
Rewarding Good Behavior in Peer-to-Peer
Networks

Vlad Dumitrescu

Rewarding Good Behavior in Peer-to-peer
Networks

Master’s Thesis in Computer Engineering

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Vlad Dumitrescu

19th September 2013

Author
Vlad Dumitrescu

Title
Rewarding Good Behavior in Peer-to-Peer Networks

MSc presentation
September 24th, 2013

Graduation Committee

prof. dr. ir. H. J. Sips (chair) Delft University of Technology
dr. ir. J. A. Pouwelse Delft University of Technology
dr. ir. F. Kuipers Delft University of Technology

Abstract

Large-scale human cooperation is vital to society. Designers and community
facilitators of peer-to-peer networks are constantly investigating free-riding pre-
vention measures for their platforms. Such schemes of rewarding good behavior
remain a challenging problem in fully decentralized P2P networks.

This work is a first attempt to integrate cutting-edge technologies developed
by the Tribler team into a functional reputation-driven P2P network. We start by
evaluating the possibilities of our system in supporting generous donations, and
we continue with the issue of enforcing preferential treatment by implementing a
reciprocity mechanism in Libswift, the reference implementation of the upcoming
IETF Peer-to-Peer Streaming Internet Standard.

Additionally, we use and evaluate solutions developed during this project in two
experiments, followed by a third one whose goal is to demonstrate the concept of
indirect reciprocity using the fully integrated system. Aiming to open the road for
further research, we conclude with initial insights into the behavior of the involved
components, alongside with a number of potential weaknesses.

iv

Preface

This is the story of my confrontation with Science, which started almost 11 months
ago. It seems we are almost there, at the end. Only one more step is needed, but
my mission has ended. It is your turn, the Mighty Reader. For me, this project
started with ambitious ideas and then it soon turned into a quite challenging task. I
really enjoyed working on it, but I must say it was also frustrating at times.

Peer-to-peer networks were researched throughly during the past years, but pro-
duction level solutions for the most daunting issues are still to surface. The Tribler
team does an awesome job at balancing real-world development with their cutting-
edge research. I hope this proof-of-concept study will be the basis for the follow-
ing development efforts. I would be glad to see it culminating in a fully-fledged
reputation-based Tribler version as soon as possible.

I would like to thank Johan Pouwelse, my supervisor, who was always available
for crunching ideas and discussing issues in pretty long meetings. His enthusi-
asm and dedication towards Tribler motivated me a lot during this period. Without
Elric, Riccardo, Boudewijn, Niels, Dimitra, and Arno, who always made them-
selves available to answer my questions, I would still be fighting the Tribler’s code
trenches against fearless warriors: Python, C++, and Bash. On the other side, Cor-
Paul Bezemer offered his help with reviewing the history of this confrontation,
which you will start reading in a few moments. Thank you all a lot, and good luck
with your research endeavors!

I met a lot of smart and passionate people during my 2 years in Delft, and I was
lucky to tie friendships with some of them. Thank you for being great companions!
Also, I would like to thank my old friends from Romania who sometimes supported
me virtually.

Finally, this learning experience in Delft would not have been possible without
support from my parents. I would like to dedicate this work to them for their
unconditional trust, approval, help, and love.

Vlad Dumitrescu
Delft, The Netherlands
19th September 2013

v

vi

Contents

Preface v

1 Introduction 1
1.1 A P2P Network: BitTorrent . 2
1.2 Background: The Tribler Project 3

1.2.1 Tribler . 3
1.2.2 Libswift & the Peer-to-Peer Streaming Protocol 5
1.2.3 Dispersy . 6
1.2.4 BarterCast . 7
1.2.5 Gumby . 7

2 Problem Description 9
2.1 Research Problem . 9
2.2 Research Questions . 11

3 Enabling Generous Donations 13
3.1 Filesystem in Userspace . 14
3.2 Design . 15
3.3 Implementation . 15
3.4 Usage . 18
3.5 Performance . 19

4 Rewarding Goodness 21
4.1 Libswift Concepts . 22
4.2 Design . 24
4.3 Implementation . 25
4.4 Usage . 26

5 Experiments 29
5.1 Terabyte Seeding . 29
5.2 Libswift Reciprocity . 32

5.2.1 Policies . 32
5.2.2 Source of Inaccuracy . 34

5.3 Full Tribler . 35

6 Conclusion 39
6.1 Future Work . 40

vii

viii

Chapter 1

Introduction

Over the last 15 years, peer-to-peer (P2P) technologies secured their place as
one of the most important developments in the consumer Internet landscape. Their
popularity explosion started in 1999, when the Napster [1] file-sharing system was
launched. Examples of other popular networks that followed include: Gnutella
[24], Direct-Connect, eDonkey, and FastTrack [15] (better known under the name
of KaZaA [13] – a popular client). Currently, most of these are closed down,
but BitTorrent [2] took the lead as the most used network with over 150 million
monthly active users as of January 2012 [3]. P2P networks are being used for
file-sharing, distribution of software updates, video & audio streaming [10, 14],
communications (e.g., Skype), data caching (e.g., Content Distribution Networks),
server-less website hosting, decentralized search, or digital currency.

The Internet Study 2008/2009 [11] conducted by ipoque reported P2P file-sharing
traffic1 accounting between 43% and 70%, depending on the globe’s region, of the
total Internet traffic. These results mark the beginning of a decreasing trend in traf-
fic, which peaked in 2007. Despite this, P2P networks remain highly popular, and
we believe they will constitute a major technology in the ”Video Internet”. For the
2012-2017 period, Cisco predicts a stabilized contribution of file sharing2 in the
total consumer Internet traffic [5]. Alongside these numbers, we should also note
that classifying P2P traffic is becoming increasingly difficult (e.g., by encrypting
the protocols), countering the efforts made by Internet Service Providers towards
detecting, throttling, or even blocking (see Hart v. Comcast3), this kind of traffic.

While some might foresee the death of P2P networks, the latter-day attempts to
legislate, control, and monitor the Internet’s traffic might turn our eyes back to old
pledges of this technology, such as privacy and decentralized reputation. These are
still quite far from a production level quality and are not being used in popular im-

1The study measured the following networks: Ares, BitTorrent, eDonkey, and Gnutella.
2Note: this also includes file sharing traffic from client-server services (e.g., Megaupload-like

sites).
3http://www.wired.com/threatlevel/2007/11/comcast-sued-ov/

1

http://www.wired.com/threatlevel/2007/11/comcast-sued-ov/

plementations. Additionally, while most of the other today’s Internet technologies
(e.g., TCP/IP) have benefited from a through analysis and standardization process,
the P2P realm still hosts a lot if different solutions and implementations tailored to
each specific application.

Different from the traditional client-server model, in P2P networks all partici-
pants have equal responsibilities – they act both as a client and as a server. Ideally,
this creates a decentralized network, which leads to advantages when it comes to
scalability and low-cost barrier for smaller content distributors. Unfortunately, dis-
advantages also arise due to coordination issues (e.g., searching becomes difficult
in a decentralized system), and low upload speeds available to normal Internet
users. Also, the health of the network is completely in the hands of its users, which
have to store and re-share the information they consume, attempting to avoid the
tragedy of the commons [9]. Implementations usually alleviate these challenges by
trading off some aspects – the use a central server to keep a search index, and track
the reputation of each user in order to incentivize sharing.

Briefly, this work contributes to the attempt of the Tribler team4 to better under-
stand and find solutions for the long-standing issue of free-riding. The goal is to
build a first demonstration of rewarding good behavior in Tribler by integrating the
latest decentralized reputation tracking mechanism, BarterCast3, and implement-
ing a preferential treatment (reciprocity) mechanism in Libswift. Additionally, we
also focus on enabling generous donations.

Before detailing our research questions and goals, in Chapter 2, this chapter will
continue with an overview of BitTorrent, as an example of a P2P network, and
background information on different technologies that play a role in our project.
Following the problem description, Chapter 3 covers the contributions made to-
wards enabling high donations, which we consider one of the foundations for the
envisioned fully decentralized reputation-driven system. Chapter 4 details our ap-
proach towards rewarding goodness, while Chapter 5 presents and discusses a set
of initial experiments that were able to build. Finally, Chapter 6 draws some con-
clusions and brainstorms on a few directions of future work.

1.1 A P2P Network: BitTorrent

In a BitTorrent (BT) network all participants, called peers, collectively support
the distribution of files by downloading and uploading content to and from others,
with no central server being involved. The term swarm is used to describe the
group of peers that download or upload parts of a specific file or a logical set of
files. The peers that provide content (upload) are called seeders, while the ones
that consume the content (download) are called leechers. A swarm’s content is
split into small individual pieces which are transmitted from seeders to leechers.
When a leecher completely downloads a piece it can further seed it to other swarm

4http://www.tribler.org/

2

peers. In general, the network of peers and connections to their neighbors that
forms as a result of these interactions is called a P2P overlay.

To initiate the process, also referred to as joining a swarm, a new leecher or
seeder needs some information about the content that he is going to download or,
respectively, upload. This information is published by the initial content seeder in
a small torrent file which includes: content file names, folder structure, total size,
piece size, a list of cryptographic hashes for each piece, and, optionally, a list of
trackers. The torrent file can also contain other information specific to BitTorrent
extensions. The cryptographic hashes are used to verify the actual content that will
be received via the P2P network, thus protecting leeching peers from obtaining ma-
liciously modified, or damaged data. Note that the original torrent file, containing
the hashes, still needs to be obtained from a trusted source. Once the torrent file is
obtained, the leecher can query the listed trackers for addresses of other peers in
the swarm. Since the tracker is still a centralized component, an alternative is to
use a Distributed Hash Table [20] for this operation.

A main drawback of the BT protocol is torrent file distribution, which is still be-
ing done in the traditional client-server way, by using a centralized website. Since
shutting down torrent websites can effectively cripple the BT communities formed
around them, efforts are being made to also distribute the torrent files in a de-
centralized manner. However, this becomes a circular chicken-or-the-egg problem
which cannot be definitively solved.

1.2 Background: The Tribler Project

The Tribler project is a BitTorrent-compatible P2P client used within this research.
We start with a short overview of the whole Tribler application and continue with
the relevant sub-projects: Libswift, Dispersy, BarterCast3 Community, and Gumby.
Interested parties can further refer to the documentation and development efforts
published as open-source projects on GitHub5.

