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A B S T R A C T

Simulation of fracture contact mechanics in deformable fractured media is of paramount
important in computational mechanics. Previous studies have revealed that compressive loading
may produce mode II fractures, which is quite different from mode I fractures induced by
tensile loading. Furthermore, fractures can cross each other. This will increase the complexity of
their network deformation under different loading types significantly. In this work, a stabilized
mixed-finite element (FE) scheme with Lagrange multipliers is proposed in the framework of
variational formulation, which is able to simulate frictional contact, shear failure (mode II)
and opening (mode I) of multiple crossing fractures. A novel treatment is devised to guarantee
physical solutions at the intersection of crossing fractures. A preconditioner is introduced to
re-scale the saddle-point algebraic system and to preserve the numerical robustness. Then, a
solution strategy is designed to calculate the unknowns, displacement and Lagrange multipliers,
in one algebraic system. Later, numerical tests are conducted to study mechanical behaviors
of fractured media. Benchmark study is performed to verify the presented mixed-FE scheme.
A deformable medium with crossing fractures is simulated under mixed-mode loading types.
The characteristics of fracture contact, surface sliding, opening and variation of stress intensity
factor are analyzed. Simulation results show that the curve of slippage induced by compression,
as well as the opening induced by internal fluid pressure, along the fracture length holds a
parabolic shape. The diagonal contact point, at the intersecting position of the crossing fractures,
is studied in detail, specially under different stress states. Finally, the impact of intersecting
fractures on frictional contact mechanics is investigated for different loading conditions.

. Introduction

The subject of computational contact mechanics is a pillar in applied and computational mechanics [1,2]. Especially, it plays an
ssential role in geoscience applications, such as reservoir engineering, subsurface energy exploration and faults activation [3–5].
iscrete fractures widely exist in geological fields with significantly contrasting hydraulic and mechanical properties [6,7]. The

ormation of the fracture networks and their evolution depend on the loading condition imposed by the surrounding geological
nvironment [8–10]. Moreover, the multiple crossing fractures lead to several complicated mechanical behaviors, specially when
he fractures are subjected to compressive loading (mode II fracture). In this context, the two sides of fracture plane contact and
nteract with each other, which produce contact tractions. It is totally different from the scenario of tensile loading (mode I fracture),
s in the situation of hydraulic-driven fractures, in which the contact constraints disappear as the two sides of the fractures are
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separate [11,12]. However, several challenges appear in the situation of crossing fractures [13], in which proper treatments at the
intersection of crossing fractures need more attentions.

The classical computational contact mechanics mainly studies the contact between two separate deformable (or rigid) bodies [14–
7]. In contrast to this, geoscience applications often include deformable porous media which entail several fractures [18–20].
urthermore, these discrete fractures are characterized with multiple contact surfaces. This configuration is unusual in classical
ontact mechanics but quite common in geoscience applications [21].

To this end, the classical contact mechanics theory is extended to the category of fault mechanics [3–5,18,19], with the aim
o mainly model the slip and contact traction on mode II fractures. On the other hand, to simplify the computational workflow,
ometimes the explicit treatment of contact mechanics is neglected [20]. This simplification is feasible in case of hydro-fracturing
roblem, when the mode I fractures are under tensile stress [11,12]. For compressive stress, however, such simplifications lead
o significant errors. The particular interest is to develop a computational model which allows for explicit consideration of both
pening and slippage (i.e. normal and tangential displacements). In this work, we consider the frictional contact mechanics and
urface sliding by Lagrange multipliers, in which both the slippage and opening of fracture can be accurately simulated.

In the numerical methods based on continuum mechanics, the category of mesh-based methods is developed and improved to
odel the frictional contact and sliding. Among these methods, finite element method (FEM) is the most widely used method

n computational contact mechanics [2–5,15,16]. Recently, the extended finite element method (XFEM) [22–24] and finite
olume method (FVM) [25–27] have been proposed to simulate frictional contact in fractured media. However, the classical
ontact mechanics studies the single contact surface. Based on this, the numerical methods for multiple interfaces in fractured
edia have been proposed. In the aspect of treatment of contact constraints, the penalty method [28,29] and the Lagrange
ultiplier method [30,31] are the two main schemes originated from the variational principle. Meanwhile, numerical schemes
ith variationally consistent hybrid formulation have been also proposed [25], in which the multi-point stress approximation [32]
as used to discretize the governing equations. Note that XFEM has been developed by the penalty method [23] and Lagrange
ultiplier method [22] to model frictional contact on fracture.

The drawback of penalty method is that the resulted algebraic system could be ill-conditioned. The key point is to apply
elastic) springs to connect the two sides of the contact surfaces. This approach is inaccurate, since it enforces springs with large
tiffness coefficients [28,29]. The Lagrange multiplier method, however, introduces an additional unknown [31,33], namely the
agrange multiplier. It has an underlying physical meaning, i.e., the contact tractions on fracture surface. The inconvenience is
he additional cost of solving the augmented algebraic system with the so-called saddle-point structure [34–36]. More precisely,
he Lagrange multiplier method results in the mixed-FE scheme [34,37], in which the displacement and Lagrange multiplier can be
alculated at one single global algebraic block. Other methods, such as the Nitsche’s method [38,39], augmented Lagrange multiplier
ethod [31,40] and mortar method [41,42] have been also proposed. Recently, the Nitsche method has been applied to address

ontact mechanics in the thermo-hyro-mechanical processes [43]. Based on the remeshing techniques, the fracture propagation is
lso studied [44,45], which is then extended to a multiscale simulation framework [46]. In fact, most of these methods are based on
he basic principles of penalty method and Lagrange multiplier method, within the framework of variational principle. The highly
onlinear property of the contact system is captured by the so-called Karush–Kuhn–Tucker (KKT) condition [1,2,14–16], which
s integrated into the standard variational principle, resulting in the constrained variational principle. The prospective directions
n computational contact mechanics is focused on the treatment of multiple fractured media, including crossing fractures, and
evelopment of stable [34,36,47] and scalable iterative solvers [34] for the resulting saddle-point systems. Such developments
ould allow for modeling large-scale systems within the industrial applications.

Despite being crucially important, the accurate and stable modeling of multiple crossing fractured media remains to a large
xtend unexplored. This work develops a novel approach to resolve this limitation. The FE-based system on an unstructured mesh
s developed in which fractures are confined at the matrix element interfaces. Then, a constraint is introduced to guarantee physical
olutions in presence of crossing fractures. The potential contact pairs are defined to resolve the contact mechanics at the intersected
osition. The resulting system contains displacement unknowns and Lagrange multipliers, leading to the saddle-point structure. We
evelop a scaling algorithm to improve the system condition number and thus leads to a robust solution strategy. The developed
ethod is being benchmarked against analytical methods, and tested for several proof-of-concept numerical test cases.

This paper is structured as follows. First, the formulation of frictional contact and shear failure on multiple crossing fractures is
resented in Section 2. Then, the contact constraints are integrated into variational principle using Lagrange multiplier. Galerkin
E approximation is applied in Section 3 to discretize the system. In Section 4, a solution strategy is proposed with the devised
onolithic-updated contact algorithm, in which the preconditioning is used to preserve the robustness of the saddle-point system.

inally, a series of numerical tests is performed in Section 5 to verify the proposed method and to analyze the mechanical behaviors
f deformable fractured media.

. Physical model

The formulation is presented after a revisit on the theory of contact mechanics. Both the isolated fracture and crossing fractures
an be simulated in this framework. The compressive state would lead to the activation of contact constraints, while the tensile
2

tate remains the standard scheme of elasticity.
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Fig. 1. Schematic of a deformable medium with multiple fractures. Each fracture is decomposed into a positive and a negative surfaces.

