
mean—variance problem

1
rngn{é-a:TV:c s ez =1, rTm=A,x20},

which can be viewed as a (right-hand side) parametric CQP problem. The theoretical
results in the previous section can in an obvious way be adjusted to this situation. This
has some useful practical consequences. First, the efficient frontier is piecewise quadratic;
the quadratic parts correspond to intervals where the set of assets that can occur in some
efficient portfolio is the same, while there exist linearly varying ‘maximal complementary
portfolios’ over such an interval. Maybe even more important, the tripartition shows which
of the assets will never appear in an efficient portfolio given a specified return.

5.2 Semidefinite programming

5.2.1 Introduction

One of the major implications of the work by Nesterov and Nemirovskii [199] is the appli-
cability of efficient interior point methods to problems other than those being defined on
the space of real numbers. Later, Nesterov and Todd [200] developed efficient primal-dual
techniques for problems defined on certain convex cones. An important type of such a cone
is the space of symmetric positive semidefinite matrices

S*={XeR™ : X=XT, X»0}.

Many problems in mathematical programming can be modeled as semidefinite programming
(SDP) problems, that is, problems defined over S. Some of these applications have been
known for a long time, see e.g., Lovész [159], Lovasz and Schrijver [160], Cullum [38] and
Fletcher [55]; however, the lack of an efficient solution technique has prevented the theoret-
ical opportunities to become worthwhile in practice. This has dramatically changed due to
[199] and the work of Alizadeh [6], who brought SDP to the foreground as a major research
topic. The general form of a semidefinite program is

(SP) m;'a,x{ by . FyyxF},

where y,b € R™, F(y) = X, y;F; and F; = FT € R™" for i = 0,...,m. It is easy to see
that (SP) is a convex programming problem. A duality theory for this type of problems was
developed by Alizadeh [6], see also [199, 211]. The natural inner product for S™ is the ‘“trace
of the matrix-product’, so for X,Y € 8™ we have (X,Y) = tr(XY). The dual of (SP) is
given by '

(SD) mjn { tr(FoX) : t(FiX) =b; i=1,...,m, X = 0}.

Nesterov and Nemirovskii [199] showed that the function f(X) := —Indet (X) is a self-
concordant barrier function for $”. Some interior point methods using this barrier were
analyzed in Alizadeh [6], primal-dual methods were developed by Boyd and Vandenberghe
[30], Helmberg et al. [100] and Freund [62], among others.
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Many new applications of SDP are found in system and control theory (see e.g., Boyd
and Vandenberghe [30] and Boyd et al. [30]), structural optimization (e.g., Ben-Tal and
Bendsce[19]), geometrical problems involving quadratic forms or ellipsoids (e.g., Boyd et al.
[30]), statistics (e.g., minimum trace factor analysis, Watson [248], and optimal experiment
design, Pukelsheim [210]), linear algebra (e.g., problems involving eigenvalues, Alizadeh
[6], Ramana [211]). In recent years applications in combinatorial optimization have gained
extensive attention. Here the semidefinite methodology is used to approximate NP-hard
problems (see e.g., Alizadeh [6], Goemans and Williamson [73], Poljak et al. [206], Laurent
and Poljak [153], Karger et al. [131], Helmberg et al. [100] and the references therein).
Lovész and Schrijver [160] pioneered this field and gave some theoretical opportunities with
the approach. These developments have lead to new approximation heuristics (often with
an improved worst case bound) for problems as MAXCUT, MAXSAT, graph—coloring and
graph—partitioning.

In this section we give two applications of SDP. We first consider the problem of opti-
mizing a nonconvex quadratic function over ellipsoids®. The motivation for studying this
problem is that ellipsoids can be used to approximate hypercubes, which themselves form
relaxations of 0 — 1 constraints. The general problem where the ellipsoidal constraints are
replaced by (nonconvex) quadratic functions has been studied by Shor [223], who derived
a Lagrangian dual for it which appears to be a semidefinite problem; see Boyd and Van-
denberghe [30] for a discussion. Here we derive a (nonlinear) convex semidefinite problem
being equivalent to the two relaxations mentioned above. Second, we analyze an interior
point method for computing the smallest eigenvalue of a symmetric matrix, which is an
application of SDP in linear algebra. We show that the method is polynomial and possesses
an asymptotic quadratic convergence rate, without assumption on the multiplicity of the
smallest eigenvalue.

5.2.2 Application: Nonconvex quadratic optimization

Consider the problem of optimizing a (general) quadratic form over the intersection of m > 1
ellipsoids:

1 ; .
(EP) min { ixTQz—}-cT:c : 2TAYz <1, z=1,...,m},

where A® € S* fori =1,...,m and Q@ = QT € R™™". We assume that the optimal value
of (EP) is negative, since otherwise the trivial solution z = 0 would be optimal. In case @ is
positive semidefinite, the problem is convex and easily solvable with interior point methods
in polynomial time (see Nesterov and Nemirovskii [199], Vial [245]). Here, we assume @) to
be not positive semidefinite, hence (EP) is a nonconvex programming problem.

The special case m = 1 has been extensively studied in the literature, mainly in the
context of trust region methods, see e.g., Moré [192], Sorensen [225]. Recently, Ye [255]
gave an efficient polynomial time algorithm for this problem. It has gained increasing
attention in the last years, see e.g., Flippo and Jansen [56], Stern and Wolkowicz [226] and
Ben-Tal and Teboulle [21], since in this case the problem (EP) is equivalent to a convex
programming problem. Specifically, the Lagrangian dual is a concave programming problem,

3Gome of the results here are taken from an unpublished manuscript with O.E. Flippo, 1993.
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being strongly dual to the primal problem. The one-dimensional case reveals that the dual
problem can be written as an SDP problem. Hence, the dual of the dual is also (convex)
semidefinite.

Consider the following nonlinear SDP problem

(EP) min { %tr(QU)—\/cTUc ctr(AU) <1, i=1,...,m, Ues" }
We show that (EP) is a relaxation of (EP) and derive some other properties.

Lemma 5.2.1 The following statements concerning problem (EP) hold:

(i) (EP) is a convex programming problem;

(i) (EP) is a relazation of (EP);

(iii) The feasible set of (EP) contains an interior (Slater) point;

(iv) If both U* and U~ are optimal in (EP) then tr(QU*) = tr(QU") and TUc =TT e.

Proof: (¢) First, S" is convex, while the trace-operator is linear on this space; so the
feasible set is convex. The square root function being concave, the objective is convex as
well.

(1) Let € R™ and let U = 227 € S™. Observe that for any matrix M

tr(MU) = tr(zz™ M) = tr(zTMz) = 2T M.

Hence, if z is feasible in (EP) then U is feasible in (EP). Since

VlUc = VeTzaTe = \/(cT:z:)2 = |cTa,

the objective value attained by U equals

l:ETQ:tr: —|cTz|.
2
Observing that in any optimal solution of (EP) it holds ¢’z < 0, completes the proof.
(#4) Take U = I, where I € 8™ is the identity matrix and € > 0. Obviously U € §™. Also,
since
tr(AOU) = tr(eA¥) = €3~ A,

=1

with € < min;(1/ 37 AS'J)) the constraints arg satisfied with strict inequality.

(2v) Due to convexity every linear combination of U* and U is also optimal. Using the
concavity of the square root function it easily follows that ¢TU*c = ¢TU’c. Since the
objective values of U* and U™ are equal, it then also holds tr(QU *) = tr(QU). o

Note from the proof of (i) that the relaxation will be tight if there is an optimal solution
U to (EP) that is a rank-one matrix. We will use this later, but first derive the necessary
and sufficient KKT-conditions for (EP).



5.2. Semidefinite programming 169

Lemma 5.2.2 A matriz U € 8™ is optimal in (EP) if and only if there exist multipliers
p € R} and V € 8*, such that

pitr(AOY -1) = 0, i=1,...,m,
tr(AOU) < 1, i=1,...,m,
te(UV) = 0 (5.11)

ifTUc>0 then Q+XT, MiA(':) —V - &= =0,
ifTUc=0 then Q4+ L7, mAd -V =0
Proof: First consider the case c?Uc > 0. The Lagrange-function of (EP) is given by

1 LTS : 1
Lp(U, 1, V) = 5tr(QU) — VTUc+ S %(tr(A(’)U) - 1) - Fu(UV).
i=1
The proof follows from the general KKT-theory. If c¢I'Uc = 0 then U also solves the problem
1 ;
min { S5(QU) = #(AOV) <1, i=1,...,m, UeS" } .

Writing down the KKT—conditions for this problem the lemma follows. u]

We may derive the following interesting implication of the KKT-conditions.

Lemma 5.2.3 Let U, pu,V satisfy the KKT-conditions (5.11) for (EP). If Q+%; u;A(‘)
has rank k < n, then rank (U) < n — k+ 1. In particular, if the matriz Q + ¥; wiA® s
positive definite, then if cTUc > 0 it holds that U is a rank-one matriz, while if TUc =0
then U = 0.

Proof: If c'Uc > 0, define a :=1/vcTUc. Observe that

Q+ Z piAD =V 4 aecT,

1=1

hence V +accT has rank k by assumption. This implies rank (V) > k—1. Applying Corollary
A5 to U,V and condition tr(UV) = 0 from the KKT-system, gives rank (U) <n —k +1.
In case k = n, it holds rank (U) = 1, since U # 0 by assumption. The case fUc = 0 follows
similarly. ' O

The case k = n considered in Lemma 5.2.3 can be referred to as the ‘easy case’. For m =1
the opposite ‘hard case’ (i.e., @ + 1AW is not of full rank) is a well-known obstacle (e.g.
[21, 56, 226]) in both the analysis of the problem as well as in certain methods for its solution
(see e.g. {192, 193]). However, Wolkowicz* reports that his interior point implementation
typically does not suffer from the hard case. The next result establishes a situation where
the relaxation is tight.

Theorem 5.2.4 If Q and A®), i = 1,...,m are simultaneously diagonalizable, fﬁc;n (EP)
is equivalent to (EP). In particular, let U, p,V satisfy the KKT-conditions for (EP), then
there is an optimal solution U of (EP) such that U is a rank-one matriz.

4Personal communication 1994.
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Proof: Without loss of generality, we assume that Q and A® are all diagonal. Let u bean
optimal multiplier. Define

i = Qi+ 3 wiAl).
i=1
If \; > 0, Vj, then the result follows from Lemma 5.2.3. Otherwise, we may assume that
k < n is such that
M==X=0, \>0, j=k+1,...,n.

First we consider the case cTUc > 0. Define a := 1/v/cTUc. Observe that for J < k the
KKT-conditions (5.11) imply
0= =V]-,-+ac?,

wherefrom Vj; = 0 and ¢; = 0. Consequently, cc” can be written as a matrix of the form

0 0
0 &}’

where € = (cx41 - ¢2)T. Consequently, V is of the form

0 0
v=(_ _1,

with V € S(-Rx(=k) Partitioning U in a similar way as

Ul Uz
Us U

and using the optimality condition tr(UV) = 0 it follows tr(T V) = 0. Hence we have the
conditions

tr(UV) =0, Diag(Msr,..., M)=V+ i—EET.

Consequently, rank (V) 2 n—k+1 and from Corollary A.5 rank (U) < 1. Since TUc =
c"Uc # 0 we have rank () = 1. Now, it is easy to see that the rank-one matrix

(5]

is feasible in (EP) and has the same objective value as U , 80 is an alternative optimal
solution. The case cTUc = 0 follows along the same line of reasoning. This proves the

theorem. m

To gain more insight into problem (EP) we compute a Lagrangian dual of (EP). The
Lagrange—function is given by

l 7 T, N= B T 46) 1 7 () r. €u
LEp(x,p)=§:1: Qz+c a:+z§(w A a:—l):iz (Q+Y_ piANz 4 To — =L

=1 =1 2



5.2. Semidefinite programming 171

where ¢ € R}. It is easy to see that this function is unbounded from below if the matrix Q-+
T ;A has a negative eigenvalue. Hence, we require Q+Xr, wAY = 0. Differentiating
the Lagrangian and using the generalized inverse we derive the following dual problem

1 L . ' m .
(ED) sup { ~5¢"(@ + X mAD) e~ %eTu P QY mAY =0, p 20 } :
“ g=1 i=1

We make the following technical assumption (cf. Ben-Tal and Teboulle [21]) guaranteeing
the optimum to be attained.

Assumption 5.2.5 There exists a vector p € R} such that Q@ + > vy wiA® - 0.
Instead of (ED) we will consider the following problem
D Lo 2oa0) oo ler S 1A
(ED) sup —5¢ Q+Y mA cm e Q+Y mAY =0, p>0 5.
s =1 i=1

Due to Assumption 5.2.5 the feasible set contains a Slater point; furthermore, the problem
is a convex programming problem. We will show that (EP) is a Lagrangian dual of (ED).
First, we rewrite (ED) as

1 1 o ;
sup { —-2—cTY‘1c— ﬁeT/l (Y =Q4+ Y mAD, Y =0, p 2> 0}-

Y - =1

The Lagrangian is

1 1 1 1 kil ;
Lyp(p,Y,U, V) = -3 Ty-1lc — é-eT;t + Etr(YV) + §tr ((Q + ZP:‘A(O - Y) U) )
=1

where U,V € 8™. The KKT-conditions give

Y leLY ' 4V -U = 0,
tr(A9U) < 1, i=1,...,m,
pi(te(AU)y=1) = 0, i=1,...,m,

tr(YV) = 0,
Y-Q-Y AP =0, Y >0, 420

=1

From the first equation we obtain (cTY~1¢)? = I (U — V)¢ > 0, and IY e =tr(UY) +
tr(UV). This gives the following dual problem

%Jr.lé { %tr(QU) — /T (U =V)e : (AU <1, U eS8 }

It is easy to see that in any optimal solution we have V = 0, while Lemma 5.2.1(%i1) shows
that the optimum is attained. Hence we arrive at problem (EP).