1.2.1 Tribler

Tribler is an open-source P2P client started in 2005 at Delft University of Technol-
ogy, which builds upon the original BitTorrent with novel features such as video
streaming, decentralized searching, channels, and social-like features (e.g., users
with similar tastes, voting system). Detailed information about all features are
given by Zeilemaker et al. [29]. Recent statistics6 counted approximately 1.47
million unique users since 2006. The Tribler network also acts as a real-world test-
bench for cutting-edge P2P research projects and experiments run by TU Delft and
its various partners.

5https://github.com/tribler
6http://statistics.tribler.org/

3

https://github.com/tribler
http://statistics.tribler.org/

Figure 1.1: Interface of a recent Tribler version showing re-
sults of its decentralized search.

Cryptographic public-keys, identifying each peer, form the foundation of Tri-
bler’s secure framework, on top of which most extensions are built. This public-
key-based framework, which is not present in the original BT, offers the possi-
bility to build complementary P2P overlays for metadata dissemination. Initially,
the BuddyCast [23] overlay handled peer discovery and preference data exchange,
while BarterCast was built on top of it and disseminated reputation information.
Users could publish their favorite torrent files in so-called channels, and the Chan-
nelCast overlay was responsible for discovering and sorting these channels. Inter-
esting torrent files were also prefetched from users with similar tastes discovered
by BuddyCast, enabling efficient remote search (Figure 1.1). These features are
still present in today’s Tribler, but they are now based on Dispersy – a generalized
data dissemination solution which is further described in Section 1.2.3. As another
major extension, Tribler implements piece picking policies, alternative to the BT’s
rarest-first, suited for video-on-demand and streaming.

The client is also ported to the NextShare TV [28] set-top box produced by
Pioneer, and as a browser plug-in called SwarmPlayer7 which can be used to embed
P2P-backed videos in web pages.

7http://swarmplayer.p2p-next.org/

4

http://swarmplayer.p2p-next.org/

1.2.2 Libswift & the Peer-to-Peer Streaming Protocol

Besides BitTorrent, Tribler also supports the new Libswift [21] download engine,
though, at this moment, it is mainly used for collecting torrent files to support
the decentralized search system. It is also possible to re-seed BT content using
Libswift, thus real-content usage will increase as more data is going to be injected.

Tracker

Peer Protocol

Tracker Protocol

Figure 1.2: PPSP architecture showing the 2 sub-protocols
for peer-to-peer and peer-to-tracker communication. Note that
the tracker is a logical component that can also function de-
centralized.

Libswift is the reference implementation of the IETF proposed Internet Stan-
dard, the Peer-to-Peer Streaming Protocol8 (PPSP), a standardization effort to which
the Tribler team is also contributing. The scope, requirements and use cases of
PPSP are detailed in the Informational RFC 6972 [31]. Figure 1.2 shows the gen-
eral architecture of the system with the 2 sub-protocols: a peer-protocol (PPSPP)
and a tracker-protocol (PPSP-TP). Briefly, the proposal attempts to unify, in the
dawn of the ”Video Internet”, the multitude of proprietary P2P protocols that have
been developed during the past years. The main tasks and design issues addressed
by the standard are:

• signaling standardization for both live and video-on-demand streaming

• support both centralized and distributed trackers

• loosely coupled peer-to-tracker and peer-to-peer protocols

• tracker protocol: peer & content identification, peer properties discovery
(e.g., NAT, IPv4/IPv6), light-weight design, peer list optimization (i.e., by
tracking content & peers status)

• peer protocol: global content identification & verification, light-weight chunk
availability representation, protocol efficiency (i.e., metadata overhead)

Research efforts focusing on video streaming use cases are guided by forecasts
indicating a 3-fold increase in consumer IP video traffic [5] by 2017, but we should
also note that the traditional file-sharing applications are also supported by the

8These IETF protocols are still in Internet-Draft stage. The updated version can be found at
http://datatracker.ietf.org/wg/ppsp/. This work refers to revision 07 of PPSPP.

5

http://datatracker.ietf.org/wg/ppsp/

standard. A recent example of such an application, which is also using Libswift, is
Teamshare9.

1.2.3 Dispersy

Dispersy [30] is a data dissemination middleware designed to be used in chal-
lenged network environments (i.e., erratic connectivity, high latency, or unavail-
able end-to-end paths). It provides a node discovery mechanism that also embed
a NAT-puncturing solution. The originating peer sends an introduction request to
an already connected neighbor, that, in turn, will send a puncture request to a new
candidate peer and a introduction reply back to the source, thus enabling the NAT-
puncture and the connection between the two. This system can be bootstrapped
using always connected tracker peers, a few of which are maintained by the Tri-
bler team. To avoid eclipse attacks10, the candidate peers are assigned to disjoint
categories with predefined selection probabilities; one category is composed of
only trusted peers and has a selection probability of 1%.

Dispersy splits data in bundles (or messages) and synchronizes these between
peers by first exchanging Bloom filters11 followed by the actual missing data. All
transfers are implemented over UDP, which simplifies the NAT-puncturing mech-
anism, but limits the size of the Bloom filters as fragmentation has to be avoided.
This requires Dispersy to only synchronize a subset of the available bundles, which
is established heuristically.

Applications can use Dispersy by defining a community which specifies structure
and encoding for different messages, authentication requirements, dissemination
policy (e.g., full dissemination), permissions for different peers, and candidate peer
list management. Communities are identified by unique cryptographic public keys,
which are generated at creation time and need to be known by the joining peers.
The communities used in Tribler are:

• Channel: Users can start their own channels advertising favorite torrent files.

• AllChannel: Since Channel communities can be created by anyone, their
existence and meta-information (i.e., public key) needs to be disseminated
via this community. It also handles voting and channel discovery.

• Search: This community collects torrent files and provides decentralized
search.

• PrivateSearch: Provides anonymous searching (under-development).

• BarterCast3: Disseminates reputation information.

9https://github.com/open-software-solutions/Teamshare
10The victim of a eclipse attack will only receive information from the attacker. For example, it

will only get introduced to other malicious peers.
11Bloom filters are used to efficiently test set-membership of an element.

6

https://github.com/open-software-solutions/Teamshare

1.2.4 BarterCast

BarterCast is a protocol, used by Tribler to disseminate information about the
users’ activity in order to combat free-riding. The first version of the BarterCast
[18] worked by gossiping upload and download statistics of each peer into the net-
work. Using these, a peer can build a partial view of the network in the form of a
directed graph where the edges are labeled with traffic volumes between 2 peers.
Since peers can report false information, BarterCast used a maxflow-based subjec-
tive reputation as described in [7]. Because this algorithm is very expensive, only
paths with a length of 2 were considered. To incentivize seeding, the BarterCast’s
reputation values were used in combination with the original tit-for-tat reciprocity
mechanism defined by the BitTorrent protocol. This way, peers with long-term
contributions will get higher priorities when downloading.

Version 3 of the protocol is currently under active development and it is imple-
mented as a Dispersy community. Moreover, it also adds user interaction strength
estimation metrics into the equation, as introduced by Jia et al. [12], and other im-
provements. We will discuss more about reputation, reciprocity, and improvements
to BarterCast in the following chapters.

1.2.5 Gumby

Gumby is a testing framework, designed for Tribler and Dispersy, under early de-
velopment at the time of this writing. Its ultimate goal is to unify various existing
experimentation frameworks and other components that independently developed
in the Tribler team. The required features include:

• automatic environment configuration with dependencies management

• convenient scenario specification using a Domain Specific Language

• local, remote, and DAS-412 deployment

• support for experiments with peers located in different clusters (i.e., on DAS-
4, local, and other remote machines)

• runtime peer configuration server and Dispersy tracker

• support for SystemTap13 instrumentation and other resource usage measure-
ment solutions

• support for running on Jenkins14

• log collection, post-processing, and graph generation

The integration experiment described at the end of Chapter 5 served as one of
the first case studies for this framework.

12http://www.cs.vu.nl/das4/
13http://sourceware.org/systemtap/
14http://jenkins-ci.org/

7

http://www.cs.vu.nl/das4/
http://sourceware.org/systemtap/
http://jenkins-ci.org/

8

Chapter 2

Problem Description

Cooperation in a peer-to-peer networks is essential, and free-riding cannot be tol-
erated. Free-riders are participants that refuse to contribute back to the community
after they obtained their benefit. Unfortunately, the selfish nature of humans do not
allow simple solutions for this problem. Protocol designers and community facili-
tators are obliged to come up with schemes that provide incentives for participants
to act in the interest of their group. The need for such schemes imposes limita-
tions on the level of decentralization the networks can have. Current solutions use
central entities to track activity levels of the participants and assign reputations.

The ultimate goal in fighting free-riding is to create a fully decentralized, self-
organizing, and reputation-governed P2P network. Achieving this has proved highly
challenging, with no substantial progress towards a production-level solution. This
motivates our desire to build tools and infrastructure that can be used to empirically
test, analyze, and evaluate different approaches in an environment as close as pos-
sible to real-world. While different components of such a system have been studied
thoroughly in the past, a fully functional implementation is yet to be proven.

2.1 Research Problem

The term goodness quantifies the level of cooperation that peers exhibit towards
sustaining the network. Specifically, this can be measured in different ways such as
download/upload ratio, or on-line time. Once the system is able to provide reliable
values, we can impose penalties for the free-riding peers, while offering preferen-
tial treatment for (or rewarding) those that are willing to share their resources with
the community (i.e., by storing and uploading content).

The broader problem of rewarding good behavior poses a number of challenges.
The first one is expressing goodness, or what kind of information should we track
for each user. Solutions could be based on the traditional upload/download ra-
tio, or on-line time (which emphasizes willingness to cooperate rather than actual
activity). The next question is how much accounting accuracy do we require con-
sidering we will probably use heuristic algorithms to compute the reputation since

9

they are, most likely, expensive. This is also connected to the problem if infor-
mation dissemination. While a central tracker enables maximum accuracy and full
information availability, in a decentralized algorithm we need to consider propaga-
tion speed, coverage, overhead, and how these affect scalability. Finally, each peer
should rank its barter partners and enforce preferential treatment based on their
goodness.

If all these problems are solved and successfully integrated in Tribler, be believe
it will incentivize our users to donate their resources and benefit from their im-
proving status. Because of this, we need to guarantee that the system will support
generous donation of resources. For example, similar improvements and tests have
been conducted by libtorrent developers [16].