2.1. Model of deformable media with crossing fractures

The porous medium is denoted as 𝛺𝑚. As shown in Fig. 1, a set of the discrete fractures 𝜔 is distributed in the domain and is
modeled as the internal boundaries 𝛤𝑖𝑛 inside 𝛺𝑚. Each of the fracture surfaces is decomposed into the positive side 𝛤+

𝑖𝑛 and the
negative side 𝛤−

𝑖𝑛 , such that 𝛤𝑖𝑛 = 𝛤+
𝑖𝑛 ∪ 𝛤−

𝑖𝑛 . For multiple fractures, it reads:

𝜔 ∶= 𝛤𝑖𝑛 =
𝑁𝑓
∑

𝑖=1
𝛤𝑖𝑛,𝑖 =

𝑁𝑓
∑

𝑖=1

(

𝛤+
𝑖𝑛,𝑖 ∪ 𝛤−

𝑖𝑛,𝑖

)

(1)

where 𝑁𝑓 is the number of fractures. According to the convention in computational contact mechanics [2,14–16], we also adopt
the terms of master surface 𝛤−

𝑖𝑛 and slave surface 𝛤+
𝑖𝑛 .

The external boundary 𝛤𝑒𝑥 is expressed by 𝛤𝑒𝑥 = 𝛤𝐷
𝑒𝑥 ∪ 𝛤𝑁

𝑒𝑥 and 𝛤𝐷
𝑒𝑥 ∩ 𝛤𝑁

𝑒𝑥 = ∅, with Dirichlet- and Neumann-boundaries, namely
𝛤𝐷
𝑒𝑥 and 𝛤𝑁

𝑒𝑥 . The domain 𝛺 can be decomposed into 𝛺 = 𝛺𝑚∪𝛤𝑖𝑛, with the boundaries of external- and internal-types 𝜕𝛺 = 𝛤𝑒𝑥∪𝛤𝑖𝑛.
One of the novelties in this work is to model the contact behavior and sliding of 𝛤𝑖𝑛. The constraint on fracture surfaces depends

on the type of loading as well as the frictional law, which controls the sliding (mode II) or opening (mode I) of fractures. Especially,
the Karush–Kuhn–Tucker (KKT) condition [1,2,14,15] would be active once the contact surface is imposed by compression. It is
used to confine the unphysical effects of surface penetration and mesh overlapping, as displayed in Fig. 2. The details of contact
constraints will be introduced in Section 2.3.

2.2. Governing equations

The host matrix is assumed as an elastic medium. The assumptions of infinitesimal deformation and the quasi-static contact are
employed. The deformation of 𝛺 is captured by the momentum balance combining with Hooke’s law:

∇ ⋅ (C ∶ ∇𝑠𝐮) + 𝐟 = 𝟎 on 𝛺 (2)

with the body force 𝐟 and elasticity tensor C. 𝐮 is the displacement vector, ∇𝑠 the symmetric gradient.
It is straightforward to define boundary conditions for the external boundary. The pre-defined displacement �̄�𝑒𝑥 and traction �̄�𝑒𝑥

are given as:

𝐮 = �̄�𝑒𝑥 on 𝛤𝐷
𝑒𝑥

𝝈 ⋅ 𝐧𝑒𝑥 = �̄�𝑒𝑥 on 𝛤𝑁
𝑒𝑥

(3)

with the outward unit vector 𝐧𝑒𝑥 which points outward of the external boundary.
The situation is totally different once fractures are introduced. Providing a reasonable and correct condition is complicated for

𝛤𝑖𝑛 (also known as the fractures) because of the nonlinear constraints on fractures [2,14]. The system of nonlinear inequalities (the
KKT condition) [2,15] are introduced:

𝐂
(

𝐮𝑓 , 𝐭𝑓
)

⩾ 𝟎 on 𝛤𝑖𝑛 (4)

with the displacement 𝐮𝑓 and traction 𝐭𝑓 on the contact surface. The expanded form will be introduced in Section 2.3.
The external boundary condition Eq. (3) is allowed to be compressive or tensile. The later case can be treated easily by the

standard finite element framework. The fracture surfaces exhibit complex behaviors if compression is applied, as shown in Fig. 2.
3
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Fig. 2. Fracture states under different loading conditions. The contact constraints are activated in compression and disappears under tension.

Fig. 3. The local system attached to a fracture surface.

2.3. Constraints on local system of fractures

The system of additional constraint equations Eq. (4) on fractures is taken as a complement of the standard boundary condition
Eq. (3). Generally speaking, as shown in Fig. 1, a certain fracture can be slip, stick or open. Furthermore, the contact surface is
divided into several portions 𝛤𝑖𝑛 = 𝛤 𝑠𝑡𝑖𝑐𝑘

𝑖𝑛 ∪ 𝛤 𝑠𝑙𝑖𝑝
𝑖𝑛 ∪ 𝛤 𝑜𝑝𝑒𝑛

𝑖𝑛 .
The local coordinate system

(

𝐧𝑓 ,𝐦𝑓 ), defined by the unit-normal vector 𝐧𝑓 and the unit-tangential vector 𝐦𝑓 , is attached to
each of fractures, as shown in Fig. 3. To define the sign of 𝐧𝑓 , we classify the positive and negative vectors, 𝐧+ and 𝐧−, for the
two sides 𝛤+

𝑖𝑛 and 𝛤−
𝑖𝑛 , respectively. The default directions of unit vector and traction used in the presented numerical scheme are

defined:

𝐧𝑓 = 𝐧− = −𝐧+ and 𝐭𝑓𝑁 = 𝐭𝑖𝑛−𝑁 = −𝐭𝑖𝑛+𝑁 (5)

where 𝐧𝑓 is a vector that points from the negative side to the positive side. 𝐭𝑖𝑛±𝑁 is the normal component of contact traction on ±
sides.

The unit vector 𝐧𝑓 is used to define the normal component of a local system. We adopt the assumption of infinitesimal
deformation, therefore 𝐧𝑓 is directly defined in the initial configuration. The normal traction of contact 𝐭𝑓𝑁 is calculated by stress
tensor 𝝈 based on the traction vector 𝐭𝑓 , which is given by:

𝐭𝑓 = 𝝈 ⋅ 𝐧𝑓 = 𝑡𝑓𝑁𝐧𝑓 + 𝑡𝑓𝑇𝐦
𝑓 (6)

where the sign of compression is negative, vise versa.
Fig. 3 depicts a local coordinate system

(

𝐧𝑓 ,𝐦𝑓 ) for a certain fracture. The quantity [[𝐮𝑓 ]] on a contact surface is introduced to
evaluate the relative deformation between the two sides 𝛤+

𝑖𝑛 and 𝛤−
𝑖𝑛 :

[[𝐮𝑓 ]] = 𝐮𝑓+ − 𝐮𝑓− (7)

with the absolute displacements 𝐮𝑓+ and 𝐮𝑓− on two sides of the contact surface. The two components of relative displacement are
defined as:

[[𝑢𝑓 ]] = [[𝐮𝑓 ]] ⋅ 𝐧𝑓 and [[𝑢𝑓 ]] = [[𝐮𝑓 ]] ⋅𝐦𝑓 (8)
4
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Therefore, the additional constraint conditions are used to confine the mechanical behavior of contact surface on the normal
irection:

𝑔𝑁 = [[𝑢𝑓𝑁 ]] ⩾ 0 on 𝛤𝑖𝑛

𝑡𝑓𝑁 ⩽ 0 on 𝛤𝑖𝑛

𝑔𝑁 𝑡𝑓𝑁 = 0 on 𝛤𝑖𝑛

(9)

nd the tangential direction:

𝜏𝑐 = 𝑐 − 𝑡𝑓𝑁 tan𝜑 on 𝛤𝑖𝑛

𝑡𝑓𝑇 = 𝜏𝑐
[[𝑢𝑓𝑇 ]]

‖[[𝑢𝑓𝑇 ]]‖2
on 𝛤𝑖𝑛

(10)

where symbol ‖ ⋅ ‖2 is the 2-norm. The critical value of 𝜏𝑐 is determined by Mohr–Coulomb criterion. 𝑐 and 𝜑 are parameters to
control frictional behavior. The sign of 𝑡𝑓𝑇 is of great important to calculate the dissipate energy induced by contact friction. In this

ork, we employ the so-called maximum plastic dissipate principle [15,18,48] to obtain the direction of 𝑡𝑓𝑇 , in which [[𝑢𝑓𝑇 ]] is the
weighted quantity.

Eqs. (9) and (10) are the expanded forms of Eq. (4), which hold true on contact surface of each fracture. They provide a set of
constraint equations to define the frictional contact, which are considered as requisite complements to Eqs. (2) and (3).

3. Numerical discretization

The constraints of frictional contact are integrated in the mixed-finite element scheme through Lagrange multipliers. Then, the
Galerkin finite element approximation is used to derive the fully discretized scheme then resulting an unified computational formula.

3.1. Variational formulation of deformable media with multiple fractures

In this section, the standard variational principle is extended to include the contact mechanics and sliding of multiple fractures.
Note that Eq. (10) is inactive if the current traction component 𝑡𝑓𝑇 is lower than the critical traction 𝜏𝑐 .

We use the Galerkin finite element formulation (GFEM) [15,49] to integrate the contact constraints Eqs. (9) and (10). The
standard variational principle (SVP) is extended to a more general case. According to the Lagrange multiplier method [49–51], SVP
is generalized to the constrained variational principle (CVP). The total energy functional is introduced as:

𝛱∗ (𝐮,𝐮𝑓 ,𝝀
)

= 𝛱𝑢 (𝐮) +𝛱𝐶𝐿 (

𝐮𝑓 ,𝝀
)

(11)

with the elastic functional 𝛱𝑢 (𝐮) defined by SVP, which is related to the unknown (displacement 𝐮). The novelty is the contact
functional 𝛱𝐶𝐿 (

𝐮𝑓 ,𝝀
)

defined by CVP through Lagrange multiplier 𝝀.
The Lagrange multiplier vector reveals an underlying meaning in physical aspect. The component form 𝝀 =

[

𝜆𝑁 𝜆𝑇
]𝑇 indicates

that it equals the components of contact traction on the surface. To solve the system, the first-order variation of Eq. (11) is written
as:

𝛿𝛱∗ (𝐮,𝐮𝑓 ,𝝀
)

= 𝛿𝛱𝑢 (𝐮)
⏟⏟⏟
Elasticity

+ 𝛿𝛱𝐶𝐿
𝑢

(

𝐮𝑓 ,𝝀
)

+ 𝛿𝛱𝐶𝐿
𝜆

(

𝐮𝑓 ,𝝀
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Frictional contact and slip

(12)

The last two terms in right-hand side of Eq. (12) are induced by the effects from frictional contact and sliding. The Lagrange
multiplier method provides a way to integrate contact constraints with the help of Eqs. (2), (3) and (4):

𝛿𝛱∗ (𝐮,𝐮𝑓 ,𝝀
)

= ∫𝛺
𝛿𝜺𝑇 𝝈𝑑𝛺 − ∫𝛺

𝛿𝐮𝑇 𝐟𝑑𝛺 − ∫𝛤𝑁
𝑒𝑥

𝛿𝐮𝑇 �̄�𝑒𝑥𝑑𝛤

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Induced by elastic deformation of the matrix

+
𝑁𝑓
∑

𝑖=1

(

∫𝛤𝑖𝑛,𝑖
𝛿𝝀𝑇𝐂

(

𝐮𝑓 , 𝐭𝑓
)

𝑑𝛤 + ∫𝛤𝑖𝑛,𝑖
𝝀𝑇 𝛿𝐂

(

𝐮𝑓 , 𝐭𝑓
)

𝑑𝛤

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Induced by frictional contact and slip on fractures

(13)

The constrained variational principle requires 𝛿𝛱∗ (𝐮,𝐮𝑓 ,𝝀
)

= 0 with respect to displacement 𝐮:

∫𝛺
𝛿𝜺𝑇 𝝈𝑑𝛺 − ∫𝛺

𝛿𝐮𝑇 𝐟𝑑𝛺 − ∫𝛤𝑁
𝑒𝑥

𝛿𝐮𝑇 �̄�𝑒𝑥𝑑𝛤 +
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝝀𝑇 𝛿𝐂
(

𝐮𝑓 , 𝐭𝑓
)

𝑑𝛤 = 0 (14)

and with respect to Lagrange multiplier 𝝀:
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝝀𝑇𝐂
(

𝐮𝑓 , 𝐭𝑓
)

𝑑𝛤 = 0 (15)

𝑓

5

with the number of fractures 𝑁 . The situation of multiple fractures is then included.
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Fig. 4. Definition of contact pairs in a local system on the unstructured grids.

3.2. Galerkin finite element approximations

The first three terms in Eq. (14) can be easily treated by the standard Galerkin finite element method. The key point is the fourth
term at the left-hand side, which describes the effects from contact and sliding.

The sliding on fracture will occur if the tangential contact traction reaches the critical value 𝜏𝑐 , as indicated in Eq. (10). In this
context, the tangential component is obtained by Mohr–Coulomb criterion, which means 𝜆𝑇 = 𝜏𝑐 . We define the indicator function
for slip contact:

𝑠𝑖𝑔𝑛 =
[[𝑢𝑓𝑇 ]]

‖[[𝑢𝑓𝑇 ]]‖2
=

{

1 slip along direction of 𝐦𝑓

−1 slip along direction of −𝐦𝑓
(16)

Consequently, the component 𝜆𝑇 of unknown 𝝀 is expressed by 𝜆𝑇 =
(

𝑐 − 𝜆𝑁 tan𝜑
)

𝑠𝑖𝑔𝑛. In this way, 𝜆𝑇 is connected to the
unknown 𝜆𝑁 . Fracture sliding occurs if Eqs. (9) and (10) are active (mode II). In contrast, if the contact surface is subjected to
tension (mode I), the contact constraints are disappeared. Then, the formulation would be reduced to the SVP framework, which
can be expressed by the first three terms at right-hand side of Eq. (13).

Therefore, the weak forms of the governing equations can be obtained. We refer to Appendix A for the detail.
The governing equations can be fully discretized using Galerkin finite element method [15,49]. As the requirement of finite

element method, the solutions 𝝀 and 𝐮 are subjected to the square integrable functional spaces [34,52,53]. The finite element
approximations are given as:

𝐮 ≈ 𝐮ℎ =
𝑛𝑛𝑜𝑑𝑒
∑

𝑖=1
𝐍𝑢
𝑖𝐔𝑖 = 𝐍𝑢𝐔

𝝀 ≈ 𝝀ℎ =
𝑛𝑐𝑝
∑

𝑗=1
𝐍𝜆
𝑗𝜦𝑗 = 𝐍𝜆𝜦

(17)

with displacement vector 𝐔 and Lagrange multiplier vector 𝜦 at grid vertices, and the shape function matrices 𝐍𝑢 and 𝐍𝜆. Note that
the numbers of nodes and contact pairs are denoted by 𝑛𝑛𝑜𝑑𝑒 and 𝑛𝑐𝑝.

