
Inferring the influence of cultivation parameters on

transcriptional regulation

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 20 maart 2009 om 12:30 uur
door

Theo Arjan KNIJNENBURG

elektrotechnisch ingenieur
geboren te Leidschendam.



Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. M.J.T. Reinders

Co-promotor:
Dr. L.F.A. Wessels

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. ir. M.J.T. Reinders Technische Universiteit Delft, promotor

Dr. L.F.A. Wessels Technische Universiteit Delft, co-promotor

Prof. dr. J.T. Pronk Technische Universiteit Delft
Prof. dr. R.C. Jansen Rijksuniversiteit Groningen
Prof. dr. F.C.P. Holstege Universiteit Utrecht
Prof. dr. C.J.F. ter Braak Wageningen Universiteit en Researchcentrum

Prof. dr. T.M. Heskes Radboud Universiteit Nijmegen
Prof. dr. ir. R.L. Lagendijk Technische Universiteit Delft, reservelid

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 174.

This work forms a part of the research performed in the Kluyver Centre for Genomics
of Industrial Fermentation and was financially supported by the Netherlands Genomics
Initiative (NGI).

ISBN 978-90-9024013-8

Chapter 2: Copyright c© 2007 by Federation of European Microbiological Societies
Chapter 3: Copyright c© 2007 by American Society for Microbiology
Chapter 4: Copyright c© 2007 by Knijnenburg et al.; licensee BioMed Central Ltd
Chapter 5: Copyright c© 2006 by Springer-Verlag Berlin Heidelberg
Chapter 6: Copyright c© 2009 by Knijnenburg et al.; licensee BioMed Central Ltd
Chapter 7: Copyright c© 2008 by Knijnenburg et al.; licensee Oxford University Press
Chapter 8: Copyright c© 2008 by Inderscience Enterprises Ltd

All rights reserved. No part of this thesis may be reproduced or transmitted in any form
or by any means, electronic, mechanical, photocopying, any information storage and
retrieval system, or otherwise, without written permission from the copyright owner.



to my parents





CONTENTS

1 Introduction 1

1.1 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Incorporating growth conditions . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Transcriptional response to organic acid stress 13

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Yeast strain and growth conditions . . . . . . . . . . . . . . . . . . 16
2.3.2 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Microarray analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Differential expression . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.5 Clustering genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.6 Hypergeometric tests . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 Effects of different organic acids on biomass yields in anaerobic

chemostat cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Transcriptome analysis: data quality and overall responses . . . . 19
2.4.3 Identification of a minimal generic transcriptional response to weak

organic acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.4 Unique responses and co-responses to different organic acids: cor-

relation with lipid solubility . . . . . . . . . . . . . . . . . . . . . . 22
2.4.5 Benzoate and sorbate responsive transcripts . . . . . . . . . . . . . 23
2.4.6 Acetate and propionate responsive transcripts . . . . . . . . . . . . 26

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



vi CONTENTS

2.5.2 Comparison with known responses to organic acids and implica-
tions for current models of weak acid toxicity . . . . . . . . . . . . 27

2.5.3 Transcriptional responses to weak acids: leads for functional analysis 29
2.5.4 A minimal generic transcriptional response to weak acids: impli-

cations for applied research . . . . . . . . . . . . . . . . . . . . . . 30

3 Transcriptional response to zinc limitation 33

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Yeast strain and maintenance . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Minimizing Zn contamination of culture vessels . . . . . . . . . . . 37
3.3.3 Media for chemostat cultivation . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Chemostat cultivation . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.5 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.6 Microarray analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.7 Transcriptomics data acquisition and statistical analysis . . . . . . 38
3.3.8 Grouping of genes into modules . . . . . . . . . . . . . . . . . . . . 38
3.3.9 Hypergeometric tests . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.10 Motif discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.11 Comparison with the transcriptome study from Lyons et al. . . . . 39

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Establishing Zn-limited chemostat cultures of S. cerevisiae . . . . 41
3.4.2 Physiology of Zn, glucose- and ammonia-limited chemostat cultures 41
3.4.3 Overall transcriptional responses to Zn limitation . . . . . . . . . . 42
3.4.4 Zinc homeostasis and the Zap1 regulon . . . . . . . . . . . . . . . 43
3.4.5 Comparison with previous Zn-related transcriptome studies . . . . 44
3.4.6 Transcriptional regulation of structural genes for zincdependent

proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.7 Combinatorial response of mitochondrial function to oxygen and

zinc availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.8 Zn limitation and storage carbohydrate metabolism . . . . . . . . 49

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.1 Analysis of Zn limitation in chemostat cultures . . . . . . . . . . . 49
3.5.2 Effects of Zn limitation on storage carbohydrate accumulation: a

possible cause for stuck fermentations in beer fermentation? . . . . 50
3.5.3 Potential implication of Zn-limitation for flavor formation . . . . . 51
3.5.4 Signature transcripts for diagnosing Zn bio-availability in indus-

trial media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Exploiting the combinatorial setup 53

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Overview of the computational approach . . . . . . . . . . . . . . . 56
4.3.2 Overview of the uncovered regulatory relationships . . . . . . . . . 56
4.3.3 Controlling Anaerobiosis . . . . . . . . . . . . . . . . . . . . . . . . 58



CONTENTS vii

4.3.4 Controlling Aerobiosis . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.5 Sulfur metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.1 Selection of differentially expressed genes . . . . . . . . . . . . . . 64
4.5.2 Isolation of the global oxygen effect . . . . . . . . . . . . . . . . . 65
4.5.3 Construction of the discretized representation . . . . . . . . . . . . 65
4.5.4 Generation of the modules . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.5 Identification of significant TFs and enrichment of annotation cat-

egories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.6 Motif discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Condition transition analysis 67

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Data and preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Condition transition analysis . . . . . . . . . . . . . . . . . . . . . 70

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Chemostat steady-state microarray compendium 79

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Inferring the influence of cultivation parameters on gene expression 82
6.3.2 The expression of many genes responds to combinatorial effects . . 84
6.3.3 The sample preparation protocol has a large impact on the mea-

sured gene expression levels . . . . . . . . . . . . . . . . . . . . . . 87
6.3.4 Functional categories are specifically associated with combinations

of environmental parameters . . . . . . . . . . . . . . . . . . . . . 88
6.3.5 Combinatorial regulation within biochemical pathways provides

further insight into sulfur metabolism and scavenging . . . . . . . 90
6.3.6 Functional characterization of uncharacterized and dubious genes

using the chemostat compendium . . . . . . . . . . . . . . . . . . . 93
6.3.7 Analysis of shake-flask experiments with the chemostat compendium 94

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.1 Chemostat cultivation and microarray data . . . . . . . . . . . . . 98
6.5.2 Detecting differential expression . . . . . . . . . . . . . . . . . . . 99
6.5.3 Inferring the influence of cultivation parameters on gene expression

using regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.4 Enrichment analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.5 Functional categories specifically influenced by a combinatorial effect100
6.5.6 Clustering of genes based on regression coefficients . . . . . . . . . 101



viii CONTENTS

7 Combinatorial influence of TFs 103

7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3.1 Microarray data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3.2 Inferring the influence of cultivation parameters on gene expression 109
7.3.3 TF binding data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.4 Inferring TF activity and TF strengths . . . . . . . . . . . . . . . 110

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4.1 TF activity in response to changes in oxygen and carbon presence 112
7.4.2 Transcriptional regulation of nitrogen metabolism . . . . . . . . . 114
7.4.3 Compendium analysis . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Gene set activity profiles 121

8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3.1 Enrichment computation . . . . . . . . . . . . . . . . . . . . . . . 123
8.3.2 Application to time-course expression data . . . . . . . . . . . . . 126

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.4.1 Comparison to the hypergeometric test . . . . . . . . . . . . . . . 127
8.4.2 Comparison to GSEA . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.4.3 Activity profiles for a glucose pulse . . . . . . . . . . . . . . . . . . 131
8.4.4 Activity profiles for yeast’s cell cycle . . . . . . . . . . . . . . . . . 133

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Discussion 137

Bibliography 147

Summary 167

Samenvatting 169

Acknowledgements 171

Publications 173

Curriculum Vitae 175



CHAPTER 1

INTRODUCTION

1.1 Scope of the thesis

Cell biology seeks to understand the cell, life’s fundamental building block. It studies
the structure and function of the cell, its (intracellular) constituents and its interaction
with the (extracellular) environment. It studies the cell’s life cycle and, in multi-cellular
organisms, it studies cellular differentiation, which is the process by which cells become
specific types of cells, such as skin cells, localized in specific parts of the organism.
The development of measurement techniques has provided the means to observe intra-
cellular components down to the molecular level. By far the most important discovery
was that of DNA, the molecule that contains the genetic instructions used in the devel-
opment and functioning of all known living organisms. It gave rise to the central dogma
of molecular biology that presents the genetic information flow within the cell from DNA
to RNA to proteins, of which the latter can be seen as both the structural and functional
units of the cell. Nowadays, many aspects of the intracellular molecules and subunits
can be measured, enabling cell biologists to hypothesize about the interaction between
the cell’s different components and elucidate cellular mechanisms.
Besides the acquisition of fundamental knowledge, cell biology research finds direct ap-
plications in the medical and the industrial domain, mainly focusing on (human) disease
and food production using microorganisms. Among the many things learned about the
cell the past decades, is the reality that (despite the simplicity of genetic information
flow) the cell forms an overwhelmingly complex control system, which is far from being
understood and for which much remains to be discovered.

The modern ’high-throughput’ measurement techniques could provide a valuable data
source for such discoveries. These techniques are termed high-throughput, because they
enable one to quickly conduct thousands or even millions of biochemical measurements.
One example of such a measuring technique (which will play a large role in this thesis) is
the gene expression microarray. A gene is a region on the DNA, corresponding to a unit
of inheritance, which can be transcribed into an RNA and later translated into a protein.
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The microarray technology provides a score (or measurement) of the concentration (or
quantity) of RNAs in a cell (or sample) for each gene in the genome, which, for most
organisms, is on the order of thousands. The obtained snapshot of the genome-wide
gene expression (also called transcriptome) forms an unbiased and complete starting
point for data analysis. This is in contrast to small scale gene expression experiments,
where only the expression of presumably relevant genes is investigated. Another exam-
ple of a high-throughput technique is genome (or DNA) sequencing. The latest genome
sequencers can determine the order of the four nucleotide bases, adenine (A), guanine
(G), cytosine (C), and thymine (T) that make up the DNA sequence of any organism
with unprecedented speed, enabling scientists to sequence a complete genome (typically
billions of bases) in a reasonable amount of time.
Analysis and interpretation of the enormous amounts of data generated with the high-
throughput techniques necessitates the use of computational tools. The interface be-
tween cell biology and informatics, where computer science techniques, machine learning
and statistics are employed to analyze cell biology data, can be labeled with the partially
redundant names bioinformatics, biostatistics and computational biology. To success-
fully address a biological question using large amounts of data, the main challenge is to
apply, design or modify computer techniques while taking into account 1) the properties
of the biological system or entities upon which the measurements were performed, 2) the
properties of the employed measurement device and 3) the properties of the employed
algorithms themselves.

This thesis embodies an example of the interface between cell biology and informatics.
Our research activities are focused on the transcriptional program of yeast, in particular
Saccharomyces cerevisiae (or baker’s yeast). This unicellular microorganism is known
for its age-old application in alcohol fermentation (mostly beer and wine) and the bak-
ing of bread. Besides obtaining a fundamental understanding of this organism on a
molecular level, applications are indeed found in the food and drink industry. Another,
more recent, application is that of biofuel, where yeast is used to convert the sugars in
biological material, such as plants and crops, to ethanol.
A substantial part of current yeast research is aimed at unraveling the transcriptional
program of S. cerevisiae. This yeast has about 6400 genes, of which each gene product
(or protein) fulfills one or more specific functions in the cell. Although yeast is among
the best-studied organisms and for many genes the function or process of involvement is
roughly known, the interaction between the different gene products and precise informa-
tion on how or when genes are transcribed remains to be uncovered. More specifically,
little is known on how yeast integrates the multiple chemical and physical signals from
its environment to adapt its transcriptome. Also, the mechanisms behind the activation
of the proteins that control the rate at which a gene is transcribed, i.e. the transcription
factors (TFs) and chromatin remodeling proteins (CRPs), are yet to be elucidated.
To unravel the transcriptional program of baker’s yeast, we analyze the transcriptional
response of this yeast to different environmental conditions. In contrast to the commonly
used shake-flask cultures, the microarray data employed in this thesis originates from
yeast grown in chemostat cultures. In a chemostat, culture broth (including biomass)
is continuously replaced by fresh medium at a fixed and accurately determined dilution
rate. These steady-state chemostat cultures enable the accurate control, measurement
and manipulation of individual cultivation parameters, such as growth rate, temperature
and nutrient concentrations. A growth condition can thus be characterized by the com-
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bined settings of several cultivation parameters. Analysis of the gene expression levels as
obtained with microarray measurements allows for identification of the influence of these
cultivation parameters on the transcriptome of the yeast cell. The main contents of this
thesis consists of exploring methods that incorporate the cultivation parameters into the
computational model in order to identify the influence of these cultivation parameters
on gene expression and the activity of TFs.

1.2 Incorporating the growth conditions in the com-

putational model

In order for yeast to adapt its transcriptome to changes in the extracellular environment,
the information on the environment has to be transmitted to the cell nucleus, where the
DNA is situated and where the information carriers can alter gene expression. Here, we
divide this system into two parts. First, the sensing, importing and subsequent signaling
of the environment that alters the activity of the TFs and CRPs. Second, the activ-
ity of TFs and CRPs that are able to manipulate gene transcription rates. Figure 1.1
graphically depicts this model of the cell’s transcriptional response to its extracellular
environment.

nucleuscytoplasmextracellular
environment

C
S

T E

Figure 1.1 – Schematic overview of the four factors involved in the cell’s tran-
scriptional response to its extracellular environment.
The black arrows indicate the complete flow from environmental conditions to gene ex-
pression: Extracellular conditions (C ) are imported or sensed, resulting in intracellular
signaling (S). These signals alter the activity of TFs and CRPs (T ), which manipulate
the rate at which genes are expressed (E). Dashed and dotted arrows indicate shortcuts
to model the influence of C on E, i.e. by leaving some of the factors out of the model.

Models of transcriptional regulation as employed in this thesis

In this thesis we focus on how extracellular conditions (C ) affect gene expression (E ) and
the activity of TFs and CRPs (T ). The diverse mechanisms that the cell uses to sense
or import the myriad of different external stimuli or molecules and their subsequent
signaling (S ) are not part of the employed models. Two different models are employed:

In the first, gene expression is directly modeled as a function of the extracellular condi-
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tions:
E = f(C) (1.1)

This scenario is illustrated by the dotted arrow in Figure 1.1. Here, the aim is to infer
the influence of the different environmental stimuli to which the cell is exposed, on gene
transcription rates.

The second model incorporates T, the activity of transcription factors (TFs) and chro-
matin remodeling proteins (CRPs). In general, the transcription rate (of which the
measured expression level is a score) is the net result of the highly non-linear and com-
plex interplay between these regulatory proteins. The TFs (some of which bind the
DNA near the gene) form the general transcription machinery that copies the gene into
its mRNA equivalent. This process can be manipulated by gene specific TFs (also some
of which can bind the DNA) that interact with the transcription machinery and thereby
manipulate (enhance or repress) the rate at which a gene is transcribed. The CRPs
package the DNA and thereby influence the accessibility of the TFs to the DNA. Mod-
ification of the activity of these proteins is the means by which the cell dynamically
regulates its transcriptome in order to carry out cellular processes or adapt to changes
in the extracellular environment. In the second approach, gene expression is modeled as
a function of the activity of TFs and CRPs, which is itself a function of the extracellular
conditions:

E = g(T ) (2.1)

T = h(C) (2.2)

This scenario is illustrated by the dashed arrow in Figure 1.1. (In this thesis, T is
restricted to represent the activity of TFs, since data is lacking for CRPs.)

The cell is a complex control system with feedback mechanisms on and between many
levels. Therefore, one would expect to also see arrows from E to T and S in Figure 1.1.
(Obviously, the proteins that participate in T and S are gene products resulting from
E.) However, the microarray data that is employed in this thesis originates from steady-
state cultures, where the intracellular and extracellular parameters that encompass C,
S, T and E are assumed to be constant. Therefore, the model employs the linear chain
of cause and effect that runs from the ultimate cause C via S and T to E.

Multifactorial descriptions of the extracellular conditions (C)

In order to gain a thorough understanding of yeast’s transcriptome in response to dif-
ferent environments, it is crucial to systematically identify the different parameters that
characterize the cell’s environment. Only in this way can individual and combined ef-
fects of the environmental parameters on gene expression and TF activity be analyzed.
A condition for which a microarray experiment has been performed should thus be de-
scribed by a multifactorial variable, where the factors represent different environmental
parameters. Figure 1.2 provides a graphic description of microarray datasets with single-
factor and multifactorial variables.
Obviously, chemostat steady-state cultivation forms an excellent platform to incorpo-
rate multi-factorial growth conditions into the computational model. Chemostats allow
one to accurately control and measure many of the extracellular parameters, such that
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Figure 1.2 – Schematic representation of the conditions within three microar-
ray datasets.
Each numbered cell represents one microarray experiment/condition. a) A dataset consist-
ing of four microarrays. The conditions are described by a single factor, namely ’Carbon
source’ which can assume four different values (’Glu’, ’Gal’, ’Eth’ and ’Ace’). b) A dataset
consisting of nine microarrays. In this case, the condition is a multi-factorial variable. That
is, a condition is described by multiple (two) factors, namely ’Carbon source’ and ’Tem-
perature’. Note that not all possible combinations of these factors are measured (indicated
by the white unnumbered cells). c) A dataset consisting of 24 microarrays. A condition
is described by three factors. This dataset has a full combinatorial (or factorial) design.
Although, in this example all factors are categorical (or nominal) variables, in principle,
the factors can also be ordinal, interval or ratio variables.

one can characterize a growth condition by the settings or values of multiple cultiva-
tion parameters. For example, the yeast cell’s environment can be characterized using
parameters, like nutrient concentrations, temperature, oxygen availability, etc. The in-
terrelations between the different growth conditions (in terms of comparable cultivation
parameters) can be exploited in order to infer the influence of not only single cultivation
parameters, but also of combinations of cultivation parameters (interaction effects) on
the gene expression levels. (In contrast, for datasets generated with shake-flasks, the
multi-factorial space cannot be systematically explored, since not all parameters that
span this space can be strictly controlled and accurately measured.) Furthermore, in-
cluding information on TF binding allows for the investigation of the effect of cultivation
parameters on the activity of TFs. This could offer great insight in the aforementioned
interplay between these proteins, which regulate the copying process of the genes.

1.3 Related work

Microarray measurements are performed to compare an organism’s gene expression lev-
els between different conditions. Up to this point, these ’conditions’ were mainly seen as
growth environments of the yeast cell. However, in a broader context, these conditions
can also be different types of human tissue, such as healthy liver cells or cancerous skin
cells, different strains of the E. coli bacterium, e.g. strains with or without a slight
genetic modification (mutant and wild-type, respectively) or white blood cells of black
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mice with different diets, etc.

Single-factor conditions

For most (and especially the earliest) microarray experiments the conditions are char-
acterized by a single categorical variable that, in most cases, assumes one of two values.
In other words, the microarray experiments were performed to compare two conditions,
and these conditions were not described by different parameters. For example, in DeRisi
et al. [DeRi 96] two different human melanoma cell lines were compared to each other;
in Alon et al. [Alon 99] colon tumor tissue samples were compared to healthy colon
tissue samples. Usually, one condition is seen as the condition of interest (in medical
settings this is commonly the diseased sample) and the other as the reference condition
(commonly the healthy sample). The main goal of these approaches is to identify the
genes, which are differentially expressed (upregulated or downregulated) in the condition
of interest with respect to the reference condition. This strategy is implicitly incorpo-
rated into two-channel microarray systems, which output the (log2) ratio between the
condition of interest and the reference condition1. Some approaches use the conditions
as class labels to define two-class classification problems, e.g. Golub et al. [Golu 99].
Both in detection of differentially expressed genes and these classification problems, a
class-dependent representation of the gene expression levels is built. For example, in a
T-test the gene expression levels of each class are represented by a normal distribution.
Thus, implicitly, these strategies implement Eq. 1.1, where gene expression is modeled
as a function of the conditions (class labels).
Also in yeast research the dual channel system is most often employed to measure tran-
script levels. Typically, the reference condition is yeast growing under rich medium
conditions in exponential phase (in a shake-flask). For example, the stress response
microarray compendium by Gasch et al. [Gasc 00] compares this condition to thirteen
different stress conditions, such as temperature shocks, addition of hydrogen peroxide
and amino acid starvation, most of which are followed over time, leading to a total of 142
microarray experiments. One of these thirteen stresses is ’hydrogen peroxide treatment’,
which is formed by the microarray measurements for samples taken at 10, 20, 30, 40,
50, 60, 80, 100 and 120 minutes after addition of hydrogen peroxide to the medium. Al-
though it might seem that the condition is described as a multi-factorial variable, where
the different stresses and time would form the factors, it cannot be treated as such.
First, all stresses are applied independently of one another; factors are not combined
(in a systematic fashion). But more importantly, the stresses like ’hydrogen peroxide
treatment’ are merely terms that provide a global description of the applied stress; they
are not measurable parameters that define the cell’s environment. This is not even
possible with (the often used) shake-flask cultures, because the parameters cannot be
controlled (nor measured), but are continuously changing. Several approaches have de-
scribed and used the experimental conditions as a single-factor categorical variable that
can assume thirteen values; however not to explain gene expression as in Eq. 1.1, but
in the post-analysis stage for data interpretation purposes. In Gasch et al. [Gasc 00]
visual inspection of the expression patterns reveals how clusters of genes respond to the
thirteen condition groups. (The clustering was performed without taking the grouping
into account.) In Segal et al. [Sega 03], which also uses this gene expression data, co-

1The microarray data used in this thesis originates from single-channel scanners, which output scores
that represent absolute mRNA concentrations.
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regulated experiments are consulted for overrepresentation in one of the thirteen groups
in order to link these conditions to the inferred regulatory program. (This method is
explained in more detail below.)

In general, when analyzing a microarray dataset in terms of experimental conditions,
it is crucial to characterize all the cultivation parameters (or other factors) that dif-
fer between the experiments, such that differential expression can be fully explained in
terms of these parameters. This is the reason why the great majority of computational
approaches that employ large amounts of transcript data (i.e. many microarrays) can-
not take into account the conditions. Besides unquantified cultivation parameters due
to shake-flask cultivation, most of these approaches combine microarray measurements
from different studies, different laboratories (each with their own microarray protocol)
and different yeast strains. These differences result in large confounding effects on gene
expression (as we demonstrate in Chapter 6), since there are many unspecified factors
contributing to the differences in gene expression levels. For example, in Bar-Joseph et
al. [Bar 03] expression data from 23 studies is combined, totaling over 500 microarrays,
and integrated with TF binding information to find co-regulated gene modules. These
modules are uncovered using only the similarity (co-expression) between genes across
all microarrays; not the conditions under which these microarray measurements were
taken.

Multifactorial conditions

Different approaches have already demonstrated that if microarray conditions are multi-
factorial (i.e. they can be decomposed into multiple factors) or if additional information
on the conditions is available, incorporating this into the computational model is use-
ful. For example, Pittman et al. [Pitt 04] demonstrates that combining expression data
of patients with their clinical factors, such as lymph node status and tumor size, im-
proves the prediction accuracy of the disease outcome and survival time. In Matsui et
al. [Mats 07] multivariate linear regression is used to model gene expression as a linear
function of multiple clinical phenotypes of bladder cancer patients, such as pathological
stage and grade. Also, normalization procedures of microarray experiments success-
fully employ multi-factorial models to reflect experimental design (e.g. array and dye
effects) and thereby correct for potential confounding effects [Kerr 00]. Several recent
approaches have focused more specifically on the combinatorial effects of experimental
parameters on transcriptional regulation. These effects can only be uncovered using
multifactorial conditions. For example, in Smith and Kruglyak [Smit 08] two different
yeast strains were grown on two different carbon sources to identify strain-environment
interactions on gene expression. Odom et al. [Odom 07] studied the tissue-specific dif-
ferences between transcriptional regulation in human and mouse.
Chemostat cultivation, where distinct features of the cell’s environment are measured,
naturally provides multi-factorial conditions. Early chemostat analyses mainly used
pair-wise comparisons that aim to identify genes that are differentially expressed be-
tween two conditions [Boer 03, Tai 05], e.g. between aerobic and anaerobic growth at
30◦C. These sets can then be analyzed for the individual gene content or functional over-
representation. Furthermore, these gene sets can be compared to other gene sets derived
from similar pair-wise experiments, e.g. between aerobic and anaerobic growth at 12◦C.
This allows for the identification of context-specific (or combinatorial) effects of these
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environmental parameters on gene expression. However, pair-wise comparisons provide
only limited computational possibilities when analyzing many different conditions de-
scribed by many parameters, since it is not straightforward to combine all pair-wise
comparisons.

Inferring TF activity

Besides the (combinatorial) effects of cultivation parameters on gene expression, this
thesis also focuses on the (combinatorial) regulation of gene expression by TFs. Many
of the approaches in this area first cluster genes based on expression data and then try
to infer the regulatory program of TFs or their DNA binding sites (motifs) for each
cluster. These methods are based on the assumption that the similarly expressed genes
in a cluster are regulated in the same way. For example, in Beer and Tavazoie [Beer 04]
a Bayesian model is employed to explain cluster membership in terms of motif presence
including their orientation and distance to each other and to the transcription start site.
Other types of methods employ regression to relate TFs and expression. Bussemaker et
al. [Buss 01] employed a forward step-wise regression strategy to explain the measured
gene expression levels. The predictors were formed by motif counts in the promoter
regions of individual genes. Later, other sources of TF binding potential were used as
predictors, such as ChIP-chip TF binding data and scores obtained by scanning pro-
moter regions with TF binding site information. In stead of modeling the TF activity as
a hidden variable that needs to be estimated, Segal et al. [Sega 03] inferred the activity
of a TF from the measured expression level of the gene encoding the TF. In this work,
genes are grouped into regulatory modules, which are defined by a hierarchical decision
tree, where the decisions at the nodes of the tree are based on the expression levels of
regulators, such as TFs. A major drawback of this approach is the fact that most TFs
are post-transcriptionally regulated, resulting in a poor correlation between the TF in
its active form and the expression of the gene encoding the TF.
All these approaches, in one way or another, implement Eq. 2.1 by modeling the expres-
sion levels as a function of the activity of TFs. However, neither these approaches nor
any other aim to model the activity of TFs as a function of the cultivation parameters
(Eq. 2.2).

1.4 Contribution of this thesis

The computational methods that will be presented in this thesis integrate gene expres-
sion data with the growth conditions under which the microarrays were performed. One
important element of some of these approaches is the discretization of continuous expres-
sion levels (Chapters 2, 3 and 4). The discretized representations of the gene expression
patterns indicate up- and downregulation under the cultivation parameters that com-
prise the conditions of the microarray dataset. For example, a gene is characterized
as upregulated under zinc limitation irrespective of oxygen presence. Similarly, clus-
ters, which are formed by grouping genes with (nearly) identical discretized expression
representations, can also be described in terms of their transcriptional response to par-
ticular cultivation parameters. In these discretization procedures, information on gene
expression levels is sacrificed, while interpretability is gained. That is, discretizing the
continuous gene expression levels results in a very compact and crude representation of
the expression behavior of the genes. On the other hand, the discretized representations,
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which are described in terms of the employed growth conditions, allow one to under-
stand the expression behavior in terms of the growth conditions. This facilitates one to
generate hypotheses about the influence of growth parameters on transcriptional regu-
lation. In standard gene clustering approaches, the ’functionality’ of a cluster is often
determined using enrichment tests that identify overrepresented functional categories
(e.g. heavy metal ion transport) amongst the cluster’s genes. For clusters that are char-
acterized in terms of growth conditions (by the discretization procedure on chemostat
data), enrichment tests can point to the influence of particular growth conditions on TF
activity, cellular functions, biological processes, etc. For example, based on the cluster
of genes that is upregulated under zinc limitation irrespective of oxygen presence and
enriched for heavy metal ion transport, one can hypothesize that zinc limitation affects
heavy metal ion transport.

Yet, the main contribution of this thesis is formed by the computational approaches
that model gene expression and TF activity as a function of the cultivation parameters.
Here, the combinatorial setup of cultivation parameters within different growth condi-
tions is used to investigate the (combinatorial) influence of these cultivation parameters
on gene expression and TF activity. These methods are implementations of Eqs. 1.1,
2.1 and 2.2. In one approach, we model oxygen presence as a linear effect (having both
an additive and multiplicative component) on gene expression (Chapter 4). Here, we
demonstrate that exploiting the interrelatedness between growth conditions increases the
interpretability and functional enrichment of uncovered gene clusters. In another ap-
proach, a linear regression strategy was applied to reconstruct measured gene expression
patterns by selecting significant (combinations of) cultivation parameters as predictors
in the regression model (Chapter 6). This is an implementation of Eq. 1.1, where gene
expression is modeled as a linearly weighted sum of the contribution of significant cul-
tivation parameters. Here, we show that including combinatorial effects leads to more
sensible clusters in terms of enrichment of functional categories. Also, more variance
within the gene expression patterns can be explained when taking the interaction effects
between cultivation parameters into account.

Most techniques presented in this thesis employ hypergeometric tests to the infer the
activity of TFs (Chapters 2-6). The test assesses the significance of the overlap between
a cluster of genes and the regulon of a TF, i.e. all genes that can be bound (upstream)
by the TF. Since genes are clustered based on their shared discretized representation
(Chapters 2-5) or on the shared response to a cultivation parameter (Chapter 6), it is
possible to link cultivation parameters to TFs. More specifically, one can hypothesize
that a TF is activated in response to a particular cultivation parameter. However, the
statistical test does not model TF activity as the causal relationship given in Eqs. 2.1
and 2.2. In one of the final methodologies presented in this thesis, we do model the
activity of TFs as a function of cultivation parameters by inferring which (combination
of) cultivation parameters activate which TFs (Eq. 2.2). Simultaneously, the model
infers how activated TFs interact with each other to upregulate or downregulate the
expression of a gene (Eq. 2.1), thereby elucidating the interplay of the TFs on the up-
stream regions of genes (Chapter 7).

The main motivation behind the incorporation of the growth conditions into the com-
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putational model is to enable the interpretation of the results in terms of the growth
conditions. The ability to identify the influence of (combinatorial) cultivation parame-
ters on gene expression provides detailed clues towards the functionality of individual
(uncharacterized) genes and pathways as well the activation of TFs. Validation of the
results is achieved by consulting literature and yeast micro-biologists. Additional val-
idation is provided by enrichment tests. In these tests, groups of genes obtained with
the applied methods are compared to functionally related groups from gene annota-
tion databases for significant overlap (Chapter 8). Higher enrichment indicates a larger
ability of the method to capture functional association between genes.

1.5 Outline of the thesis

The theme of this thesis is the incorporation of the growth conditions in the com-
putational model used to analyze the gene expression data. The goal is to interpret
or understand the results in terms of the cultivation parameters that characterize the
growth conditions. The thesis advances from analyses on small microarray datasets with
simple cultivation parameter integration strategies to very large gene expression datasets
approached with a more complex integration of both the growth conditions as well as
TF binding data.

In Chapter 2 the transcriptional response of S. cerevisiae to four different weak organic
acids is studied. Here, an unstressed condition (no addition of organic acids) is used
as a reference condition. A discretization procedure is designed, such that each gene
is represented by a tertiary (-1, 0, 1) vector of length four, indicating up- or downreg-
ulation of a gene when yeast is exposed to each of the four acids with respect to the
unstressed condition. Based on these discrete representations genes are grouped into
clusters. The clusters, which are readily interpretable with respect to the four organic
acids, are consulted for enrichment of functional categories and TF binding. This study
reveals that S. cerevisiae exhibits a minimal generic transcriptional response to weak
organic acids. The consequences of these findings are that the often-used term ’weak-
organic acid stress’ should preferably be avoided and that the use of individual organic
acids as ’model compounds’ for general responses to organic acids should be treated
with caution.

This chapter was published in FEMS Yeast Research, 2007.

Chapter 3 reports on a similar analysis. Here, microarray data is employed of S. cere-
visiae grown under six different conditions, i.e. three different nutrient limitations;
carbon, nitrogen and zinc, grown both aerobically and anaerobically. Discretization is
used to build a tertiary representation of the genes. In this case, however, there is no
reference condition. This makes it non-trivial to decide upon up- and downregulation.
The discretization procedure uses a k-means clustering procedure for each gene individ-
ually; the six conditions are clustered to decide, which of these conditions are labeled
upregulated, downregulated or not differentially expressed. In this work, genes are clus-
tered together when their discretized expression patterns satisfy certain constraints. For
example, genes that have a higher discretized expression value under zinc limitation
than under the other two limitations in both the aerobic and anaerobic case are grouped
together. The results from this analysis were used to redefine the zinc-specific Zap1p
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regulon. Also, the study reveals a more important role for zinc in mitochondrial function
and biogenesis than so far assumed.

This chapter was published in Applied and Environmental Microbiology, 2007.

In Chapter 4 a microarray dataset of eight conditions is analyzed. In this case, there are
four different nutrient limitations; carbon, nitrogen and phosphorus and sulfur, grown
both aerobically and anaerobically. Using a regression strategy the effect of oxygen
presence on the expression of each gene is modeled as a linear effect (having both an
additive and multiplicative component). The estimated parameters (offset and slope)
are employed to ’correct for’ the oxygen effect in the expression pattern. A discretiza-
tion procedure is designed to represent each gene with a tertiary vector of length nine,
where the last entry is that of the oxygen effect. Genes are clustered based on their
discretized representations and related to TF binding data to infer the (combinatorial)
effect of oxygen availability and nutrient limitations on TF activity. The inclusion of
the cultivation parameters in uncovering regulatory modules and TF activity leads to
a more valuable regulatory network that resultantly provides detailed insight in yeasts
respiration and metabolism. The power of this approach in recognizing the individual
and combinatorial effects of nutrient-limitations and oxygen presence is reflected in the
results that strengthen and broaden the existing knowledge on regulatory mechanisms.
For example, our results confirm the established role of TF Hap4 in both aerobic regu-
lation and glucose derepression.

This chapter was published in BMC Genomics, 2007.

Chapter 5 uses the results of Chapter 4 to focus on the oxygen-specific effects within
this dataset. The eight conditions are described as states. The activity of TFs is as-
sessed for the different state transitions. Special attention is devoted to TFs that seem
to perform a regulatory role under aerobic conditions, but not under anaerobic growth
(or vice versa). The resulting regulatory network reveals nutrient-limitation-specific ef-
fects of oxygen presence on expression behavior and TF activity. The analysis identifies
many TFs that seem to play a very specific and subtle regulatory role at the nutrient
and oxygen availability transitions.

This chapter was published in Computational Methods in Systems Biology, 2006.

Chapter 6 presents a large chemostat microarray compendium consisting of 170 mi-
croarray measurements with 55 unique conditions. These conditions are characterized
by the settings of ten different cultivation parameters. Using a regression strategy the
influence of cultivation parameters on gene expression is investigated. Here, the main
focus is on the influence of combinations of cultivation parameters on gene expression.
The explained variance of gene expression patterns and functional enrichment of gene
clusters is evaluated for regression models both including and excluding these combina-
torial effects. Also, the influence of cultivation parameters on gene expression is used in
the interpretation of shake-flask-based transcriptome studies and for guiding functional
analysis of (uncharacterized) genes and pathways. This study demonstrates that model-
ing the combinatorial effects of environmental parameters on the transcriptome is crucial
for understanding transcriptional regulation. In this way, the goal of systems biology to
investigate and understand the interactions between different components and/or levels
in biological systems can be complemented by an equally integrative approach towards
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the complex environmental context in which cells grow and survive.

This chapter was published in BMC Genomics, 2009.

In Chapter 7 the regression results from Chapter 6 are used to construct regulatory
transcription networks. Here, TF binding data is employed to ’explain’ the influence of
cultivation parameters on gene expression. The method described in this chapter aims
to estimate under which cultivation parameters a TF becomes active as an enhancer
or a repressor to (co-)regulate the expression of a gene. The interplay between acti-
vated enhancers and repressors that bind a gene promoter determine the possible up- or
downregulation of the gene. The model is translated into a linear integer optimization
problem and solved accordingly. This study is the first to demonstrate how environmen-
tal parameters can be employed to derive transcriptional regulation networks.

This chapter was published in Bioinformatics, 2008.

Chapter 8 presents an alternative to the hypergeometric test procedure used to test
gene groups for functional enrichment. The test described in this chapter is based on
the central limit theorem. In contrast to the rest of the thesis, the method is applied to
time series microarray data in order to create gene set activity profiles, which represent
the enrichment of a gene set over time. Since for each gene set a unique activity profile
can be derived, differences in the activity of e.g. biological processes or transcription
factors in terms of the degree of enrichment and timing can be analyzed, thereby offering
profound insight in (the hierarchy of) regulatory mechanisms.

This chapter was published in International Journal of Bioinformatics Research and
Applications, 2008.



CHAPTER 2

TRANSCRIPTIONAL RESPONSE

TO ORGANIC ACID STRESS

In this chapter the transcriptional response of S. cerevisiae to four different weak organic
acids is studied. Here, an unstressed condition (no addition of organic acids) is used as a
reference condition. A discretization procedure is designed, such that each gene is represented
by a tertiary (-1, 0, 1) vector of length four, indicating up- or downregulation of a gene when
yeast is exposed to each of the four acids with respect to the unstressed condition. Based on
these discrete representations genes are grouped into clusters. The clusters, which are readily
interpretable with respect to the four organic acids, are consulted for enrichment of functional
categories and TF binding. This study reveals that S. cerevisiae exhibits a minimal generic
transcriptional response to weak organic acids. The consequences of these findings are that
the often-used term ’weak-organic acid stress’ should preferably be avoided and that the use of
individual organic acids as ’model compounds’ for general responses to organic acids should be
treated with caution.

This chapter is published as:

‘Generic and specific transcriptional responses to different weak organic acids in anaerobic
chemostat cultures of Saccharomyces cerevisiae’

Derek A. Abbott, Theo A. Knijnenburg, Linda M.I. de Poorter, Marcel J.T. Reinders, Jack T.
Pronk and Antonius J.A. van Maris

FEMS Yeast Research, Volume 7 Issue 6 p. 819-833, September 2007

Note: TAK’s contribution to this chapter is limited to the computational analysis of the mi-
croarray data.
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2.1 Abstract

Transcriptional responses to four weak organic acids (benzoate, sorbate, acetate and
propionate) were investigated in anaerobic, glucose-limited chemostat cultures of Sac-
charomyces cerevisiae. To enable quantitative comparison of the responses to the acids,
their concentrations were chosen such that they caused a 50% decrease of the biomass
yield on glucose. The concentration of each acid required to achieve this yield was neg-
atively correlated with membrane affinity. Microarray analysis revealed that each acid
caused hundreds of transcripts to change by over 2-fold relative to reference cultures
without added organic acids. However, only 14 genes were consistently upregulated in
response to all acids. The moderately strongly lipophilic compounds benzoate and sor-
bate and, to a lesser extent, the less lipophilic acids acetate and propionate, showed
overlapping transcriptional responses. Statistical analysis for overrepresented functional
categories and upstream regulatory elements indicated that responses to the strongly
lipophilic acids were focused on genes related to the cell wall, while acetate and pro-
pionate had a stronger impact on membrane-associated transport processes. The fact
that S. cerevisiae exhibits a minimal generic transcriptional response to weak organic
acids along with extensive specific responses is relevant for interpreting and controlling
weak acid toxicity in food products and in industrial fermentation processes.

2.2 Introduction

Short-chain weak organic acids are potent inhibitors of microbial growth that are widely
applied as preservatives in food and beverages. At low extracellular pH, weak acids
occur predominantly in the undissociated form, which has relatively high membrane
permeability. After entry into the cell via passive diffusion, the higher pH of the cytosol
causes dissociation of the acid, thus acidifying the cell and triggering the ATP-dependent
efflux of protons [Pamp 89]. Consequently, weak acids can cause, at the very least, a
transient reduction of intracellular ATP levels [Holy 96]. At high concentrations, ATP
exhaustion, acidification of the cytoplasm and dissipation of the proton-motive force
may occur [Imai 95]. This ’weak-acid uncoupling’ mechanism is customarily cited as the
major mechanism underlying weak organic acid toxicity [Kreb 83, Russ 91, Salm 84]. In
addition, the anion of the weak acid, which is much less membrane permeable than the
undissociated acid, accumulates intracellularly, where it may reach toxic concentrations
[Pamp 90, Russ 92]. Membrane disruption [Holy 99, Kreb 83] and enzyme inhibition
have been proposed as possible mechanisms of anion toxicity. Furthermore, benzoate
and acetate have been implicated in inhibition of autophagy and induction of apoptosis,
respectively [Haza 04, Ludo 01].
Despite the negative impact of weak organic acids on growth, many spoilage organisms,
including yeasts, can adapt and proliferate at the maximum legal dosage of preserva-
tives. As such, considerable economic loss is imparted in combination with consumer
concern [Thom 93, Tudo 93]). A better understanding of the underlying molecular and
regulatory responses is crucial for the development of preservation strategies to prevent
microbial-mediated food spoilage.
Short-chain organic acids also occur as inhibitory compounds in industrial fermentation
processes. One important example is the detrimental effect of acetic acid and other
weak acids on the production of bio-ethanol with the yeast Saccharomyces cerevisiae
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[Nare 01]. The presence of these naturally occurring metabolites results in substantial
economic losses just as observed in the food industry. However, in contrast to applica-
tions in food preservation, a greater understanding of weak organic acid toxicity would
serve to increase the robustness of bio-catalysts under process conditions.
The adaptive response to weak organic acids has been extensively studied in S. cerevisiae.
For example, activity of the plasma membrane H+-ATP-ase, Pma1, has been shown to
be modulated in the presence of weak acids [Holy 96]. It has also been shown that
many genes upregulated in cells exposed to organic acids are regulated by Msn2/Msn4
of the general stress response pathway [Schu 04]. Furthermore, Pdr12 which is regulated
by War1 [Kren 03] and facilitates ATP-dependent efflux of moderately lipophilic short-
chain acid anions, has been identified as a key determinant in organic acid tolerance
[Pipe 98]. More recently, additional subsets of genes, which appear to be independent of
Msn2/4 and War1, have been discovered. Schueller et al. [Schu 04] identified a group of
21 genes, including HSP30, that were regulated independently of War1 and Msn2/4 in
response to sorbate. In addition, Haa1 has been shown to regulate the expression of a
small set of genes that, upon their deletion, confer hypersensitivity to acetic, propionic
and butyric acid, but not to the more lipophilic compounds, benzoic and octanoic acid
[Fern 05].
Although the currently available literature suggests a relation between lipid solubility
of weak organic acids and the physiological responses of S. cerevisiae, a quantitative
comparison of the physiological and transcriptional responses to different weak organic
acids has not been performed. Indeed, it is unclear whether a ’generic’ transcriptional
response to weak organic acids exists in this important industrial microorganism.
The aim of the present study was to quantify and compare unity and diversity in the
physiological and transcriptional responses of S. cerevisiae to four organic acids: ben-
zoate and sorbate, two moderately lipophilic weak acids, and acetate and propionate,
two acids that are much less lipophilic. Anaerobic, glucose-limited chemostat cultures
were utilized to quantitatively compare the physiological effects and transcriptional regu-
lation induced by these four acids. This experimental setup has a number of benefits: (i)
Chemostat cultures, in contrast to batch or shake-flask cultivation, offer the possibility
to study the effect of constant and defined environmental stimuli (concentrations, pH,
etc.) at a fixed specific growth rate. (ii) In contrast to shake-flasks, chemostat cultures
allow for control of the pH which is crucial in studies on weak acids. (iii) Anaerobic
conditions eliminate consumption of these organic acids and are relevant to many in-
dustrial applications where organic acids are present. (iv) Although irrelevant for the
anaerobic conditions of choice, experiments in shake flask, an often used experimental
system in weak-acid studies, often progress to oxygen limitation. Besides the choice for
anaerobic chemostat cultivation, the comparison was further facilitated by choosing the
concentration of each acid such that equivalent biomass yields on glucose were obtained.
While this study does not strive for an exhaustive comparison between each individual
acid, the data generated during this study has been made publicly available to facilitate
such studies.
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Table 2.1 – Properties of weak organic acids used in this study.
The concentrations required to reduce the biomass yield to 50% of the reference condition
(YRC50) and the predicted concentration of undissociated acid at pH 5.0 (based on the
Henderson-Hasselbach equation) are indicated along with the most commonly cited pKa

and partition coefficient.