3
-2

1

1MB/s .3MB/s

Rewarding
Good Behavior

Figure 2.1: The approach taken by Tribler can be seen as a
4-steps loop: activity tracking and dissemination, local reputa-
tion computation, ranking service requesters, and prioritizing
resources.

Figure 2.1 shows the actual steps that build up the whole process in Tribler.
Goodness metrics are tracked and disseminated into the network, followed by each
participant running a local reputation algorithm which results in a ranking of its
barter partners. This ends with applying a reciprocity policy that will divide avail-
able upload resources, which, in turn, will affect its peers’ activity levels, and the
steps are reiterated. The implementations of these steps can be interchanged and
tuned in order to study the sub-problems mentioned above.

A number of components and algorithms have been developed and studied inde-
pendently [17, 12, 8, 22], but we require a reliable platform for integrated evalua-
tion, as close as possible to real-world conditions. The goal of this work is to study
the possibilities of such integrated experiments using Tribler. Firstly, we need to
build the tools that will enable thorough testing and evaluation of Libswift capabil-
ities to handle large amounts of data. Secondly, we seek to build, demonstrate and
analyze solutions for rewarding good behavior. And thirdly, we need to prepare ex-
perimental setups and scenarios targeting each involved components, culminating
with a unified experiment.

10

2.2 Research Questions

How can we evaluate Libswift under heavy load, in a controlled testing environ-
ment? We need to test Libswift with both very large files. Previous attempts [26]
are limited by the start-up overhead imposed by other variables that we are not in-
terested to test (e.g., storage layer speed and space). The tools that will enable this
should pose minimal impact on performance of Libswift and should not interfere
with the implementation.

How can we enforce preferential treatment and how can we study different reci-
procity policies? There is no existing analysis and implementation of preferential
treatment solutions for Libswift. To complete the integration efforts we also need
to design and implement this feature, and make an initial assessment of possible
policies.

How can we evaluate fully integrated version of Tribler with all components re-
quired for rewarding good behavior? The final goal is to provide a base for in-
tegration experiments which can be run in clustered environments, with, possibly,
large number of real Tribler instances.

11

12

Chapter 3

Enabling Generous Donations

An important aspect of our envisioned reputation-based fully-decentralized P2P
system is the ability to upload and download extremely high amounts of data. The
ultimate goal is to allow users to donate their resources – processor cycles, storage,
and bandwidth – such that they can maintain or increase their reputation, which
will further increase their service level. This challenging problem has also been
addressed by other P2P projects [16]. To support this goal, Tribler needs tools that
can be used to asses the performance of its new algorithms and implementations.

Previous attempts to measure the performance of Libswift [26] were limited by
the constraints imposed by the normal filesystems. Specifically, it generates files at
the beginning of the test, and copies them to each node in case checks for transfer
correctness are required. This also means that hashes needed for content integrity
check are computed each time a file is generated – a time consuming operation.
To work around those issues in our testing environment, we need to create very
large mocked files, in the order of hundreds of GB, and large collections of files.
These will be seeded or leeched by Libswift during experimental scenarios. The
main requirement of such a tool is minimal delay for setting up the test files, such
that they can be used with our continuous integration1 system. Additionally, the
mocking capability should have minimal impact on Libswift’s code base.

The approach chosen consists of a virtual, in-memory, filesystem built using
the Filesystem in Userspace (FUSE)2 library. This will enables us to generate
predefined content on-the-fly and skip the hashing part each time a test is run by
maintaining precomputed hashes for the generated content.

The next section will give a short overview of the FUSE library, after which
we will continue with design and implementation details of out virtual filesystem,
followed by some usage examples, and a performance benchmark. The virtual
filesystem is used in the first experiment described in Chapter 5.

1Besides running unit tests, the Tribler continuous integration setup also runs experiments. These
are required because, in this case, the performance of algorithms used is equally important to having
bug-free code.

2http://fuse.sourceforge.net/

13

http://fuse.sourceforge.net/

3.1 Filesystem in Userspace

The FUSE mechanism facilitates the development of new filesystems for Unix-
like operating systems that can be mounted directly by users, without requiring
root privileges. The usual approach (i.e., not using FUSE) is to insert the code of
the new filesystem into the kernel, as a module – this operation requires admin-
istrator privileges. While this approach may be feasible if you control the testing
machines, the FUSE framework also simplifies development a lot, while not im-
posing overheads, as we will show in Section 3.5.

FUSE is composed of a kernel module, and a library (both depicted with green
in Figure 3.1). The kernel module needs to be inserted once into the kernel by the
administrator, and it will be used by all FUSE filesystems launched on the system.
These are implemented as normal binaries that link against libfuse, and that can be
run in userspace, resulting in a mounted filesystem. An usage example specific to
our virtual filesystem is given in Section 3.4.

user space
kernel space

open(“./fuse/example”)
unlink(“./fuse/example”)
etc.

ext3 NFS FUSE

./lfs ./fuse

libfuse

glibc

VFS

vi
a

/d
ev

/fu
se

Figure 3.1: FUSE components and syscall path.3

As Figure 3.1 shows, a file operation goes through the common path, via the C
Standard Library, that makes a syscall handled by the Virtual Filesystem Switch
(VFS) layer in the kernel, and reaches the FUSE module. Next, instead of access-
ing a physical device, the kernel module will direct the request to the correspond-
ing FUSE userspace process. The connection between the userspace process (via
libfuse) and the kernel module goes through a special device file, /dev/fuse.
Section 3.3 provides details on how a filesystem can be implemented, focusing on
our case.

FUSE was merged in the mainline Linux kernel since version 2.6.14 (2005) and
it is also available in other Unix-like operating systems: OS X, FreeBSD, NetBSD,
OpenSolaris, Minix 3, and Android.

3Figure adapted from the FUSE documentation.

14

3.2 Design

As previously indicated, our virtual, in-memory, filesystem, named Lazy File Sys-
tem (LFS), will use the FUSE library and must meet the following key require-
ments:

• minimal setup time of test files

• minimal influence on the Libswift code base

• support extremely large files

• reads should return predefined content, writes can be ignored

• support precomputed Libswift meta files (i.e.,.mbinmap & .mhash)

The last two requirements are motivated by the content integrity mechanism
used in Libswift, which computes a tree of hashes starting from the each content
chunk. During normal operation (i.e., exchanging chunks in the P2P network),
this CPU-intensive task does not represent an issue since the network bandwidth
is the bottleneck anyway. It might be a issue when adding a new file, but this is a
on-time operation. Unfortunately, it is unacceptable to run the hashing every time
we start our high-donations tests. For example, we measured the required time
for this computation, using a 128GB file using 8K chunks (around 33.5 million
SHA-1 hashes), to around 30-40 minutes on an Intel Core 2 Duo CPU running at
2.10GHz. In conclusion, we need to store pre-computed hashes which, in turn,
means our filesystem should return predefined content.

The files in LFS are virtual, there is no actual storage. Each file has a cor-
responding 4-bytes pattern, stored in memory, which is cycled in a round-robin
fashion each time a byte is read. To conveniently set this pattern, when a file is
created, its name needs to start with the 4-byte pattern as a lowercase hexadecimal
string (e.g., deadb3af testfile). The file can be later renamed to anything.
Writes to any file do not store any information, but they do increase the size (if
applicable). Deviating from these rules, operations on Libswift meta files (i.e.,
that end with ”.mhash” or ”.mbinmap”) are forwarded to a directory on the normal
filesystem, specified by the user at mount time. File size is set via the truncate
operation and is stored as a 8-byte unsigned int.

Since this acts as a normal filesystem, Libswift does not need any further mod-
ification. The metadata files can be persistently stored on the normal filesystem,
and used each time LFS is mounted. For example, the metadata for the 128GB file
previously mentioned takes up around 640MB, and around 5.5MB if archived.

3.3 Implementation

To implement a new FUSE filesystem, developers are required to define functions
for the common file operations that are going to be supported (e.g., open(),

15

read(), write() etc.). The pointers to these functions should be stored in a
struct fuse operations which is then passed to the libfuse initialization
methods. After the initialization phase, the FUSE filesystem can be started by
calling fuse loop() which enters a dispatcher loop and sends the process to
background. The FUSE system will redirect all file syscalls to be handled by these
functions. Files are identified by their path, relative to the FUSE mount point,
which is passed as the first parameter to all functions. The FUSE documentation
contains specific details about the API.

The main operations implemented by LFS and the required data structures used
are described below. Note that LFS does not follow the complete specification of
a proper file system. We only implemented functionalities required for our test-
ing scenarios (e.g., we do not focus on respecting flags, file modes, access control,
permissions etc.). While not particularly mentioned below, all these functions han-
dle Libswift’s metadata files differently by forwarding the operation to the backing
real filesystem – an example can be seen in Listing 2 which shows the read()
operation.

create() Allocates a new struct l file (see Listing 1), which represents
the new file in LFS, and adds it to a hash table4 indexed by the file path string. This
operations also parses the first 8 characters of the filename, as a 4-byte number in
hexadecimal form, and sets l file.pattern accordingly.

struct l_file {
char path[MAXPATHLEN];
off_t size;
int fd;
int realfd; /* if stored on real fs */
char pattern[4];
UT_hash_handle hh;

};

Listing 1: The main LFS data structure representing a file.

open() Assigns a unique file descriptor number to l file.fd, which logi-
cally signifies that the file is opened in LFS. In case the file is a Libswift meta-
data one, the actual file descriptor returned by the operating system is stored in
l file.realfd. If the O TRUNC flags is set, the size of the file is zeroed.

truncate() Sets l file.size, which represents the size of the virtual file.

readdir() Iterates the hash table and calls libfuse filler() function for
each entry. Note that LFS does not support directories, but users can mount it
multiple times, in different directories to achieve the same effect.

