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Nomenclature
Table 1 summarizes the notations used in this thesis.

g Macrosurface normal
f Microsurface normal
fe Eastern face normal
fn Northern face normal
fw Western face normal
fs Southern face normal
i Incoming ray direction
o Outgoing ray direction
r Vector with 𝜃 = 𝜃𝑜 and 𝜙 = 0
hr Halfway vector between incoming and outgoing rays for reflection
ht Halfway vector between incoming and outgoing rays for transmission
𝜃𝑜 Angle between macrosurface normal and outgoing direction
𝜂𝑖 Index of refraction of the material on the incident side
𝜂𝑜 Index of refraction of the material on the transmitted side
𝐷(v) Normal distribution function
𝐺(i,o,v) Shadowing-masking function
𝐺1(o,v) Smith shadowing-masking function
< 𝑎, 𝑏 > Clamped dot product; 0 if 𝑎 ⋅ 𝑏 < 0

Table 1: Definition of symbols
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1
Introduction

1.1. Motivation
The importance of reducing humanity’s impact on the environment is an increasingly discussed topic,
with both organisations and individuals accepting more and more that they need to make changes.
The EU aims to reduce greenhouse gas emissions by 55% in 2030, and wants to move towards be-
ing climate neutral in 2050 [3]. As one strategy in working towards this goal, clean energy techniques
are being developed. One such technique is the deployment of Building Integrated Photovoltaic (BIPV)
systems. These systems replace materials in a building with solar cells, allowing them to be seamlessly
integrated into walls or roofs. Though this does not change the shape of the building, its appearance
is altered.
At the moment, the options for the appearance of these BIPV systems are limited. Giving architects
more options in this regard would better enable their use in a variety of scenarios.

Figure 1.1: A solar cell overlayed with sam-
ples of the optical filters designed by Ortiz
Lizcano et al. Image source: [10]

Different options to improve colour versatility have been ex-
plored, involving techniques such as dyeing the protective glass
covering the solar cells or colouring the cells themselves. An-
other option, which can be applied both to the front glass or to
the solar cells themselves, is the use of an optical colour filter
(OF). Broadly speaking, these optical filters selectively transmit
a wavelength-dependent percentage of light. By adjusting the
OF’s composition, these percentages can be changed, thus al-
tering their colour.

In 2021, the TU Delft Photovoltaic Materials and Devices
(PVMD) group proposed a method for the use of coloured opti-
cal filters on crystalline silicon (c-Si) solar cells [10], those being
one of the more popular types of cells in use today. These fil-
ters colour the cells in any desired shade and make them more
aesthetically attractive for use in a city environment, as well as
easier to blend into the environment, but do not severely impact
the performance of the cells. To convince architects to make use
of this technology, it is important they are able to get a good impression of what it will look like in use.
To this end, the PVMD group would like to have access to a method to realistically render these solar
cells.

1.2. Scope and contribution of the project
The c-Si solar cells the filter is to be applied to has amicroscopic texture, consisting of many overlapping
pyramids, which forces light to interact with the surface multiple times. It is desirable to avoid recreating
this microsurface in detail as this would be computationally expensive. The pyramidic surface of the
c-Si cells will be analysed, and statistical functions that describe its geometric properties will be derived.
These functions can be directly input into a so-called microfacet model that can approximate the way

1



2 1. Introduction

the microsurface scatters light, allowing the user to render its appearance without the computational
demands of exact recreation. The functions to be derived describe the orientation of the facets of the
surface, as well as the visibility of the facets from any direction.

The microfacet model that will be adapted explicitly ignores multiple interactions, which are an inte-
gral part of the function of the microsurface and should be included. The effect of multiple interactions
will therefore also be analysed and included into the model.

The resulting functions will be verified through measurements created using a digital gonioreflec-
tometer and simulated pyramidic surfaces.

1.3. Organisation
Chapter 2 discusses previous work related to this thesis. In chapter 3, the functions needed to create
the microfacet model are mathematically derived. Finally, chapter 4 compares the functions found in
the previous chapter to those measured using a digital gonioreflectometer and discusses the accuracy
of the model.



2
Background

This chapter will explore previous work related to the subject of this thesis.

2.1. Structure of a solar cell

Figure 2.1: c-Si solar cell surface as captured by electron mi-
croscope. Image source: [11]

Figure 2.2: Measured (blue) and fitted (red) distribution of pyra-
mid heights on a solar cell surface (inset). Image source: [14]

The base cell described by Ortiz Lizcano et al. [10] consists of a crystalline silicon (c-Si) solar
cell. This is the most commonly used type of cell due to its low production cost and high conversion
efficiency [14], meaning, compared to other types of solar cells, they produce more electricity from the
same amount of light.
A pyramid texture is added to the front side of these C-Si solar cells, an example of which is pictured
in Figure 2.1. This is done through a so-called wet-alkaline etching process [12], where, as the name
implies, liquid alkaline chemicals are applied to the surface. These chemicals react with the silicon,
eating away at it. The rate at which this process occurs varies locally, resulting in the distinctive pyramid
texture. The silicon has several crystal orientations, which etch down at very different speeds. The
angle between the orientation of the silicon wafer itself and the orientation that is slowest to etch is
54.7∘ [15]. The pyramid sides follow this slowest orientation and have a fixed angle of 54.7∘ [14]. These
pyramids are randomly distributed on the surface, ’growing’ downwards from a seed point at their tips.
The pyramids vary in height, following a distribution measured by Procel et al. [14]. The distribution
as found in this paper can be seen in Figure 2.2. The data plotted in this figure was obtained from P.
Procel for use in this thesis.
Adding a texture to the cells reduces the amount of light reflected and thus increases the conversion
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4 2. Background

efficiency by increasing the light absorbed into the cell [14]. This effect is demonstrated in Figure 2.3.
Each interaction allows a percentage of the light to be transmitted into the surface. When a second
bounce occurs, the same percentage of the light that was not transmitted on the first bounce, and would
have left the surface if no texture was present, will enter the material and be converted into electricity.
The purpose of using this specific pyramidic texture is to always force at least two interactions, but
more can occur, each time reducing the reflected energy by a percentage.

54.7
o

50%

50%

50%
50%

25%

25%

Figure 2.3: Demonstration of pyramidic texture forcing multiple interactions with a surface with a transmittance of 0.5. On a flat
surface (left), 50% of the light is reflected. On a surface with pyramids (right) the light is reflected again and only 25% escapes.