The relative displacement between + side and — side is measured by the jump displacement vector [[𝐮𝑓 ]] in local system, as
shown in Fig. 4. The transformation matrix 𝐆 achieves the expression of relative displacement on fracture surface. To convert the
quantity from global system to local system, the rotation matrix 𝐒 is defined by unit vectors of the local system. Consequently, the
jump displacement reads:

[[�̂�𝑓 ]] = 𝐒𝑇𝐆𝐔𝑓 (18)

with the displacement vector 𝐔𝑓 related to the fracture surface. Strain 𝜺 and stress 𝝈 are expressed as:

𝜺 = 𝐁𝐔 and 𝝈 = 𝐃𝐁𝐔 (19)

with the elastic matrix 𝐃 and the strain operator 𝐁.
6
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Fig. 5. Schematic of contact pairs on crossing fractures.

Fig. 6. Illustration of diagonal contact at the intersected position.

It is straightforward that the discretized forms can be obtained once substituting the quantities in weak forms using the
expressions Eqs. (17), (18) and (19):

∫𝛺
𝛿𝐔𝑇𝐁𝑇𝐃𝐁𝐔𝑑𝛺 − ∫𝛺

𝛿𝐔𝑇 [

𝐍𝑢]𝑇 𝐟𝑑𝛺 − ∫𝛤𝑁
𝑒𝑥

𝛿𝐔𝑇 [

𝐍𝑢]𝑇 �̄�𝑒𝑥𝑑𝛤 +
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝐔𝑇𝐆𝑇 𝐒𝐍𝜆𝜦𝑑𝛤 = 0

𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝜦𝑇 [

𝐍𝜆]𝑇 𝐒𝑇𝐆𝐔𝑑𝛤 = −
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝜦𝑇 [

𝐍𝜆]𝑇 𝐠𝑑𝛤

(20)

In the situation of fracture sliding, the tangential component which related to 𝜦 in Eq. (20) needs to be replaced by the critical
traction 𝜏𝑐 defined in Eq. (10). Meanwhile, it is important that employing Eq. (16) to determine the direction of slip contact.

Before introduce the solution strategy, the treatment of contact and sliding on crossing fractures is addressed in Section 3.3.

3.3. A novel treatment of contact on crossing fractures

Normally, in classical computational contact mechanics, the concept of contact pair is used to capture the contact or impact
between two separate deformable (or rigid) bodies, in which the situation of crossing contact surfaces is unusual, see [15–17]. In
contrast to that, it is very common in geoscience applications that discrete fractures would cross each other, so that the contact
mechanics of crossing fractures should be addressed.

Fig. 5 shows a schematic of crossing fractures and their contact pairs defined in the local systems of fractures 𝛤𝑖𝑛,𝑖 and 𝛤𝑖𝑛,𝑗 .
The hybrid-dimensional modeling approach is applied to generate the grids of the matrix and the fractures [7,9]. The node-split
technique [3,5,44] is applied to duplicate the nodes on contact surface, so that the computational mesh allows a relative displacement
7
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on the position of crossing fractures. For example, four points 𝑝𝑖, 𝑝𝑗 , 𝑝𝑘, 𝑝𝑚 are defined on the crossing position. They would be
contacted if fracture 𝛤𝑖𝑛,𝑖 (or fracture 𝛤𝑖𝑛,𝑗) is imposed by compression. To capture this interaction, the ‘‘crossing contact pairs’’ are
devised in the presented numerical scheme. Particularly, the diagonal contact should be considered. Assuming the + and — sides
of surface 𝛤𝑖𝑛,𝑖 would be in contact, the crossing contact pairs 𝑝𝑖 − 𝑝𝑚, 𝑝𝑖 − 𝑝𝑘, 𝑝𝑗 − 𝑝𝑚 and 𝑝𝑗 − 𝑝𝑘 are constructed. Similarly, for the
surface 𝛤𝑖𝑛,𝑗 , the crossing contact pairs are 𝑝𝑖 − 𝑝𝑗 , 𝑝𝑖 − 𝑝𝑘, 𝑝𝑚 − 𝑝𝑘 and 𝑝𝑚 − 𝑝𝑗 , in which 𝑝𝑖 − 𝑝𝑘 and 𝑝𝑚 − 𝑝𝑗 are the diagonal contact
pairs. If compressive loading is not active, the crossing contact pairs allow to be separated.

Furthermore, the potential scenarios are illustrated in Fig. 6. The diagonal contact would be occurred if the contact pairs along
the diagonal are activated. Fig. 6 shows a potential diagonal contact, where the crossing contact pair 𝑝𝑖−𝑝𝑘 is activated. Depending
on the stress state, the two diagonal nodes may slip along either Fracture 1 or Fracture 2. Therefore, to analyze the potential diagonal
contacts, numerical tests are performed with different loading directions under compression and tension, as discussed in Section 5.4.

4. Solution strategy of the stabilized mixed-FE scheme

In this section, the algebraic form of the contact system is derived and resulting an unified matrix formulation. The system of
contact mechanics is solved by iteration method. The preconditioner is introduced to handle the saddle-point algebraic system. It
leads to a preconditioned mixed-FE scheme. All algorithms are implemented in our C++ code.

4.1. The iteration method for contact mechanics

The system of contact mechanics is a nonlinear system, where the unknowns 𝐔 and 𝜦 are coupled together. As shown in system
Eq. (20), the two equations depend on each other. Consequently, the mixed-finite element formulation [34,35,37] is formulated.
In this way, the two primary unknowns can be calculated by one non-linear system in a monolithic strategy. Residual vector
𝐑 = [𝐑𝑢 𝐑𝜆]𝑇 is constructed for the iteration. The superscripts 𝑢 and 𝜆 mean the displacement and Lagrange multiplier. In the
iteration, we wish the 𝐿2-norm of residual vector converges to zero:

lim
𝑛→∞

‖𝐑𝑛
‖2 = 𝟎 (21)

where the components of residual vector 𝐑 are defined based on Eq. (20):

𝐑𝑢 = ∫𝛺
𝛿𝐔𝑇𝐁𝑇𝐃𝐁𝐔𝑑𝛺 − ∫𝛺

𝛿𝐔𝑇 [

𝐍𝑢]𝑇 𝐟𝑑𝛺 − ∫𝛤𝑁
𝑒𝑥

𝛿𝐔𝑇 [

𝐍𝑢]𝑇 �̄�𝑒𝑥𝑑𝛤 −
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝐔𝑇𝐆𝑇 𝐒𝐍𝜆𝜦𝑑𝛤

𝐑𝜆 =
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝜦𝑇 [

𝐍𝜆]𝑇 𝐒𝑇𝐆𝐔𝑑𝛤 +
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝜦𝑇 [

𝐍𝜆]𝑇 𝐠𝑑𝛤

(22)

Then, the Newton–Raphson iteration method is introduced to linearize the nonlinear system. Jacobian 𝐉𝜈 and residual vector 𝐑𝜈

should be calculated at each iteration step 𝜈. The unknown vector 𝐱 = [𝐔 𝜦]𝑇 can be solved at step 𝜈+1 in incremental form 𝛿𝐱𝜈+1:

[

𝐉11 𝐉12
𝐉21 𝐉22

]𝜈 [𝛿𝐔
𝛿𝜦

]𝜈+1

= −
[

𝐑𝑢

𝐑𝜆

]𝜈

(23)

with the components of Jacobian 𝐉𝑖𝑗 (𝑖, 𝑗 = 1, 2), which are determined by the derivative of residual vector with respect to unknown
vector:

𝐉𝜈 = 𝜕𝐑
𝜕𝐱

|

𝜈 (24)

The contact system can be then written as the algebraic form based on Eqs. (23) and (24):
[

𝐊𝑢𝑢 𝐂𝜆𝑢
[

𝐂𝜆𝑢]𝑇 𝟎

]

[

𝛿𝐔
𝛿𝜦

]

= −
[

𝐑𝑢

𝐑𝜆

]

(25)

here the effects induced by slip and stick could be reflected through block 𝐂𝜆𝑢 and its transpose
[

𝐂𝜆𝑢]𝑇 . 𝐊𝑢𝑢 is the block related
o displacement. The components in Eq. (25) are provided in Appendix B.