172 Chapter 5. Some further subjects

Shor [223] considered a relaxation method for minimizing a quadratic function subject to
general quadratic constraints. Simplifying to the setting of (EP) this leads to the following
problem:

m (%)
(RP) rrtl’z;X{tz (3@ c_{tz)+zpi(A0 _Ol)tﬂ,uzﬂ}-

t=1

If z is feasible in (EP) and (¢, 4) in (RP) then

(% )5 (N ()

= —;—:cTQ:c +cTz—t+ Zu;(xTA(i)x -1 < %mTQ:c +cfz—t,

=1

0

IN

which shows that Shor’s semidefinite problem (RP) is a relaxation. The semidefinite dual
of (RP) is (after some elementary simplifications of the general form) given by

. 1 ; . X
(RD) min {Etr(QX)-i-cTy s tr(ADX) <1, i=1,...,m, (yT '111) tO}.

The relationship between (RP), (RD) and (EP) in the general form is investigated by Boyd
and Vandenberghe [30], see also Fujie and Kojima [64]. Here we consider the connection
between (RD) and (EP).

Lemma 5.2.6 The optimal values of (RD) and (EP) are equal.
Proof: We first show that the optimal value of (EP) is not larger than the one of (RD).
If (X,y) is feasible in (RD) then X is feasible in (EP). From Lemma A.6 it follows that

I Xe—TyyTe > 0, so
VT Xe > |yl
and X in (EP) yields an objective value not larger than the one for (X,y) in (RD).

Conversely, if X is feasible in (EP) then we can find y € R™ such that X > yy? and
(X — yyT)c =0 as follows: if Xc = 0 then we take y = 0, otherwise y = X¢/v/cT Xc, since
Xed X _ +p ( I Xl/zccTXI/z) X125 0,

cTXc TXc
Hence (X,y) is feasible in (RD) and has the same objective value as X in (EP). To
complete the proof, we show that if (X,y) is an arbitrary optimal solution of (RD) then

¢’ Xc— (cfy)* = 0. By contradiction, suppose this equality does not hold. Consider again
(X, Xe/V/cf Xc), which is feasible in (RD), moreover, by assumption

Xe
T = T T
c (—CTXC) vVTXe> |y,

which implies that (X,y) cannot be optimal. This completes the proof. a

To summarize, we have shown that the relaxation (EP) is equivalent to other relaxations
(RP) and (RD) proposed for (EP). The difference lies in the fact that (EP) is a nonlin-
ear problem, while the other two are linear but higher dimensional. At the heart of the
equivalence in Lemma 5.2.6 is the Schur-complement.
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5.2.3 Application: Computing the smallest eigenvalue of a sym-
metric matrix

A classical problem in numerical linear algebra is the computation of the smallest eigenvalue
of a symmetric matrix. This problem can be formulated in an obvious way as a SDP problem,
see also Ramana [211] and Nemirovskii and Nesterov[199, p.238]. In this section we develop a
specific primal-dual interior point method for this problem. We show that it has polynomial
convergence and is quadratically convergent in the limit, independently of the multiplicity
of the smallest eigenvalue.

Let A be a symmetric » X n matrix, whose eigenvalues are Ay < Ay < --- < A, We
denote by k the multiplicity of A;. The problem is modeled as follows:

(AP) X = max {A:M=ZA},
where ] is the identity matrix. The dual problem is given by
(AD) n}}n {tr(AX) : tr(X)=1, X = 0}.

Note that both the primal and dual feasible set admit strictly feasible solutions. The
following lemma justifies duality between (AP) and (AD).

Lemma 5.2.7 (i) If ) is feasible for (AP) and X for (AD) then A < tr(AX).
(ii) The pair (A, X) is optimal if and only if X\ = Ay and the column space of X is a subspace
of the eigenspace of A with respect to Ay.

Proof: (i) Using feasibility of A and X we write
tr(AX) — A = tr(AX) — Mr(X) = tr((A — A1) X) > 0,

using Lemma A 4.
For (#1), observe that the pair (A, X) is optimal if and only if it is feasible and

tr((A — M) X) = 0.

Since X # 0 the latter equation is equivalent to A = A; and (A — A\ J) X =0 (Lemma A.4),
which proves the statement. &

For any A < X we define
S(A):=A-Al,

which is a symmetric positive definite matrix; defining

1 S

s YT R o2

we see that X ()) is feasible in (AD) and moreover

XS = SA)X(N) = pl. (5.13)
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Note that if A runs from —oo to ‘)\1 then y runs from oo to 0. Since x depends continuously
on A, for each positive u there exists a unique A < A; (denoted by A(g)) such that (5.13)
holds; the dependence between y and A(y) is given by

n

1 1

LI o PR S 5.14)
7 Z; Ai = A) (

In Jansen et al. [116] it is shown that A(u) is concave and monotonically decreasing in p.
The sets

{OW,SOW)) : 5>0} and {XOA@) : x>0}
are the central paths of (AP) and (AD) respectively. Since lim, .o A1) = Ay, the limit of

S(A(p)) exists:

We now develop a primal-dual interior point algorithm, which starts with an arbitrary
strictly feasible pair (A, 5()), X())) on the central path and uses the central path as a
guideline to optimality. The search—directions in the primal and the dual spaces are denoted
by AX and AX, respectively. Denoting X := X()), our goal is to find these directions in
such a way that the pair (A + A), X + AX) is optimal. This amounts to solving the system

SA+A4AX) =0, X+AX =0, tr(X+AX)=1, SA+AN(X +AX)=0.
Using S(A + AX) = S(X) — (AX) and S(A)X = pI the last equation can be rewritten as
#l +S(A)AX — (AN)X — (AN)AX =0.

Since this equation is nonlinear and hard to solve we linearize it by omitting the second
order term (AA)AX. Neglecting the inequality constraints for the moment we are left with
the system

SNAX — (ANX = —ul, tr(AX) =0,

which has the unique solution

_ 1 -k
A= B E) ey (5.15)
and ,
AX = X + (ANSO)X = —X + tr(XTz) (5.16)

The search-directions (AX, AX) obtained in this way are the primal-dual affine scaling
directions at the pair (A, X). Note that the calculation of the search—directions requires the
inversion of the matrix S()) and the multiplication of the matrix X by itself. Since

1 -1
(SO,

n

(S0P =3 () s/\ll_éAf_ﬁAl

=1

it holds (SO))
r -
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consequently the full Newton step will in general be infeasible. Hence, we use a damped
Newton step with step size «, such that

A= Aa =AM — (A+aAN) < (1—a)(M — A). (5.17)

In our algorithm « is chosen to be a := ||X||. Observe, that AA € R, so in fact the
search—direction for A is not important, instead, it is the step size that gives the difference
between algorithms. Moreover, in the algorithm we will not use AX, since given A we can
compute a point on the central path from (5.12)°. However, we will use AX later to justify
the quadratic convergence of a variant of the algorithm.

Note that it is easy to find an initial point using Gershgorin’s lemma (e.g., [228]):

/\(O) = 121:151171 (Ai,' — ; |Afjl) < A (518)
JFt

Observe that
A0 > —n|Al|co- (5.19)

QOur algorithm is summarized in Figure 5.1.

Input

A© := miny¢ica{Aii — Tjzi |Aij|}: the initial solution;
Parameters

€ is the accuracy parameter;
begin

A= A0,

while tr(A— X)) <n/e do

S(A) := A— A,

X := S(A)/tr(S(A));
o A= A+ X[ /tr(S(A) 71 X);
end.

Figure 5.1: Smallest eigenvalue algorithm.

In Jansen et al. [116] the algorithm is a,nalyzed- using ‘traditional’ interior point proof-
techniques. Later, Bosch and Torenbeek [28] gave a simple and elementary proof of its
polynomiality. Here we combine the approaches. First, observe that

X\ X1 _ 1 _ 1 )
x(SN)7X) (X)) fe(X2)e(S)Y) /ir(S(A)2)

The following lemma is partly due to [28].

(5.20)

5This is the centering step in predictor—corrector methods for LP; in our case the centering can be done
exactly.
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Lemma5.2.8 If A<\ =...= )\ < M1 ... <A, and g > 1 s a positive integer then
the following inequalities hold:

k(= A < t2((A = A)=0) < n(Ay — A)9, (5.21)

1
(ST M, (5-22)

1 1
M- (/\ + m) < (1 - 7;) (A —A). (5.23)
Moreover, if \(u) is defined by (5.14) then
kp < A — Mp) < np. (5.24)
Proof: To prove (5.21) note that ‘
k < 1 I 1 n
=27 = Du = a2 = Da =

The result follows from the observation that the summation between inequality signs is
exactly tr((A — AI)7?). Now (5.22) follows from & > 1 and (5.21) with ¢ = 2. Taking again
¢ = 2 in (5.21) gives (5.23). Finally, (5.24) follows from (5.21) with g =1 and A = Ap). O

The next theorem gives the number of iterations required by the method, as well as an
estimate for the accuracy of the final iterate.

Theorem 5.2.9 Suppose that \(? is given by (5.18) and that the step size at each iteration
equals a = || X|)|. Then after at most

n(n + D Ale
Vil =

iterations the algorithm has generated a feasible primal-dual pair (X, X) such that

vn
Moreover, the first k eigenvalues 7; of X satisfy
1 (n—k)e 1
—_——— < = I -,
E onk(upr— Ay - o™ =%

whereas the remaining eigenvalues satisfy

0<n < L€
=M= n (A1 — M)’
‘Proof: Note that each iteration of the algorithm constructs a strictly feasible A by (5.20)
and (5.22). From (5.23) it holds in the Nth iteration

> k.

N
1
A =AW < (1 - ﬁ) (1 — 2,
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The algorithm continues as long as ny > €, where p is defined by (5.14); so in the Nth
iteration it holds Ay — AN) > ke/n by (5.24). Hence
()
N</n p =2 A=A )
ke

Since I/n is feasible in (AD)

w <t (4 (21)) = (4) < Al

using inequalities (5.18) and (5.19) the statement on the iteration number follows. Let us
denote

L
to(S(2)71)’

From the stopping criterion we derive I < ¢/n, so

=

[(a=31) %] = Iml = v < =

Finally, we establish that £X is a good approximation for the matrix of the projection onto
the eigenspace of A with respect to A;. To this end we show that k of these eigenvalues are
approximately one, and the other n — k approximately zero. We denote the eigenvalues of
X by

T

Tii:=“)’\:‘_—x‘, 1<i<n.
Note that 7, = 75 = ... = 9. Since X < A; and & < €/n we have for i > &
I3 " € €

= < < < .
A,’—A—A,’—Al——n(A;—A])_n(/\k.},l—Al)
So, the sum of the n — k last eigenvalues of X is at most

(n —k)e
n (At — M)

The trace of X being one, the first k eigenvalues (which are mutually equal) can be bounded
from below by

1 (1 (n—k)e )

k n (/\k+1 - )\l) '
This completes the proof. a

The algorithm can be made quadratically convergent by carefully analyzing the maximal
step size. Here we do use the definitions (5.15) and (5.16) of AX and AX and interior point
methodology. Define

a:=argsup{ S —a(ANI =0, X + aAX =0 }.
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Lemma 5.2.10 Let 0 := ||[AX|| /tr(X?). The step size

2
-2 5.25
Tt Vit (5.25)

is feasible, i.e., a < @.
Proof: Consider the matrix
M(a) := (S - a(AN) (X + oAX)=(1—-a)ul — a2(A/\)AX,

where p is defined by (5.12). Since the matrices S — a(A))I and X + aAX commute, they
are simultaneously diagonalizable; since the eigenvalues of M () depend continuously on a,
the step size o will be feasible as long as

M(a) a’AX
—_— = — - >
p -l - =0,
which certainly holds if
a? [|AX|
—a————=UL>q. 2
l-a wxy 2 0 (5.26)

Using the definition of o the result follows, o

The step size in Lemma 5.2.10 has the nice feature that it converges to 1 when reaching
optimality, since AX converges to zero. Hence it guarantees superlinear convergence of A
to A;. We can even prove that the asymptotical convergence rate is quadratic.

Theorem 5.2.11 Let 7 := Axyy — Ay and assume that p < 7/n. Using step size (5.25) the
iterates \F) converge quadratically to ).

Proof: First observe that (5.25) implies that (5.26) holds with equality, whence o < 1 and
l-a=d’c<o. (5.27)
We proceed by estimating o. Let 7; be the eigenvalues of X, with

7’1=7]2~--=7}k>nk+12...21]n.

In view of Theorem 5.2.9 we call the first k eigenvalues the large eigenvalues of X and the
remaining eigenvalues the small eigenvalues. It follows from the proof of the cited theorem
that

0 S LA S %7 : > k)

and I () )
n—kp
E~T5171=772=-»-=17kﬁz-
Using the assumption on x the small eigenvalues are smaller than the large eigenvalues. The
eigenvalues of AX being given by n?/tr(X?) — n;, Vi, we may write

n

2 _ 771'2 . 2_ 1 = 2 _ ‘n 2 ’
laxj —Z(m—m) —————(tr(Xz)),Z(m mZm) .