4LFS uses uthash: http://troydhanson.github.io/uthash/

16

http://troydhanson.github.io/uthash/

read() For non-metadata files, the read operation cyclically copies bytes from
the 4-byte pattern, which was previously set in the create() function, to the
FUSE output buffer. The full implementation is given in Listing 2 as an example.

write() Makes the file act as /dev/null, but it does increase the size if
l file.size is not already large enough.

int l_read(const char *path, char *buf, size_t size,
off_t offset, struct fuse_file_info *fi)

{
struct l_file *file;

/* search the hash table */
HASH_FIND_STR(l_data.files, path, file);
if (file == NULL)

return -ENOENT;

if (is_meta_file(path)) {
/* delegate to real fs */
return pread(file->realfd, buf, size, offset);

} else {
int i, j;
for (i = 0; i < size; i++) {

if (offset + i >= file->size) {
/* fill remaining buffer with 0s */
for (j = i; j < size; j++)

buf[j] = 0x00;

/* return bytes read so far */
return i;

} else {
buf[i] = file->pattern[(offset + i) % 4];

}
}

}
return size;

}

Listing 2: Implementation of the LFS read() operation.
Other functions follow the same steps: search for the file in
the hash table, handle metadata files differently, the actual op-
eration.

rename() Deletes a hash table entry and re-adds it with a changed path string.
All other l file fields of the file are preserved.

getattr() Returns predefined values for the attributes. This is not needed for
our use cases (i.e., reading and writing the file), but other Unix tools (e.g., ls) will
query these attributes.

17

unlink() Removes the corresponding struct l file from the hash table,
and frees the memory.

release() For metadata files, this forwards the close() syscall. There is
nothing that needs to be done when a virtual file is closed.

Interested readers can further refer to the LFS’s GitHub page and repository5 for
the complete Lazy File System’s source code.

3.4 Usage

This section explains the features of LFS and how can they be used in Libswift
experiment by going through some basic examples. We start by mounting the files
system.

$ mkdir -p /path/to/mountpoint
$ lfs -o realstore=/path/to/real/fs /path/to/mountpoint
Libswift metadir: /path/to/real/fs

The realstore option is specific to LFS and should point to a directory on
a real, hard-drive backed, filesystem. That path will be used to store the Libswift
metadata files. Another option specific to LFS is logfile, which can optionally
point to a debugging log file, also on a real filesystem. There are also a lot more
options provided by the FUSE library – run lfs --help to list them.

Next, we will create a 1 TB file in our new virtual filesystem, mounted in
/path/to/mountpoint.

$ truncate -s 1TiB /path/to/mountpoint/deadb3af_example

All operations on files ending with .mhash or .mbinmap are forwarded to the
real filesystem.

$ echo "test" > /path/to/mountpoint/deadb3af_example.mbinmap
$ echo "test" > /path/to/mountpoint/deadb3af_example.mhash

Lets check has happened so far. We will see our 3 files on the virtual filesystem,
and the 2 metadata files on the real filesystem as well.

$ ls -AGgh /path/to/mountpoint/
total 1.1T
-rwxrwxrwx 1 1.0T Sep 9 09:59 deadb3af_example
-rw-rw-r-- 1 2 Sep 9 09:58 deadb3af_example.mbinmap
-rw-rw-r-- 1 2 Sep 9 09:55 deadb3af_example.mhash
$ ls -AGgh /path/to/real/fs
-rw-rw-r-- 1 2 Sep 9 09:58 deadb3af_example.mbinmap
-rw-rw-r-- 1 2 Sep 9 09:55 deadb3af_example.mhash

5http://github.com/vladum/lfs-libswift/

18

http://github.com/vladum/lfs-libswift/

Lets also see the predefined pattern being returned when the virtual file is being
read.

$ hexdump -e ’/1 "%02X "’ -n 16 deadb3af_example
DE AD B3 AF DE AD B3 AF DE AD B3 AF DE AD B3 AF

Finally, we can also rename a LFS virtual file while preserving the previously set
pattern. This is useful for preparing files that will be used by Libswift in zerostate6

mode. When this is used, Libswift will search files named as <roothash>,
<roothash>.mhash, and <roothash>.mbinmap.

$ mv deadb3af_example acd177d4
$ hexdump -e ’/1 "%02X "’ -n 16 acd177d4
DE AD B3 AF DE AD B3 AF DE AD B3 AF DE AD B3 AF

3.5 Performance

To asses the performance impact this might have on Libswift, or on the testing
machine, we need to run a few simple benchmarks. This section describes and
discusses the performance of the read and write operations, as well as memory
usage of the LFS process when faced with a large number of files.

0

50

100

150

200

250

300

350

20 32 64 128 256

Ti
m

e
(m

s)

LFS
LFS (meta)

ext4

0

2

4

6

8

10

12

14

16

18

512 1K 2K 3K 4K 8K 16K 32K 64K

Chunk Size (bytes)

Figure 3.2: LFS read() performance.

To test the performance of our virtual filesystem’s read() operation, we used a
trivial C application that reads a 10MB sequentially, in a loop, one chunk at a time.
We measure the time needed to completely read the file in memory, but note that the
actual resulting value is marginally important – what we seek is to compare 3 types
of files. The first file is a normal LFS one, generated on-the-fly with predefined
content. The second one is a Libswift metadata file for which the operation goes
through LFS, but is actually delegated to the underlying real filesystem. The third
one is a file stored on a ext4 filesystem. We variated the chunk size used for each

6In this mode, Libswift keeps minimal state information in memory. When metadata is needed,
it is read directly from storage. We need this available for testing large files due to the long time
required to load metadata in normal mode.

19

individual call to read(), and run each test 1000 times. The plot in Figure 3.2
shows average time (bars), median value (cross), and standard deviation (as error
bars).

While not initially expected, we obtained highly comparable performance for
all 3 cases even if LFS does not actually read anything from the physical storage
device. This could be explained by the fact that we used the same file on ext4
as generated by LFS. This means that the ext4 driver probably cached the 4-bytes
repeating content after the first read.

However, we can see large standard deviations when reading LFS virtual files.
We ran the experiment multiple times, but the standard deviations are inconsistent.
This might be the result of LFS process running in userspace with the same priority
as other processes. Since creating the output buffer when read() is called is a
purely CPU task, the wall time can vary depending on the system load. Implement-
ing a trivial output buffer caching might alleviate this variation.

The most important conclusion is that LFS and the underlying FUSE does not
introduce overheads compared with the real filesystem, even when we retrieve pre-
defined content and the caches are probably hit all the time.

0

5000

10000

15000

20000

25000

30000

35000

40000

20 32 64 128 256

Ti
m

e
(m

s)

LFS
LFS (meta)

ext4

0

200

400

600

800

1000

1200

1400

1600

512 1K 2K 3K 4K 8K 16K 32K 64K
Chunk Size (bytes)

Figure 3.3: LFS write() performance.

For the second benchmark, we used the same experimental setup as before, but
this time we are issuing 10 write() calls for each test on a 10MiB file. Despite
the fact that the write operation does not do anything, or just forwards the write to
the real filesystem, Figure 3.3 shows huge performance impact. There seems to be
overhead from FUSE, but we did not explored this further since it does not impact
or tests. For example, with 8K chunks we can write 10MiB in approximately
170ms, which gives us a rate of 60MiB/s, which is above the network speed, and
similar to the hashing speed (see Section 5.1).

Finally, since LFS is keeping state information for each file, we also looked at
peak memory usage. For 1 million files the LFS process consumes approximately
350MB of memory. Note that using large files does not change anything.

We conclude by noticing the LFS does not have higher impact than a normal
filesystem will do, and the approach is completely separated from Libswift. The
initial requirements are met, and LFS can be used for these particular testing needs.

20

Chapter 4

Rewarding Goodness

This chapter builds upon the short overview of Libswift given in Section 1.2.2 with
more in-depth details about the protocols inner workings, and finally introduces
the changes needed for rewarding goodness. This discussion and contributions
only affect the peer protocol part of PPSP. The goal of this part is to develop a
mechanism allowing concurrent upload stream, inside Libswift, with different pri-
orities. As described by Figure 4.1, these priorities are based on the reputation
values that BarterCast3 computes for each peer. Besides this mechanism, this part
also regards the API needed to inject these values into Libswift.

send reputation

report activity

Libswift
announce new peer BarterCast3

Figure 4.1: Libswift/BarterCast3 feedback loop and the high-
level API between these 2 systems.

When a new peer connects to the local Libswift instance his presence will be
announced to BarterCast3 which will attempt to compute a reputation value using
its own algorithm and knowledge (i.e., local network view). This reputation value
is injected into the Libswift process which will use it as input or a reciprocity
algorithm. The algorithm will rank the newly connected peer alongside with the
existing ones, and will prioritize transfer speeds accordingly. This feedback loop
closes with the local Libswift instance reporting back to BarterCast3 its activity
metrics (e.g., upload, download), thus influencing future reputation computations.

The PPSPP draft RFC1 offers total freedom to the actual protocol implemen-
tation in choosing reciprocity algorithms. Examples of existing algorithms are:
BitTorrent’s Tit-for-Tat [6] and Give-to-Get [19]. This section will introduce some

1This refer to revision 07 of the IETF PPSPP Internet-Draft: http://www.ietf.org/id/
draft-ietf-ppsp-peer-protocol-07.txt.

21

http://www.ietf.org/id/draft-ietf-ppsp-peer-protocol-07.txt
http://www.ietf.org/id/draft-ietf-ppsp-peer-protocol-07.txt

concepts and the existing infrastructure before moving on to specific design, im-
plementation and integration details. This should clarify the context of our con-
tributions, and, most importantly, the existing limitations. During the final part of
this work we discovered some weaknesses of this approach – we will discuss these
in Section 5.2.2.

4.1 Libswift Concepts

The PPSPP design strives to be as simple and generic as possible so it can be
adapted to various applications with, possibly, quite different requirements. The
existing IETF draft explains the protocol by making a few assumptions such as
using UDP as an under-laying transport protocol or Low Extra Delay Background
Transport (LEDBAT) [25] for congestion control. Implementations are given free-
dom in choosing other solutions, but the reference implementation, Libswift, is
currently trying to follow the RFC draft as much as possible. As a convenience,
we will refer to Libswift or PPSP interchangeably while discussing the concepts
needed to understand our approach for the reciprocity algorithm.

Channels. The central entity to one particular Libswift instance is the channel.
This represents a connection between 2 peers belonging to a specific swarm. This
means that transfers belonging to 2 different swarms, but made to the same peer
will use 2 channels. At the same time, a swarm can contain multiple channels – one
for each connected remote peer. The is one special channel that is always available
and used to initiate connections (i.e., similar to a listening socket). The concept of
channels is homologous to the one of ports in other transport protocols such as TCP
or UDP. Note that even if Libswift is running on top of UDP, it is using only a single
port2, multiplexing connections using channels. As with ports, channels are also
assigned locally unique numbers which are referenced in the packets exchanged
during protocol operation.