.2. Preconditioning of the saddle-point algebraic system

It should be noted that the lower block diagonal entry of the Jacobian in Eq. (25) is a zero matrix. The shape of 𝐂𝜆𝑢 is rectangular,
hile 𝐊𝑢𝑢 is a square matrix, as shown in Fig. 7. These features lead to a special algebraic structure, which is the so-called saddle-
oint system [34–36]. Furthermore, the ill-condition Jacobian 𝐉, which has a high condition number, would lead to a numerical
nstability when solving the saddle-point system Eq. (25). To this end, the preconditioning technique is presented to improve the
umerical robustness of the system.

The preconditioned Jacobian �̄� with a low condition number is derived through the preconditioned operation:

�̄� = 𝐏𝐉 =
[

𝐀−1 𝟎
−1

]

[

𝐊𝑢𝑢 𝐂𝜆𝑢
[ 𝜆𝑢]𝑇

]

(26)
8
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Fig. 7. The pattern of non-zero entries of saddle-point system resulted by the presented numerical scheme.

with the components 𝐀 and 𝐁 of preconditioner 𝐏. They are defined by the norms of 𝐊𝑢𝑢 and 𝐂𝜆𝑢. For convenience, we denote
[

𝐂𝜆𝑢]𝑇 = 𝐃 and
[

𝐊𝑢𝑢 𝐂𝜆𝑢] = 𝐄. We refer to C for the expanded forms.
Combining the system of Eqs. (25), (B.1), (B.2) with the operation Eq. (26), a preconditioned mixed-FE scheme is presented,

which is one of the core innovations in the presented work. The attractive feature is ease of implementation and it can be directly
integrated into an existing solver.

4.3. Global strategy: the monolithic-updated contact algorithm

The contact system should be resolved using an iteration strategy, since the governing equations of contact mechanics are a set
of nonlinear partial differential equations. Moreover, the contact state of each contact pair should be updated dynamically at each
time step and depends on the loading condition. It is essential that to check the contact state based on the contact constrained
conditions and current stress/displacement condition. Meanwhile, each of the contact pairs should be evaluated at each iteration.
To this end, the monolithic-updated contact algorithm is designed to update the unknowns (displacement and Lagrange multiplier)
in one algebraic system, as shown in Appendix D.

5. Numerical results and discussion

In this section, a series of numerical tests is conducted to study the frictional contact and sliding of single- and multi-crossed
fractures based on the proposed mixed-FE scheme. First, a benchmark study is presented to verify the numerical scheme. Later, the
contact behavior on single fracture is studied under mixed-mode loading. Finally, tests with complex geometry are studied. The
slippage and opening of fractures are analyzed under different conditions.

5.1. Fracture slip controlled by frictional law

A fractured medium, which contains a single inclined fracture with angle 𝛼 and length 2𝑙, is modeled when the uniaxial loading
𝜎∞ is imposed. As shown in Fig. 8, the numerical model is constructed and two patterns with different inclined angles are considered.
We adopt the assumptions of homogeneous and linear elastic material with Young’s modulus 𝐸 = 25GPa and Poisson ratio 𝜈 = 0.25.
The parameters of frictional law are frictional angle 𝜑 = 30◦ and cohesion 𝑐 = 0. Note that the compression 𝜎∞ = 10 MPa and crack
length 2𝑙 = 2 m.

This model is selected as a benchmark test to verify the proposed numerical method. To this end, the slippage (i.e. the relative
tangential displacement) on contact surface can be calculated by the analytical solution from literature [54]:

[[𝑢𝑓𝑇 ]] =
4𝑡𝑓𝑇

(

1 − 𝜈2
)

𝐸

√

𝑙2 − (𝜂 − 𝑙)2 (27)

with the tangential and normal components of contact traction:

𝑡𝑓𝑇 = 𝜎∞ sin 𝛼 cos 𝛼 − 𝜎∞ sin2 𝛼 tan𝜑

𝑡𝑓𝑁 = −𝜎∞ sin2 𝛼
(28)

where 0 ⩽ 𝜂 ⩽ 2𝑙 is the coordinate along the length of contact surface.
Fig. 9 illustrates the comparison between the analytical and numerical solutions. As shown in this figure, the relative displacement

(slippage) on contact surface shows a ‘‘parabolic’’ shape. Furthermore, the tangential component of relative displacement on contact
surface is calculated in case of Pattern B, as shown in Fig. 9. The results imply that the numerical solutions are consistent with the
analytical results. Fig. 10 indicates the components of traction maintain constant. The analytical and numerical results agree well
9
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Fig. 8. Schematic of a deformable medium with a single fracture.

Fig. 9. The comparison of slippage between analytical and numerical solutions of the single inclined fracture.

Fig. 10. Comparison of contact tractions (normal and tangential components) between analytical and numerical solutions of the single inclined fracture in
Pattern A.

with each other. Moreover, the slight oscillation on the crack tip is observed at the endpoint of x-coordinate, as well as along the
fracture. It is a common observation reported in literature. Typically, some of the methods developed in the literature (e.g., Fig. 8
in [4] and Fig. 17 in [53]) have also observed an oscillatory pattern in the variation of normal traction along the contact surface.

In addition, the slip profile long the fracture obtained by the finite volume method (e.g., Fig. 12 in [26]) and the penalty method
(e.g., Fig. 8 in [4]) displays a relative larger error compared with the result calculated by our method (Fig. 9). More precisely, Fig. 11
provides a detailed comparison of the slip profile calculated by different methods for this test case. Note that the results of finite
volume and penalty methods are extracted from [4,26], respectively. From this figure, it is clear that the presented mixed-FE scheme
outperforms both the finite volume and the penalty methods.
10
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Fig. 11. Comparison of the normalized slippage along fracture calculated by different methods. The results of finite volume and penalty methods are extracted
from [4,26], respectively.