2.2. Microfacet modelling
Perfectly smooth surfaces are rare. Usually, a surface has some sort of texture, which could vary from
something as small as scratches on a desk to something as rough as cat fur. When these textures
are too small to be seen directly, they are referred to as microsurfaces. When trying to realistically
render an image, it is important to capture these imperfections, as they influence the appearance of a
material. Explicitly incorporating the microsurface is computationally expensive, as it would require a
very high-definition mesh. The microfacet model developed by Torrance and Sparrow [17] allows the
bidirectional scattering distribution function (BSDF) of microfaceted surfaces to be statistically mod-
elled, thus speeding up computation considerably by allowing the renderer to sample the model BSDF
instead of the exact microsurface. A limitation of the model is the assumption that any ray of light hits
the surface exactly once. Since our surface is designed to force multiple bounces, this will need to be
included separately. The Torrance-Sparrow model assumes a microsurface can be fully described by
two statistical measures, a microfacet distribution function 𝐷 (2.2.2) and a shadowing-masking function
𝐺 (2.2.3). It also uses a Fresnel term 𝐹 (2.2.4).

2.2.1. Microfacet BSDF
Themicrofacet model is used to obtain a bidirectional scattering distribution function (BSDF). The BSDF
is a function that takes an incoming direction i, outgoing direction o andmacrosurface normal g as input,
and outputs the ratio of energy transferred from the incoming to the outgoing direction. It is found by
summing its two components, the bidirectional reflectance distribution funcion (BRDF) and bidirectional
transmittance distribution function (BTDF), denoting the reflection and transmission respectively [18].

𝑓𝑠(i,o,g) = 𝑓𝑟(i,o,g) + 𝑓𝑡(i,o,g). (2.1)

The BRDF and BTDF both depend on the statistical functions 𝐷 and 𝐺, and on the Fresnel term 𝐹.
For the BTDF, we also need the index of refraction of the materials on the incident (𝜂𝑖) and transmitted
(𝜂𝑜) side. They are defined as follows [18]:

𝑓𝑟(i,o,g) =
𝐹(i,hr)𝐺(i,o,hr)𝐷(hr)

4|i ⋅ g||o ⋅ g| , (2.2)

𝑓𝑡(i,o,g) =
|i ⋅ ht||o ⋅ ht|
|i ⋅ g||o ⋅ fn|

𝜂2𝑜(1 − 𝐹(i,ht))𝐺(i,o,ht)𝐷(ht)
(𝜂𝑖(i ⋅ ht) + 𝜂𝑜(o ⋅ ht))2

. (2.3)



2.2. Microfacet modelling 5

2.2.2. Microfacet distribution function
The microfacet distribution function 𝐷(v), also known as the normal distribution function (NDF), de-
scribes the distribution of microfacet normals on the surface. For any normal v and given an infinitesi-
mal solid angle 𝑑𝜔𝑣 centred on v and an infinitesimal macrosurface area 𝑑𝐴, 𝐷(v)𝑑𝜔𝑚𝑑𝐴 is the total
area of the microsurface corresponding to 𝑑𝐴 that has a normal within 𝑑𝜔𝑣 [18]. Simply said, 𝐷 is
a density function that for any given vector, describes the probability of any infinitesimal area of the
microsurface having that vector as a normal.

There are some properties that should hold for any valid NDF.

• 𝐷 is a density function and, therefore, must be non-negative:

0 ≤ 𝐷(v) ≤ ∞ (2.4)

• Over the whole surface, the area of the microsurface must be equal to or greater than the corre-
sponding area of the macrosurface.

1 ≤ ∫𝐷(v)𝑑𝜔v (2.5)

This can be intuited in 2D as the macrosurface spanning the most direct route from A to B, where
the microsurface deviates from this path and, therefore, has a greater length. This concept is
visualised in Figure 2.4.

Macrosurface

Microsurface

A
B

Figure 2.4: Illustration of a micro- and macrosurface, showing that the macrosurface can be viewed as the most direct path from
point A to point B, while the microsurface is a longer path between the points.

• The projected area of the microsurface is the same as the projected area of the macrosurface for
any direction o.

(o ⋅ g) = ∫𝐷(v)(o ⋅ v)𝑑𝜔𝑚 . (2.6)

The left hand side of equation 2.6 is the area of the macrosurface, the right hand side is that of
the microsurface. This concept is visualised in Figure 2.5.

A

A proj

g
 

 
o

θo

1

(a) Projected macrosurface 𝐴1𝑝𝑟𝑜𝑗 in direction o.

A pr
oj

o

2

(b) Projected microsurface 𝐴2𝑝𝑟𝑜𝑗 in direction o, with the
colour-coded dotted lines showing the contributions of
each microfacet to the projected area.

Figure 2.5: Projections of a macro- and microsurface in the same direction o. The projections of both surfaces have the same
area.



6 2. Background

2.2.3. Shadowing-masking function
The second function, 𝐺(i,o,v), describes, for the part of the surface that has normal v, what percent-
age is simultaneously visible in directions i and o [18]. This function shows when peaks in the surface
occlude other parts of the surface. Typically, one would expect the most occlusion to occur at shallow
angles.

A valid function for 𝐺 needs to have the following properties:

• As 𝐺 denotes a percentage, it should be a fraction between zero and one:

0 ≤ 𝐺(i,o,v) ≤ 1 (2.7)

• 𝐺 describes the simultaneous visibility in directions i and o, so these vectors should be inter-
changeable:

𝐺(i,o,v) = 𝐺(o, i,v) (2.8)

• When viewing the front of the macrosurface, we should never be able to see the back of any
microsurface facet and vice versa; in these cases, 𝐺 should be set to zero. The dot product of a
vector with a surface normal is positive if and only if the vector is on the front side of the surface.