Messages. PPSP peers exchange datagrams that can contain one or more mes-
sages. A connection is initiated using a HANDSHAKE message which contains a
channel identification number, swarm identification and other protocol options. A
HAVE message is used to advertise available content by seeders. A DATA message
carries the actual content, but may also contain additional information useful to the
congestion control mechanism (i.e., timestamps for LEDBAT). The atomic content
portion exchanged in DATA messages is called a chunk – its size can vary, but the
default one is 1KB. Successful receipt is confirmed using ACK messages which
may also contain information for the congestion control mechanism. The content
integrity mechanism will use the INTEGRITY and SIGNED INTEGRITY mes-
sages (e.g., containing cryptographic hashes). REQUEST messages can be used

2this design simplifies NAT traversal

22

by pull-based applications, but push paradigm is also supported by PPSP. Peers
can withdraw their requests using CANCEL messages. CHOKE and UNCHOKE
messages may be used to signal that requests will no longer be answered (e.g., due
to congestion), or, respectively, to lift this restriction. PEX messages are used by
the peer discovery mechanism. Figure 4.2 shows the messages exchanged when a
new connection is initiated.

Leecher Seeder

 HANDSHAKE

 HANDSHAKE, HAVE(root bin)

 REQUEST(1st bin)

 DATA(1st bin), UNCLE_HASH(1st bin)

verify

 ACK(1st bin), REQUEST(2nd bin)

Figure 4.2: PPSP operation – new connection and first DATA
transfer.

To completely explain the picture, PPSP suggests using a compressed content
addressing scheme named binmaps – they form a tree of aggregated content in-
tervals starting from the bottom chunks (e.g., HAVE(root bin) represents the
whole content using just a single number rather than a bitmap full of 1s). Individual
chunks by the bottom bin numbers (e.g., DATA(1st bin)). The Merkle Tree
of cryptographic hashes used for content integrity is also obtained as the down-
load progresses – the UNCLE HASH(1st bin) message will contain the hashes
needed to verify the received DATA. Since these details are not essential to our
discussion, interested readers should refer to the PPSPP draft RFC.

Congestion Control. As previously mentioned, Libswift uses the Low Extra De-
lay Background Transport (LEDBAT) [27] congestion control mechanism. The
goal of LEDBAT is to transport non-interactive traffic, such as PPSP, with lower
than best effort while fully utilizing available bandwidth. This prevents other nor-
mal traffic generated by the machine (i.e., HTTP) from being affected by the P2P
client running in the background. The algorithm works by keeping track of one-
way delay variations between the a sender and a receiver. The delay is computed by
adding timestamps to data packet going out and acknowledgment packets coming
in. As opposed to TCP, which can only back-off after the queues on the path are
filled up (and other streams are also getting affected), LEDBAT can sense increas-
ing queuing delays by comparing the current delay with a historical base. Notably,
it has been showed that the algorithm has some fairness issues [4] with concurrent
LEDBAT-controlled streams.

23

4.2 Design

First, we should consider that Libswift is not queuing the outgoing datagrams in
the traditional way – by using a buffer. Since it is build around libevent3, it uses
timer to schedule send events in the future.

While the congestion control mechanism regulates the UDP connection of the
peer (i.e., all multiplexed channels), our reciprocity mechanism acts on top of this
by scheduling send events for channels connected to higher-reputation peers more
often. Libswift schedules send events for each channel individually when a new
REQUEST is received, and reschedules them after each send. The time in future
for each (re)scheduling is dictated by the congestion control mechanism, while the
reciprocity algorithm will get a chance to modify this. This concept is similar to
the Weighted Fair Queuing improvement described by Petrocco at al. [22], but we
support different weights by using a slightly modified controller. Also, our design
can use different algorithms for this which, currently, can be chosen at compile
time. Most likely, it is trivial to also implement this change at runtime.

The Libswift instance can be controlled by other applications via a command
gateway which is exposed as a TCP socket. The controlling application or module
(e.g., BarterCast3 in out case), can open a connection to this address and exchange
command messages. To get the list of connected peers, the controller can subscribe
to MOREINFO messages that will be sent periodically. These messages will con-
tain statistics (e.g., download and upload speeds) along with the peers. BarterCast3
can check for new peers and start computing their reputation. The reputation algo-
rithm can take longer, so we rely on BarterCast3 to inject the priorities back into
Libswift, when they are ready. For this, we added a generic RECIPROCITY mes-
sage to the Libswift command gateway. The content of this message is passed to
the reciprocity algorithm implementation for further parsing. In the simplest case,
the RECIPROCITY message will contain a PEERWEIGHTS sub-message which
contains IP:port and weight pairs for each peer. This design allows the controlling
module to easily send other messages to the reciprocity algorithm, such as different
tuning parameters. For example, we use an ACTIVE command in the experiment
described in Section 5.3 to turn the reciprocity mechanism on and off at runtime.

The actual byte-counting and record generation is done when a channel is closed
– this usually means that the transfer is done. When starting, BarterCast3 sub-
scribes to close events via the command gateway using a SUBSCRIBE message,
and each time it receives one it will generate or update a so-called barter record
containing transfer statistics of the 2 peers. This is double-signed by the partici-
pants and disseminated into the network by Dispersy.

3http://libevent.org/

24

http://libevent.org/

4.3 Implementation

Each Libswift channel is handled by a swift::Channel object. Send events
can be scheduled by using the Channel::Reschedule() method, which will
obtain a future time from the congestion control mechanism and will set a libevent
timer. Our reciprocity policy can be asked to modify this scheduling before the
libevent timer is set.

We added a class member of type ReciprocityPolicy (see Listing 4) to
the Channel class. Listing 3 shows how this is integrate in the Reschedule() code.

void Channel::Reschedule () {
tint recip_send_interval = 0;
if (reciprocity_policy_->IsActive())

recip_send_interval =
reciprocity_policy_->SendIntervalFor(this);

// ...
next_send_time_ = NextSendTime();
tint duein = next_send_time_ - NOW;
if (recip_send_interval) {

duein = max(duein,
last_send_time_ + recip_send_interval - NOW);

next_send_time_ = NOW + duein;
}
// ...
evtimer_add(evsend_ptr_, *tint2tv(duein));
// ...

}

Listing 3: Snippet of Channel::Reschedule() using the Re-
ciprocityPolicy object.

As you can see in Listing 3, nothing will happen is the IsActive() return
false. The default implementation will do exactly this. Other algorithms need to
inherit the ReciprocityPolicy class, or the BaseReciprocityPolicy
one, if more boilerplate functionality is needed. Before discussing the latter, we
will cover a few more details about the methods.

class ReciprocityPolicy {
public:

virtual void AddPeer(const Address& addr);
virtual void DelPeer(const Address& addr);
virtual tint SendIntervalFor(Channel *channel);
virtual void ExternalCmd(char *message);
virtual bool IsActive();

};

Listing 4: ReciprocityPolicy abstract class.

AddPeer(addr). This can be used to keep track of which peers are subjected to
the reciprocity policy. Currently, all peers for which a channel is open will be

25

added, but you could imagine a scenario where you need add and remove peers.
For example, Libswift could detect attacking peers and ignore them, even if Barter-
Cast3 is sending out reputation values. It is the responsibility of the reciprocity
algorithm to take, or not take these peers into account.

DelPeer(addr). Deletes a previously added peer.

SendIntervalFor(channel). This is the main functionality that needs to be im-
plemented by a reciprocity algorithm. It will establish a new next send time
for the given channel according to some logic.

ExternalCmd(message). As discussed in Section 4.2, the RECIPROCITY mes-
sage received by the Libswift command gateway are forwarded for further parsing
to this method.

IsActive(). Returns true is the reciprocity policy is active. It might be disabled at
runtime via commands.

On the actual algorithm side, we experimented with a simple P controller, which
is used by all the policies presented in the next section. The feedback of this con-
troller is based on the size of incoming requests from a particular peer, relative to
the total size of outstanding requests. We empirically set the P coefficient to 0.8, as
shown in Listing 5. While this provides acceptable performance, in-depth analysis
of better control loops is required.

// ...
double feedback_ratio =

(double)channel->hint_in_size() / tot_req;
double desired_ratio = GetPeerWeight(channel->peer());
// ...
double error = (desired_ratio - feedback_ratio);
double ratio = feedback_ratio + error * 0.8;

Listing 5: P controller for dividing bandwidth.

4.4 Usage

Basic policies are currently implemented as Libswift extensions – you can find
them in the ext/recip directory. The BaseReciprocityPolicy (BASE)
implements basic external command handling. It supports the PEERWEIGHTS
and ACTIVE messages described in Section 4.2. It also keeps track of peers
as they are added, or deleted, but feature is not used at the time of this writ-
ing. The EqualReciprocityPolicy considers all peers equal – this is es-
sentially similar to the Weighted Fair Queuing described by Petrocco at al. [22].

26

The SelfishReciprocityPolicy divides bandwidth according to the rela-
tive reputations of the peers, but tries to maximize the upload capacity of the seeder
in case some of the leechers cannot handle the speed that was assigned to them. Fi-
nally, the WinnerReciprocityPolicy, assigns full priority to a single peer,
the one with the best reputation.

Libswift can be compiled with reciprocity support by setting the RECIP pre-
processor variable, or passing -DRECIP as a compiler flag. Additionally, a specific
reciprocity algorithm can be loaded using the RECIP TYPE variable. Currently,
you can use ”1” for the BASE policy, ”2” for SELFISH, ”3” for WINNER, and ”4”
for EQUAL.

27

28

Chapter 5

Experiments

This chapter describes and analyzes results from three incremental experiments
that were built as part of this work. They seek to empirically demonstrate our
approaches and provide a basis for further in-depth evaluation. Section 5.1 starts
with stress-testing Libswift using the newly built support for very large files. Next,
in Section 5.2, we focus our attention on the newly implemented reciprocity policy
mechanism in Libswift. Finally, in Section 5.3, we also introduce BarterCast3
into the picture, by building a full integration experiment that runs multiple Tribler
instances on the DAS-4 supercomputer.

