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ABSTRACT

Refractive focusing of swell waves can result in fast-scale variations in the wave statistics because of wave

interference, which cannot be resolved by stochastic wave models based on the radiative transport equation.

Quasi-coherent statistical theory does account for such statistical interferences and the associated wave in-

homogeneities, but the theory has thus far been presented in a form that appears incompatible with models

based on the radiative transfer equation (RTE). Moreover, the quasi-coherent theory has never been tested

against field data, and it is not clear how the coherent information inherent to such models can be used for

better understanding coastal wave and circulation dynamics. This study therefore revisits the derivation of

quasi-coherent theory to formulate it into a radiative transport equation with a forcing term that accounts for

the inhomogeneous part of the wave field. This paper shows how themodel can be nested within (or otherwise

used in conjunction with) quasi-homogeneous wave models based on the RTE. Through comparison to

laboratory data, numerical simulations of a deterministic model, and field observations of waves propagating

over a nearshore canyon head, the predictive capability of the model is validated. The authors discuss

the interference patterns predicted by the model through evaluation of a complex cross-correlation function

and highlight the differences with quasi-homogeneous predictions. These results show that quasi-coherent

theory can extend models based on the RTE to resolve coherent interference patterns and standing

wave features in coastal areas, which are believed to be important in nearshore circulation and sediment

transport.

1. Introduction

The evolution of wind-driven surface waves on the

open ocean is largely determined by the action of wind

(Phillips 1957; Miles 1957), dissipation (white capping;

Hasselmann 1974), and third-order nonlinear effects (or

quadruplet wave–wave interactions; Hasselmann 1962).

Over the continental shelves and near the coast, ocean

waves are affected by many additional processes, in-

cluding refraction by depth and current variations (e.g.,

Munk and Traylor 1947; O’Reilly andGuza 1993; Dodet

et al. 2013; Pearman et al. 2014); Bragg scattering by

bottom irregularities (e.g., Long 1973; Ardhuin and

Herbers 2002); bottom friction (e.g., Grant and Madsen

1979; Ardhuin et al. 2003); and eventually, when ap-

proaching the shoreline, second-order nonlinearity (e.g.,

Freilich andGuza 1984;Kaihatu andKirby 1995;Eldeberky

1996;Herbers andBurton 1997;Agnon and Sheremet 1997;

Janssen et al. 2006), depth-induced breaking (e.g., Battjes

and Janssen 1978; Thornton and Guza 1983; Apotsos

et al. 2008; Salmon et al. 2015), and wave reflection

from shore (e.g., Elgar et al. 1994). Although some of

these processes can be highly nonlinear and are not all

well understood (e.g., depth-induced wave breaking

and white capping), they generally drive slow varia-

tions in the mean wave statistics such that the evolu-

tion of the wave variance density spectrum E(k, x, t)

through time t, geographical space x5 (x1, x2), and

wavenumber space k5 (k1, k2) can be described by the

radiative transport equation (RTE):

›tE1 cx � $xE1 ck � $kE5 S . (1)
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Here, ›t is shorthand for partial differentiation with re-

spect to the subscript variables $x [ (›x1 , ›x2 ) and

$k [ (›k1 , ›k2 ). The left side of Eq. (1) represents the

conservation of wave energy in a slowly varying me-

dium, with cx 5 (cx1 , cx2 ) and ck 5 (ck1 , ck2 ) denoting

transport velocities through geographic and spectral

space, respectively (Willebrand 1975), and the forcing

term S(k, x, t) on the right of Eq. (1) represents source

term contributions to account for nonconservative and

cross-spectral transfers. The continuing development of

models based on the RTE has focused mostly on im-

provement in the source terms, which for the most part

are based on parameterized physicalmodels that require

empirical tuning and can contribute large uncertainties

to model predictions.

Apart from the usual WKB assumptions for a slowly

varying medium, the use of the RTE requires that wave

components are statistically independent (Komen et al.

1994), which is valid for quasi-homogeneous (and

Gaussian)wave fields. In deepwater, where the evolution

is mostly dominated by the source term balance, this is

generally true. However, in shallow water, where the

waves interact with slowly varying topography (or cur-

rents), the coherent scattering of narrowband wave fields

can result in inhomogeneities and fast-scale variations in

wave energy (Janssen et al. 2008), which can have anO(1)

effect on the mean statistics (Smit and Janssen 2013,

hereinafter SJ13) and—as a consequence—affect wave-

driven circulation and transport processes. These effects

are not accounted for in models based on the RTE.

The quasi-coherent (QC) theory presented in SJ13 is

a fundamental generalization of the RTE to account for

coherence (which for constant depth was also consid-

ered by Pedersen and Lokberg 1992) and incorporates

inhomogeneities and scattering effects by resolving (and

transporting) cross-phase information in the wave field

statistics. However, the form of the model equations as

derived in SJ13 [see Eqs. (15) and (16) in SJ13] is quite

different from the conventional RTE-type transport

models, which hamper the physical interpretation of the

inhomogeneity contributions and make it more difficult

to combine the two different modeling approaches in

a single numerical model. As part of this work we revisit

and expand on the theoretical results from SJ13 to show

that the QC approximation can be written in a similar

form as Eq. (1), but with an additional scattering term

SQC on the RHS, that describes spatial energy variations

resulting from wave interference and depends on local

cross correlations between spectral wave components.

We further develop a consistent numerical imple-

mentation for this model, validate the model against

laboratory and field observations, and explore the in-

terpretation and use of the cross correlators implicit in

the coupled-mode (CM) spectrum (as opposed to the

variance density spectrum). In that regard, we briefly

summarize the principal results from SJ13 (section 2) and

derive and discuss a consistent approximation for me-

dium variations based on the wave field decorrelation

length scale (section 2). We present simulations with the

new model of laboratory flume experiments (section 3)

and field observations of ocean waves interacting with

a submarine canyon (section 4), discuss the effects of

wave inhomogeneity in the observational data andmodel

results, and sum up our principal findings in section 5.