𝐺(i,o,v) = 0 if (i ⋅ v)(i ⋅ g) ≤ 0 (2.9)
or (o ⋅ v)(o ⋅ g) ≤ 0 (2.10)

Smith approximation
In general, the exact function for 𝐺(i,o,m) is difficult, if not impossible, to find. In 1967, the Smith
shadowing-masking approximation method was proposed [16]. This approximation can be used in
those cases where the spatial distribution of the microfacets is not correlated with their heights. Instead
of directly finding one term with both the incident and scattering vectors, this method approximates it
as the product of two shadowing terms 𝐺1 with a single direction each,

𝐺(i,o,m) ≈ 𝐺1(i,m)𝐺1(o,m), (2.11)

for which 𝐺1 can be extracted from the microfacet distribution.

m m'

Figure 2.6: Illustration of a V-groove surface
texture. The surface has two normals,m and
m′

V-grooves
Most microsurface models assume a surface with facets in many
different orientations. A surface with only a few possible face ori-
entations, such as the one discussed in this paper, is relatively
rare. There is, however, one commonly discussed texture which
is similarly structured andwill be of use to us. This is the V-groove
surface ([1, 4, 7]), which is illustrated in Figure 2.6. As suggested
by the name, this surface consists of grooves running along one
axis, meaning the normal distribution function only has two pos-
sible values. We are especially interested in the derivation of
the shadowing-masking function for V-grooves, as a jumping-off
point for a derivation for our surface. There are two works that
have served as the main inspiration, providing different proofs for
the same function. Blinn [1] uses a trigonometric proof, employ-
ing the law of sines and complementary angles. Heitz [7], mean-
while, builds upon the equality between the area of the macro-
and microsurface as established in equation 2.6. This proof will
be discussed in section 3.2.1.

2.2.4. Fresnel
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Figure 2.7: An example of water being reflec-
tive when viewed at a grazing angle, due to
the Fresnel effect. Image source: [19]

The final component needed for the BSDF is the Fresnel term
𝐹 [5]. All light waves can be described as two linear polarisa-
tion components: 𝑠, perpendicular to the plane of incidence (the
plane containing both the surface normal and the light direction
vector), and 𝑝, parallel to it. These components will be transmit-
ted into the surface or reflected from it in different ratios. The four
Fresnel equations describe the ratio of transmitted and reflected
light for each of the polarisation components [13]. They depend
only on the refractive indices of the media at the surface, which
are material-dependent, and on the angle between the incom-
ing light and the surface normal. In general, more light will be
transmitted at normal incidence and when nearing grazing an-
gles, reflection very quickly rises to close to one. This effect is
responsible for, for example, the reflections we might see on water in the distance, like in Figure 2.7.

Under certain constraints, the formulation can be simplified. For example, dielectrics do not have a
complex component to their refractive index thereby allowing a simpler expression, or the two polariza-
tion components can be combined to yield an approximation for unpolarized light. Because the Fresnel
term does not depend on the geography of the microsurface, it is outside the scope of this thesis and
will not be investigated further here.

2.3. Measuring the BRDF
To verify the model deduced for our microsurface, we can measure the normal distribution function and
shadowing-masking function of simulated surfaces using the digital gonioreflectometer developed by
Y. Chen and used in [2]. A physical gonioreflectometer (Figure 2.8) measures the BRDF of a surface by
rotating a light source and sensor around it, and measuring the reflectance for different combinations
of positions. Chen’s digital version allows the user to input a height field into his software, and then
tracks in which directions rays sent into the surface are scattered.

Figure 2.8: An example of a physical gonioreflectometer. The light source and sample can both pivot, to measure the reflectance
in all directions. Image source: [9]





3
Derivation Of Statistical Properties

In this chapter, expressions for the normal distribution function and shadowing-masking function of the
pyramidic microsurface will be derived, based on similar derivations for related surfaces. Additionally,
an analysis of the effect of multiple interactions on the energy transfer will be performed.

3.1. Normal distribution function
Since the surface consists exclusively of pyramids which all have the same angle and orientation, we
expect 𝐷 to only contain a few nonzero values. A single pyramid has four faces, each of them the same
size. Thus, if we were to consider a grid with adjacent pyramids of the same size aligned such that
none overlap, out of the facets on the grid, 25% would be facing north, 25% east, 25% south, and 25%
west. In other words, 𝐷 will consist of four Dirac deltas for the four normals. If the surface were to not
be fully covered in pyramids, but still had some empty space in between them, we would expect to see
another Dirac delta at zero elevation and azimuth, corresponding to the areas with a flat surface. In
practice, however, this is not something that would occur on a c-Si solar cell.

θ

ϕ

Figure 3.1: Theoretical normal distribution function D, plotted such that rotation around the origin denotes azimuth and distance
from the origin denotes elevation. The plot shows four peaks, one for each of the possible face orientations.

We do not have such a neat surface. Instead, pyramids can have varying heights and can overlap
one another. This overlap will cause part of the overlapping faces to be obscured, thus causing their
peaks in 𝐷 to be smaller. In our case, because the pyramids are uniformly randomly scattered across

9



10 3. Derivation Of Statistical Properties

the surface, we expect 𝐷 to look the same as for the neatly aligned grid. The chance of a pyramid
overlapping another on any one side is the same as it overlapping on any other side. Over a large
area, then, the expectation is that these overlaps will even out and result in the same four equal Dirac
deltas.

To find the value of the peaks in 𝐷, we refer to the work by Heitz [7]. In this paper, the following
value is derived for 𝐷 for a V-groove surface with normals m andm′:

𝐷(v) = 1
2
𝛿m(v)
m ⋅ g + 12

𝛿m′(v)
m′ ⋅ g . (3.1)

The Dirac delta functions ensure 𝐷 is only nonzero at two points, corresponding to the two surface
normals. The division by m ⋅ g is needed to ensure equation 2.6 (the equality between the projected
micro- and macrosurface area) holds. The microsurface has a larger total area than the macrosurface,
and if 𝐷 did not include this denominator, its integral over the surface would equate to a number larger
than 1.

In an almost identical manner, we can show the value of 𝐷 for a pyramidic surface is

𝐷(v) = ∑
i∈{fn ,fe ,fs ,fw}

1
4
𝛿i(v)
i ⋅ g . (3.2)

To show this is the correct formula for 𝐷, we use the property of 𝐷 that ∫Ω 𝐷(v) < g,v > 𝑑v = 1, as
given in [18]. We can show that this equality holds when the value in Equation 3.2 is inserted.

∫
Ω
𝐷(v) < g,v > 𝑑v = ∫

Ω
< g,v > ∑

i∈{fn ,fe ,fs ,fw}

1
4
𝛿i(v)
i ⋅ g 𝑑v

= 1
4
fe ⋅ g
fe ⋅ g

+ 14
fw ⋅ g
fw ⋅ g

+ 14
fn ⋅ g
fn ⋅ g

+ 14
fs ⋅ g
fs ⋅ g

= 1
4 +

1
4 +

1
4 +

1
4 = 1.