Formula pKa Octanol Water YRC50 Concentration

Partition Undissociated

Coefficient (logP)

Acetic CH3COOH 4.75 -0.31 105.0 mM 37.7 mM

Propionic CH3CH2COOH 4.88 0.33 20.0 mM 8.6 mM

Sorbic CH3CH=CHCH=CHCOOH 4.76 1.33 1.3 mM 0.47 mM

Benzoic C6H5COOH 4.19 1.87 2.0 mM 0.27 mM

2.3 Materials and methods

2.3.1 Yeast strain and growth conditions

The laboratory reference strain CEN.PK 113-7D (MATa) was grown at 30◦C in 2-L
chemostat fermentors (Applikon, Schiedam, The Netherlands) with a working volume
of 1 L using an electronic level sensor to maintain a constant volume. All cultures,
including the reference, were fed with minimal medium as described by Verduyn et
al. [Verd 92] with 25 g L−1 glucose as the limiting nutrient and 0.15 ml L−1 silicone
antifoam (BDH, Poole, England) to prevent excessive foaming. The dilution rate was
set to 0.10 h−1 and the pH was controlled at 5.0 with the automatic addition (ADI
1031 bio controller, Applikon) of 2 M KOH. The stirrer speed was set at 800 RPM and
anaerobicity was maintained by sparging the fermentor with N2 gas at 500 ml min−1.
To prevent diffusion of oxygen, the fermentor was equipped with Norprene tubing and
Viton O-rings and the medium vessel was also flushed with N2 gas. A comparable degree
of weak acid stress was ensured by decreasing the biomass yield to approximately 50%
of the reference condition (no organic acids added) with the addition of the appropriate
concentration of acetic acid, sodium benzoate, propionic acid or potassium sorbate to
the reservoir media (Table 2.1).

2.3.2 Analytical methods

Chemostat cultures were assumed to be in steady state when, after at least five volume
changes, the culture dry weight and specific carbon dioxide production rate changed by
less than 2% over 2 volume changes. Steady state samples were taken between 10 and
14 volume changes after inoculation to avoid possible evolutionary adaptation during
long-term cultivation. Culture dry-weights were determined in duplicate via filtration
onto dry, pre-weighed nitrocellulose membranes. Samples were dried in a microwave
oven for 20 minutes at 360 W. Culture supernatants were obtained after centrifugation
of chemostat broth or by a rapid sampling method using pre-cooled (-20◦C) steel beads
[Mash 03]. For the purpose of flux determination and carbon recovery, supernatants and
media were analyzed via HPLC using an AMINEX HPX-87H ion exchange column with
5 mM H2SO4 as the mobile phase. Off-gas was first cooled with a condenser (2◦C) and
then dried with a Perma Pure dryer (PD-625-12P). CO2 and O2 concentrations in the
off-gas were measured with an NGA 2000 Rosemount gas analyzer.



2.3. MATERIALS AND METHODS 17

2.3.3 Microarray analysis

Sampling of chemostat cultures, probe preparation and hybridization to Affymetrix
GeneChip microarrays was performed as described previously [Pipe 02], but with the
following modifications. Double-stranded cDNA synthesis was carried out using 15 µg
of total RNA and the components of the One Cycle cDNA Synthesis Kit (Affymetrix).
The double-stranded cDNA was purified (Genechip Sample Cleanup Module, Qiagen)
before in vitro transcription and labeling (GeneChip IVT Labeling Kit, Affymetrix).
Finally, labeled cRNA was purified (GeneChip Sample Cleanup Module) prior to frag-
mentation and hybridization of 15 µg of biotinylated cRNA.
Data acquisition, quantification of array images and data filtering were performed with
the Affymetrix software packages Microarray Suite v5.0, MicroDB v3.0 and Data Min-
ing Tool v3.0. All arrays were scaled to a target value of 150 using the average signal
from all genes. Expression values below 12 are considered insignificant variations in
unexpressed genes and were consequently set to 12 as previously described [Pipe 02].
To enable further study of this data by other researchers in the field of organic acid
toxicity/tolerance the data of the Affymetrix GeneChip microarrays used in this study
are available via Gene Expression omnibus series accession number GSE5926.

2.3.4 Differential expression

To assess which genes exhibit statistically significant up- or downregulation as a conse-
quence of the different organic acid challenges, pairwise tests between each condition and
the reference situation were performed. Thus, the gene expression levels as measured in
the presence of each of the four organic acids were compared with the expression levels
of the reference anaerobic cultures. For this, we employed the framework of Significance
Analysis of Microarrays [Tush 01]. In an effort to reduce biological noise, a gene was
called differentially expressed only if there was at least a two-fold difference in aver-
age expression and its Q-value was lower than the stringent median false discovery rate
(FDR) of 0.5%.
As a result, each gene was represented by a discretized expression pattern of length
four, indicating whether the gene, was not differentially expressed (0), upregulated (1)
or downregulated (-1) under each of the four test conditions. For example, a gene that
had the following discretized expression pattern

A B P S
1 0 -1 0

was upregulated due to acetate exposure (A) and downregulated in response to pro-
pionate (P), while the two other conditions, benzoate (B) and sorbate (S), did not
significantly change the expression of this gene compared to the reference situation.
This discretized representation of the expression behavior of a gene was used for fur-
ther analysis. Although information density is reduced when going from the continuous
expression levels to the discretized representation, much interpretability is gained when
analyzing the outcomes of the stringent statistical tests [Knij 07]. Furthermore, the
discretized representation allows for a simple and meaningful way to cluster genes into
functionally coherent groups.
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2.3.5 Clustering genes

Gene clusters were created in three different ways to identify groups of genes that ex-
hibited both overall and specific response to the different acids:

• Genes that had identical discretized expression patterns form clusters. Thus, the
overall response of the genes in a cluster to the four organic acids is identical.

• Additionally, genes were grouped into clusters, when they were up- or downregu-
lated in response to one specific organic acid, regardless of their expression behavior
under the other three test conditions. This led to four clusters of genes that exhib-
ited upregulation under one of the conditions, and similarly, four clusters of genes
that were downregulated due to one particular stimulus.

• To investigate more thoroughly the acetate-propionate relationship and the benzoate-
sorbate relationship, genes were clustered when they were either upregulated or
downregulated under both acetate and propionate exposure, and similar for the
benzoate and sorbate conditions.

2.3.6 Hypergeometric tests

The (overlapping) gene clusters were consulted for enrichment in functional annotation
(Munich Information Center for Protein Sequences, MIPS [Mewe 97]) and significant
transcription factor (TF) binding. To test for significant relations the hypergeometric
test was employed. In the case of the TF binding data, the largest available TF binding
dataset for yeast in its most conservative setting (highest binding confidence) was used
[Harb 04]. This dataset, which originally indicates the number of binding sites for each
of 102 TFs in the promoter region of each gene, was binarized, such that the data
indicates whether a TF can bind a gene (upstream) or not. Then, the hypergeometric
test assesses if a TF (or a TF pair) can bind the promoter region of the genes in a
cluster much more frequently than in a random set of genes. In case of the employed
gene annotation information it assesses if the number of genes in a cluster that belongs
to a particular functional category within the MIPS database is much larger than would
be expected by chance. The P -value cutoff to decide whether a relation is significant is
P ≤ 1/(ncnx), where nc is the number of clusters and nx is the number of TFs (or TF
pairs) or the number of MIPS annotation categories. Consequently, P -value cutoffs were
different for assigning significance to functional categorization, TF binding and binding
of TF pairs. This adjustment for multiple testing, corresponds with a per comparison
error rate (PCER) of one [Ge 03], resulting in P -value cutoffs around 10−5.

2.4 Results

2.4.1 Effects of different organic acids on biomass yields in anaer-

obic chemostat cultures

Prior to performing steady-state chemostat cultures, trial runs were performed in which
the concentration of each acid in the medium reservoir was titrated to reduce the biomass
yield to 50% of the reference condition. For acetate, propionate, benzoate and sorbate,
different concentrations were required to achieve this reduction of the biomass yield,
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even when the concentration of undissociated acid in the cultures was calculated from
their respective pKa values (Table 2.1). A strong correlation was observed between
the amount of acid required to reduce the biomass yield on glucose by 50% and their
octanol/water partitioning coefficient, consistent with the notion that membrane per-
meability of the undissociated acid is a key factor in weak-acid toxicity.
Using the concentrations of the acids deduced from the trial runs, triplicate anaero-
bic, glucose-limited chemostat fermentations were performed for each organic acid and
compared to triplicate glucose-limited reference cultures without organic acids. The
reduced biomass yield of the cultures grown with added organic acids was mirrored by
an approximately two-fold increase in the specific rates of ethanol and carbon dioxide
production. In addition, the low but significant rates of lactate production observed
in the reference cultures were approximately doubled in the cultures to which organic
acids had been added. In S. cerevisiae, D-lactate is formed via the methylglyoxal bypass.
Activity of this bypass of glycolysis has been shown to be correlated with glycolytic flux
[Mart 01], probably via the intracellular concentrations of dihydroxyacetone phosphate,
the immediate precursor of methylglyoxal formation.
In anaerobic cultures of S. cerevisiae, glycerol formation serves as a redox sink for re-
oxidation of excess NADH that is formed in biosynthetic reactions [Dijk 86]. Biomass-
specific rates of glycerol formation were the same in all cultures, except for those with
acetate addition, which showed a markedly reduced specific rate of glycerol production.
In anaerobic, glucose-limited cultures, acetate can be converted to acetyl-coenzyme A by
the acetyl-CoA synthetase Acs2 [Berg 96]. Formation of this key precursor for the syn-
thesis of amino acids and lipids from glucose is an oxidative process that yields NADH.
The reduced production of glycerol by the acetate cultures probably reflects a previ-
ously proposed NADH-sparing effect of acetate cometabolism [Tahe 96]. Since, under
anaerobic conditions, dissimilation of acetate does not occur, only a small fraction of
the acetate added to the reservoir media was consumed.
The residual concentrations of glucose in cultures grown with organic acids were higher
than in the reference cultures. In micro-organisms, the specific rate of consumption
of the growth-limiting substrate qs often exhibits saturation kinetics with respect to
its concentration Cs. These kinetics can be described by the modified Monod equation
(qs = qmax

s
Cs

Cs+Ks
). Thus, the increased rate of glucose consumption by the cultures may

be at least partially responsible for the increased residual glucose concentration. How-
ever, despite the essentially identical rates of glucose consumption that were observed
in the cultures to which organic acids had been added, the residual glucose concentra-
tions were different for the four acids (Table 2.2). This suggests the involvement of
acid-specific effects on the expression and/or activity of genes/proteins involved in glu-
cose consumption. In fact, uptake of 14C-labeled glucose has been shown to decrease in
response to benzoate and lactate challenges [Thom 06]. Since the residual glucose con-
centrations remained well below 5 mM in all cultures, no substantial impact of glucose
repression on gene expression was anticipated [Walk 98]. Moreover, with possibly the
exception of genes involved in fatty acid oxidation, significant transcriptional changes in
glucose repressible gene expression were not observed in the current study.

2.4.2 Transcriptome analysis: data quality and overall responses

The physiological analysis presented in the previous paragraph suggested that, although
the dose-response relationships differed, the physiological effects on S. cerevisiae were
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Table 2.2 – Physiology of S. cerevisiae grown in the presence of weak organic
acids.
The acids were added to C-limited, anaerobic chemostat cultures at various concentra-
tions to reduce the biomass yield to approximately 50% of the reference condition. The
corresponding steady state fluxes (q: mmol/g/h) from triplicate chemostats performed at
pH 5.0 at a dilution rate of 0.10 h−1 are indicated along with the standard deviation.
a The concentrations of benzoic, propionic and sorbic acid were determined by HPLC to
be equal in the feed medium and culture supernatant (data not shown). Consequently,
fluxes for these compounds were not included and they were not used in the calculation
of C recovery.

Reference 105 mM 2 mM 20 mM 1.3 mM

(No Stress) Acetic acid Benzoic acida Propionic acida Sorbic acida

q Glucose -6.03 ± 0.10 -12.17 ± 0.20 -12.12 ± 0.58 -12.98 ± 0.48 -12.08 ± 0.20

q CO2 10.40 ± 0.45 22.97 ± 0.50 22.84 ± 1.45 23.73 ± 0.94 21.12 ± 0.28

q Ethanol 9.52 ± 0.16 21.45 ± 0.35 21.19 ± 1.06 21.41 ± 1.32 21.40 ± 0.47

q Glycerol 0.79 ± 0.02 0.54 ± 0.01 0.96 ± 0.06 1.00 ± 0.03 0.83 ± 0.01

q Lactate 0.05 ± 0.01 0.09 ± 0.00 0.10 ± 0.00 0.11 ± 0.01 0.09 ± 0.01

q Acetate 0.02 ± 0.00 -0.57 ± 0.02 0.08 ± 0.01 0.03 ± 0.01 0.02 ± 0.01

Biomass (g/L) 2.25 ± 0.02 1.13 ± 0.02 1.17 ± 0.03 1.06 ± 0.03 1.22 ± 0.02

Yield (gx/gs) 0.09 ± 0.00 0.05 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.05 ± 0.00

C Recovery (%) 99.4 ± 0.8 95.1 ± 0.6 95.6 ± 1.0 96.5 ± 1.3 93.4 ± 1.0

Residual Glucose (mM) 0.2 ± 0.0 2.1 ± 0.1 1.7 ± 0.8 3.4 ± 0.3 0.7 ± 0.3

similar for the four organic acids. To investigate whether this also held for the tran-
scriptional responses to the four acids, the chemostat cultures were subjected to a full
transcriptome analysis.
To obtain statistically reliable transcriptome data, triplicate chemostat cultivations and
microarray analyses were carried out for each condition. The average coefficient of
variation for triplicate arrays in each condition was below 18%, which is indicative of
reliable, reproducible analyses [Pipe 02]. A fold-change threshold of 2, combined with a
false-discovery rate of 0.5% was used to assess significance of changes in transcript levels.
Using these criteria, a comparison of the acid-exposed cultures to the reference condition
yielded 4059 genes that did not exhibit a significantly changed transcript level (Figure
2.1). An additional 902 genes were not transcribed (average expression < 12) under any
of the conditions tested. This left 1422 genes (22% of the genome) whose transcript
levels were significantly modulated in response to at least one weak acid. Transcripts
with identical discretized patterns (see Methods section) were grouped together prior to
further analysis. For example, transcripts downregulated by all acids were represented
by a discretized pattern [-1 -1 -1 -1]. The 1422 transcripts whose level was modulated
in response to weak acids yielded 45 distinct discretized patterns, 25 of which contained
10 or more genes.

2.4.3 Identification of a minimal generic transcriptional response

to weak organic acids

Only 14 genes were identified whose transcript levels were significantly upregulated in
response to all four acids [1 1 1 1]: CWP2, PIR1, CCR4, PAN1, TIM44, IMP2, RRD1,
YHR087W, SOD2, WSC4, SPI1, RNQ1, YGP1 and SML1. While five of these genes
(SPI1, CWP2, PIR1, YGP1 and WSC4 ) are related to cell wall structure and organi-
zation, no statistically significant overrepresentation of MIPS functional categories or
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Figure 2.1 – The global transcriptional response of S. cerevisiae to anaerobic chemostat
growth in the presence of weak organic acids. Significantly changed transcripts were iden-
tified for each acid following Affymetrix transcriptional profiling and data analysis using
a FDR of 0.5% with a fold-change of 2. The data clearly indicates a large acid-specific re-
sponse in combination with a very small response shared by cultures grown in the presence
of acetate, benzoate, propionate or sorbate.

promoter elements (based on the data of [Harb 04]) was identified. See Materials and
Methods. Although the MIPS category of cell wall structure and organization was highly
enriched (P = 8.9·10−4), this is not deemed significant with the stringent multiple testing
correction. Interestingly, SOD2, which encodes the Mn-containing mitochondrial super-
oxide dismutase and TIM44 which is involved in mitochondrial protein import [Geis 00],
and possibly in removal of mitochondrial superoxide [Mats 05], were both upregulated
in all conditions. Finally, a number of genes involved in DNA synthesis (SML1 ) and
repair (RRD1, IMP2 ) were present within this group, suggesting that organic acids are
capable of inducing DNA damage.
Similar to the common upregulated gene set, a set of 57 genes that showed consistent
transcriptional downregulation for the four organic acids also failed to reveal overrepre-
sented promoter elements. However, a hypergeometric distribution analysis of functional
categories indicated a significant overrepresentation of genes involved in fatty acid oxi-
dation (ECI1, POT1, SPS19 and YGR207C, P = 6.97 · 10−7). As described above for
SOD2 and TIM44, the oxygen-dependency of lipid oxidation, combined with the anaer-
obic cultivation conditions, makes the physiological significance of this transcriptional
response difficult to explain. Since genes involved in fatty acid oxidation are very sensi-
tive to glucose repression [Ganc 98, Veen 87], the downregulation of this set may instead
reflect the slightly elevated residual glucose concentrations in the acid-exposed cultures.
However, raw expression values did not indicate any correlation between residual glucose
concentrations and transcript levels.
A number of genes involved in various transport processes at the plasma membrane
level were also among the common downregulated genes. In particular, five of the genes,
TAT1, MMP1, DIP5, AQR1 and MEP3 are involved in transport of amino acids and
ammonium. TAT1, MMP1 and DIP5 function in uptake of amino acids and MEP3
encodes an ammonium permease while AQR1 has been implicated in amino acid excre-
tion [Vela 04]. In addition, transport of zinc (ZRT1 ), copper (CTR3 ) and even sterols
(AUS1 ) is downregulated.
Rather unexpectedly, only a small number of genes pertaining to the translational ma-
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Figure 2.2 – The significance of the correlation (-log P -value) between condi-
tions was predicted using a hypergeometric distribution.
Analysis of the upregulated genes (left panel) showed that the overlap between acetate
and propionate is of most significance, followed by the overlap between benzoate and sor-
bate. With respect to the downregulated genes (right panel), the correlation between
acetate and propionate is much lower, while the degree of benzoate/sorbate co-regulation
is highlighted by an extremely low P-value.

chinery were identified in the common downregulated gene set. Of the 57 genes shar-
ing common downregulation, only seven (MIP6, MRPL25, RPR1, SSF2, NIP7, SPP2,
LSM7 ) were related to ribosome biogenesis or RNA processing.

2.4.4 Unique responses and co-responses to different organic

acids: correlation with lipid solubility

The limited generic transcriptional response to the four organic acids, along with the
lack of a regulon defined by a common known promoter element or upregulation of
genes belonging to one or a few functional categories, is intriguing. Based on the dis-
cretized expression profiles (>2-fold change at 0.5% FDR) 561 genes showed a significant
transcriptional response to two or three of the four acids. Hypergeometric distribution
analysis was applied to statistically evaluate co-responses to all possible combinations of
two acids. This approach established a clear correlation between the occurrence of com-
mon transcriptional responses to individual organic acids and their membrane solubility
(octanol/water partition coefficients, Table 2.1). In addition to the strongly overlapping
transcriptional responses to benzoate and sorbate, a highly significant overlap of the
transcriptional responses to acetate and propionate was also identified (Figure 2.2).
Despite the overlap of the transcriptional responses to subsets of the four organic acids,
many transcripts were uniquely regulated in response to the four acids used in this study.
In total, 211 genes were identified as being uniquely upregulated by a single acid, while
579 genes indicated downregulation by a single acid. For each of the four acids, the
unique transcriptional response was comprised of over 100 genes. Propionate had the
largest (395 transcripts) set of uniquely regulated genes, which corresponds to approxi-
mately half of propionate-responsive genes. In contrast, only 104 genes were specifically
modulated in the presence of acetate, corresponding to slightly less than 25% of the
overall response to acetate. Similarly, the specific changes in sorbate and benzoate ex-
posed cultures also comprised approximately 25% of the complete response (Table 2.3).
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Table 2.3 – The overall transcriptional response to weak organic acids.
Significantly changed transcripts were identified for each acid following Affymetrix tran-
scriptional profiling and data analysis using a FDR of 0.5% with a fold-change of 2. The
complete response to each acid is represented by the total and transcriptional responses,
which were specifically regulated under only one condition are denoted as unique.

Up Down

Total Unique % Unique Total Unique % Unique

Acetic 168 42 25 291 62 21.3

Benzoic 103 22 21.4 439 106 24.1

Propionic 252 114 45.2 528 281 53.2

Sorbic 118 33 28 480 130 27.1

Further evidence for acid-specific responses was found in the overrepresentation of func-
tional categories (Table 2.4) and transcription-factor binding sites (Table 2.5) among
the genes that responded to the four acids.

2.4.5 Benzoate and sorbate responsive transcripts

The genes that were transcriptionally upregulated in response to benzoate showed a
significant enrichment for the MIPS functional category “cell rescue, defense and vir-
ulence” and, more specifically, for the subcategories “stress response” and “cell wall”
(Table 2.4). The sorbate-upregulated genes were enriched for the MIPS functional cat-
egory “interaction with the cellular environment” (subcategories “cellular sensing and
response” and “chemoperception and response”).
Analysis of overrepresented transcription factor binding among the benzoate-upregulated
transcripts (Table 2.5) corroborated a cell wall-related response to benzoate. The MAPK
cascade transcription factors Dig1 and Ste12 are directly linked to pseudohyphal growth
and cell wall processes. Moreover, Msn2 and Msn4 regulatory sites were also identified
along with the enrichment of Skn7 and Swi5 binding. Skn7 has been implicated in the
control of cell wall biosynthesis, cell cycle, and the osmotic stress response in addition
to its role in oxidative stress [Lee 99]. Overexpression of SKN7 suppresses the cell wall
assembly mutation kre9 [Brow 93] and the growth defect associated with deletion of a
regulator involved in cell surface assembly [Brow 94].
The sorbate upregulated genes showed an overrepresentation of many transcription fac-
tors (Table 2.5). Although no overrepresentation of cell wall-related functional categories
was observed for sorbate, several of the enriched transcription factors and transcription
factor pairs were cell wall-related. Sok2 has been implicated in cell wall stress [Lago 03],
while Ste12 and Tec1 of the MAPK cascade are associated with the regulation of cell
wall integrity [Qi 05] and pseudohyphal growth [Ganc 01]. Dig1 (Rst1) acts as a regu-
lator of Ste12 [Tedf 97]. Previous studies by Mollapour et al. [Moll 04] and de Nobel
et al. [Nobe 01] corroborate the importance of cell wall proteins in the response of S.
cerevisiae to sorbate and benzoate, although the identity of the genes found in their
studies is different. However, discrepancies in individual genes may be reflective of the
difference between transient adaptive changes in gene expression and steady state re-
sponses.
For the sake of brevity, we will not discuss the overrepresented functional categories and
transcription factor binding (Tables 2.4 and 2.5) for the downregulated genes in the ben-
zoate and sorbate comparison. This, however, does not mean that the downregulation



24 CHAPTER 2. TRANSCRIPTIONAL RESPONSE TO ORGANIC ACID STRESS
T
a
b
le

2
.4

–
O

v
e
rv

ie
w

o
f
M

IP
S

fu
n
c
tio

n
a
l
c
a
te

g
o
rie

s
id

e
n
tifi

e
d

in
th

e
p
re

se
n
c
e

o
f
o
rg

a
n
ic

a
c
id

s
in

u
p
re

g
u
la

te
d

(sh
a
d
e
s

o
f

re
d
)

a
n
d

d
o
w

n
re

g
u
la

te
d

(sh
a
d
e
s

o
f
g
re

e
n
)

g
e
n
e

se
ts.

O
v
errep

resen
ta

tio
n

is
in

d
ica

ted
b
y

th
e

d
a
rk

red
(u

p
reg

u
la

ted
)

a
n
d

d
a
rk

g
reen

(d
ow

n
reg

u
la

ted
)

b
ox

es.
T

h
e

sim
ila

rities
b
etw

een
resp

o
n
ses

a
re

a
lso

in
d
ica

ted
fo

r
a
ceta

te/
p
ro

p
io

n
a
te

a
n
d

b
en

zo
a
te/

so
rb

a
te.

T
h
e

sig
n
ifi

ca
n
ce

o
f

ea
ch

ca
teg

o
ry

is
n
u
m

erica
lly

in
d
ica

ted
a
s

-lo
g
1
0

P
-

va
lu

e.
O

(ov
era

ll)
co

lu
m

n
s

in
d
ica

te
th

e
a
n
a
ly

sis
o
f

a
ll

g
en

es
resp

o
n
d
in

g
to

ea
ch

co
n
d
itio

n
reg

a
rd

less
o
f

th
eir

ex
p
ressio

n
in

o
th

er
co

n
d
itio

n
s.

S
(sp

ecifi
c)

co
lu

m
n
s

in
d
ica

te
th

e
a
n
a
ly

sis
o
f
g
en

es
w

h
ich

so
lely

resp
o
n
d

to
th

e
in

d
ica

ted
co

n
d
itio

n
(s).

F
u
n
ction

al
C

ategory
A

cetate
P

rop
ion

ate
A

cetate/
B

en
zoate

S
orb

ate
B

en
zoate/

P
rop

ion
ate

S
orb

ate
O

S
O

S
O

S
O

S
O

S
O

S

C
E

L
L

R
E

S
C

U
E

,
D

E
F
E

N
S
E

A
N

D
V

IR
U

L
E

N
C

E
8.11

1.5
6.63

1.03
9.4

3.5
4.51

0.25
2.77

1.28
1.78

0.28
stress

resp
on

se
7.13

0.38
4.82

0.6
7.15

1.17
5.94

0.35
3.01

0.73
2.34

0.23
osm

otic
an

d
salt

stress
resp

on
se

3.86
0.36

2.09
0.31

3.63
1.07

2.6
0.2

1.64
0.15

1.14
0.91

cell
w

all
0.59

1.27
1.41

0.14
1.01

0.15
3.87

0.28
2.26

1.03
2.33

0.57
M

E
T
A

B
O

L
IS

M
2.61

0.82
5.87

4.97
0.86

0.34
1.22

0.11
1.85

0.46
1.76

0.79
am

in
o

acid
m

etab
olism

2.24
2.1

5.72
5.38

0.34
0

1.42
0.25

1.07
0.68

0.99
0.38

assim
ilation

of
am

m
on

ia,
m

etab
olism

of
th

e
glu

tam
ate

grou
p

1.25
1.14

5.05
3.83

0.24
0

0.77
0.27

0.34
0

0.54
0.76

m
etab

olism
of

argin
in

e
0.64

0
7.63

6.05
0

0
1.35

0.55
0.73

0
0.71

1.38
b
iosy

n
th

esis
of

argin
in

e
0

0
5.31

5.72
0

0
1.26

0.71
0.19

0
0.38

0.71
m

etab
olism

of
u
rea

(u
rea

cy
cle)

1.56
0

4.48
0.99

0
0

1.03
0

1.16
0.93

0
0

m
etab

olism
of

th
e

p
y
ru

vate
fam

ily
an

d
D

-alan
in

e
0.23

0
4.2

3.52
0

0
0.57

0
0.52

0
0.87

0
ox

id
ation

of
fatty

acid
s

3.35
0

2.38
0

4.87
0

2.68
0

3.64
0.77

3.54
0

secon
d
ary

m
etab

olism
1.35

2.25
4.56

3.49
1

0.9
0.4

0
0.49

0
0.45

0.46
IN

T
E

R
A

C
T

IO
N

W
IT

H
T

H
E

C
E

L
L
U

L
A

R
E

N
V

IR
O

N
M

E
N

T
1.33

0.85
1.02

0.74
0.89

0.61
1.91

0.1
3.75

3.49
1.32

1.15
cellu

lar
sen

sin
g

an
d

resp
on

se
0.52

0.54
1.23

1.16
0.57

0.32
2.75

0.2
4.87

4.17
1.75

1.67
ch

em
op

ercep
tion

an
d

resp
on

se
0.41

0.6
1.37

1.39
0.44

0.11
2.02

0.03
4.05

4.37
1.33

1.75
C

E
L
L
U

L
A

R
T

R
A

N
S
P

O
R
T

,
F
A

C
IL

IT
A

T
IO

N
A

N
D

R
O

U
T

E
S

3.95
1.26

0.53
0.26

1.78
0.47

1.3
0.65

2.22
0.64

0.88
1.46

tran
sp

orted
com

p
ou

n
d
s

(su
b
strates)

6.72
2.59

0.66
0.1

3.19
0.68

1.3
0.33

2.91
0.44

1.11
0.87

an
ion

tran
sp

ort
(C

l,
S
O

4,
P

O
4,

etc.)
4.89

2.71
0.44

0
1.92

0
0.46

0
1.96

1.01
0.54

0
am

in
o

acid
tran

sp
ort

5.64
1.19

0.85
0.75

2.95
0.52

0.47
0

3.61
0.23

1.02
0.29

d
ru

g
tran

sp
ort

5.3
2.24

1.8
0.83

1.48
1.41

0.58
0

1.21
0.26

0.6
0.33

R
N

A
p
ro

cessin
g

0.1
0.14

1.63
0.28

0.24
0.2

4.23
1.28

1.33
0.8

1.89
1.64

rR
N

A
p
ro

cessin
g

0.02
0.09

2.32
0.71

0.09
0

4.25
2.21

1.63
0.91

1.42
0.86



2.4. RESULTS 25

Table 2.5 – Overview of transcription factors (TFs) involved in the response
to organic acids in upregulated (shades of red) and downregulated (shades of
green) gene sets.
Overrepresentation of binding sites for each TF is indicated by the dark red (upregulated)
and dark green (downregulated) boxes. TF pairs which were significantly enriched in each
condition are also listed within the table. The similarities between responses are also in-
dicated for acetate/propionate and benzoate/sorbate. The significance of each category is
numerically indicated as -log10 P -value.
O (overall) columns indicate the analysis of all genes responding to each condition regard-
less of their expression in other conditions. S (specific) columns indicate the analysis of
genes which solely respond to the indicated condition(s).
Note: TF Cin5/Yap4 is not only enriched in the downregulated O Acetate cluster
(P = 10−5.69), but also enriched in the upregulated cluster (P = 10−4.47). This is not
visible in the table.

Transcription Acetate Propionate Acetate/ Benzoate Sorbate Benzoate/

Factor Propionate Sorbate
O S O S O S O S O S O S

Aft2 2.97 0.13 2.19 1.49 1.29 1 3.12 0.43 1.96 0.3 2.98 0.75
Cad1/Yap2 3.32 3.63 2.87 1.72 1.08 0 1.03 0 0.93 0 0.67 0.38
Cin5/Yap4 5.69 0.65 1.67 0.33 2.38 1.84 1.26 0.35 3.11 0.66 1.08 0
Dig1 1.86 2.59 1.84 0.99 1.29 0.25 4.75 1.06 5.68 5.17 1.65 1.41

Gcn4 2.56 2.62 8.23 9.95 0.15 0.32 0.77 0.21 1.29 0.71 1.04 0.68

Gln3 3.05 1.22 1.55 1.62 1.04 0.39 1.3 0.71 1.38 1.09 1.1 0.35
Hap1 1.92 0 3.93 1.39 3.13 3.5 0.16 0.92 0.41 0.5 0.02 0.15

Hsf1 3.74 0 3.66 1.05 3.8 3.12 1.2 0.43 0.35 0.3 0.01 0.19

Mac1 1.47 0 1.42 0 2.53 4.06 1.03 0 0.94 0 1.6 1.56

Mcm1 0.69 0.35 3.07 2.77 0.83 0 2.52 0.57 1.62 0.43 1.54 0.11

Msn2 3.56 0.33 1.87 0.49 2.55 0.51 3.23 0 2.92 0.42 2.87 0.87

Msn4 5.82 0 4.26 0.58 4.75 1.11 6.68 0.75 2.45 0 3.11 0
Nrg1 2.27 0.69 3.32 1.11 1.04 0.54 1.77 0.44 2.51 0.58 1.83 0.2

Rcs1 2.14 0.36 5.26 1.73 2.75 1.47 1.16 0.38 1.94 0.28 0.86 1.28

Skn7 2.59 1.08 2.48 1.22 0.68 0.43 3.72 1 2.64 0.25 2.99 1.35

Sok2 2.34 0 1.91 0.38 2.19 0.86 2.06 0 3.22 1.2 1.67 0.14

Stb4 0.67 0 3.59 4.94 0 0 0.87 0 0.81 0 1.18 0.86

Ste12 2.38 2.17 2.34 1.89 0.86 0.13 6.16 0.73 12.47 7.98 4.35 4.04

Swi4 1.59 0.54 0.84 0.96 0.3 0 2.72 0 6.16 1.73 3.81 1.63

Swi5 1.35 0 4.56 2 1 0.46 5.62 1.58 1.32 0 2.66 0.15

Tec1 0.82 0 1.17 0.87 0.96 0.53 2.51 0.71 4.8 4.85 1.1 0.89
Yap1 4.17 2.88 1.34 1.23 0.21 0.61 0.59 0.7 1.11 0.19 0.5 0
Aft2 - Msn4 1.88 0 1.54 0 1 0 5.67 1.62 0.91 0 1.29 0
Cad1 - Yap1 4.52 4.99 1.71 1.54 0 0 0.18 0 0.61 0 0.33 0
Dig1 - Hsf1 2.18 0 0 0 0 0 4.4 1.77 0 0 0 0
Dig1 - Ste12 1.05 1.57 2.11 1.12 1.16 0.31 5.59 1.21 6.69 5.75 1.94 1.57
Dig1 - Tec1 0.61 0 1.14 0.87 0.84 0.73 3.6 0.93 5.48 6.04 1.53 1.12
Gln3 - Swi5 0.9 0 0.74 0 0 0 4.4 1.77 1.05 0 1.43 0
Mcm1 - Swi5 3.76 0 4.94 0 4.49 0 6.5 0 2.49 0 3.26 0
Mcm1 - Ste12 0.8 0.79 4.5 3.91 0.47 0 1.16 0 2.85 0.88 1.76 0
Msn4 - Swi5 3.04 0 0.56 0 0.94 0 5.37 1.56 2.05 0 2.82 0
Ste12 - Tec1 0.86 0 1.59 0.9 1.32 0.66 3.18 0.85 5.96 5.6 1.37 1.03
Ste12 - Swi5 1.66 0 4.99 3.37 0.89 0 2.06 0 0.81 0 1.18 0
Ste12 - Swi6 0.63 0.68 0.8 0.89 0.32 0 2.64 0 4.43 3.13 2.66 2.59
Ste12 - Swi4 0.71 0.58 0.91 0.98 0.35 0 3.92 0 7.23 3.29 4.12 2.7
Yap1 - Yap7 5.66 3.47 0.8 0.89 0.32 0.74 1.05 0.94 1.36 0.29 0.77 0
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of the expression of these genes is not important for the response of S. cerevisiae to the
various organic acids.

2.4.6 Acetate and propionate responsive transcripts

The acetate-upregulated transcripts revealed a significant overrepresentation of the MIPS
functional category “cell rescue, defense and virulence” and, more specifically, the sub-
categories “stress response” and “osmotic and salt stress response” (Table 2.4). The
latter subcategory was also overrepresented among the propionate-upregulated genes
and among the genes that were upregulated by both acetate and propionate (Table 2.4).
The propionate-upregulated transcripts showed a strong overexpression of the MIPS cat-
egory “metabolism” and, in particular, several subcategories involved in nitrogen and
amino acid metabolism. A detailed investigation of the transcripts involved revealed
many genes pertaining to biosynthesis and degradation of nitrogenous compounds, sug-
gesting an overall up-regulation of nitrogen turnover. Consistently, binding of the Gcn4
transcription factor, which is involved in the general control of nitrogen metabolism,
was very strongly overrepresented among the 252 genes upregulated in response to pro-
pionate (Table 2.5).
The 168 acetate-upregulated genes showed an overrepresentation of binding for the gen-
eral stress response regulators Msn2 and Msn4. In addition, the consensus sequence
of Hsf1, a regulator of heat shock proteins and possibly cell wall remodeling [Imaz 05]
was abundant within the genes responding to acetate. Interestingly, a number of genes
bound by Msn2/4 also respond to heat shock, which is consistent with the reported cross
tolerance observed between mild acid stress and thermo-tolerance [Carm 98]. Binding
sites for Cin5, a regulator involved in chitosan resistance [Zakr 05], were also overrepre-
sented among the acetate-upregulated genes.
Intriguingly, the same transcription factor was found to be overrepresented among the
acetate downregulated transcripts (Table 2.5). The 62 acetate downregulated genes
showed an overrepresentation of the MIPS category “cellular transport, facilitation and
routes”. Closer inspection revealed many genes belonging to the major-facilitator super-
family (MFS), indicating that reduced transcription of membrane-transporter genes is
an integral part of the response of S. cerevisiae to acetate. In sharp contrast to the pro-
pionate upregulated gene set, in which a plethora of transcription factors were overrepre-
sented, the 528 genes downregulated on propionate showed no significant enrichment in
functional categories and only a slight over-representation of a single transcription fac-
tor, Mcm1, which plays a central role in formation of repressor and activator complexes
[Elbl 91]. Given the fact that Mcm1 is involved in a number of different repressor and
activator complexes, it was not surprising that this subset failed to display a discernable
functional grouping (Table 2.4).

2.5 Discussion

2.5.1 Methodology

This study represents the first attempt to compare cellular responses of S. cerevisiae to
different organic acids at concentrations of the acids resulting in an identical decrease
of the biomass yield on glucose. This indicates that the amount of ATP required for
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maintenance of the intracellular pH (pHi) and/or export of the anions increased drasti-
cally in comparison to the reference condition. Although the experimental setup used in
this study does not provide insight on the transient changes in gene expression, which
is reflective of the dynamic adaptive response to sudden changes in growth conditions,
findings from this study can be used to facilitate functional analysis and increase the
understanding under such conditions.
The relevance of this study might be challenged by stating that the concentrations of
the weak acids did not result in complete growth arrest and that, therefore, the con-
centration of acids was not sufficient to induce any generic transcriptional responses.
Although further dose-response work is definitely of interest, it is relevant to note that
the concentrations of weak acids used in the present study were sufficient to (i) result
in an over 2-fold change of the transcript level of more than 450 genes for each of the
organic acids and (ii) induce specific response mechanisms to the organic acids stud-
ied. Examples of the latter include the PDR12 gene which, in agreement with previous
studies [Hatz 03, Pipe 98], was strongly upregulated in response to propionate, ben-
zoate and sorbate but not acetate, and induction by acetate of TPO2, which encodes a
trans-membrane protein implicated in the active efflux of poorly lipophilic acidic anions
[Fern 05].
The present study was confined to the transcriptional level. However, it is known that
relevant adaptations to organic acids (such as the activation of the plasma membrane
ATPase, Pma1, [Serr 83]) may also occur posttranscriptionally. For example, such post-
transcriptional responses may play a key role in the benzoate-induced tolerance to ac-
etate and propionate [Wart 89]. Therefore, care should be taken to extrapolate the
conclusions from the present study beyond the transcriptional level.

2.5.2 Comparison with known responses to organic acids and

implications for current models of weak acid toxicity

A number of genes and regulons which are of utmost importance to tolerance to organic
acids have been extensively described in previous research. For example, Pma1, which
is responsible for maintaining intracellular pH via ATP-dependent efflux of protons is
paramount for growth in the presence of weak acids [Holy 96, Pipe 97, Vieg 98]. The
fact that the expression of PMA1 is unchanged in the current study (Table 2.6) does not
contradict this since the basal expression level may be sufficient to provide the necessary
Pma1 activity to prevent intracellular acidification. Alternatively, unchanged transcrip-
tional expression may be reflective of posttranscriptional regulation (as described above).
Strikingly, the gene encoding the negative regulator of Pma1, HSP30, is differentially
transcribed when the lipophilic and less-lipophilic acids are compared. In the presence of
acetate and propionate, transcript levels of HSP30 are upregulated (Table 2.6), whereas
HSP30 is not upregulated in response to benzoate and is actually down-regulated in
the presence of sorbate. Since maintaining the proton-motive force is more challenging
for more lipophilic weak acids, these observations give further indication to the different
modes of toxicity of these two groups of acids. Moreover, YRO2, which is a homolog of
HSP30, is upregulated on sorbate, acetate and propionate (Table 2.6), indicating a gap
in the current understanding of the (posttranscriptional) regulation of Pma1, Yro2 and
Hsp30p.
Aside from changes in pHi mediated by intracellular dissociation of free organic acids,
the anion itself and the induction of energy-dependent efflux can influence energetics
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Table 2.6 – Discretized expression patterns of genes and regulons which have
been previously described as important determinants of organic acid tolerance
in S. cerevisiae.
The last two columns indicate genes containing the consensus binding sequence for War1,
which were induced in response to sorbate [Schu 04] and genes of the Haa1 regulon, which
has previously been described as being particularly important for resistance to poorly
lipophilic acids [Fern 05].

Acetate Propionate Benzoate Sorbate War1 regulon Haa1 regulon
PMA1 0 0 0 0
HSP30 1 1 0 -1
WAR1 0 0 0 0
PDR12 -1 1 1 1 x
FUN34 -1 1 1 1 x
ALG12 0 1 1 1 x
HXK1 0 0 0 0 x
TFS1 0 1 1 0 x
ACH1 0 1 0 0 x
GAT1 0 1 1 1 x
ALD4 -1 0 0 0 x
TPO1 0 0 0 0 x
HAA1 0 0 0 0
TPO2 1 1 0 0 x
TPO3 0 0 0 0 x
YRO2 1 1 0 1 x
YGP1 1 1 1 1 x
GRE1 0 0 0 0 x
PHM8 0 1 0 0 x

YIR035C 1 1 0 0 x
YLR297W 0 0 0 0 x
YPR157W 1 0 0 0 x
YER130C 1 0 0 0 x

and other cellular processes. Previous research has outlined the toxic mechanisms of
the anion and the export mechanisms which are activated to counteract the toxic ac-
cumulation of these anions. Namely, Pdr12, belonging to the War1 regulon, has been
implicated as a key determinant of resistance to moderately lipophilic weak organic acids
[Hatz 03, Pipe 98]. The protein encoded by PDR12 functions in the energy-dependent
export of moderately lipophilic organic acid anions from the cytosol [Holy 99]. Indeed,
PDR12 and a number of other genes that are dependent on WAR1 were upregulated in
response to benzoate, sorbate and propionate (Table 2.6). Interestingly, the same genes
are either unchanged or downregulated upon exposure to acetate (the least lipophilic
acid in the present study). Consequently, the importance of PDR12 and other genes
of the WAR1 regulon is once again highlighted for moderately lipophilic weak organic
acids.
Another regulon which has recently been identified as an important determinant of or-
ganic acid tolerance is the HAA1 regulon [Fern 05]. The expression pattern of this
regulon is clearly distinct from that of the WAR1 regulon (Table 2.6) and the distinc-
tion appears to be correlated to membrane affinity. The involvement of both the HAA1
and WAR1 regulons in response to propionate is especially intriguing considering that
the membrane affinity of propionate is an intermediate between the poorly lipophilic ac-
etate and the moderately lipophilic compounds benzoate and sorbate. Particular genes,
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which are regulated by Haa1 may encode proteins that facilitate the export of poorly
lipophilic anions. The most likely candidate is TPO2, which is upregulated upon ex-
posure to acetate and propionate in this study. TPO2 (and TPO3 ) encode plasma
membrane multidrug transporters that are known to promote the export of spermine
[Albe 03, Uemu 05]. However, deletion of HAA1 or TPO3 in the presence of acetic acid
resulted in increased lag times which were correlated to increased levels of intracellular
acetate [Fern 05]. Therefore, analogous to War1 and moderately lipophilic acids, Haa1
may represent a key activator of defense mechanisms required for resistance to poorly
lipophilic acids.