2. Evolution of inhomogeneous wave fields

To describe the evolution of inhomogeneous surface

wave statistics in a variable medium, we consider the

transport of what we refer to as the CM spectrum,1 de-

fined as

E (k, x, t)5F j,k[G(x1 j/2, x2 j/2, t)] , (2)

where F j,k[ . . . ] denotes the Fourier transform from

spatial lag j to wavenumber k (see appendix A), and the

correlation function G of a wave field variable z between

two spatial points x and x0 is defined as

G(x, x0, t)5
1

2
hz(x, t)z*(x0, t)i . (3)

Here, z(x, t) is a complex, zero-mean, Gaussian vari-

able, of which the real part is the surface elevation

h(x, t)5Re[z(x, t)] and the imaginary part is its Hilbert

transform (e.g., Mandel and Wolf 1995); h . . . i denotes
the ensemble average; and z* represents the complex

conjugate of z. The CM spectrum represents the com-

plete second-order wave statistics, including cross-

variance contributions. It is related to the bulk wave

variance V (x, t)5G(x, x, t) through its marginal dis-

tribution V (x, t)5
Ð
E (k, x, t) dk, which consequently

is strictly positive. However, the CM spectrum is not

pointwise positive (it can have negative contributions)

and should thus not be confused with a variance density

spectrum (see SJ13).

In the absence of sources or sinks of wave energy, and

under the assumption that the wave field consists of

progressive plane surface gravity waves propagating

through a slowly varying medium, such that the wave-

number k and angular frequency v are related by a lin-

ear dispersion relation, an evolution equation for the

coupled-mode spectrum E can be derived (see SJ13):

1 Also known as theWigner or Wigner–Ville spectrum (see, e.g.,

Wigner 1932; Ville 1948).

1140 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45



›tE (k, x, t)

52i

ð
V̂(k,q,2i$x)E

�
k2

q

2
, x
�
exp[iq � x] dq1 *,

(4)

where V̂ denotes the integration kernel that operates on

E , the wavenumber q5 (q1, q2) is associated with spa-

tial variations of themedium, and * denotes the complex

conjugate.

In the linear approximation, the dispersion relation

s(k, h) for ocean surface gravity waves that relates

v5s(k, h) and k(k)5 jkj is

s(k,h)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh(kh)

p
, (5)

with g(5 9.81m2 s21) as the gravitational acceleration,

and h(x) as the mean depth. In this case the integration

kernel V̂ in Eq. (6) is defined as

V̂(k, q,2i$x)5 ŝ2
i

2
ŝk

~k � $x . (6)

Here, ŝ(k, q) denotes the spatial Fourier transform

(x0/q) of the dispersion relation s(k, x)5s[k, h(x)],

such that ŝ(k, q)5F x0 ,q[s(k, x
0)]. Furthermore, in Eq.

(6), ŝk is short for ›kŝ, and ~k5 k/k.

Medium variations in a coherent wave field

Combined, Eqs. (4) and (6) summarize the principal

theoretical result from SJ13 and represent the starting

point of this work. In the following, we will derive

a consistent form of this model using the decorrelation

length scale of the wave field, making the physical in-

terpretation more intuitive, relating it explicitly to the

RTE, and making it suitable for numerical evaluation.

In particular, the Fourier transform on the right side of

Eq. (4) makes the evolution of the coupled-mode spec-

trum dependent on medium variations throughout the

entire spatial domain. Since random ocean waves have

a finite decorrelation length scale, this is not only im-

practical but also unnecessary from a physical point of

view.

To make this explicit, we consider that the slow me-

dium variations are characterized by a small parameter

« � 1, so that the medium varies O(1) over distances

L0/«, with L0 being a characteristic wavelength. In-

homogeneities in the wave field induced through me-

dium variations cause O(1) variations in the wave field

statistics on the scale L0/m, with m � 1 being a measure

of the wavenumber mismatch between coherent com-

ponents. The width of the spectrum is measured by the

parameter d5Dk/k0, where Dk is a characteristic width

and k0 5 2p/L0. The latter is used to define a coherent

length scale as jc 5L0/d, so that G(j, x)/ 0 as jjj/ jc.

For narrowband waves d � 1, implying that the wave

field remains correlated over many wavelengths. To

relate the coherent radius to the variations in the me-

dium, we consider the ratio b5 «/d, such that for b � 1

changes in topography occur over distances much larger

than the decorrelation scale, whereas for b5O(1) sig-

nificant changes occur within the coherent radius of the

wave field. In the latter case, the wave field retains the

memory of the wave–bottom interaction and coherent

effects can be important. Note that b can become O(1)

even if the medium is slowly varying relative to the

length scale of the individual waves (thus « � 1).

To illustrate how the coherent radius constrains the

effect of medium variations, and thus derive a consistent

and local approximation, we write Eq. (4) as

›tE (k, x, t)5G(k, x, t)1 *, (7)

where

G5
2i

(4p)4

ð
V(k, x1 x0,2i$x)G(j, x) exp

�
iq �

�
1

2
j2 x0

��
exp[2ik � j]dj dx0 dq . (8)

Here, we replace V̂(k, q, 2i$x) and E (k, x) by

F x00 ,q[V(k, x00, 2i$x)] and F j,k[G(j, x)], respectively,

and we changed the variables to x0 5 x00 2 x.

For waves with a finite coherent radius jc, the field

decorrelates (G/ 0) when jjj. jc so that contributions

to the integral in Eq. (8) are limited to the extent of the

coherent radius. Further, oscillatory behavior of the

integral over q implies that contributions to the integral

only emerge (in the form of Dirac delta functions) along

curves for which (1/2)j2 x0 5 0. In other words, the

evolution of the statistics is only affected by the topog-

raphy within a radius jc/2 around x, or the region of

statistical dependence, as would be expected on physical

grounds.