3.2. Shadowing-masking function
To derive the properties of the shadowing-masking function for our surface, we will progress through
a number of cases, increasing in complexity. For each case we will analyse how varying the incident
angle impacts the area of the pyramids that is masked.

3.2.1. 2D, or the V-groove problem
We start with a 2D scenario, leaving the azimuth out of consideration. We consider two pyramids placed
next to each other, as in Figure 3.2. Since it is in 2D, this case is identical to that of a V-groove problem.
This problem has been solved for V-grooves [1, 7], and the same approach can be used here.

A
-90˚≤θ<-35.3˚

B
-35.3˚≤θ≤35.3˚

C
35.3˚<θ≤90˚

54.7˚

Figure 3.2: The different cases for 𝐺 applied to the orange face in the case of 2D pyramids. In section A masking occurs, in
section B there is no masking, and in section C the face is backfacing.
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The facet marked in orange is the one for which we will analyse the shadowing. There are three
distinct regions:

• If 𝜃𝑜 is larger than 35.3∘, so in section C in Figure 3.2, the light is coming from behind the facet
under consideration and so none of it will be visible. This means 𝐺1 will have a value of 0 in that
case.

• If 𝜃𝑜 is between 35.3∘ and −35.3∘, corresponding with section B in the figure, the entire facet is
visible and 𝐺1(𝜃) will have a value of 1.

• The most complex section of the function is section A in Figure 3.2. Here, the left pyramid casts a
shadow on our facet. The proportion of the visible surface is described by the following formula:

𝐺1(o,v) = 2
(v ⋅ g)(g ⋅ o)
< o,v > . (3.3)

Function 3.3 can be derived in different ways. It can be shown trigonometrically, as done by Blinn [1],
but also by using the fact that the projected area of the microsurface is the same as that of the macro-
surface. This proof was provided by Heitz [7].

The projected area 𝐴1𝑝𝑟𝑜𝑗 of a flat surface is equal to the surface area 𝐴 multiplied by the cosine of
the angle 𝜃𝑜 between the surface normal g and the projection direction o, which is the same as the dot
product of g and o.

𝐴1𝑝𝑟𝑜𝑗 = 𝐴𝑐𝑜𝑠(𝜃𝑜) (3.4)

To simplify the derivation, the dimensions are usually chosen such that 𝐴 = 1.

This 𝐴1𝑝𝑟𝑜𝑗 is equal to the projected area of the visible microsurface in the same direction, which is
given by

𝐴2𝑝𝑟𝑜𝑗 = ∫
Ω
𝐷(v) < o,v > 𝐺1(o,v)𝑑v. (3.5)

We also know that in the 2D case there are only two face orientations, and so 𝐷(v) = ∑2i=1
1
2
𝛿i(v)
i⋅g .

Setting Equations 3.4 and 3.5 to be equal to each other allows us to derive the formula for 𝐺1.

𝑐𝑜𝑠(𝜃𝑜) = ∫
Ω
𝐷(v) < o,v > 𝐺1(o,v)𝑑v

= 1
2𝐺1(o, fe)

< o, fe >
fe ⋅ g

+ 12𝐺1(o, fw)
< o, fw >
fw ⋅ g

For an angle 𝜃𝑜 in section A in Figure 3.2, the area for which we want to derive the function, the
eastern faces (fe) are backfacing and 𝐺1(o, fe) = 0. Then

𝑐𝑜𝑠(𝜃𝑜) =
1
2𝐺1(o, fw)

< o, fw >
fw ⋅ g

𝐺1(o, fw) = 2
𝑐𝑜𝑠(𝜃𝑜)(fw ⋅ g)
< o, fw >

= 2(o ⋅ g)(fw ⋅ g)< o, fw >

which, when generalised to a random face normal v, is the function given in Equation 3.3. The full
function is plotted in Figure 3.3. The slope seen around −35.3∘ is the result of the step size in the
calculation; in reality, we would see a Heaviside step function here, creating an immediate drop.
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oθ
35.3-35.3

Figure 3.3: Plot of the value of 𝐺1 against 𝜃𝑜 for the 2D case, showing the three sections of 𝐺1. The dotted lines illustrate the
transitions between sections in Figure 3.2, at −35.3∘ and 35.3∘.

Figure 3.4: Shadowing in 3D from azimuth aligned with pyra-
mid axis, made in Blender. Note the triangular shape of the
shadow.

(a)

(b) (c)

Figure 3.5: Side and front view of the masked area of a face
at different view angles, showing how the masked area will
change as the view angle is varied.

3.2.2. 3D with fixed azimuth
We now complicate our scenario slightly by considering a 3D case, where there may be any amount
of randomly distributed pyramids of the same height, but the light is only coming from a single azimuth
aligned with the grid. Each pyramid will throw a shadow in the shape of an isosceles triangle. This
is illustrated in Figures 3.4 and 3.5. Referencing back to Figure 3.2, we are once again interested in
deriving a formula for 𝐺1(𝜃) in the case where o falls in section A. The value of 𝐺1(𝜃) in sections B and
C is the same as in the 2D scenario. As we know from Heitz [7], the projected area of the macrosurface
is equal to that of the microsurface. Setting these to be equal, where the first term is the projected area
of the macrosurface and the second is that of the microsurface, we have,

< o,g >=∫
Ω
𝐷(v) < o,v > 𝐺1(o,v)𝑑v

= ∑
i∈{fn ,fe ,fs ,fw}

𝐷(i) < o, i > 𝐺1(o, i).

Let’s say we are considering the light direction facing the western face (fw). Then we see fn and fs
from the side. We can assume the terms for both side faces are equal, as for an azimuth aligned with
one face, the sides are exposed symmetrically as you increase the elevation.
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< o,g >=𝐷(fw) < o, fw > 𝐺1(o, fw)
+ 2 ⋅ 𝐷(fs) < o, fs > 𝐺1(o, fs)
+ 𝐷(fe) < o, fe > 𝐺1(o, fe)

In the range for o under consideration, section A in Figure 3.2, < o, fe > is 0, as the eastern face is
backfacing from this angle. This means we can remove this term from the equation.
For a random grid, 𝐺1(o, fw) = 𝐺1(o, fs), as found in the measurements provided in the next chapter.