5.1 Terabyte Seeding

The goal of this 1TiB seeding experiment is to evaluate the ability of Libswift in
supporting power users that might generously donate their resources. The experi-
ment is deployed on the continuous integration platform used by the Tribler team1.
The objective is to run it when new versions of Libswift are released in order to
detect eventual performance regressions.

We are deploying a simple scenario with a 2-peers swarm: one seeder, followed
by one leecher. They both remain connected until the end of the transfer. Both
peer instances run on the same machine, but on different CPU cores. Note that the
current Libswift implementation is single-threaded, single-core. We are using the
virtual filesystem described in Chapter 3 to generate a single 1TiB file. Because
computing the Merkle hash tree takes a very long time, we precomputed the .hash
and .mbinmap files, and they are used by all runs. For the same reason, the swarm
is set to use the maximum recommended chunk size of 8KiB. Compared to the
default chunk size of 1KiB, this requires 8 times less hashes. It still takes around 5
hours to generate the hashes for a 1TiB file on a 2.10GHz core – this is equivalent
to a hashing speed of around 58MiB/s. Even if this is a one-time operation, for a
particular piece of content, we believe the hashes can be computed more efficiently

1http://jenkins.tribler.org/job/Experiment_Libswift_Terabyte_
Seeding/

29

http://jenkins.tribler.org/job/Experiment_Libswift_Terabyte_Seeding/
http://jenkins.tribler.org/job/Experiment_Libswift_Terabyte_Seeding/

in parallel, or by taking advantage of the GPU. This might be required by power
users interested in using Libswift to share very large amounts of new content (e.g.,
media producers).

The machines used to run this experiment are powered by Intel Xeon processors
clocked at 2.40GHz, with 8GiB of memory. Since one experiment run takes a very
long time, since it transfers 1TiB at less than 20MiB/s, we are only presenting a
fraction of its evolution in the following figures.

14

15

16

17

18

19

20

250 300 350 400 450 500 550 600 650 700

S
pe

ed
 (

M
iB

/s
)

Time in experiment (s)

upload speed (seeder)

14

15

16

17

18

19

20

250 300 350 400 450 500 550 600 650 700

S
pe

ed
 (

M
iB

/s
)

Time in experiment (s)

download speed (leecher)

Figure 5.1: Download/upload speed.

Figure 5.1 shows the download speed of the leecher (top), and the upload speed
of the seeder (bottom). The values are sampled every second. While this only
shows a fraction of the total run time, the results are similar throughout the exper-
iment. Considering the isolated environment in which we are running the exper-
iment, we did not expect the throughput instability shown in the plot. We could
speculate that this is normal LEDBAT behavior yielding promptly to other TCP
traffic on the testing machines, but investigation this is out of the scope of this
work. We obtained more stable results on a local machine.

0 %

20 %

40 %

60 %

80 %

100 %

200 250 300 350 400 450 500 550 600

U
sa

ge
 (%

)

Time in experiment (s)

cpu usage (seeder)
cpu usage (leecher)

1.6

1.8

2

22

24

26

2.8

200 250 300 350 400 450 500 550 600

M
em

or
y

(M
iB

)

Time in experiment (s)

rss mem (seeder)
rss mem (leecher)

Figure 5.2: Memory usage for seeder and leecher (Resident
Set Size). The seeder is running in zerostate, while the leecher
is running in normal mode.

As shown in Figure 5.2, the experiment is also tracking memory usage for each

30

peer. We focus on comparing a peer running in normal mode (the leecher) and
one running in zerostate mode (the seeder). As depicted, the former has higher
usage than the latter. The zerostate mode was designed to minimize the amount
of state information that is being kept in memory for each swarm. The majority
of this metadata is formed by the integrity hashes, which, in zerostate mode, as
opposed to normal mode, are always read from the disk instead of being mapped in
memory. The RSS2 usage of the leeching peer is almost constant because the OS
is swapping out the memory containing hashes that are no longer used.

Note that peers in our scenario are joining a single swarm. A peer in normal
mode would be using a lot more memory. On the other hand, running in zerostate
will probably incur high I/O activity on the storage device. Unfortunately, we were
not successful in reliably measuring I/O usage for our FUSE filesystem.

1

10

100

1k

10k

260 280 300 320 340 360 380 400

N
o
.
o
f

D
A

T
A

 M
e
ss

a
g
e
s

Time in experiment (s)

good
size mismatch

duplicate
hash check fail

Figure 5.3: Number of received DATA messages at the
leecher, failed chunks included.

Figure 5.3 shows the number of DATA messages received by the leecher. Each
bar represents the sum for one second and is divided into the number of good mes-
sages, and the number of messages that failed 3 kinds of correctness checks. The
first one, size mismatch checks if the size of the actual content matches the chunk
size of the swarm – this should only happen in rare cases such as packet corruption
or network failure. We did not encounter this error during our tests. Duplicate
messages can appear if the original message was successfully received, but the ac-
knowledgment was not yet sent. Hash check failures occur when the hash of the
received data chunk does not successfully verify against the rest of the tree. This
can happen as a result of the hash tree being corrupted (e.g., because other required
hashes where not yet received), or if the actual data was modified. Details about
the content integrity checking mechanism can be found in the PPSPP specification.

2The Resident Set Size represents a process’s memory than is actually in RAM, and not swapped
out or waiting on-demand loading.

31

Since our virtual filesystem returns predefined content, we trivially confirmed that
the problem is not with the actual content, but with missing or incorrect hashes.
Since the algorithm is expected to take care of sending and processing all required
hashes before the data chunks that need them are checked, further investigation
into this problem is required, but it is, again, out of scope for this experiment.

To conclude, we believe this continuous integration stress experiment provides
valuable insights into the operation of Libswift. Preliminary results showed good
stability and decent CPU usage, considering the unbounded transfer speed and
the fact that all peer instances run on the local machine. From another point of
view, the experiment did reveal some possible subtle problems that need further
attention. In scenarios with a large number of swarms, better memory management
might be needed if the zerostate mode proves demanding on the underlying storage.
Unfortunately, we were not able to draw a final conclusion about I/O load in the
zerostate case while using the FUSE filesystem. Note that this test would be more
interesting in case of a very large number of files, as opposed to big files. This case
is also not covered by this experiment, but is supported by the virtual filesystem.
Finally, parallelization of hash computation might be a useful improvement for
power users that need to distribute large amounts of data.

5.2 Libswift Reciprocity

The aim of this experiment is to demonstrate the possibilities of the new Libswift
reciprocity mechanism detailed in Chapter 4. We start by analyzing its behavior
with different reciprocity policies, and continue with a deeper look at possible
concerns regarding the impact on libevent’s timer scheduling.

5.2.1 Policies

To demonstrate how different policies can be implemented, and observe their be-
havior, we use a basic setup with a single seeder and two competing leechers. The
peer discovery mechanism is disabled, so leechers do not communicate with each
other. To simplify things, we are also bypassing the command interface by using
hard-coded priorities for each experiment.

Each leecher is downloading a 50MiB file from the seeder. The download speed
of both leechers is capped at 1MiB/s, and they compete for the seeder’s 1MiB/s
upload bandwidth. Both caps are set using Libswift’s mechanism (--uprate
and --downrate flags). As the plots show, there is a slight inaccuracy incurred
by this mechanism (i.e., the sum of download speeds exhibited by the leecher is
higher than the seeder’s cap). In order to depict the real-time speed adjustment, the
second leecher joins the swarm 20 seconds later than the first one.

Figure 5.4 shows, for each policy we implemented, upload speed of the seeder,
download speeds of the 2 leechers, and progress percentage for the leechers. We
are mainly interested in the evolution of the 2 download speeds. These are sampled

32

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

P
ro

gr
es

s
(%

)

S
pe

ed
 (

K
iB

/s
)

Time in experiment (s)

(a) equal

dwload (l1) dwload (l2) progress (l1) progress (l2)upload (s)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

P
ro

gr
es

s
(%

)

S
pe

ed
 (

K
iB

/s
)

Time in experiment (s)

(b) 20/80

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

P
ro

gr
es

s
(%

)

S
pe

ed
 (

K
iB

/s
)

Time in experiment (s)

(c) 80/20

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

P
ro

gr
es

s
(%

)

S
pe

ed
 (

K
iB

/s
)

Time in experiment (s)

(d) winner

Figure 5.4: Four Libswift priority policies. One seeder, two
leechers scenario.

every second from a moving average with a 2-seconds interval in order to reduce
noisy variation in the measurement.

Besides adding the reciprocity mechanism, we also changed the requests schedul-
ing interval of the leechers to 2 seconds from the original 1 second. Briefly, the
speed and congestion control mechanism is based on how many requests are being
send by a leecher, and how many are answered in timely fashion by a seeder. Each
time the leecher needs to send new requests (which happens a lot more often than
2 seconds), it computes a targeted total number of requests for the next 2 seconds
(in our case) such that it fills up the available bandwidth. The target value is also
constrained by other factors such as LEDBAT congestion control mechanism. Note
that, as presented in Chapter 4, the reciprocity mechanism is also based on the as-
sumption that the leecher will lower the number of requests if it observes delays in
receiving the requested data. Without the mentioned change, we obtained highly
unstable results (i.e., peers stopping completely, high variance in speed).

The top left plot of Figure 5.4 shows 2 leechers competing with equal priority.
We observe that the controller throttles the speed of the first leecher almost imme-
diately, while both reach the same speed after 15 seconds. The top right and bottom
left plots show upload bandwidth being split between 2 peers having very different
priorities – 80% and 20%. The first run gives high priority to the second leecher,
while the second run gives lower priority to the second peer. Both runs exhibit a
higher response time until an accurate bandwidth division is reached – approxi-

33

mately 25-30 seconds. The last plot, bottom right, show a special winner-takes-all
case in which the second peer has full priority over the first one. Note that even if
this is the case, we are still assigning a minimum residual bandwidth for the first
peer. If we attempt to go lower than this, the connection will be dropped. Note this
this could also be an acceptable policy.

The occasional spikes that can be observed are caused by LEDBAT trying to
optimistically increase speed, but being immediately throttled down by the reci-
procity mechanism. In the beginning if the 80/20 case the speed overshoots, but
is settled back very rapidly, in just one step. This behavior might be alleviated by
using a more complex controller (e.g., PID or a cascaded P).

5.2.2 Source of Inaccuracy

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

C
D

F
 (

%
)

Delay (us)

no recip
20/80

winner
equal

no congestion

Figure 5.5: Seeder send event delay CDF.