Although here we make such approximations explic-

itly, the same approximation is implicit in the RTE. If we

assume that the wave field is relatively broad banded

with a small coherent radius (relative to the medium

variations), we have thatO(b)5O(«) � 1. In this case,

the wave field decorrelates before significant changes in
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the topography occur, and it is reasonable to express the

medium variability as a Taylor expansion in x0 around
x0 5 0. This implies that s and sk in V are replaced by

their respective series expansions, and retaining terms

up to O(b), we obtain

VRTE(k, x, x0,2i$x)5s2 x0 � ck
2

i

2
[cx1 (x0 � sk,h$xh)

~k] � $x .

(9)

Here, ck(k, x)52sh$xh and cx 5 ~ksk with sh(k, x)5
›hsjk(k),h(x) and skh(k, x)5 ›hskjk(k),h(x). Substituting the
local approximation Eq. (9) into Eq. (8), we can show

that Eq. (7) reduces to the RTE, as in

›tE 5GRTE 1 *52ck � $kE 2 cx � $xE . (10)

Note that in this approximation, the transport velocities

are determined by the mean depth and local bottom

slope, which is equivalent to assuming that the local ba-

thymetry is effectively planar. By making this approxi-

mation explicit here, we show that the RTE is merely

a special case of the transport Eq. (7), emerging when we

assume that the wave field decorrelates on a much faster

scale than the medium varies (b � 1), in which case only

the local bathymetric features are relevant to the evolu-

tion of the wave field statistics. In reality, wave fields

described by the RTE have a finite spectral width and

coherent radius and whether the assumptions implied by

theRTE are reasonable depends entirely on the nature of

the medium variations and the width of the spectrum.

Towrite the general transport Eq. (7) in a form similar

to the RTE, but with an additional source term that

accounts for the development of inhomogeneities by

medium variations (e.g., coherent interferences), we

approximate V as a superposition of the RTE operator

and a remainder:

V(k, x1 x0,2i$x)’VRTE(k, x, x0,2i$x)

1DV(k, x, x0,2i$x) . (11)

Assuming that b5O(1) so that the field remains co-

herent on the scale that the medium undergoes O(1)

changes, but the evolution of the local statistics remains

unaffected by the far-field representation of V (for

jx0j$ jc), we define DV within the coherent region as

DV(k, x, x0,2i$x)5W[V2VRTE] for jx0jj# jc/2 ,

(12)

whereW(x0) is a window function (see appendix B) that

smoothly transitions from unity to zero as jx0jj/ jc so

that near the extremities of the domain (where the wave

field is nearly decorrelated) the far-field representation

ofV is relaxed toVRTE. Also, to be consistent with use of

the Fourier integrals in Eq. (7),DV is presumed spatially

periodic outside of the coherent domain. With this, we

can write Eq. (7) as ›tE 5GRTE 1SQC 1 *, and thus

›tE 1 ck � $kE 1 cx � $xE 5 SQC 1 *. (13)

Here, the scattering term SQC is expressed in terms of

the CM spectrum as

SQC 52i

ð
DV̂(k, x, q,2i$x)E

�
k2

1

2
q, x

�
dq , (14)

withDV̂5F x0,q(DV). In discrete form, where we use the

discrete transform DV̂q0 5F x0,q0(DV) so that

DV̂5�q0d(q2 q0)DV̂q0 with q0 5 [mq
1Dq, m

q
2Dq] and

Dq5 2p/jc, we thus have

›tE 1 ck � $kE 1 cx � $xE

52i�
q
DV̂q(k, x,2i$x)E (k2 q/2, x)1 *, (15)

where q5 q0. Equation (15) is a consistent representation

of the quasi-coherent theory developed by SJ13 for variable

bathymetry. It introduces no new assumptions but uses the

decorrelation length scale inherent to the wave field to re-

write the equations into anRTE-like form,making physical

interpretations of the theory more intuitive and allowing it

to be readily numerically evaluated using similar numerical

schemes as commonly used for RTE-type models.

In what follows, we will refer to Eq. (15) as the quasi-

coherent model (QCM). In the simulations presented in

this work, we consider steady-state solutions to Eq. (15)

(such that ›tE 5 0) computed on a discrete grid by

means of a finite-difference approximation based on the

solution technique for the RTE as found in Booij et al.

(1999). For details on the numerical implementation, we

refer to appendix B.

3. Wave deformation by an elliptical shoal

A monochromatic, initially unidirectional wave field

that interacts with topography can be considered as the

archetype of a coherent scattering problem. Moreover, it

represents an excellent test on the limits of the stochastic

model since theQCMexplicitly assumes a finite coherent

radius (or finite Dq) and thus a finite-width spectrum.

To illustrate the behavior of the QCM and the sta-

tistical information that is inherently available in the

model, and test its performance under such conditions,

we consider the wave basin experiment by Berkhoff et al.

(1982), where monochromatic (period 1 s), unidirec-

tional waves (wave height H 5 0.0464m) were gener-

ated at the wavemaker (at x 5 210, depth 0.45m) and
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propagated over a shoal (crest located at x5 0m, depth

of 0.135m) situated on a 1:50 slope (see Fig. 1). Wave

heights were measured along eight transects at regular

intervals, of which we consider three (indicated in

Fig. 1).

The RTE and QCM are numerically evaluated on

a rectangular spatial (20 3 20m2) and spectral domain

[103 10 rad2m22, starting at k5 (20.05,25) radm21],

uniformly discretized with mesh sizes Dx 5 Dy 5 5 cm

andDkx5Dky5 0.1 radm21. The finite bandwidthDq5
0.2 radm21 implies that the maximum resolvable co-

herent scale in the model is jc 5 31:4 m, and we include

components q with wavenumbers smaller than kp/2,

where kp is the peak wavenumber of the incident wave

field. To simulate a monochromatic wave field, themodel

is initiated at the boundary with a Gaussian-shaped wave

spectrum E , with the spectral peak at kp 5 4:21 radm21

and a standard deviation of Dkspec 5 0:2 radm21, which

effectively corresponds to a narrowband long-crested

wave field with a width of 0.1Hz and 1.58 in frequency

and directional space, respectively.