< o,g >=𝐷(fw) < o, fw > 𝐺1(o, fw)
+ 2 ⋅ 𝐷(fs) < o, fs > 𝐺1(o, fw)

=(𝐷(fw) < o, fw > +2 ⋅ 𝐷(fs) < o, fs >)𝐺1(o, fw)

Solving this for 𝐺1:

𝐺1(o, fw) =
< o,g >

𝐷(fw) < o, fw > +2 ⋅ 𝐷(fs) < o, fs >
.

To arrive at a valid formula for any elevation, we use the fact that 𝐺1 is capped at 1 for any angle in
section B in Figure 3.2 and add a minimum to the function. We set the function to zero when o ⋅ fw ≤ 0
to ensure we never divide by zero.

𝐺1(o, fw) = {
0 if o ⋅ fw ≤ 0
𝑚𝑖𝑛(1, <o,g>

𝐷(fw)(<o,fw>+2<o,fs>)
) otherwise (3.6)

Figure 3.6 shows plots of 𝐺1 for the 2D and 3D case together. We note that the descent of the plot
on the right side is slower for the 3D case, indicating a greater percentage of faces with a given normal
is visible at a given elevation.

-35.3 35.3

Figure 3.6: Plot of the value of 𝐺1 against 𝜃𝑜 for the 2D and
3D cases, showing the three sections of 𝐺1. The dotted lines
illustrate the transitions between sections in Figure 3.2, at
−35.3∘ and 35.3∘.

Figure 3.7: 3D plot of the value of 𝐺1 for all o, given a single
v. 𝑥𝑜 and 𝑦𝑜 are the x- and y-component of o, respectively.

3.2.3. Varying the azimuth
So far, we have only considered a light direction aligned exactly with the orientation of our pyramids,
varying only the elevation and not the azimuth. We want a formulation for 𝐺1 that will work for any o.
The expectation is that 𝐺1 will look the same when varying the azimuth, except for the point at which the
face becomes backfacing. Because the pyramids are randomly distributed, the probability of another
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pyramid shadowing the face under consideration is always the same. There is always an equal chance
of another pyramid being ’in the way’. The simplest way, then, to find the correct value of 𝐺1 is to rotate
o so that its azimuth is 0, then calculate 𝐺1 using this rotated vector. Let r be the vector with 𝜃 = 𝜃𝑜
and 𝜙 = 0, then the formulation for 𝐺1 is given in equation 3.7, and a 3D plot of the function is shown
in Figure 3.7.

𝐺1(o,v) = {
0 if o ⋅ v ≤ 0
𝑚𝑖𝑛(1, <r,g>

𝐷(fe)(<r,fe>+2<r,fs>)
) otherwise (3.7)

3.3. Multiple interactions
Normally, a microfacet model [18] explicitly assumes the light only interacts with the surface once. The
surface being analysed here is designed to force rays to interact with it multiple times. Since energy is
absorbed by the surface on subsequent bounces after the first one, both the direction and energy of the
ray when it finally exits the surface will be different. This means there is a need to account for multiple
bounces separately and add this to the model. Our first goal will be to derive the possible exit directions
given an incoming light direction and the number of bounces we want to consider. We can then make a
choice to use this first model directly, or calculate the energy throughput and chance of escaping. This
second method incorporates the shadowing-masking function into the multiple interaction model.

3.3.1. Exit direction
To calculate the reflection direction after a single bounce, we use the following formula,

o = i− 2(i ⋅ f)f (3.8)

where i is the incoming ray, o is the reflection, and f is the surface normal. For any bounce 𝑗 after the
first, i simply becomes the result o from the previous bounce, meaning we have a recursive formula
for the reflection direction after 𝑗 bounces, with o1 = i, and fj the normal of the face hit in bounce 𝑗:

oj = oj−1 − 2(oj−1 ⋅ fj)fj (3.9)

Using this formula, we can find the resulting reflection direction for any combination of faces we could
bounce off of. The number of possible results increases exponentially with the number of bounces
taken into account; there are 4𝑏 possibilities for 𝑏 bounces. However, not all combinations can actually
occur. For example, it is impossible to hit two faces with the same orientation in a row, which we can
prove by contradiction.

f

i

o

(a) Surface normal (f) and incoming and outgoing ray vec-
tors (i and o respectively).

f

i
θi

o

θo

(b) Vectors from Figure 3.8a, translated to have the same
origin. As i rotates, o also rotates, and they move through
the range illustrated by the dotted semicircles.

Figure 3.8: The range of movement for i and o limit the angles between the vectors and the surface normal to 𝜃𝑖 > 90∘ and
𝜃𝑜 < 90∘ for any valid reflection.

As illustrated in Figure 3.8, for a valid reflection, the incoming vector will be at an angle 𝜃𝑖 of over 90∘
with the surface normal, and the outgoing vector will be at an angle 𝜃𝑜 of under 90∘. The dot product of
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two vectors is positive at angles below 90∘ and negative at angles over 90∘. This means a ray pointing
into a surface can bounce on that surface when the dot product between the ray vector and surface
normal is negative, and the ray will hit the backface if the dot product is larger than 0. We therefore
know that for a valid bounce on a face with normal f, i ⋅ f < 0 and want to show that if a first bounce on
a face has occurred, the resulting outgoing ray could not reflect off the same face normal, so o ⋅ f ≥ 0.
We do so by assuming o ⋅ f < 0 and showing this leads to a contradiction.

o ⋅ f < 0
(i− 2(i ⋅ f)f) ⋅ f < 0 substituting equation 3.8 for o

i ⋅ f− (2(i ⋅ f)f) ⋅ f < 0 by distributive property of the dot product
i ⋅ f− 2(i ⋅ f)(f ⋅ f) < 0 by scalar multiplication property of the dot product

i ⋅ f− 2(i ⋅ f) < 0 by f ⋅ f = ‖f‖2 = 1
i ⋅ f > 0.

This cannot be true, as we previously noted that to not hit the backface, i ⋅ f < 0 must hold for the
incoming ray. It must therefore be true that o ⋅ f ≥ 0 and therefore that a ray can never bounce off two
faces with the same orientation in a row.

Eliminating bounce sequences hitting the same face twice in a row reduces the possibilities to 4⋅3𝑏−1
for 𝑏 bounces. We can reduce this number further by realizing that more of these combinations involve
hitting a backface. We can check for this by only keeping reflections where the dot product between
the face normal and the light direction is non-positive. Figure 3.9 shows the results of this check for 3
bounces. In this case, 20 options remain out of the original 64.