2.5.3 Transcriptional responses to weak acids: leads for func-

tional analysis

Although the aim of this work was not to investigate the molecular mechanisms involved
in the cellular responses to weak acids, the dataset generated in this study may be applied
to direct future functional analysis studies. For instance, the common upregulation of
SOD2 in these anaerobic chemostats merits further exploration of the role of superoxide
dismutases in anaerobic conditions. Although weak acids have been associated with the
formation of reactive oxygen species (ROS) in aerobic cultures [Pipe 99], it is difficult to
envisage such a link under the anaerobic conditions used in the present study. However,
the identification of genes involved in protection against ROS is perhaps indicative of a
physical interaction between the mitochondria and weak acids, which results in damage
or disruption of the mitochondrial membrane and ultimately leads to increased ROS
production in the presence of oxygen.
The importance of the cell wall has also been highlighted in this study. Although the
cell wall is not generally considered to be a protective barrier to small molecules due to
its porous nature [Nobe 91], the consistent identification of cell wall-related genes in re-
sponse to organic acids suggests otherwise. For example, SPI1 has been shown to have a
prominent role in weak acid tolerance [Simo 06], while YGP1 and SPI1 showed increased
expression in response to low pH (pH 3.5 vs pH 5.5), in conjunction with increased ex-
pression and immobilization of Pir-related cell wall proteins [Kapt 01]. Furthermore,
increased presence of mannoproteins in the cell wall was correlated to decreased cell
wall porosity, a characteristic that has been mainly attributed to the bulky mannan
side-chains [Nobe 90]. Indeed, deletion of several mannosyltransferase-encoding genes
has been shown to result in hypersensitivity to sorbic acid [Moll 04]. However, the tran-
scriptional regulator Rlm1, a key regulator of cell wall integrity [Levi 05], was not among
the enriched transcription factors in this study.
In the presence of sorbate, Ste12 and Tec1, which are both final targets of the Ras2-
activated signaling cascade that regulates pseudohyphal growth [Ganc 01], were amongst
the upregulated transcription factors. Although nitrogen starvation [Gime 92] and var-
ious environmental stresses [Zara 00] have been shown to induce such morphological
changes, microscopic inspection did not show pseudohyphal growth in the reference or
acid-challenged cultivations in this study. Consequently, this may represent a previously
uncharacterized relationship between regulators of pseudohyphal growth and weak or-
ganic acid tolerance.
Although the identity and function of the affected genes was different, the less lipophilic
amino acids caused significant transcriptional responses of genes involved in nitrogen
metabolism or transport (Table 2.4). Propionate induced upregulation of genes involved
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in biosynthesis and degradation of various nitrogen containing compounds including or-
ganic acids, while acetate caused a downregulation of the transport of several amino
acids. These observations provide a strong incentive for further studies on the rela-
tionship between these weak acid and central nitrogen metabolism. This is especially
intriguing given the fact that the ACS1 gene, which encodes an acetyl-CoA synthetase
that can also activate propionate [Berg 96], was only upregulated in the presence of
propionate. Consequently, the effect on central nitrogen metabolism is either mediated
by propionate itself or by an, as yet, unknown metabolite. However, propionate con-
centrations were identical in the growth medium reservoir and the culture supernatant,
which suggests that propionate itself is the cause. Further work is required to investi-
gate whether the effect of propionate and acetate on amino acid biosynthesis are due
to specific effects on individual metabolic pathways (such as the acetate inhibition of
methionine biosynthesis in E. coli [Roe 02]) or to general effects on regulatory networks
involved in nitrogen metabolism.
Finally, the common downregulation of membrane transport processes is noteworthy.
Downregulation of amino acid transport is consistent with the observations of Bauer
and Kuster [Baue 03] indicating a general disruption of aromatic acid uptake. However,
the current data indicates a more general limitation of membrane transport processes
which is likely initiated in an attempt to reduce the diffusional entrance of weak acids.
Such an aspecific response is somewhat counterintuitive as the reduced uptake of nitroge-
nous compounds along with sterols and heavy metals is bound to have far reaching, and
possibly negative, effects on yeast metabolism. Consequently, detailed studies of the
signaling mechanisms which trigger such a seemingly broad response and the secondary
effects of the resulting reduction in nutrient uptake are imminent.

2.5.4 A minimal generic transcriptional response to weak acids:

implications for applied research

Although a comparison of physiological parameters (yields, fluxes) suggested a similar
response to benzoate, sorbate, acetate and propionate, large differences were found with
respect to the transcriptional responses to these weak acids. Indeed, when challenged
with different weak acids under the experimental conditions applied in the current inves-
tigation, S. cerevisiae does not exhibit extensive similarities in transcriptional modula-
tion that can be characterized by a common functional category or transcription factor
activation/repression. The consequences of these findings are that the often-used term
“weak-organic acid stress” should preferably be avoided and that the use of individual
organic acids as “model compounds” for general responses to organic acids should be
treated with caution. Instead, molecular analysis of the response to weak acids should
take into account the unique responses to individual acids.
Although care should be taken to extrapolate from transcript profiles to in vivo cellular
processes (a changed transcript level is not necessarily indicative for a changed in vivo
activity of the encoded protein [Dara 04, Kolk 06, Ross 06]), our observations strongly
suggest the possibility that the toxicity of weak acids involves overlapping but unique
sets of cellular targets. Although the synergistic interactions and physiological responses
have previously been investigated for various combinations of acids [Nare 01, Sava 02],
the underlying transcriptional changes have yet to be determined. From an applied point
of view, this study suggests the likelihood that different weak acids may act synergis-
tically due to the fact that they induce dissimilar transcriptional responses. Therefore,
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understanding the interaction between acids at the transcriptional level could lead to
improved strategies for growth inhibition at reduced concentrations of these preserva-
tives.





CHAPTER 3

TRANSCRIPTIONAL RESPONSE

TO ZINC LIMITATION

In this chapter microarray data is employed of S. cerevisiae grown under six different conditions,
i.e. three different nutrient limitations; carbon, nitrogen and zinc, grown both aerobically and
anaerobically. Discretization is used to build a tertiary representation of the genes. In this
case, however, there is no reference condition. This makes it non-trivial to decide upon up- and
downregulation. The discretization procedure uses a k-means clustering procedure for each gene
individually; the six conditions are clustered to decide, which of these conditions are labeled
upregulated, downregulated or not differentially expressed. In this work, genes are clustered
together when their discretized expression patterns satisfy certain constraints. For example,
genes that have a higher discretized expression value under zinc limitation than under the other
two limitations in both the aerobic and anaerobic case are grouped together. The results from
this analysis were used to redefine the zinc-specific Zap1 regulon. Also, the study reveals a
more important role for zinc in mitochondrial function and biogenesis than so far assumed.
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3.1 Abstract

Transcriptional responses of Saccharomyces cerevisiae to Zn availability were investi-
gated at a fixed specific growth rate under limiting and abundant Zn concentrations
in chemostat culture. To investigate the context-dependency of this transcriptional re-
sponse and eliminate growth rate-dependent variations in transcription, yeast was grown
under several chemostat regimes resulting in various carbon (glucose), nitrogen (ammo-
nium), zinc and oxygen supplies. A robust set of genes that responded consistently to
Zn limitation was identified and enabled the definition of the Zn-specific Zap1 regulon
comprising of 26 genes and characterized by a broader ZRE consensus (MHHAACCBYN-
MRGGT) than so far described. Most surprising was the Zn-dependent regulation of
genes involved in storage carbohydrate metabolism. Their concerted downregulation
was physiologically relevant as revealed by a substantial decrease in glycogen and tre-
halose cellular content under Zn limitation. An unexpectedly large amount of genes were
synergistically or antagonistically regulated by oxygen and Zn availability. This com-
binatorial regulation suggested a more prominent involvement of Zn in mitochondrial
biogenesis and function than hitherto identified.

3.2 Introduction

Zinc is a cofactor of many proteins and is indispensable for their catalytic activity
and/or structural stability. Zn is also a ubiquitous component of enzymes involved in
transcription and of the Zn finger proteins that regulate gene expression [Bohm 97]. In
the yeast Saccharomyces cerevisiae, zinc is estimated to be required for the function
of nearly 3% of the proteome [Bohm 97]. Besides its involvement in protein structure
and function [Vall 90, Mago 92], interaction of zinc with lipids contributes to regulation
of membrane fluidity [Bind 01] and its interaction with nucleic acids helps to prevent
deleterious radical reactions [Berg 96]. Deficiency of this essential trace element can
have severe consequences. For example, in beer fermentation, zinc depletion in wort
leads to “sluggish” fermentation and thus to deterioration of beer quality [Jaco 79].
While accurate monitoring of the zinc concentration in such industrial fermentations
is important, formation of complexes with polyphenols, proteins and other compounds
[Kred 99] implies that the concentration of zinc per se does not always accurately predict
its bioavailability to yeast.
Excess zinc is toxic. It can compete with other metal ions for the active sites of enzymes
or intracellular transport proteins [Gita 98, Kami 89, Miya 00, Mart 03, Rega 06]. For
this reason, organisms have evolved mechanisms that tightly control intracellular zinc
levels. Zinc homeostasis in yeast can be mediated via i) control of zinc uptake, ii) storage
of zinc in vacuoles, iii) intracellular binding of zinc by metallothioneins and iv) efflux
of zinc from the cells. In S. cerevisiae, various proteins involved in zinc uptake and
storage have been identified in the last decade. Zinc uptake across the plasma mem-
brane mainly occurs via the transporters Zrt1 and Zrt2 [Zhao 96b, Zhao 96a]. Fet4 and
Pho84, low-affinity and broad substrate range transporters of heavy metals, can also
transport zinc [Wate 02]. Zinc storage occurs in the vacuole and transport of zinc into
this compartment is mediated by Cot1 and Zrc1 [Li 01, Miya 01], while release of zinc
from vacuolar storages is mediated by Zrt3 [MacD 00, MacD 02]. Msc2 [Li 01] and Yke4
[Kuma 06] are implicated in transport of Zn into the lumen of the endoplasmic reticulum
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and perhaps an additional organelle involved in the secretory pathway. The genes encod-
ing these transporters are transcriptionally induced by Zap1 (Zinc Activated Protein)
under conditions of zinc limitation or deficiency [Zhao 97]. Contrary to the situation in
mammalian cells, no plasma membrane transporter dedicated to zinc export from yeast
cells has been identified so far [Palm 95]. Two cytosolic metallothioneins (Cup1-1 and
Cup1-2) involved in copper chelation can also bind zinc [Wing 85]. However, the expres-
sion of these proteins is not zinc-dependent, and involvement in zinc detoxification has
not yet been demonstrated [Wing 85].
In order to better define the Zap1 regulon, Lyons et al. analyzed the genome-wide tran-
scriptional response of a S. cerevisiae Zap1 mutant strain and a control strain to zinc
abundance or depletion [Lyon 00]. A combinatorial analysis identified a subset of 46
zinc-responsive genes whose expression was reduced in the Zap1 mutant and that pos-
sessed a Zinc-Responsive Element (ZRE, 5’-ACCYYNAAGGT-3’). Among the members
of this updated defined Zap1 regulon were the well-characterized plasma membrane, vac-
uolar and endoplasmic reticulum zinc transporters. However, involvement of many of
the proposed Zap1 targets in zinc homeostasis was difficult to interpret and, as sug-
gested by the authors, may be due to contribution of factors other than zinc depletion.
Indeed, these experiments were performed in shake flask in which the growth conditions
cannot be strictly monitored and maintained at constant level as the pH, the dissolved
oxygen and nutrient concentrations change during growth. Furthermore, zinc depletion
and ZAP1 deletions are bound to reduce the specific growth rate as compared to zinc
sufficient cultures of a wild-type strain. The regulation of gene expression is therefore
affected not only by the difference in growth conditions but also by the specific growth
rate [Rege 06]. This variation in gene regulation can obscure the interpretation of the
results.
The goal of the present study was to investigate physiological and transcriptional re-
sponses of S. cerevisiae to zinc limitation, while minimizing the impact of secondary
effects of zinc limitation. To this end, S. cerevisiae was grown at a fixed specific growth
rate, oxygen availability, temperature and pH under zinc limitation in chemostat cul-
tures. Comparing the transcriptome of zinc-limited cultures to those of carbon and
nitrogen limited cultures identified sets of genes that responded uniquely to zinc limi-
tation. Furthermore, these cultures were grown both in the presence and the complete
absence of oxygen, in order to identify genes that are subjected to combinatorial control
by oxygen and zinc availability.

3.3 Materials and methods

3.3.1 Yeast strain and maintenance

The haploid prototrophic S. cerevisiae strain CEN.PK 113-7D (MATa) was obtained
from Dr. P. Kötter, Frankfurt, Germany. Zinc-depleted cells were obtained by four
serial transfers of yeast cells in shake flasks containing synthetic medium [Verd 92] from
which zinc was omitted, and subsequently mixed with glycerol (final concentration 20%),
aliquoted and stored at -80◦C.
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Table 3.1 – Composition of the media used to perform carbon, nitrogen and
zinc limitation under aerobic and anaerobic environment.
Numbers in bold indicate the modifications introduced to the synthetic media described
by Verduyn et al. [Verd 92] in order to obtain the relevant nutrient limitations.

Limiting Glucose (NH4)2SO4 K2SO4 ZnSO4·7H2O

nutrient g/l g/l g/l mg/l

Carbon 7.5 5 - 4.5

Aerobic Nitrogen 59 1 5.3 4.5

Zinc 66 5 - 0.014

Carbon 25 5 - 4.5

Anaerobic Nitrogen 46 1 5.3 4.5

Zinc 58 5 - 0

Table 3.2 – Physiological characteristics of CEN.PK113-7D grown in aerobic
and anaerobic carbon-, nitrogen-, or zinc-limited chemostat cultures (dilution
rate of 0.1 h−1).
DW: biomass dry weight; NA: not applicable; ND: not determined; BD: below detection
a Biomass yield on glucose
b Respiratory quotient: qCO2/qO2
c Specific consumption rates of glucose and oxygen and specific production rates of ethanol,
glycerol, acetate and carbon dioxide

Growth Residual Zn in biomass YSXa Carbon

condition glucose (mM) µmol·gDW−1 gDW ·gglucose−1 RQb recovery (%)

C BD 2.36 ± 0.4 0.49 ± 0.00 1.0± 0.0 98 ± 3

Aer N 92.7 ± 5.5 2.74 ± 1.3 0.09 ± 0.00 4.5 ±0.2 96 ± 1

Zn 102.4 ± 6.4 0.9 ± 0.2 0.10 ± 0.00 4.5 ±0.1 105 ± 2

C BD 2.1 ± 0.4 0.09 ± 0.00 NA 101 ± 2

Ana N 100.8 ± 8.6 2.74 ± 1.3 0.07 ± 0.00 NA 101 ± 2

Zn 110.4 ± 3.9 0.52 ± 0.03 0.07 ± 0.00 NA 100 ± 1

Growth Ratesc, mmol·gDW−1 ·h−1

condition qGlucose qEthanol qGlycerol qAcetate qO2
qCO2

C - 1.1 ± 0.0 0.0 ± 0.0 BD BD - 2.8 ± 0.3 2.8 ± 0.3

Aer N - 5.8 ± 0.1 8.0 ± 0.1 0.08 ± 0.01 0.03 ± 0.01 - 2.7 ± 0.1 12.1 ± 0.2

Zn - 5.3 ± 0.0 8.1 ± 0.2 0.08 ± 0.01 0.07 ± 0.01 - 2.8 ± 0.0 12.3 ± 0.2

C - 6.0 ± 0.0 9.6 ± 0.1 0.81 ± 0.06 0.01 ± 0.00 NA 10.3 ± 0.4

Ana N - 8.4 ± 0.0 13.5 ± 0.6 0.76 ± 0.04 0.06 ± 0.05 NA 14.8 ± 0.3

Zn - 8.4 ± 0.0 13.7 ± 0.2 1.09 ± 0.01 0.16 ± 0.02 NA 15.5 ± 0.5
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3.3.2 Minimizing Zn contamination of culture vessels

To minimize zinc contamination, all glassware (including shake flasks for pre-cultivation),
tubing and fermentors were subjected to an overnight soak in 2 % nitric acid, followed
by two washes with deionised water, one wash with 0.1 M EDTA and four further washes
with deionised water.

3.3.3 Media for chemostat cultivation

The synthetic medium composition was based on that described by Verduyn et al.
[Verd 92]. The modifications introduced for carbon, nitrogen and zinc limited growth
are listed in Table 3.1. In all chemostats except for those limited by carbon, the residual
glucose concentration was targeted to 17 g/l (95 mM) in order to have the same degree of
glucose repression (Table 3.2). Under anaerobic glucose-limited conditions, the glucose
concentration was increased to compensate for a low biomass yield. The decreased sul-
fate concentration (resulting from the reduced (NH4)2SO4 concentration under nitrogen
limitation) was compensated by K2SO4 addition. The zinc replete cultures (carbon and
nitrogen-limited) contained excess zinc concentration, but at sub-toxic levels [Jone 84].
In anaerobic zinc-limited cultures, a minute zinc contamination (probably leaking from
the metal fermentor parts) was enough to sustain growth. Conversely, aerobic zinc-
limited cultures could not grow at a dilution rate of 0.10 h−1 without the addition
of zinc as 0.05 µM zinc sulfate. For anaerobic cultivations, the reservoir medium was
supplemented with the anaerobic growth factors Tween-80 and ergosterol [Verd 90].

3.3.4 Chemostat cultivation

Zinc-depleted pre-cultures were obtained by inoculating shake flasks that contained 100
ml zinc-free synthetic medium with zinc-depleted cells (obtained as described above).
After overnight cultivation, these zinc depleted precultures were inoculated in 2-liter
fermentors (Applikon) with a working volume of 1 l [Berg 96]. Chemostat cultures were
fed with synthetic medium (as described in the previous section) that limited growth by
carbon, nitrogen or zinc with all other growth requirements in excess and at constant
residual concentration [Boer 03]. The dilution rate was set at 0.10 h−1. Cultures were
assumed to be in steady-state when, after at least five volume changes, culture dry-
weight, glucose concentration, carbon-dioxide production rate and oxygen consumption
rate varied by less than 2% during one additional volume change [Fere 99]. Steady-state
samples were taken after 10 generations at the latest to avoid strain adaptation due to
long-term cultivation [Jans 04]. Each cultivation condition was performed in triplicate.
The pH was measured on-line and kept constant at 5.0 by the automatic addition of 2
M KOH using an Applikon ADI 1030 Biocontroller. The stirrer speed was set at 800
rpm. Anaerobic conditions were maintained by sparging the medium reservoir (0.05
liter·min−1) and the fermentor (0.5 liter·min−1) with pure nitrogen gas. Norprene tub-
ing and butyl rubber septa were used to minimize oxygen diffusion into the anaerobic
cultures [Viss 90]. The off-gas was cooled by a condenser connected to a cryostat set at
2◦C. Oxygen and carbon dioxide were measured off-line with an NGA 2000 Rosemont
gas analyzer.
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3.3.5 Analytical methods

Culture supernatants were obtained after centrifugation of samples from the chemo-
stats. For the purpose of glucose determination and carbon recovery, culture super-
natant and media were analyzed by high performance liquid chromatography (HPLC)
on an AMINEX HPX-87H ion exchange column using 5 mM H2SO4 as the mobile
phase. Culture dry weights were determined via filtration as described by Postma et al.
[Post 89]. Trehalose and glycogen measurements were adapted according to François et
al. [Fran 01]. Trehalose was determined in triplicate measurements for each chemostat.
Glycogen was determined in duplicate for each chemostat. Glucose was determined
using the UV-method based on Roche kit no. 0716251.

3.3.6 Microarray analysis

Sampling of cells from chemostats and total RNA extraction was performed as previ-
ously described [Abbo 07]. Probe preparation and hybridization to Affymetrix Genechip
microarrays were performed following Affymetrix instructions. The one-cycle eukaryotic
target labeling assay was used, starting with 15µg of total RNA. The quality of total
RNA, cDNA, cRNA and fragmented cRNA were checked using the Agilent Bioanalyzer
2100 (Agilent Technologies). Results for each growth condition were derived from three
independent culture replicates.

3.3.7 Transcriptomics data acquisition and statistical analysis

Acquisition and quantification of array images and data filtering were performed using
Affymetrix GeneChip Operating Software version 1.2. Before comparison, all arrays were
globally scaled to a target value of 150 using the average signal from all gene features
using GeneChip Operating Software (GCOS), version 1.2. To eliminate insignificant
variations, genes with expression values below 12 were set to 12 as previously described
[Boer 03].
To detect genes that exhibited differential expression in at least one of the experimental
conditions, an in-house version of SAM (Significance Analysis of Microarrays) [Tush 01]
was employed using the multiclass setting. Genes with a Q-value below the median FDR
(false discovery rate) of 1.5 · 10−4 were considered differentially expressed.
Transcript data can be downloaded from GEO under the following series accession
numbers: zinc-limited chemostats GSE8035; carbon-limited chemostats GSE8088 and
GSE5326; nitrogen-limited chemostats GSE8089.

3.3.8 Grouping of genes into modules

The continuous expression levels of all (1500) differentially expressed genes were dis-
cretized, as described in Knijnenburg et al. [Knij 07]. Resultantly, each gene is rep-
resented by a discretized expression pattern of length six, indicating whether the gene
is not differentially expressed (0), upregulated (1) or downregulated (-1) under each of
the six cultivation conditions. For example, a gene that has the following discretized
expression pattern:

C-Ana N-Ana Zn-Ana C-Aer N-Aer Zn-Aer
0 1 0 0 0 -1



3.3. MATERIALS AND METHODS 39

is upregulated when grown anaerobically under a nitrogen limitation (N-Ana) and down-
regulated when grown aerobically under a zinc limitation (Zn-Aer), while the four other
conditions do not exhibit differential expression. Genes are grouped into modules based
on this discretized representation by imposing certain constraints on the discretized ex-
pression pattern of a gene in order for it to be part of a particular module. For example,
a module could be formed by grouping all genes that have a higher discretized expression
level under the zinc limitation, when compared to the other two limitations, both for
aerobic and anaerobic growth. This approach provides a coherent and meaningful way
to create modules of genes, since the expression behavior of the genes in a module is
directly related to the cultivation conditions, allowing for a straightforward interpreta-
tion. In our study, six modules were created. The exact constraints on the discretized
expression pattern of a gene to be included in one of the six modules are found in the
Appendix. Table 3.3 gives a short verbal description for each of the modules.

3.3.9 Hypergeometric tests

The six modules were consulted for enrichment in functional annotation and significant
transcription factor (TF) binding. To test for significant relations the hypergeometric
test was employed. In the case of the TF binding data, the largest available TF binding
dataset for yeast in its most conservative setting (highest binding confidence) was used
[Harb 04]. This dataset, which originally indicates the number of binding sites for each
of 102 TFs in the promoter region of each gene, was binarized, such that the data
indicates whether a TF can bind a gene (upstream) or not. Then, the hypergeometric
test assesses if a TF (or a TF pair) can bind the promoter region of the genes in a module
much more frequently than in a randomly selected set of genes. In case of the employed
gene annotation information (MIPS [Mewe 97] and KEGG [Kane 00]) it assesses if the
number of genes in a module that belongs to a particular functional category is much
larger than would be expected by chance. The P -value cut-off to decide whether a
relation is significant is P ≤ 1/(ncnx), where nc is the number of modules and nx is the
number of TFs (or TF pairs) or the number of MIPS or KEGG annotation categories.
This adjustment for multiple testing, corresponds with a per comparison error rate
(PCER) of one [Ge 03].

3.3.10 Motif discovery

The promoters (from -800 to -1) of the genes in each module were analyzed for overrep-
resented regulatory motifs using the web-based software MEME [Bail 94]. The P -value
cut-off to consider a motif significant was 10−4. Other parameter settings included a
motif width from 6 to 15 nucleotides, that could be repeated any number of times.

3.3.11 Comparison with the transcriptome study from Lyons et

al.

The data from the Lyons et al. [Lyon 00] were downloaded from
http://genome-www.stanford.edu/zinc/rawdata.html. As this website only provides raw
data, the array data were processed following the instructions described in their pub-
lication and 496 genes that were upregulated in response to zinc depletion were thus
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Table 3.3 – Clustering of the zinc-responsive genes.
a Expression pattern of genes of each module along with their averaged expression and
standard deviation. Here, the expression levels of each gene are normalized to have zero
mean and unit variance. (y-axis: normalized expression, x-axis: culture condition, from
left to right: anaerobic carbon, nitrogen, zinc limitation, and aerobic counterparts).
b Each data-set was analyzed individually for enrichment of transcription factor binding
and functional categories as described in the Material and Methods section.
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isolated. The slightly larger size of this gene set compared to the one isolated by Lyons
et al. (458 genes) probably results from a few differences in data handling.

3.4 Results

3.4.1 Establishing Zn-limited chemostat cultures of S. cerevisiae

While macronutrient limitation in chemostats can be achieved in a straightforward man-
ner, establishing micronutrient limitation still presents an experimental challenge. This
holds especially for metals (Zn, Fe, Cu) that are present in laboratory equipment and
that can sustain growth at extremely low concentrations (typically in the micromolar
range). Despite thorough and repeated washing steps and use of high-grade medium
components, we did not achieve completely Zn-free cultivation conditions, presumably
due to Zn leakage from the metal parts (fermentor lid, pipes and connections). This
contamination was sufficient to allow for anaerobic Zn-limited growth at a steady-state
biomass concentration of 2.5 g·L−1. However, 0.05 µM ZnSO4 had to be added to the
Zn-deficient medium to enable aerobic Zn-limited growth (steady-state biomass concen-
tration 4.2 g·L−1). Addition of 15 µM Zn to anaerobic and aerobic Zn-limited cultures
resulted in a large increase of the biomass concentration, thus confirming that growth
was solely limited by Zn availability (data not shown). The Zn content of biomass from
Zn-limited cultures was up to five-fold lower than that of carbon- and nitrogen-limited
cultures (Table 3.2). Consistent with a higher Zn requirement for aerobic cultivation,
the Zn content of biomass from aerobic Zn-limited cultures was two-fold higher than
that of anaerobic Zn-limited cultures (Table 3.2). Since genes encoding Zn transporters
were not differentially transcribed in the presence and absence of oxygen, this difference
is unlikely to be due to a different affinity for Zn uptake.

3.4.2 Physiology of Zn, glucose- and ammonia-limited chemostat

cultures

Zn-limited cultures were grown at a high residual glucose concentration. Comparison
of their physiology and transcriptome with those of glucose-limited cultures will there-
fore also identify changes caused by the different glucose concentrations in the cultures.
Therefore, nitrogen-limited cultures, grown at the same residual glucose concentration
as the Zn-limited cultures, were included as an additional reference situation. The com-
bination of three nutrient limitations under aerobic and anaerobic conditions resulted in
six unique physiological situations (Table 3.2).
Only in the carbon-limited aerobic cultures, a completely respiratory sugar metabolism
was observed, resulting in a high biomass yield on glucose (Table 3.2). In the anaero-
bic cultures, glucose metabolism was fully fermentative, the main products of glucose
dissimilation being ethanol and carbon dioxide. Finally, in glucose-sufficient (i.e. N-
or Zn-limited) aerobic cultures, a mixed respiro-fermentative metabolism was observed.
The Zn-limited cultures strongly resembled the nitrogen-limited cultures with respect
to biomass yields and rates of product formation. Even under anaerobic conditions,
the biomass yield on glucose of these glucose sufficient cultures was lower than that of
glucose-limited cultures, indicating a partial uncoupling of dissimilation and biomass for-
mation under these ‘energy excess’ conditions. The only notable difference was a slightly
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Table 3.4 – Identity and expression levels of the genes from Module 1 consis-
tently upregulated in response to zinc limitation and containing ZRE sequences
(Zinc Responsive Element).
Genes indicated in bold were also part of the regulon defined by Lyons et al..

no of Transcript level
Gene Description of Anaerobic Aerobic

ZREs C N Zn C N Zn
ZAP1 Zn-responsive TF 1 23.2 41.5 479.9 33.8 43.5 356.6
ZRT1 High affinity Zn transporter 3 175.6 286 2004.1 68.3 240.6 1867.5
ZRT2 Low affinity Zn transporter 2 108.6 124 739.4 102.8 162.8 551.5
ZRT3 Vacuolar Zn efflux 1 236.9 257.2 1665.5 313.4 282.9 1708.5
ZRC1 Vacuolar Zn influx 1 237.8 367.3 712.2 261.3 337.8 811.6
ZRG17 Putative Zn transporter 1 84.7 91.9 446.3 142.6 97.9 527.4
FET4 Low affinity Fe transporter 1 235 223.8 743.3 12 89.9 443.5
ADH4 Alcohol dehydrogenase 3 153.3 206.3 2889.8 76.6 118.1 2872.1
HOR2 Glycerol-P phosphatase 1 45.1 63.3 141.3 97.3 84.9 198.5
DPP1 DAGPP phosphatase 1 307.3 517.8 1019.4 294.4 636.8 1233.3
URA10 Pyrimidine biosynthesis 1 18.7 25.1 81.3 30.4 16.7 50.9
FLO11 Cell surface flocculin 1 1150.8 1293.3 1935.4 42 60.2 2105
ZPS1 Cell surface mannoprotein 2 74.7 225.8 3385.4 139.5 119 3349.2
MNT2 Mannosyl transferase 3 18.1 12 51.6 12 12 40.9
KTR6 Mannosyl transferase 1 449.7 388.4 537.8 314 253.5 620.4
MCD4 Transferase for GPI anchor synthesis 1 337 323.3 996.5 232.2 279.2 1190.3
ZIP1 Synaptonemal complex 1 12 12 46.2 12.5 12 24.6
KTI12 tRNA modification 1 157.9 134.1 218.4 120.3 121.5 278.3
VTC3 Vacuolar transporter chaperone 1 66.4 95.7 175 51.1 85.8 272.8
TEX1 TREX complex 1 29.4 29.9 91.5 25.1 24.4 177.9
MUP1 Methionine transporter 1 69.6 38.7 636.5 128.8 211.9 912.5

YNL254C Unknown 1 22.2 27.5 342 17.4 32.3 354.6
YER130C Unknown 1 32.2 34.5 179.1 30.7 28.1 66.8

ICY2 Unknown 2 290.5 204.4 1939.2 568.3 143.8 1436.1
VEL1 Unknown similar to YOR387C 3 12 12 1047.3 12 12 858.6

YOR387C Unknown similar to VEL1 3 12 12 2803 12 12 2612

higher specific rate of acetate and glycerol production in the Zn-limited cultures, which
may be related to a reduced in vivo activity of Zn-dependent alcohol dehydrogenases.

3.4.3 Overall transcriptional responses to Zn limitation

For all six culture conditions described above, microarray analysis was performed on
three independent replicate cultures. Statistical analysis (see Material and Methods
section) identified 1500 genes that were differentially transcribed in at least one cultiva-
tion condition. 381 of these genes responded specifically to Zn-limited growth. Of these
Zn-responsive genes, 81 proteins do not yet have an assigned cellular function. The 381
Zn-responsive genes were subjected to a further analysis to identify combinatorial effects
of Zn and oxygen availability (Table 3.3). A majority of the genes that showed a tran-
scriptional response to Zn-limitation (248 genes, Modules 3-6 in Table 3.2) did so in an
oxygen-dependent manner. The remainder (133 genes, Modules 1-2 in Table 3.3) of the
Zn-responsive genes showed a consistent response to Zn limitation that was independent
of oxygen availability. The identity and transcript levels of the genes contained in the
six modules are available in Supplementary Material 1 of [Nico 07] online. Below, we
will analyze these sets of Zn-responsive genes for overrepresentation of genes involved
in specific functional categories and/or controlled by specific transcription factors (see
Material and Methods section).
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Figure 3.1 – Consensus ZRE sequence identified by MEME using Module 1 as
input.

3.4.4 Zinc homeostasis and the Zap1 regulon

The MIPS functional category “heavy metal transport” was overrepresented among the
93 genes that were transcriptionally upregulated in response to Zn limitation irrespec-
tive of oxygen availability (Table 3.3, Module 1). Of the seven genes belonging to this
category found in Module 1, six are directly involved in Zn homeostasis. ZRT1, encod-
ing the plasma-membrane high-affinity Zn transporter, was strongly induced (average
fold-change of 13, Table 3.4). Transcript levels of ZRT2, ZRT3, ZRC1 and ZRG17,
involved in Zn transport and homeostasis, were also increased but to a lesser extent
than those of ZRT1 (fold-changes ranging from two to seven). FET4 (upregulated 3 to
43 fold under Zn limitation) encodes a protein involved in iron transport that has been
demonstrated to also be a physiologically relevant Zn carrier [Wate 02]. The compari-
son of aerobic and anaerobic cultures confirmed the previously described combinatorial
regulation of FET4 by Zn and oxygen availability [Wate 02]. In addition, a clear hier-
archy was observed: while FET4 was strongly regulated by oxygen availability under
Zn sufficient conditions [Wate 02], its transcript level in Zn-limited cultures was con-
sistently high regardless of oxygen supply (Figure 3.2). The transcriptional regulation
of these six genes was in agreement with previous studies [Higg 03, Lyon 00], and so
was the upregulation of ZAP1, the transcriptional activator of these six transporters (8
to 20 fold increase relative to Zn-sufficient cultures). FRE1, which also belongs to the
“heavy metal transport” category, encodes a protein specifically involved in ferric iron
transport [Geor 99, Yun 01]. FRE1 does not contain a ZRE and its increased transcript
levels under Zn-limited conditions suggest an indirect effect.
Previous reports have investigated the role of MSC2 in Zn transport into the endoplasmic
reticulum [Elli 04, Li 01] and have found that mutations in the latter affect the cellular
distribution of zinc [Li 01]. In our study, MSC2 was not found among the genes that were
transcriptionally induced under Zn limitation. Instead, its transcript levels remained low
under the conditions tested. Consistent with this observation, transcription of MSC2
was not affected in a zap1 mutant [Lyon 00]. ZRG17 encodes a protein that has been
proposed to act as a complex with Msc2 [Elli 05, Li 01]. The promoter of ZRG17 does
contain a ZRE and its transcript levels were increased in Zn-limited cultures, suggesting
that this protein could be the regulatory sub-unit of the complex.
In an attempt to further define the Zap1 regulon, the promoter regions of the 93 genes
that showed a robust, oxygen-independent response to Zn limitation (Module 1, Table
3.3) were searched for overrepresented motifs. The web-based software MEME [Bail 94],
which enables unbiased probability-based motif discovery, identified 26 genes with a 15-
nucleotide motif that strongly resembled the previously published ZRE Zap1-binding
consensus sequence (Figure 3.1, Table 3.4). In agreement with previous reports on Zap1
regulation, all six Zn transporters in Module 1, as well as ZAP1 itself, harbored this
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Figure 3.2 – Venn diagram of chemostat based transcriptome data in compar-
ison with data obtained by Lyons et al..
a: Zap1-regulon (Modules 1 and 3 in comparison with 46 genes from Lyons et al.). b:
genome-wide comparison (Modules 1, 3 and 5 in comparison with all upregulated genes
from Lyons et al.)

element. Twelve additional genes (Table 3.4) have been previously proven or proposed
to be Zap1 targets. An additional 7 genes that harbored the 15-nucleotide motif had
not previously been implicated as Zap1 targets [Lyon 00] (Table 3.4). The detailed ZRE
sequences and positions are listed in Supplementary Material 2 of [Nico 07] online.

3.4.5 Comparison with previous Zn-related transcriptome stu-

dies

Two previous transcriptome studies investigated yeast adaptation to Zn depletion in
batch cultures of an industrial [Higg 03] and a laboratory strain of S. cerevisiae [Lyon 00].
Using maltose-grown cultures, Higgins et al. observed a downregulation of maltose-
permease and maltase genes (MAL12, MAL32 and MAL31 ) in Zn-depleted cultures. In
the present study, growth on glucose resulted in the absence of MAL gene transcripts,
thus masking transcriptional responses of these genes to Zn availability. Lyons et al.
identified a Zap1 regulon consisting of 46 genes by comparing the transcriptional re-
sponses to Zn depletion of a zap1∆ mutant and its parental strain. Three of these 46
genes (COS2, COS4 and COS6 ) were not represented on the microarrays used in our
study. Of the remaining 43 genes, 25 showed increased transcript levels in Zn-limited
chemostat cultures (Figure 3.2a). The large majority of these (21 genes) were consis-
tently induced in response to Zn limitation irrespective of oxygen availability (Module 1,
Table 3.3; Figure 3.2a). MEME failed to identify a ZRE sequence in 3 of these 21 genes
(RAD27, YJL132W and YOL131W ), which are therefore absent from Table 3.4. Four
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genes from the Zap1 regulon defined by Lyons et al. (IZH1, IZH2, NRG2 and PST1 )
were found in Module 3 (Table 3.3), indicating that their transcription was induced un-
der Zn limitation but only when oxygen was absent. Their identification by Lyons et al.
may have been caused by the poor oxygen transfer characteristics of shake flask cultures
[Schu 64, Gupt 03, McDa 65]. Two additional genes (ADE17 and GPG1 ) identified as
Zap1-targets by Lyons et al. were upregulated in Zn-limited chemostat cultures, how-
ever their expression resulted from an intricate regulation by Zn, glucose and oxygen
availability. Both genes responded to zinc-limitation under aerobic and anaerobic con-
ditions. However, they also responded to limiting glucose supply, but this response was
oxygen specific; while ADE17 was upregulated under glucose-limitation in the presence
of oxygen, GPG1 expression increased under glucose limited anaerobic growth. The
remaining 16 of the 43 genes identified as Zap1 targets by Lyons et al. and included on
our microarrays did not respond to Zn availability in our chemostat study.
Eight potential Zap1-targets identified in the present study (Table 3.4) were not found
in the study of Lyons et al.. However, of these 8 genes, HOR2 and TEX1 were found
to be transcriptionally induced by Zn depletion in their study. Furthermore, Zap1 was
shown to bind TEX1 on ChIP on chip experiments [Harb 04]. Seven genes (HOR2,
FLO11, KTR6, KTI12, VTC3, MUP1 and YER130C ; Table 3.4) are here for the first
time proposed to be Zap1 targets. HOR2 encodes a glycerol-3-phosphate phosphatase
involved in glycerol biosynthesis [Pahl 01], which may account for the slightly, but signif-
icantly (T-test P -value < 0.05) elevated glycerol production observed under zinc-limited
growth. VTC3 encodes a vacuolar transport chaperone involved in inorganic ion trans-
port [Cohe 99]. Although it has been shown to be involved in polyphosphate transport,
it may also participate in vacuolar Zn transport [Ogaw 00]. Alternatively, Zn may be
involved in polyphosphate accumulation or react with polyphosphates. Like the previ-
ously identified Zap1 target MNT2 [Lyon 00] (Table 3.4), KTR6 encodes a mannosyl
transferase involved in glycosylation of cell wall proteins [Luss 97]. It can be specu-
lated that they play a role in mannosylation of Zn-scavenging cell wall proteins. For
instance ZPS1, a Zap1 target also upregulated under Zn limitation (Table 3.4), encodes
a cell wall mannoprotein with high similarity to Zn metalloproteinases from filamentous
fungi [Lamb 03, Lyon 00]. The yeast cell wall, and more specifically mannoproteins,
has been shown to fix a substantial fraction of the cellular zinc [DeNi 06]. Zinc fixation
by mannoproteins may represent an efficient mechanism to scavenge low zinc concentra-
tions [Moch 96]. The upregulation of mannoproteins such as ZPS1 under zinc limitation
would support this zinc scavenging function of the cell wall. The consistent upregulation
of FLO11, KTI12, MUP1 and YER130C in Zn-limited cultures and the presence of a
ZRE-like motif in their promoters suggest that the encoded proteins have some as yet
unknown role under Zn-limited conditions, too. For example, Flo11 is known to play
an essential role in biofilm formation, filamentation and invasive growth [Lo 98]. In ad-
dition, studies on Candida albicans have demonstrated that dimorphic switching from
budding growth to mycelium formation is regulated by zinc [Soll 81, Bede 79]. However,
in the present study, we did not observe any difference in morphology between the dif-
ferent culture conditions.
When the 289 genes in Modules 1, 3 and 5 that were induced under Zn limitation in
chemostat cultures, either in an oxygen-dependent or in an oxygen-independent man-
ner, were compared to the 493 genes that were induced upon Zn depletion in shake
flasks [Lyon 00], 73 genes overlapped between the two studies. These were for the most
part clustered in Modules 1 and 3 (Figure 3.2b, Supplementary Material 3 of [Nico 07]
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online). Only a small overlap was observed with Module 5 (representing only 8% of
the genes in this module), which includes genes that are only induced by Zn limitation
under aerobic conditions. As mentioned above, this small overlap may reflect a limiting
oxygen supply in the shake flask studies.

3.4.6 Transcriptional regulation of structural genes for zincde-

pendent proteins

S. cerevisiae contains multiple alcohol dehydrogenases. While the enzymes encoded by
ADH1, 2, 3 and 5 all require Zn as a cofactor, Adh4 uses Mg. ADH4 has been shown to
be regulated by Zap1, while expression of the Zn-requiring isoenzymes has been reported
to be decreased upon Zn depletion (presumably via Rap1) [Bird 06]. In agreement with
earlier findings, ADH4 was strongly upregulated in response to Zn limitation irrespective
of the aeration conditions. Transcript levels of other, Zn-dependent alcohol dehydroge-
nase genes were either unchanged or reduced. In addition to alcohol dehydrogenases,
many other yeast proteins use Zn as structural component or cofactor. Regalla and
Lyons [Mart 03, Rega 06] separated the Zn dependent protein in two distinct classes, i)
the proteins that use zinc in a catalytic capacity (105 genes) and ii) the proteins with a
structural Zn binding domain (360 genes). Of 105 S. cerevisiae proteins that use Zn as
a cofactor [Mart 03, Rega 06], none of the structural genes were found to be transcrip-
tionally regulated in response to Zn availability in chemostat cultures (with the clear
exception of alcohol dehydrogenases). On the other hand, out of the 360 S. cerevisiae
proteins that contain a structural Zn binding domain, 16 genes were upregulated in
response to Zn limitation (Modules 1, 2 and 5) while 7 were downregulated (Modules
2, 4 and 6). Most of these Zn-responsive genes encoded proteins that have a function
in nucleic acid binding (transcription factors, chromatin reorganizing activity, mRNA
binding). The two homologous transcription factors Met31 and Met32 that induce the
expression of genes involved in methionine biosynthesis were only affected by Zn avail-
ability in the presence of oxygen. While MET32 expression increased two-fold, MET31
expression decreased two-fold. These changes in gene expression probably resulted in
modifications of the transcriptional regulation of these transcriptional activators as their
target genes displayed a slightly higher expression under conditions of aerobic Zn limi-
tation. This antagonistic regulation of MET31 and MET32 remains difficult to relate
to Zn supply as both proteins contain two Zn finger domains and do not have a different
Zn content.
In agreement with previous reports [Wu 07], SOD1, which encodes the cytosolic Zn-Cu
superoxide dismutase, showed a two fold reduction of its transcript level under conditions
of low Zn supply. However, SOD2, which encodes mitochondrial manganese-containing
superoxide dismutase, did not show an increased transcript level in Zn-limited cultures.
In fact, SOD2, which was only transcribed in aerobic cultures, was also downregu-
lated by ca. two-fold under Zn limitation. As proposed previously [Wu 07], reduced
expression of superoxide dismutase may affect resistance to oxidative stress. A more
direct involvement of zinc in oxidative stress resistance was previously suggested via the
transcriptional regulation of TSA1, encoding a Zn-dependent peroxiredoxin, by Zap1
[Wu 07]. Unfortunately, in our experiments TSA1 expression was independent of zinc
and oxygen availability. This difference with earlier work may be attributed either to the
difference between complete Zn depletion [Wu 07] and Zn-limited growth (this study) or
to a different strain background. However, close scrutiny of the transcript levels revealed
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no oxidative stress response (AAD3, AAD6, AAD10, AAD14, AAD15, ATR1, CCP1,
GTT2, GRE2, LYS20, OYE2, OYE3, TRR1, TRX2, YDR453C, YLR460C, YNL134C,
YMR318C and YML131W ) [Koer 02]. Although the transcript levels of both SOD1 and
SOD2 were reduced, their levels (748 and 295 respectively under aerobic zinc-limitation)
may still be high enough to enable efficient processing of ROS and thereby to prevent
oxidative stress.
Finally, while we cannot exclude the possibility that Zn sparing and/or mobilisation
mechanisms occurs at (a) post-transcriptional level(s), these results indicate that a gen-
eral ’Zn sparing’ regulation at the transcriptional level is most probably absent in S.
cerevisiae. The exceptions of alcohol dehydrogenase and superoxide dismutase may be
related to the relative abundance of these proteins and their pivotal role in fermentative
and respiratory metabolism, respectively.