To augment the observations with data where no ob-

servations are available, we include model simulations

with the deterministic model Surface Waves till Shore

(SWASH; Zijlema et al. 2011), which solves the 3D

Euler equations for a free-surface fluid of constant

density. This highly detailed model reproduces the lab-

oratory observations in great detail (see, e.g., Stelling

and Zijlema 2003), and we use it here to provide

a ground truth for the QCM to validate its ability to

capture wave interferences and its representation of the

complete second-order statistics. Since the CQ model is

linear, the SWASHmodel is linearized also by reducing

the incident wave height toH5 0.001m. In this way we

have a direct comparison with theQCMand can identify

nonlinear effects in the observations.

Results

The refractive focusing of the waves produces a lat-

eral interference pattern in the wake of the shoal (e.g.,

Fig. 1). The finescale pattern is reproduced by the

QCM, and normalized wave heights correspond well

FIG. 1. Plan view of the experimental setup by Berkhoff et al.

(1982), including ray trajectories for unidirectional monochromatic

waves (thin gray lines) that start at x5 210m and propagate toward

the shoal. Depth contours are indicated by the black solid lines; in-

strumented transects used in this study (identified by boxed numerals)

are indicated by dashed lines, whereas the solid dot (identified by the

boxed A) indicates the point A discussed in the main text.

FIG. 2. The normalized wave height H0 (normalized with incident wave height) along the indicated transects.

Comparison between observations (open circles), and relativewave heights obtainedwith theQCM(solid line), RTE

(dashed line), and (linearized) SWASH (crosses). For reference, results from the fully nonlinear SWASH model

forced with the actual wave height are also included (gray dotted lines).
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with observations (Fig. 2). In contrast, the quasi-

homogeneous model (RTE) underestimates wave

heights along central transect 7 and does not reproduce

the wave heights in transect 4. These shortcomings

have been noted earlier by O’Reilly and Guza (1991)

in comparisons of a ray-based spectral refraction

model (equivalent to RTE) and a phase-resolved re-

fraction–diffraction model. The RTE (Figs. 3a–c)

cannot resolve the finescale pattern due to a lack of

cross-phase information. Also, note that the differ-

ences seen between the QCM and observations along

transect 8 are mostly because of nonlinearity, as con-

firmed by the comparison to the nonlinear and line-

arized deterministic model results (the latter is in

close agreement with the QCM).

The shortcomings of the RTE are fundamental and

a consequence of the fact that it strictly transports var-

iance contributions and omits cross-covariance contri-

butions entirely. In other words, the RTE approximation

transports the covariance function G at zero spatial lag and

does not provide information about the correlation (or

cross-phase information) between two points separated in

space. To illustrate what this implies, and how this in-

formation is available in the QC model, we consider the

covariance function ~Gx at a point xA 5 (5, 0)m along the

centerline behind the shoal (Figs. 3d–f). Since the incident

wave field is (nearly) monochromatic and unidirectional,

the resulting covariance function resembles the pattern

that would qualitatively be expected from a snapshot of

the free surface (Fig. 3d). It is important to note that the

FIG. 3. Plan view of (a)–(c) normalized wave heights H0 and (d)–(f) normalized covariance function ~G0
xA
(x0) ob-

tained using the QCM, RTE, and the ‘‘linear’’ SWASH model for the experimental setup by Berkhoff et al. (1982).

Gray lines indicate bottom contours, while the black lines are ray trajectories. The wave height and covariance

functions are normalized with thewave height and variance at the boundary, respectively. The dot in the lower panels

corresponds to point xA, and the circle has a radius of jc/4.
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QC is fully stochastic, and there is no information on in-

dividual realizations of the free surface. The phases in the

surface plot are coherent cross phases, and the wavy pat-

tern is a covariance function that does not contain absolute

phase information.

Upwave from the shoal, the spatial covariance func-

tion takes on the form of a long-crested wave field, with

lines of equal phase (or more precisely, equal phase

difference) that are alternately in phase at the maxima

(or ‘‘wave crests’’) and out of phase at the minima (or

‘‘wave troughs’’) with the wave field at the point xA
considered. Downwave from the shoal, a lateral stand-

ing wave pattern emerges, where nodal lines run nearly

parallel to the principal propagation direction and points

on the opposite direction of the nodal lines are negatively

correlated. This is indicative of coherent wave inter-

ference, and the pattern closely resembles the classical

refraction–diffraction pattern of surface waves in a focal

zone. The same cross-correlation function can be esti-

mated from the SWASH andRTEmodels (see Figs. 3e,f).

The covariance function estimated from the SWASH

model is practically identical to the QC model (as we

would expect it to be), in particular in a region within the

coherent radius jc/4 (with jc 5 2p/Dkspec) centered

around point xA (see Fig. 3). Outside this region, the

QCM shows small differences with the SWASH result,

in part because at larger spatial lags the approximation

implied by theQCMdeteriorates (becausewe are trying to

model amonochromatic field) and in part because sidewall

reflections (e.g., along y0 5 10m) are not accounted for in

the QCM. In contrast, the covariance function estimated

from the RTE is quite different from the SWASH (and

QCM) results (cf. Figs. 3d,e and 3f). The fact that theRTE

assumes that the wave field decorrelates much faster than

the medium variations, which implies the complete loss of

coherent phase information, prevents this model from re-

solving the structure of the wave field statistics in a focal

zone. In regions wherewaves refract and develop coherent

interferences, the QC approximation captures the struc-

ture of the spatial covariance function and thus the com-

plete second-order statistics.

4. Swell over submarine canyons

Just offshore and to the north of San Diego, stretching

from Black’s Beach down to La Jolla point (see Fig. 4),

the seafloor bathymetry is characterized by two steep

submarine canyons: Scripps Canyon (approximately

150m deep and 250m wide) and La Jolla Canyon (ap-

proximately 120m deep and 350m wide). Along these

canyons (see Fig. 4), which extend to 200m from shore,

FIG. 4. Bathymetry near (right) Scripps andLa JollaCanyon and the (left) surrounding area. The numbered black dots

indicate the instrument locations during theNCEXexperiment.Red contour lines correspond to depths of 10, 15 and 50m.