=1 =1 i=1
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Since tr(X) = 1, it holds

En: (”?_"ii”?y =Z (Th Y —TthJ) =Z (me(m m))z-

i=1 =1 =1 =1 j=1 =1

Note that if 7; and 7; are both large then they are equal and, hence, 7:7; (7; — n;) = 0. We
consider the sum between the last pair of brackets for the cases that 7; is large and small
separately. If n; is large we have

n -k n—k
> mim; (n; — Z nin; n; — mil < k2 Z ol kz,)ﬂ-
7=1

=kl j=k1 T
Now let ; be small. Then

3w (n
=

En: nin; (15 — )| - (5.28)

k
<D mans(n —mi) +
i=1 j=k+1

Since the small eigenvalues are less than the large eigenvalues the terms in the first sum in
the right-hand side are positive. In the first sum 7; is large, so we have

k1 <M k @
y<p S = <ES =2
;’7’"] "W S G S TE T

In the second sum of (5.28) both #; and 7; are small, hence each term is in absolute value
less than p3/73. Therefore, this sum will be order of magnitudes smaller than the other
terms and can be neglected in this asymptotic analysis. Combining the estimates we find

B (r-ng) <o () vo-n (8 - 252

We get an upper bound for o2 by dividing the last expression by (tr(X?))*. Asymptotically
tr(X?) & 1/k, which follows from the last two formulas in the proof of Theorem 5.2.9 if we
notice that nu converges to zero. Thus we may bound o2 by

w2
o? < nk(n — k) (—) ,
o
whence, using (5.27),

|—a<o< \/nk(n—k)u<,/nk(n—k) A=A
- = T = T [

where the last inequality follows from (5.24). Using (5.17) it follows that the gap between
A; and X converges quadratically to zero. 0O

Note that condition on g implies that the quadratic convergence may expose itself earlier if
7 is larger. The new step size given by (5.25) may not always be larger than the old step
size || X||. One easily verifies that this is only true if

X1+ lax] < 1.
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Therefore, taking always the largest of the two step sizes the algorithm will be both
polynomial-time and asymptotically quadratically convergent.

To conclude this section we motivate the proposed problem formulation and algorithm.
It is well-known that the smallest eigenvalue can be obtained from the following optimization
problem using the Raleigh—quotient:

(PR) min {mTAz : sz=1};

this is a nonconvex problem, since the feasible set is not convex and A may be indefinite.
Note that we may rewrite (PR) as

(PR) min {tr(A:I:a:T) s tr(eeT) =1 }

This makes clear that (AD) considers a larger feasible set than (PR). However, the problem
(AD) is a convex optimization problem for which an efficient (interior point) method is
available. Moreover, in this special case the relaxed problem yields the same optimal value
as the original one, but does not have the same optimal solution set. In fact, the ‘relaxed’
problem gives even more information than (PR). This suggests that (PR) is not a good
formulation for the problem under consideration. A drawback of the proposed algorithm is
that it requires solving a system of equations of the size of the matrix A in any iteration
of the algorithm. However, if A is tridiagonal (note that any symmetric matrix can be
brought to tridiagonal form, Golub and Van Loan [82]) then the algorithm requires only
O(n) arithmetic operations per iteration.

5.3 Interior point methods in decomposition

5.3.1 Methodology

Interior point techniques have not only shown their applicability in barrier methods for
linear and nonlinear optimization, but also in cutting plane methods. Pioneers in this area
are Goffin and Vial and co-workers (e.g., [75, 76, 78]). We briefly outline their approach.
Consider a problem of the form

(NP) min{c"2 : fi(2)<0,i€1},

where the functions f;(z) are convex. While the number of constraints can be huge (even
exponential) it is only required to have an efficient procedure (called oracle) returning either
that « is feasible or, if z is not feasible, a hyperplane separating = from the feasible set.
Now it is possible to use relaxations of the form

(RNP) min{ s : afz <b;, jeJ}.
Instead of solving the relaxations to optimality (as in e.g., Kelley’s cutting plane method

[135]) Goffin and Vial propose to compute the analytic center (see [224] or Definition 2.1.16)
of a level set of (RNP) as follows

argmzin{ ~In(z—cz) - Y In(b;j —alz) : Te <7z afz<b;,jeJ } ,
ied
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and feed this to the oracle; here 7 is an upper bound for the optimal value of (NP). In practice
this gives a stable algorithm, since the analytic centers passed to the oracle typically are
close to each other from iteration to iteration, and the new analytic center can be computed
in a few Newton steps, even when multiple cuts have been added to the formulation. A
similar idea was developed in the 1970s by Elzinga and Moore [51], who use the ball-center
of the level set; to compute the ball-center an auxiliary LP problem has to be solved.
The analytic center approach has been applied to various NLP problems (as the geometric
programming problem in Bahn et al. [13]) and is called the analytic center cutting plane
method (ACCPM). An analysis of the theoretical efficiency of a variant of the method has
been given by Nesterov [198] and Goffin et al. [77]. A phenomenon observed in practicing
the method is that a good localization of the feasible set is obtained in only a few iterations.

It is important to observe that various decomposition techniques fall in the outlined
methodology. Examples include Lagrange relaxation and Lagrange decomposition (e.g.,
Guignard and Kim [94]), Dantzig-Wolfe decomposition {43] and Benders decomposition
[23]. In these cases the oracle is an LP problem. Goffin, Vial and co-workers have de-
veloped and implemented an extremely efficient decomposition method for very large but
structured problems, based on analytic centers. Applications that have been considered
include stochastic programming problems [14], network design problems (157], and multi-
commodity flow problems [74].

For long, it was generally believed that Benders and Dantzig-Wolfe decomposition be-
haved rather poorly in practice, showing a large number of iterations and numerical instabil-
ity. In the past some attempts been made to improve on this, for instance, the development
of cross decomposition by Roy [217] or Kornai-Liptak decomposition [147]. Another strat-
egy is the use of Pareto-optimal cuts, introduced by Magnanti and Wong [166] in the context
of Benders decomposition. They showed that Pareto—optimal cuts can be obtained at the
cost of solving an extra LP problem per iteration. Later, Magnanti et al. [164] used these
cuts in computational experiments on difficult network design problems, see also Magnanti
and Wong [167]. It appeared that a method using Pareto-optimal cuts tremendously out-
performed standard Benders decomposition, while in many test—problems the results were
also better compared to the use of other ‘strong Benders—cuts’.

In this section we show that ACCPMs in a Benders decomposition framework render
Pareto-optimal cuts for free. This might attribute to understanding of the computational
efficiency of ACCPMs. Moreover, outside the framework of ACCPMs we give a sufficient
condition for the subproblem to generate a Pareto-optimal cut for free; we show that this
condition is weakest when a strictly complementary solution of the subproblem is computed.

5.3.2 Benders decomposition

We will shortly explain the ACCPM for Benders decomposition. A similar analysis can be
done for Dantzig-Wolfe decomposition. We deal with the problem

(BP) rgliyn {c z+d¥y : Az+Dy=5b,2>0, yGY},
where Y is assumed to contain a Slater point. Let zpp denote the optimal value of (BP),

and define
D:={u:ATu<c}.
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Using projection on the variables y and outer linearization (Geoffrion [71]) we may write
= mi . T
2pp = min {¢: dy+(b-DyTu<t VueD}.
We use the following relazation (called master problem) of the latter problem:
(MP)  min {€:dy+(b-Dyu<t YueSD, (b—Dy)Tv>0 Yoe RD },
yer,

where SD denotes a subset of D, and RD is a subset of the extreme rays of D. To generate
a new cut (i.e., extending SD with a new u from D or RD with a new ray) the subproblem

(S(y)) max { dTy + (b~ Dy)Tu : ATu < c}

is solved for a given y € Y; this is the oracle. Benders decomposition algorithm iterates
between (MP) and (S(y)), where each solution of (MP) feeds a new y € Y to (S(y)) and
solving (S(y)) renders a new cut in (MP); if the subproblem is unbounded, then a ray is
found which can be added in the master problem. Observe that any y € Y can be used to
feed the subproblem. As outlined in Section 5.3.1 ACCPMs differ from the simplex based
Benders decomposition method in the sense that they do not solve the problem (MP) to
optimality, which would give an extreme point of Y. Instead the analytic center (i.e., a
special interior point of Y) of the level set

{ (6 : dy+(b—Dy)Tu<¢ Vue 8D, (b—Dy)Tv >0 Vo€ RD,
£<z yeY},

is computed, where % is an upper bound on the optimal value of (BP).

5.3.3 Pareto—optimal cuts

Pareto-optimal cuts were introduced by Magnanti and Wong [166]). Before quoting some
definitions from their paper we first introduce the following convention: when we say ‘the
cut v’, we mean the cut generated by u and given by

"y +(b—Dy)Tu <t
Definition 5.3.1 (Dominance) A cut u dominates a cut @ if
&y + (b Dy)Ta < "y + (b— Dy)Tu, VyeY,
and there ezists §j € Y such that
d"j + (b— D§)Ta < d¥5 + (b— D) u.
Definition 5.3.2 (Pareto—optimal) A cut u is Pareto-optimal if no cut dominates it.

Magnanti and Wong [166] show that a Pareto—optimal cut can be found as follows:
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Solve the subproblem (S(y)) and let its set of optimal solutions be U(y); solve
the auxiliary LP problem

max { (b— Dy Tu : ATu<c, ueUly) } ,

where y(© is arbitrary in the relative interior of Y.

The optimal solution of the auxiliary problem is a Pareto-optimal cut (see [166]). Note
that the set U(y) might be described using bases, the optimal partition or the optimal value
(cf. Section 2.2). The following theorem is a special case of [166, Th. 1]; we give a slightly
modified proof.

Theorem 5.3.3 Let T be an interior (Slater) point of Y and let U be an optimal solution
of (S(¥)). Then @ is @ Pareto—optimal cut.

Proof: Suppose % is not Pareto-optimal, i.e., there exists & € B dominating u. So
dTy + (b—Dy)Ta < d"y+ (b— Dy)"a VyeY. (5.29)
Applying (5.29) with y = 7 it follows that & must also be optimal in (S(7)), so
d'y + (b— Dy)Tz = &5 + (b— Dy)"4. (5.30)
Because of dominance there is a § € Y such that
dT§ + (b— D§)Tu < &¥§ + (b — Dj) T (5.31)

Since ¥ is an interior point of Y, there is a @ > 1 such that w =87+ (1-0)§, weY
(Rockafellar [213, Th. 6.4]). Multiplying (5.30) by 6, (5.31) by 1 — 8 and adding gives

0 (d"g+ (- Dy)"s) + (1-90)(d"j+ (b~ Dj)"a)
> 0(d"g+(b—Dy)Ta) + (1 - 0) (g + (b~ Dj)Ta),
or equivalently
d"w + (b— Dw)T@ > dTw + (b — Dw)"d,
which contradicts (5.29). Hence % is Pareto-optimal. o
The following corollary immediately follows from the theorem and is the main observation
of this section.
Corollary 5.3.4 ACCPMs in the Benders decomposition framework generate Pareto—opti-
mal cuts.

Proof: Theorem 5.3.3 implies that every solution of (S(7)) gives a Pareto-optimal cut if
7 is an interior point of Y. ACCPMs only use interior points of Y to feed (5(y)), which
implies the result. O

A second connection between Pareto-optimal cuts and interior point methods, is via strict
complementarity (Chapter 2, Theorem 2.1.2). It is well known (e.g., Giller and Ye [98])
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that many interior point methods generate a strictly complementary solution (cf. Theorem
2.1.14). Let § € Y be arbitrary and consider

AT, . AT -
mugx{(b—Dy) u: Aluts=c, 320},
min { ¢’z : Az =b- Dy, 20},
with solution (2,1, §). We give a condition guaranteeing @ to be Pareto-optimal, and show
that the condition is weakest if 4 is a strictly complementary solution.

Lemma 5.3.5 Let B:=g(2) = {i : #; > 0} and N := {1,...,n}\ B. If there is an interior
point § € Y such that

b— Dy 1sin the column space of Ag

then @ is a Pareto-optimal cut.
Proof: Let j satisfy the given condition and let

y(A) = (1= +2g, e (0,1);

then y(}) is also an interior point of Y. Let #g be such that Agig = b — Dy, and define
#(A) e R" by

.’55(/\) = (1 - )\):ﬁs + /\fiB, .’EM()\) =0.
We show the existence of A € (0,1) such that (&(X), @, 3) solves the pair of LP problems

max { (- Dy(;\))Tu : ATut+s=c¢ s>0 }, (5.32)

min { 'z : Az =b—Dy(}), z>0 } (5.33)

The proof of the lemma then follows from Theorem 5.3.3. Since (i, 3) is feasible in (5.32)

and complementarity is satisfied by construction, we only have to check whether Z(A) is
feasible in (5.33). Note that

AZ(N) = ApEs(A) = Ap((1 — Nis + AZg) = (1 - A)(b— Dg) + A(b~ D§) = b— Dy()).
Also, for i € B, we have #;(\) = (1 — A)i; + A3 > 0if

A< X:= min {A a:,~~ }
1%;<0 Ty — T
If # > 0 we may take X anywhere in (0,1); otherwise we choose ) arbitrary in the interval
(0,A). This proves the lemma. o

Observe from the proof of the lemma that the fact that § is an interior point of Y is crucial.
Furthermore, if the condition in the theorem is satisfied then @ is optimal in a series of
problems since we can take any A in (0, }).