3.4.7 Combinatorial response of mitochondrial function to oxy-

gen and zinc availability

Aerobic Zn-limitation of S. cerevisiae resulted in the upregulation of 119 genes and
the downregulation of 16 genes (Table 3.3, Modules 5 and 6). However, hypergeomet-
ric distribution analysis did not reveal clear trends in the identity and function of these
oxygen-responsive proteins. In order to better investigate the potential synergetic effects
between oxygen and zinc availability, different discretized patterns were considered. As
described in Figure 3.4 for the aerobically upregulated genes, the applied constraints se-
lected genes for which the expression under carbon limitation was unaffected by oxygen,
the expression under nitrogen limitation was also oxygen-insensitive, but for which the
response to zinc limitation was oxygen-dependent. 196 genes respecting these constraints
were identified, 130 being upregulated in the presence of oxygen in a Zn-dependent
manner and 66 downregulated (given in Supplementary Material 4 of [Nico 07] online).
Fisher’s exact statistics was then applied to search for overrepresentation of genes in-
volved in specific functional categories and/or controlled by specific transcription factors.
While no enrichment was found within the genes that were downregulated, the module
containing the upregulated showed interesting trends. This module was characterized
by enrichment for two functional categories: ’respiration’ (10 genes) and ’mitochon-
drial biogenesis’ (14 genes). The category of ’respiration’ comprised genes encoding
various subunits of the Fo (ATP4, ATP14, ATP18 and ATP20 ) and F1 (ATP3 and
ATP15 ) domains of mitochondrial ATP synthase [Deve 00] but also COX23, COX14,
MAM33 and MBA1 involved in the assembly of respiratory complexes in mitochondria
[Barr 04, Gler 95, Muta 97, Rep 96]. The relation between Zn availability and these
proteins remains unclear, although cytochrome c oxydase activity has been shown to be
inhibited by Zn. Most of the genes in the ’mitochondrial biogenesis’ category encoded
mitochondrial ribosomal proteins (MRPL10, MRPL11, MRPL37, MNP1, RSM19 and
MRPS16 ), but also MSS116, a gene involved in the splicing of mitochondrial group
I and II introns [Huan 05]. Finally, also TIM10/MRS11 responded synergistically to
Zn and oxygen availability. TIM10 encodes a protein involved in the translocation of
mitochondrial proteins from the cytoplasm to the mitochondria. For instance Aac1 and
Aac2, encoding ADP/ATP mitochondrial carrier cannot be translocated in a tim10 mu-
tant [Vasi 04]. This translocation process, also identified in plant [Bhus 03], requires
Zn [Lu 05]. The present study reveals a more important role for Zn in mitochondrial
function and biogenesis than so far assumed. Although still not clearly understood this
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Figure 3.3 – Transcriptional response of glycogen and trehalose metabolism
genes.
a: Glycogen and trehalose metabolism in S. cerevisiae. Genes indicated in green are
clustered in Module 2. The four boxes indicate the following fold-changes from left to
right: zinc vs carbon anaerobic, zinc vs nitrogen anaerobic, zinc vs carbon aerobic, zinc vs
nitrogen aerobic. Intensities of fold changes are indicated by the color map in the legend.
b: Normalized expression profile of genes involved in glycogen and trehalose metabolism
and intracellular glycogen and trehalose concentrations.
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Figure 3.4 – Combinatorial regulation of gene expression by Zn and oxygen
availability.
Given are the constraints for the selection of the discretized patterns and average expression
profile of these selected patterns. Only the oxygen-induced genes are represented.

role could, at least in part, explain the higher Zn requirement for cells grown in the
presence of oxygen, condition where mitochondria are essential for respiration.
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3.4.8 Zn limitation and storage carbohydrate metabolism

Genes from both glycogen biosynthesis (GSY2, GAC1, GLC3 ) and degradation path-
ways (GDB1, GPH1 ) were downregulated by up to 22-fold in Zn-limited chemostat
cultures, regardless of oxygen availability (Figure 3.3a). Several additional genes in-
volved in glycogen metabolism that did not pass the very stringent statistical test used
in genome-wide analysis, displayed a decreased expression upon closer inspection (Figure
3.3a). To investigate whether these transcriptional modifications resulted in phenotypic
differences, glycogen contents were analyzed in the chemostat cultures on which the tran-
scriptome analyses had been performed (Figure 3.3b). Indeed, glycogen accumulation
was strongly (10 to 20-fold) reduced in Zn-limited cultures. Genes involved in glycogen
metabolism are known to be transcriptionally regulated in response to a wide variety of
environmental conditions and signaling pathways [Enja 04] (temperature, nutrient sup-
ply, oxidative stress). This regulation is mediated by the general environmental stress
response (ESR) and HOG pathways [Fran 01, Gasc 00]. However, no other target genes
of these signaling pathways were found to be differentially transcribed in response to Zn
limitation. This suggests that the regulation of glycogen metabolism by Zn occurs via
another, hitherto unknown signal transduction mechanism.
Several genes involved in trehalose metabolism were also significantly downregulated in
Zn limited cultures (PGM1, PGM2, TPS1, TPS2 and TPS3, see Figure 3.3a). These
downregulations coincided with substantially lower trehalose biomass contents, an ef-
fect that was most pronounced in aerobic cultures (Figure 3.3b). These results clearly
demonstrated, for the first time the impact of Zn availability on reserve carbohydrate ac-
cumulation. As the genes involved in glycogen and trehalose metabolism do not contain
ZREs, their transcriptional regulation is unlikely to be directly mediated by Zap1. In
addition, their downregulation probably occurs via a STRE-independent mechanism (we
did not find overrepresented STRE in the promoters of downregulated genes). Among
the above-mentioned Zap1 regulon, YER130C, encoding a protein of unknown function
containing two tandem Zn-finger domains, was upregulated under zinc limitation. This
putative transcription factor may be involved in a Zap1-dependent regulation of genes
involved in trehalose and glycogen and is an interesting candidate for further functional
analysis.

3.5 Discussion

3.5.1 Analysis of Zn limitation in chemostat cultures

The unique option of chemostat cultures to control specific growth rate prevented oc-
currence of specific-growth-rate-related responses. For example, in a previous study in
batch cultures of S. cerevisiae [Higg 03], the observed downregulation of ribosomal pro-
teins in low-Zn cultures is likely to have been caused by a decrease in specific growth
rate rather than directly by Zn depletion.
The use of different aeration regimes showed that yeast responses to Zn limitation are
strongly context dependent. This notwithstanding, a set of genes was identified whose
specific transcriptional regulation by Zn availability was independent of the oxygen sup-
ply. This enabled us to propose a more precise definition of the Zap1 regulon. Most
of these 26 potential Zap1 targets overlapped with those proposed in a previous batch-
cultivation study [Lyon 00]. The present study demonstrated that responses of several of
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the previously identified putative Zap1 targets were not Zn-specific. Instead, they were
synergistically or antagonistically regulated by carbon, nitrogen and/or oxygen supply.
As compared to the transcriptional responses observed in chemostat cultures under
other nutrient limitations [Boer 03, Boer 07, Dara 03, Tai 05], transcriptional responses
to Zn limitation were strikingly pleiotropic. Genes involved in a large variety of cellular
functions, apparently unrelated to Zn availability, showed marked differences to Zn lim-
itation. Statistical analysis of coregulated genes identified only a very limited number
of overrepresented functional categories or DNA binding proteins, with the clear excep-
tion of the Zap1 regulon. These observations suggest that the only direct effect of Zn
limitation on transcriptional regulation is mediated by Zap1. Although no concerted
transcriptional regulation was observed for genes encoding proteins that contain Zn as a
catalytic or structural component, Zn availability is likely to influence the in vivo activ-
ity of such proteins, many of which are transcription factors. The apparently ’scattered’
transcriptional responses to Zn limitation may further be due to the fact that new roles
of Zn in yeast physiology continue to be discovered. For instance, the involvement of Zn
in protein translocation by the Tim10/Tim9 complex has only been recently revealed
[Lu 05].

3.5.2 Effects of Zn limitation on storage carbohydrate accumu-

lation: a possible cause for stuck fermentations in beer

fermentation?

Zn used by yeast during the beer fermentation process comes from barley malt and is
extracted during the mashing procedure (starch conversion and extraction). However,
Zn content varies largely between fermentations as its concentration is dependent on
the crop quality [Houg 82] and is partly removed from wort during lautering [Kred 99]
or wort separation. Insufficient Zn supply during brewing results in ’sluggish’ fermen-
tations characterized by a slow fermentation rate [Brom 97]. The metabolic and/or
regulatory processes in yeast cells that underlie such retarded fermentations are incom-
pletely understood. Yeast crops are commonly re-used four to ten times for inoculating
succeeding brews and are generally stored around 2◦C under starvation [Mart 03]. Un-
der such conditions, high reserve carbohydrates contents have been shown to be critical
for the survival and recovery of metabolic activity of yeast [Mart 03]. To our knowl-
edge, no published study has investigated how storage carbohydrate metabolism might
be affected by Zn deficiency. This present study demonstrates for the first time that Zn
limitation causes a strong transcriptional downregulation of genes involved in reserve
carbohydrate accumulation. The physiological relevance of this response was verified by
analysis of intracellular glycogen and trehalose contents, which were strongly reduced
in Zn limited cultures. Comparative studies with nitrogen-limited cultures showed that
the decreased accumulation of storage carbohydrates was specific for Zn limitation and
not merely a consequence of glucose-excess conditions. Furthermore, this effect was in-
dependent of the aeration of the cultures and the expression profiles of several genes
involved in reserve carbohydrate metabolism perfectly matched the profile of trehalose
and glycogen accumulation (Figure 3.3b).
While our hypothesis remains to be tested under brewing conditions and with brewing
strains of S. cerevisiae, it seems highly probable that the fermentation performance of
Zn-limited brewers’ yeast will be strongly compromised. Additionally, follow-up research
should focus on the molecular mechanisms that link reserve carbohydrate metabolism
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and Zn availability.

3.5.3 Potential implication of Zn-limitation for flavor formation

Another consequence of limiting Zn supply during the course of beer fermentation might
be related to flavor formation. Indeed, three genes involved in the biosynthesis of the
branched-chain amino acids leucine, valine and isoleucine (ILV2, ILV3 and BAT2 ) were
consistently downregulated under Zn-limited growth, both in the presence and in the ab-
sence of oxygen (Table 3.3). The flux through the branched chain amino acids synthetic
pathways has been shown to have a positive impact on desirable flavor compound pro-
duction, such as isoamyl acetate and isobutyl acetate [Lee 95] and Zn supplementation
to wort results in increased production of the acetate esters of higher alcohols [Hodg 90].
The present data suggests that this effect of zinc availability on flavor formation may
be mediated by the transcriptional regulation of ILV2, ILV3 and BAT2. Maintaining
a sufficiently high zinc level during beer fermentation is clearly critical to maintain the
desired balance between several flavor compounds.

3.5.4 Signature transcripts for diagnosing Zn bio-availability in

industrial media

In complex industrial fermentation media such as wort or other plant biomass hy-
drolysates, Zn can form complexes with several medium components, thereby reducing
its bioavailability for yeast [Kred 99, Jaco 79, Kuhb 06]. This limits the relevance of
chemical analyses of the Zn content to test the bioavailability of zinc in wort and other
industrial media. Addition of Zn in the form of salt or trub is a common practice to
prevent Zn depletion during the brewing process [Taid 00]. Especially in beer brewing,
this is not risk-free as excess Zn leads to the modification of flavor compound formation
[Dufo 03]. Molecular markers can be used to monitor fermentation processes through
transcript profiling [Higg 03]. For such diagnostic purposes, it would be preferable to
construct small, cost-effective microarrays that contain a limited number of ’signature
transcripts’. A prerequisite of these signature transcripts is that they are specific to one
environmental parameter and show a robust response in various environmental (pro-
cess) contexts. Comparison of multiple chemostat regimes enabled the identification
of such Zn-specific signature transcripts. For instance, ZAP1 and ZRT1 would be very
good signature transcripts. Also YOR387C and YGL258W, encoding proteins that have
not been characterized yet and that have been previously proposed as potential signa-
ture transcripts for Zn depletion [Lyon 00, Higg 03], were specifically and consistently
induced under Zn limitation in chemostat cultures. Conversely NRG2 and PST1, poten-
tial Zap1-targets [Lyon 00] were here shown to be also regulated by oxygen availability
and are therefore not recommended for diagnostic purposes.

3.6 Appendix

Constraints imposed to group zinc responsive genes into modules.

Let the discretized expression pattern of a gene be denoted by vector x of length six. The
values of the elements of x can either be 0 (no differential expression), 1 (up-regulated)



52 CHAPTER 3. TRANSCRIPTIONAL RESPONSE TO ZINC LIMITATION

or -1 (down-regulated). The elements of x correspond to the cultivation conditions as
follows:

x(1) x(2) x(3) x(4) x(5) x(6)
C-Ana N-Ana Zn-Ana C-Aer N-Aer Zn-Aer

Below, we state the constraints on x that must be satisfied in order for a gene to be part
of a particular module. Note that all constraints must be met to suffice.

Module 1 Upregulated re-
gardless of aeration

constraints: x(3) > x(1)
x(3) > x(2)
x(3) > x(4)
x(3) > x(5)
x(6) > x(1)
x(6) > x(2)
x(6) > x(4)
x(6) > x(5)

Module 2 Downregulated re-
gardless of aeration

constraints: x(3) < x(1)
x(3) < x(2)
x(3) < x(4)
x(3) < x(5)
x(6) < x(1)
x(6) < x(2)
x(6) < x(4)
x(6) < x(5)

Module 3 Anaerobically
upregulated

constraints: x(3) > x(1)
x(3) > x(2)
x(3) > x(4)
x(3) > x(5)
x(3) > x(6)

Module 4 Anaerobically
downregulated

constraints: x(3) < x(1)
x(3) < x(2)
x(3) < x(4)
x(3) < x(5)
x(3) < x(6)

Module 5 Aerobically upregu-
lated

constraints: x(6) > x(1)
x(6) > x(2)
x(6) > x(3)
x(6) > x(4)
x(6) > x(5)

Module 6 Aerobically down-
regulated

constraints: x(6) < x(1)
x(6) < x(2)
x(6) < x(3)
x(6) < x(4)
x(6) < x(5)



CHAPTER 4

EXPLOITING THE

COMBINATORIAL SETUP

In this chapter a microarray dataset of eight conditions is analyzed. In this case, there are
four different nutrient limitations; carbon, nitrogen and phosphorus and sulfur, grown both
aerobically and anaerobically. Using a regression strategy the effect of oxygen presence on the
expression of each gene is modeled as a linear effect (having both an additive and multiplicative
component). The estimated parameters (offset and slope) are employed to ’correct for’ the
oxygen effect in the expression pattern. A discretization procedure is designed to represent
each gene with a tertiary vector of length nine, where the last entry is that of the oxygen
effect. Genes are clustered based on their discretized representations and related to TF binding
data to infer the (combinatorial) effect of oxygen availability and nutrient limitations on TF
activity. The inclusion of the cultivation parameters in uncovering regulatory modules and TF
activity leads to a more valuable regulatory network that resultantly provides detailed insight
in yeasts respiration and metabolism. The power of this approach in recognizing the individual
and combinatorial effects of nutrient-limitations and oxygen presence is reflected in the results
that strengthen and broaden the existing knowledge on regulatory mechanisms. For example,
our results confirm the established role of TF Hap4 in both aerobic regulation and glucose
derepression.

This chapter is published as:

‘Exploiting combinatorial cultivation conditions to infer transcriptional regulation’

Theo A. Knijnenburg, Johannes H. de Winde, Jean-Marc Daran, Pascale Daran-Lapujade, Jack
T. Pronk, Marcel J. T. Reinders and Lodewyk F. A. Wessels

BMC Genomics, Volume 8 No 25, January 2007
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4.1 Abstract

Regulatory networks often employ the model that attributes changes in gene expres-
sion levels, as observed across different cellular conditions, to changes in the activity
of transcription factors (TFs). Although the actual conditions that trigger a change in
TF activity should form an integral part of the generated regulatory network, they are
usually lacking. This is due to the fact that the large heterogeneity in the employed
conditions and the continuous changes in environmental parameters in the often used
shake-flask cultures, prevent the unambiguous modeling of the cultivation conditions
within the computational framework.
We designed an experimental setup that allows us to explicitly model the cultivation
conditions and use these to infer the activity of TFs. The yeast Saccharomyces cerevisiae
was cultivated under four different nutrient limitations in both aerobic and anaerobic
chemostat cultures. In the chemostats, environmental and growth parameters are accu-
rately controlled. Consequently, the measured transcriptional response can be directly
correlated with changes in the limited nutrient or oxygen concentration. We devised a
tailor-made computational approach that exploits the systematic setup of the cultivation
conditions in order to identify the individual and combined effects of nutrient limitations
and oxygen availability on expression behavior and TF activity.
Incorporating the actual growth conditions when inferring regulatory relationships pro-
vides detailed insight in the functionality of the TFs that are triggered by changes in
the employed cultivation conditions. For example, our results confirm the established
role of TF Hap4 in both aerobic regulation and glucose derepression. Among the nu-
merous inferred condition-specific regulatory associations between gene sets and TFs,
also many novel putative regulatory mechanisms, such as the possible role of Tye7 in
sulfur metabolism, were identified.

4.2 Introduction

The simple and often used biological model to unravel transcriptional regulation ascribes
the change in gene expression levels, as observed between different cellular conditions,
to changes in the activity of transcription factors (TFs). Change of the transcriptional
activity of a TF is one of the means by which an organism adapts to changes in the
extracellular environment. A substantial amount of research has employed this model to
infer regulatory networks by integrating gene expression data, sequence data (to detect
the cis-regulatory binding sites of TFs), e.g. [Roth 98, Buss 01, Kell 03], and/or TF
binding data, e.g. [Lee 02, Bar 03, Lusc 04]. For an overview see Banerjee and Zhang
[Bane 02], Siggia [Sigg 05] and Blais and Dynlacht [Blai 05]. In most cases, the generated
regulatory networks are derived from large microarray compendia. Notwithstanding the
many advantages of such approaches, two main drawbacks can be identified. Firstly,
these compendia gather very heterogeneous gene expression data derived from various
culture conditions (media, pH, temperature, etc.) that, in a large majority of the cases,
solely compare the culture conditions to their direct condition-specific references. Differ-
ent cultivation conditions within the compendium can, therefore, hardly be compared.
Secondly, the interpretation of transcriptome data obtained from the generally employed
shake-flask cultivations is likely to be complicated by differences in specific growth rate,
carbon catabolite repression, nitrogen catabolite repression, and more generally contin-
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uous changes in environmental conditions. This prevents the establishment of a direct
link between the activity of TFs and specific growth conditions.
A frequently employed approach links a TF to a module, i.e. a set of co-expressed
genes, based on TF binding data or promoter analysis. Enrichment of functional cat-
egories (such as GO [Ashb 00] and MIPS [Mewe 97]) within the module provides clues
about the function of the TFs associated with the module. Although this can provide a
global view of the transcriptional role of a TF, we are convinced that the precise condi-
tions or perturbations that trigger a change in the activity of TFs should be an integral
part of the generated regulatory network.
To this end, we designed an experimental setup that allowed us to explicitly model the
cultivation conditions and use these to infer the activity of TFs. To achieve this, we em-
ployed chemostat cultures that enable the cultivation of micro-organisms under tightly
defined environmental conditions. Chemostat cultures are superior to the shake-flask
cultures in both accuracy and reproducibility [Pipe 02]. In a chemostat, culture broth
(including biomass) is continuously replaced by fresh medium at a fixed and accurately
determined dilution rate. When the dilution rate is lower than µmax, the maximal spe-
cific growth rate of the micro-organism, a steady-state situation will be established in
which the specific growth rate equals the dilution rate. In such a steady-state chemostat
culture, µ is controlled by the (low) residual concentration of a single growth-limiting
nutrient. In this research, microarrays were employed to measure the genome-wide tran-
scriptional response of the yeast Saccharomyces cerevisiae to growth limitation by four
different macronutrients (carbon, nitrogen, phosphorus, and sulfur) in both aerobic and
anaerobic chemostat cultures (Figure 4.1) [Tai 05]. Except for the different nutrient

Experiment

1. ClimAer

2. NlimAer

3. PlimAer

4. SlimAer

5. ClimAna

6. NlimAna

7. PlimAna

8. SlimAna

Nutrient Limitation

Carbon Nitrogen Phosphorus Sulfur

Oxygen supply

Aerobic Anaerobic

Figure 4.1 – Schematic overview of the combinatorial cultivation conditions.
Black squares indicate the employed nutrient limitation and oxygen supply.

limitations and oxygen availability, all other culture parameters (such as growth rate,
pH, temperature, etc.) were kept constant throughout the different experiments. Thus,
changes in gene expression levels can solely be attributed to the different nutrient limi-
tations and the oxygen regime. We devised a computational approach that exploits the
interrelatedness between the conditions in order to identify the individual and combined
effects of nutrient limitations and oxygen availability on expression behavior and TF ac-
tivity. The inclusion of the growth conditions in the analysis allows for the identification
of direct links between the cultivation conditions, TFs triggered by specific cultivation
conditions and the targets of these TFs.
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4.3 Results

4.3.1 Overview of the computational approach

From the continuous expression levels measured across the cultivation conditions we
derive a discretized representation of the expression behavior for each gene. This repre-
sentation indicates up- or downregulation as a consequence of the individual or combined
effects of the nutrient limitations and oxygen availability. Here, we exploit the combi-
natorial setup of the cultivation conditions to recognize and dissect the effect of the
presence of oxygen on the expression levels of a gene. More specifically, we employ a
regression strategy to detect, model and correct for the effect of oxygen presence. This
procedure is outlined in Figure 4.2 and explained in detail in the Methods section.
Modules are generated by clustering genes with identical expression representations (Fig-
ure 4.3). Next, we integrate TF binding data [Harb 04] to assess whether a TF or a
pair of TFs binds the promoter regions of a module much more frequently than would
be expected by chance. A significant relationship between a module and a TF suggests
that the TF is (partly) responsible for the expression behavior of that particular module.
Since the expression behavior of a module reveals under which combination of cultiva-
tion conditions the genes are up- or downregulated, we are not only able to relate TFs to
the groups of genes that they presumably regulate, but also to the precise environmental
conditions that trigger their activity to perform their regulatory role.

4.3.2 Overview of the uncovered regulatory relationships

The TF circle (Figure 4.4) depicts an overview of all the TFs, which are significantly
related to one or more modules. In addition, pairs of TFs that can bind the promoter
region of the genes in a module significantly often, are connected by a solid line. In
the TF circle, the modules and their associated TFs are categorized according to the
cultivation parameters under which the genes in the module are differentially regulated,
i.e. where the discretized representation differs from zero. This arrangement is given
by the color coding of the segments in the circle. From this it is clear which cultivation
parameters affect the activity of a TF. Additional information concerning enrichment of
gene annotation categories and results of motif discovery in promoter regions of the genes
within the modules can be found in Table 4.1 and more comprehensively in Additional
file 1 of [Knij 07] online.

Legend to Figure 4.2. Procedure to derive the discretized representation of a
gene.
a: Examination of the expression levels under the eight cultivation conditions led to the
observation that for many genes the expression pattern across the four nutrient limitations
when grown aerobically is a scaled and offset version of its anaerobic counterpart. (Permu-
tation tests were performed to confirm this notion (Additional file 3 of [Knij 07] online)).
b: This “global oxygen effect”, i.e. the effect that presence of oxygen has on the expression
levels across all or most of the nutrient limitations, is modeled as a linear relationship and
estimated using a regression strategy. c: The estimated regression parameters (slope and
offset) are employed to isolate the oxygen effect by transforming the aerobic expression
values. Discretization of this pattern allows for identification of up- or downregulation as a
consequence of specific nutrient limitations and possible nutrient-limitation-specific effects
of oxygen presence. d: Pairwise T-tests are performed to compare the original aerobic
and anaerobic expression values for each nutrient limitation. The results of these tests
are combined to detect possible consistent and significant higher or lower expression as a
consequence of oxygen presence. e: The derived discrete representation of the expression
of a gene is visualized in a nine-bit ternary (-1,0,1) vector.
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Figure 4.2 – See page 56 for legend.
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Figure 4.3 – Heatmaps of a module.
a: Normalized expression pattern of all (57) genes that share the same discretized rep-
resentation, namely 100010001, and consequently, form a module. This representation,
which indicates upregulation under carbon limitation and higher expression when grown
within the presence of oxygen, is identical to the one derived in Figure 4.2. The expression
patterns of the genes in this heatmap are comparable to the expression pattern in Figure
4.2a. b: Normalized expression pattern of the genes after the linear mapping is applied.
Isolation of the oxygen effect clearly reveals upregulation under the carbon limitation.
The linearly mapped expression patterns are comparable to the one in Figure 4.2c. c: The
(identical) discretized expression pattern for the 57 genes. Note that our discretization
procedure assigns a 0 to the cultivation conditions that form the most common expression
level. For these 57 genes this common expression level is represented in b by the dark yel-
low, which occurs in six of the eight conditions. The ninth entry of this representation, i.e.
the oxygen effect, is also characterized as upregulated, since the original expression levels
in a are consistently higher under aerobic growth when compared to anaerobic growth.

In the remainder of this section, modules connected to anaerobiosis, aerobiosis and sulfur
metabolism, are discussed in more detail. However, first we consider Module 13 (grey
segment in Figure 4.4) that contains all genes that do not exhibit differential expression
between the eight experimental conditions. (The discretized expression pattern consists
of all zeros.) Three regulators have been assigned to this module, Fhl1, Sfp1 and Rap1.
All three TFs are known to play an essential role in the regulation of ribosomal protein
genes [Yeas, Mari 04, Moeh 91]. Although the strains were grown under different nutri-
ent limitations and oxygen regime, the dilution rate (in other words the growth rate) of
Saccharomyces cerevisiae was kept equal (0.1 h−1) during the chemostat steady state in
all the fermentation conditions tested [Tai 05, Pipe 02]). Given that expression regula-
tion of ribosomal protein genes is one of the end targets of the Tor (target of rapamycin)
signaling pathway, our results suggest that the regulation through the Tor signaling cas-
cade is independent of the applied nutrient limitation and oxygen availability, but would
rather reflect how the cell senses the limiting nutrient to maintain a determined growth
rate.

4.3.3 Controlling Anaerobiosis

Module 12 (yellow segment in Figure 4.4) comprises all (383) genes that show consistent
upregulation under anaerobic conditions, irrespective of any nutrient condition. Note
that our strategy enables us to isolate the effect that the presence of oxygen has on
the expression level of a gene. This offers the obvious advantage to independently an-
alyze this effect. The irrelevance of the nutrient limitations is indicated by ’x’s in the
discretized representation of Module 12 in Figure 4.4. Several TFs and TF pairs were
found to be able to bind the genes of this anaerobiosis module significantly often. Cur-
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rent knowledge on gene expression regulation under anaerobic conditions cannot explain
all the regulatory relationships and related TFs. The anaerobic growth conditions within
our systematic experiments can therefore contribute to elucidate the role of several reg-
ulators in the absence of oxygen.
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Figure 4.4 – The TF circle.
The TF circle depicts all the TFs and TF pairs, which are significantly related to at least
one module. Related modules are represented by strings in the vicinity of the relevant
TF or, in the case of a TF pair, in the vicinity of the line connecting both TFs. The
strings are made up out of three parts. The first number represents the number that was
assigned to the module. The second number indicates the number of genes in the module.
The third part is the discretized expression pattern of the genes in the module. Here, an
’x’ indicates the irrelevance (don’t care) of a particular cultivation parameter. The color
coding of the circle is based on the discretized expression representation of the modules.
The placement of the TFs (near the center or the edge) is for reasons of visibility only.

The identification of Rox1, already known to play a role in low oxygen processes, ob-
jectively validates the truthfulness of this analysis. According to [Lee 02], this heme-
dependent transcriptional repressor of hypoxic genes [Tai 05, Zito 92] constitutes a multi-
component transcription factor loop together with Yap6 and Cin5, i.e. these three TFs
form a regulatory circuit in which they regulate each other. Although our algorithm
does not explore these kind of network structures, we identify the concerted regulation
amongst these three TFs and based on our results can hypothesize that this loop is active
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Table 4.1 – Overview of the uncovered modules.
Detailed information for all modules that are significantly related to at least one TF(-pair).
Besides the discretized expression pattern and the significant TFs from binding data, the
table reports overrepresented motifs through motif discovery as well as TFs associated to
these motifs. Also, the most highly enriched GO, MIPS and KEGG category for each
module is given (if significant).

Module Disc.Expr.Pattern TF binding Motif Discovery Annotation

no. # genes C N P S C N P S OxAer Ana TF's TF pairs Motif Ass. TF's GO MIPS KEGG

1 57 1 0 0 0 1 0 0 0 1 Hap4 CCAATCA
ATTGG

Hap5, Hap2/3/4, Mcm1
Hap5, Hap2/3/4, Mcm1, ...

GO: Oxidative phosphorylation
MIPS: Respiration
KEGG: Oxidative phosphorylation

2 70 0 1 0 0 0 1 0 0 0 Dal82
Gln3

Gln3-Dal82 AGATAAG
CTTATC

Gzf3, Dal80, Gat1
Gat1, Gzf3, Dal82, ...

GO: Catabolism
MIPS: Nitrogen and sulfur utilization
KEGG: Cyanoamino acid metabolism

3 211 0 0 0 0 0 0 0 0 1 Hap1

4 70 0 0 0 1 0 0 0 1 0 Cbf1
Met32
Yap7

Met32-Cbf1
Yap7-Yap1

CACGTGA
GCCACA

Cbf1, Tye7, Ino4, ...
Met4, Rpn4

GO: Sulfur metabolism
MIPS: Amino acid metabolism
KEGG: Sulfur metabolism

5 44 0 0 1 0 0 0 1 0 0 Pho4 Pho4-Cbf1 ACGTGC
CACGTGG

Pho4, Cbf1, Ino2, ...
Pho4, Tye7, Cbf1, ...

GO: Anion transport

6 15 0 0 0 1 0 0 0 1 1 Met32 GCCAC
CTGTGGC

Rpn4, Met4, R. car1, ...
Met4, Rfx1

7 169 1 0 0 0 1 0 0 0 x Hap4 GGGGTA
ACCCC

Mig1, Rap1
Mig1, Adr1, Msn4, ...

GO: Oxidative phosphorylation
MIPS: Respiration
KEGG: Oxidative phosphorylation

8 100 0 1 0 0 0 1 0 0 x Dal82
Gln3

Gln3-Dal82 CTTATC
AGATAAG

Gat1, Gzf3, Dal82, ...
Gzf3, Dal80, Gat1

GO: Amine transport
MIPS: Nitrogen and sulfur utilization

9 93 0 0 0 1 0 0 0 1 x Cad1
Cbf1

Met31
Met32
Met4
Yap7

Met32-Cbf1
Met32-Met31

Tye7-Cbf1

GCCACA
CACGTGA
CTGTGGC

Met4, Rpn4
Cbf1, Tye7, Ino4, ...
Met4, Rfx1

GO: Sulfur metabolism
MIPS: Metabolism of methionine
KEGG: Sulfur metabolism

10 52 0 0 1 0 0 0 1 0 x Cbf1
Pho4

Pho4-Cbf1 ACGTGC
CACGTGG

Pho4, Cbf1, Ino2, ...
Pho4, Tye7, Cbf1, ...

GO: Anion transport

11 638 x x x x x x x x 1 Hap1
Hap4

CCGATA Hap1 GO: Oxidative phosphorylation
MIPS: Respiration
KEGG: Oxidative phosphorylation

12 383 x x x x x x x x -1 Dig1
Rox1
Ste12
Swi4
Tec1

Cin5-Aft2
Rox1-Cin5

Swi4-Mcm1
Tec1-Dig1
Tec1-Ste12
Yap6-Cin5

ACAATAG
TGCTTT

Yox1, Rox1
Upc2

GO: Lipid metabolism
MIPS: Metabolism

13 3883 0 0 0 0 0 0 0 0 0 Fhl1 Rap1-Fhl1
Sfp1-Fhl1

AAAAT
GAAAA
AAAAA
TGAAA
AAATA
AAATT

Rlr1, Spt23
Rlr1, Ume1, Azf1, ...
Azf1, Sig1, Met4
Ste12, Dig1, Ume1, ...
Smp1, Rlm1, Azf1, ...
Pho2, Spt23

under anaerobic conditions. Additionally, we find the pair Ste12 and Tec1 which is known
to activate genes associated with pseudohyphal growth, as well as Dig1, which con-
versely is involved in the negative regulation of genes involved in pseudohyphal growth
[Norm 99]. (We observed a large overlap between the genes in the regulon of Tec1-Dig1
and those in the “conjugation with cellular fusion” GO-category (P = 6.7 · 10−8 accord-
ing to the hypergeometric test)).
Finally, the TF pair Mcm1 and Swi4 is connected to anaerobiosis, although both are
known to be involved in controlling cell cycle [Simo 01]. Moreover, Mcm1 (also named
PRTF for “Pheromone Receptor Transcription Factor” [Haye 88]) is also involved in
mating and response to pheromone, relating it to the cluster of Ste12, Tec1 and Dig1.
These results correlate with the observation that Saccharomyces cerevisiae grown under
anaerobic conditions exhibits elongated cell-shape irrespective of the applied nutrient
limitation (See Additional file 6 of [Knij 07] online). Further investigation is needed to
gain more insight into the role of these regulators in control of anaerobiosis.
Missing from the TFs significantly related to the anaerobiosis module is Upc2, which
together with Rox1 is involved in regulating the expression of many genes induced under
anaerobic conditions [Tai 05, Kwas 02]. The reason for not retrieving Upc2 is simply
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the absence of this TF in the genome-wide location analysis employed to build the TF
database. Employing motif discovery, however, the aerobic regulator 1 (AR1) binding
motif of Upc2 (TCGTT [Kwas 02]) was found 244 times in the upstream regions of the
383 genes (P = 2.4 · 10−13) (See Table 4.1).

4.3.4 Controlling Aerobiosis

The TFs Hap1 and Hap4 are associated with the regulation of aerobiosis (dark blue
segment in Figure 4.4). Hap1 is solely connected to the presence of oxygen (Modules 3
and 11), while Hap4 is also connected to carbon-limitation (Modules 1 and 7). This is
in agreement with a role for Hap4 in both aerobic regulation and glucose derepression
[Fors 89]. Amongst the targets of Hap1, which are overrepresented in Modules 3 and
11, we find well-known oxygen specific Hap1 regulated genes such as CTT1, CYB2 and
CYC1, confirming that its regulatory role is linked to the presence of oxygen irrespective
of limited or high glucose availability.
The presence of Hap4 as part of the Hap2/Hap3/Hap4/Hap5 complex fits with the
enrichment in energy categories in the aerobic genes (see Table 4.1 and Additional file
1 of [Knij 07] online). This is in line with the involvement of the Hap complex in the
regulation of mitochondrial functions such as TCA cycle, electron transport chain and
respiration. However, overrepresentation of only Hap4 targets from the location analysis
dataset may appear as a surprise. Overrepresentation of Hap2 or Hap3 may be expected,
because these two subunits of Hap2/Hap3/Hap4/Hap5 actually bind the DNA, while
Hap4, as a regulatory subunit, does not. Furthermore, a clear-cut discrepancy exists
between the location analysis data of the separate members of the Hap complex. The
results of this study imply that the TF binding data of Hap4 is the more relevant one.
This would then suggest that in order to monitor the DNA binding of a transcriptional
complex, e.g. Hap2/Hap3/Hap4/Hap5, it would be more suitable to tag the subunits
that do not bind the DNA template, speculating that tagging DNA binding subunits
may alter the structure of the complex and, consequently, the affinity and the specificity
of the interaction with the DNA.

4.3.5 Sulfur metabolism

The systematic combinatorial setup of cultivation conditions used to generate the tran-
script data allows us to extract specific information on genes regulated in response to a
certain nutrient limitation. Modules 9, 6 and 4 and 82 form prime examples. Module 9
(red segment of the circle) contains all (93) sulfur-limitation-upregulated genes, regard-
less of the effect that the presence of oxygen might have on the expression of the genes.
Modules 6, 82 and 4 consist of the sulfur-limitation-upregulated genes for which oxygen
presence leads to higher expression (15 genes), lower expression (8 genes, not in Figure
4.4) and no significant change in expression (70 genes). Thus, Module 9 is the union of
Modules 6, 4 and 82. Figure 4.5 displays genes from Module 9 that are bound by the
TFs, which are significantly related to the set of sulfur regulated genes. In this map,
genes are subdivided into groups based on their response to oxygen presence.
Several genes that show either a higher or lower expression level depending on oxygen
presence, i.e. genes from Module 6 and 82 respectively, also have a binding site for
the significant TFs. For example, MET22, involved in methionine biosynthesis, exhibits
higher expression when grown anaerobically. This can be related to the fact that the
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Figure 4.5 – TF-Gene Map for Module 9.
The TF-Gene map indicates which genes in the module can be bound (upstream) by the
TFs that are significantly related to this module. Only those genes that have a binding
motif in their upstream region for one of these significant TFs are annotated along the
vertical axis. For these genes a dotted horizontal line is drawn. The significant TFs are
annotated along the horizontal axis. For these TFs a dotted vertical line is drawn. This
module, which contains all genes upregulated under sulfur limitation irrespective of the
oxygen effect, can be subdivided into groups characterized by their response to oxygen
presence. Genes at the top of the map (with green background) have a significantly lower
expression when grown without the presence of oxygen. This group corresponds to Module
82. The middle part of the map (with white background) displays genes, which are not
affected by the presence of oxygen. This group corresponds to Module 4. Genes in the
bottom of the map (with red background) have higher expression when grown aerobically.
This group corresponds to Module 6.

promoter sequence of MET22 contains a LORE (low oxygen response element) motif
[Vasc 01], which provides clues for future research to elucidate the functionality of this
gene. Amongst the genes that have a higher expression when grown aerobically and that
are bound by significant TFs, is STR3, involved in homocysteine and cysteine intercon-
version that is part of the sulfur amino acid biosynthesis and sulfur degradation pathway.
Currently no relationship is known between sulfur- and oxygen-dependent regulation of
this gene.
The regulatory network constructed from our analysis reveals a complex interplay be-
tween six individual transcription factors (Met4, Met31, Met32, Cbf1, Yap7 and Cad1)
and four pairs of regulators (Tye7-Cbf1, Cbf1-Met32, Met32-Met31 and Yap1-Yap7)
connected to sulfur metabolism. Met4, Met31, Met32 and Cbf1 constitute an internal
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validation of the analysis, since these four factors are indeed known as members of the
Met regulatory complex [Roui 00] that also includes the regulatory subunit Met28. More
interestingly, our data provide new insight into sulfur metabolism regulation by impli-
cating new regulators as Tye7 and the members of the fungal-specific family of basic
leucine zipper (bZIP) proteins Yap1, Cad1 (Yap2) and Yap7. Literature reports avail-
able so far concerning Tye7 limit its role to cell cycle [Hora 02]. Our results, however,
would implicate that Tye7 in combination with Cbf1 would participate in the regulation
of the genes encoding the upper part of the sulfur assimilation pathway including MET3,
MET10, ECM17, MET22 and ATM1, who’s gene products are involved in maturation
of cytosolic Fe/S (iron-sulfur) proteins [Sipo 02]. Even more interesting is the possible
cross-coupling with phosphate metabolism. As indicated in Figure 4.4, Cbf1 was also
found to bind the upstream regions of phosphorus regulated genes significantly often.
Given that Cbf1, Pho4 and Tye7 recognize similar binding sites, our results could shed
new light on the possible cross-regulation of phosphate and sulfate metabolism that cen-
ters around Pho4 and Cbf1 [OCon 92].
In the case of Cad1 and Yap1 the link to sulfur metabolism may correlate to their re-
ported role in mediating resistance to cadmium (Cd2+), which leads to changes in the
sulfate assimilation pathway and to sulfur sparing [Fauc 02]. When Saccharomyces cere-
visiae is exposed to Cd2+ most of the sulfur assimilated by the cells is converted into
glutathione, a thiol-metabolite essential for detoxification. Yeast adapts to this vital
metabolite requirement by globally modifying its proteome to reduce the production of
abundant sulfur-rich proteins.

4.4 Discussions and Conclusions

We observed and successfully modeled that the presence of oxygen leads to an offset
(addition) and/or scaling (multiplication) of the expression levels of many genes, cor-
roborating the existence of various types of regulation on various levels. The uncovered
results find their origin in the systematic combinatorial setup of the well-defined culti-
vation conditions within the experiment. Our tailored approach exploits the interrelat-
edness between the conditions and links the cultivation parameters to TF activity and
gene expression behavior.
We compared our strategy to an approach that follows the exact same steps, but which
does not exploit the systematic setup of the cultivation conditions. In short, when the
interrelatedness between the conditions is not used, the original continuous expression
levels are discretized without modeling the oxygen effect. Results of this comparison
indicate that more genes can be related to a particular cultivation parameter when in-
corporating the relations between the cultivation conditions. See Table 4.2. Additionally,
we can relate more TFs and TF pairs to the generated modules and achieve higher func-
tional annotation enrichment. See Additional files 4 and 5 of [Knij 07] online (as well
as Additional files 1 and 2 for a more in depth comparison). These results provide ad-
ditional evidence for the validity of the adopted approach.
Moreover, the inclusion of the conditions within the computational framework accom-
modates the assessment of the direct effect of these conditions on gene expression, TF
activity and other biological processes in the cell. This is in contrast to the currently
used compendium approaches, where the relation between the cultivation conditions is
ambiguous and can not be modeled. There, large heterogeneity in terms of the strain,
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Table 4.2 – Effect of the linear mapping on module size and enrichment.
For the modules that are most straightforwardly related to one of the cultivation parame-
ters (the four nutrient limitations and the oxygen availability) this table indicates the size
of the respective module, the number of associated TFs, TF pairs and annotation cate-
gories; both with and without appliance of the linear mapping. (Note that when no linear
mapping is applied the original continuous expression levels are discretized and no oxygen
effect can be computed, resulting in a discretized expression pattern of length eight.

Cultivation parameter
Linear mapping applied No linear mapping

Disc.Expr.Pattern # genes # TF(pairs) # Ann.cat. Disc.Expr.Pattern # genes # TF(pairs) # Ann.cat.

Carbon 1 0 0 0 1 0 0 0 x 169 1 48 1 0 0 0 1 0 0 0 59 - 5
-1 0 0 0 -1 0 0 0 x 69 - - -1 0 0 0 -1 0 0 0 23 - -

Nitrogen 0 1 0 0 0 1 0 0 x 100 2(1) 8 0 1 0 0 0 1 0 0 42 2(1) 8
0 -1 0 0 0 -1 0 0 x 2 - - 0 -1 0 0 0 -1 0 0 0 - -

Sulfur 0 0 1 0 0 0 1 0 x 52 2(1) 1 0 0 1 0 0 0 1 0 39 2(1) 6
0 0 -1 0 0 0 -1 0 x 2 - - 0 0 -1 0 0 0 -1 0 1 - -

Phosphorus 0 0 0 1 0 0 0 1 x 93 6(3) 27 0 0 0 1 0 0 0 1 59 5(3) 27
0 0 0 -1 0 0 0 -1 x 4 - - 0 0 0 -1 0 0 0 -1 1 - -

Oxygen x x x x x x x x 1 638 2 75 1 1 1 1 0 0 0 0 115 2 19
x x x x x x x x -1 383 5(6) 13 0 0 0 0 1 1 1 1 76 - 5

growth rate, growth conditions, measuring technique and other environmental or mea-
surement parameters may have a profound, but undetermined impact on the behavior
of the cell and the resulting dataset. Consequently, these approaches often resort to
annotation databases to determine the functionality of a module or TF. For example, in
the GRAM method [Bar 03], where the functionality of a module is based on enrich-
ment in MIPS functional categories, the TF Hap4 was only related to respiration. We
could, on other hand, not only demonstrate that oxygen plays an important role, but
also identified the known effect of the extracellular glucose concentration on Hap4 and
its regulon.
In this study we identified many novel putative regulatory relationships. Examples in-
clude the role of Tye7 in regulating sulfur metabolism and the cross-regulation between
phosphate and sulfate metabolism. Given the quality and uniqueness of the dataset,
many other clues about regulation mechanisms related to yeast’s metabolism and respi-
ration can still be extracted.
We believe that quantification of the complex relationships that control cellular adapta-
tion to different environments necessitates well-designed and carefully controlled experi-
ments. In this respect, the design of experimental setups, where interrelated cultivation
conditions are systematically combined, is especially important. The analysis of the
individual and combined effects of the cultivation parameters in such experiments will
help to reveal the multi-faceted nature of cellular regulatory mechanisms.