To study the grid convergence of our method, we analyze the convergence performance with the grid refinement. The size of
the domain is 10 m × 10 m. The local refinement is applied close to the inclined fracture, while the coarse grids are used far from
the fracture. The grid resolution on the fracture surface is ℎ𝑚𝑖𝑛, while the grid resolution on the edges of this domain is ℎ𝑚𝑎𝑥. Then,
ℎ𝑚𝑖𝑛 is set to be changed at a fixed ℎ𝑚𝑎𝑥. We set ℎ𝑚𝑖𝑛 = 0.05 ∼ 0.15 with the step of 0.02, while the coarse resolution ℎ𝑚𝑎𝑥 is set to
0.5 and 1. Fig. 12a provides several examples of grid refinements. The error 𝜖ℎ is defined as:

𝜖ℎ =
𝑛𝑐𝑝
∑

𝑖=1

‖

‖

‖

𝑥𝑟𝑒𝑓𝑖 − 𝑥ℎ𝑖
‖

‖

‖2
‖

‖

‖

𝑥𝑟𝑒𝑓𝑖
‖

‖

‖2

(29)

where 𝑛𝑐𝑝 is the number of contact pairs on fracture surface. 𝑥𝑟𝑒𝑓𝑖 is the reference solution.
The results calculated by different grid resolutions, denoted as 𝑥ℎ𝑖 , are compared with the reference solution. Note that 𝑥𝑖 can

be the slippage [[𝑢𝑓𝑇 ]], normal traction 𝑡𝑓𝑁 or tangential traction 𝑡𝑓𝑇 on fracture surface. Convergence performance of this method,
evaluated by different grid refinements, is displayed in Fig. 12b. It proves that the error, also implying the oscillation shown in
Fig. 10, may decrease with the grid refinement. Note that the decrease of oscillation is a relative results. It means that we will
obtain a relatively small oscillation with the refinement. But if we zoom in the local segment of the curves, the slight oscillation
still exists, as reported in literature [4,53].

The importance of considering contact behavior is depicted in Fig. 13. As illustrated in the enlarged view, the grids on two
sides of contact surface would be penetrated to each other if contact constraints are neglected. In contrast, a pair of contact traction
corresponding to the two sides would be naturally created in the framework of Lagrange multiplier method to prevent the penetration
when considering contact effect on fracture.

5.2. Shear failure on fracture surface

A fractured medium, which is intersected by a single fracture crossing the entire domain, is used to analyze the pure sliding
along the fracture surface. We follow the same parameters as the benchmark provided in literature [55]. The material properties
of elastic material are 𝐸 = 5 GPa and 𝜈 = 0.3. The frictional angle 𝜑 = 5.71◦ (means the frictional coefficient is tan𝜑 ≈ 0.1) and
cohesion 𝑐 = 0.

Two different patterns (Patterns A and B) of this model are simulated. The fracture partially intersects this domain in Pattern A.
The coordinates of fracture are shown in Fig. 14. The crack tips are no longer surrounded by the host elastic matrix, thus deformation
contour shows a different pattern compared with the case of embedded fracture model (for instance the model in Section 5.1), as
displayed in Fig. 14. The upper part of the geometry has a significant movement, such that the entire body slips along the fracture
surface. Fig. 15a shows a comparison of results calculated by the presented method and the reference solution.

As a comparison, Pattern B of this model is analyzed, as discussed in [53]. In this pattern, the deformable domain is entirely
intersected by the fracture, while the slippage on fracture is different from that of Pattern A. The analytical solution of slippage is
a constant 𝛥𝑢 ≈ 0.1414 m according to the literature [53,55]. Fig. 15b illustrates that the numerical solution agrees well with the
analytical solution.

5.3. The effect of mixed-mode loadings and fluid pressure

Different types of loading mode would lead to various responses of a deformable fractured medium. The preceding tests focus
on pure uniaxial compression or single type of loading instead of mixed-mode loading conditions. In this section, a fractured
medium, with the same geometry shown in Fig. 8, is studied. In contrast to that, the compressive+shear mode (Pattern A) and

◦

11

the tensile+shear mode (Pattern B) are considered. 𝐸 = 50 GPa and 𝜑 = 30 . The normal stress equals 10 MPa on the top surface
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Fig. 12. Grid convergence with different grid resolutions. ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 are the grid resolutions on fracture surface and on the model edges, respectively.

Fig. 13. Deformation of finite element grids. The numerical treatment of frictional contact and sliding prevents the penetration of grid on fracture surfaces.
12
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Fig. 14. Deformation of fracture sliding in Pattern A. The slippage of contact surface is measured by the tangential displacement.

Fig. 15. The comparison between numerical solutions and reference solutions.

of the model, while the shear stress allows varied 5 ∼ 8 MPa. It is obvious that the contact constraints would be active if Pattern A
is applied. While the situation shows a distinct in Pattern B, in which the two sides of fracture surface would be separate thus the
contact constraints are no longer active.

Fig. 16 shows the characteristics of displacement along the off-diagonal of the domain and provides a comparison between
Pattern A and Pattern B. Note that the jump of displacement at the position, which is intersected by the fracture, exhibits different
features as shown in the enlarged views. Furthermore, the increased value of shear loading leads to the corresponding increased
displacement magnitude on fracture.

Pattern C is designed to analyze the shear behavior on contact surface. Fig. 17 shows the deformation profile if fracture surface
is imposed by an inverse pair of traction on the corresponding two sides of fracture surface. The range of shear stress is 10 ∼ 16 MPa.
It can be seen from this figure that the shear loading produces a symmetric distribution of displacement field along the diagonal
line in the domain. A monitoring line is placed along the off-diagonal line in the domain to measure the variation of displacement.
Fig. 16 captures a sharp shift of displacement magnitude on the fracture.
13
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Fig. 16. Variation of displacement across the contact surface in Pattern A (left), Pattern B (middle) and Pattern C (right).

Fig. 17. Deformation in Pattern C. The imposed shear loading on contact surface leads to the symmetric mode of displacement.

The scenario is different when the internal fluid pressure is considered. As displayed in Fig. 18, the fractured surface is imposed
by internal pressure which is normal to the two sides of fracture, and their directions are opposite to each other. In this way, one can
model the scenario of fluid pressure in a hydro-mechanical process. The displacement vector field in Fig. 18 illustrates the opening
of fracture surface. Especially, the discontinuous phenomenon generated by the opened surface can be calculated by an analytical
solution from literature [26,56]:

𝛥𝑢 =
2𝑙𝑝 (1 − 𝜈)

𝐺

√

1 −
( 𝜂
𝑙

)2
(30)

with the applied fluid pressure 𝑝 = 10 MPa and coordinate 𝜂 on contact surface. 𝑙 = 1 m is the half length of the fracture, as shown
in Fig. 8. 𝐺 is the shear modulus of the elastic host matrix.

Fig. 18 shows the deformation pattern is symmetric along the off-diagonal line across the entire domain. The components of
the up and down sides of the fracture surface illustrate the deformation distribution jumps by the sharp region that intersected
by fracture. The enlarged view of the fracture provides an observation to show the opening and displacement vector field. Fig. 19
shows a comparison between analytical and numerical solutions. The shape of opening curve is ‘‘parabolic’’ which is same as the
curve of slippage in compressive loading (Fig. 9).

5.4. Crossing fractures under mixed-mode loadings

The simulation of frictional contact and shear failure on crossing fractures raises several challenges in computational mechan-
ics [13,57]. The capability of modeling frictional contact and sliding on multiple crossing fractures is one of the innovations of the
presented work, as discussed in Sections 2 and 3.

A complex fractured medium is simulated to show the contact behavior of fractured media containing crossing fractures, as
shown in Fig. 20. The parameters are same as the above case.

The crossing contact pairs are defined in Section 3.3 to resolved the contact mechanics at the intersected position. The
deformation profile, when the compressive loading is applied, is shown in Fig. 21a. The interaction of multiple fractures at the
crossing position can be observed in the enlarged views. In this figure, a comparison shown in the enlarged insets is provided to
demonstrate the effect of treatment of crossing fractures on contact behavior. The displacement vector illustrates the influence of
the existing contact surfaces, where a direction shift of the displacement vector is observed around the fractures. Moreover, the
treatment of crossing fractures is important to the numerical simulation. Otherwise, a mesh penetration would be occurred at the
position of crossing fractures.