Corollary 5.3.6 The condition in Lemma 5.8.5 is weakest if (%,4,38) is strictly comple-

mentary.
Proof: For a strictly complementary solution # the support (%) is maximal and contains
the supports of all other optimal solutions. O

From a computational point of view solving the subproblems with interior point methods
will not be efficient unless the problem of warm-starting is satisfactorily solved.



Chapter 6

Discussion, conclusions and
directions for further research

We summarize our results, draw conclusions and give directions for further research.

In this thesis various applications of interior point methods in the field of mathematical pro-
gramming have been reviewed, with the concept of complementarity as the leading thread.
In this final chapter we summarize our results, draw some conclusions and propose directions
for further research.

In Chapter 2 we considered the theory of, and sensitivity analysis in linear programming
(LP) using an interior point approach. Although most of the theorems in the theory of LP
are well-known and established we gave new proofs using a new self-dual reformulation of
the general LP problem and only analytical arguments. It appears that deriving essential
ingredients of interior point methods, as the central path, is closely connected to proving the
existence of a strictly complementary solution in LP. For long it was generally believed that
sensitivity analysis based on solutions obtained with interior point methods was impossible.
In our research on sensitivity analysis we gave a unifying approach to sensitivity analysis
using optimal sets instead of just one optimal solution. Within the approach we showed
how to incorporate sensitivity analysis based on the simplex method (using primal optimal
bases), based on interior point methods (using the optimal partition) and one based on the
optimal value. Our main conclusions are:

e The self-dual reformulation of the general LP problem is attractive from a theoretical
point of view; for its computational possibilities we refer to [252].

o Although discussed in many textbooks on LP the issue of sensitivity analysis deserves
more attention than generally given. Specifically, problems with degeneracy should
not be downplayed, instead the intimate relation between rates and ranges stressed.
The best way to do this is via the optimal value function.

o Sensitivity analysis using interior point solutions is possible, and sometimes even better
or desirable, since it is an approach using optimal sets instead of one optimal solution.

The applicability of approaches to sensitivity analysis using optimal sets has been shown
using a practical LP model of SHELL (KSLA, The Netherlands); we refer to Greenberg [92]
for other applications. We believe that practitioners of LP should be aware of the apparent
difficulties with the standard approach. Furthermore, packages for LP should be able to
compute (parts of) optimal value functions if desired by the user, as is possible in e.g.,

AIMMS [24] and LINDO [219].
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We derived a new interior point method in Chapter 3, which gives a new generalization
of Dikin’s primal affine scaling method to a primal-dual setting. The algorithm, called the
primal-dual Dikin-affine scaling algorithm, was originally developed for LP but could be
extended to linear and nonlinear complementarity problems (LCPs/NCPs). We showed that
the method outperforms the classical primal-dual affine scaling method by Monteiro et al.
[188] both from a theoretical point of view (ours is more natural and has a better complexity
bound) as from the computational side (ours is faster and more stable and robust). The
main reason that our method is better stems from its property of simultaneously driving
the iterates to optimality as well as to the central path, when started at an arbitrary
interior—feasible solution. To enhance the complexity of our new algorithm we studied the
effect on complexity of the use of corrector steps and showed that (asymptotically) the
best known bound for LCPs can be obtained. We introduced and analyzed a family of
primal-dual affine algorithms, which contains the new Dikin-affine scaling method as well
as the classical one of [188] as special cases. For the analysis of the methods for NCPs we
introduced a new smoothness condition, being natural for the analysis of primal-dual large
neighborhood methods and, moreover, also applicable to nonmonotone mappings. Hence,
we could analyze interior point methods for nonmonotone LCPs and NCPs. We are not
aware of earlier complexity results on nonmonotone NCPs. We conclude:

¢ The new primal-dual Dikin-affine scaling algorithm has a better complexity than the
primal-dual affine method of Monteiro et al. [188]. Our computational results confirm
the theoretical ordering in efficiency of the family of primal-dual affine methods, with
and without corrector steps. The use of one corrector step saves computational effort,
using more correctors typically is unattractive.

o Our algorithm is attractively simple to understand and implement, and requires little
parameter setting or inclusion of safeguards. It performs comparable to the primal
logarithmic barrier method on a set of difficult maximum likelihood problems, but

. cannot compete with the more involved method of Vial [245] on the same set of
problems. In our current implementation, the expensive line-search is the main bottle—
neck.

¢ The new smoothness condition is the first that can be applied to nonmonotone prob-
lems; however, it might be hard to be checked for a given problem.

An extensive comparison of interior point methods for general nonlinear programming (NLP)
problems versus commercially available software as MINOS and CONOPT is still lacking;
to date, only isolated comparisons on specific problem classes have been performed. More
research is needed on the applicability of our and other interior point methods to non-
convex NLP problems, and their theoretical properties. As a first extension, quasiconvex
programming problems could be considered. Our smoothness condition, being applicable
to nonmonotone mappings, might give a theoretical background here. It is very important
to study the (local) behavior of Newton’s method for nonconvex functions, possibly, by ex-
tending the self-concordance condition to this case. This might be done by including a type
of trust-region condition and/or trust-region term within the self-concordance condition.
The target—following framework in Chapter 4 offers the opportunity of simplifying the
complexity proofs for many old as well as new interior point methods. The key—idea is to
analyze the complementarity of nonoptimal solutions and to check how a method forces the



further research 187

complementarity to its final value. This chapter summarizes many pages of literature on
interior point methods into a few, and gives tools for some newly proposed methods to be
analyzed. The new methods we considered are path-following variants of the Dikin-affine
scaling method derived in Chapter 3; these methods have the property of simultaneously
driving the iterates to optimality as well as to the central path when started at an arbitrary
interior—feasible solution. It was shown that the theory of interior point methods for struc-
tured NLP problems satisfying the self-concordance condition, as developed primarily by
Nesterov and Nemirovskii [199], can be enriched with the analysis of methods other than
central path~following. Here we analyzed some methods that are well-known in LP and/or
NLP, but not theoretically analyzed for convex programming before. In our study on varia-
tional inequalities we gave a new approach of treating non—central path—following methods,
by introducing mappings having properties of gradients of self-concordant barriers. Some
conclusions are

o The target—following framework offers a unifying and easy way to analyze primal-dual
interior point methods for LP. The literature on complexity theory for small-step
primal-dual methods for LP has been summarized in one section, while some new
methods have been proposed and analyzed.

e Long-step interior point methods have been shown to yield a significantly worse com-~
plexity bound with the use of targets not close to the central path as compared to
central path—following methods.

e The analysis of interior point methods not necessarily following the central path can
be extended from linear to convex programming as well as variational inequalities.

o The target—following framework is interesting from a computational point of view,
since it may provide insight how problems like ‘recentering’ and ‘warm-starting’ could
be tackled.

The latter aspect has been picked up by Gondzio [83], who improved his interior point code
using target—following ideas. Since we are not aware of computational results on solving
variational inequalities with the interior point approach considered in this chapter and in
[199], this deserves attention in the future. From a theoretical point of view, it can be
investigated whether it is possible to include weights in the term of the barrier function
corresponding to the original objective function.

Chapter 5 showed some miscellaneous applications of complementarity and interior point
methods in mathematical programming. We extended some of the results on sensitivity
analysis in LP to convex quadratic programming (CQP). A main field of application is in
mean—variance analysis. The most popular area in mathematical programming at the mo-
ment is semidefinite programming (SDP). We proposed a new relaxation for the problem of
optimizing a (nonconvex) quadratic form over ellipsoids. Unfortunately, we also showed that
the relaxation is equivalent to other known relaxations. As an application in linear algebra
we proposed a Newton—Raphson type method for computing the smallest eigenvalue of a
symmetric matrix. The importance of interior point methodology here is that it enables us
to prove polynomiality and derive a step size guaranteeing quadratic convergence, indepen-
dent of the multiplicity of the smallest eigenvalue. Finally, we laid a connection between a
not well-known computational enhancement of Bender’s decomposition and modern interior
cutting plane methods. We conclude
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e In the parametric CQP problem the optimal value function is piecewise quadratic,
where the quadratic parts correspond to intervals where the tripartition is constant.

® SDP is a lively new field in mathematical programming on the edge of interior point
methods, combinatorial optimization, linear algebra and control and system theory.

® Decomposition methods based on analytic centers generate Pareto—optimal cuts for
free.

It is a subject for further research to deepen the research on sensitivity analysis for CQP,
and investigate its computational consequences on practical problems; extension of such an
approach to convex programming should be considered as well. The practical applicabil-
ity of SDP needs further investigation. A research direction here is to (computationally)
investigate the (higher order) relaxations proposed by Lovasz and Schrijver [160]. The prac-
tical usefulness of Pareto-optimal cuts should be reconsidered in modern implementations
of decomposition methods using the simplex method.

Although new results on interior point methods still appear, we feel that the hype
is over. As is often the case in science, a new breakthrough is awaited. The paper by
Goemans and Williamson [73] on the effectiveness of nonlinear relaxations for combinatorial
optimization is one such development, however, not creating such extraordinary attention as
did Karmarkar’s work. One lesson we should have learned is not to forget old methods, but
to put them into new light as (computing) science emerges. We have seen this for interior
point methods and decomposition techniques. It has also been the case with the simplex
method, where for instance the steepest edge pivot rule is born again (Forrest and Goldfarb
[58]) and is effectively implemented in CPLEX [37] and OSL [202]; also, implementations
of the dual simplex method have attained unexpectedly good results. It is still a challenge
to develop a robust, user-friendly and efficient code for NLP problems. A new major
breakthrough in LP would be the introduction of a polynomial pivot rule for the simplex
method which would likely be also efficient in practice.



Appendix A

Technical results

This appendix contains some technical lemmas that are used in this thesis. The first lemma
is concerned with an inequality on logarithms.

Lemma A.1 Let h and w be vectors in R™ such that ||| <1, and w > 0. Then

> wiln(l 4+ k) > wT h + max(w) ||&|| + max(w)In(1 — ||A]]).
=1

Proof: Using |h;] <1, 1 <1 < n, we may write
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The next two lemmas are used in the analysis of the primal-dual Dikin—affine scaling algo-
rithms in Chapter 3.

Lemma A.2 Letu € R” satisfy eTu =n and 1 — 8 < w; < 1+ for all ¢, where § € (0,1).
Then

llull> < n(1 + B%).
Proof: Consider the problem

max {||u]|2 cefu=n1-<u; <144 Vi},

and let u be a feasible solution for which there exist two distinct indices ¢ and j such that
l—-B<u;<1+f8, 1-8B<u;<1l+p, u >u;

Let @ be defined by

h=uite Uj=u;j—¢€ Up=ug k#1,7.
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For ¢ positive but sufficiently small @ is also feasible in the maximization problem. Further-
more,

N = Nul® + 2€° + 2e(wi — ;) > |lul®.

This shows that u cannot be optimal. Hence, in any optimal solution of the maximization
problem at most one element of u can be not at its bound. This implies for the case n even
that n/2 elements will have value 1 — 8 and the others 1 + B; in case n is odd, one element
will have value 1. It is easy to check, that this implies the bound in the lemma. i

Lemma A.3 Let u € R}, be arbitrary and let v > 0. Define

The following bounds hold:
(1) If 0 <v <1 then 9(v) < —||ul*/v/n;
(%) If v 21 then (v) < —w(u)*?u|*/\/n, where w(u) = min(u)/max(u).

Proof: We first show (i). It is obvious that $(0) = —|[u[|?//n. Hence it suffices to
show that the derivative of 4(v) is nonpositive as long as 0 < » < 1. We differentiate the
nominator and denominator separately:

T, w2 n
%__) = 2 E u?*?Inu;,
£—1
A u?|| a 23 v lny;
- ] Ing, ===+ ™
il PO v

The sign of ’(v) is determined by the nominator of the derivative, which is given by
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For 0 < v < 1 the last expression is nonpositive, hence 4(») monotonically non-increasing,
which proves (). For (it) we derive

T 2u+2 min(v 2w-2 T w(u)2u—2
h) = e > RON e > .
llea® ]l e max(v)?~2||u?|| || l vn
The last inequality follows from
efut |12
Tl el ~ ull? = \/5’
using the Cauchy-Schwarz inequality. This completes the proof. ]

The next results are concerned with positive semidefinite matrices.

Lemma A.4 If A,B € R™" are symmetric positive semidefinite matrices then tr(AB) >
0. Moreover, if tr(AB) =0 then AB =0.
Proof: Let orthogonal decompositions of A and B be given by

A=Q%A4Q4, B=QFAsQs,

where Q4 and Qp are orthogonal » x n matrices and A4 and Ap diagonal. Define the
symmetric matrices

A:=Q4AYQa, B = QhAYQs;
then A = AA and B = BB. We derive

tx(AB) = t((AABB) = te(BAAB) = tr((AB)"AB) > 0

where the inequality follows since (A B)T(A B

is p 51t1ve semidefinite. Equality holds if
and only if (A B)T(AB) = 0, which implies AB =

) i
B Hence, AB = A(AB)B = 0. o
Corollary A.5 If A,B € R™" are symmetric positive semidefinite matrices such that
tr(AB) = 0 and 0 < k < n, then it holds that if rank (B) = k then rank (A) <n — k.
Proof: Since AB =0 by Lemma A.5, the result follows immediately. a

Lemma A.6 Let X be a symmetric n X n matric end y € R*. Then

Xy

yT

Proof: First we show the if-part. Let h € R" and ho € R be arbitrary. Then

0 < X-yy o

(hT ko ) ( )fr ";) (: ) = KTXh+2yThho + B2 > (hTy)? + 2yT hho + h2
Y 0

= (ATy+ho)* 2 0.
For the converse, let 2~ € R”™ be arbitrary. Then
RIXh — hTyyTh = RTXh —2(hTy)(ATy) + (hTy)?