(a) Before removing sequences containing a backface reflection (b) After removing sequences containing a backface reflection

Figure 3.9: Possible reflection directions of an incoming ray from straight above after 3 bounces on a pyramidic surface, projected
using the Lambert equal-area mapping. Only vectors in the upper hemisphere are plotted here. Labels denote the sequence of
bounces: e.g. ESW means east-south-west bounces in that order.

3.3.2. Probability of a sequence
We are now left only with sequences of bounces that should, in theory, be possible. However, even if
a sequence is not impossible, the chance of it occurring may be very low. This depends on the angle
at which the ray is approaching the face.

It is important to take this into consideration in the model to increase its accuracy. We can determine
the probability of each face being hit by projecting the area of each face onto the incoming ray direction
with the cosine of the angle 𝜃𝑖 between the face normal and the incoming ray. This projection represents
how much of the surface is ’visible’ from the incoming direction. If we restrict ourselves to using unit
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vectors, this cosine is the same as the dot product used to check for backfaces in the previous section.
If the cosine is below 0, it is impossible to hit the face from this direction. If the ray is coming at a face
with a grazing angle, the cosine will be small. We multiply the cosine at each bounce with those of the
previous bounces in the sequence, and colour the points in Figure 3.9b to match the product of the
cosines in their sequence of interactions. The result is shown in Figure 3.10.

Figure 3.10: Cosine product for any possible sequence of 3
bounces. Here, the coordinates denote the projection of the
exit direction onto the x-y plane, while the colour denotes the
cosine product.

a

1-a

o

Figure 3.11: Illustration of the probability 𝑎 of a ray in direction
o escaping the surface, and the probability 1−𝑎 of it reflecting
again.

Instead of just calculating the probability of each face being hit, we can move toward computing the
energy transfer for each sequence of bounces by more accurately modelling the probability of actually
escaping the surface after an interaction. To do so, we need to not only take into account the projection
of a face onto the incoming direction, but also the chance of the ray escaping after this bounce. As a
ray reflects from the last face in the sequence, it might escape the surface entirely with a probability 𝑎,
but also has a chance of 1 − 𝑎 of another pyramid being in the way, as illustrated in Figure 3.11.

Figure 3.12: Probability of occurrence and escape for any pos-
sible sequence of 3 bounces. Here, the coordinates denote the
projection of the exit direction onto the x-y plane, while the colour
denotes the energy transferred.

This probability 𝑎 is one that this paper has
discussed before: it is equal to the value of 𝐺1.
We expect points that lie towards the edge of
the figure, so rays that bounce at a shallow an-
gle, to have a bigger chance of encountering an-
other pyramid on their way. Since 𝐺1 also be-
comes small at shallow angles, this should be
exactly what we see in the results. We can in-
corporate 𝐺1 into the model by multiplying the
energy transferred with the value of 𝐺1 for the fi-
nal bounce, which yields the result shown in fig-
ure 3.12. Comparing this to figure 3.10, we see
that points further toward the edge of the image
seem to have a smaller chance of escaping the
surface, as was the expectation.

Themultiple interactionsmodel has been laid
out step by step in this section. When imple-
menting the microfacet model, it will depend on
the implementation strategy whether only the
exit directions or probability of hitting a face
should be included, or whether the value of en-
ergy transferred is a better fit.



4
Modelling And Measured Results

In this chapter, pyramidic microsurfaces will be simulated and their properties will be measured using a
digital gonioreflectometer. The resulting measurements will then be compared to the expected results
derived in Chapter 3.

4.1. Recreating the surface

(a) Pyramids of equal heights (b) Pyramids of varied heights

Figure 4.1: Examples of randomly distributed 50x50 micron surfaces

A height map of the surfaces to be tested was needed as input for the gonioreflectometer. These
surfaces were created in Python using PyOpenGL. Because all pyramids have the same side angle,
a single pyramid object could be created and copied across the grid, rescaling it if necessary. This
allowed for easy manipulation of the positions of the pyramids, making it possible to test many different
(random) configurations. Meshes were created by generating a list of seed points, and spawning a
pyramid at each of these seeds on top of a square mesh serving as the floor. Pyramid density could
be controlled by varying the total amount of pyramids added.
To generate a height map, an orthogonal projection from straight above the mesh was used. The depth
buffer was then extracted and saved in a plain text format, which could be used as input for the go-
nioreflectometer.

There are two main types of grid that were used for testing. The first is a grid with randomly dis-
tributed pyramids that are all the same height. This is also the grid for which Section 3 derives the
expected functions. The second grid is more realistic to the surface of a real solar cell. Here, we not
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only generate a list of seeds, but also a list of heights for each of the pyramids. These heights are
drawn from the height distribution given by Procel et al. [14], exact data for which was obtained from
the author. Both types of surfaces will be measured and compared in this section.

4.1.1. Assumptions and limitations
Height field resolution
The digital gonioreflectometer is resource-intensive, and there are limits to the resolution of the height
field it can handle. As Figure 4.2 demonstrates, the height field measures the height of the surface at
equally spaced points, and linearly interpolates between them. In the cases where an edge does not
exactly align with a grid point on the height field, that edge will be flattened slightly. This means in those
areas, we will find a variety of different normals depending on how far the grid points lie from the edge.
This effect becomes smaller as the mesh resolution is increased, but there is a limit to how detailed
this resolution can be. This needs to be balanced with the size of the mesh, as it also needs to contain
enough pyramids to average out any bias in their random placement.

Figure 4.2: Rendered microsurface (dotted line) versus height field (solid line), linearly interpolated between the grid points
(circles) extracted from the depth buffer.

Bevelled edges
In these grids, we assume the pyramids’ shape consists of four perfect triangles. When looking at
the microscope image in Figure 2.1, it seems this may not actually be the case. It appears the edges
of the pyramids may be slightly bevelled. However, the impact of these bevelled edges was judged
to presumably be negligible. It also seems plausible that any changes caused by including bevelled
edges will be drowned out by the grid resolution issues discussed above.