The origin is located at 32849.70N and 117821.90W, with the x and y axes pointing positive east and north, respectively.
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strong wave refraction occurs because of the steep

slopes along the canyon walls (locally exceeding 458).
Especially for long-period swell waves, refraction causes

extreme spatial gradients in wave height, and locally,

coherent interference effects associated with waves ar-

riving along different ray paths are expected to be im-

portant (e.g., Magne et al. 2007).

The Nearshore Canyon Experiment (NCEX) was

conducted in the fall of 2003 to study wave trans-

formation over the canyons (Thomson et al. 2005, 2007;

Magne et al. 2007), with a particular focus on Scripps

Canyon. Pressure sensors (locations 13–17 and 20–31),

Waverider directional buoys (locations 21 and 32–37),

and NORTEK vector current meters (PUVs, location

1–12) were deployed around the canyons (see Fig. 4b for

locations). The offshore wave conditions were recorded

by the permanently deployed Torrey Pines Outer di-

rectional Waverider buoy (TPB hereafter) that is lo-

cated approximately 12.5 km offshore at 549-m depth

(see Fig. 4). The La Jolla Outer Buoy (LJB) is located

directly to the west of the NCEX area, but it is situated

in relatively shallow water (200m) and near a steep

slope so that the wave field recorded at this location is

generally not suited as an offshore boundary condition.

At all pressure sensor and PUV sites, surface height

variance density spectra are obtained from the detren-

ded 3-h pressure records. Each record is subdivided in

windowed segments with 50% overlap and ensemble

averaging of the resulting periodograms yields estimates

of the bottom pressure spectrum with 120 degrees of

freedom and frequency resolution Df 5 0:0025Hz.

Subsequently, the bandpassed (0.025–0.2Hz) free-

surface spectrum is obtained using a transfer function

from linear theory. For the wave buoys, the spectrum is

estimated by averaging five spectra, each obtained from

26-min-long records, with Df 5 0:0025Hz, yielding ap-

proximately 120 degrees of freedom. The directional

spectrum, needed to force the models at the offshore

boundary, is estimated from the measured first four di-

rectional Fourier moments using a maximum entropy

method (Lygre and Krogstad 1986).

From the 3-month field campaign, we selected three

cases to compare the QCM and RTE with observed

wave conditions. Because coherent effects are most

dominant for directionally narrow fields (cf. Fig. 5 in

SJ13), we consider cases where clearly distinguishable

swell waves were observed at the TPB, incident from

either the south (cases I and II) or from the west (case

III). For each case, the bulk parameters are summarized

in Table 1 with spectra shown in Fig. 5. Because we focus

TABLE 1. Significant wave height Hm0
, peak period Tp, mean

direction umean, and mean directional spreading Du at the Torrey

Pines Outer Buoy for the swell cases considered.

Case Date/time (UTC) Hm0
(m) Tp (s) umean (8) Du (8)

I 0000:00 28 Oct 0.81 16 73 11

II 2030:00 16 Nov 0.45 18.2 79 7

III 1530:00 30 Nov 0.77 15.2 16 11

FIG. 5. (top) Directional wave spectra and (bottom) integrated frequency spectra as observed at the TPB in the fall

of 2003 for (a),(d) case I, (b),(e) case II, and (c),(f) case III. The red dashed line corresponds to the observed spectra

at the LJB.
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on swell, the mixed sea swell system, incident from the

west, as present in case II (separated from the distinct

southern swell peak; see Fig. 5), was discarded in the

present analysis by a low-pass filter ( f , 0:07Hz.).

Moreover, all spectra, including observed (cross) spec-

tra, were high-pass filtered ( f . 0:025Hz) to remove

infragravity contributions, which are the result of non-

linear interactions and cannot be represented in the

present linear model.

To identify the presence of coherent effects that mea-

surably influence wave statistics near the canyon head, we

consider the observed swellband cross-covariance spec-

trumCh,u( f )5 (Ch,u1 , Ch,u2 ) between the free surface and

the velocity component u1, u2 at the PUVs (sites 1–12),

which we write as

Cf
h,u

j
5 jCf

h,u
j
j exp(iF f

j )5

ðf1Df /2

f2Df /2
Ch,u

j
( f 0) df0 . (16)

Here, jCh,uj j is the coherence and Ff
j corresponds to the

average phase difference between uj and surface eleva-

tion h at frequency f. Anticipating that interference

patterns due to crossing waves propagating toward shore

create a nodal structure (partially standing waves) ap-

proximately perpendicular to the mean wave direction,

the coordinate system is rotated such that the principal

component u1 is aligned with the mean wave direction

umean, and u2 is aligned with the lateral direction. Here,

the mean direction is defined as umean 5 atan(Csum
h,y2

/Csum
h,y1

)

with Csum
h,yj

5�f<(Cf
h,yj

), where y denotes the observed

particle velocities at the PUVs in the original coordinates,

and <( ) denotes the real part of the complex argument

considered.

Near Scripps Canyon (location 3), the particle veloc-

ities u1 are nearly in phase with the surface elevation at

each frequency (jF f
1 j’ 0; Fig. 6), indicative of the pre-

dominantly progressive character of the waves in the

mean wave direction. However, at low frequencies

(0:05# f # 0:08), large phase differences (approaching

908) occur, indicative of purely standing wave motion.