4.5 Methodology

4.5.1 Selection of differentially expressed genes

Genes that show differential expression across the experimental conditions are selected.
For this purpose, we employed a multi-class SAM analysis [Tush 01]. Here, the classes are
the eight different experimental conditions. The 2500 most significantly changed genes
are selected (median false discovery rate of 0.01%). This is an estimate of the number
of genes involved in the metabolic processes of yeast grown under the experimental
conditions [Tai 05].
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4.5.2 Isolation of the global oxygen effect

To investigate the linear relationship between the aerobic and anaerobic expression values
of a gene, we perform the following steps: First, we compute the mean and standard
deviation across the replicates, µij and σij , for the nutrient limitations i = 1...4 and both
aerobic (j = 1) and anaerobic (j = 2) growth. We model the joint aerobic-anaerobic
expression distribution for each nutrient limitation i as a normal distribution N(µi,Σi),

with µi = [µi1, µi2] and Σi =
( σ2

i1 0

0 σ2
i2

)
. This is graphically depicted in Figure 4.2b. Next,

we estimate the parameters of a linear model (slope and offset) by fitting a straight line
through the four normal distributions. This heteroscedastic regression problem is solved
as described in [Leed 00]. As a goodness-of-fit criterion for the regression, a P -value was
computed by employing the Student’s T cumulative distribution function with the ratio
between the slope and the standard deviation of the slope. The P -value cut-off was set
at 10−4. When no significant linear relationship (P > 10−4) is found employing the
four nutrient limitations, we successively leave one of the nutrient limitations out, thus
employing only three normal distributions to find a linear relationship. If P ≤ 10−4 for
the best of the resulting four fits, this fit is used. This strategy handles genes with one
nutrient-limitation-specific reaction to oxygen presence. See Additional file 7 of [Knij 07]
online. When again no good linear relationship is found, the slope is fixed to one and
only the offset (i.e. the difference between the mean aerobic and anaerobic expression
level) is computed. See Additional file 8 of [Knij 07] online. The three different regression
strategies (use of four nutrient limitations, use of three nutrient limitations, only compute
the offset) were applied to 1190, 518 and 792 genes, respectively. For each gene, we apply
the estimated parameters (slope a and offset b) to map the original aerobic expression
values x to their linearly mapped values x′, via x′ = a·x+b, thereby aligning the aerobic
and anaerobic expression patterns, such that the differences in the resulting expression
pattern are not caused by the oxygen effect. See for example, Figure 4.2c.

4.5.3 Construction of the discretized representation

A gene is represented by a ternary expression pattern of length nine. The first eight
entries represent the discretized representation of the linearly mapped continuous ex-
pression data, which can be either 0, -1 or 1, indicating the most common expression
level, downregulation or upregulation, respectively. Since the linear mapping changes
the continuous expression pattern of a gene, SAM is run again on the linearly mapped
data. Genes that now drop out of the top 2500 most differentially expressed genes are
assigned a value of zero in the first eight entries of the expression pattern. Genes, that
remain in the top 2500 (2062 genes) are discretized by employing k-means clustering for
each gene separately, i.e. in an one-dimensional space on the eight mean expression lev-
els associated with the eight experimental conditions. (Red crosses on the right vertical
axis in Figure 4.2c). The Davies-Bouldin index [Davi 79] was used to choose between
k = 2 (most common level and down- or upregulation) and k = 3 (all three quantized
levels). Genes for which no compact and well-separated clusters could be found, i.e. for
which the Davies-Bouldin index for both k = 2 and k = 3 exceeded 0.5, were removed.
The most common level (0) was assigned to the experimental conditions that formed
the largest cluster. The clusters with higher or lower gene expression levels with respect
to the most common level cluster are labeled as upregulated (1) or downregulated (-1)
respectively.
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The ninth entry of the discretized expression pattern of a gene represents the global
oxygen effect. This can either be 0, -1 or 1. No significant difference between expression
under aerobic and anaerobic growth is indicated by a zero (0). A consistent significantly
lower or higher expression level when grown anaerobically is indicated by -1 and 1, re-
spectively. The global oxygen effect is determined by performing pairwise T-tests for
all nutrient limitations, comparing the original expression levels when grown aerobically
with those when grown anaerobically. See Figure 4.2d. When at least three of the four
nutrient limitations have a significantly (P ≤ 5 · 10−2) higher expression when grown
aerobically (or anaerobically) we assign a 1 (or -1 respectively). (In the case where
only three nutrient limitations were used in regression only two of these three should be
significantly higher (or lower) to pass the test.)

4.5.4 Generation of the modules

Modules are formed by grouping genes with identical discretized expression patterns, i.e.
by performing a hierarchical clustering on the discretized data with Hamming distance as
dissimilarity measure and then forming clusters by cutting the dendrogram at a distance
of zero (linkage is irrelevant). Additionally, modules are formed with the global oxygen
effect being irrelevant, i.e. genes are clustered together when only the first eight entries
of the expression pattern are identical. Similarly, modules are created based solely on
the oxygen effect. This strategy creates overlapping clusters of genes, that represent
different characterizations based on the global oxygen effect.

4.5.5 Identification of significant TFs and enrichment of anno-

tation categories

Modules are related to TFs by the hypergeometric test, which assesses the probability
that the observed frequency that the genes in a module are bound by a TF would occur by
chance. The P -value cutoff to decide whether a relation is significant is P ≤ 1/(nmnx),
where nm is the number of modules consisting of more than ten genes and nx is the num-
ber of TFs or TF pairs that bind to more than ten genes. This Bonferroni correction for
multiple testing results in a per-family error rate (PFER) of one [Ge 03]. Considering
the stringency of the Bonferroni correction and the fact that the tests are not indepen-
dent, the P -value correction is quite conservative. The same procedure is employed to
assess the overrepresentation of GO, MIPS and KEGG annotation categories.

4.5.6 Motif discovery

RSAT motif discovery [Held 03] was applied to modules, which are significantly related to
at least one TF or TF pair. An oligonucleotide analysis was run with motif sizes ranging
from five to eight. Significant (RSAT occurrence significance score larger than one) and
dissimilar motifs for each module were manually extracted. Published PWM/PSSM
matrices for known TFs [Harb 04, Tran, SCPD] are captured in the weight matrix form
as described in [Hert 99]. A simple similarity score between a motif and a weight matrix,
i.e. the sum of the weights of the matrix for the letters of the aligned motif, was employed
to relate the uncovered motifs to known TFs.



CHAPTER 5

CONDITION TRANSITION

ANALYSIS

This chapter uses the results of Chapter 4 to focus on the oxygen-specific effects within this
dataset. The eight conditions are described as states. The activity of TFs is assessed for the
different state transitions. Special attention is devoted to TFs that seem to perform a regulatory
role under aerobic conditions, but not under anaerobic growth (or vice versa). The resulting
regulatory network reveals nutrient-limitation-specific effects of oxygen presence on expression
behavior and TF activity. The analysis identifies many TFs that seem to play a very specific
and subtle regulatory role at the nutrient and oxygen availability transitions.

This chapter is published as:

‘Condition transition analysis reveals TF activity related to nutrient-limitation-specific effects
of oxygen presence in yeast’

Theo A. Knijnenburg, Lodewyk F.A. Wessels and Marcel J.T. Reinders

Computational Methods in Systems Biology (CMSB), International Conference, Trento, Italy,
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5.1 Abstract

Regulatory networks are usually presented as graph structures showing the (combinato-
rial) regulatory effect of transcription factors (TFs) on modules of similarly expressed
or otherwise related genes. However, from these networks it is not clear when and how
TFs are activated. The actual conditions or perturbations that trigger a change in the
activity of TFs should be a crucial part of the generated regulatory network.
Here, we demonstrate the power to uncover TF activity by focusing on a small, homo-
geneous, yet well defined set of chemostat cultivation experiments, where the transcrip-
tional response of yeast grown under four different nutrient limitations, both aerobically
as well as anaerobically was measured. We define a condition transition as an instant
change in yeast’s extracellular environment by comparing two cultivation conditions,
where either the limited nutrient or the oxygen availability is different. Differential gene
expression as a consequence of such a condition transition is represented in a tertiary
matrix, where zero indicates no change in expression; 1 and -1 respectively indicate an
increase and decrease in expression as a consequence of a condition transition. We un-
cover TF activity by assessing significant TF binding in the promoter region of genes
that behave accordingly at a condition transition. The interrelatedness of the conditions
in the combinatorial setup is exploited by performing specific hypergeometric tests that
allow for the discovery of both individual and combined effects of the cultivation param-
eters on TF activity. Additionally, we create a weight-matrix indicating the involvement
of each TF in each of the condition transitions by posing our problem as an orthogonal
Procrustes problem. We show that the Procrustes analysis strengthens and broadens
the uncovered relationships.
The resulting regulatory network reveals nutrient-limitation-specific effects of oxygen
presence on expression behavior and TF activity. Our analysis identifies many TFs
that seem to play a very specific regulatory role at the nutrient and oxygen availability
transitions.

5.2 Introduction

The systems biology view of an organism as an interacting network of genes, proteins and
biochemical reactions seems very promising for revealing the underlying networks of tran-
scriptional regulation in Saccharomyces cerevisiae. For this yeast enormous amounts of
different intracellular data have been measured, enabling the integration of multiple data
sources [Bane 02]. In inferring regulatory networks common approaches focus on integra-
tion of microarray gene expression data, ChIP-chip TF binding data and sequence data
(to detect cis regulatory elements) [Chua 04]. The resulting networks are usually pre-
sented as graph structures showing the (combinatorial) regulatory effect of TFs on mod-
ules of similarly expressed or otherwise related genes (e.g [Pilp 01, Bar 03, Wang 05]).
However, from these networks it not clear when and how TFs are activated. This is
quite strange, since the actual conditions or perturbations that trigger a change in the
activity of TFs should be a crucial part of the generated regulatory network. Three
main reasons for this exclusion can be identified: Firstly, the present inability to di-
rectly measure protein levels in vivo prevents direct assessment of the presence of a
TF in a particular condition. Secondly, in most cases post-transcriptional and/or post-
translational regulation prevent deriving TF activity from gene expression, although an
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attempt was made based on this assumption [Sega 03]. Thirdly, the trend of employing
increasingly large compendia of heterogeneous microarray data, where yeast is grown
under a wide variety of very different and unrelated conditions, makes it impossible to
incorporate all these conditions in a regulatory program. Hence, the functionality of
modules and TFs is assigned based on enrichment in annotation categories (e.g. Gene
Ontology [Ashb 00]). This means that the functionality purely depends on the result of
clustering, i.e. the grouping of genes, and not specifically on the cultivation conditions
under which the expression behavior is characteristic for a module. This approach can
only provide a global overview of TF activity and obstructs novel knowledge discovery,
since an existing body of knowledge, i.e. the ontologies, is taken as a golden standard.
Here, we demonstrate the power in uncovering TF activity by focusing on a small, homo-
geneous, yet well defined set of chemostat cultivation experiments, where the transcrip-
tional response of yeast grown under four different nutrient limitations, both aerobically
as well as anaerobically was measured (See Table 5.1 and Figure 5.1) [Tai 05]. In this
research we focus on condition transitions by comparing gene expression profiles of two
cultivation conditions and evaluate whether genes are differentially expressed between
these two conditions. TF activity is inferred by assessing significant TF binding in the
promoter region of genes that behave accordingly at the transitions. For this, we use the
largest available TF binding dataset [Harb 04]. The interrelatedness of the cultivation
conditions within the systematic combinatorial setup is exploited by performing spe-
cific hypergeometric tests. This enabled us to reveal nutrient-limitation-specific effects
of oxygen presence on expression behavior and TF activity. Additionally, we create a
weight-matrix indicating the involvement of TFs in each of the condition transitions by
posing our problem as an orthogonal Procrustes problem. Analysis of this weight ma-
trix broadens the significant relations found by the hypergeometric test. The uncovered
regulatory mechanisms offer valuable clues of how yeast changes its metabolism and
respiration as a result of specific changes in nutrient and oxygen availability.

5.3 Methods

5.3.1 Data and preprocessing

The employed microarray gene expression data consists of the measured transcriptional
response of the yeast Saccharomyces cerevisiae to growth limitation by four different
macronutrients in both aerobic and anaerobic media. See Table 5.1. Three indepen-
dently cultured replicates were performed per experimental condition. For more infor-
mation see Tai et al. [Tai 05]. SAM [Tush 01] was employed (with median false discovery
rate of 0.01%) to select genes that are differentially expressed amongst the eight condi-
tions. Next, we remove the observed global effect that the presence of oxygen has on
the expression level of each gene under all nutrient limitations by a linear regression
strategy as described in Knijnenburg et al. [Knij 07]. Then, for each gene individu-
ally the expression levels are discretized by employing a k-means clustering algorithm
on the eight mean expression levels (corresponding to the eight conditions) in a one-
dimensional space [Knij 05]. Here, the Davies-Bouldin index [Davi 79] was employed
to select between k = 2 and k = 3. The conditions that comprise the largest cluster
are said to have common expression level, while conditions that form a cluster with a
higher or lower expression level when compared to the largest cluster are called up- or
downregulated, respectively. (In the case that k = 2 one cluster has common expres-
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Table 5.1 – Experimental conditions.
The black squares indicate the employed nutrient limitation and oxygen supply.

Experimental Nutrient limitation Oxygen supply

condition Carbon Nitrogen Phosphorus Sulfur Aerobic Anaerobic

1. ClimAer � �

2. NlimAer � �

3. PlimAer � �

4. SlimAer � �

5. ClimAna � �

6. NlimAna � �

7. PlimAna � �

8. SlimAna � �

sion level and the other is either upregulated or downregulated.) Hence, the expression
behavior of a gene is defined in terms of up- and/or down regulation under the eight
cultivation conditions. Discretized expression patterns of all genes are captured in G, a
tertiary matrix of 6383× 2× 4. In Gg,o,n, g = {1 . . . 6383} are the different genes in the
genome, o = {1, 2} represents oxygen supply (aerobic and anaerobic respectively) and
n = {1 . . . 4} are the four nutrient limitations (carbon, nitrogen, phosphorus and sulfur
respectively). Zero indicates common expression level; 1 and -1 indicate upregulation
and downregulation respectively. An example:

G453,:,: =

(
0 0 1 0
0 −1 1 0

)

This gene (MTD1, indexed as no. 453) is thus upregulated under the phosphorus limi-
tation (both aerobically and anaerobically) and downregulated under the nitrogen lim-
itation in anaerobic growth. Note that genes that are not differentially expressed are
assigned zeros in all cultivation conditions.
The TF binding data indicates the number of motifs in the promoter region of each gene
for 102 TFs [Harb 04]. In this study we have employed motifs that are bound at high
confidence (P ≤ 0.001); not taking into account conservation among other sensu stricto
Saccharomyces species. The 6383 × 102 matrix, denoted by F, is binarized, such that
Fg,f indicates whether the promoter region of gene g can be bound by TF f .

5.3.2 Condition transition analysis

From expression matrix G we derive the condition transition matrix T. We define a
condition transition as an instant change in yeast’s extracellular environment by com-
paring two cultivation conditions and assess whether genes exhibit change in expression
level when “going” from one cultivation condition to the other. In total we define sixteen
condition transitions. These are only the transitions, where either the nutrient limita-
tion or the oxygen availability changes; not both. The transitions are indicated by the
edges in the cube of Figure 5.1. The six nutrient limitation transitions, both aerobically
and anaerobically, (edges in the upper and lower face of the cube) are computed by:

Tg,I(n1,n2,o) = sign(Gg,o,n1
− Gg,o,n2

) ∀{g, o, n1 > n2} (5.1)
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Figure 5.1 – Cube representing the eight cultivation conditions.
Edges indicate defined condition transitions.

The four oxygen availability transitions (vertical edges) are computed by:

Tg,12+n = sign(Gg,1,n − Gg,2,n) ∀{g, n} (5.2)

Here, I(n1, n2, o) = [6 ∗ (o − 1) + n1 + 4 · (n2 − 1) −
n2·(n2+1)

2 ], such that the indices of the dif-
ferent transitions in T correspond to the numbers assigned to the edges in the cube of
Figure 5.1. T (6383 × 16) is again a tertiary matrix, where zero indicates no change
in expression; 1 and -1 respectively indicate an increase and decrease in expression as
a consequence of a condition transition. Now, by consulting the TF binding matrix F,
a hypergeometric test can be employed to assess if genes that are up- and/or downreg-
ulated at a condition transition are bound (upstream) by a TF much more frequently
than would be expected by chance. In more general terms, by employing the hyper-
geometric distribution we compute the probability of the observed (or more extreme)
overlap between two sets of genes under the assumption that these sets of genes were
randomly chosen from all genes [Bara 01]. Small probabilities (P -values) indicate that
the hypothesis that these sets are randomly drawn must be dismissed, thereby acknowl-
edging a significant relation between the two sets. In our setting, one set is constituted
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Table 5.2 – Conditions on T which define nine groups for each nutrient limita-
tion transition (t = {1 . . . 6}).
The last two columns indicate the vertical placement (vp) and color of TFs that are sig-
nificantly related to these groups as visualized in Figure 5.2.

no. Tg,t Tg,t+6 Description vp color
I 1 0,-1 Only up under aerobic growth top orange
II 0,-1 1 Only up under anaerobic growth bottom orange
III 1 1 Up under both aerobic and anaerobic growth center orange
IV -1 0,1 Only down under aerobic growth top green
V 0,1 -1 Only down under anaerobic growth bottom green
VI -1 -1 Down under both aerobic and anaerobic growth center green
VII 1,-1 0 Only diff. expressed under aerobic growth top black
VIII 0 1,-1 Only diff. expressed under anaerobic growth bottom black
IX 1,-1 1,-1 Diff. expressed under both aerobic and anaerobic growth center black

of all genes that can be bound by a particular TF, while the other set consists of e.g.
all genes upregulated at a particular condition transition.
However, the systematic setup of the cultivation conditions in this dataset, allows for
selection of more interesting groups of genes to input into the hypergeometric test. For
example, genes that are upregulated at an aerobic nutrient limitation transition, yet
not upregulated at the same nutrient limitation transition without the presence of oxy-
gen. More specifically, for each of the six nutrient limitation transitions we define nine
different groups of genes allowing us to focus on upregulation (1), downregulation (-1)
and differential expression (-1 or 1), both specifically for aerobic or anaerobic growth
as well as regardless of the oxygen supply. See Table 5.2. The 54 groups, augmented
with groups of genes up-, downregulated or differentially expressed under the four oxy-
gen availability transitions (Transitions 13-16), are tested for significant association with
TFs by employing the hypergeometric test. (To adjust for multiple testing, the P -value
cutoff was set, such that we expect one false positive (per-comparison error rate (PCER)
of one [Ge 03]), corresponding with P ≤ 1.5 · 10−4.) Figure 5.2 displays the significant
relations in (for reasons of visibility) a part of the cube. We now have a regulatory net-
work, which associates a TF with a cluster of genes that shows specific gene expression
changes when a transition is made from one condition to the next.
In an attempt to gain more insight into the dynamics and combinatorial effects within
the complete generated regulatory network, in stead of performing stringent tests of indi-
vidual hypotheses, we add an additional step to our analysis. Here, we aim at modeling
the expression behavior at all condition transitions T by employing binding matrix F

and assess the activity of each TF at a condition transition. This approach is based on
the simple biological model that ascribes the change of gene expression levels as observed
at a condition transition to changes in TF activity; the means by which the organism
adapts to the changed extracellular environment. In contrast to the landmark article by
Bussemaker et al. [Buss 01], where expression was explained using cis-regulatory ele-
ments, we thus explain expression behavior at transitions by using TF binding data. In
a more recent article from Bussemaker’s group [Gao 04] also TF binding data was used
to explain expression. However, they used a continuous score (the logarithm of the bind-
ing P -value) to represent the degree of TF binding, while we use the binary one, which
indicates simply whether there is the ability to bind or not. Furthermore, we do not
employ continuous expression levels, which are a measure of absolute mRNA quantities.
We use the discrete elements of T that represent relative up- and downregulation, since
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Figure 5.2 – TF activity for part of the transitions.
Green, orange and/or black TFs are significantly related to genes that are downregulated,
upregulated or differentially expressed respectively when going from one cultivation con-
dition to the other (in the direction of the arrows). TFs on the top and bottom edges
are activated only under aerobic or anaerobic growth respectively; TFs in the center of a
surface indicate activation independent of the presence of oxygen. For example, Mcm1,
Ste12, Gln3 and Hap4 are associated with transitions from carbon limitation to nitrogen
limitation, independent of the presence of oxygen.

we find this more robust and informative compared to (the difference between) absolute
mRNA levels. Another big difference is that we do not use an iterative procedure to
solve the problem, but aim at explaining all the transitions using all TFs in one time.
Our problem finds its mathematical formulation in the orthogonal Procrustes problem,
where we explore the possibility that F can be rotated into T by solving:

min ‖T′ − WF′‖Fro subject to WT W = I (5.3)

In principle, this is a linear transformation of the points in F to best conform them to
the points in T. In our setting, the change in expression of a gene at a condition transi-
tion (as given in T) is approximated by a weighted sum of ones. These ones correspond
to the TFs that can bind the upstream region of that particular gene (as given in F).
Thus, the elements in W represent a measure of the activity of a TF at a condition
transition. Properties of the Procrustes rotation are the closed solution (via a SVD de-
composition [Golu 96]) in minimizing the Frobenius norm (sum of squared errors) and
the orthonormality of weight matrix W. A prerequisite for this rotation is that the num-



74 CHAPTER 5. CONDITION TRANSITION ANALYSIS

ber of columns (TFs) in F′ should match the number of columns (condition transitions)
in T′. Since our main focus is on TFs that regulate differently at nutrient limitation
transitions as a consequence of oxygen supply, we select only the first twelve columns
from T. The twelve selected TFs are those that (according to the hypergeometric test)
are most significantly related to up- or downregulation, specifically under aerobic or
anaerobic growth (i.e. related to groups I, II, IV and V in Table 5.2). Furthermore, we
only employ those genes which exhibit different expression between aerobic and anaero-
bic growth for at least one of the six nutrient limitation transitions. These adjustments
on F and T yield F′ and T′ (both 1493 × 12), which are employed in Eq. 5.3. Figure
5.3 visualizes the resulting W.
Permutation tests were performed to assess the statistical significance of these weights.
The rows (genes) of T′ were randomly permuted after which the Procrustes rotation
(Eq. 5.3) was recomputed. This was done 10,000 times. The Wilcoxon signed rank test
was applied to check if the original weights could be the medians of the distributions
of weights generated by the permutations. The extremely low P -values for almost all
weights indicated that this hypothesis should be dismissed. (Results not shown.) This
attaches, at least, a statistical meaning to the derived weight matrix. More interestingly,
for each of the twelve TFs and each of this six nutrient limitation transitions we assessed
the significance of the difference between the assigned weight under aerobic growth and
the weight under anaerobic growth. A P -value was computed by determining the frac-
tion of permutations in which the difference between the aerobic and anaerobic weight
was larger than for the original (non-permuted) data. Significant differences (P ≤ 0.05)
point towards oxygen specific regulation of a TF at a specific nutrient limitation transi-
tion.

5.4 Results

The network of TF activity, as partly presented in Figure 5.2, provides many very spe-
cific clues towards the transcriptional regulation of yeast’s metabolism and respiration.
Some of these can be linked to existing biological knowledge quite easily. One obvious
example is the TF Hap4, of which the mRNA abundance is decreased by the presence
of glucose [Fors 89]. This explains downregulation of the regulon of Hap4 in the three
nutrient transitions moving away from the carbon limitation. Furthermore, in the car-
bon to sulfur limitation transition, we find Met32, a known transcriptional regulator
of methionine metabolism [Yeas], as well as Cbf1, which is part of the transcription
activation complex Cbfl-Met4-Met28 [Blai 98]. To find TF Gln3 at the transition from
carbon limited growth to growth where nitrogen becomes the limiting nutrient is also
not surprising. Ammonium, the nitrogen source used in these experiments and gener-
ally considered to be the preferred nitrogen source for S. cerevisiae, is in excess under
carbon-limited growth, while absent under nitrogen-limited growth. It is well known
that high concentrations of ammonium lead to nitrogen catabolite repression (NCR), a
transcriptional regulation mechanism that represses pathways for the use of alternative
nitrogen sources [Maga 02]. Gln3 is one of the four so-called GATA factors active in
NCR to adapt to the change in need of alternative nitrogen sources at this transition. It
is however surprising that Gln3 is significantly related to genes upregulated, especially
under aerobic conditions. Also unexpectedly, Leu3, a regulator for genes of branched-
chain amino acid biosynthesis pathways, is significantly related to genes downregulated,
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Figure 5.3 – Visualization of W, representing the TF activity of twelve TFs
under the six nutrient limitation transitions, both aerobically and anaerobi-
cally.
Large positive weights (red) indicate involvement in upregulation, negative weights (blue)
refer to downregulation. Triangles indicate a significance difference in weights (P ≤ 0.05)
for a nutrient limitation transition between the aerobic and anaerobic case.

especially at the anaerobic transition from carbon to nitrogen limitation.
Here, we come to the crux of our work. Our approach is able to infer TF activity related
to very specific changes in combinatorial cultivation parameters. The algorithm that
is especially designed for the combinatorial setup of nutrient limitations and oxygen
supply in the employed microarray dataset, not only provides unprecedented detailed
insight into the behavior of yeast’s metabolism and respiration at the transcriptional
level, but also in terms of TF activity. Thus, we do not find many TFs that are globally
related to particular nutrients. (These have already been identified in previous studies,
e.g. [Bar 03, Knij 05]). More specifically, we identify lots of TFs that are not primarily
related to the metabolism of a particular nutrient, yet seem to play a more specific and
subtle (and as of yet unknown) regulatory role at these transitions between nutrient
limitations. The involvement of these TFs demonstrate the complex and multiple regu-
latory roles that they exhibit in transcriptional regulation in different processes.
The involvement of a particular TF in different processes has of course been established
by many independent studies. For example, Mcm1 is a known multifunctional protein
which plays a role both in the initiation of DNA replication (cell-cycle) and in the tran-
scriptional regulation of diverse genes [Pass 89]. A more recent study also suggests that
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Table 5.3 – Significantly enriched (P ≤ 5 · 10−5) MIPS and GO functional cate-
gories for the nine groups defined at the carbon to nitrogen limitation transi-
tion.
Processes other than metabolism, energy and cellular transport are underlined.

no. MIPS GO
I metabolism
II energy, oxidative stress response response to stress
III metabolism, complex cofactor/cosubstrate binding

IV tetracyclic and pentacyclic triterpenes biosynthesis lipid metabolism, steroid metabolism and biosynthesis
V metabolism of the pyruvate family and D-alanine, mitochondrion cellular biosynthesis, nitrogen compound biosynthesis, a.o.
VI lipid metabolism, steroid metabolism and biosynthesis
VII mitotic cell cycle and cell cycle control, cellular transport, a.o.
VIII energy, respiration, a.o. aerobic respiration, generation of precursor metabolites, a.o.
IX energy, respiration, transported compounds, a.o. oxidative phosphorylation, transport, a.o.

in response to changes in their nutritional states, yeast cells modulate the activity of
global regulators like Mcm1 via posttranscriptional regulation induced by the flux of gly-
colysis [Chen 95]. The identification of Mcm1 as a regulator in the carbon to nitrogen
limitation transition, where the glycolysis flux changes dramatically, thus strengthens
and even broadens this hypothesis.
In general, the results provide new regulatory roles for many TFs in metabolism and
respiration. Additionally, the results underline the complexity of transcriptional regu-
lation in the cell, especially when taking into account the fact that changes in nutrient
and oxygen availability can not be seen in isolation from (or even modulate) cell-cycle
(e.g. [Newc 03]) and energy processes (e.g. [Wu 04]) and is even known to evoke stress
responses (e.g [Jami 98, Gasc 02]). To strengthen this notion, enrichment in MIPS
[Mewe 97] and GO [Ashb 00] functional categories was computed. Table 5.3 displays
the results for the transition from carbon to nitrogen limitation. These results also
indicate that many non-metabolic processes play a role in the nutrient and oxygen avail-
ability transitions.
In the remainder of this section we focus on three identified TFs and hypothesize about
their putative role in regulation at specific transitions. Here, we also demonstrate the
power of the Procrustes approach in clarifying more subtle patterns of regulation.

Leu3

Leu3 is the main transcriptional regulator of branched-chain amino acid metabolism
and has been extensively studied [Kohl 03, Boer 05]. To exactly meet the demands of
protein synthesis, the activity of Leu3 is modulated by α-isopropylmalate (α-IPM), an
intermediate of the branched-chain amino acid pathway. As a result Leu3 can act as
both an activator and a repressor. Our findings indicate an oxygen-specific role of Leu3
in several nutrient limitation transitions. Figure 5.4 displays the expression behavior
at transitions for the regulon of Leu3. Many genes are downregulated at the C → N
and C → S transitions under anaerobic conditions in comparison to the same transi-
tions grown under aerobic conditions. (This can be seen by the much larger number
of green boxes in transition 7 w.r.t. transition 1 and similarly for transitions 9 and 3).
Furthermore, when going from aerobic to anaerobic carbon-limited growth many genes
are upregulated. (All above mentioned relations were found significant in the hypergeo-
metric tests, as can be seen in Figure 5.2.) The involvement of Leu3 as a repressor and
activator at these transitions has not been established before. Personal communication
with the first author of Boer et al. [Boer 05] lead to the observation that the expres-
sion pattern of Leu3’s regulon under anaerobic growth is quite remarkable. If it were
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Figure 5.4 – Expression behavior at the condition transitions for the Leu3
regulon.
Part of the transition matrix T, indicating the expression behavior of all genes to which
TF Leu3 can bind (upstream) for the transitions that are displayed in Figure 5.2.

the case that also at the anaerobic C → P transition many genes were downregulated,
one could associate this to mitochondrial capacity [Tai 05], since the synthesis route of
α-IPM is mainly located in the mitochondrion. However, this is not the case. Possibly,
regulation of Leu3 under anaerobic growth can be linked to different concentrations of
α-IPM, caused by different concentrations of Acetyl-CoA and ATP/ADP that change
at the transitions. However, this is not more than speculation at this point.

Yap7

The TF Yap7 was only significantly associated with upregulation of genes when going
from nitrogen to sulfur limited (N → S) aerobic growth. (This result is not visible
in Figure 5.2.) The Procrustes analysis, however, shows a more interesting pattern of
regulation. In Procrustes, the TF binding data set is employed to explain the different
expression behavior between all the aerobic and anaerobic nutrient limitation transi-
tions simultaneously. (This in contrast to employing the hypergeometric distribution,
where hypotheses can only be tested individually.) Furthermore, the orthonormality
constraint emphasizes the difference in activity of a TF at different transitions. When
investigating the weights assigned to Yap7, we see that not only in N → S the weight
is significantly larger under aerobic growth, but also in the case of the other transitions
moving towards sulfur limited growth; C → S and P → S. (See Figure 5.3.) For the
other transitions the weights are near zero. Thus, we can hypothesize that Yap7 (a



78 CHAPTER 5. CONDITION TRANSITION ANALYSIS

member of the yeast bZip family of proteins, of which two other members can only be
linked indirectly to sulfur metabolism [Mend 05]) is involved in regulation under aerobic
sulfur-limited growth, thereby assigning a very specific putative regulatory role for this
poorly studied TF.

Ste12

Also in the case of Ste12, the Procrustes rotation confirms and broadens the relation-
ships as established by the hypergeometric tests. From the literature it follows that
Ste12 is a transcription factor that binds to the pheromone response element (PRE)
to regulate genes required for mating and also functions with Tec1 to regulate genes
required for pseudohyphal growth [Yeas]. Additionally to these functionalities, we find
it to upregulate genes when entering a phosphorus-limited state, especially when no
oxygen is present. See the condition transition weights for Ste12 in Figure 5.3. (Note
that the S → P is not in the table, but it is justified to expect that these weights will
be the complement of the P → S transition.)

5.5 Discussion

Today’s main use and strength of bioinformatics tools is generating hypotheses on all
types of relationships and functionalities of and between quantifiable parameters inside
and outside the cell. Specific biological experiments are, however, still required to vali-
date the automatically generated hypotheses before accepting them as newly discovered
knowledge. The common trend of focusing on large compendia of intracellular mea-
surement datasets is often in contrast with the biologist’s very specific field of research.
These broad approaches are able to recognize global patterns in the data, but miss spe-
cific and subtle effects that characterize the complex reality of the cell.
In this research we applied a tailor-made informatics approach on a small, well defined
dataset. This enabled us to provide the biologist with very detailed hypotheses about
the specific biological processes of interest. The basis for this work is the systematic
combinatorial setup of the cultivation conditions under which yeast was grown in highly
controllable chemostats. Incorporation of TF binding data through stringent statistical
tests as well as a Procrustes rotation, led us to infer the activity of TFs at transitions
between the different cultivation conditions. In contrast to common approaches the gen-
erated regulatory network thus shows the actual changes in conditions that lead to the
activation of TFs.
Incorporation of (changes in) conditions is a crucial part of regulatory networks and in
the quest for simulation of the complete regulatory mechanisms within the cell, will be
part of more elaborate future analysis. Additionally, future work will aim at interpreting
the uncovered results, not only by literature, but also by performing specific follow-up
experiments. Furthermore, the uncovered results have proved to be very interesting,
and therefore encourage application of similar techniques to other systematically setup
datasets.



CHAPTER 6

CHEMOSTAT STEADY-STATE

MICROARRAY COMPENDIUM

This chapter presents a chemostat microarray compendium consisting of 170 microarray mea-
surements with 55 unique conditions. These conditions are characterized by the settings of
ten different cultivation parameters. Using a regression strategy the influence of cultivation
parameters on gene expression is investigated. Here, the main focus is on the influence of
combinations of cultivation parameters on gene expression. The explained variance of gene
expression patterns and functional enrichment of gene clusters is evaluated for regression mod-
els both including and excluding these combinatorial effects. Also, the influence of cultivation
parameters on gene expression is used in the interpretation of shake-flask-based transcriptome
studies and for guiding functional analysis of (uncharacterized) genes and pathways. This
study demonstrates that modeling the combinatorial effects of environmental parameters on
the transcriptome is crucial for understanding transcriptional regulation. In this way, the goal
of systems biology to investigate and understand the interactions between different components
and/or levels in biological systems can be complemented by an equally integrative approach
towards the complex environmental context in which cells grow and survive.

This chapter is published as:

‘Combinatorial effects of environmental parameters on transcriptional regulation in Saccha-
romyces cerevisiae: A quantitative analysis of a compendium of chemostat-based transcriptome
data’

Theo A. Knijnenburg, Jean-Marc Daran, Marcel A. van den Broek, Pascale Daran-Lapujade,
Johannes H. de Winde, Jack T. Pronk, Marcel J.T. Reinders and Lodewyk F.A. Wessels

BMC Genomics, Volume 10 No 53, January 2009
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6.1 Abstract

Microorganisms adapt their transcriptome by integrating multiple chemical and physical
signals from their environment. Shake-flask cultivation does not allow precise manipula-
tion of individual culture parameters and therefore precludes a quantitative analysis of
the (combinatorial) influence of these parameters on transcriptional regulation. Steady-
state chemostat cultures, which do enable accurate control, measurement and manipula-
tion of individual cultivation parameters (e.g. specific growth rate, temperature, identity
of the growth-limiting nutrient) appear to provide a promising experimental platform
for such a combinatorial analysis.
A microarray compendium of 170 steady-state chemostat cultures of the yeast Saccha-
romyces cerevisiae is presented and analyzed. The 170 microarrays encompass 55 unique
conditions, which can be characterized by the combined settings of 10 different cultiva-
tion parameters. By applying a regression model to assess the impact of (combinations
of) cultivation parameters on the transcriptome, most S. cerevisiae genes were shown
to be influenced by multiple cultivation parameters, and in many cases by combina-
torial effects of cultivation parameters. The inclusion of these combinatorial effects in
the regression model led to higher explained variance of the gene expression patterns
and resulted in higher function enrichment in subsequent analysis. We further demon-
strate the usefulness of the compendium and regression analysis for interpretation of
shake-flask-based transcriptome studies and for guiding functional analysis of (unchar-
acterized) genes and pathways.
Modeling the combinatorial effects of environmental parameters on the transcriptome
is crucial for understanding transcriptional regulation. Chemostat cultivation offers a
powerful tool for such an approach.

6.2 Introduction

The transcriptional program of a cell is to a large extent determined by its extracellular
environment. Signaling pathways, transcription factors (TFs) and chromatin remodel-
ing mediate the transcriptional response that enables the organism to adapt to changed
conditions. In order to understand the transcriptional response to changes in the extra-
cellular environment, a large majority of the transcriptome analysis studies are based
on the comparison of a single “reference” condition against a different condition. Genes
that show a different transcript level between the two situations are often labeled “upreg-
ulated” or “downregulated” in the non-reference situation. This binary mode of analysis
does not take into account the fact that many genes are influenced by multiple environ-
mental stimuli and regulated by multiple TFs. The rate of transcription of a gene is,
in general, the net result of the integration of multiple inputs. Consequently, transcrip-
tional responses to individual environmental stimuli may be strongly dependent on the
experimental context in which they are studied.
While the context dependency of transcriptional responses has been acknowledged as an
important factor by several authors (e.g. [Bar 03, Lusc 04]), it is only rarely considered
in experimental design and in data interpretation. Three main reasons can be identified
for this omission. First, most transcriptome studies on micro-organisms are based on
shake-flask cultivation, in which key physiological parameters such as the specific growth
rate and nutrient availability change continuously and cannot be adequately controlled.
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This makes it impossible to quantify the context dependency of transcriptional responses.
Secondly, research questions are often approached from a one-dimensional perspective,
in which differential gene expression is completely attributed to the difference between a
condition of interest and a reference condition. This strategy is implicitly incorporated
into the two-channel microarray experimental design, where the ratio of intensities from
the channels represents the gene expression ratio between the condition of interest and
the reference condition. A final factor that complicates meaningful combinatorial anal-
yses of transcriptional regulation is that integration of data from different studies and
laboratories may be hampered by differences in experimental procedures for microar-
ray experiments (including the use of different microarray platforms, mRNA extraction,
normalization and summarization algorithms [Tan 03, Bamm 05]).
The “one-dimensional” design of transcriptome studies, as outlined above, ignores com-
binatorial effects of growth parameters, i.e., the possibility that repetition of the mea-
surements in, for example, a different medium composition or temperature, might yield
a different transcriptional response to the same change in the parameter of interest. Re-
cently, a relatively small number of studies have quantitatively explored the context de-
pendency of transcriptional regulation in chemostat cultures of the yeast Saccharomyces
cerevisiae [Tai 05, Knij 07, Nico 07, Cast 07]. In steady-state chemostat cultures, in-
dividual environmental parameters can be manipulated in a controlled manner and at
a fixed specific growth rate [Hosk 05, Dara 09]. This forms an important advantage
over the use of shake flasks and other batch cultivation procedures, in which changes
in environmental parameters affect specific growth rate, thus precluding the dissection
of primary responses to environmental parameters and indirect effects of a different
specific growth rate. Recent chemostat-based studies have demonstrated that, indeed,
specific growth rate itself has a strong effect on transcriptional regulation in S. cere-
visiae [Rege 06, Cast 07, Brau 08]. Additionally, chemostat experiments on combina-
torial effects of macronutrient limitation, oxygen availability and temperature provided
compelling evidence for the impact of context dependency [Tai 05, Knij 07, Tai 07].
The goal of the present study is to quantify the influence of cultivation parameters
on gene expression and specifically focus on the influence of combinatorial (or context-
specific) effects of the cultivation parameters. To this end, we have compiled a mi-
croarray compendium of well-defined chemostat cultivations of yeast and employed a
computational framework to analyze the effect of the cultivation parameters on gene
expression. The compendium of chemostat-based transcriptome datasets is comprised
of 170 microarray measurements, which have been performed over the past years in
the Kluyver Centre’s yeast research program. These measurements, the majority (111
out of 170) of which have been previously published separately, encompass 55 unique
growth conditions with (mostly three) independent biological replicates for each condi-
tion. Across the 55 different conditions, there are ten varying cultivation parameters,
such as growth-limiting substrate, specific growth rate, aeration, pH and temperature.
A forward step-wise regression model was designed and applied to quantify the (com-
binatorial) effect of individual environmental parameters on transcriptional regulation.
This strategy is based on the assumption that the observed difference in the transcript
level of a gene between two microarrays can be fully attributed to the difference in envi-
ronmental parameters (and measurement noise) between these arrays. The results show
that mainly due to the accurate control and measurement of the growth parameters
enabled by steady-state chemostat cultivation, this assumption holds to a large degree.
By employing these results from the regression analysis, we explore the significance of
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context dependency throughout the compendium. Its applicability for functional anal-
ysis of (uncharacterized) genes and pathways is demonstrated using the inferred causal
relationship between environmental parameters and gene expression.

6.3 Results and Discussion

This section starts by describing the steady-state chemostat microarray compendium
and the regression analysis to assess the influence of cultivation parameters on gene
expression. Then, the combinatorial effects of cultivation parameters on the transcrip-
tome are investigated using enrichment tests and through biological interpretation of
these effects on genes of functional categories and biochemical pathways. To demon-
strate the usefulness of the compendium, this section concludes by presenting two case
studies concerned with, firstly, the functional analysis of uncharacterized and dubious
genes, and secondly, the interpretation of shake-flask-based transcriptome studies using
the compendium.

6.3.1 Inferring the influence of cultivation parameters on gene

expression

The Saccharomyces cerevisiae laboratory reference strain CEN.PK 113-7D (MATa) was
grown at steady state in chemostat cultures under 55 different conditions. A condi-
tion can be characterized by a specific configuration of the settings of ten different
cultivation parameters. One of these cultivation parameters is the available carbon
source. Throughout the compendium five different carbon sources were used, i.e. ac-
etate, ethanol, galactose, glucose and maltose. Thus, these five compounds form the
settings that the cultivation parameter carbon source can assume. Table 6.1 provides
an overview of the settings for all cultivation parameters. Figure 6.1 depicts the ex-
pression levels of the gene UPC2 across all 55 conditions. The lower part of this figure
is a schematic representation of the settings of the ten cultivation parameters over all
conditions. Note that the expression levels are absolute expression levels that come from
a single-channel microarray system and not relative expression levels, where a reference
condition is employed. A regression model was designed to assess the influence of the
cultivation parameters on gene expression. The model was applied to all differentially
expressed genes individually. (A large majority (6005 of 6383) of the genes in the S.
cerevisiae genome was found to be differentially expressed in at least one of the 55 con-
ditions.) Using a step-wise approach, the regression model iteratively selects significant
predictors in order to reconstruct the expression pattern of a gene.
Here, the cultivation parameters form the predictors. We incorporated single effects and
two types of combinatorial effects. See Figure 6.2 for a schematic example of genes that
are influenced by these effects. A single effect is constituted by one setting of one culti-
vation parameter. For example, limiting element carbon is a predictor. (This will be a
significant predictor for genes, which show differential expression between carbon-limited
growth and growth that is limited by the residual quantity of other substrates.) In Fig-
ure 6.2 gene g1 responds solely to a single effect. The first type of combinatorial effect
is constituted by applying the logic AND function between two settings of two different
cultivation parameters. For example, limiting element carbon AND aerobic growth (in
short: aerobic carbon-limited growth) form such a combinatorial effect. Of course, the
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Table 6.1 – Settings within the cultivation parameters.
This table presents the different settings within each of the ten cultivation parameters.
Each of the 55 conditions in the chemostat compendium is characterized by a combina-
tion of settings of the ten cultivation parameters. The colored matrix in Figure 6.1 is a
schematic representation of the settings of the cultivation parameters for each condition.
Abbreviations of cultivation parameter settings used in the schematic representation are
stated between parentheses in this table.