4.2. Normal distribution function
We use the digital gonioreflectometer to measure the NDF, for both equal and random height pyramids.
For a small sample surface, the heights of the peaks in the NDF graph will not be equal, as pyramids
may overlap each other more on one side than the other. We need to use a sample surface large
enough to allow this random overlap to even out on all sides. We also need to use a surface with a
high enough density. If the density is too low, not all floor space will be covered by pyramids and some
of the surface will have a normal going straight up. This will result in a fifth peak in the middle of the
graph. This configuration is not true to the surfaces this model is based on. As the goal of the pyramids
is to trap more light in the surface, allowing some of the area to be bare would allow light to escape
unnecessarily. This configuration will thus not be investigated further. As is shown in Figure 4.3a, the
NDF consists of four peaks, as derived in Section 3.1.

Though the measured results mostly match those that were expected, one key difference is that
the peaks are not quite narrow enough to be Dirac deltas. Some faces have a normal that is close
to, but not quite equal to the expected four normals. This is caused by two factors, the first of which,
noticeable in Figure 4.3a, is simply the step size of the measurements. The plots linearly interpolate
between data points, resulting in the peaks not being perfect Dirac deltas. The second issue is the
limited resolution of the height field, as discussed in Section 4.1.1. Figure 4.3b shows what happens
when the mesh resolution is too small for the mesh size, so when each pyramid spans too few grid
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(a) Mesh size of 50 microns (b) Mesh size of 500 microns

Figure 4.3: Measured normal distribution function with a mesh resolution of 1024x1024

points. The NDF now contains small amounts of many more face normals than the four we would
expect to see, though the four peaks are still clearly defined. The deviation explained in Section 4.1.1
will only occur on pyramid edges, so the errant normals make up only a relatively small portion of the
total NDF.

4.3. Shadowing-masking function
To measure the shadowing-masking function, we once again input meshes into the digital gonioreflec-
tometer. The results are given per section of microsurface normals, for all incident angles. This gives
us a 3D graph depicting 𝐺1 for a single facet orientation, where rotation around the origin denotes an
increasing azimuth and distance from the origin denotes an increasing elevation. This graph is shown
in Figure 4.4. We can also consider a 2D version of this graph, made by taking a profile of the 3D
function along any desired azimuth. In the case of Figure 4.5, the profile was taken along the x-axis of
Figure 4.4, which is the same azimuth as the light direction. The results are as expected. In Figure 4.4
we see that the function is 0 whenever the face is backfacing the view direction being evaluated, and
1 whenever the view direction is high enough over top of the surface that no shadowing occurs at all.
When neither of those conditions hold, the function drops from one to zero at the same speed on all
sides, creating a bell shape.

We will compare Figure 4.5 to the theoretical results by plotting them together. Figure 4.6 shows
the theoretical and measured functions for 𝐺1 plotted on top of each other, confirming the results are
very similar. However, though the functions lie close to one another, they do not match completely.
This will always be the case: the measured function will always decline slightly slower than the theoret-
ical function. This difference is caused by the use of a finite grid for measurements. Pyramids on the
edge of the grid closest to the light direction will never be shadowed by another pyramid, but always
remain fully visible. As the grid is made larger, the pyramids on the edge of the grid make up a smaller
percentage of the total and the effect on 𝐺1 becomes smaller, but the graphs will never fully match for
a finite grid.

We see the shape of the function conforms to the expectations formed in Section 3.2. At an ele-
vation smaller than 35.3∘, the full surface is visible and 𝐺1 is one. There is a fast decline to 0 as the
angle of incidence moves to be behind the face. In the rest of the figure, as the face is shadowed by
pyramids next to it, 𝐺1 curves back down towards 0.
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G1

Figure 4.4: 3D plot of measured 𝐺1, for all possible ray direc-
tions o, given a microsurface normal m with an elevation of
52.5∘ to 57.5∘ and azimuth of −2.5∘ to 2.5∘. 𝑥 and 𝑦 are the
x- and y-component of o, respectively.

Figure 4.5: Profile of Figure 4.4 along x-axis. The left half
of the plot has azimuth 180∘, the right half has azimuth 0∘,
matching the azimuth of the microfacet normal under consid-
eration.

-35.3 35.3(degrees)

Figure 4.6: Measured (solid orange, Figure 4.4) versus theo-
retical (dotted blue) function for 𝐺1, with the black dotted lines
marking the rotation over the apex of a pyramid as illustrated
in Figure 4.7

positive θnegative θ

Faces under consideration-3
5.

3 35.3
◦

◦

Figure 4.7: Illustration of how Figures 4.5 and 4.6 should be
interpreted, showing the faces under consideration in orange.
The value on the x-axis of the plots changes with the rotation
of o across the surface.

4.3.1. Validity for all face normals
Figure 4.6 shows the measurement matches the derived function in Equation 3.6 for the microsurface
normalm with azimuth 𝜙𝑚 = 0∘. We need to verify this function holds for the other three face normals
as well. Figure 4.8 demonstrates that all four functions are equal to each other. Each of the four
subplots shows 𝐺1 for one face normal minus 𝐺1 for the normal with a 90∘ greater azimuth. We see this
evaluates to zero almost everywhere. In each plot, there are a few points which are nonzero. These
points lie in the section where the function jumps from zero to one as the ray direction o transitions
from being behind the face to in front of it (sections B and C in Figure 3.2). Which exact points fall in
the transition varies slightly per measurement, resulting in the non-zero values in Figure 4.8. Since the
measurements are equal for all four normals, the derived 𝐺1 will hold for all of them.
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Figure 4.8: 3D plots of the differences between the measured
𝐺1 for each face normal and the 𝐺1 for the counterclockwise
adjacent face normal. The labels denote the azimuths of the
normals that have been subtracted from each other in each
plot.

Figure 4.9: 3D illustration of the incoming ray directions as
discussed in Sections 4.4.1 (blue), 4.4.2 (orange), and 4.4.3
(green). Zero azimuth is aligned with the orange arrow, point-
ing to the bottom right of the image.

4.4. Multiple interactions
Finally, the multiple interaction model is verified. Once again, this is done using the digital gonioreflec-
tometer, by measuring the energy throughput for all outgoing directions after a given incoming direction
and number of bounces. Only rays escaping the surface after the given number of bounces are con-
sidered. The measurements were taken for 20 random mesh configurations, and then averaged to
eliminate any noise due to the surface configuration. The results are given as values at the outgoing
light direction on a hemisphere, mapped onto the x-y plane using the Lambert azimuthal equal-area
projection [8]. This is the same plotting method that was used in Section 3.3, which makes the result-
ing images easy to compare to the theoretical results. We compare the first three bounces, as for any
number above that, the energy transfer was found to be minimal, meaning only a very small percentage
of light interacts with the surface more than three times.