= (4" _hTy)(;i ?)(_:Ty)zo.



192




193

Bibliography

[1] K.I. Aardal, A.L. Hipolito, C.P.M. van Hoesel, B. Jansen, C. Roos, and T. Terlaky.
A branch-and-cut algorithm for the frequency assignment problem. Report 2.2.1 and
Technical Annex T-2.2.1 A, EUCLID RTP6.4, Combinatorial Algorithms for Military
Applications, Faculty of Technical Mathematics and Computer Science, Delft Univer-
sity of Technology, Delft, The Netherlands, 1995.

[2] I. Adler, N.K. Karmarkar, M.G.C. Resende, and G. Veiga. An implementation of
Karmarkar’s algorithm for linear programming. Mathematical Programming, 44:297—
335, 1989. (Errata in Mathematical Programming, 50:415, 1991).

[3] I. Adler and R.D.C. Monteiro. A geometric view of parametric linear programming.
Algorithmica, 8:161-176, 1992.

[4] N. Agmon, Y. Alhassid, and R.D. Levine. An algorithm for finding the distribution
of maximal entropy. Journal of Comp. Physics, 30:250-258, 1979.

[5] M. Akgiil. A note on shadow prices in linear programming. J. Opl. Res. Soc., 35:425~
431, 1984.

[6] F. Alizadeh. Combinatorial optimization with interior point methods and semi-definite
matrices. PhD thesis, University of Minnesota, Minneapolis, USA, 1991.

[7] E.D. Andersen and Y. Ye. Combining interior—point and pivoting algorithms for linear
programming. Technical Report, Department of Management Sciences, University of
Towa, Iowa City, USA, 1994.

[8] E.D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone complemen-
tarity problem. Technical Report, Department of Management Sciences, University
of Iowa, Iowa City, USA, 1995.

[9] K.-M. Anstreicher. On long step path following and SUMT for linear and quadratic
programming. Technical Report, Yale School of Management, Yale University, New
Haven, USA, 1990.

[10] K.M. Anstreicher and R.A. Bosch. A new infinity—norm path following algorithm for
linear programming. Working Paper, Department of Management Sciences, University
of Iowa, lIowa City, USA, 1993.

[11] D.S. Atkinson and P.M. Vaidya. A scaling technique for finding the weighted analytic
center of a polytope. Mathematical Programming, 57:163-192, 1992.

[12] D.C. Aucamp and D.L Steinberg. The computation of shadow prices in linear pro-
gramming. J. Opl. Res. Soc., 33:557-565, 1982.

[13] O. Bahn, J.-L. Goffin, J.-Ph. Vial, and O. Du Merle. Experimental behavior of an
interior point cutting plane algorithm for convex programming: an application to
geometric programming. Discrete Applied Mathematics, 49:3-23, 1994.



194 Bibliography

(14] O. Bahn, O. Du Merle, J.-L. Goffin, and J.-Ph. Vial. A cutting plane method from
analytic centers for stochastic programming. Mathematical Programming, 69:1-44,
1995.

(15] M.L. Balinski and A.W. Tucker. Duality theory of linear programs: a constructive
approach with applications. SIAM Review, 11:499-581, 1969.

[16] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer. Non-linear parametric
optimization. Birkhauser Verlag, Basel, Switzerland, 1983.

[17] E.R. Barnes. A variation on Karmarkar’s algorithm for solving linear programming
problems. Mathematical Programming, 36:174-182, 1986.

(18] D.A. Bayer and J.C. Lagarias. The nonlinear geometry of linear programming, Part I:
Affine and projective scaling trajectories. Transactions of the American Mathematical
Society, 314:499-526, 1989.

[19] A.Ben-Tal and M.P. Bendsce. A new method for optimal truss topology design. SIAM
Journal on Optimization, 3:322-358, 1993.

[20] A. Ben-Tal and G. Roth. A truncated log barrier algorithm for large scale conve
programming and minmax problems: implementation and computational results. Re-
search Report #1/94, Optimization Laboratory, Faculty of Industrial Engineering and
Management, Technion-Israel Institute of Technology, Haifa, Israel, 1994.

[21] A. Ben-Tal and M. Teboulle. Hidden convexity in some nonconvex quadratically
constrained programming problems. Working Paper, Faculty of Industrial Engineering
and Management, Technion-Israel Institute of Technology, Haifa, Israel, 1993.

[22] A.Ben-Tal, M. Teboulle, and A. Charnes. The role of duality in optimization problems
involving entropy functionals with applications to information theory. Journal of
Optimization Theory and Applications, 58:209-223, 1988.

(23] J.F. Benders. Partitioning procedures for solving mixed variables programming prob-
lems. Numerische Mathematik, 4:238-252, 1962.

[24] J. Bisschop and R. Entriken. AIMMS, The modeling system. Paragon Decision Tech-
nology B.V., Haarlem, The Netherlands, 1993.

(25] R.E. Bixby and M. J. Saltzman. Recovering an optimal LP basis from an interior point
solution. Technical Report 607, Dept. of Mathematical Sciences, Clemson University,
Clemson, USA, 1992.

[26] J.C.G. Boot. Quadratic programming. Algorithms, anomalies, applications. Studies
in Mathematical and Managerial Economics, Vol. 2. North-Holland Publishing Com-
pany, Amsterdam, The Netherlands, 1964.

[27] B. Borchers and J.E. Mitchell. Using an interior point method in a branch and bound
algorithm for integer programming. RPI Math. Report No. 195, Department of Math-
ematical Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA, 1991.

[28] R.A. Bosch and R.V. Torenbeek. A family of algorithms for approximating the smallest
eigenvalue of a real matrix with no complex eigenvalues. Technical Report, Department
of Mathematics, Oberlin College, Oberlin, Ohio, USA, 1995,

(29] S.E. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matriz inequalities
in system and control theory. SIAM Studies in Applied Mathematics, Vol. 15. SIAM,
Philadelphia, USA, 1994.

[30] S.E. Boyd and L. Vandenberghe. Semidefinite programming. SIAM Review, 1995.



Bibliography . 195

[31] S.F. Bradley, A.C. Hax, and T.L. Magnanti. Applied mathematical programming.
Addison-Wesley, USA, 1977.

[32] M.G. Breitfeld and D. Shanno. Computational experience with penalty-barrier meth-
ods for nonlinear programming. Technical Report RRR17-93, Rutgers Center for
Operations Research, Rutgers University, New Brunswick, USA, 1993/4.

[33] A. Brooke, D. Kendrick, and A. Meeraus. GAMS, Release 2.25, A user’s guide. The
Scientific Press, Redwood City, USA, 1992.

[34] T.J. Carpenter, 1.J. Lustig, J.M. Mulvey, and D.F. Shanno. High-order predictor-
corrector interior point methods with application to quadratic objectives. STAM Jour-
nal on Optimization, 3:696-725, 1993.

[35] R.W. Cottle and G.B. Dantzig. Complementary pivot theory of mathematical pro-
gramming. In G.B. Dantzig and A.F. Veinott, editors, Mathematics of the Decision
Sciences, Part 1, pages 115-136. American Mathematical Society, Providence, Rhode
Island, 1968.

[36] R.-W. Cottle, J.S. Pang, and R.E. Stone. The linear complementarity problem. Aca-
demic Press Inc., San Diego, USA, 1992.

[37] CPLEX user’s guide. CPLEX Optimization, Inc., Incline Village, NV, 1993.

[38] J. Cullum, W. Donath, and P. Wolfe. The minimization of certain nondifferentiable
sums of eigenvalues of symmetric matrices. Mathematical Programming Study, 3:35-
55, 1975.

[39] G.B. Dantzig. Maximization of a linear function of variables subject to linear in-
equalities. In T.C. Koopmans, editor, Activity analysis of production and allocation -
Proceedings of a conference, pages 339-347. John Wiley & Sons, New York, 1951.

[40] G.B. Dantzig. Linear programming under uncertainty. Management Science, 1:197-
206, 1955.

[41] G.B.Dantzig. Linear programming and extensions. Princeton University Press, Prince-
ton, 1963.

[42] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a large—scale traveling
salesman problem. Operations Research, 2:393-410, 1954.

[43] G.B. Dantzig and P. Wolfe. Decomposition principle for linear programming. Opera-
tions Research, 8:101-111, 1960.

[44] LI Dikin. Iterative solution of problems of linear and quadratic programming. Dok-
lady Akademii Nauk SSSR, 174:747-748, 1967. (Translated in: Soviet Mathematics
Doklady, 8:674-675, 1967). ,

[45] LI. Dikin. On the convergence of an iterative process. Upravlyaemye Sistemi, 12:54-60,
1974. (In Russian).

[46] LI Dikin. Letter to the editor. Mathematical Programming, 41:393-394, 1988.

[47] J. Ding and T.Y. Li. An algorithm based on weighted logarithmic barrier functions
for linear complementarity problems. Arabian Journal for Science and Engineering,
15:679-685, 1990.

[48] R.L. Dykstra. An algorithm for restricted least squares regression. Journal of the
American Statistical Association, 78:837-842, 1983.

[49] B.C. Eaves. On quadratic programming. Management Science, 17:698-711, 1971.



196 Bibliography

[50] J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19:248-264, 1972.

[51] J. Elzinga and T.G. Moore. A central cutting plane algorithm for the convex pro-
gramming problem. Mathematical Programming, 8:134-145, 1975.

(52] J.R. Evans and N.R. Baker. Degeneracy and the (mis)interpretation of sensitivity
analysis in linear programming, Decision Sciences, 13:348-354, 1982,

[53] A.V. Fiacco. Introduction to sensitivity and stability analysis in nonlinear program-
ming. Academic Press, New York, USA, 1983.

[54] A.V. Fiacco and G.P. McCormick. Nonlinear programming: sequential unconstrained
minimization technigues. John Wiley & Sons, New York, 1968. (Reprint: Volume
4 of SIAM Classics in Applied Mathematics, SIAM Publications, Philadelphia, USA,
1990).

(55] R. Fletcher. A nonlinear programming problem in statistics (educational testing).
SIAM J. Sci. Stat. Comp., 2:257-267, 1981.

[56] O.E. Flippo and B. Jansen. Duality and sensitivity in quadratic optimization over
a sphere. Technical Report 92-65, Faculty of Technical Mathematics and Computer
Science, Delft University of Technology, Delft, The Netherlands, 1992. (To appear in
European Journal of Operational Research).

[57] L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton University Press, Prince-
ton, 1962.

(58] J.J. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear program-
ming. Mathematical Programming, 57:341-374, 1992.

[59] R. Fourer and S. Mehrotra. Solving symmetric indefinite systems in an interior point
method. Mathematical Programming, 62:15-39, 1993.

[60] R.M. Freund. Theoretical efficiency of a shifted barrier function algorithm for linear
programming. Linear Algebra and Iis Applications, 152:19-41, 1991.

[61] R.M. Freund. Projective transformations for interior-point algorithms, and a super-
linearly convergent algorithm for the w—center problem. Mathematical Programming,
58:385-414, 1993.

(62] R.M. Freund. Complexity of an algorithm for finding an approximate solution of a
semidefinite program with no regularity assumption. Technical Report OR302-94,
Operations Research Center, MIT, Boston, USA, 1994.

[63] K.R. Frisch. The logarithmic potential method for convex programming. Unpublished
Manuscript, Institute of Economics, University of Oslo, Oslo, Norway, 1955.

[64] T. Fujie and M. Kojima. Semidefinite programming relaxation for nonconvex
quadratic programs. Research Report on Information Science Series B: Operations
Research B298, Department of Mathematical and Computing Sciences, Tokyo Insti-
tute of Technology, Tokyo, Japan, 1995.

[65] T. Gal. Postoptimal analyses, parametric programming and related topics. Mac-Graw
Hill Inc., New York/Berlin, 1979.

[66] T. Gal. Shadow prices and sensitivity analysis in linear programming under degener-
acy, state-of-the-art-survey. OR Spektrum, 8:59-71, 1986.

[67] T. Gal. Weakly redundant constraints and their impact on postoptimal analyses in
LP. Diskussionsbeitrag 151, FernUniversitit Hagen, Hagen, Germany, 1990.



Bibliography 197

[68] M.R. Garey and D.S. Johnson. Computers and intractability: a guide to the theory
of NP-completeness. W.H. Freeman and Company, Publishers, San Fransisco, USA,
1979.

[69) J. Gauvin. Quelques precisions sur les prix marginaux en programmation lineaire.
INFOR, 18:68-73, 1980. (In French).

[70] D.M. Gay. Electronic mail distribution of linear programming test problems. Mathe-
matical Programming Society COAL News Letter, pages 10-12, 1985.

[71] A.M. Geoffrion. Elements of large-scale mathematical programming. In A.M. Geof-
frion, editor, Perspectives on optimization, pages 25-64. Addison-Wesley Publ. Co.,
1972.

[72] P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin, and M.H. Wright. On projected
Newton barrier methods for linear programming and an equivalence to Karmarkar’s
projective method. Mathematical Programming, 36:183-209, 1986.

[73] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Working Paper,
M.LT., Cambridge, USA, 1994. (To appear in Journal of Assoc. Comput. Mach.).