This clearly indicates a (partially) standing wave struc-

ture in the lateral direction at these frequencies, which is

associated with coherent interference of the surface

waves. These large phase differences for jF f
2 j are only

seen near the canyon head (locations 1–6), which is con-

sistent with the refraction-induced wave interference ex-

pected in this region. For locations farther away from the

canyon head (e.g., locations 7–12), jF f
2 j is generally small

(not shown). The observations thus show that the co-

herent effects affect the wave statistics near the canyon

heads. Although the variance levels of the wavemotion in

the lateral direction is small, these standing modes can

develop a coherent nodal structure and drive subtle

alongshore variations of wave orbital velocity statistics

near the shore that are important to wave-induced circu-

lation, transport processes, and coastal morphodynamics.

a. Model setup

The spectral models are numerically evaluated on

a set of nested rectangular spatial grids (see Table 2).

FIG. 6. Absolute phase differences between surface elevation and the velocity components in the dominant wave

direction (jF1j, o markers; the lateral direction jF2j, x markers) estimated for different frequency bins in cases I, II,

and III at instrument location 3.

TABLE 2. Model parameters used for the different nested grids A to C. The spectral resolution was set to Dk5 0:01 radm21 in all cases.

Grid x (km) y (km) Dx (m) Nx Ny kx (radm
21) ky (radm

21) Mx My

A 217 236 50 300 880 20.0205 20.0605 121 121

B 28 22 25 120 360 20.0205 20.1005 121 201

C 0 0 25 100 200 20.0205 20.1505 171 301
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The coarsest grid (A) is forced by directional spectra

derived from the buoy data on the western boundary

(Fig. 4), whereas on the southern and northern bound-

aries ›yE (k, x)5 0 is maintained for components di-

rected into the domain. The finest grid (C) is used near

the NCEX site in the area depicted in Fig. 4 (right).

Moreover, going from A to C, the spectral domain is

successively enlarged to ensure that the wave spectrum

falls within the computational domain. On the outer grid

A, where, owing to deep-water conditions, the wave

field is effectively homogeneous, computations were

done exclusively with the RTE. For the other two do-

mains, results were obtained using both theRTE and the

QCM.

For southerly waves (cases I and II), the boundary

derived from the TPB is not optimal. For these cases,

waves that arrive at the NCEX site are refracted over

the continental shelf well south of the TPB, whereas

southerly waves that arrive at the TPB do not reach the

NCEX site. These effects are seen in the large differ-

ences between the swell peaks observed at the TPB and

LJB for southerly swells (see case I and II in Fig. 5).

Nevertheless, the ratio R between the predicted to

measured significant wave heights at the LJB was near

unity for cases II (R5 1.01) and III (R5 0.94), and only

for case I did the ratio differ significantly (R5 0.74). For

the latter case the spectra at the boundary were rescaled

with 1/R2 to obtain more realistic conditions at the LJB

and presumably the NCEX area.

b. Results

For the southerly swell cases (I and II), a significant

part of the energy is refracted toward the coast before it

arrives at the NCEX site because of the relatively shal-

low region south of the canyons (see Fig. 4). Hence,

wave energy is already much reduced when it arrives at

the NCEX site (Figs. 7a,b). The waves subsequently

refract strongly over the steep canyon walls, which is

FIG. 7. Wave heights (normalized with the incident wave height) predicted over the canyons for (a),(d) case I,

(b),(e) case II, and (c),(f) case III by the (top) QCM and (bottom) RTE. Superimposed arrows correspond to the

mean wave direction.
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visible in the bands of enhanced wave height along the

canyon walls. In between the canyons, the convex shape of

the topography focuses wave energy so that a mild focal

zone emerges. For westerly swells, the pattern is again

dominated by the local geometry of the canyons, with

a bandof enhancedwave energy along the canyonwalls and

a mild focal region in between the two canyons (Figs. 7c,d).

Although the QCM and RTE predictions appear to be

fairly similar, there are some important differences. To

intercompare the models in more detail, and compare

simulation results from both models with observations,

we consider transects of wave height estimates along

different depth contours (Fig. 8). Overall correspondence

between the observations and both models is reasonable,

specifically for the 50- and 15-m contour lines. However,

along the 10-m contour line (around s 5 2.5 km, where s

represents the along-contour distance measured from the

starting point on the north edge of the NCEX area),

significant differences between the models are seen. It is

in this region that interference occurs between waves that

travel in a western direction and waves that are refracted

out of the canyon. This results in rapid oscillations of the

wave heights, which is particularly visible in the obser-

vations for case II. The QCM reproduces this oscillatory

behavior almost perfectly (at least near s 5 3km),

whereas the variations in the RTE model are much less

extreme and do not capture the rapid changes in themean

wave heights.

As highlighted in the analysis of the laboratory data,

the QCM captures the complete second-order statistics

and thus inherently contains spatial information of co-

herent patterns and standing wave fields. To analyze the

wave pattern surrounding the canyon heads, we consider

the covariance function as calculated by the QCMat site

31 on the northern edge of Scripps Canyon and at site 24

in the focal area between the two canyons (Fig. 9). For

illustrative purposes, we include a few ray trajectories

that are initiated at x 5 0 using the predicted mean

wavenumber ~k(5
Ð
kE dk/V ) to help interpretation of

the results.

In the mean wave direction (approximately aligned

with the wave rays), the covariance function attains its

FIG. 8. Normalized wave height H0 5Hm0/H
TPB
m0 along the indicated depth contours (Fig. 4) for (a)–(c) case I,

(d)–(f) case II, and (g)–(i) case III. Observations (open circles) are compared to results from the RTE (red dashed

line) and the QCM (black solid line).
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typical oscillatory pattern, indicative of predominantly

propagatingwavemotion.However, near site 31 (Figs. 9a–c),

the covariance function shows a nodal structure in the

lateral direction, which implies fast variations of the sta-

tistics associated with crossing waves (as also indicated by

the crossing rays in this region). In case III (Fig. 9c), a clear

nodal pattern emerges where in the lateral (or along crest)

direction the covariance function alternates between posi-

tive and negative values. The covariance function centered

at site 24 retains a structure more in line with the assump-

tions of quasi-homogeneous theory, with a modulated os-

cillatory structure in the wave direction (the limited extend

of the correlation function due to the finite width of the

spectrum) and a slowly decaying correlation with constant

phase difference in the lateral direction (indicative of the

finite directional width of the wave field). This is consistent

with the observation that quasi-homogeneous theory

(RTE) and quasi-coherent theory (QCM) predict similar

wave heights in this region. In fact, the covariance functions

predicted by theRTEare similar to those of theQCMnear

site 24, although they decay more rapidly (not shown).