Figure 4.9 illustrates the incoming ray directions to be evaluated in the following subsections. We
will first compare results for an incoming ray from straight above in Section 4.4.1. We then vary the
elevation of the ray in Section 4.4.2, and finally, in Section 4.4.3, set both the elevation and the azimuth
of the ray to be nonzero.
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4.4.1. Incoming ray at normal incidence

Theoretical results

Measured results

Figure 4.10: Theoretical versus measured results for the first three bounces for an incoming ray at normal incidence. The plots
show the energy transmission for rays escaping the surface in each direction after one, two and three bounces, respectively.

We will first compare the results for a ray originating straight above the surface in Figure 4.10. The
theoretical results show no non-zero values for the first bounce, indicating rays never escape the sur-
face after the first bounce. The measured results appear to show very different results for the first
bounce. However, upon closer consideration, the values of the points are very close to 0. The range
of non-zero values in the measured results can be explained by the imperfections in the height field
that were previously discussed in Section 4.2 and illustrated in Figure 4.2, and have a small enough
throughput that they can be safely ignored.
In the cases of both the two bounce and three bounce plots, the theoretical results match the measured
results exactly, both in location and colour.
When looking at the legends of both sets of plots, we see that these do not match in general, though
the proportional energy throughput between points in one plot does match. This happens because the
value in the measured results denotes the percentage of total energy being diverted in any one direction
after a given number of bounces. The theoretical model does not incorporate this full measurement
of energy throughput, but instead only takes into account the probability of a sequence of interactions
occurring, and the chance of a ray escaping after its last interaction.
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4.4.2. Incoming ray with 45 degree elevation

Measured results

Theoretical results

Figure 4.11: Theoretical versus measured results for the first three bounces for an incoming ray at a 45∘ elevation. The plots
show the energy transmission for rays escaping the surface in each direction after one, two and three bounces, respectively.

Figure 4.11 shows the theoretical and measured results when considering an incoming ray at a 45∘
angle. For all measurements both the configuration and values of the points are nearly identical to
the expected results. In the measured three bounce results we see points that do not appear in the
theoretical results. Like in the case of one bounce, these points have a very low energy transfer value.
As they also appear close to other valid points, they may be the result of the inaccuracies in the height
field described in Section 4.1.1.
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4.4.3. Incoming ray with 45 degree elevation, 25 degree azimuth

Theoretical results

Measured results

Figure 4.12: Theoretical versus measured results for the first three bounces for an incoming ray at a 45∘ elevation and 25∘
azimuth. The plots show the energy transmission for rays escaping the surface in each direction after one, two and three
bounces, respectively.

The previous examples were both based on an incoming ray with zero azimuth, meaning the in-
coming ray is aligned with the pyramid orientation. We also need to check whether the model holds for
nonzero azimuth. The last example we compare is one where the azimuth of the incoming ray is set to
25∘. This angle was chosen for its lack of alignment to either the faces or their edges. The result, as is
shown in Figure 4.12, lacks the symmetry we saw in previous examples. To make comparison easier,
the points in the theoretical results have been labelled with the sequence of faces interactions have
taken place with, and the same labels have been placed on the measured results. Though the locations
of corresponding points match exactly, we do see that a point in the theoretical results is missing in the
measured ones and vice versa. We also see that the energy transfer values, displayed as the colour
of the points, are not equal.

For the first bounce, the ratio of energy transfer between the north and east faces matches in both
results. However, we see that though the theoretical model indicates there should be some interaction
with the south face, this is not found to be the case in the measurements. A possible explanation for
this fact is that, though it is theoretically possible to hit the south face and immediately escape, the
probability is small enough that this did not occur in the simulations.

For the third bounce we see the opposite phenomenon: here, the measured results show two points
that are not visible at all in the theoretical model. All theoretical exit directions were checked, including
those resulting in zero energy transfer, and none were found to match these two points. They are
therefore attributed to noise in the meshes, probably caused by the edge of the pyramids closest to the
incoming ray being bevelled in the height field.



5
Conclusion And Future Work

In this final chapter, we will recap the work performed in this thesis, and suggest avenues for future
research building upon the steps made here.

5.1. Conclusion
The objective of this thesis was to analyse the spatial properties of the pyramidic surface of a c-Si solar
cell and formulate statistical expressions of its properties for use in a microfacet model.

To achieve this goal, a theoretical analysis of the surface was performed. A derivation for V-grooves
was adapted to find expressions for the normal distribution function and shadowing-masking function.
Additionally, a method to determine possible exit directions and the probability of escape in each exit
direction was developed.

To verify the accuracy of the models, the pyramidic surface was recreated digitally and the normal
distribution function, shadowing-masking function and energy transfer after n bounces were measured
using a digital gonioreflectometer. These measurements were then compared to the theoretically de-
rived functions and confirmed them.

The functions derived in this thesis fully statistically describe the pyramidic microsurface under anal-
ysis, allowing it to be simulated in rendering using a microfacet model.

5.2. Future work
5.2.1. Implementing the microfacet model
Though this work supplies all components needed for a microfacet model, it does not yet implement
them. The next step in this process should be to implement the model in a suitable renderer and
evaluate the appearance of the resulting images against samples of textured silicon.

5.2.2. Adding layers
The original request from the PVMD group was for images of solar cells with the optical filters they
developed. This thesis only constitutes the first step in working towards rendering these solar cells
fully, as they consist of many layers. To realistically render the appearance of Lizcano et al.’s OF solar
cells, it will be necessary to first implement the layers in a regular c-Si solar cell, and then expand this to
include the multi-layered optical filter. As this filter gives the cell an iridescent effect, a spectral renderer
will be needed to accurately capture this phenomenon.

5.2.3. Exploring other textures
Though the pyramidic microsurface explored in this work is commonly used in c-Si cells, it is not the only
option available. Owing to the fact that the texture of these cells is dependent on the crystal structure
of the silicon, other textures are often semi-structured in a way comparable to the pyramidic surface
modelled in this work. This thesis could constitute a jumping-off point for the exploration of microfacet
models representing other existing surface textures, to eventually allow a visual comparison between
the use of different solar cells in building-integrated applications.
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