Aeration type C-source N-source S-source Limiting element
Aerobic Acetate (Ace) Ammonium chloride (A.cl.) Methionine (Met) Carbon

Anaerobic Ethanol (Eth) Ammonium sulfate (A.s.) Sulfate Iron (Iro)
Galactose (Gal) Asparagine (Asp) Nitrogen

Glucose Leucine (Leu) Phosphorus (Pho/Phos)
Maltose (Mal) Methionine (Met/Meth) Sulfur (Sul/Sulf)

Phenylalanine (Phen) Zinc (Zin)
Proline (Pro)

Growth rate Temperature (C) pH Extra compound Protocol
0.03 12 3.5 Acetate (Ace) B
0.05 30 5 Benzoate (Benz) A
0.1 6.5 CO2

0.2 Ethanol 18.72 mM (Eth)
Ethanol 9.38mM (Eth)

Formate (For)
Propionate (Pro)

Sorbate (Sor)
Tween 80 (Twe)

none
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Figure 6.1 – Expression levels of UPC2 across the 55 cultivation conditions.
The colored matrix is a schematic representation of the settings of the ten cultivation pa-
rameters over the 55 conditions. The colored lanes indicate the cultivation parameters that
are employed to order the experiments, in this case, aeration type and limiting element.
The applied regression model was able to explain 71% of the variance in the expression
of this gene. The model selected one significant single effect, i.e. aeration type, and two
significant combinatorial effects, i.e. aeration type anaerobic together with limiting ele-
ment zinc and the usage of proline or asparagine as nitrogen source. The reconstructed
expression pattern based on these three effects is indicated by the shaded area.
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Figure 6.2 – Schematic representation of the normalized expression patterns
of genes affected by a single effect, combinatorial effect or a mixture of these.
In this example there are two cultivation parameters, A and B, which can assume two and
five different values, respectively. Genes g1, g2 and g3 are affected by a single effect, AND
effect and OR effect, respectively. The expression of genes g4 and g5 is constituted by the
influence of both a single effect and a combinatorial effect.

cell’s transcriptome and metabolome are known to respond in a combinatorial fashion to
particular environmental conditions or parameters. That is, the simultaneous presence
of certain environmental factors results in a transcriptional and metabolic state that is
not a simple aggregation of the states reached based on the single presence of one of
these factors. For example, when glucose is present, it is utilized in different ways by S.
cerevisiae, depending on the presence of oxygen. Including these AND effects enables
the systematic investigation of the influence of combinations of cultivation parameters
on gene expression. Gene g2 in Figure 6.2 responds to an AND effect. The second type
of combinatorial effect is constituted by applying the logic OR function on two different
settings within the same cultivation parameter. Here, carbon-limited OR iron-limited
growth forms an example. This effect is included, because we expect that closely related
settings within a cultivation parameter, e.g. similar carbon sources, will have a similar
effect on gene expression. Gene g3 in Figure 6.2 responds to an OR effect. In the case of
UPC2 (Figure 6.1), the regression model successively selected the single effect aeration
type, the AND combinatorial effect anaerobic zinc-limited growth and the OR combi-
natorial effect nitrogen source proline or asparagine. (Note that cultivation parameter
aeration type can assume only two settings, i.e. aerobic growth and anaerobic growth.
Since these two predictors are mutually redundant, only one of them (aerobic growth) is
included as a predictor in the regression model and labeled as aeration type. A positive
regression coefficient for aeration type indicates that the gene is more highly expressed
under aerobic conditions; a negative coefficient indicates the reverse scenario.) The re-
gression model keeps on adding cultivation parameters as predictors, until no further
significant improvement can be made. For example, for g4 in Figure 6.2 the single effect
A+ is selected first, followed by the combinatorial effect A+&Bi. See Methods section
for details.

6.3.2 The expression of many genes responds to combinatorial

effects

For most genes the regression model was able to explain 60 to 80% of the variance,
which is present in their expression patterns across the 55 conditions. See Figure 6.3a.
The amount of explained variance does not depend that much on the average expression
level of a gene, although there is a steady increase in explained variance with increasing
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Figure 6.3 – General statistics of the applied regression model.
a: Histogram plot indicating how much variance within the gene expression patterns could
be explained by the regression model for all (differentially expressed) genes. The black
bars indicate the percentage of explained variance when excluding the variance present in
the replicates, and which, therefore, cannot be explained by the regression model. Above
the histogram are the mean and variance of the average expression level (AE), the F-
statistic (FS) and the number of selected cultivation parameters (NCP) for the groups
of genes with explained variance (including replicate variance) as stated on the x-axis
of the histogram. b: Histogram plot indicating the number of single and combinatorial
effects as well as the total number of effects that were selected to explain the observed
gene expression patterns. c: Histogram plot indicating the number of genes influenced
by particular cultivation parameters, either as a single effect, AND effect, OR effect or
independent of the effect type (’all effects’). The ’all effects’ bar is not the sum of the other
three, because genes can be affected by a cultivation parameter both as a single effect and
as a combinatorial effect.

average expression level. Much more important is the degree to which a gene is differ-
entially expressed. The F-statistic, i.e. the ratio between the variance of the average
expression levels across the 55 conditions and the average replicate variance across these
conditions, is strongly correlated with the degree to which the gene’s expression pattern
can be reconstructed. The expression levels of genes with small F-statistics are obscured
by measurement noise and do not differ significantly between the growth conditions.
Also not surprisingly, when more significant cultivation parameters are selected by the
regression model, more of the variance of the gene can be explained. Figure 6.3b,c
outlines which and how many cultivation parameters were selected to reconstruct the
expression patterns of all genes. On average, a gene is influenced by 1.25 (± 1.18) single
effects, 1.73 (± 1.43) AND effects and 1.01 (± 1.04) OR effects. The limiting element,
aeration type and protocol (which is dealt with in more detail below) are the most
prominent factors that influence gene expression behavior. Here it should be noted that
the setup of the cultivation parameters in the compendium is not fully combinatorial,
i.e. not all possible combinations of cultivation parameters are present in the dataset.
For example, across the 55 conditions, 53 have been cultivated under pH 5, while only
a single condition was performed with a lower pH (3.5) and similarly for a higher pH
(6.5), thereby precluding combinatorial effects between the higher or lower pH and other
environmental parameters. Thus, the numbers of genes, which are influenced by a par-
ticular cultivation parameter (as visualized in Figure 6.3c), are biased by the number
of different settings of the cultivation parameters and the number of combinations of
cultivation parameters present in the compendium. Anyhow, the results indicate that
the expression of many genes is influenced, not only independently by particular cultiva-
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tion parameters, but also in a combinatorial fashion, i.e. there are many combinatorial
effects between cultivation parameters that affect gene expression behavior.
The regression analysis was repeated using only the single effects as predictors. For
most genes this resulted in a lower percentage of explained variance. See Figure 6.4a.
Of course, this result could be expected based on the fact that many combinatorial ef-
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Figure 6.4 – Comparison between the regression analysis including including
both the single and the combinatorial effects (Rsc) and the regression analysis
including only the single effects (Rs).
a: Histogram plot indicating how many times one method (Rsc or Rs) leads to a higher
percentage of explained variance (EV) of a gene given that the EV of this gene is larger
than the EV threshold (x-axis) for at least one of both methods. b: Histogram plot
indicating how many times one method (Rsc or Rs) leads to a higher enrichment value
(lower P-value) for a functional category given that the enrichment of this category is
below a P-value threshold (x-axis) for at least one of both methods.

fects were selected as significant predictors in the original regression model. Subsequent
enrichment analysis provided additional evidence for combinatorial regulation. Genes,
of which their expression levels are manipulated by a particular single effect or combina-
torial effect, were grouped and checked for functional overrepresentation. Additional file
1 of [Knij 09] online provides an overview of all enrichment analysis results. It reveals
the many cases (> 1000) in which a particular combination of environmental parame-
ters leads to the up- or downregulation of a group of functionally related genes. Also,
functional enrichment was compared between the regression analysis including both sin-
gle and combinatorial effects and the analysis including only single effects. Genes were
clustered based on their reconstructed expression patterns that were obtained for both
regression models and these clusters were evaluated for enrichment in functional anno-
tation categories. Figure 6.4b shows that the inclusion of the combinatorial effects leads
to increased functional enrichment, and thus further substantiates the existence of the
combinatorial influence of the presence of environmental factors and the importance of
modeling them. Additional file 2 of [Knij 09] online describes the complete comparison
between the regression models including and excluding the combinatorial effects.
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6.3.3 The sample preparation protocol has a large impact on the

measured gene expression levels

As indicated in Table 6.1 and Figure 6.1 the tenth cultivation parameter is termed
“Protocol”. Unlike the nine other parameters, “Protocol” is not directly related to
the cultivation conditions under which yeast is grown, but refers to the protocol to
process RNA samples. Several years ago, an improved sample preparation kit was in-
troduced [Affy 04]. This kit obviated the need for the expensive and time-consuming
poly-A mRNA purification step included in the original procedure. The decision to
omit the purification step, which was also made in other yeast research groups, was sup-
ported by information indicating that samples prepared with or without this step were
similar [Affy 00]. Thus, two different protocols were used to generate the chemostat
compendium’s samples for microarray hybridization: Protocol A and Protocol B. The
main difference between these protocols is that Protocol A includes the polyA-mRNA
isolation step (with cDNA synthesis being performed on purified mRNA), while Protocol
B excludes the purification step (with cDNA synthesis being performed on total RNA).
(The Methods section and Additional file 3 of [Knij 09] online provide the complete
details on both protocols.)
As apparent from Figure 6.3c, the measured transcript levels of many genes appeared
to be influenced by the protocol. Enrichment analysis revealed a significant overrepre-
sentation of characterized genes amongst the genes that have higher apparent transcript
levels under protocol B; all three GO root-categories (biological process, cellular com-
ponent and molecular function) were highly enriched. On the other hand, significantly
many uncharacterized genes yielded higher apparent transcript levels under protocol A.
Further investigation revealed a trend between transcript level and protocol influence:
Genes with higher average expression level tended to yield a higher transcript level in
protocol B and genes with a lower average transcript level tended to yield lower tran-
script levels under protocol B (Figure 6.5). In general, uncharacterized genes have a
lower expression than characterized genes, which explains the results from the enrich-
ment analysis. Further evidence for this hypothesis is found when analyzing the genes
that encode ribosomal proteins (RP genes), whose mRNA’s are highly abundant. Again,
significantly many RP genes exhibit higher expression when analyzed with protocol B
(middle and bottom plots in Figure 6.5).
The relationship between mRNA abundance (expression level) and protocol is only weak
and does not hold for each gene individually. It may, for example, be influenced by the
average length of the polyA-tail of different transcripts. Indeed, analysis of mitochon-
drial genes lacking a poly-A tail demonstrated a large influence of the protocol. Of the
52 transcripts on the microarray representing mitochondrial genes, 27 (amongst which
16 unique mitochondrial genes) were influenced by the protocol, i.e. the regression model
selected the protocol as a significant predictor of the expression pattern of these genes.
All these 27 mitochondrial genes showed a higher (apparent) transcript level under pro-
tocol B. These results illustrate that not only different microarray platforms, labs, and
strains, but also the hybridization preparation steps can affect the outcome of microar-
ray analyses. This strongly underlines previous warnings on the challenges involved in
comparing microarray results from different experiments.
The chemostat compendium allows us to adequately model the influence of the hy-
bridization protocol on expression. In particular, the compendium contains 18 growth
conditions (9 sets of two), where the only differing cultivation parameter is the protocol
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setting: The growth conditions were identical in these nine cases, only the protocol was
different. This provides extra statistical power in the regression procedure and enables
us to successfully model the protocol effect. This allows us analyze the influence of the
environmental cultivation parameters without interference of the protocol’s confounding
effect.
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Figure 6.5 – The influence of the protocol on gene expression.
All genes that are affected by the modifications to the protocol, either as a single effect
or as an interaction effect, are analyzed. First, the mean expression levels of these genes
across all 55 conditions are computed. The genes are divided in seven groups based on
their mean expression levels such that each group holds the same amount (i.e. 14,3%) of
the genes. Each group is characterized by a lower and a higher bound on the expression
value; these two numbers represent the range of the mean expression levels of the genes
within the group. Also, we dichotomize the genes into the ones with positive regression
weights (i.e. upregulation under Protocol B with respect to Protocol A) and the ones
with negative regression weights. a: The blue bars indicate the percentage of genes with
positive regression weights (higher under Protocol B) across these groups (or expression
ranges). Similarly, the red bars indicate these percentages for the genes with negative
coefficients (higher under Protocol A). b,c: For the same ranges, each bar represents the
percentage of genes in the range annotated to a particular functional category over all of
the genes that are annotated with this category and affected by the protocol.

6.3.4 Functional categories are specifically associated with com-

binations of environmental parameters

Many functional categories are specifically influenced by a combinatorial effect. Many
genes within such a category are influenced by a combinatorial effect, whereas none or
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Table 6.2 – MIPS functional categories specifically associated with combinato-
rial effects.
The combinatorial effects ’carbon source acetate OR ethanol’ and ’Limiting element phos-
phorus OR sulfur’ are specifically associated to the listed MIPS functional categories.
P-values of the enrichment of genes within these categories that are affected by the com-
binatorial effect are given in the rightmost column. Also, enrichment P-values of genes
affected by each and by both of the single effects that constitute this combinatorial effect
are given.

Enrichment P-values
MIPS category single effects comb. effect

Acetate Ethanol both Acetate | Ethanol
METABOLISM 0.065 0.077 1 7.8 · 10−18

metabolism of glutamate 1 0.048 1 1.4 · 10−6

C-compound and carbohydrate metabolism 0.027 0.082 1 1.4 · 10−22

C-compound and carbohydrate utilization 0.02 0.043 1 1.3 · 10−17

C-compound, carbohydrate catabolism 0.2 1 1 8 · 10−13

sugar, glucoside, polyol and carboxylate catabolism 0.44 1 1 9.3 · 10−11

ENERGY 0.013 1 1 1 · 10−17

glycolysis and gluconeogenesis 1 1 1 3.8 · 10−9

tricarboxylic-acid pathway 1 1 1 2.2 · 10−11

Phosphorus Sulfur both Phosphorus | Sulfur
transcriptional control 0.13 0.017 1 4.3 · 10−8

RNA processing 0.86 0.32 1 1.5 · 10−6

rRNA processing 0.5 0.83 1 3.3 · 10−6

only a few genes are affected by the single effects that constitute this combinatorial
effect. See Methods section for these details. This analysis was performed on all MIPS
categories. In total 153 significant combinatorial effect-MIPS category pairs were iden-
tified. These are depicted in Additional file 4 of [Knij 09] online. Here, we focus on the
biological interpretation of two such combinatorial effects: Carbon source acetate OR
ethanol, and, Limiting element phosphorus OR Sulfur. See Table 6.2.
The first example is provided by the OR effect of carbon sources ethanol and acetate
on metabolism and energy household. These C2-compounds share a drastically different
impact on central metabolism when compared to using the sugars glucose, maltose and
galactose as carbon source. During growth on sugars, all metabolic building blocks can
be derived from glycolysis, the tricarboxylic acid cycle and the pentose phosphate path-
way, while during growth on C2-compounds, gluconeogenesis and the glyoxylate cycle
are essential for the provision of some of these precursors. Furthermore, the higher ATP
requirement for biosynthesis during growth on the C2-compounds implies that, at a
fixed specific growth rate, dissimilatory fluxes have to be higher with the C2-compounds
than with a sugar as the sole carbon source. This is supported by the significant shared
influence of the C2 carbon sources on the genes of gluconeogenesis and the tricarboxylic
acid pathway.
Besides this and other examples that can be easily explained by current knowledge, there
are also many interactions that might represent as of yet unknown regulatory mecha-
nisms. For example, we find that the limiting elements sulfur and phosphorus have
a similar effect (i.e. OR effect) on transcription regulation genes. A close inspection
of the genes influenced by this OR effect revealed the presence of five genes encoding
subunits of Mediator (MED3/PGD1 (complex tail), MED7 and MED10/NUT2 (mid-
dle), MED11 and MED18/SRB5 (head)), an evolutionarily conserved coregulator of
RNA polymerase II [Pepp 05] and nine genes encoding chromatin remodeling enzymes
(ARP7, GCN5, HST2, RIF1, RSC6, RVB2, SFH1, SNF6 and SPT8 ). In eukaryotes,
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gene transcriptional regulation depends on a complex interplay between signal trans-
duction, specific and general gene regulators and complexes that modify chromatin and
RNA polymerase II. Under sulfur limitation S. cerevisiae adapts its transcriptome in
order to reduce the expression of sulfur rich genes and proteins [Fauc 02, Boer 03]. This
response is mediated by Met4 the main sulfur metabolism regulator. The transcrip-
tional changes upon phosphate limitation are mainly related to high affinity phosphate
transport, phosphate assimilation and polyphosphate metabolism [Boer 03, Tai 05]. Al-
though S. cerevisiae requires the transcription of different specific genes under sulfur
or phosphate limitations, it is tempting to speculate that the mechanisms that govern
the transcription control of these specific sets of genes are shared and depend on shared
mechanisms involving specific subunits of the Mediator complex. Such high degree of
specificity was demonstrated with the implication of Med2 (a Mediator tail subunit) in
the regulation of the low iron response regulon [Pepp 05].

6.3.5 Combinatorial regulation within biochemical pathways pro-

vides further insight into sulfur metabolism and scaveng-

ing

As demonstrated above, we can assess whether groups of genes are influenced by par-
ticular (combinations of) environmental parameters using enrichment tests. This opens
up the interesting possibility to correlate new and previously known patterns of reg-
ulation of individual genes with the regulation of larger families of genes connected
to each other in pathways. In contrast to other gene groups, in a metabolic pathway
clear connections exist between the gene products and their functions, which allows for
more in-depth analysis. Here, we focus on biochemical pathways as described in SGD,
which depict the series of chemical reactions converting metabolites, and the enzymes
catalyzing these reactions. Enrichment analysis indicated that 5 of the 9 downloaded
’SGD superpathways’ were influenced by at least one significant combinatorial effect (at
P < 10−3, Q < 0.08).
An illustrative example is presented by analyzing the expression profiles of the gene fam-
ily involved in sulfur- and sulfur containing amino acid-metabolism in yeast (Figure 6.6).
Sulfur amino acid biosynthesis involves a considerable number of enzymes required for
the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur
metabolites. Expression of the genes encoding the enzymes for this metabolic network is
tightly controlled by the available sulfur source, through modulation of the intracellular
S-adenosyl-methionine levels. Six different cultivation parameters were significantly of-
ten selected to explain the expression patterns of the genes in this pathway (P < 10−3).
Five of these are combinatorial cultivation parameters. Not surprisingly, the only single
effect is sulfur limitation, which causes the upregulation of ten out of the eighteen genes
[Thom 97]. See box 1 of the bars near the enzyme names in Figure 6.6. Despite large
variations in expression under different combinations of conditions, many of the MET -,
CYS -, SAM - and HOM -genes invariably respond to the presence of methionine in the
growth medium by clearly reduced expression. See Figure 6.7, which depicts the normal-
ized gene expression patterns of all genes of the pathway. This response is independent
of the presence of oxygen or growth limitation by carbon or nitrogen sources. Only in
the case where methionine is utilized both as sulfur and nitrogen source and methionine
is the limiting element, we observe that the expression of the corresponding genes is
not reduced (but even slightly induced, mimicking the (known) response under sulfur
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limitation). This explains the selection of the combinatorial effects involving methionine
depicted by boxes 4, 5 and 6 in Figure 6.6.

Limiting element - Sulfur

Aeration type - Anaerobic &
Limiting element - Phosphorus

S-source - Methionine &
Limiting element - Carbon

S-source - Methionine &
Limiting element - Nitrogen

N-source - Methionine &
S-source - Sulfate

Aeration type - Aerobic &
Limiting element - Zinc
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Figure 6.6 – Superpathway of sulfur amino acid biosynthesis.
Near each enzyme (gene product) is a bar representing the regression weights of the six
significant cultivation parameters. These parameters are stated in the legend in the upper-
left corner of this figure. A blank box indicates that the cultivation parameter is not
selected by the regression model. Red and green boxes indicate positive (upregulation)
and negative (downregulation) regression weights, respectively. Darker colors indicate
larger regression weights.

Interestingly, two genes involved in this sulfur-metabolizing network in part respond
differently. HOM2, which is involved in homoserine biosynthesis, responds reciprocally
to the availability of methionine in the growth medium compared to the other HOM
genes, especially under aerobic conditions. The same observation is made for STR2,
which is involved in cystathionine biosynthesis. (In Figure 6.7 magenta boxes mark the
conditions, where methionine is part of the growth medium.) This discrepancy is indica-
tive of a differential regulatory mechanism operating between the HOM2, HOM3 and
HOM6 genes of the homoserine pathway, and of the complex regulation of the transsul-
furation pathway, involving CYS3, CYS4, STR2 and STR3. Further detailed analysis
would be required to elucidate the molecular mechanisms operating in these differential
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combinatorial controls. Such differential controls operating within a pathway are likely
to be involved in intricate flux balancing mechanisms.
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Figure 6.7 – Normalized gene expression patterns of the genes that are part
of the superpathway of sulfur amino acid biosynthesis and additional genes
discussed in the text.
The expression values of each gene are linearly scaled to range from −1 to 1. Here, −1
represents the lowest expression value and 1 indicates a gene’s highest expression value.
These normalized expression patterns are projected on the green-black-red colormap to
derive the heatmap visualization.
Separate branches of the pathway are indicated by the grey horizontal lines. For the group
denoted as “Additional genes”, the grey horizontal lines split the genes in functionally
related groups. The magenta boxes and arrows indicate the cultivation parameters, where
methionine is used as nitrogen or sulfur source. The magenta ellipses and arrows highlight
the expression levels of the SOD and GSH genes under zinc limitation.

Surprisingly, for many of the genes in the pathway under investigation expression levels
under zinc limitation are almost as high as under sulfur limitation, especially under
aerobic conditions. Moreover, the genes of the transsulfuration pathway are highly ex-
pressed under zinc and sulfur limitation, yet lower expressed under the other nutrient
limitations. Also here, STR2 responds reciprocally and is lower expressed under zinc
limitation. Although transcript levels per se cannot be used as flux indicators, this
expression behavior is consistent with an upregulation of the flux towards cysteine un-
der zinc limitation via the increased synthesis of the corresponding enzymes. (See the
graph structure of the pathway near cysteine in Figure 6.6.) The exact nature of this
response is not immediately apparent. However, it provides an interesting hypothesis
on the oxidative stress response of S. cerevisiae under zinc limitation. As previously
described [Mora 00], a “first line of defense” in oxidative stress response is formed by
the superoxide dismutase genes SOD1 and SOD2, which are induced under aerobic con-
ditions. See Figure 6.7. The dithiol glutaredoxin genes GRX1 and GRX2 [Luik 98],
and the monothiol glutaredoxin genes GRX3 -GRX5 [Moli 04], which also participate in
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the response against oxidative stress, exhibit highly differential transcriptional profiles.
This may provide new insight into the specific roles for each of the varying combinations
of glutaredoxins under different growth conditions. Surprisingly, under zinc limitation
not only the Cu, Zn-dependent SOD1 gene is lower expressed; also the SOD2 gene,
encoding the mitochondrial superoxide dismutase, which is dependent on Mn and not
on Zn, is much less induced. A boost in glutathione synthesis apparently takes over
the main defense, since the glutathione synthase genes GSH1 and GSH2 are clearly
induced, especially under zinc-limited aerobic conditions. This can be seen from the
magenta ellipses in Figure 6.7. This fits with the fact that significantly many genes in
the sulfur scavenging pathway are upregulated under zinc-limited aerobic growth, pre-
sumably leading to an induced cysteine pool, cysteine being one of the three components
of the tripeptide glutathione.

6.3.6 Functional characterization of uncharacterized and dubi-

ous genes using the chemostat compendium

In a recent review [Pena 07] it was pointed out that many (> 1000) genes in the yeast
genome are still uncharacterized. Possible reasons for this include genetic redundancy,
lack of strong growth phenotype and the possibility that not all of them are real genes.
Additionally, genes may be involved in environmental and metabolic responses, which
are normally not queried in the lab. Concerning the “characterized” genes, it can be
noted that the function of many annotated genes is derived from large-scale studies, and
hence, in-depth detailed analysis is lacking for these genes.
We conjecture that the visualization of the expression behavior of a gene over the con-
ditions of the compendium, together with the identification of the significant cultivation
parameters to which the gene responds, provides valuable information regarding gene
function. With this information, one can design directed biological experiments or as-
says that probe a specific pathway or activity in order to advance towards the functional
characterization of a gene. We mapped our regression results to SGD’s genome snap-
shot, upon which the division of Saccharomyces cerevisiae ORF’s into verified ORF’s,
uncharacterized ORF’S and dubious ORF’s in [Pena 07] was based. For 1350 genes the
regression model lead to a good reconstruction of the observed expression pattern (ex-
plained variance including replicate variance > 70%). According to SGD, 1009 of these
genes were verified ORF’s; 286 were uncharacterized and 54 were classified as dubious
genes. Amongst the uncharacterized genes, many genes were found to be expressed un-
der conditions which have not been extensively studied before. For example, amongst
the 286 uncharacterized genes, five genes are most significantly influenced by zinc limi-
tation, i.e. zinc limitation was the first condition selected by the regression model. One
of these, YOR387C, is only expressed under zinc limitation. These results immediately
link the function of a gene to a particular cultivation parameter or a specific biological
process related to this cultivation parameter. The expression pattern of these five zinc
responsive genes as well as the other genes to be discussed in this section are visualized
in Figure 6.8. Also, amongst the 54 dubious genes, there are many genes that are highly
expressed under one or a few cultivation parameters, while having a constant expres-
sion over the remaining conditions. For example, YJL119C is only highly expressed
under phosphorus limitation. YBL070C also responds to phosphorus limitation, yet
particularly when the yeast is grown aerobically. The expression of YBR292C is influ-
enced by aerobic sulfur-limited growth and YBL065W is only expressed when grown
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at a low temperature (12 ◦C). 35 of the 54 dubious genes were affected by the aeration
effect or the interaction effect between carbon limitation and aeration. These genes
were screened against a recent proteomics study, where expression data of yeast grown
in aerobic and anaerobic carbon-limited chemostats was measured [Groo 07]. We found
that for three genes unique peptides were quantified. This establishes the existence of
the proteins encoded by these “dubious” genes. See Additional file 5 of [Knij 09] online
for a list of the 54 dubious genes and details on the peptide identification. Notably, 51
of the 54 dubious genes are no longer present on YG 2.0, the successor of the Affymetrix
YG S98 GeneChip, after comparative genomics [Kell 03] and phylogentic footprinting
[Clif 03] approaches identified these as false ORF’s. However, our analysis reveals a
clear-cut influence of environmental conditions on the expression levels of many of these
genes, implying that these genes do have a functional role, at least in the Saccharomyces
cerevisiae strain that was used in this study.
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Figure 6.8 – Normalized gene expression patterns for twelve uncharacterized
or dubious genes.
The expression values of each gene are linearly scaled to range from −1 to 1. Here, −1
represents the lowest expression value and 1 indicates a gene’s highest expression value.
These normalized expression patterns are projected on the green-black-red colormap to
derive the heatmap visualization. The magenta boxes and lines highlight the cultivation
parameters that influence the expression of the genes.

6.3.7 Analysis of shake-flask experiments with the chemostat

compendium

Changes in the extracellular environment or perturbations on genetic level do not only
affect (signaling) pathways in which the change or perturbation has direct involvement,
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but can also impact the cell’s viability, metabolism or other processes in the cell. For
example, there are many experimental conditions and genetic perturbations that will
impact the growth rate of the cell. For shake flask cultivations it is not possible to dis-
tinguish between the direct and indirect effects, since cultivation parameters like growth
rate and nutrient availability cannot be controlled. This also confounds the analysis of
gene expression data from shake flask experiments [Rege 06]. By screening a group of
genes, which were grouped together on the basis of shake flask experiments, against the
compendium, some of the confounding effects can be resolved. The group can be subdi-
vided into clusters of genes that respond to particular environmental parameters within
the compendium and thereby identify the cultivation parameters or biological processes
that could have played a role in the original shake flask experiment, even when these
have not been measured.
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Figure 6.9 – Analysis of two groups: The genes upregulated in a dig1∆,dig2∆
strain and the genes downregulated in this strain.
Middle: Normalized regression weights for the significant cultivation parameters across
the gene groups. Top: The genes were clustered based on these regression weights. Bot-
tom: Schematic representation of the enrichment P-values and related false discovery
rates (Q-values) for each of the uncovered clusters when related to TF binding data and
MIPS functional categories.

To this end, we apply the following strategy: First, we select the (combinatorial) culti-
vation parameters that are significant for the group under investigation. These are the
cultivation parameters that are significantly often selected by the regression model to
explain the expression pattern of the genes in the group when compared to the complete
genome. Next, the genes are clustered based on the normalized regression coefficients
under these cultivation parameters. Finally, these newly obtained clusters are consulted
for enrichment of annotation categories. See Methods section for details. As an exam-
ple, Figure 6.9 depicts the results of this analysis for the groups of genes, which were
found to be induced or repressed in a dig1∆,dig2∆ mutant strain grown in a shake-flask
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[Hugh 00]. To make the induced and the repressed gene groups, we consulted the gene
expression data of this study (i.e. the Hughes et al. yeast mutant microarray com-
pendium [Hugh 00]). The induced group is formed by all genes that are upregulated by
one fold-change or more in the dig1∆,dig2∆ mutant strain compared to the wild-type
strain. The repressed group is formed in a similar fashion by identifying the genes that
are downregulated by one fold-change or more.
The results show a clear difference between direct and indirect effects. On the one hand,
the enrichment analysis on the TF binding data tells us that the genes in Clusters 3,
4 and 5 form a significantly large part of Dig1’s regulon, i.e. the direct targets of TF
Dig1. The known role of Dig1 and Dig2 in regulating mating-specific and pheromone-
responsive genes is confirmed by the enrichment of these functional categories in Cluster
3. Also, binding sites of TFs Tec1 and Ste12, which together with Dig1 form a regulatory
complex involved in mating and filamentation [Chou 06], are enriched for Cluster 5 and
Clusters 3 and 5, respectively. Interestingly, the genes within Clusters 3, 4 and 5 were
clustered together based on their response to the addition of organic acids propionate,
benzoate and sorbate. (The clusters are characterized by the shared transcriptional re-
sponse of their genes to these acids.) On the other hand, a large set of genes that is
induced after the knockout of DIG1 and functionally redundant DIG2, is affected by
growth rate in the chemostat microarray compendium. See Clusters 1, 6 and 10. The
genes of Cluster 1 show high enrichment for metabolism and energy functional categories
as well as for general stress response TF Msn2. From this observation we conclude that
besides the genes that are directly affected, the double knockout also has a large impact
on the metabolism and energy household of the cell when grown in a shake-flask.

6.4 Conclusions

The compendium of chemostat-based transcriptome data is a valuable resource for yeast
systems biology that can be queried online. Additional file 6 of [Knij 09] online contains
the complete dataset (expression data and description of the cultivation conditions).
Additional file 7 of [Knij 09] online is an interactive tool to visualize the gene expression
across all conditions in the compendium; this file can be downloaded from the author’s
website.
Using a forward step-wise regression strategy, we were able to quantify the influence of
(combinatorial) cultivation parameters on the expression of genes and (using enrichment
tests) groups of functionally related genes. The regression results demonstrate the large
extent to which regulation of individual genes results from the integration of multiple
external signals. In fact, the analysis yielded only few “signature transcripts”, i.e. tran-
scripts whose level showed a unique up- or downregulation under a single condition in
the compendium relative to all other conditions. This observation has important impli-
cations for the applicability of so-called signature transcripts to diagnose cellular status
(e.g. starvation for a nutrient, stress or, in higher organisms, disease). Our results indi-
cate that the “signature” status of a gene with respect to an individual environmental
parameter can depend strongly on other (“background”) environmental signals to which
the cell is exposed. In this respect, it should be stressed that the current compendium
of chemostat-based data represents only a minute fraction of the infinite range of com-
binatorial conditions to which yeast cells can be exposed in nature, in industry and in
the laboratory.
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The relevance of the proposed approach for functional analysis of genes and pathways
is exemplified by the observed combinatorial effects of zinc and sulfur availability in the
pathway of sulfur amino acid biosynthesis. Furthermore, the compendium approach has
provided clear indications that 54 S. cerevisiae genes that had previously been labeled
as ’dubious’ and have even been removed from some commercial DNA microarrays, ex-
hibited a specific and reproducible transcriptional response to some of the investigated
culture conditions. These examples illustrate the potential for enabling more focused
functional analysis studies through a correlation of a wide range of cultivation conditions
and gene expression data. The results provide a strong incentive for further extending
the range of cultivation conditions included in the compendium.
The systematic dissection of the impact of (combinations of) individual culture param-
eters on transcriptional regulation enabled by chemostat-based microarray analysis can
be applied to interpret transcriptome data generated in less extensively controlled, but
highly relevant cultivation conditions in industry and in the laboratory. This is exempli-
fied by the additional interpretation of previously published data from shake-flask-based
transcriptome analysis of a dig1∆,dig2∆ mutant (Figure 6.9).
In view of the excellent reproducibility of chemostat-based microarray analysis [Pipe 02],
it should be possible to extend the compendium with data from other research groups,
provided that yeast strain, cultivation procedures and procedures for microarray analysis
are rigorously standardized. The effect of a change in the mRNA processing protocol,
as identified in the regression strategy, provides a clear caveat on the possible impact of
even small differences in experimental procedures.
One promising avenue to be explored is the use of the compendium in deriving tran-
scriptional regulation networks. Given that changes in gene expression can be ascribed
to changes in the activity of TFs and chromatin remodeling proteins, the compendium
dataset provides the means to investigate how cultivation parameters influence the ac-
tivity of the proteins that control transcription. Since the cultivation parameters, such
as the employed carbon source, are closely linked to the actual molecular signals that
are detected by the cell, it may be possible to also relate transporters and signaling cas-
cades to the observed expression under different environmental conditions. This allows
for a genome-wide analysis of the complete chain of regulatory relationships that cause
changes in the extracellular environment to lead to changes in gene expression.
In the employed regression model, the (combinatorial) cultivation parameters are as-
sumed to have an additive effect on gene expression. In previous work [Knij 07] the
aeration type was modeled as a linear effect with both additive and multiplicative com-
ponents. This approach was not possible for the cultivation parameters within the
current framework. Furthermore, a more complex modeling or incorporation of higher-
order effects results in a highly under-determined system and possible computational
complexity issues. Given the high-degree of non-linearity in biological systems, the
application of logic (Boolean) functions might provide a sensible alternative to the com-
monly used linear modeling. Irrespective of the structure of the models, incorporating
combinatorial effects in models for (transcriptional) regulation is crucial. Only in this
way, the goal of systems biology to investigate and understand the interactions between
different components and/or levels in biological systems can be complemented by an
equally integrative approach towards the complex environmental context in which cells
grow and survive.
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6.5 Methods

6.5.1 Chemostat cultivation and microarray data

Prototrophic Saccharomyces cerevisiae strain CEN.PK113-7D (MATa) [Dijk 00] was
grown at 30◦C (or at 12◦C) in 2-liter chemostats (Applikon) with a working volume
of 1.0 liter as described in van den Berg et al. [Berg 96]. Cultures were fed with a
defined mineral medium that limited growth by either carbon, nitrogen, phosphorus,
sulfur, zinc or iron with all other growth requirements in excess and at a constant
residual concentration. The dilution rate ranged from 0.03 to 0.2 h−1. The pH was
measured online and kept constant at 5.0 (or 3.5 and 6.5) by the automatic addition
of 2 M KOH using an Applikon ADI 1030 bio controller. Stirrer speed was 800 rpm,
and the airflow was 500 ml min−1. Dissolved oxygen tension was measured online with
an Ingold model 34-100-3002 probe and was above 50% of air saturation. The off-gas
was cooled by a condenser connected to a cryostat set at 2◦C, and oxygen and carbon
dioxide were measured offline with an ADC 7000 gas analyzer. When required, anaerobic
conditions were maintained by sparging the medium reservoir and the fermentor with
pure nitrogen gas (500 ml min−1). Furthermore, Norprene tubing and butyl septa were
used to minimize oxygen diffusion into the anaerobic cultures [Viss 94]. Steady-state
samples were taken after ∼10-14 volume changes to avoid strain adaptation due to long
term cultivation [Fere 99]. Dry weight, metabolite, dissolved oxygen and gas profiles
had to be constant over at least 3 volume changes before sampling for RNA extraction.
The detailed culture media recipes, used in the 55 different conditions presented in
this study, can be retrieved from the individual GEO [Geno] array reports. The GEO
accession numbers can be found in Additional file 6 of [Knij 09] online.
In this study, two different sample preparation protocols were employed: Protocol A (for
36 of the 55 conditions) and Protocol B (for 19 of the 55). For Protocol A, sampling
of the chemostat cultures, probe preparation and hybridization to the single-channel
Affymetrix GeneChip YG S98 microarrays is described in Piper et al. [Pipe 02]. Protocol
B has the following modifications with respect to Protocol A: In stead of harvesting ∼700
µg of total RNA and applying a Poly-A mRNA isolation step before cDNA synthesis
(Protocol A), ∼15 µg of total RNA is harvested and the purification step is omitted
(Protocol B). Thus, in Protocol B cDNA synthesis is performed on total RNA, while in
Protocol A the synthesis is performed on Poly-A purified mRNA. Additional file 3 of
[Knij 09] online provides the complete details on both protocols and references to the
used AffyMetrix manuals.
Across the 55 conditions, ten different varying cultivation parameters can be identified.
A cultivation parameter, e.g. the carbon source, is described as a categorical variable
and contains two or more settings, e.g. the used carbon source can be either acetate,
ethanol, galactose, glucose or maltose. Each condition is characterized by a configuration
of these settings across the ten cultivation parameters. See Figure 6.1, Table 6.1 and
Additional file 6 of [Knij 09] online for an overview of the relevant settings within the
environmental parameters per condition. In total, 180 microarray measurements were
performed. There is a variable number of independent biological replicates per condition,
however for most (39) conditions three replicates were performed. Chip quality control,
condensing probe intensities to gene expression levels and normalization was performed
using GeneData Refiner Array [Gene]. 170 high quality chips, i.e. gradient severity
≤ 0.165, defective area ≤ 0.5% and outlier area ≤ 0.59%, were retained. Ten chips,
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which did not meet these criteria were dismissed. The RMA algorithm was used to
derive the log scale measure of the expression levels [Iriz 03]. Quantile normalization
was applied to normalize between arrays [Bols 03]. The normalized expression data is
given in Additional file 6 of [Knij 09] online. The raw array data used in this study can
be retrieved at Genome Expression Omnibus [Geno] with series number GSE11452.

6.5.2 Detecting differential expression

A gene was called differentially expressed when 1) the gene was present in at least one
of the arrays (present call P-value < 0.05) and 2) the gene showed significant differ-
ential expression in at least one condition (one-way ANOVA with 55 classes, P-value
< 0.05/9335). 9335 is the total number of transcripts on the array.

6.5.3 Inferring the influence of cultivation parameters on gene

expression using regression

A designmatrix was created, containing both main (or single) effects and interaction (or
combinatorial) effects: Each setting within each cultivation parameter is represented by
a binary indicator column with 170 entries. These columns represent the main effects,
which indicate for each array whether the yeast was grown under the relevant setting
of a particular cultivation parameter. Two types of combinatorial effects were included
in the model, i.e. “AND” and “OR” effects. The AND interaction effect columns were
obtained by applying the logical AND function to all possible pair-wise combinations
of main effect columns. The OR interaction effect columns were obtaining by applying
the logical OR function to all possible pair-wise combinations of main effect columns
that are associated with the same cultivation parameter. Thus, only OR effects that
are constituted of two settings within the same cultivation parameter were modeled.
Redundant columns and columns with all zeros were removed. This resulted in the
binary [170×227] designmatrix D, which includes 38 single effects, 101 AND effects and
88 OR effects. A visualization of this matrix is found in Additional file 8 of [Knij 09]
online.
A forward step-wise ordinary least squares regression strategy was applied to each gene
individually:

y = Xβ + ǫ (6.1)

Here, yi denotes the measured gene expression level of a particular gene for array i, with
i = 1, . . . , 170; X is the predictor matrix, β represents the regression coefficients and ǫ
the error, which is assumed to be independent zero-mean normally distributed. Initially,
X contains only the intercept, i.e. a column of 170 ones. In an iterative fashion, columns
from D are added to X. For this we applied a leave-one-out cross validation (loocv)
scheme, where a single sample is used for testing, while the remaining (169) samples
are used for training the regression model. This was repeated such that each sample is
used once as the test data. The column from D, with the smallest root-mean-squared
(rms) loocv error and absolute regression coefficient larger than 0.3, was selected and
added. The iterative process of adding columns is discontinued when the P-value, as
output by a t-test that determines whether the regression coefficient significantly differs
from zero, exceeds 0.05/227. To prevent the inclusion of spurious AND effects, the
following strategy is applied: When an AND effect column is selected, we check whether
the addition in explained variance is larger than the addition is explained variance when
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adding the two main effect columns that constitute the combinatorial effect. Only in
this case, we add the AND effect column, otherwise the two main effect columns are
added, provided that they satisfy the P-value threshold and their absolute regression
coefficients are larger than 0.3.
Note that only coefficients larger than 0.3 or smaller than −0.3 were allowed. This was
done to focus on large changes in gene expression. Inclusion of absolute weights smaller
than 0.3 did not increase enrichment scores of functional categories (see next section).
Although small regression coefficients might be biologically relevant, this indicates that
there are also many spurious results amongst the small regression weights.
The choice for a step-wise regression approach is substantiated in Additional file 9 of
[Knij 09] online.

6.5.4 Enrichment analysis

For each main or interaction effect, i.e. a column from D, we group all genes, for which
that effect turned out to be a significant predictor with a positive regression coefficient
(or regression weight). This procedure was also carried out to group genes with negative
weights for the significant predictors, and to group genes irrespective of the sign of the
weight. The latter grouping is basically a union of the genes with positive weights and
the genes with the negative weights. In addition, for the cultivation parameters that can
assume more than two settings, we group all the genes that respond to at least one of
the settings of that cultivation parameter as a main effect. Basically, we select all main
effect columns from D that represent a setting of one particular cultivation parameter
and group the genes, for which at least one of these settings is a significant predictor.
(Note that the cultivation parameters that can only assume two settings, i.e. Aeration
type, S-source, Temperature and Protocol, only have one main effect column in D, since
the two settings are mutually redundant and only one of them is included in D.) Also
here, we make the distinction between positive and negative regression coefficients and
the union of these. The hypergeometric test is employed to assess the significance of the
overlap between all these groups and gene sets from GO [Ashb 00], MIPS [Mewe 97],
KEGG [Kane 00] and TF binding data [MacI 06, Harb 04]. Additional file 1 of [Knij 09]
online provides an overview of the significant results (P < 10−6, Q < 8.5·10−4). Here, for
each triplet of P-values, associated with the positive weights, the negative weights or all
weights, the most significant (smallest P-value) is selected and color coded accordingly.
See page 1 of Additional file 10 of [Knij 09] online for a flowchart describing the steps
of this analysis.

6.5.5 Functional categories specifically influenced by a combina-

torial effect

To find a combinatorial effect that is specific for a functional category we group all
the genes for which this effect was selected as a significant predictor by the regression
model (irrespective of the sign of the weight). Also, for this effect, we make three other
gene sets by grouping the genes which are influenced by 1) one of the single effects that
constitute the combinatorial effect 2) the other single effect and 3) by both these single
effects. (If a gene is influenced by both the combinatorial effect and a single effect, we
only consider the effect that was selected first and then add this gene to the appropriate
group.) Functional categories, which are overrepresented in the first group (P ≤ 10−5)
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and not overrepresented in the three other groups (P ≥ 10−2) are called “specifically
influenced by the combinatorial effect”. See page 2 of Additional file 10 for a flowchart
describing the steps of this analysis.

6.5.6 Clustering of genes based on regression coefficients

Given a group of genes, the hypergeometric test is employed to select those (interaction)
effects, i.e. columns from D, which are significantly often selected by the regression
model for the genes in this group when compared to all genes in the genome. Columns
with P < 10−5 are kept. Next, we create matrix R, which contains the normalized
regression weights for the selected columns of all genes in the group under investigation.
The normalized weights of a gene are obtained by dividing the original regression weights
by the variance of the gene. A consensus clustering algorithm [Grot 06] is applied to
cluster the genes based on the normalized regression weights in R: The data is clustered
using a Bayes mixture of Gaussians EM algorithm. The number of clusters is varied from
2 to 20 (or the number of genes in the group if this is smaller than 20) and repeated
50 times for each number of clusters. The total of all clusterings is used to build a co-
occurrence matrix, which indicates how many times a pair of genes was found in the same
cluster amongst all clusterings. This co-occurrence matrix is transformed into a distance
matrix. The distance matrix is zero, when a pair of genes was clustered together in all
attempts; the matrix is one, when a pair never clustered together. We apply hierarchical
clustering with complete linkage on this distance matrix and cut the dendrogram at 0.9
to create the final clusters. These clusters are consulted for enrichment of annotation
categories using the hypergeometric test as explained before. See page 3 of Additional
file 10 for a flowchart describing the steps of this analysis to create matrix R.