Fig. 22 depicts the variations of slippage on Fractures 1 and 2, which are labeled in Fig. 20a. The crossing positions is marked
by a box in this figure. If the compressive loading is applied, as shown in Fig. 21a, with an increased stress, the value of slippage
14
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Fig. 18. Deformation contours when fluid pressure applied on fracture plane. Note that the deformation is amplified by 10 times for visualization.

Fig. 19. The comparison of fracture opening between analytical and numerical solutions when fluid pressure imposed on the fracture.

Fig. 20. Schematics of numerical model with different fracture patterns.
15
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Fig. 21. Displacement of the single-crossed fractures model. Note that the deformation is amplified by 50 times for visualization.

Fig. 22. The slippage on fracture surfaces in the single-crossed fractures model under compression (imposed on the top side).

would be increased as well. However, the curves of Fractures 1 and 2 show different features. It can be observed that the slippage
on Fracture 1 is greater than that of Fracture 2 due to the effect of intersected fractures. The shape of slippage curve shown in
Fig. 22a is parabolic and is comparable with the shape illustrated in Fig. 9.

As a contrast comparison study, a tensile loading is applied to analyze the opening on fracture surface. This distinct can be
classified by the vector arrows in Fig. 21. In addition, the opening at the crossing position is observed and shown by the amplified
view, which demonstrates a desirable capability of the proposed numerical scheme to simulate the opening of crossing fractures.

The schematic of a medium with multiple crossing fractures is displayed in Fig. 20b. A set of multiple crossing fractures is
simulated in this test. The simulation results show the stability of the proposed numerical method when multiple crossing fractures
are considered. The displacement field is shown in Fig. 24. It appears that the displacement vector arrows have some shifts around
the fractures. Fig. 23 shows the slippage on each fracture in the fractured domain. The number of fractures is labeled in Fig. 20b. The
16
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Fig. 23. Fracture slippage of the multiple-crossed fractures model. Note that the portions marked by dashed boxes imply the crossing positions. Fracture numbers
are labeled in Fig. 20.

Fig. 24. Deformation of the multiple-crossed fractures model. The vector field (left) and the displacement components (middle and right).

shape of each curve is similar to the curve in the test of single-fractured model, i.e. the parabolic mode, as discussed in Section 5.1.
A characteristic among these six fractures is the jump displacement at the crossing positions produced by the intersected fractures.

Fig. 25 displays the relation of the normalized stress intensity factor (SIF) ratio versus the loading ratio. Concerning the pure
mode I or mode II, the SIFs are 𝐾𝐼 and 𝐾𝐼𝐼 , respectively. The normalized SIF ratio is commonly used to evaluate the domination of
mode I and mode II fracture [58]. It is defined as (2∕𝜋) arctan(𝐾𝐼∕𝐾𝐼𝐼 ). We test two different mixed-mode loadings, which are the
compression or shear loading combines the fluid pressure imposed on internal surface of fractures. It appears that the fluid pressure
induces a larger opening of fractures, also know as the mode I failure. In contrast, the compression and shear loadings lead to a
shear failure (mode II). With the increase of 𝜎 or 𝜏, the normalized SIF ratio shows a decrease tendency. The shear failure mode
becomes the domination compared to fracture opening (tensile failure, mode I), especially when the loading ratios |𝜎∕𝑝| and 𝜏∕𝑝
are greater than 1.

6. Conclusions

In this work, a stabilized mixed-FE scheme is proposed using the Lagrange multiplier method in the framework of constrained
variational principle, which has the capability to simulate frictional contact and shear failure of multiple crossing fractures under
mixed-mode loadings. The additional constraints of frictional contact are integrated into the variational principle through Lagrange
multipliers. Compressive loading would lead to the activation of contact constraints, while the tensile loading remains the standard
scheme of elasticity.

Galerkin finite element method is used to discretize the governing equations. Next, a novel treatment is devised to overcome
the unphysical scenario at the crossing position. The preconditioning technique is introduced to preserve the robustness of the
17
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Fig. 25. Variation of the normalized SIF ratio under mixed-mode loadings. Fracture numbers are labeled in Fig. 20.

saddle-point algebraic system, which leads to a stabilized mixed-FE formulation. Then, the system is resolved using the monolithic
iteration strategy, motivated by the high nonlinear property of the governing equations. The displacement and Lagrange multiplier
are calculated simultaneously in one algebraic system.

A series of numerical tests is conducted to study the frictional contact and slip of single fracture and multiple crossing fractures
based on the proposed mixed-FE scheme. First, a benchmark study is presented to verify the numerical results. Later, the contact
behavior of fractures is analyzed under mixed-mode loading. The internal fluid pressure on fracture surface is considered. A
deformable medium with multiple fractures is simulated. Especially, the effect of crossing fractures can be observed in the simulation.
The characteristics of fracture contact, surface sliding (mode II), opening (mode I) and variation of SIF are analyzed. The potential
diagonal contact, at the intersected position of crossing fractures, is studied under different mixed-mode loading types. The impact
of intersected fractures on frictional contact is analyzed. The results prove that mode II SIF will increase if the external compressive
loading increases as well, while the decrease of internal fluid pressure induces a decreased model I SIF. The curve of slippage induced
by compression, as well as the opening induced by internal fluid pressure, along fracture is parabolic shape.
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Appendix A. Weak forms derived by the constrained variational principle

Following the formulation in Section 3, we have the weak form if the fractures are stick:

𝛿𝛱𝐶𝐿
𝑢

(

𝐮𝑓 ,𝝀
)

=
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝝀𝑇 𝛿𝐂
(

𝐮𝑓 , 𝐭𝑓
)

𝑑𝛤 =
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿[[�̂�𝑓 ]]𝑇 𝝀𝑑𝛤 (A.1)

with the relative displacement vector [[�̂�𝑓 ]] = [[[𝑢𝑓𝑁 ]] [[𝑢𝑓𝑇 ]]]
𝑇 in the local coordinate system attached to a certain fracture surface

𝛤𝑖𝑛,𝑖, as shown in Fig. 3. Meanwhile, Eq. (15) is written as:

𝛿𝛱𝐶𝐿
𝜆

(

𝐮𝑓 ,𝝀
)

=
𝑁𝑓
∑

∫ 𝛿𝝀𝑇𝐂
(

𝐮𝑓 , 𝐭𝑓
)

𝑑𝛤 =
𝑁𝑓
∑

∫ 𝛿𝝀𝑇
(

[[�̂�𝑓 ]] + 𝐠
)

𝑑𝛤 (A.2)
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p

d

A

a

with the initial gap 𝐠 = [𝑔𝑁 0]𝑇 between + side and — side, as indicated in Eq. (9). Normally, 𝑔𝑁 equals either 0 or a small value
such as 10−3 ∼ 10−4 m.

Following the minimization of energy functional [59,60], the constrained variational principle with Lagrange multiplier requires:

∫𝛺
𝛿𝜺𝑇 𝝈𝑑𝛺 − ∫𝛺

𝛿𝐮𝑇 𝐟𝑑𝛺 − ∫𝛤𝑁
𝑒𝑥

𝛿𝐮𝑇 �̄�𝑒𝑥𝑑𝛤 +
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿[[�̂�𝑓 ]]𝑇 𝝀𝑑𝛤 = 0

𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝝀𝑇 [[�̂�𝑓 ]]𝑑𝛤 = −
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝝀𝑇 𝐠𝑑𝛤

(A.3)

The two equations in system Eq. (A.3) are independent to each other. We calculate the unknowns, displacement 𝐮 and Lagrange
multiplier 𝝀, in a framework of numerical scheme, namely the mixed-FE scheme.