[74] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-Ph. Vial. Solving nonlinear multicom-
modity flow problems by the analytic center cutting plane method. Technical Report,
HEC, Section of Management Studies, University of Geneva, 1994.

[75] J.-L. Goffin, A. Haurie, and J.-Ph. Vial. Decomposition and nondifferentiable opti-
mization with the projective algorithm. Management Science, 38:284-302, 1992.

[76] J.-L. Goffin, A. Haurie, J.-Ph. Vial, and D.L. Zhu. Using central prices in the decom-
position of linear programs. European Journal of Operational Research, 64:393-409,
1993.

[77} J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Further complexity analysis of a primal-dual
column generation algorithm for convex or quasiconvex feasibility problems. Technical
report, Faculty of Management, McGill University, Montreal, Canada, 1993.

[78] J.-L. Goffin and J.-Ph. Vial. Cutting planes and column generation techniques with
the projective algorithm. Journal of Optimization Theory and Applications, 65:409-
429, 1990.

[79] J.-L. Goffin and J.-Ph. Vial. On the computation of weighted analytic centers and
dual ellipsoids with the projective algorithm. Mathematical Programming, 60:81-92,
1993.

[80] D. Goldfarb and D. Xiao. A primal projective interior point method for linear pro-
gramming. Mathematical Programming, 51:17-43, 1991.

[81] A.J. Goldman and A.W. Tucker. Theory of linear programming. In H.W. Kuhn and
A.W. Tucker, editors, Linear Inequalities and Related Systems, Annals of Mathemat-
ical Studies, No. 38, pages 53-97. Princeton University Press, Princeton, New Jersey,
1956.

[82] G.H. Golub and C.F. Van Loan. Matriz computations. The John Hopkins University
Press, Baltimore, 2nd edition, 1989.

[83] J. Gondzio. Multiple centrality corrections in a primal-dual method for linear pro-
gramming. Technical report, Section of Management Studies, University of Geneva,
Geneva, Switzerland, 1994.



198 Bibliography

[84] J. Gondzio and T. Terlaky. A computational view of interior-point methods for linear
programming. In J. Beasley, editor, Advances in linear and integer programming.
Oxford University Press, Oxford, UK, 1995.

[85] C.C. Gonzaga. An algorithm for solving linear programming problems in O(n®L)
operations. In N. Megiddo, editor, Progress in Mathematical Programming: Interior
Point and Related Methods, pages 1-28. Springer Verlag, New York, 1989.

[86] C.C. Gonzaga. Large steps path-following methods for linear programming, Part I:
Barrier function method. SIAM Journal on Optimization, 1:268-279, 1991.

[87] C.C. Gonzaga. Search directions for interior linear programming methods. Algorith-
mica, 6:153-181, 1991.

[88] C.C. Gonzaga. Path following methods for linear programming. SIAM Review, 34:167-
227, 1992.

[89] C.C. Gonzaga. The largest step path following algorithm for monotone linear comple-
mentarity problems. Technical Report 94-07, Faculty of Technical Mathematics and
Computer Science, Delft University of Technology, Delft, The Netherlands, 1994.

[90] C.C. Gonzaga and R.A. Tapia. On the quadratic convergence of the simplified Mizuno—
Todd-Ye algorithm for linear programming. Technical Report 92-41, Dept. of Math-
ematical Sciences, Rice University, Houston, TX, USA, 1992.

[91] H.J. Greenberg. An analysis of degeneracy. Naval Research Logistics Quarterly,
33:635-655, 1986.

[92] H.J. Greenberg. The use of the optimal partition in a linear programming solution
for postoptimal analysis. Operations Research Letters, 15:179-186, 1994.

[93] M. Grotschel, L.A. Lovész, and A. Schrijver. Geometric algorithms and combinatorial
optimization. Springer Verlag, Berlin, 1988.

[94] M. Guignard and S. Kim. Lagrangean decomposition: a model yielding stronger
Lagrangean bound. Mathematical Programming, 39:215-228, 1987.

[95] O. Giiler. Path following and potential reduction algorithms for nonlinear monotone
complementarity problems. Working Paper, Dept. of Management Science, University
of lowa, Jowa City, USA, 1991.

[96] O. Giiler. Existence of interior points and interior paths in nonlinear monotone com-
plementarity problems. Mathematics of Operations Research, 18:128-147, 1993.

[97] O. Giiler, C. Roos, T. Terlaky, and J.-Ph. Vial. Interior point approach to the theory of
linear programming. Cahiers de Recherche 1992.3, Faculté des Sciences Economique et
Sociales, Universite de Geneve, Geneve, Switzerland, 1992. (To appear in Management
Science).

(98] O. Giiler and Y. Ye. Convergence behavior of interior-point algorithms. Mathematical
Programming, 60:215-228, 1993.

[99] P.T. Harker and J.S. Pang. Finite-dimensional variational inequality and nonlinear
complementarity problems: a survey of theory, algorithms and applications. Mathe-
matical Programming, 48:161-220, 1990.

[100] C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz. A primal—dual interior—point
method for the max-min eigenvalue problem. Technical Report, Dept. of Combina-
torics and Optimization, Waterloo University, Waterloo, Canada, 1993. (To appear
in SIAM Journal on Optimization).



Bibliography 199

[101] D. den Hertog. Interior point approach to linear, quadratic and convex programmang,
Algorithms and complezity. Kluwer Publishers, Dordrecht, The Netherlands, 1994.

[102] D. den Hertog, F. Jarre, C. Roos, and T. Terlaky. A sufficient condition for self-
concordance, with application to some classes of structured convex programming.
Mathematical Programming, 69:75-88, 1995.

[103] D. den Hertog, J. Kaliski, C. Roos, and T. Terlaky. A logarithmic barrier cutting plane
method for convex programming. Annals of Operations Research, 58:69-98, 1995.

[104] D. den Hertog and C. Roos. A survey of search directions in interior point methods
for linear programming. Mathematical Programming, 52:481-509, 1991.

[105] D. den Hertog, C. Roos, and T. Terlaky. A polynomial method of weighted centers
for convex quadratic programming. Journal of Information & Optimization Sciences,
12:187-205, 1991.

[106] D. den Hertog, C. Roos, and T. Terlaky. On the classical logarithmic barrier function
method for a class of smooth convex programming problems. Journal of Optimization
Theory and Applications, 73:1-25, 1992.

[107] D. den Hertog, C. Roos, and T. Terlaky. The linear complementarity problem, suf-
ficient matrices, and the criss—cross method. Linear Algebra and Its Applications,
187:1-14, 1993.

[108] H.S. Houthakker. The capacity method of quadratic programming. Econometrica,
28:62-87, 1960.

[109] P. Huard. Resolution of mathematical programming with nonlinear constraints by
the method of centers. In J. Abadie, editor, Nonlinear programming, pages 207-219.
North Holland, Amsterdam, 1967.

[110] P.-F. Hung and Y. Ye. An asymptotical O(y/rL)-iteration path-following linear
programming algorithm that uses wide neighborhoods. Technical Report, Department
of Mathematics, University of Iowa, Iowa City, lowa, USA, 1994. (To appear in SIAM
Journal on Optimization).

[111] B. Jansen, J.J. de Jong, C. Roos,-and T. Terlaky. Sensitivity analysis in linear pro-
gramming: just be careful! Report AMER.93.022, Royal/Shell Laboratories Amster-
dam, Amsterdam, The Netherlands, 1993.

[112] B. Jansen, C. Roos, and T. Terlaky. An interior point approach to postoptimal and
parametric analysis in linear programming. Technical Report 92-21, Faculty of Tech-
nical Mathematics and Computer Science, Delft University of Technology, Delft, The
Netherlands, 1992.

[113] B. Jansen, C. Roos, and T. Terlaky. A family of polynomial affine scaling algorithms
for positive semi-definite linear complementarity problems. Technical Report 93-112,
Faculty of Technical Mathematics and Computer Science, Delft University of Tech-
nology, Delft, The Netherlands, 1993. (To appear in SIAM Journal on Optimization).

[114] B. Jansen, C. Roos, and T. Terlaky. A polynomial primal-dual Dikin-type algorithm
for linear programming. Technical Report 93-36, Faculty of Technical Mathematics
and Computer Science, Delft University of Technology, Delft, The Netherlands, 1993.
(To appear in Mathematics of Operations Research).

[115] B. Jansen, C. Roos, and T. Terlaky. The theory of linear programming: Skew sym-
metric self-dual problems and the central path. Optimization, 29:225-233, 1994.



200 Bibliography

[L16] B.Jansen, C. Roos, and T. Terlaky. Interior point methods: a decade after Karmarkar.
A survey, with special application to the smallest eigenvalue problem. Statistica Neer-
landica, 50, 1995.

(117] B. Jansen, C. Roos, and T. Terlaky. Target—following methods for self-concordant
nonlinear programming. Working Paper, Faculty of Technical Mathematics and Com-
puter Science, Delft University of Technology, Delft, The Netherlands, 1995.

[118] B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Interior-point methodology for linear
programming: duality, sensitivity analysis and computational aspects. In K. Frauen-
dorfer, H. Glavitsch, and R. Bacher, editors, Optimization in Planning and Opera-
tion of Electric Power Systems, Lecture Notes of the SVOR/ASRO Tutorial (Thun,
Switzerland, October 14-16, 1992), pages 57-123. Physica-Verlag, Heidelberg, 1993.

(119] B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Primal-dual target—following algo-

. rithms for linear programming. Technical Report 93-107, Faculty of Technical Mathe-
matics and Computer Science, Delft University of Technology, Delft, The Netherlands,
1993. (To appear in Annals of Operations Research).

[120] B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Long—step primal-dual target-
following algorithms for linear programming. Technical Report 9446, Faculty of
Technical Mathematics and Computer Science, Delft University of Technology, Delft,
The Netherlands, 1994.

[121] B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Primal-dual algorithms for lin-
ear programming based on the logarithmic barrier method. Journal of Optimization
Theory and Applications, 83:1-26, 1994.

[122] B. Jansen, C. Roos, T. Terlaky, and Y. Ye. Improved complexity using higher-order
correctors for primal-dual Dikin affine scaling. Technical Report 94-75, Faculty of
Technical Mathematics and Computer Science, Delft University of Technology, Delft,
The Netherlands, 1994. (To appear in Mathematical Programming).

(123] B. Jansen, C. Roos, T. Terlaky, and A. Yoshise. Polynomiality of primal-dual affine
scaling algorithms for nonlinear monotone complementarity problems. Technical Re-
port 95-83, Faculty of Technical Mathematics and Computer Science, Delft University
of Technology, Delft, The Netherlands, 1995.

(124] F. Jarre. The method of analytic centers for smooth conver programs. PhD thesis,
Institut fiir Angewandte Mathematik und Statistik, Universitit Wiirzburg, Wiirzburg,
Germany, 1989.

[125] F. Jarre. Interior-point methods for convex programming. Applied Mathematics &
Optimization, 26:287-311, 1992

[126] F. Jarre. Interior-point methods via self-concordance or relative Lipschitz condition.
Optimization Methods and Software, 5:75-104, 1995.

(127] K. Jittorntrum. Solution point differentiability without strict complementarity in
nonlinear programming. Mathematical Programming Study, 21:127-138, 1984.

[128] J.J. de Jong. A computational study of recent approaches to sensitivity analysis in
linear programming. Optimal basis, optimal partition and optimal value approach.
Master’s thesis, Delft University of Technology, Delft, The Netherlands, 1993.

[129] G. Jongbloed. Three statistical inverse problems. PhD thesis, Delft University of
Technology, Delft, The Netherlands, 1995.



Bibliography 201

[130] D.B. Judin and A.S. Nemirovskii. Problem complezity and method efficiency in opti-
mization. Wiley-Interscience, Chichester, USA, 1983.

[131] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite
programming. Working Paper, Stanford University, Stanford, USA, 1994.

[132] N.K. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4:373-395, 1984.

[133] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.
Thatcher, editors, Complexity of computer computations, pages 85-103. Plenum Press,
New York, 1972.

[134] P. Kas and E. Klafszky. On the duality of the mixed entropy programming. Opti-
mization, 27:253-258, 1993.

[135] J.E. Kelley. The cutting plane method for solving convex programs. Journal of the
STAM, 8:703-712, 1960. '

[136] L.G. Khacijan. A polynomial time algorithm in linear programming. Soviet Mathe-
matics Doklady, 20:191-194, 1979.

[137] V. Klee and G.J. Minty. How good is the simplex algorithm? In O. Shisha, editor,
Inequalities IIl. Academic Press, New York, 1972.

[138] G. Knolmayer. The effects of degeneracy on cost-coefficient ranges and an algorithm
to resolve interpretation problems. Decision Sciences, 15:14-21, 1984.

[139] M. Kojima, Y. Kurita, and S. Mizuno. Large-step interior point algorithms for linear
complementarity problems. SIAM Journal on Optimization, 3:398-412, 1993.

[140] M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point
algorithm for linear programming. Mathematical Programming, 61:263-280, 1993.

[141]) M. Kojima, N. Megiddo, and S. Mizuno. Theoretical convergence of large-step—
primal-dual interior point algorithms for linear programming. Mathematical Pro-
gramming, 59:1-21, 1993.

[142] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A unified approach to interior
point algorithms for linear complementarity problems, volume 538 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, Germany, 1991.

[143] M. Kojima, S. Mizuno, and T. Noma. Limiting behavior of trajectories by a contin-
uation method for monotone complementarity problems. Mathematics of Operations
Research, 15:662-675, 1990.