CHAPTER 7

COMBINATORIAL INFLUENCE

OF TFS

In this chapter the regression results from Chapter 6 are used to construct regulatory tran-
scription networks. Here, TF binding data is employed to ’explain’ the influence of cultivation
parameters on gene expression. The method described in this chapter aims to estimate under
which cultivation parameters a TF becomes active as an enhancer or a repressor to (co-)regulate
the expression of a gene. The interplay between activated enhancers and repressors that bind
a gene promoter determine the possible up- or downregulation of the gene. The model is
translated into a linear integer optimization problem and solved accordingly. This study is the
first to demonstrate how environmental parameters can be employed to derive transcriptional
regulation networks.
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‘Combinatorial influence of environmental parameters on TF activity’

Theo A. Knijnenburg, Lodewyk F.A. Wessels and Marcel J.T. Reinders

Bioinformatics, Volume 24, Special issue: ISMB 2008 Conference proceedings, p. i172-i181,
July 2008



104 CHAPTER 7. COMBINATORIAL INFLUENCE OF TFS

7.1 Abstract

Cells receive a wide variety of environmental signals, which are often processed combina-
torially to generate specific genetic responses. Changes in transcript levels, as observed
across different environmental conditions, can, to a large extent, be attributed to changes
in the activity of transcription factors (TFs). However, in unraveling these transcription
regulation networks, the actual environmental signals are often not incorporated into
the model, simply because they have not been measured. The unquantified heterogene-
ity of the environmental parameters across microarray experiments frustrates regulatory
network inference.
We propose an inference algorithm that models the influence of environmental parame-
ters on gene expression. The approach is based on a yeast microarray compendium of
chemostat steady-state experiments. Chemostat cultivation enables the accurate control
and measurement of many of the key cultivation parameters, such as nutrient concen-
trations, growth rate and temperature. The observed transcript levels are explained
by inferring the activity of TFs in response to combinations of cultivation parameters.
The interplay between activated enhancers and repressors that bind a gene promoter
determine the possible up- or downregulation of the gene. The model is translated into
a linear integer optimization problem. The resulting regulatory network identifies the
combinatorial effects of environmental parameters on TF activity and gene expression.

7.2 Introduction

TFs mediate the activation or repression of gene expression by binding specific regula-
tory sequences (motifs) in gene promoters. The combinatorial interactions of multiple
TFs play an essential role in transcriptional regulation. A classical example is E. coli ’s
lactose system, where the lac operon is expressed only if the concentration of TF CRP
is high and that of TF LacI is low. Presently, many studies have revealed an important
role for combinatorial interactions between different TFs in establishing the complex
patterns of gene expression [Bala 06]. The advent of high-throughput genomic mea-
surement techniques enabled the application of genome-wide computational approaches
aimed at inferring these regulatory relations. Sequence data, microarray gene expression
data and ChIP-chip TF binding data have been integrated in many different ways to de-
rive regulatory networks. Several approaches fit expression data using linear regression
models, where the predictors are the TFs, i.e. their binding potential or number of mo-
tifs in a gene promoter [Buss 01, Gao 04, Nguy 06]. The effect of multiple TFs on gene
expression is modeled as the weighted sum of the contribution of individual TFs. Combi-
natorial regulation by TFs, i.e. synergistic or antagonistic effects of multiple TFs on gene
expression, are not incorporated into these models. Most methods that do include com-
binatorial effects limit the scope to TF pairs, e.g. [Das 04, Yu 06, Chan 06, Bonn 06].
Bonneau et al. [Bonn 06] employ continuous versions of logic functions (OR, AND, and
XOR) of the activities of TF pairs as additional predictors in the regression model. Al-
though, in principle, these methods can be extended to model the combinatorial effects
of more than two TFs, the model will be too complex to reliably estimate its parame-
ters given the currently available data. Segal et al. [Sega 03] and Yeang and Jaakkola
[Yean 06] present quite different approaches to the problem of combinatorial regulation
in transcription networks. Segal et al. constructed regulatory networks by building
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decision trees. Genes are grouped into regulatory modules, which are defined by a hi-
erarchical decision tree, where the decisions at the nodes of the tree are based on the
expression levels of TFs. In Yeang and Jaakkola, a TF is characterized as an enhancer
or a repressor, being either necessary or sufficient to cause up- or downregulation of a
gene. The combinatorial function of all TFs that can bind a gene promoter is modeled
as the consensus prediction of the individual TFs. It should be noted that these two
approaches, as well as many of the abovementioned ones, rely on the often incorrect
assumption that the activity of a TF can be derived from the expression of the gene
that codes for the TF.
So far, regulatory networks have been presented as graph structures showing the (combi-
natorial) regulatory effect of TFs on individual genes, modules of similarly expressed or
otherwise related genes or on other TFs. The extracellular signals that trigger the activa-
tion or deactivation of TFs are usually not part of the generated network. Yet they could
provide more direct and trustworthy evidence to infer TF activity than other signals,
such as the gene expression of a TF. Three main reasons for their exclusion can be iden-
tified. First, many studies on yeast are based on shake-flask cultures, where parameters
like growth rate and nutrient availability are continuously changing and cannot be con-
trolled or accurately measured. Consequently, conditions can not be accurately defined.
Second, very often research questions are approached from a single perspective, i.e. a
condition of interest is compared to a reference condition. Differential gene expression
is then attributed to the difference between the condition of interest and the reference
condition. These approaches ignore combinatorial effects of growth parameters, the pres-
ence of which have been established by various studies, e.g. [Knij 07, Rege 06, Cast 07].
That is, if the measurements were repeated using a different medium composition or
temperature, chances are that a different set of differentially expressed genes would be
identified. Thus, these approaches only model the differences between growth condi-
tions, and not the growth conditions themselves. Note that this strategy is implicitly
incorporated into two-channel microarray measurements, which output the gene expres-
sion ratio between the condition of interest and the reference condition. Third, when
combining different microarray experiments, differences in mRNA extraction protocols,
microarray platform, and possibly normalization and summarization algorithms, add to
the already large amount of unquantified heterogeneity amongst experimental conditions
[Tan 03, Bamm 05].
The context dependency of regulatory networks has been identified and acknowledged in
many studies. For example, in Bar-Joseph et al. [Bar 03] annotation data is employed
to identify the biological context in which the inferred regulatory interactions are as-
sumed to take place. In Luscombe et al. [Lusc 04] condition-specific regulatory networks
were derived. In this case, condition-specific refers to one of five phenomena (cell cycle,
sporulation, DNA damage, stress response or diauxic shift), which were investigated
with five different microarray datasets. Myers and Troyanskaya [Myer 07] propose a
Bayesian approach for context-sensitive integration of diverse genomic data. Note how-
ever, that in these approaches, the precise environmental conditions under which the
microarray measurements were taken are not included in the model. In this work we
do incorporate the actual cultivation parameters in the computational framework and
use this information to infer combinatorial regulation by TFs. The work is based on a
yeast transcriptome compendium, comprised of 170 microarray measurements [Knij 09].
These measurements encompass 55 unique growth conditions with a variable number
of independent biological replicates per condition. All cultivations were performed in
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chemostat fermentors under steady-state conditions. In a chemostat, culture broth (in-
cluding biomass) is continuously replaced by fresh medium at a fixed and accurately
determined dilution rate. When the dilution rate is lower than µmax, the maximal spe-
cific growth rate of the micro-organism, a steady-state situation will be established in
which the specific growth rate equals the dilution rate. In such a steady-state chemostat
culture, µ is controlled by the (low) residual concentration of a single growth-limiting
nutrient. Across the 55 different conditions, there are nine varying cultivation parameter
types, including limiting element, growth rate, carbon source, aeration and temperature.
Each type can assume a unique set of values. For example, in a given experiment, the
employed limiting element is either carbon, nitrogen, sulfur, phosphorus, zinc or iron.
Thus, each condition is characterized by a configuration of settings of these nine culti-
vation parameter types. See Figure 7.1. In order to model the effects of the cultivation
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Figure 7.1 – Expression levels of a gene (COX5A) across the 55 cultivation
conditions.
The colored matrix is a schematic representation of the settings of the nine cultivation
parameter types across the 55 conditions. The colored lanes indicate the cultivation pa-
rameter types that are employed to order the experiments, in this case, aeration type and
limiting element. The regression model which models the gene expression as a function
of the cultivation parameters, selected one single effect, i.e. aeration type, and one com-
binatorial effect, i.e. aeration type anaerobic together with limiting element carbon. The
reconstructed expression pattern based on these two effects is indicated by the shaded
area.

parameters on gene expression while explicitly incorporating TFs, we follow a two-step
procedure. An overview of this procedure is presented in Figure 7.2. First, we apply a
forward stepwise regression strategy to quantify the (combinatorial) effect of these en-
vironmental parameters on gene expression. The regression is performed for each gene
individually. Figure 7.1 depicts the results of the regression analysis for one particular
gene. The influence of a cultivation parameter on the expression of a gene is represented
by its regression weight. These weights are discretized by mapping non-zero elements
to 1 or -1, depending on the sign of the weight. Given that changes in gene expression



7.2. INTRODUCTION 107

Figure 7.2 – Schematic overview of the approach.

The goal is to build R̂, the optimal approximation of the discretized regression coefficients
in R. a: The coefficients in R are derived from a regression analysis, which assesses the
influence of cultivation parameters on gene expression by employing these parameters as
predictors in the regression model. The discretization procedure maps non-zero regression
weights to 1 or -1, depending on their sign. (The schematic representation of R is given

for five genes and three cultivation parameters.) b: The elements of R̂ are determined by
T and M. T is fixed and indicates binary TF binding potential to gene promoters. The
elements of M are estimated and indicate the activity of TFs as enhancers or repressors
under the different (combinatorial) cultivation parameters. A logic circuit derived from M
is graphically depicted above the representation of M. c: Visualization of the active TFs
on the gene promoters of genes g1, g2 and g3 under cultivation parameter A. Enhancers
are depicted as red boxes; repressors are depicted as green boxes. (TF γ can bind the
promoter of g1, but is not active under A.) The height of a box indicates the enhancer or
repressor strength. The strength of a particular enhancer or repressor is the same for all
genes. A gene is upregulated when its activator strength, i.e. the sum of the heights of
the red boxes, is larger than the repressor strength, which equals the sum of the heights of
the green boxes. Downregulation is inferred in the opposite situation. See text for details.
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levels as observed across different environmental conditions can be attributed to changes
in the activity of TFs, we aim to infer the activity of TFs as a function of the cultivation
parameters. This forms the second step of our approach. The goal is to estimate M,
such that R̂ is the optimal approximation of the discretized regression coefficients in R.
The elements of M are -1, 0 or 1 and indicate whether a TF is activated as an enhancer
(1) or a repressor (-1) under a (combinatorial) cultivation parameter. Additionally, each
TF has a particular generic enhancer strength and a repressor strength. In the proce-
dure we employ auxiliary matrix T, which is derived from ChIP-chip experiments and
literature and indicates whether a TF can bind a gene promoter. To decide whether a
gene is upregulated, downregulated or not affected by a particular cultivation parame-
ter, indicated by a 1, -1 and 0 in R̂, respectively, we use the following rules concerning
transcriptional regulation: If there is at least one active enhancer in a gene promoter,
then the gene can be upregulated. If there are only active enhancers in a gene pro-
moter, then the gene is upregulated. Similar rules apply to the repressors. If there are
both active enhancers and repressors in a gene promoter, we compare total enhancer
strength, which is the sum of the strengths of the activated enhancers, with its repres-
sor counterpart. When the enhancer strength is larger than the repressor strength, the
gene is upregulated. The gene is downregulated when the repressor strength exceeds the
enhancer strength. Figure 7.2c visualizes the active TFs that bind the gene promoters
of genes g1, g2 and g3 under cultivation parameter A. From M we deduce that three
TFs are activated; α and β are enhancers, δ is a repressor. From T we deduce that
α binds all three promoters, β binds the g2 and g3 promoters and δ only binds the
promoter of g3. Gene g1 and g2 are upregulated, since only active enhancers bind the
promoters. For gene g3, the repressor strength of TF δ exceeds that of the sum of the
two enhancers, thereby downregulating the gene. The concept of TF strength enables
the inference of hierarchical or combinatorial effects amongst TFs that bind a gene pro-
moter. The inference algorithm is translated into a linear mixed integer optimization
problem and solved accordingly. Both the elements of M as well as the TF strengths are
estimated, such that the predicted gene regulation in R̂ maximally corresponds with the
discretized regression coefficients in R. The abovementioned rules become constraints
in the optimization problem. See the Methods section for details. The resulting model
identifies the combinatorial influence of cultivation parameters on TF activity and gene
expression. Furthermore, it infers the combinatorial regulatory code of multiple TFs in
gene promoters.

7.3 Methods

7.3.1 Microarray data

The Saccharomyces cerevisiae laboratory reference strain CEN.PK 113-7D (MATa) was
grown in chemostat fermentors under 55 different conditions. For each condition, a vari-
able number of independent biological replicates was performed, although mostly three,
summing up to 170 microarray measurements. Across the 55 conditions, nine different
cultivation parameter types can be identified. A cultivation parameter type, e.g. the
carbon source, is described as a categorical variable and contains two or more categories,
e.g. the used carbon source can be either maltose, glucose or ethanol. Each condition
is characterized by a specific combination of these categories across the nine cultivation
parameter types. Figure 7.1 presents an overview of the relevant categories assumed by
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the parameter types per condition. Sampling of the chemostat cultures, probe prepara-
tion and hybridization to single-channel Affymetrix GeneChip YG S98 microarrays was
performed as previously described [Pipe 02]. Chip quality control, condensing probe
intensities to gene expression levels and normalization was performed using GeneData
Refiner Array. The RMA algorithm was used to derive the log2 scale measure of the
expression levels [Iriz 03]. Quantile normalization was applied to normalize between
arrays [Bols 03].

7.3.2 Inferring the influence of cultivation parameters on gene

expression

A design matrix was created, containing both main (or single) effects and interaction
(or combinatorial) effects: Each category within each cultivation parameter type is rep-
resented by a binary indicator column with 170 entries. These columns represent the
main effects, which indicate, for each array, under which category of a particular culti-
vation parameter type, the yeast was grown. Interaction effect columns were obtained
by applying the logic AND function to all possible pair-wise combinations of main ef-
fect columns. Redundant columns and columns containing only zeros were removed,
resulting in 112 columns, of which 37 represent main effects and 75 represent interaction
effects. This data is stored in the binary [A × C] design matrix D. Here, A equals
170 and is the number of arrays. C equals 112 and is the number of (combinatorial)
cultivation parameters.
A forward stepwise ordinary least squares regression strategy was applied to each gene
individually:

y = Xθ + ǫ (7.1)

Here, yi denotes the measured gene expression level of a particular gene for array i, with
i = 1 . . . A; X is the predictor matrix, θ represents the regression coefficients and ǫ the
error, which is assumed to be independent zero-mean normally distributed. Initially, X

contains only the intercept, i.e. a column of A ones. In an iterative fashion, columns
from D are added to X. For this we apply a leave-one-out cross validation (loocv)
scheme, where a single sample is used for testing, while the remaining (A − 1) samples
are used for training the regression model. This is repeated such that each sample is
used once as test data. The column from D, with the smallest root-mean-squared (rms)
loocv error and absolute regression coefficient larger than one, is selected and added.
The iterative process of adding columns is discontinued when the P-value, as output by
a t-test that determines whether the regression coefficient significantly differs from zero,
exceeds 0.05/C. To prevent the inclusion of spurious combinatorial effects, the following
strategy is applied: When a combinatorial effect column is selected, we check whether
the addition in explained variance is larger than the addition is explained variance when
adding the two main effect columns that constitute the combinatorial effect. Only in
the cases where this is true, we add the combinatorial effect column. Otherwise the two
main effect columns are added, provided that they satisfy the P-value threshold and
their absolute regression coefficients are larger than one.
Note that only coefficients larger than one or smaller than minus one are allowed. In
terms of the absolute expression measure, this means we only take into account expres-
sion differences of one fold change or more. (The expression data is on log2 scale.) So,
we focus on the cases where a cultivation parameter has a large influence on expression.
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Finally, the regression coefficients for all yeast genes are discretized and put in R

([G × C] ∈ Z[−1, 0, 1]), where G is the number of yeast genes. The discretization pro-
cedure maps positive coefficients to 1 and negative coefficients to -1. R is quite sparse
since for most of the genes only two or three columns from D were selected as significant
predictors.

7.3.3 TF binding data

For 111 TFs we extracted their known regulatory sites from TRANSFAC [Wing 00]
and ChIP-chip data [Harb 04, MacI 06] (no conservation, binding P-value cutoff 0.001).
These gene-TF pairs were put in the binary [G × F ] TF binding matrix T, where a 1
indicates that a TF can bind a gene promoter. F equals 111 and is the number of TFs.

7.3.4 Inferring TF activity and TF strengths

The goal of our optimization problem is to infer the activity of TFs as a function of
cultivation parameters, such that we can optimally explain the regression coefficients,
which were distilled from the observed gene expression data. These TF activities form
tertiary matrix M ([F × C] ∈ Z[−1, 0, 1]). A nonzero element in M indicates that a
TF is activated under a cultivation parameter and either acts as an enhancer (1) or a
repressor (-1). Other data used in the optimization problem are: TF binding matrix T

([G × F ] ∈ Z[0, 1]), discretized regression coefficient matrix R ([G × C] ∈ Z[−1, 0, 1])

and its reconstructed version R̂ ([G × C] ∈ Z[−1, 0, 1]). First, from the tertiary matrix

R̂ two binary matrices with the same dimensions, R̂+ and R̂−, are derived. R̂+ has
non-zero entries, where R̂ contains 1’s, and thus indicates the elements, where genes
are upregulated under influence of a particular cultivation parameter. R̂− has non-zero
entries, where R̂ contains -1’s, and thus indicates the downregulated elements. A similar
procedure is undertaken for tertiary matrix M, thereby obtaining M+, which contains
the active enhancers and M−, which contains the active repressors. Now, all variables
consist of binary integers (and are restricted to remain binary integers).
The objective function for the optimization problem is as follows:

minimize
∑

∀g,c∈I+

[Rgc − R̂+
gc] +

∑

∀g,c∈I−

[−Rgc − R̂−
gc] +

+λ
F∑

f=1

C∑

c=1

[M+
f,c + M−

f,c] (7.2)

where I+ is the set of index pairs referring to the elements where R is 1, and similarly,
I− refers to the negative elements of R. Thus, we only try to explain the nonzero
elements of R, which represent the large expression changes due to the influence of the
cultivation parameters. The zero elements of R do not only contain cases where there is
no change in expression, but they contain the whole spectrum of no change in expression
up to moderately large changes in gene expression. Therefore, we do not want to enforce
TFs to be deactivated because of these zero elements. The last term of Eq. 7.2 restricts
the model complexity by penalizing the number of activated TFs. Parameter λ can be
interpreted as the number of non-zero elements in R that a TF needs to help explain
in order for it to be activated. Below, the constraints of the optimization problem are
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stated. These constraints are linear in M+, M−, R̂+ and R̂−, which are the variables
in the system. In the appendix a detailed explanation for constraints c5, c8 and c12 is
given.
The first two constraints are straightforward. Constraint c1 states that a TF cannot be
an active repressor and an active enhancer at the same time. Constraint c2 states that
a gene cannot be upregulated and downregulated at the same time.

c1: M+
fc + M−

fc ≤ 1 ∀f, c

c2: R̂+
gc + R̂−

gc ≤ 1 ∀g, c

Constraint c3 states that if there is at least one active enhancer in a gene promoter,
i.e. the inner product is positive then the gene can be upregulated, i.e. the regression
coefficient can be 1. Constraint c4 is the analogue constraint for the case of active
repressors. Constraint c5 forces a gene to be either upregulated or downregulated,
when there is at least one active enhancer or one active repressor in the gene promoter.

c3: 〈Tg·,M
+
·c〉 ≥ R̂+

gc ∀g, c

c4: 〈Tg·,M
−
·c〉 ≥ R̂−

gc ∀g, c

c5: 〈Tg·,M
+
·c〉 + 〈Tg·,M

−
·c〉 ≤ F · (R̂−

gc + R̂+
gc) ∀g, c

To decide upon upregulation or downregulation when multiple active enhancers and
repressors bind a promoter, four continuous variables are introduced: S+ and S−; both
([F × C] ∈ R[0, F ]) and S̃+ and S̃−; both ([F × 1] ∈ R[1, F ]). S+

fc, represents the

“strength” of TF f as an enhancer under cultivation parameter c. S+
fc is zero when

M+
fc is zero, i.e. when f is not activated as an enhancer under c. This rule is stated in

constraint c6. S+
fc equals the generic TF strength for f , S̃+

f , when M+
fc is one. Thus,

the strength of a TF f is the same for all genes under the cultivation parameters, where
the gene is activated (and zero otherwise). This rule is stated in constraints c7 and c8.

Analogue rules apply for S− and S̃−. The corresponding constraints c9, c10 and c11

are omitted for brevity.

c6: S+
fc ≤ F · M+

fc ∀f, c

c7: S+
fc ≤ S̃+

f ∀f, c

c8: S+
fc − S̃+

f ≥ F · (M+
fc − 1) ∀f, c

Constraint c12 states that when the sum of the strengths of active enhancers that
bind a gene promoter is larger than its repressing counterpart, the gene is upregulated.
Constraint c13 encloses the reverse scenario. Note that if an identical set of enhancers
and repressors is active on a promoter, this will lead to the same reconstructed regression
coefficient for any gene and under any cultivation parameter.

c12: 〈Tg·,S
+
·c〉 − 〈Tg·,S

−
·c〉 ≥ (F 2 + F−2) · R̂+

gc − F 2 ∀g, c

c13: 〈Tg·,S
−
·c〉 − 〈Tg·,S

+
·c〉 ≥ (F 2 + F−2) · R̂−

gc − F 2 ∀g, c

The optimization problem is implemented within the MATLAB environment and exe-
cuted using the MOSEK optimization toolbox with standard settings for mixed integer
optimization. Given constraints c1 to c13, MOSEK estimates variables M+, M−, R̂+,
R̂−, S+, S−, S̃+ and S̃− such that the optimization function in Eq. 7.2 is minimized.
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7.4 Results

7.4.1 TF activity in response to changes in oxygen and carbon

presence

Figure 7.3 – Overview of the results obtained for the oxygen and carbon limi-
tation data.
a: Inferred influence of cultivation parameters aerobic growth (Aer), anaerobic growth
(Ana) and carbon limitation (Clim) on TF activity. Only the three dominating TFs are
reported. b: Representation of S, indicating the strength of the activated TFs under each
of the four cultivation parameters. Enhancers are depicted in red; repressors are depicted
in green. c: Representation of T, indicating which gene promoters can be bound by the
activated TFs. The enhancer or repressor strengths for the four cultivation parameters
are visualized by the colored blocks inside the rectangle that represents a binding site.

d: Representation of R̂, indicating the inferred regression coefficients. Upregulation is
indicated by red; downregulation is indicated by green. Incorrectly inferred elements are
marked with a grey cross. White boxes without a cross are the zero elements of R. These
elements are not part of the optimization scheme.

The regulatory network inference algorithm is run on a subset of the data. In particular,
we focus on oxygen and carbon; two environmental factors, which have a large and well
studied effect on the transcriptional program of Saccharomyces cerevisiae. Four cultiva-
tion parameters are selected, i.e. aeration type, carbon-limitation and the combinato-
rial cultivation parameters, carbon-limited aerobic growth and carbon-limited anaerobic
growth. Note that aeration type is actually a cultivation parameter type that assumes
two values, i.e. aerobic growth and anaerobic growth. Since these are mutually re-
dundant, only aerobic growth was included in the regression model and subsequent
optimization algorithm. (Downregulation under aerobic growth and upregulation under
anaerobic growth are interchangeable.) There are 40 genes, which are influenced by at
least two of these four cultivation parameters, i.e. there are 40 rows in R with at least
two non-zero elements in the four columns of interest. These 40 genes are bound by 46
different TFs. In this experiment λ is set to two. The algorithm correctly inferred the
regression coefficients of 58 of the 84 (70%) nonzero elements in R. A particularly large

concentration of incorrectly predicted values appears towards the bottom of R̂, where



7.4. RESULTS 113

zeros are predicted while the true expression coefficients are non-zero. See Figure 7.3d.
This stems from the fact that the promoters of these genes have almost no motifs for
the activated TFs, in which case the model can not explain the up- or downregulation.

Inferred TF activity

In total, nine different TFs were activated across the four cultivation parameters, some
under more than one cultivation parameter. Three of these TFs, Hap1, Hap2/3/4 and
Rox1, have a significantly larger strength, when compared to the others. See Figure
7.3a,b. The large strength indicates their dominating effect on transcriptional regula-
tion. If one of these TFs is active and binds the promoter, it will determine the direction
of transcriptional regulation. E.g., under aerobic conditions (Aer) the promoter of gene
PAU3 (the tenth gene from the bottom in Figure 7.3c) is bound by one active enhancer,
i.e. Yap7, and one active repressor, i.e. Rox1. Since the repressor strength of Rox1 is
(much) larger than the enhancer strength of Yap7, the gene is (correctly) predicted to
be downregulated. Interestingly, in the resulting network for this data, the TF strength
of Rox1 equals 45.9995, which is very close to the maximum value of 46, the number of
TFs F . However, this number is slightly smaller than the strength of Hap2/3/4 which
has the maximal strength of 46. This difference can be attributed to gene PET9 (the
ninth gene from the top in Figure 7.3c). Both Hap2/3/4 and Rox1 can bind the PET9
promoter. To ensure that this gene is upregulated when grown aerobically, as was de-
duced from the regression analysis, the active enhancers should have a larger strength
than the active repressors. Therefore, the strength of Rox1 is set a bit smaller than the
strength of Hap2/3/4, however, still large enough to dominate other active enhancers.

Regulation of gene expression by oxygen

The role of the three dominant TFs in the regulation of gene expression by oxygen is
widely reported in the literature. Both Hap1 and the Hap2/3/4 complex activate genes
in response to heme, which is synthesized only in the presence of oxygen [Zito 92]. TF
Rox1 is needed for the repression of hypoxic or heme-repressed genes under aerobic
conditions [Lowr 88]. Also, the relation between carbon source and the Hap2/3/4 com-
plex has been investigated. The Hap2 and Hap3 proteins enable DNA binding of the
complex, whereas Hap4 contains the transcriptional activation domain. The synthesis
of the activator subunit Hap4 is regulated by the carbon source. More specifically, the
expression of Hap4 is repressed by glucose, Saccharomyces cerevisiae’s preferred carbon
source [Fors 89]. Tai et al. [Tai 05] reports that Hap4 mRNA is present in carbon-
limited cultivations even under anaerobic conditions, where Hap4 has no obvious role.
We can corroborate and even further substantiate these findings with the observation
that the Hap4 protein is an activator under carbon-limited anaerobic conditions. Note
that all genes, which are upregulated under carbon-limited anaerobic growth are also
upregulated under aerobic growth. See the top 13 genes in Figure 7.3c. The expression
profile of one of these genes, COX5A, across all conditions is depicted in Figure 7.1. This
expression profile is typical for all the 13 members of this group. It shows that these
genes are most highly expressed when grown aerobically. Yet, in the anaerobic case,
where the expression is in general lower, these genes show different expression behavior
in carbon-limited growth compared to other nutrient limitations. I.e., these genes have a
higher expression level in carbon-limited cultivations, where there is hardly any glucose,
compared to the situation, where glucose is abundant.
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Also, for the other TFs, which are activated according to the inference algorithm, evi-
dence is found in literature. E.g., Reb1, which acts as an enhancer under three cultiva-
tion parameters, is a RNA polymerase I enhancer binding protein as well as an activator
for many genes transcribed by RNA polymerase II [Ju 90]. Ste12 is known to activate
genes associated with pseudohyphal (low oxygen) growth [Norm 99]. Sut1 is reported
to encode a glucose transporter [Weie 99], however Sut1 also has a putative role in the
regulation of some hypoxic genes [Regn 01]. In general, the precise regulatory role of
these TFs in (an)aerobiosis and response to the carbon source is not known. The results
of this analysis provide hints for elucidating the regulatory mechanisms of these factors.

Setting λ

Parameter λ, which restricts the model complexity by penalizing the number of acti-
vated TFs, is chosen using a 5 fold cross-validation (cv) scheme. The genes are divided
into five parts, where consecutively four parts are used for training and one part is used
for testing. The M and S matrices, which are computed on the training set, are applied
to the test set to obtain the reconstructed regression coefficients for the test set, R̂test.
The error on the test set is defined as:

Err =
1

J

∑

∀g,c∈I

∣∣∣Rtest
gc − R̂test

gc

∣∣∣ (7.3)

where I is the set of index pairs referring to the non-zero elements of Rtest and J the
number of these non-zero elements. The cross-validation scheme is repeated ten times.
Figure 7.4 depicts the average error over all cv runs. For small values of λ, many TFs
are activated in order to approximate the regression coefficients. Clearly, this strategy
is prone to overfitting, which is also illustrated by the large cv error. For large values
of λ, activating a TF is severely penalized, such that only a few TFs will be activated.
(For λ = 20, no TF is activated and every element of R̂test is zero). The high cv error in
this case, indicates that a lot of true regulation is missed. The optimal λ will be found
between these extremes. In this experiment, λ = 2 led to the smallest cv error and was
therefore selected.

Figure 7.4 – Cv errors for different values of λ.

7.4.2 Transcriptional regulation of nitrogen metabolism

Across the conditions of the compendium, yeast was grown on six different nitrogen
sources. This inspired the second experiment, where we analyzed the transcriptional
regulation of the genes that comprise the nitrogen compound metabolism category of
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GO biological processes [Ashb 00]. 119 of these genes are influenced by at least one culti-
vation parameter and bound by one of 78 different TFs. In total, there are 68 cultivation
parameters that cause up- or downregulation of at least one of these 119 genes. The
resulting transcription regulation network (with λopt = 2) revealed the activation of 14
different TFs under 28 different cultivation parameters, of which 11 are combinatorial.
Figure 7.5 depicts the network for the cultivation parameters, which are most straight-
forwardly related to nitrogen metabolism, i.e. the different nitrogen sources, nitrogen as
growth limiting element and combinatorial effects involving these cultivation parameters.
The six different nitrogen sources can be dichotomized into preferred and non-preferred

Figure 7.5 – Inferred TF activity derived from genes, which are involved in
nitrogen metabolism.
Preferred nitrogen sources are printed in bold; non-preferred nitrogen sources are printed
in italic style. Abbreviations for the nitrogen and sulfur sources are explained in the text.

nitrogen sources. The preferred nitrogen sources are asparagine (Asn) and ammonium
(in ammonium sulfate (AS)). Proline (Pro), phenylalanine (Phe), methionine (Met) and
leucine (Leu) are non-preferred (or poor) nitrogen sources [Maga 02, Boer 07]. In S.
cerevisiae, the use of nitrogen sources is controlled by a transcriptional regulation mech-
anism known as nitrogen catabolite repression (NCR). When a good nitrogen source
is present, NCR shuts down the pathways for the use of poor nitrogen sources. NCR
is mediated by a four-member family of GATA-binding TFs: Gln3, Gat1, Dal80 and
Gzf3 [Hofm 99]. In the absence of a good nitrogen source, Gln3 is activated and in turn
activates the transcription of NCR-sensitive genes. Indeed, for three of the four non-
preferred nitrogen sources, Gln3 acts as an enhancer. When methionine is the nitrogen
source, the Met31/32 complex is activated. This complex controls the biosynthesis of
sulfur containing amino-acids [Blai 97]. (Methionine is also used as a sulfur source.)
In the case of leucine, two additional TFs are activated; Leu3 and Gcn4, the two key
regulators in the regulation of branched-chain amino acid metabolism [Boer 05]. The
inferred role of Gcn4 as an activator in the presence of a poor nitrogen source and as a
repressor in the presence of good nitrogen sources corroborates the work of Sosa et al.
[Sosa 03]. It further supports the fact that NCR is not solely achieved through the action
of the abovementioned family of GATA factors, but conceivably also through Gcn4.

Missing and dubious TF activity

Remarkably, the other tree GATA factors, Gat1, Dal80 and Gzf3, are not part of the
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generated network. Inspection of the TF binding data in the promoters of the 119 nitro-
gen metabolism genes revealed that Gat1, Dal80 and Gzf3 bind only 3, 4 and 0 genes,
respectively. This could indicate that their targets are not transcriptionally regulated
under the influence of the cultivation parameters. However, this observation should also
be related to the ChIP-chip data. From TRANSFAC, we extracted many TF-gene pairs,
which are not present in the ChIP-chip data. This indicates that not all TF targets are
detected by the ChIP-chip experiments. Furthermore, Gao et al. [Gao 04] estimate
that 40% of the ChIP-chip TF targets are non-functional. Obviously, this complicates
regulatory network inference. Another dubious result was identified when analyzing the
cases in which two or more TFs were active on a promoter. In this experiment, there
are 72 such cases, of which 10 are unique. Amongst the most frequent cases, we found
the combinatorial regulation of TFs, which have already been reported in literature, e.g.
the interplay between Leu3 and Gcn4 [Boer 05] and that of Cbf1 and Gcn4 [OCon 95].
Also, Gln3 and Gcn4 were found activated together in a set of nine gene promoters.

Figure 7.6 – Representation of S for the regulatory program inferred using the
compendium.
Color coding is identical to Figure 7.3b.

These nine genes were upregulated under two cultivation parameters, i.e. sulfur limi-
tation and zinc limitation, where both Gln3 and Gcn4 are enhancers. However, under
another cultivation parameter, i.e. where leucine is used as a nitrogen source, the same
genes were downregulated, where now Gln3 acts as a repressor (which is stronger than
enhancer Gcn4). These results seem implausible and imply that this regulation pattern
should involve another TF, which might not be present in the employed TF binding data
set. Preliminary experiments with artificial datasets have demonstrated that especially
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missing TFs (simulated by removing columns from T) can have a large negative effect
on the ability to reconstruct the correct regulatory network. (Results not shown.)

7.4.3 Compendium analysis

The algorithm was also run on the complete compendium for all genes that are up- or
downregulated under at least two cultivation parameters and for all cultivation parame-
ters that influence the expression of at least ten genes (G = 766, C = 67, F = 101, λopt =
5). In the resulting regulatory network, 41 (61%) cultivation parameters activated at
least one of the TFs, resulting in 29 (29%) different activated TFs in total. See Figure
7.6. Network inference on the complete dataset allows for a more rigorous and unbiased
estimation of the regulatory program. It reveals confounding factors, with respect to the
previously discussed programs, which were based on a subset of the data. For example,
the regulatory program of GATA factor Gln3, as discussed before, is also depending on
other (combinatorial) cultivation parameters, e.g. zinc limitation and nitrogen limita-
tion at low temperature. These results offer interesting leads, however the combinatorial
regulation of TFs, as inferred by this analysis, becomes complicated. There are up to
four active TFs on gene promoters. This calls for an automated procedure that uses
these inferred TF activities and accompanying strengths to derive logic rules, in which
the influence of multiple TFs on transcriptional regulation is formalized.
Note that the inference algorithm was run on a selection of genes and cultivation param-
eters. The number of variables and constraints in optimization problem is 4FC + 2GC
and 7FC + 6GC, respectively, which becomes quite large for the complete dataset. It
is yet unclear (due to computation time) if converge is reached for the dataset with all
genes and cultivation parameters.

7.5 Discussion

The transcriptional program of a cell is largely determined by its extracellular environ-
ment. The accurate measurement of environmental parameters, e.g. with chemostat
cultures, have inspired several approaches that analyze the (combinatorial) effect of en-
vironmental parameters on gene expression. In this study, we have, for the first time
demonstrated how environmental parameters can be employed to derive transcriptional
regulation networks. In these networks, the cultivation parameters form the signals
that trigger the activation or deactivation of TFs. Since many TFs are regulated post-
transcriptionally, this approach seems more natural than the often employed strategy of
deducing the TF activity from the mRNA expression of TFs. The inference algorithm
was translated into a linear optimization problem, solvable without having to rely on
greedy and/or heuristic search strategies.
The combinatorial regulatory code of multiple TFs that are able to bind a promoter, is
modeled using the linearly weighted sum of inferred enhancers and repressor strengths.
Previous approaches have also modeled gene expression as a linearly weighted sum of
TF contributions, e.g. [Gao 04]. The main improvement of our method is the fact that
the activity of TFs can be explicitly turned on or off, and that the inference algorithm
optimizes this choice with respect to the direction of regulation, i.e whether a gene is up-
or downregulated. This strategy enables the inference of combinatorial effects between
TFs. For example, a repressor, which interacts directly with the TATA binding protein,
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thereby completely blocking transcription independent of the possible enhancers that
bind the promoter, would acquire a strength that is larger than the sum of the strengths
of all enhancers that can bind the promoter. Thus, the repressor, when active, will cause
downregulation of the gene, thereby nullifying the influence of the enhancers. This is
in contrast with the linear regression strategies, where these enhancers would still have
influence on the gene expression level.
Additional validation experiments indicate that more pairs of TFs, which are simulta-
neously active according to our approach, are found to co-occur in PubMed abstracts
when compared to TF pairs uncovered with Gao et al. [Gao 04]. This difference can
be attributed to the fact that we decompose the expression in terms of cultivation pa-
rameters, and analyze these cultivation parameters separately. When using only the
expression data itself, some cultivation parameters (such as aeration type) can have a
much larger influence than others, thereby dominating the expression pattern and thus
controlling which TFs are found to be the most significant, leading to less diversity in
activated TFs (and thus fewer TF pairs). An overview of this comparison can be found
Supplementary material of [Knij 08] online.
A future challenge lies in the integral interpretation of the inferred regulatory networks,
which must be accompanied by a computational approach that derives logic rules, which
are able to describe the interplay of multiple TFs on gene promoters.

7.6 Appendix

A detailed explanation for constraints c5, c8 and c12 is given.

c5: 〈Tg·,M
+
·c〉 + 〈Tg·,M

−
·c〉 ≤ F · (R̂−

gc + R̂+
gc) ∀g, c

〈Tg·,M
+
·c〉 is the inner product of row g from binary matrix T and column c from binary

matrix M+ and indicates the number of active enhancers that binds a gene promoter.
〈Tg·,M

−
·c〉 indicates the number of active repressors in the promoter. The sum of these

two terms is an integer between 0, when no active TFs bind the promoter, and F , when
all TFs are activated and bind the promoter. The right side of constraint c5 can be
either 0, when both R̂−

gc and R̂+
gc are 0, or F , when one of the two equals 1. (Note that

because of constraint c2 the R̂ coefficients cannot both be 1.) When the sum of the two

inner products is zero, both R̂ coefficients can be 0 or one of them can be 1, since 0 ≤ 0
and 0 ≤ F . However, if there is at least one active enhancer or repressor that binds the
promoter, i.e. the sum of the inner products, denoted by x, is positive, then one of the
R̂ coefficients must be 1, since x � 0 and only x ≤ F holds. Consequently, constraint
c5 forces a gene to be either upregulated or downregulated, when there is at least one
active enhancer or one active repressor in the gene promoter.

c8: S+
fc − S̃+

f ≥ F · (M+
fc − 1) ∀f, c

Constraint c6 ensures that S+
fc, the strength of TF f under cultivation parameter c, is

0, when the M+
fc is 0, i.e. when f is not activated under c. In this case constraint c8

becomes −S̃+
f ≥ −F , which is always satisfied, since S̃+

f , the general enhancer strength

of f is at most F . In the case that the TF is activated, i.e. M+
fc is 1, constraint c8

becomes S+
fc ≥ S̃+

f . Together with constraint c7, which states that S+
fc ≤ S̃+

f , it forces

S+
fc to be equal to S̃+

f in the case that M+
fc is 1.
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c12: 〈Tg·,S
+
·c〉 − 〈Tg·,S

−
·c〉 ≥ (F 2 + F−2) · R̂+

gc − F 2 ∀g, c

〈Tg·,S
+
·c〉 is the inner product of row g from binary matrix T and column c from con-

tinuous matrix S+ and indicates the sum of the strengths of all active enhancers that
can bind the promoter of g under cultivation parameter c. 〈Tg·,S

−
·c〉 indicates the total

repressor strength. From constraints c3, c4 and c8 we know that if there are no active
TFs that can bind the promoter, both inner products as well as R̂+

gc are 0. In that case,
constraint c12 becomes 0 ≥ −F 2 and is satisfied. In the case that there is at least one
active enhancer or repressor that binds the promoter, the difference between the inner
products can range from −F 2, when all F TFs are active, bind the promoter and act
as repressors with the maximal strength of F , to F 2, when the enhancer strength is at
its maximum. If we want to call a gene upregulated, i.e. R̂+

gc is 1, than constraint c12

becomes: 〈Tg·,S
+
·c〉 − 〈Tg·,S

−
·c〉 ≥ F−2. Here, F−2 plays the role of a small positive

number. Consequently, a gene can only be upregulated, i.e. R̂+
gc can only be 1, when

the enhancer strength is larger than the repressor strength.





CHAPTER 8

GENE SET ACTIVITY PROFILES

This chapter presents an alternative to the hypergeometric test procedure used to test gene
groups for functional enrichment. The test described in this chapter is based on the central
limit theorem. In contrast to the rest of the thesis, the method is applied to time series
microarray data in order to create gene set activity profiles, which represent the enrichment of
a gene set over time. Since for each gene set a unique activity profile can be derived, differences
in the activity of e.g. biological processes or transcription factors in terms of the degree of
enrichment and timing can be analyzed, thereby offering profound insight in (the hierarchy of)
regulatory mechanisms.

This chapter is published as:

‘Creating gene set activity profiles with time-series expression data’

Theo A. Knijnenburg, Lodewyk F.A. Wessels and Marcel J.T. Reinders

International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 4, No.3, p.
306 - 323, 2008
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8.1 Abstract

The use of predefined gene sets has become crucial in the interpretation of genomewide
expression data. A limitation of the existing techniques that relate gene expression levels
to gene sets is that they cannot readily be applied to time-course microarray data. The
ability to attach statistical significance to the behavior of biological processes over time
would greatly contribute to understanding the complex regulatory mechanisms in the
cell.
We propose a statistical testing procedure based on the central limit theorem to assess
the enrichment of a gene set. The technique is applied on time-course microarray data
to generate gene-set specific ’activity profiles’.

8.2 Introduction

The use of predefined gene sets has become crucial in the interpretation of genomewide
expression data [Curt 05]. By examining the expression of a set of genes, which are
grouped on the basis of a shared biological property, one is able to establish the possible
characteristic behavior of this gene set with respect to the experimental conditions under
consideration. In a fast and easy way, this can provide insight into the active biological
mechanisms or changes thereof.
A limitation of the existing techniques that relate gene expression levels with gene sets
is that they cannot readily be applied to time-course microarray data. Measuring the
transcriptional response to e.g. temperature changes, stress responses and developmen-
tal stages over time has become increasingly popular in the past few years. In December
2005 it was estimated that time-series experiments account for over 30% of all microar-
ray studies [Erns 05]. This number is expected to grow in the coming years; not only due
to the decreasing cost of such experiments, but also because of the clear advantages over
static expression experiments. For example, time-course analysis enables one to derive
regulatory networks [Bar 03] and investigate the regulation (in terms of reaction speed
to environmental perturbations and temporal hierarchy) of the transcriptome, proteome
and metabolome [Kres 06]. Thus, with the emergence of time-course expression data,
also rises the need for techniques that relate this data to gene sets in order to interpret
the measured transcriptional response over time. The ability to monitor the activity of
a biological process over time would greatly contribute to understanding the complex
regulatory mechanisms in the cell.
By far, the most common way to relate gene expression levels with gene sets is through
the hypergeometric test (or Fisher’s exact test) [Khat 05]. For example, to test whether
the genes associated with a particular Gene Ontology category (set 1) are over-represented
in the set of differentially expressed genes (set 2). Basically, two sets of genes are com-
pared to assess the significance of their overlap under the assumption (or null hypothesis)
that at least one of the groups is randomly drawn from the genome.
Such an analysis has been applied to time-course data, e.g. in Kresnowati et al. [Kres 06].
Here, clusters of yeast genes that exhibit similar expression over time are related to the
functional categories of MIPS [Ruep 04] as well as to binding targets of known tran-
scription factors [Harb 04]. One of the major disadvantages of this approach is that
only one number (P -value) is produced for a particular cluster and gene set combina-
tion. This number conveys information regarding the significance of the overlap, but
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does not directly relate to the different time points of the experiment. One could look
at the prototype signal of the cluster and use this as an ’activity profile’ of the enriched
functional category or transcription factor. However, the interpretation of different de-
grees of enrichment for different gene sets with respect to the same cluster and, thus,
the same prototype signal becomes highly ambiguous. An additional problem of this
approach lies in the fact that gene expression clustering is by no means a transparent
problem. Choices concerning the clustering algorithm and number of clusters are very
difficult to substantiate [Dhae 05]. This is even more so when clustering time-series ex-
pression data [Bar 04].
We propose a statistical testing procedure based on the central limit theorem to as-
sess the enrichment of a gene set. For every (interpolated) time point in a time-course
experiment an enrichment P -value is generated, such that a gene-set specific ’activity
profile’ can be derived. The method employs gene scores, such as expression values or
fold changes, and not a grouping based on these scores. Thus, the need for clustering in
computing enrichment scores is circumvented. A gene set is enriched, when the sum of
the scores of the genes in the set significantly deviates from expected sum of a randomly
drawn gene set. The method can also be applied to static expression experiments. In
that case, selecting a cut-off to decide which genes are differentially expressed is not
necessary. The proposed method is widely applicable and its theoretical framework al-
lows avoiding computationally expensive permutation schemes. Since for each gene set a
unique activity profile can be created, it is easy to monitor the activity of a gene set over
time and compare this with other gene sets. This can greatly contribute to the analysis
of time-series expression data. Using several microarray datasets and comparisons with
other techniques, we demonstrate the rationale and usefulness of our approach.