From the covariance functions, we see that because of

the strong refraction by the canyons, the waves just north

and south of Scripps Canyon are statistically nearly in-

dependent in cases I and III. That is, the dominant swells,

traveling almost parallel to the canyon axis, are trapped on

the north side of the canyon, and a weak, uncorrelated

component that crosses the canyon from more oblique

angles dominates thewavemotion southof the canyon. For

case II, the wave field is so narrow that some correlation

between waves on opposite sides of the Scripps Canyon

remains. The directional narrowness of the incident waves

FIG. 9. Normalized covariance functions ~G0
x[5

~Gj/V (x)] obtained from the QCM results for (a),(d) case I, (b),(e)

case II, and (c),(f) case III at sites (top) 31 and (bottom) 24 with superimposed bottom contours (thin black lines)

and a few representative ray paths of the dominant swells (thick gray lines). The sites considered in each panel

(located at the white crosses) are indicated by the number in the lower-right corner.

1150 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45



during case II is also apparent from the large spatial extent

of the correlation bands just north of the canyon.

5. Conclusions

In this study, we developed a stochastic modeling

framework for describing the effects of coherent wave

interference on spectral wave evolution. By considering

a finite coherent footprint of the wave field, the quasi-

coherent theory of SJ13was reformulated in a form similar

to a radiative transfer equation, commonly used in oper-

ational wave prediction models, but with an additional

source term to account for the coherent effects in the wave

evolution. The transported variable in this equation is

a coupled-mode spectrum, essentially a generalization of

the variance density spectrum, which allows for the evo-

lution of cross-phase information and thus the complete

spatial covariance function. We verified that the model

captures the complete second-order statistics, including

mean wave heights and the wave covariance function, for

coherently interfering waves by comparison of model re-

sults to laboratory observations of a wave focal zone be-

hind a submerged shoal and withMonte Carlo simulations

with a deterministic model. Comparison of model pre-

dictions to field observations obtained during the Near-

shore Canyon Experiment (NCEX) at Scripps Canyon,

a submarine canyon on the southern California coast,

demonstrates the improved predictive capability of the

new stochastic model. In particular, the QCM accurately

predicts the observed interference patterns of crossing

waves (near the canyon head) that are neglected in tradi-

tional models based on the radiative transfer equation.

These results, and in particular the comparison to field

observations, show that the QCM can resolve finescale

structures in nearshore wave statistics associated with

crossing wave fields, which contributes to our un-

derstanding of these dynamics near the coast and improves

the ability to model nearshore wave statistics, wave-driven

circulation, and transport processes near the coast.
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APPENDIX A

Fourier Transform Operators

As we make frequent use of continuous and discrete

Fourier transforms, it is convenient to introduce the

following operators. Let z be a dummy continuous func-

tion, for which we denote the conjugate pair as z(x), ẑ(k),

such that ẑ(k)5F x,k[z(x)] and z(x)5F 21
k,x[ẑ(k)], with

F x,k[z(x)]5
1

(2p)2

ð
z(x) exp(2ik � x) dx, and (A1)

F 21
k,x[ẑ(k)]5

ð
ẑ(k) exp(ik � x) dk , (A2)

and the transforms are assumed to exist in the context of

generalized functions (Strichartz 1993).

In a similar fashion, we define the Fourier transform

pair for a periodic function z(x) with period L for

a discrete set of wavenumbers km1,m2
5 (m1, m2)Dk

(with Dk5 2p/L and m1, m2 integers) as z(x), ẑk,

where

ẑk 5F x,k[z(x)]5
1

L2

ðL/2

2L/2
z(x) exp(2ik � x) dx, and

(A3)

z(x)5F 21
k,xfẑkg5 �

k
ẑk exp(ik � x) . (A4)

APPENDIX B

Discrete Model

To consider the numerical solution of the QC ap-

proximation, we consider the solution on a discrete

regular rectangular mesh in both geographical and

wavenumber space. For the spatial and wavenumber

mesh we set

xmx
1
,mx

2
5 x01 (mx

1Dx1,m
x
2Dx2),

kmk
1
,mk

2
5 k01 (mk

1Dk1,m
k
2Dk2) , (B1)

withmx
j 2 f0 . . .Mx

j g,mk
j 2 f0 . . .Mk

j g, and where x0 and

k0 denote the coordinates of the lower-left corner of the

geographical and wavenumber grid, respectively. For

brevity, we denote the discrete coupled-mode spectrum

evaluated at xmx
1
,mx

2
, kmk

1
,mk

2
as E k,x(t), where the de-

pendency on the subscripts mx
j , m

k
j is implied. With

these definitions in place, the spatially discrete and sta-

tionary version of the quasi-coherent approximation can

be expressed as

ck �D kE
k,x1 cx �D xE

k,x

52i �
jqj#q

max

DV̂q(k, x,2iD x)E
k2q/2,x 1 *. (B2)
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Here, D x and D k denote linear finite-difference oper-

ators that approximate $x or $k, respectively, by means

of second-order upwind approximations. The operator

D xE k,x is defined as

D x
j
E k,x5 sj

3E k,x2 4E k,x2D~x
j

1E k,x22D~x
j

2Dxj
, (B3)

with s5 sgn(k) and D~xj 5 sj(d1jDx1, d2jDx2), where dij
denotes the Kronecker delta. The operator D kE k,x

is defined analogously, but then along the spectral

dimensions

D k
j
E k,x5 esj 3E k,x2 4E k2D~k

j
,x1E k22D~k

j
,x

2Dkj
, (B4)

where ~s5 sgn(cx) and D~kj 5 ~sj(d1jDk1, d2jDk2). Upwind

approximations are used to enhance convergence in the

iterative solution technique used to solve the system of

equations in a manner similar to Booij et al. (1999); we

discuss this in more detail in what follows.