This experiment investigates the inaccuracy and throughput instability that we
previously observed. Since the reciprocity mechanism is postponing the triggering
deadline of send events as set by the congestion control mechanism, we speculate
that this might negatively influence the event scheduling done by libevent. This
could delay the handling of send events, which might be the source of inaccuracies
and instability in speed depicted by previous plots.

To argue this point of view, we instrumented each triggered send event by log-
ging its targeted due time alongside its actual run time. The targeted triggering
time is the one set by LEDBAT, and, if active, increased by the reciprocity mecha-
nism. We ran 2 baseline tests in order to exclude the effects of congestion: no recip
and no congestion. The reciprocity mechanism is completely deactivated in both
of them, but, for the second one, we also increased the bandwidth cap of the seeder

34

such that there is no longer a competition between the leechers. Note that all other
tests use the same scenario as described in Section 5.2.1. The remaining 3 tests,
20/80, winner, and equal, have the reciprocity mechanism on, and the priorities are
set in the same way as we previously discussed. To also exclude possible transient
conditions of the test environment (e.g., CPU load), each test is run 5 times.

Figure 5.5 shows the cumulative distribution function of the send event schedul-
ing delay for each test. The delay is computed as the difference between the tar-
geted time and the actual run time of the event. The plot clearly supports our initial
concern by showing increased delays when reciprocity in active as compared to the
baseline tests. We can observe how 90% of events in the baseline tests are below
approximately 170us, while the limit increases to 400us, and 730us when reci-
procity is active. Delays above the 99% threshold are not plotted, but note that a
very small number of these remaining 1% reach values of more than 100ms. While
the 99% of delayed events that are plotted seem to already support our suspicions,
we should take a deeper look at the not-plotted extreme outliers.

In conclusion, we believe this might be the cause of occasional instability, and
it might be useful to re-implement the whole congestion control mechanism such
that it also handles reciprocity. Using a different queuing solutions (e.g., with
traditional buffers), instead of libevent timers, might also be a good alternative, or
at least should be considered for a more in-depth future evaluation.

5.3 Full Tribler

The aim of this final experiment is to provide a proof-of-concept demonstration of
the complete mechanism used by Tribler for rewarding good behavior. It shows
the process of building up a peer’s reputation in the network, and then making
this available to other content providers. Finally, a seeder will divide his upload
bandwidth between 2 peers he never seen before, thus demonstrating the indirect
reciprocity concept.

Figure 5.6: Indirect trust scenario.

For this experiment we adapted the latest Tribler development version (at the
time of this writing) so it can be run on the DAS-4 supercomputer. Every module

35

that is not essential to our experiment was disabled: GUI, Dispersy communi-
ties (except BarterCast3) caches, torrent collecting, the BitTorrent engine, and the
DHT. A few minor changes were needed to push the reputation values into the
Libswift process via the command gateway.

Each peer generates a 200MiB file of predefined content (i.e., repeating bytes
containing his peer id) that will be used in the experiment. We precomputed the
hashes for all possible 256 files. We need these because it is not possible to find
the endpoint (IP and port) of a seeder without a DHT, which is not present in our
setup.

The experiment is implement using the Gumby framework. This helps setting
up dependencies on the DAS-4 head node, and submitting the jobs. Once the
experiment has started, Gumby will parse and execute a scenario file (see Listing 6
for the one describing this experiment). Porting the scenario file parser, previously
developed by the Tribler team, from an older testing framework to the new Gumby
was part of this work.

The scenario file specifies a function, together with its arguments (e.g., leech
<source peer> <roothash>), that will be run a time relative from the start
of the experiment (e.g., +0:6). Finally, each command can apply to one or more
peers (e.g., {A,B}).

+0:0 generate_file {A,B,C,D,G,S}
+0:6 seed 04bce4b980f66b041084d15d1198aa54f719534b {A}
+0:6 seed 6280cd598cdd2c4d60b022f30cb9dc0a664aef82 {B}
+0:6 seed b5256892f8badd85da83833f63e99c22a2b1f2e8 {C}
+0:6 seed 69b5756df844841ccbeca3017e318a3da7fbc79f {D}
+0:6 seed e46bd426d86ed68a4e0871a4b80e29400e70351c {G}
+0:6 seed ffc608bd527d0acfcceb42972b52651c78b93ff0 {S}
+0:10 leech B 6280cd598cdd2c4d60b022f30cb9dc0a664aef82 {A}
+0:10 leech C b5256892f8badd85da83833f63e99c22a2b1f2e8 {B}
+0:10 leech D 69b5756df844841ccbeca3017e318a3da7fbc79f {C}
+0:10 leech B 6280cd598cdd2c4d60b022f30cb9dc0a664aef82 {D}
+0:10 leech A 04bce4b980f66b041084d15d1198aa54f719534b {C}
+0:15 leech G e46bd426d86ed68a4e0871a4b80e29400e70351c {C}
+0:20 leech A 04bce4b980f66b041084d15d1198aa54f719534b {F}
+0:22 leech B 6280cd598cdd2c4d60b022f30cb9dc0a664aef82 {F}
+0:24 leech C b5256892f8badd85da83833f63e99c22a2b1f2e8 {F}
+0:26 leech D e46bd426d86ed68a4e0871a4b80e29400e70351c {F}
+0:30 activate_reciprocity {S}
+0:120 leech S ffc608bd527d0acfcceb42972b52651c78b93ff0 {F}
+0:130 leech S ffc608bd527d0acfcceb42972b52651c78b93ff0 {G}

Listing 6: Full Tribler scenario specification.

The first stage of our scenario creates a core of good behaving peers (A, B, C,
D). They all download files from each other, building up reputation. At the end of
this first stage a free-riding peer (F) initiates downloads from all core seeders. This
will result in lowering his reputation since he is not uploading anything back to the
community. At the same time, a good behaving peer (G) will make one upload to
the core. To simplify operation, the reciprocity algorithm in Libswift is disabled

36

during this initial phase.
In the second stage, peer S will receive requests from 2 peers he never met before,

a free-rider (F) and a good peer (G). Peer S has its reciprocity mechanism turned
on and will apply the winner-takes-all policy. If reputation values are correctly
disseminated by BarterCast3 and injected into the Libswift process running at peer
S, the free-riding peer (F) should be choked, while the good behaving peer G will
get all the bandwidth. Note that the upload speed of S is capped at 5 MiB/s.

The high-level view of the transfers that take place in the scenario is depicted in
Figure 5.6. The actual scenario specification is presented in Listing 6.

The experiment is deployed using the Jenkins continuous integration platform3.
Initial results show delays in propagating the reputation records in some runs, but
this is not necessarily an issue since we cannot expect real-time delivery. Once the
reciprocity values reach the Libswift instance of peer S similar behavior to the one
shown by Figure 5.4 (d) can be observed.

To conclude, we succeeded in building a full integration experiment that proves
the indirect reciprocity concept in Tribler. Unfortunately, in-depth analysis of the
system’s behavior still remains an open subject. The ability to run the experiment
on a clustered environment enables more complex scenarios. For instance, we can
investigate scalability by replacing the core network (peers A, B, C, and D) with
1000 instances, but further engineering efforts are needed to reach this objective.

3http://jenkins.tribler.org/job/Experiment_TriblerNoGui_
Reciprocity

37

http://jenkins.tribler.org/job/Experiment_TriblerNoGui_Reciprocity
http://jenkins.tribler.org/job/Experiment_TriblerNoGui_Reciprocity

38

Chapter 6

Conclusion

This thesis contributed to the Tribler team’s quest towards rewarding good behav-
ior in a fully decentralized P2P network. This was a first attempt to integrate the
reputation gossiping overlay with the download engine and study the possibilities
for free-riding prevention. We first analyzed the problem of generous donations by
evaluating the capacity in which Libswift can support large seeding. Secondly, we
incrementally moved towards a proof-of-concept integrated experiment that can
demonstrate Tribler’s approach for solving the free-riding problem through gos-
siped reputation and indirect reciprocity.

The following specific contributions were made as part of this project:

• We proposed and analyzed the performance of a filesystem-based solution
for testing the reference PPSP implementation, Libswift, with very large files
or a large number of them. Moreover, using this tool, we build an initial
experiment aimed at evaluating the capability of Libswift to seed very large
amounts of data.

• We implemented a reciprocity mechanism for Libswift with the objective of
prioritizing the limited upload bandwidth of a seeder based on the reputation
of its barter partners. We demonstrated different policies that can be imple-
mented using this reciprocity mechanism, and discussed its limitations.

• We built a full integration experiment using the Gumby testing framework
and aimed at demonstrating the link between the reciprocity mechanism and
BarterCast3, the reputation dissemination solution. In our basic staged sce-
nario, the test peer recognized the free-rider between 2 peers he never met
before using only indirect information. Since this experiment was one of the
first users of Gumby, we also made a few smaller contributions to the new
testing framework.

The major issue of the Libswift reciprocity mechanism (and maybe the con-
gestion control), which needs to be addressed in future work, is instability and

39

accuracy of the bandwidth division. During our 1 seeder/2 leechers experimen-
tal scenario (see Section 5.2), we occasionally experienced complete connection
drops for one of the leechers. The accuracy of the bandwidth allocation might be
influenced by the send event scheduling issue analyzed in Section 5.2.2.

Though we only aimed at a initial demonstration of the integrated solution, the
Full Tribler experiment detailed in Section 5.3 should be extended to a larger scale.
We initially envisioned a setup with 1000 Tribler instances, but turned out to be
too ambitious at this point. We need further engineering effort to allow this kind of
setup on the DAS-4 supercomputer.

6.1 Future Work

We started this work with very ambitious goals, but the extensive number of tech-
nologies involved, the fact that most of them are in early and under active develop-
ment, and the lack of documentation hindered our efforts to provide a production-
level solution. However, we did analyzed and demonstrated a few key concepts,
and we gathered the following list of directions for future research. Besides some
obvious next steps, these pointers also cover a few rougher ideas.

Reciprocity and Congestion Control. Considering the event scheduling issues
we encountered, it might be useful to develop an algorithm that handles both con-
gestion control and reciprocity policy. Additionally, analyzing a traditional queu-
ing method (i.e., using buffers), instead of libevent’s timers, might also be a next
research direction.