In the situation of fracture sliding, the first-order variation of energy functional with respect to displacement is given by:

∫𝛺
𝛿𝜺𝑇 𝝈𝑑𝛺 − ∫𝛺

𝛿𝐮𝑇 𝐟𝑑𝛺 − ∫𝛤𝑁
𝑒𝑥

𝛿𝐮𝑇 �̄�𝑒𝑥𝑑𝛤 +
𝑁𝑓
∑

𝑖=1

(

∫𝛤𝑖𝑛,𝑖
[[𝛿𝑢𝑓𝑁 ]]𝜆𝑁𝑑𝛤

+∫𝛤𝑖𝑛,𝑖
[[𝛿𝑢𝑓𝑇 ]]𝑐 𝑠𝑖𝑔𝑛𝑑𝛤 − ∫𝛤𝑖𝑛,𝑖

[[𝛿𝑢𝑓𝑇 ]]𝜆𝑁𝑠𝑖𝑔𝑛 tan𝜑𝑑𝛤

)

= 0

(A.4)

and the variation with respect to Lagrange multiplier is given by:

𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝜆𝑁
(

[[𝑢𝑓𝑁 ]] − [[𝑢𝑓𝑇 ]]𝑠𝑖𝑔𝑛 tan𝜑
)

𝑑𝛤 = −
𝑁𝑓
∑

𝑖=1
∫𝛤𝑖𝑛,𝑖

𝛿𝜆𝑁𝑔𝑁𝑑𝛤 (A.5)

which holds in the scenario of multiple fractures indicated by the number of fractures 𝑁𝑓 . Other notations are defined in the
receding sections.

Eqs. (A.3), (A.4) and (A.5) provide a general formulation which captures the frictional contact and slip of multiple fractures in
eformable media under compressive, tensile and shear loadings.

ppendix B. Discretized forms of the mixed-FE scheme

Following the formulation in Section 4, the components in Eq. (25) are expressed as:

𝐑𝑢 = 𝐊𝑢𝑢𝐔 + 𝐂𝜆𝑢𝜦 −
(

𝐅 − 𝐅𝑠𝑙𝑖𝑝)

𝐑𝜆 =
[

𝐂𝜆𝑢]𝑇 𝐔 + 𝐠
𝐂𝜆𝑢 = 𝐊𝜆𝑢 +

(

𝐊𝜆𝑢,𝑁 −𝐊𝜆𝑢,𝑇 )
(B.1)

nd the sub-blocks:

𝐊𝑢𝑢 = ∫𝛺
𝐁𝑇𝐃𝐁𝑑𝛺

𝐊𝜆𝑢 = ∫𝛤 𝑠𝑡𝑖𝑐𝑘
𝑖𝑛 ∪𝛤 𝑠𝑙𝑖𝑝

𝑖𝑛

𝐆𝑇 𝐒𝐍𝜆𝑑𝛤

𝐊𝜆𝑢,𝑁 = ∫𝛤 𝑠𝑙𝑖𝑝
𝑖𝑛

𝐆𝑇 𝐧𝑓𝐍𝜆
𝑁𝑑𝛤

𝐊𝜆𝑢,𝑇 = ∫𝛤 𝑠𝑙𝑖𝑝
𝑖𝑛

𝐆𝑇𝐦𝑓𝐍𝜆
𝑁𝑠𝑖𝑔𝑛 tan𝜑𝑑𝛤

𝐅 = ∫𝛺

[

𝐍𝑢]𝑇 𝐟𝑑𝛺 + ∫𝛤𝑁
𝑒𝑥

[

𝐍𝑢]𝑇 �̄�𝑒𝑥𝑑𝛤

𝐅𝑠𝑙𝑖𝑝 = ∫𝛤 𝑠𝑙𝑖𝑝
𝑖𝑛

𝐆𝑇𝐦𝑓 𝑐 𝑠𝑖𝑔𝑛𝑑𝛤

(B.2)

where the blocks 𝐅𝑠𝑙𝑖𝑝, 𝐊𝜆𝑢,𝑁 and 𝐊𝜆𝑢,𝑇 are related to the contributions of slip contact. 𝐊𝜆𝑢 is related to the co-effects by stick and
slip states. 𝑠𝑖𝑔𝑛 is defined in Eq. (16).

The system of Eqs. (25), (B.1) and (B.2) will be constructed at each iteration step. The iteration process is controlled by the
termination criterion:

‖

‖

‖

𝐑𝑛+1‖
‖

‖2
< 𝜖 (B.3)

with a user-defined threshold 𝜖. Normally, it is set to a default value 10−4. All notations are defined in the preceding sections.
Eqs. (25), (B.1) and (B.2) provide one of the core contributions of the presented work, which include an unified formulation of
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Appendix C. Expanded forms of the preconditioner

Following the formulation in Section 4.2, the expanded forms are written as:

𝐀2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑𝑛𝐸𝑐
𝑗=1(𝐸1𝑗 )2 ⋯ ⋯

⋯
∑𝑛𝐸𝑐

𝑗=1(𝐸2𝑗 )2 ⋯

⋮ ⋱ ⋮

⋯ ⋯
∑𝑛𝐸𝑐

𝑗=1(𝐸𝑛𝐸𝑟 𝑗
)2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(C.1)

𝐁2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑𝑛𝐷𝑐
𝑗=1(𝐷1𝑗 )2 ⋯ ⋯

⋯
∑𝑛𝐷𝑐

𝑗=1(𝐷2𝑗 )2 ⋯

⋮ ⋱ ⋮

⋯ ⋯
∑𝑛𝐷𝑐

𝑗=1(𝐷𝑛𝐷𝑟 𝑗 )
2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(C.2)

with the numbers of columns 𝑛𝐷𝑐 and rows 𝑛𝐷𝑟 for 𝐃, 𝑛𝐸𝑐 and 𝑛𝐸𝑟 for 𝐄. Other notations are defined in the preceding sections. This
operation provides a way to improve the numerical quality of the Jacobian. It is efficient and easy to implement.

Appendix D. The monolithic-updated contact algorithm

Algorithm 1 The monolithic-updated contact algorithm on unstructured grids
1: for each 𝑖 ∈ [1, 𝑁𝑓 ] do
2: Fracture 𝛤𝑖𝑛,𝑖 is determined by its coordinate

(

𝑥𝑖 , 𝑦𝑖
)

3: Obtain the node connectivity and contact pairs on unstructured grids
4: end for

Enter the procedure of contact state update
5: for each 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥] do
6: At time step 𝑡, calculate the current contact state of contact pairs
7: Enter the iteration process
8: for each 𝜈 ∈ [0, 𝜈𝑚𝑎𝑥] do
9: At iteration 𝜈, construct the system Eq. (25) based on current contact state
0: Obtain the results of contact state at iteration 𝜈 + 1, as indicated in Eq. (23)
1: Update the unknowns 𝐔𝜈+1 = 𝐔𝜈 + 𝛿𝐔𝜈+1 and 𝜦𝜈+1 = 𝜦𝜈 + 𝛿𝜦𝜈+1

2: end for
3: If the contact state is satisfied with contact constraints then go to the updated time step 𝑡 = 𝑡 + 1, and refer to Line 6
4: Otherwise, go to Line 9 until the calculated contact state is satisfied with contact constraints
5: if 𝑡 = 𝑡𝑚𝑎𝑥 then
6: Terminate the program
7: end if
8: end for
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