To exclude interactions between waves and topo-

graphical variations on the infrawave scale, which are

excluded at the orderO(«) considered, the sum over q is

restricted to jqj# qmax. Here, qmax is the minimum of

jkj/2 or a predescribed maximum bottom wavenumber

component. When solving for the RTE, we disregard

this sum altogether.

At the geographic boundary (along the lines

mx
1 5 0, mx

1 5Mx
1 and mx

2 5 0, mx
2 5Mx

2), the wave spec-

trum is prescribed for wavenumbers directed into the

computational domain. For the spectral boundary (along

the lines mk
1 5 0, mk

1 5Mk
1 and mk

2 5 0, mk
2 5Mk

2 ), we

assume that it is located at wavenumbers that are effec-

tively deep-water waves, so that the interaction with

components outside the computational domain (assumed

to be zero) can be neglected. Moreover, at points adjacent

to the geographic or spectral boundary (e.g., along the line

mx
1 5 1) first-order approximations are used if Eqs. (B3) or

(B4) reference points outside the computational domain.

Here, the discrete operators D xj and D kj are locally re-

duced to

D x
j
E k,x5 sj

E k,x2E k,x2D~x
j

Dxj
,

D k
j
E k,x5 esjE k,x2E k2D~k

j
,x

Dkj
, (B5)

respectively.

a. Coefficients

The geographic and spectral propagation velocities

are defined as cRTE
k (k, x)52sh$xh and cRTE

x 5 ~ksk,

whereas the difference between V and the plane ap-

proximationVRTE [see Eq. (12)] is used to calculate DV̂.

To calculate these, we define a local geographic grid x0

over the coherent footprint centered at x, and its con-

jugate set of wavenumbers q as

x0
mx0

1
,mx0

2

5 (mx0
1 Dx1,m

x0
2 Dx2), qmq

1
,mq

2
5 (m

q
1Dq1,m

q
2Dq2) ,

(B6)

with mx0
j , m

q
j 2 f2M

q
j /2 . . .M

q
j /2g, Mq

j 5 2qmax/Dqj, and
Dxj 5 2p(Mq

j Dqj)
21. To avoid interpolation, it is conve-

nient to ensure the sum in Eq. (B2) over q coincides with

the k grid, so we set Dqj 5 2Dkj, assuming that

Dkj # 2p/jc. With these definitions in place, the co-

efficients of the operator DV̂ can now be obtained by

a discrete Fourier transform. However, to avoid errors

due to jump discontinuities between the nonsmoothly

matching domain borders in a periodic extension of DV̂,

we define the transform as

DV̂5F x0 ,q[W1(x
0
1)W2(x

0
2)DV] , (B7)

where Wj(x
0
j) are window functions that smoothly tran-

sitions to 0 near the edges of the domain, and for which

in the present work we use a tapered cosine (Tukey)

window that is given by

Wj(x
0
j)5

8>>>>><
>>>>>:

1

2
1

1

2
cosfp[(x0j 2 lj 1 glj)/(glj)]g if x0j . (12 g)lj

1

2
1

1

2
cosfp[x0j/(glj)2 1]g if x0j , glj

1 elsewhere

. (B8)

Here, lj 5 2p/Dqj is the length of the jth side of the x0

domain, and g is a dimensionless width parameter

controlling the length of the transitional area where

W/ 0 and which is set to g5 0:1.
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b. Iterative solution technique

The resulting set of equations involves M5
Mx

1M
x
2M

k
1M

k
2 variables so that solving for the steady

state involves inverting a large sparse M3M matrix.

Solving this system directly is difficult, as even for a mod-

erate number of grid points in each of the four dimensions,

the total number of points quickly becomes large. How-

ever, because propagation principally occurs in geographic

space and is dominated by theLHSofEq. (B3), the system

can be solved iteratively in a marching fashion, similar to

the method employed in Booij et al. (1999).

Hereto, k space is subdivided into four quadrants,

each bounded by the Cartesian axes, which we will

number 1 till 4 in a counterclockwise fashion, where

quadrant 1 is the setQ1 5 (k, x j k1 . 0 ^ k2 $ 0). During

a single Gauss–Seidel iteration, each of the four quad-

rants of the spectral domain is visited consecutively us-

ing four sweeps per iteration. During each sweep, only

points that belong to the quadrant are updated. For

example, during iteration step n, in themth sweep (nm),

the quadrant m is considered, and for all points P5
(k1, k2, x1, x2) where P 2 Qm, we substitute the un-

known E nm
P in Eq. (B2) "P. Conversely, for all points

R5 (k1, k2, x1, x2) where R;Qm is approximated by

the values from the most recent update at nm21 [with

n0 5 (n2 1)m], and for these we therefore substitute

the known values E nm21

R . Not only does this reduce the

number of unknowns per sweep, the structure of the

resulting matrix is such that spatial dependencies in-

volving E nm
P only occur in the downwave direction, and

consequently we only need to invert a Mk
1M

k
2 by Mk

1M
k
2

matrix involving those wavenumbers k in the quadrant

at each spatial point. If the topography is captured with

M2
q Fourier modes, this gives rise to a dense linear sys-

tem containing M
q
1M

q
2 diagonals. However, given that

for slowly varying topography the off-diagonal contri-

butions are small, the resulting system can still be solved

relatively fast using the BicGStab method with an ILU

preconditioner (Van der Vorst 1992).

In the cases considered, the resulting algorithm always

converged to a solution within relatively few iterations

(n, 10), where the solution was considered to be con-

verged after a complete iteration n4, when for each

spatial point the following criterion was met:

�
k
(En

4

k,x2 E (n21)
4

k,x )2

�
k
(En

4

k,x)
2

,a2, "x . (B9)

Here, a is the convergence criterion, set to a5 1024 in

the present study.
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