[144] M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of
linear complementarity problems. Mathematical Programming, 44:1-26, 1989.

[145] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for
linear programming. In N. Megiddo, editor, Progress in Mathematical Programming:
Interior Point and Related Methods, pages 29-47. Springer Verlag, New York, 1989.

[146] M. Kojima, T. Noma, and A. Yoshise. Global convergence in infeasible-interior-point
algorithms. Mathematical Programming, 65:43-72, 1994.

[147] J. Kornai and Th. Liptak. Two-level planning. Econometrice, 33:141-169, 1965.

(148] K.O. Kortanek, F. Potra, and Y. Ye. On some efficient interior point methods for
nonlinear convex programming. Linear Algebra and Its Applications, 152:169-189,
1991.



202 : Bibliography

[149] K.O. Kortanek and J. Zhu. A polynomial barrier algorithm for linearly constrained
convex programming problems. Mathematics of Operations Research, 18:116-127,
1993.

[150] E. Kranich. Interior point methods for mathematical programming: A bibliography.
Discussionsbeitrag 171, FernUniversitit Hagen, Hagen, Germany, 1991. (Available
through NETLIB).

[151] J. Kriens and J.Th. van Lieshout. Notes on the Markowitz portfolio selection method.
Statistica Neerlandica, 42:181-191, 1988.

(152] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor, Pro-
ceedings of the Second Berkeley Symposium on Mathematical Studies, pages 481-492.
University of California Press, Berkeley, 1951.

[153] M. Laurent and S. Poljak. On a positive semidefinite relaxation of the cut polytope.
Rapport de Recherche 27, Departement de Mathematiques et d’Informatique, Ecole
Normale Superieure, Paris, France, 1993.

(154] C.E. Lemke. On complementary pivot theory. In G.B. Dantzig and A.F. Veinott,
editors, Mathematics of the Decision Sciences, Part 1, pages 95-114. American Math-
ematical Society, Providence, Rhode Island, 1968.

[155] J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver, editors. History of mathemat-
ical programming. A collection of personal reminiscences. CWI, North-Holland, The
Netherlands, 1991.

[156] P. Ling. A new proof of convergence for the new primal-dual affine scaling interior-
point algorithm of Jansen, Roos and Terlaky. Technical Report SYS-C93-09, School
of Information Systems, University of East-Anglia, Norwich, Great Britain, 1993.

[157] A. Lisser, R. Sarkissian, and J.-Ph. Vial. Survivability in telecommunication networks.
Manuscript, HEC, Section of Management Studies, University of Geneva, 1995.

[158] F.A. Lootsma. Hessian matrices of penalty functions for solving constrained optimiza-
tion problems. Philips Research Reports, 24:322-331, 1969,

[159] L. Lovasz. On the Shannon capacity of a graph. IEEE Trans. on Information Theory,
25:1-7, 1979.

[160] L. Lovész and A. Schrijver. Cones of matrices and set—functjons and 0-1 optimization.
SIAM Journal on Optimization, 1:166-190, 1991.

[161] 1.J. Lustig. Feasibility issues in a primal-dual interior point method for linear pro-
gramming. Mathematical Programming, 49:145-162, 1990/91.

(162] LJ. Lustig, R.E. Marsten, and D.F. Shanno. Computational experience with a primal—
dual interior point method for linear programming. Linear Algebra and Its Applica-
tions, 152:191-222, 1991. '

[163] LJ. Lustig, R.E. Marsten, and D.F. Shanno. Interior point methods : Computational
state of the art. ORSA Journal on Computing, 6:1-15, 1994.

(164] T.L. Magnanti, P. Mireault, and R.T. Wong. Tailoring Benders decomposition for
network design. Mathematical Programming Study, 26:112-154, 1986.

[165] T.L. Magnanti and J.B. Orlin. Parametric linear programming and anti-cycling piv-
oting rules. Mathematical Programming, 41:317-325, 1988.

(166] T.L. Magnanti and R.T. Wong. Accelerating Benders decomposition: algorithmic
enhancement and model selection criteria. Operations Research, 29:464-484, 1981.



Bibliography 203

[167] T.L. Magnanti and R.T. Wong. Network design and transportation planning: models
and algorithms. Transportation Science, 18:1-55, 1984.

[168] H.M. Markowitz. The optimization of a quadratic function subject to linear con-
straints. Naval Research Logistics Quarterly, 3:111-133, 1956.

[169] H.M. Markowitz. Portfolio selection. Efficient diversification of investments. Cowles
foundation for research in economics at Yale University, Monograph 16. John Wiley
and Sons, Inc., New York, USA, 1959. ,

[170] R.E. Marsten, M.J. Saltzman, D.F. Shanno, J.F. Ballintijn, and G.S. Pierce. Imple-
mentation of a dual affine interior point algorithm for linear programming. ORSA
Journal on Computing, 1:287-297, 1989.

[171] MATLAB, User’s guide. The MathWorks, Inc., Natick, Mass., USA, 1993.

[172] L. McLinden. The analogue of Moreau’s proximation theorem, with applications to
the nonlinear complementarity problem. Pacific Journal of Mathematics, 88:101-161,
1980.

[173] A.H.M. Meeuwissen. Dependent random variables in uncertainty analysis. PhD thesis,
Delft University of Technology, Delft, The Netherlands, 1994.

[174] N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo,
editor, Progress in Mathematical Programming: Interior Point and Related Methods,
pages 131-158. Springer Verlag, New York, 1989.

[175] N. Megiddo. On finding primal and dual optimal bases. ORSA Journal on Computing,
3:63-65, 1991.

[176] S. Mehrotra. On the implementation of a (primal-dual) interior point method. SIAM
Journal on Optimization, 2:575-601, 1992.

[177] S. Mehrotra and R.D.C. Monteiro. Parametric and range analysis for interior point
methods. Technical Report, Dept. of Systems and Industrial Engineering, University
of Arizona, Tucson, USA, 1992.

[178] S.Mehrotra and Y. Ye. Finding an interior point in the optimal face of linear programs.
Mathematical Programming, 62:497-515, 1993.

[179] J.E. Mitchell and M.J. Todd. Solving combinatorial optimization problems using
Karmarkar’s algorithm. Mathematical Programming, 56:245-284, 1992.

[180] S. Mizuno. An O(r3L) algorithm using a sequence for linear complementarity prob-
lems. Journal of the Operations Research Society of Japan, 33:66-75, 1990.

[181] S. Mizuno. O(n’L) iteration O(r®L) potential reduction algorithms for linear pro-
gramming. Linear Algebra and Its Applications, 152:155-168, 1991.

[182] S. Mizuno. A new polynomial time method for a linear complementarity problem.
Mathematical Programming, 56:31-43, 1992.

[183] S. Mizuno. Polynomiality of infeasible-interior—point algorithms for linear program-
ming. Mathematical Programming, 67:109-119, 1994.

[184] S. Mizuno and A. Nagasawa. A primal-dual affine scaling potential reduction algo-
rithm for linear programming. Research Memorandum 427, The Institute of Statistical
Mathematics, Tokyo, Japan, 1992.

[185] S. Mizuno, M.J. Todd, and Y. Ye. On adaptive step primal-dual interior—point al-
gorithms for linear programming. Mathematics of Operations Research, 18:964-981,
1993.



204 Bibliography

(186] R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms: Part I:
Linear programming. Mathematical Programming, 44:27-41, 1989.

[187] R.D.C. Monteiro and I. Adler. An extension of Karmarkar-type algorithm to a class
of convex separable programming problems with global linear rate of convergence.
Mathematics of Operations Research, 15:408-422, 1990.

[188] R.D.C. Monteiro, I. Adler, and M.G.C. Resende. A polynomial-time primal-dual
affine scaling algorithm for linear and convex quadratic programming and its power
series extension. Mathematics of Operations Research, 15:191-214, 1990.

(189] R.D.C. Monteiro, J.-S. Pang, and T. Wang. A positive algorithm for the nonlinear
complementarity problem. SIAM Journal on Optimization, 5:129-148, 1995.

(190] R.D.C. Monteiro and S. Wright. Local convergence of interior—point algorithms for
degenerate monotone LCP. Preprint MCS-P357-0493, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, USA, 1993.

[191] R.D.C. Mouteiro and F. Zhou. On the existence and convergence of the central path
for convex programming and some duality results. Working Paper, School of Industrial
and Systems Engineering, Georgia Institute of Technology, Atlanta, USA, 1994.

[192] J.J. Moré. Recent developments in algorithms and software for trust region methods.
In A. Bachem et al., editor, Mathematical Programming. The State of the Art, pages
258-2817. Springer Verlag, Berlin, Germany, 1983.

(193] J.J. Moré and D.C. Sorensen. Newton’s method. In G.H. Golub, editor, Studies in
Numerical Analysis, pages 29-82. The Mathematical Association of America, 1984.

[194] W. Murray. Analytical expressions for the eigenvalues and eigenvectors of the hes-
sian matrices of barrier and penalty functions. Journal of Optimization Theory and
Applications, 7:189-196, 1971.

(195] W.C. Mylander, R.L. Holmes, and G.P. McCormick. A guide to SUMT-Version 4: the
computer program implementing the sequential unconstrained minimization technique
for nonlinear programming. Research Paper RAC-P-63, Research Analysis Corpora-
tion, McLean, USA, 1971.

(196] J.L. Nazareth. A reformulation of the central path equations and its algorithmic
implications. Working Paper, Dept. of Pure and Applied Mathematics, Washington
State University, Pullman, WA, USA, 1993.

[197] Y. Nesterov. Long-step strategies in interior point potential reduction methods. Tech-
nical Report, University of Geneva, Geneva, Switzerland, 1993.

[198] Y. Nesterov. Complexity estimates of some cutting plane methods based on the
analytic barrier. Mathematical Programming, 69:149-176, 1995.

[199] Y. Nesterov and A.S. Nemirovskii. Interior point polynomial algorithms in convex
programming. SIAM Studies in Applied Mathematics, Vol. 13. SIAM, Philadelphia,
USA, 1994.

[200] Y. Nesterov and M.J. Todd. Self-scaled barriers and interior-point methods for convex
programming. Technical Report 1091, School of OR and IE, Cornell University, Ithaca,
New York, USA, 1994. (To appear in Mathematics of Operations Research).

(201] J. Von Neumann and O. Morgenstern. Theory of games and economic behavior. Prince-
ton University Press, Princeton, New Jersey, 2nd edition, 1947.



Bibliography 205

[202] Optimization Subroutine Library, Guide and References. IBM Corporation, Kingston,
USA, 1991.

[203] M.W. Padberg. Solution of a nonlinear programming problem arising in the pro-
jective method for linear programming. Technical Report, School of Business and
Administration, New York University, New York, NY, USA, 1985.

[204] J.S. Pang. Complementarity problems. In R. Horst and P.M. Pardalos, editors, Hand-
book of Global Optimization, pages 271-338. Kluwer Academic Press, The Netherlands,
1995.

[205] J.S. Pang and S.A. Gabriel. NE/SQP: A robust algorithm for the nonlinear comple-
mentarity problem. Mathematical Programming, 60:295-337, 1993.

[206] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite relaxation for (0,1)-
quadratic programming. Global Optimization, 7:51-73, 1995.

[207] F.A. Potra. An O(y/nL) infeasible-interior~point algorithm for LCP with quadratic
convergence. Reports on Computational Mathematics 50, Dept. of Mathematics, The
University of Iowa, Iowa City, USA, 1994.

[208] F.A. Potra and Y. Ye. Interior point methods for nonlinear complementarity problems.
Reports on Computational Mathematics 15, Dept. of Mathematics, The University of
Iowa, Iowa City, USA, 1991. (To appear in Journal of Optimization Theory and
Applications).

[209] F.A. Potra and Y. Ye. An interior point algorithm for solving entropy optimization
problems with globally linear and locally quadratic convergence rate. SIAM Journal
on Optimization, 3:843-860, 1993.

[210] F. Pukelsheim. Optimal design of experiments. John Wiley and Sons, New York, 1993.

[211] M. Ramana. An exact duality theory for semidefinite programming and its complexity
implications. DIMACS Technical Report 95-02, RUTCOR, Rutgers University, New
Brunswick, New Jersey, USA, 1995.

[212] J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear
programming. Mathematical Programming, 40:59-93, 1988.

[213] R.T. Rockafellar. Convez analysis. Princeton University Press, Princeton, New Jersey,
1970.

[214] C. Roos and D. den Hertog. A polynomial method of weighted centers for linear pro-
gramming. Technical Report 89-13, Faculty of Technical Mathematics and Computer
Science, Delft University of Technology, Delft, The Netherlands, 1989.

[215] C. Roos and J.-Ph. Vial. Long steps with the logarithmic penalty barrier function in
linear programming. In J. Gabszevwicz, J.-F. Richard, and L. Wolsey, editors, Eco-
nomic Decision-Making: Games, Economics and Optimization, dedicated to Jacques
H. Dréze, pages 433-441. Elsevier Science Publisher B.V., Amsterdam, The Nether-
lands, 1990.

[216] C. Roos and J.-Ph. Vial. A polynomial method of approximate centers for linear
programming. Mathematical Programming, 54:295-305, 1992.

[217] T.J. Van Roy. Cross decomposition for mixed integer progamming. Mathematical
Programming, 25:46-63, 1983.

[218] D.S. Rubin and H.M. Wagner. Shadow prices: tips and traps for managers and
instructors. Interfaces, 20:150-157, 1990.