Indirect Reciprocity in BitTorrent. Since Tribler is still mainly using BitTor-
rent, efforts to port the indirect reciprocity mechanism and link BarterCast3 with
the BitTorrent engine might be interesting.

Advanced Experiments. First, to analyze scalability and overhead, the Full Tri-
bler experiment needs to be upgraded to a larger scale (i.e., 1000 instances). An-
other experiment we had in mind was called ”converted opportunistic free-rider”.
Its aim was to demonstrate the real-time response capabilities of the reputation
system to changing behavior of a peer from free-riding to contributing.

Testing Infrastructure. The first step would be to integrate the virtual filesystem
into Gumby, the new testing framework. Additionally, it will probably be trivial to
move away from the inefficient write operation in LFS and just use /dev/null.
A more advanced solution would be to implement mocked version of the objects
that wrap the read and write calls in Libswift. This requires modification to the
binary (i.e., linking it against the mocked classes), but it also means more advanced
control. This final approach could be use to simulate different demanding scenarios
(e.g., corruption, low speed).

40

Security. There a number of security concerns about Libswift that are out-of-
focus at this early development stage. A question related to our reciprocity mech-
anism is: What happens if malicious peers do not lower the number of requests
they send as a result of bandwidth throttling? The assumption that this will hap-
pen is most likely false in real-world, thus a more secure bandwidth prioritization
algorithm must be analyzed.

Overlapping Overlays. We are trying to merge 2 P2P overlays that use different
algorithms for peer discovery. On one side, the BarterCast3 employs its own al-
gorithm for peer discovery and also guides dissemination based on reputation. On
the other side, the Libswift instance becomes known to potential leechers via its
internal mechanism. The set of Libswift peers that are competing as some moment
in time could be totally different than the peers whose reputation values where re-
ceived by the BarterCast3 instance. Further insight into the recall and accuracy of
this merged system is needed.

Guided Leeching. Until now, we analyzed the reciprocity problem from the per-
spective of a seeder, but we could also look at this from the perspective of a leecher.
For example, leeching from low-reputation peers gives them a chance to improve,
while leeching from high-reputation peers separates them even more from the low-
reputation ones.

Roaming Identity. BarterCast3 currently identifies peers by their Libswift end-
point (i.e., IP and port number). An improvement could be assigning different
endpoints to the same identity such that reputation stays the same across different
devices (e.g., your laptop and your mobile phone). Another related feature would
allow reputation transfers between identities.

41

42

Bibliography

[1] Napster. http://web.archive.org/web/20000815072716/http://
www.napster.com/. Website (accessed: 2000-08-15).

[2] BitTorrent. http://www.bittorrent.com/. Website.
[3] BitTorrent, Inc. Bittorrent and torrent software surpass 150 million user milestone.

Online Article, January 2012. http://www.bittorrent.com/company/
about/ces_2012_150m_users/.

[4] Giovanna Carofiglio, Luca Muscariello, Dario Rossi, and Silvio Valenti. The quest
for ledbat fairness. In Global Telecommunications Conference (GLOBECOM 2010),
2010 IEEE, pages 1–6. IEEE, 2010.

[5] Cisco. Visual networking index: Forecast and methodology, 2012-2017.
http://www.cisco.com/en/US/netsol/ns827/networking_
solutions_sub_solution.html, May 2013. Online Article.

[6] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics
of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[7] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust incentive tech-
niques for peer-to-peer networks. In Proceedings of the 5th ACM conference on
Electronic commerce, pages 102–111. ACM, 2004.

[8] Dimitra Gkorou, Tamás Vinkó, Johan Pouwelse, and Dick Epema. Leveraging node
properties in random walks for robust reputations in decentralized networks. In Peer-
to-Peer Computing (P2P), 2013 IEEE 13th International Conference on. IEEE, 2013.

[9] Garrett Hardin. The tragedy of the commons. New York, 1968.
[10] Yan Huang, Tom ZJ Fu, Dah-Ming Chiu, John Lui, and Cheng Huang. Challenges,

design and analysis of a large-scale P2P-VoD system. In ACM SIGCOMM Computer
Communication Review, volume 38, pages 375–388. ACM, 2008.

[11] ipoque. Internet study 2007/2008. http://www.ipoque.
com/sites/default/files/mediafiles/documents/
internet-study-2008-2009.pdf, 2009. Online Article.

[12] A.L. Jia, B. Schoon, J.A. Pouwelse, and D.H.J. Epema. Estimating user interaction
strength in online networks. Technical Report PDS-2013-007, Delft University of
Technology, 2013.

[13] Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. Deconstructing the
kazaa network. In Internet Applications. WIAPP 2003. Proceedings. The Third IEEE
Workshop on, pages 112–120. IEEE, 2003.

[14] Bo Li, Susu Xie, Yang Qu, Gabriel Yik Keung, Chuang Lin, Jiangchuan Liu, and
Xinyan Zhang. Inside the new Coolstreaming: Principles, measurements and perfor-
mance implications. In INFOCOM 2008. The 27th Conference on Computer Com-
munications. IEEE, pages 1031–1039. IEEE, 2008.

[15] Jian Liang, Rakesh Kumar, and Keith W Ross. The fasttrack overlay: A measurement
study. Computer Networks, 50(6):842–858, 2006.

43

http://web.archive.org/web/20000815072716/http://www.napster.com/
http://web.archive.org/web/20000815072716/http://www.napster.com/
http://www.bittorrent.com/
http://www.bittorrent.com/company/about/ces_2012_150m_users/
http://www.bittorrent.com/company/about/ces_2012_150m_users/
http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_solution.html
http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_solution.html
http://www.ipoque.com/sites/default/files/mediafiles/documents/internet-study-2008-2009.pdf
http://www.ipoque.com/sites/default/files/mediafiles/documents/internet-study-2008-2009.pdf
http://www.ipoque.com/sites/default/files/mediafiles/documents/internet-study-2008-2009.pdf

[16] libtorrent. Seeding a million torrents. http://blog.libtorrent.org/
2012/01/seeding-a-million-torrents/, note = Online Article, January
2012.

[17] Michel Meulpolder, LE Meester, and Dick HJ Epema. The problem of upload com-
petition in peer-to-peer systems with incentive mechanisms. Concurrency and Com-
putation: Practice and Experience, 2012.

[18] M. Meulpolder, J.A. Pouwelse, D.H.J. Epema, and H.J. Sips. BarterCast: Fully
distributed sharing-ratio enforcement in BitTorrent. Technical Report PDS-2008-
002, Delft University of Technology, 2008.

[19] Jacob Jan-David Mol, Johan A Pouwelse, Michel Meulpolder, Dick HJ Epema, and
Henk J Sips. Give-to-get: free-riding resilient video-on-demand in p2p systems. In
Electronic Imaging 2008, pages 681804–681804. International Society for Optics
and Photonics, 2008.

[20] Giovanni Neglia, Giuseppe Reina, Honggang Zhang, Don Towsley, Arun Venkatara-
mani, and John Danaher. Availability in bittorrent systems. In INFOCOM 2007. 26th
IEEE International Conference on Computer Communications. IEEE, pages 2216–
2224. IEEE, 2007.

[21] Flutra Osmani, Victor Grishchenko, Raul Jimenez, and Björn Knutsson. Swift: the
missing link between peer-to-peer and information-centric networks. In Proceedings
of the First Workshop on P2P and Dependability, page 4. ACM, 2012.

[22] Riccardo Petrocco, Johan Pouwelse, and Dick HJ Epema. Performance analysis of
the libswift p2p streaming protocol. In Peer-to-Peer Computing (P2P), 2012 IEEE
12th International Conference on, pages 103–114. IEEE, 2012.

[23] J.A. Pouwelse, J. Yang, M. Meulpolder, D.H.J. Epema, and H.J. Sips. Buddycast: An
operational peer-to-peer epidemic protocol stack. Technical Report PDS-2008-005,
Delft University of Technology, 2008.

[24] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In Peer-to-
Peer Computing, 2001. Proceedings. First International Conference on, pages 99–
100. IEEE, 2001.

[25] Dario Rossi, Claudio Testa, Silvio Valenti, and Luca Muscariello. Ledbat: the new
bittorrent congestion control protocol. In Computer Communications and Networks
(ICCCN), 2010 Proceedings of 19th International Conference on, pages 1–6. IEEE,
2010.

[26] Thomas Schaap. Performance assessment of libswift. MSc thesis, Delft University
of Technology, August 2012.

[27] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low Extra Delay Background
Transport (LEDBAT). RFC 6817 (Experimental), Dec. 2012.

[28] M. Stuart. P2P-Next. http://www.dcia.info/activities/
p2pmslv2009/1-7%20P2PMS%20P2P-Next.pdf. Online Article.

[29] Niels Zeilemaker, Mihai Capotă, Arno Bakker, and Johan Pouwelse. Tribler: P2P
media search and sharing. In Proceedings of the 19th ACM International Conference
on Multimedia, pages 739–742. ACM, 2011.

[30] Niels Zeilemaker, Boudewijn Schoon, and Johan Pouwelse. Dispersy bundle syn-
chronization. Technical Report PDS-2013-002, Delft University of Technology, Jan-
uary 2013.

[31] Y. Zhang and N. Zong. Problem Statement and Requirements of the Peer-to-Peer
Streaming Protocol (PPSP). RFC 6972 (Informational), July 2013.

44

http://blog.libtorrent.org/2012/01/seeding-a-million-torrents/
http://blog.libtorrent.org/2012/01/seeding-a-million-torrents/
http://www.dcia.info/activities/p2pmslv2009/1-7%20P2PMS%20P2P-Next.pdf
http://www.dcia.info/activities/p2pmslv2009/1-7%20P2PMS%20P2P-Next.pdf

	Preface
	Introduction
	A P2P Network: BitTorrent
	Background: The Tribler Project
	Tribler
	Libswift & the Peer-to-Peer Streaming Protocol
	Dispersy
	BarterCast
	Gumby

	Problem Description
	Research Problem
	Research Questions

	Enabling Generous Donations
	Filesystem in Userspace
	Design
	Implementation
	Usage
	Performance

	Rewarding Goodness
	Libswift Concepts
	Design
	Implementation
	Usage

	Experiments
	Terabyte Seeding
	Libswift Reciprocity
	Policies
	Source of Inaccuracy

	Full Tribler

	Conclusion
	Future Work