206 Bibliography

[219] L. Schrage. User’s manual linear, integer, and quadratic programming with LINDO,
Scientific Press, Palo Alto, USA, 2nd edition, 1985.

[220] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, New
York, 1986.

(221] D.F. Shanno. Computational experience with logarithmic barrier methods for linear
and nonlinear complementarity problems. Technical Report RRR 18-93, Rutgers
Center for Operations Research, Rutgers University, New Brunswick, USA, 1993.

[222] R. Sharda. Linear programming software for personal computers: 1995 survey. OR/MS
Today, pages 49-57, October 1995.

[223] N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and System
Sciences, 25:1-11, 1987.

[224] G. Sonnevend. An “analytic center” for polyhedrons and new classes of global algo-
rithms for linear (smooth, convex) programming. In A. Prekopa, J. Szelezsan, and
B. Strazicky, editors, System Modelling and Optimization: Proceedings of the 12th
IFIP-Conference held in Budapest, Hungary, September 1985, volume 84 of Lecture
Notes in Control and Information Sciences, pages 866-876. Springer Verlag, Berlin,
Germany, 1986.

[225] D.C. Sérensen. Newton’s method with a model trust region modification. SIAM
Journal on Numerical Analysis, 19:409-426, 1982.

[226] R.J. Stern and H. Wolkowicz. Indefinite trust region subproblems and nonsymmetric
eigenvalue perturbations. Report CORR 92-38, University of Waterloo, Department
of Combinatorics and Optimization, Waterloo, Canada, 1992.

[227] J. Stoer and C. Witzgall. Convezity and optimization in finite dimensions I, Springer
Verlag, Berlin, 1970.

[228] G. Strang. Linear algebra and its applications. Harcourt Brace Jovanovich, Orlando,
USA, 1988.

[229] G.W. Stuart. On scaled projections and pseudoinverses. Linear Algebra and its Ap-
plications, 112:189-193, 1989,

[230] J.F. Sturm and S. Zhang. An O(,/rL) iteration bound primal-dual cone affine scaling
algorithm. Technical Report TI 93-219, Tinbergen Institute, Erasmus University
Rotterdam, 1993.

[231] J. Sun, J. Zhu, and G. Zhao. A predictor—corrector algorithm for a class of nonlinear
saddle point problems. Technical Report, National University of Singapore, Singapore,
1994.

[232] K. Tanabe. Center flattening transformation and a centered Newton method for linear
programming. Technical Report, The Institute of Statistical Mathematics, Minami
Azabu, Minato-ku, Tokyo, Japan, 1987.

[233] T. Terlaky. A convergent criss—cross method. Math. Oper. and Stat. ser. Optimization,
16:683-690, 1985.

[234] T. Terlaky. On £,~programming. European Journal of Operational Research, 22:70—
100, 1985.

[235] T. Terlaky and J.-Ph. Vial. Computing maximum likelihood estimators of convex
density functions. Technical Report 95-49, Faculty of Technical Mathematics and
Computer Science, Delft University of Technology, Delft, The Netherlands, 1995.



Bibliography 207

[236] T. Terlaky and S. Zhang. Pivot rules for linear programming: a survey on recent
theoretical developments. Annals of Operations Research, 46:203-233, 1993.

[237] M.J. Todd and Y. Ye. A centered projective algorithm for linear programming. Math-
ematics of Operations Research, 15:508-529, 1990.

[238] T. Tsuchiya. A new family of polynomial-time interior point algorithms for lin-
ear programming. Research Memorandum, The Institute of Statistical Mathematics,
Minami-Azabu, Minato—ku, Tokyo, Japan, 1994.

[239] T. Tsuchiya and M. Muramatsu. Global convergence of the long-step affine scaling al-
gorithm for degenerate linear programming problems. SIAM Journal on Optimization,
5:525-551, 1995.

[240] A.W. Tucker. Dual systems of homogeneous linear relations. In H.-W. Kuhn and
A.W. Tucker, editors, Linear Inequalities and Related Systems, Annals of Mathemat-
ical Studies, No. 38, pages 3-18. Princeton University Press, Princeton, USA, 1956.

[241] H. Valiaho. P, matrices are just sufficient. Research Report, Department of Mathe-
matics, University of Helsinki, Helsinki, Finland, 1994. (To appear in Linear Algebra
and Its Applications).

[242] R.J. Vanderbei. LOQO: an interior point code for quadratic programming. Tech-
nical Report, Department of Civil Engineering and Operations Research, Princeton
University, Princeton, New Jersey, 1995.

[243] R.J. Vanderbei, M.S. Meketon, and B.A. Freedman. A modification of Karmarkar’s
linear programming algorithm. Algorithmica, 1:395-407, 1986.

[244] S.A. Vavasis. Stable numerical algorithms for equilibrium systems. SIAM Journal on
Matriz Analysis and Applications, 15, 1994.

[245] J.-Ph. Vial. Computational experience with a primal-dual interior-point method for
smooth convex programming. Optimization Methods and Software, 3:285-316, 1994.

[246] J. Véros. An explicit derivation of the efficient portfolio frontier in the case of degen-
eracy and general singularity. European Journal of Operational Research, 32:302-310,
1987.

[247) J.E. Ward and R.E. Wendell. Approaches to sensitivity analysis in linear program-
ming. Annals of Operations Research, 27:3-38, 1990.

[248] G.A. Watson. Algorithms for minimum trace factor analysis. SIAM Journal on Matriz
Analysis and Applications, 13:1039-1053, 1992.

[249] P. Wolfe. The simplex method for quadratic programming. Econometrica, 27:382-398,
1959.

[250] M.H. Wright. Some properties of the hessian of the logarithmic barrier function.
Mathematical Programming, 67:265-295, 1994.

[251] S.J. Wright. A path-following infeasible-interior—point algorithm for linear comple-
mentarity problems. Optimization Methods and Software, 2:79-106, 1993.

[252] X. Xu, P.-F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear pro-
gramming algorithm and its implementation. Technical Report, Department of Math-
ematics, University of lowa, lIowa City, Iowa, USA, 1994.

[253] H. Yamashita. A polynomially and quadratically convergent method for linear pro-
gramming. Working Paper, Mathematical Systems Institute, Inc., Tokyo, Japan, 1986.



208 Bibliography

[254] H. Yamashita. A globally convergent primal-dual interior point method for con-
strained optimization. Working Paper, Mathematical Systems Institute, Inc., Tokyo,
Japan, 1992.

[255] Y. Ye. A new complexity result on minimization of a quadratic function over a sphere
constraint. Working Paper 90-23, The University of Iowa, College of Business Admin-
istration, Iowa City, USA, 1990.

[256] Y. Ye. An homogeneous and self-dual algorithm for LCP. Working Paper, Dept. of
Management Science, University of Iowa, Iowa City, USA, 1994.

[257] Y. Ye and K.M. Anstreicher. On quadratic and O(y/nL) convergence of predictor~
corrector algorithms for LCP. Mathematical Programming, 62:537-551, 1993.

[258] Y. Ye and P.M. Pardalos. A class of linear complementarity problems solvable in
polynomial time. Linear Algebra and Its Applications, 152:3-17, 1991.

[259] Y. Ye, M.J. Todd, and S. Mizuno. An O(+/nL)-iteration homogeneous and self-dual
linear programming algorithm. Mathematics of Operations Research, 19:53-67, 1994.

[260] Y. Zhang. LIPSOL - a MATLAB toolkit for linear programming interior—point solvers.
Technical Report, Department of Mathematics and Statistics, University of Maryland
at Baltimore County, Baltimore, USA, 1994.

[261] Y. Zhang. On the convergence of a class of infeasible interior-point algorithms for
the horizontal complementarity problem. SIAM Journal on Optimization, 4:208-227,
1994.

[262] Y. Zhang and D. Zhang. On polynomiality of the Mehrotra-type predictor—corrector
interior-point algorithms. Mathematical Programming, 68:303-318, 1995.

(263] J. Zhu. A path following algorithm for a class of convex programming problems.
Zeitschrift fir Operations Research, 36:359-377, 1992.



209
Samenvatting

Inwendige Punt Technieken in Optimalisatie
Complementariteit, Gevoeligheid en Algoritmen

Het onderzoek naar inwendige punt methoden voor optimalisatieproblemen heeft vanaf 1984
(opnieuw) een grote vlucht genomen. In dat jaar ontwierp Karmarkar een nieuwe polynomi-
ale methode voor lineaire programmering (LP), waarvan hij beweerde dat deze vele malen
sneller werkte dan de altijd gebruikte simplex methode. Al gauw bleek een verband te
bestaan met logaritmische barriere of padvolgende methoden die in de jaren zestig uitvoerig
waren bestudeerd. Hernieuwd onderzoek heeft grote invloed gehad op vele gebieden binnen
de mathematische programmering.

In dit proefschrift worden bijdragen geleverd op diverse deelgebieden van de optimali-
sering. Hoofdstuk 2 gaat in op de (dualiteits)theorie van LP. Door gebruik te maken van
inwendige punt technieken en een zelf-duale herformulering van het primale en duale pro-
bleem wordt een eenvoudig bewijs gegeven van sterke dualiteit en het bestaan van een strikt
complementaire oplossing. Ook gevoeligheidsanalyse in LP is vanuit een inwendige punt be-
nadering bekeken. Hier komt naar voren dat het werken met één optimale (basis)oplossing
(zoals gebruikelijk is in leerboeken en computerpakketten voor LP) tot vreemde resultaten
kan leiden. In plaats daarvan stellen we voor te werken met de verzameling van optimale
oplossingen. Deze verzameling kan op diverse manieren worden beschreven, onder andere
met behulp van de optimale partitie van het probleem, die bepaald kan worden met een
strikt complementaire oplossing. Daar inwendige punt methoden zo’n oplossing genereren,
is deze benadering geschikt voor gevoeligheidsanalyse met inwendige punt technieken.

Hoofdstuk 3 beschrijft en analyseert een nieuwe primaal-duale inwendige punt methode,
de primaal-duale Dikin—affiene schalingsmethode. We laten zien dat ze een natuurlijke ge-
neralisatie is van Dikins primale affiene schalingsmethode uit 1967, en geven argumenten
dat een eerdere ‘generalisatie’ (de primaal-duale affiene schalingsmethode) niet als zodanig
beschouwd moet worden. De methode kan worden toegepast op LP problemen, maar ook
op niet-lineaire problemen. We leiden eerst een complexiteitsresultaat af voor het toepassen
van de methode op lineaire complementariteitsproblemen. We laten zien dat de complexiteit
kan worden verbeterd door correctie-stappen te gebruiken, wat in de praktijk eveneens tot
een versnelling leidt. We bedden beide primaal-duale affiene methoden in een familie van
algoritmen in. We analyseren de complexiteit voor niet-lineaire complementariteitsproble-
men. Hierbij is het nodig een gladheidsconditie te gebruiken. Wij introduceren hiervoor
een nieuwe conditie omdat bekende condities alleen toegepast kunnen worden op problemen
met monotone functies. Het hoofdstuk wordt afgesloten met rekenresultaten voor een aantal
optimalisatieproblemen uit de statistiek.

Vanaf 1984 zijn honderden artikelen gepubliceerd over diverse inwendige punt algorit-
men. In Hoofdstuk 4 brengen we vele methoden onder één noemer door de observatie dat
zij in iedere iteratie gebruik maken van een doelvector. Door eerst algemene resultaten voor
doelvolgende methoden af te leiden, kunnen we diverse methoden uit de literatuur eenvoudig
analyseren. Onze aanpak geeft ook suggesties voor nieuwe methoden; we analyseren o.a.
varianten van de affiene methode uit Hoofdstuk 3. Voor LP beschouwen we primaal-duale
korte-stap en lange-stap methoden. De voorgestelde aanpak kan ook afgeleid worden voor



210

en toegepast worden op methoden voor convexe optimaliseringsproblemen en variationele
ongelijkheden, die aan de zogenaamde ‘selfconcordance’-conditie voldoen. Hiermee geven
we een eerste complexiteitsanalyse voor diverse methoden voor niet-lineaire problemen, die
al wel zijn geanalyseerd voor LP en toegepast op niet-lineaire problemen.

Hoofdstuk 5 bevat onderzoeksmateriaal uit drie verschillende deelgebieden van de op-
timalisering. Ten eerste is de inwendige punt aanpak voor gevoeligheidsanalyse voor LP
uitgebreid naar convexe kwadratische problemen. Een belangrijke toepassing betreft het
berekenen van de efficiénte lijn in mean—variance modellen. Een zeer actief onderzoeksge-
bied is de semidefiniete programmering; inwendige punt methoden zijn de eerste die hiervoor
efficiént en effectief werken. De twee toepassingen die in dit hoofdstuk aan bod komen zijn
het probleem van het optimaliseren van een kwadratische functie over de doorsnede van
ellipsoiden en het probleem van het berekenen van de kleinste eigenwaarde van een matrix.
Door gebruik te maken van inwendige punt technieken kunnen sterke theoretische eigen-
schappen worden afgeleid. Tenslotte leggen we een verband tussen decompositiemethoden
gebaseerd op inwendige punt technieken en een relatief onbekende verbetering van Benders
decompositiemethode: het gebruik van Pareto-optimale sneden,

Dit proefschrift wordt afgesloten met een overzicht van verkregen resultaten, suggesties
voor nader onderzoek en een uitgebreide literatuurlijst.

Benjamin Jansen
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