8.3 Methods

8.3.1 Enrichment computation

Given set G, which contains scalar elements (in our case gene scores) xg with g = 1 . . . G
and set S, which is a subset of G (S ∈ G) and contains S elements, the following statistic
is computed:

Y (S) =
∑

g∈S

xg (8.1)

Under the assumption that each xg is an outcome (or realization) of random variable Xg

and that all these random variables are i.i.d., we can estimate the mean and unbiased
variance of Y (S) as follows:

µ = E(Y (S)) = S ·

∑G

g=1 xg

G
(8.2)

σ2 = var(Y (S)) = S ·

[(∑G

g=1 x2
g

G − 1

)
−

G

G − 1

(∑G

g=1 xg

G

)2]
(8.3)

Next, we compute the following Z score:

Z =
Y (S) − µ

σ
(8.4)
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Note that this Z score resembles the one derived in Newton et al. [Newt 06], except for a
term (G−S)/G in the variance. This difference is explained by the fact that in their ran-
dom set method, S is randomly sampled without replacement from G, while our method
is equivalent to S being randomly sampled with replacement from G. Although draw-
ing a gene set from all genes in the genome is a case of sampling without replacement,
our approach of approximating this by sampling with replacement conforms to the i.i.d.
assumptions and thus permits application of the central limit theorem (CLT). (Because
of the replacement, every draw of a gene is from the same distribution, characterized
by mean µ/S and variance σ2/S, and is independent of a previous draw.) According
to the CLT, Z is standard normally distributed under the null hypothesis that S is
randomly drawn with replacement from G, which we equate to S not being enriched.
By employing the CLT it is easy to compute a P -value for a particular Z-score and thus
give an indication of the significance of the enrichment of a particular set S. We will
refer to this test as the CLT test. According to the CLT test, S is enriched when the
sum of its elements significantly deviates from µ. This will either be the case when all
of its elements are slightly and consistently different with respect to the average of all
elements in G or when some of its elements strongly deviate (or a combination of these
extreme cases). The CLT test is implemented as a two-tailed test, which means that
significant results will be reached when there is over-representation of high scores (right
tail) or overrepresentation of low scores (left tail).
Warnings have been issued concerning the use of the CLT in hypothesis testing, e.g.
in Yates and Goodman [Yate 99]. The approximation of the Z score (Eq. 8.4) by a
normal distribution might be poor for small S, especially in the tails, where hypothesis
testing takes place. To attain more insight in this matter, we have performed several
experiments that compare the CLT approximation of Z, i.e. a standard normal, with
the theoretical distribution of Z. The theoretical distribution of a sum of i.i.d. random
variables is obtained by convolving the pdf of the random variable of interest [Star 86].
The results of this experiment for the continuous uniform distribution and a discrete uni-
form distribution with two outcomes are displayed in Figures 8.1 and 8.2, respectively.
These results indicate that for our range of interest (P < 0.01) the CLT approximation
is always conservative, also in the case where the largest density is found in the tails of
the distribution as is the case with the discrete uniform distribution in Figure 8.2. This
can intuitively be expected since the normal distribution has finite probabilities for any
range of numbers between −∞ and ∞, while the random variable of interest has a finite
range. Moreover, the deviation from the correct P -value is only large for very small S,
and quickly dissolves with increasing S.
The CLT test is a ’competitive’ test, which means that the scores of a gene set are com-
pared to a standard defined by either all genes or the complement of the gene set. In
contrast to this is a ’self-contained’ test, which compares the gene set to a fixed standard
that does not depend on the measurements of genes outside the gene set. Although by
far most enrichment tests are competitive tests, it has been argued that self-contained
tests are more powerful and sensible to use in gene set testing [Goem 07]. The CLT
test can be transformed to a self-contained test when a proper null hypothesis or null
distribution of the gene scores can be formulated. A good example is the case where the
gene scores are P -values. P -values are the results of a hypothesis test and uniformly
distributed between zero and one for genes for which the null hypothesis (e.g. no differ-
ential expression) is true. Then, the mean and variance of this uniform distribution can
be used in the CLT test. Note that this resolves the bias introduced by the assumption
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Figure 8.1 – The theoretical distribution of a sum of i.i.d. uniform distributions,
as derived via convolution, is compared with its CLT approximation.
For the range of all possible outcomes, the P -values (probabilities from the cdf’s of these
distributions) were computed and plotted against each other. The shaded area indicates a
deviation between P -values that is smaller than a factor two. On the right, distributions
for different S are visualized.

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P−value using convolution

P
−

v
al

u
e 

u
si

n
g

 C
L

T

 

 

S = 1

S = 2

S = 5

S = 10

S = 25

S = 50

S = 100

S = 500

CLT
ConvS = 1

CLT
ConvS = 2

CLT
ConvS = 5

CLT
ConvS = 10
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of sampling without replacement. However, for many other scores, such as ranks, or
fold-changes it is not straightforward to define a null distribution.

8.3.2 Application to time-course expression data

Within the setting of microarray gene expression data, set G contains a score for each
gene in the genome, while S is the gene set under investigation. Using the enrichment
computation as explained above, we determine the significance of the deviation of the
sum of scores of the gene set from the expected sum, which is obtained under the null
hypothesis that this gene set is randomly drawn from the genome. Any type of gene
score can be input into the algorithm, as long as the mean and variance over all scores
exist and are finite. Examples include (log) P -values, (log) fold-changes and ranks.
In time course microarray experiments, there is a set of G scores for every time point
t with t = 1 . . . T . The CLT test can simply be applied to gene scores at every time
point separately. This will result in an enrichment score for every t, which we define as
the activity profile of S. Here, interpolation techniques can be employed to exploit the
dependence between time points to create many more time points and, consequently,
smooth activity profiles.
Also, the i.i.d. assumption (or hypothesis) can be extended to hold over time. Then, a
new set, H, is defined. H contains G×T elements xgt for all genes in set G and all time
points in set T . In this case, a new statistic, Y ′(S, τ), is computed as the sum of gene
scores for the gene(s) in S (S ∈ G) at time point(s) τ (τ ∈ T ):

Y ′(S, τ) =
∑

g∈S∧t∈τ
xgt (8.5)

while µ and σ (Eqs. 8.2 and 8.3) are determined by computing the mean and variance
over all elements of H and multiplying this by the product of S and the number of time
points in τ .
In general, by introducing a second factor (time), different hypotheses can be posed,
because there exist multiple ways to define the set from which the parameters of the
null distribution are estimated, i.e. different ways of formulating the statistical test. See
Figure 8.3. For example, given the scores of gene set S at time points τ , we can assess
its possible divergent behavior with respect to either 1) the other genes at these time
points (the time-specific scenario in Figure 8.3; TS CLT), or 2) the other time points
for this gene set (denoted by the gene-specific scenario in Figure 8.3; GS CLT) or 3) all
genes and all time points (the global scenario in Figure 8.3; G CLT). Special cases arise
when τ (or S) consists of one time point (or gene) or all time points (or genes). Then for
example, we can test divergent behavior (differential expression) of a single gene. In this
study, we limit ourselves to the analysis of gene sets at one time point t, i.e. we examine
the possible divergent behavior (enrichment) of a gene set at time point t with respect
to the scores of all genes at time point t (TS CLT) and we investigate the enrichment of
a gene set at time point t given the scores of all other genes at all possible time points
(G CLT). The latter approach allows us to detect global patterns over time, e.g. when
a large portion of genes in the genome becomes upregulated during the experiment.
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Figure 8.3 – Visualization of matrix H and the different scenarios to compute
the null distribution.
The set of genes, S, is depicted by the vector on the left, with a black element indicating
that the corresponding gene is a member of the set. Similarly, the set of time points, τ ,
is depicted by the vector at the top, with a black element indicating membership. The
overlap between the genes of set S and the time points of τ are indicated by the dark grey
squares. Y ′(S, τ) is the sum of these dark-grey elements, while µ and σ are computed over
either 1) all elements of H (denoted by G CLT), 2) the columns defined by τ (denoted by
TS CLT) or 3) the rows defined by S (denoted by GS CLT).

8.4 Results

8.4.1 Comparison to the hypergeometric test

A common first step in the analysis of gene expression data is to find the genes that ex-
hibit differential expression between the measured cultivation conditions, developmental
stages or patient/sample classes. Most algorithms for this, such as the T-test, ANOVA
and SAM (Significance Analysis of Microarrays) [Tush 01] output a P -value and/or a
Q-value (false discovery rate) that indicates the degree of differential expression of a
gene. In order to compute the enrichment of a gene set using the hypergeometric test,
a cut-off on the P - or Q-value is selected to dichotomize the genes in a group of differ-
entially expressed and non-differentially expressed genes.
For this comparison, we employ a microarray gene expression dataset of yeast grown
under four different nutrient limitations in both aerobic and anaerobic chemostat cul-
tures [Tai 05]. More specifically, differential expression between carbon-limited aerobic
growth and nitrogen-limited anaerobic growth is analyzed. A two-tailed T-test, com-
paring the two cultivation conditions, was performed for all (6383) genes in the yeast
genome, resulting in a P -value for each of those genes. To compute enrichment of MIPS
functional categories using the hypergeometric test, different P -value cut-offs to deter-
mine differential expression were selected, i.e. Pcutoff = 5·10−x with x = 2, 2.1, . . . , 4.9, 5.
For the CLT test, no cut-off is selected, yet an appropriate score should be chosen as
input. Here, it is sensible to use the logarithm of the P -values, since this transformation
emphasizes small P -values, which is similar to setting the cut-off in the hypergeometric
tests at very small P -values.
From Figure 8.4 it is evident that both methods (the CLT test and the hypergeometric
test) give highly similar results. Notably, the CLT test, is two-tailed and produces small
P -values for both small and large Z scores. Thus, also gene sets that are comprised of
genes with significantly large scores are considered highly enriched. In the context of the
hypergeometric test, these categories are under-represented in the set of differentially
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Figure 8.4 – Comparison of the enrichment P -values for all MIPS categories
with more than ten genes, obtained with both the hypergeometric test and
the CLT test.
In the case of the hypergeometric test, for each MIPS functional category, the minimum P -
value over all different cut-offs was selected. The dotted diagonal line represents identical
enrichment values for both methods.

expressed genes (or over-represented in the non-differentially expressed set). Although
under-representation can be computed using the hypergeometric test, it is usually not
done. However, the categories found here with small CLT P -values, and large Z scores,
i.e. protein synthesis, cell cycle and transcription are very interesting in the light of the
experimental setup of the microarray data set under consideration. In the chemostats
the growth rate of yeast can be controlled and was kept constant and identical (0.1 h−1)
for all cultivation conditions. Therefore, it is not only interesting to find differentially
expressed gene sets, but also to find the categories that exhibit much less differential
expression when compared to the rest of the genome, since this can provide clues to how
the cell senses the limiting nutrient and regulates itself to maintain a determined growth
rate.
Additionally, we analyzed the ranking of the gene sets, since it is quite common not to
look at the obtained enrichment score itself, but at the order of the most highly enriched
gene sets. From Figure 8.5 we can deduce that both methods perform comparable, since
the ranks of the gene sets derived with the CLT test usually fall within the variation
created by the different cut-off levels used for the hypergeometric tests. However, it
should be noted that gene sets can have a very different ranking (and enrichment value)
based on a fundamental difference between both methods: The hypergeometric test only
selects a short list of genes with extreme scores and determines over-representation of
this list in a gene set, while the CLT test determines the enrichment by summing over all
gene scores in the gene set. In Newton et al. [Newt 06] the already intuitive notion that
’summing’ approaches (such as the CLT test) are more powerful when the gene set under
consideration contains lots of scores that deviate only a little from the mean score, and
’selection’ approaches (such as the hypergeometric test) are more powerful for gene sets,
which have extreme scores for a small number of genes, was proven using an artificial
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data set. In real data sets, both sorts of gene sets will be present to a more or less pro-
nounced degree. Therefore, both approaches can have benefits in practice, and possibly
complement each other. However, we conjecture that for general data interpretation the
results are reasonably equivalent. Similar results were obtained using different two-class
and multi-class comparisons within this dataset, as well as between different cultivation
conditions in other yeast chemostat microarray data sets and between poor and good
prognosis samples from the metastasis dataset, which is described in detail in the next
section. (Results not shown.)

0 10 20 30 40 50 60 70

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ranks

1.6.1 lipid, fatty acid an...

20.1.7 amino acid transport

1.20 secondary metabolism

32 CELL RESCUE, DEFENSE...

16.21.7 NAD/NADP binding

1.5.1.3 C−compound, carbohyd...

20.1.13 lipid transport

2.13 respiration

1.3.1.3 purine nucleotide an...

20.1.3.1 sugar transport

1.6 lipid, fatty acid an...

20.3 transport facilitati...

1.6.4.5 fatty acid degradati...

20.9.10 peroxisomal transpor...

16.21 complex cofactor/cos...

20.1.15 electron / hydrogen ...

1.5.1.1.1 sugar, glucoside, po...

2.16.1 alcohol fermentation

2.11 electron transport a...

20.1.3 C−compound and carbo...

20.1 transported compound...

2.16 fermentation

2.10 tricarboxylic−acid p...

1.5.1.1 C−compound, carbohyd...

1.5 C−compound and carbo...

1 METABOLISM

2 ENERGY

1.5.1 C−compound and carbo...

Figure 8.5 – Boxplot of the ranks of the most highly enriched MIPS gene sets
according to the hypergeometric test.
For each Pcutoff a ranking of the gene sets was derived on the basis of their enrichment
P -value obtained with the hypergeometric test. These outcomes are represented by the
boxplots. Also, a ranking of the MIPS gene sets based on the CLT test was derived (based
on the Z score). These ranks are denoted by the filled circles.

8.4.2 Comparison to GSEA

Similar to the CLT test, GSEA uses all gene scores of a gene set to compute enrichment
and does not place a threshold on these scores. The first implementation of GSEA
[Moot 03] only uses the ranking of the genes based on their scores to compute enrichment
values. The goal of GSEA is to determine whether the members of a gene set tend
to occur toward the top or the bottom of the rank-ordered list of genes. For this, a
Kolmogorov-Smirnov statistic (KS) is computed. In a later version [Subr 05], the scores
are used as weights, resulting in a weighted KS. Permutation tests are performed to
compute an empirical P -value by counting the number of times the KS, as computed
on a permuted data set, exceeds the original KS. In GSEA this permutation takes place
on the class labels of the microarray data set under investigation. This is in contrast to
the CLT test, which assumes gene sets that are randomly drawn from the genome and
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is equivalent to permuting the gene labels. This results in a different hypothesis being
tested. (This fact is overlooked by Kim and Volsky [Kim 05], where also a Z-score for
a gene set is computed, in their case using the fold change between two condition as
gene scores. Here, we will not address the theoretical concerns of this issue. For that
discussion, we refer to Tian et al. [Tian 05] and Efron and Tibshirani [Efro 07].)
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Figure 8.6 – Comparison of the enrichment P -values for more than 2500 gene
sets (with more than ten genes), obtained with both GSEA and the CLT test
on the Van de Vijver data [Vijv 02].
For visibility, the -log10(P -value) is given for the CLT test. The gene sets are derived from
MSigBD [Subr 05], Gene Ontology [Ashb 00] and others. For GSEA, 103 permutations
were performed. In these plots, GSEA P -values of zero were set to 10−3. The number in
the upper right corner indicates the overlap of the 150 most enriched gene sets for both
methods. The dashed line represents identical enrichment values for both methods.

For our comparison, we employed the breast cancer microarray dataset of Van de Vijver
[Vijv 02], which contains genomewide expression measurements for 258 patients (65 with
poor prognosis, 193 with good prognosis). For all (24481) genes, the Pearson correlation
between the class labels and expression pattern of a gene was computed. We compare
1) the normalized version of GSEA of Mootha et al. [Moot 03] (implementation of
Subramanian et al. [Subr 05] with p = 0) to the CLT test using the ranks (based on
the correlations between the class labels and expression patterns) as gene scores, and 2)
GSEA of Subramanian et al. [Subr 05] (p = 1) to the CLT test using the correlations
as gene scores. Furthermore, we apply both class label permutation and gene label
permutation to compute GSEA’s enrichment P -value. For GSEA we performed 1000
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permutations. From Figure 8.6 it is clear that the enrichment P -value from the CLT test
and from GSEA are similar in the case of gene label permutation. There is, however,
a large difference in the P -value range between both approaches. This is because the
number of permutations determines the P -value resolution. The permutation scheme
is computationally intensive and time consuming. (Remember that for the CLT test
no permutations are necessary.) Additionally, in the case of class label permutation in
combination with a dataset with relatively small classes (e.g. triplicate measurements
of yeast cultivation experiments), the number of possible permutations is very limited,
resulting in a low resolution P -value.

8.4.3 Activity profiles for a glucose pulse

In Kresnowati et al. [Kres 06], the global transcriptional response of the yeast S.
cerevisiae to a glucose pulse was investigated. Initially, the yeast was growing in
glucose-limited chemostats, where metabolism is fully respiratory, after which the glu-
cose concentration was instantaneously increased. Triplicate samples were taken at
t = 0, 30, 60, 120, 210, 300 and 330 seconds after glucose addition.
Here, we employ this time-course microarray dataset to create activity profiles of gene
sets. First, we interpolated the expression profile of each gene using piecewise cubic
spline interpolation [Bar 04], such that we have an expression level for each second af-
ter the glucose pulse. Next, we computed the log2 fold-change between the expression
level at each time point and the expression level at t = 0. These log2 fold-changes are
used as gene scores in our algorithm. The employed gene sets are the MIPS functional
categories [Ruep 04] and the binding targets of known transcription factors [Harb 04].
In Kresnowati et al., these gene sets were related to one of two clusters, i.e. a cluster of
upregulated and a cluster of downregulated genes, through the hypergeometric test. In
contrast, with our approach we create a unique activity profile for each gene set without
clustering the genes beforehand. Figures 8.7 and 8.8 display activity profiles for some
functional categories and transcription factors that were over-represented in one of the
clusters of Kresnowati et al.. In general, we found that gene sets with a larger hyper-
geometric test P -value in Kresnowati et al., had a larger maximum enrichment value
in their activity profiles. Furthermore, since we create a unique profile for each gene
set in stead of relating a gene set to the upregulated or downregulated cluster, we are
able to detect differences in the transcriptional response time after the glucose pulse for
different gene sets. For example, the targets of stress responsive element transcription
factors, Msn2 and Msn4, which are part of the glucose-sensing pathway [Gela 03] are
downregulated at an earlier stage than Nrg1 and Sko1, which are involved in glucose
catabolite repression [Rep 01, Berk 04]. See Figure 8.8. (Results for Msn4 and Sko1
and not shown, but are very similar to Msn2 and Nrg1, respectively). These results
provide clues towards the dynamics of the glucose-induction signaling and high osmo-
larity MAPK signaling pathways in Saccharomyces cerevisiae as recently reconstructed
in Arga et al. [Arga 07]. Another notable observation is that genes involved in amino
acid metabolism have a higher log2 fold-change w.r.t. the glucose-limited steady-state
(t = 0) compared to the other genes in the genome, already from right after the glucose
addition.
In Kresnowati et al., it was established that there is no or only very little transcription
response until between 120 to 210 seconds after the pulse, when major transcriptional
changes start to occur. Thus, when applying the CLT test by computing the mean and
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Figure 8.7 – Activity profiles for four functional categories derived by applying
the TS CLT test at each time point.
The small embedded figure (top-left) is similar to Figure 8.3 and visualizes the scenario
used to derive the activity profile. In this TS CLT case the score of a gene set at one
time point (dark-grey squares) is compared to the scores of all genes at that time point
(grey column). The left vertical axis indicates the enrichment P -value; the right vertical
axis indicates the corresponding Z score. In Kresnowati et al., Transcription and amino
acid metabolism were related to the cluster of upregulated genes; Energy and C-compound
and carbohydrate metabolism were related to the cluster of downregulated genes, all with
P < 10−14.
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Figure 8.8 – Identical to Figure 8.7, except now for four transcription factors.
In Kresnowati et al., Bas1 and Met32 were related to the cluster of upregulated genes with
P = 5.94 · 10−11 and P = 1.80 · 10−3 respectively. Msn2 and Nrg1 were related to the
cluster of downregulated genes with P = 7.50 · 10−6 and P = 9.99 · 10−4 respectively.
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variance over all gene scores at all time points (G CLT), enriched gene sets at the earlier
time points are no longer found significant. See Figure 8.9. This is because the variance
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Figure 8.9 – Identical to Figure 8.8, except now by applying the G CLT test
for each time point.

over the log2 fold-changes at all time points is larger than the individual variances for
the earlier time points, thereby shrouding these subtle variations and only uncovering
the global patterns. In general, profiles derived with G CLT and TS CLT will exhibit
significant differences, when during the time-course there are large changes in the overall
activity of the transcriptome.

8.4.4 Activity profiles for yeast’s cell cycle

The TS CLT test was applied on the cell cycle microarray dataset of Spellman et al.
[Spel 98]. In this work, yeast cultures were synchronized using three different methods:
α factor arrest, elutriation and arrest of a cdc15 temperature-sensitive mutant. Also the
data of Cho et al. [Cho 98] was included, where the cultures were synchronized using
a cdc28 mutant. Log2 fold-changes were obtained by comparison with gene expression
measurements of asynchronous cultures of the same cells growing exponentially at the
same temperature in the same medium. Again, we use these as gene scores to be input
in the algorithm. In this case, no interpolation was performed. Activity profiles were
derived for gene sets comprised of the binding targets of known transcription factors
[Harb 04]. To relate a time point to a cell cycle phase (M/G1, G1, S or G2/M), we
applied the TS CLT test to gene sets, which are comprised of genes that are known to
be regulated in a particular cell cycle phase. These gene sets, which are determined
by traditional methods, are also used in the methodology of Spellman et al. [Spel 98].
Time points were labeled with the cell cycle phase corresponding to the most highly
upregulated gene set. For the cell cycle dataset, there are no significant differences
between the results of G CLT and TS CLT.
We compared the derived transcription factor activity profiles to the findings of Simon



134 CHAPTER 8. GENE SET ACTIVITY PROFILES

et al. [Simo 01]. In this work, an attempt was made to identify the serial regulation
of transcription factors in yeast’s cell cycle. Regulators were related to a particular
phase of the cell cycle using the 800 cell cycle related genes as found by Spellman et al..
Figures 8.10 and 8.11 display the activity profiles of Ace2, Mbp1, Fkh2 and Mcm1, which
according to Simon et al. [Simo 01] are involved in the regulation of the (subsequent)
M/G1, G1/S, G2 and G2/M cell cycle phases, respectively. Indeed, we obtain this
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Figure 8.10 – Activity profiles for four highly enriched TF’s.
Synchronization of the yeast cultures in this cell cycle data set, was achieved using α factor
arrest. Each time point was linked to a cell-cycle phase. This is indicated below the x-axis.

pattern, which can be seen from the fact that the peak (and the rise) of the profile
of Ace2 is followed by the peak of Mbp1, followed by the peaks for Fkh2 and Mcm1,
after which the cycle begins again. Note that the profiles were generated using the
log2 fold-changes of all genes in the genome, and not by using the 800 cell-cycle related
genes. Moreover, the cell-cycle phases, which are assigned to the time points using the
TS CLT test, correspond to the activity of the transcription factors, as determined in
Simon et al., thereby providing additional justification of the truthfulness and power of
our analysis.

8.5 Discussion

In this study, we have introduced a technique that employs time-course expression data
to derive activity profiles, which represent the enrichment of a gene set over time. Since
for each gene set a unique activity profile can be derived, differences in the activity of
e.g. biological processes or transcription factors in terms of the degree of enrichment and
timing can be analyzed, thereby offering profound insight in (the hierarchy of) regulatory
mechanisms. Other approaches have been proposed to derive an activity profile of e.g.
a transcription factor [Rone 06]. However, their approach heavily relies on the complex
modeling of the mRNA quantity and parameter estimation based on a-priori knowledge.
Our algorithm, on the other hand, is a fast and easy tool in data interpretation of time
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Figure 8.11 – Identical to Figure 8.10, except here a different synchronization
technique was used.
In this case synchronization was performed using arrest of a cdc15 temperature-sensitive
mutant.

course expression data.
The underlying statistical test to assess the enrichment of a gene set is based on the
central limit theorem. For each time point in the time-series, the CLT test evaluates the
significance of the scores of the gene set with respect to all genes in the genome. Any
type of score can be used. We have demonstrated that by choosing appropriate gene
scores, we can obtain similar results in comparison to two widely-used enrichment tests,
i.e. the hypergeometric test and gene set enrichment analysis (GSEA). The CLT test has
the following advantages: In comparison to the hypergeometric test, no cut-off needs to
be selected to dichotomize genes into differentially or non-differentially expressed genes
or into clusters. Especially in the range of small P -values, the hypergeometric test is
very sensitive to cut-off selection in the sense that a small change in the chosen cut-
off can lead to large differences in the enrichment score. In comparison to GSEA, the
time-consuming permutation scheme can be avoided.





DISCUSSION

All computational methods that have been presented in this thesis integrate gene ex-
pression data with the growth conditions under which the microarrays were performed.
The main motivation behind the incorporation of the growth conditions into the com-
putational model is to enable the interpretation of the results in terms of the growth
conditions. Throughout this thesis different computational techniques were employed to
properly address the biological questions that accompanied the gene expression datasets.
In this section, we discuss some important issues concerning the employed computational
techniques. Thereafter, we sketch directions for future work in this area.

Discretization

In Chapters 2, 3 and 4, discretization of the gene expression patterns was employed to
describe gene and clusters of genes in terms of their transcriptional response to particular
cultivation parameters. This offers an advantage with respect to standard clustering
algorithms, where interpretation of the clusters in terms of the growth conditions is
often ambiguous. See Figure 1a. On the other hand, for some genes the discretized
expression patterns do not do justice to their complex continuous expression patterns.
For example, most genes in the five k-means clusters of Figure 1b-f do not have an
obvious discretized (tertiary) expression pattern. The Davies-Bouldin index [Davi 79]
or other cluster validity measures can be employed to decide upon the quality of the
discretization. Genes for which no compact and well-separated clusters of conditions
are found, could be omitted from analysis or placed in a special group and analyzed
separately. Alternatively, the number of discretization levels could be increased such
that a condition could occupy more than three discrete expression states. However, in
that case it is no longer possible to call a gene upregulated, downregulated or having
basal expression.
In Chapter 6 we have seen that the majority of genes has widely differing expression
levels across the 55 growth conditions, even when compensating for the mRNA extraction
protocol effect. In most cases, there is no expression level, which can be called the
basal expression level of that gene, simply because the expression level is fluctuating
across most conditions in stead of being constant across the majority of conditions. The
discretization strategy to choose a basal expression level and identify conditions which
are up- or downregulated with respect to this basal expression level can therefore be
a serious oversimplification when applied to a large set of conditions. Therefore, the
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Figure 1 – Normalized expression patterns of different clusters.
a: Normalized expression patterns of genes in Cluster (or Module) 1 from Chapter 3. These
genes were clustered together based on their discretized expression patterns as explained
in Chapter 3. The cluster can be characterized as upregulated under zinc limitation
irrespective of oxygen presence, the discretized expression pattern being [0 0 1 0 0 1].
b-f: A portion of clusters derived from the same data (1500 differentially expressed genes)
using k-means clustering. The five clusters have a similar number of genes, are more
compact (smaller inter cluster distances) compared to the first cluster and have similar
enrichment in functional categories. However, the interpretation of the expression pattern
of the genes in the clusters in terms of the growth conditions is ambiguous, i.e. one cannot
clearly indicate under which cultivation parameters genes are up- or downregulated.
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tertiary discretization strategy is only sensible to apply on expression datasets with a
relatively small number of conditions (< 10).

Model complexity

In modeling (building a conceptual representation of some phenomenon) there is always
the trade-off between model complexity and predictive accuracy. Modeling (part of) the
biological cell is a great challenge for three reasons. First, cellular mechanisms are char-
acterized by complex, nonlinear functions. The components that comprise the model
of some cellular phenomenon (such as CRPs, TFs and promoter regions to model gene
transcription rates) form an intricate maze; their properties and mutual interactions give
rise to complicated behavior (such as competitive binding) that can only be captured by
complex models. Second, relevant components might still be unknown and, therefore,
missing in the model. Third, intracellular measurement data is often lacking (when the
measurement technique is unavailable) or noisy and of too small-sample size to learn
complex models.

In this thesis, growth conditions were described using all cultivation parameters that dif-
fer between the experiments of the microarray dataset under investigation. Ideally, the
setup of cultivation parameters is fully combinatorial (or factorial), i.e. the experimen-
tal design includes all possible combinations of settings across all cultivation parameters
(factors). From a practical point of view, such approaches are only feasible with a very
limited number of cultivation parameters. For example, both Chapter 4 and Brauer et
al. [Brau 08] use a factorial design with two cultivation parameters. For factorial de-
signs with many factors the number of necessary microarray experiments explodes. For
example, the ten cultivation parameters in Chapter 6 would result in 403200 distinct
growth conditions when a full combinatorial setup would be applied.
In addition, from a statistical point of view the number of (independent biological) repli-
cates should be as large as possible. However, normally not more than three replicates
are available per growth condition, which is rather small. In general, more samples
means more statistical power and the ability to apply more complex models.
Here, a trade-off can be made between sample size and heterogeneity. By neglecting
particular cultivation parameters (because they are thought to be of minor importance),
growth conditions that only differed in terms of these cultivation parameters will be
merged, leading to more samples per growth condition. Especially in the medical set-
ting, where e.g. groups of patients with different disease development are compared,
patient-specific factors like gender, age, etc. are often ignored. On the one hand, this
leads to confounding effects and thus more heterogeneity within a group of patients; on
the other hand, the larger number of samples within one group allows for more complex
(classification) models. Obviously, such trade-offs depend on the intended purpose and
should not be made beforehand. Both biological validation and statistical validation
(e.g. classification error or model fit criteria) can be used to decide whether samples
from different conditions should be pooled. In this work, such a trade-off was not con-
sidered, because all cultivation parameters that characterize a growth condition were
considered potentially relevant and we were interested in their effect on gene expression.
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This thesis employs reasonably simple models to relate cultivation parameters to gene
expression and TF activity. In Chapter 6, a forward step-wise ordinary least squares
regression strategy has been employed, where cultivation parameters have an additive
effect on gene expression. Non-linear effects were introduced by applying logic functions
(AND, OR) to the cultivation parameters, which were represented as binary predictors
in the model. However, when adding these interaction effects one must guard against
overfitting and loss of statistical power. For this reason, (similar to other approaches,
e.g. [Bonn 06]) it was not desirable to incorporate second (or higher) order interaction
effects.
The smaller, but factorial design of the microarray dataset in Chapter 4 allowed for a
slightly more complex approach with regard to the modeling of one particular cultiva-
tion parameter, i.e. aeration type. The ’oxygen effect’ was successfully modeled to have
both an additive as well as a multiplicative effect on gene expression, hinting at the
fact that the additive model of Chapter 6 is inadequate. On the other hand, the setup
of cultivation parameters in Chapter 6 does not allow for such a modeling approach to
be straightforwardly applied. That is, the aerobic growth conditions do not completely
match with the anaerobic conditions. For example, acetate was only used as a carbon
source under aerobic conditions and yeast was only grown at lower temperature (12◦C)
in the anaerobic case. This complicates estimation of the ’oxygen effect’ when compared
to the factorial design of Chapter 4.
Chapter 7 presents the most complex model of this thesis, where we assess which cul-
tivation parameters activate which TFs and estimate the strength of TFs such that
their interplay on a gene’s promoter explains the gene expression level. Throughout
this model we used binary (0, 1) and tertiary (-1, 0, 1) variables. (The continuous re-
gression coefficients of Chapter 6 were also discretized.) The use of integers facilitates
complex (non-linear) relations between the variables in the model. Boolean logic and
if-then logic (e.g. ’If only enhancers bind the promoter, then a gene is upregulated’)
can be easily implemented. Furthermore, integer programming can be used to solve the
complex optimization problem effectively and efficiently. On the other hand, a discrete
representation of cellular events might be a poor approximation of the ’continuum’ that
is the cell.

In bioinformatics research, the trade-off between model complexity and prediction ac-
curacy is not straightforward. Of course, it is important to satisfy (to some degree) the
assumptions on the data imposed by the employed model. For example, in the regression
approach (Chapter 6) the use of log RMA expression values in stead of the standard
absolute MAS expression values was considered more suitable, because the variance of
the error (or noise) component in this model is assumed to be constant. For absolute ex-
pression levels the measurement error was observed to be proportional to the expression
level (multiplicative), while for log expression values the error becomes less dependent
on the expression level and can more easily be modeled as a constant additive compo-
nent. Furthermore, internal validation measures and strategies like cross-validation can
be applied to avoid overfitting. However, the biological interpretation of the results is
also very important to assess the suitability of the model. For example, the regression
coefficients of significant predictors were required to have an absolute value larger than
a particular threshold (0.3 in this case) to prevent regression coefficients near zero. Al-
though small (absolute) weights can be significant according to the regression model,
they are likely not to have any biological significance (i.e. effect in the cell).
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The behavior of a particular model when applied to the often high-dimensional and
complex cellular data is not something that can easily be predicted or thought through
beforehand. Internal validation, external validation (like functional enrichment tests)
and biological interpretation are crucial aspects to determine the suitability of a model
in describing the data. These validation techniques should be used to deduce clues and
inspiration to adjust the model in order to advance to an appropriate description of the
data and thereby answer the biological question.
Therefore, we think that proper bioinformatics research should follow a cycle that is
similar to the scientific cycle (or method) used to generate new scientific theories or hy-
potheses. See Figure 2. In the scientific method observations (and existing knowledge)
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Figure 2 – Three cycles for hypothesis generation
a: The general scientific cycle. b The proposed bioinformatics cycle. c In black (font
color and arrows): The hypothesis driven systems biology cycle as postulated by Kitano
[Kita 02]. In grey: the proposed bioinformatics cycle as an innerloop of Kitano’s cycle.

are used to generate some hypothesis or theory. See Figure 2a. Based on this hypoth-
esis predictions can be made, which can be verified using the/new observations and
provide hints towards the validity of the hypothesis and possible adjustments (improve-
ments) to the hypothesis. Then, new predictions can be made based on the adjusted
hypothesis, and so on. We envision a similar cyclic process in bioinformatics research:
Based on cellular measurement data and existing knowledge (about cell biology and
statistics/machine learning) a computational model is derived to answer the biological
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question. The results obtained when applying this model to the data are validated using
both biological interpretation and analysis of internal/external statistical scores. Again,
this would allow one to adjust the model to more suitably describe the data and tackle
the biological question. See Figure 2b.
Kitano [Kita 02] proposed a hypothesis driven cycle for systems biology research. In this
cycle, computational (’dry’) experiments are used to generate hypotheses or predictions
that are tested using lab (’wet’) experiments. We believe this cycle can be improved
by introducing the proposed bioinformatics cycle as an innerloop on the ’dry’ side. See
Figure 2c. In principle, the proposed bioinformatics cycle does not use new experimental
data (although this is possible), but statistical and biological validation on the original
experimental data as evaluation and subsequent improvement of the model. In our opin-
ion and experience, several iterations (cycles) of adjustments to the model are necessary
to derive a suitable description of the data that can be used to generate new theories or
hypotheses to be tested in the lab.

Condition specificity

The interplay between TFs to control the transcriptional rates remains elusive. Cur-
rently, there are no models (logical, biophysical or other) that allow one to successfully
predict a gene’s transcription rate given the upstream binding of different TFs. Here,
Chapter 7 and other related work (cited in Chapter 7) form a starting point to uncover
the synergistic and antagonistic effects between TFs. Many of these approaches are
hampered by the employed TF binding data. The most frequently used and by far the
largest TF binding dataset [Harb 04] does not only contain many false positives [Gao 04],
but is inadequate in describing complete TF binding potential. That is, only a small
number of different growth conditions were employed to profile the binding locations of
the many TFs in this dataset. Under other growth conditions different binding locations
will be uncovered. This is due to the possible interaction with different TFs, co-factors
or other proteins that could be (in)activated in new conditions, but also due to the al-
tered accessibility of the upstream region due to chromatin remodeling [Beye 06]. Many
of the false positive binding sites found with motif scanning approaches are regions inac-
cessible to TFs due to chromatin [Narl 07]. At this moment, no genome-wide chromatin
occupancy datasets are available under a range of different growth conditions. However,
the activity of chromatin remodeling proteins and nucleosome occupancy appears to be
very much condition dependent [Pokh 05].
In general, the extracellular environment has a large influence on all (“omics”) levels of
the cell and, consequently, on measurements thereof. For example, synthetic-sick-and-
lethal interactions are also condition dependent. The synthetic-sick-and-lethal screens
have been performed on yeast growing under rich media conditions [Tong 04]. Yet, in
the steady-state chemostat microarray compendium, there are certain growth condi-
tions, where both genes of a lethal interaction pair are not expressed, while the yeast
is still happily growing. This observation of context-dependency of (measurements on)
cellular components is very important to take into account when integrating different
data sources.
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Directions for future work

Microarray experiments of dynamic processes

To infer the effect of cultivation parameters on gene expression, this thesis only uses
steady-state microarray data. This provides a static picture of the organism’s transcrip-
tional response to a set of cultivation parameters. It is possible to uncover the changes
in gene expression in relation to the changes in cultivation parameters. However, it
is very hard to find out how these changes came to be. Transcriptional adaptation to
differences in the extracellular environment can be analyzed using time-series microar-
ray experiments, where microarray measurements and (simultaneous measurements of
environmental parameters) are taken over time as extracellular conditions change. In
that case, the cultivation parameters can no longer be modeled as categorical variables,
but assume continuous values. In principle, similar strategies, such as the described
regression approach in Chapter 6, can be applied with time as an additional parameter.
However, strategies that model the time aspect in a more sensible or sophisticated way,
such as Markov chains or differential equations, are likely more promising. Anyhow, the
modeling of dynamic experiments enables one to derive regulatory network models that
incorporate temporal hierarchy and causal relations amongst and between the TFs and
cellular processes that mediate the transcriptional response that enables the organism
to adapt to changed conditions.

Combinatorial regulation by TFs

As mentioned above, the systematic analysis of combinatorial regulation by the TFs (and
histones) remains underdeveloped. Bussemaker [Buss 06] draws the analogy between
transcriptional regulation and Ohm’s law, which applies to passive electrical circuits
containing only conductors. Here, the rate of transcription is directly proportional to
the activity of TFs, where the conductivity (or proportionality constant) is represented
by the regulatory coupling between TFs and their target genes. This conductivity can be
modeled as the binding affinity of a TF to the promoter of a gene. Although this linear
model of transcription regulation suffices as a first-order approximation, many genome-
wide studies and especially studies on the mechanisms behind the transcription control
of individual genes (or genes in a single pathway) demonstrate a far more complex role
for TFs. Transcriptional regulation should therefore be compared to electrical circuits
with active components, where TFs can act upon each other and in a combinatorial
(synergistic or antagonistic) way influence gene expression.
One way to model these combinatorial effects is by using logic functions that can be
applied after discretization of TF activity, TF binding and/or gene expression. Logic
functions (or networks) form a reasonable approximation to many known mechanisms
involving multiple TFs, such as the cooperation between TFs, hierarchy amongst TFs,
TFs repressing activators or even directly interacting with the basal transcription ma-
chinery (thereby inhibiting its function), etc. Furthermore, these logic functions result
in interpretable TF networks, from which testable hypotheses can be deduced. Most
methods that employ combinatorial effects do not explicitly model these effects as logic
functions. For example, in Beer and Tavazoie [Beer 04] the presence (or absence) of
motifs is used to explain cluster membership. In Chapter 7 the presence of activated
enhancers and repressors on a gene promoter together with their inferred strengths de-
termine, whether a gene is upregulated or downregulated.
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However, these models do not specify the combinatorial or logic relations (AND, OR)
that exist between the motifs/TFs. Methods that do explicitly incorporate logic func-
tions are usually limited to pairwise interactions between TFs due to model complexity
issues. Promising techniques that are able to model higher order logic are inductive
logic programming (ILP), logic regression and integer optimization tools. ILP uses
background knowledge (e.g. TF binding data and the model that active TFs can (com-
binatorially) affect gene expression) and positive and negative examples (e.g. inferred
TF activities and gene expression measurements) to induce hypotheses about transcrip-
tion regulation. Logic regression can be used to concatenate logic gates and derive a
Boolean network that explains (discretized) gene expression levels. Integer optimization
tools enable the search of high dimensional discrete solution spaces. Constraints on the
variables can be formulated to represent the interplay between TFs.
Also, a challenge lies in extending the biophysical model of TF binding as introduced by
Foat et al. [Foat 06] with combinatorial effects. The biophysical model is based on the
thermodynamic equilibrium that exists between the associated state of a TF and a DNA
sequence (i.e. the TF is bound to the DNA) and the unassociated or unbound state. It
provides a more realistic view of this cellular mechanism. In the current model a DNA
binding site is fully accessible to the TF. However, chromatin structure can have a large
effect on this accessibility. Other (bound) TFs can also facilitate or hinder TF binding,
e.g. by steric hindrance. In the extreme case where two TFs have overlapping binding
sites, we basically have two compounds (TFs) competing for the same substrate (DNA),
resulting in an equilibrium state, which is obviously different from the equilibrium states
of the individual TFs with the binding site.

Single sample, multiple measurements

A promising avenue for future work is the “single sample, multiple measurements” ap-
proach, where different biological quantities are measured on a single biological sample.
In this case, this implies that for different growth conditions not only gene expression
levels are measured, but also the binding (or occupancy) of TFs as well as chromatin
(and its remodeling proteins). Such an approach excludes confounding (non-biological,
external) effects that will arise when integrating data from different labs, different proto-
cols, different yeast strains, etc. Further, instead of inferring the activity of TF binding
and chromatin occupancy (as done in Chapter 7), these quantities are measured and
can directly be related to the growth conditions and used to model the gene expression
levels.
As a side note, expression data (complemented with TF/chromatin data) is not enough
to understand the complete route from extracellular quantities to adaptation of tran-
scription rates. This route includes the import and/or signaling of these extracellular
quantities via diverse mechanisms that eventually manipulate the activity of TFs and
chromatin remodeling proteins, which, in the end, regulate gene expression. In gen-
eral, the activity of transporters, signaling proteins, enzymes, etc. is not well correlated
with the expression of the genes that code for these proteins. Therefore, other types
of measurements, such as protein and metabolite measurements need to be integrated
in order for computational models to infer the influence of extracellular stimuli on all
levels of the cell. Additionally, the nature of cultivation parameters and the way in
which the cell reacts to them can be completely different. Consider, for example, the
difference between parameters that are imported by the cell and metabolized, such as
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carbon source glucose, and parameters that are only sensed by the cell as chemical or
physical stimuli, such as temperature. This would necessitate directed and specialized
computational approaches on equally specific datasets.

Conclusively, the work described in this thesis provides a starting point to explore future
directions that investigate how the cell responds to its environment.
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SUMMARY

Exactly how an organism adapts its transcriptional program in response to intra- and
extracellular signals remains elusive. Development of computational approaches that use
the large amounts of diverse intracellular data to unravel the cell’s transcriptional pro-
gram is one of today’s main challenges in bioinformatics research. This thesis contributes
to that field by investigating the transcriptional response of the yeast Saccharomyces
cerevisiae to multiple chemical and physical signals from its environment. In contrast
to the commonly used shake-flask cultures, the gene expression data employed in this
thesis originates from yeast grown in steady-state chemostat cultures. These chemostat
cultures enable the accurate control, measurement and manipulation of individual cul-
tivation parameters, such as growth rate, temperature and nutrient concentrations. A
growth condition can thus be characterized by the combined settings of several cultiva-
tion parameters. Computational methods are developed that use these ‘multifactorial’
growth conditions to infer the effect of individual cultivation parameters and combina-
tions of cultivation parameters on gene expression. The gene expression measurements
are integrated with data about the binding potential of transcription factors (TF), the
proteins that bind the DNA near a gene (promoter region) and possibly manipulate the
rate at which the gene is transcribed. This integration enables us to investigate the effect
of cultivation parameters on the activity of TFs. We present computational approaches
that not only infer the activity of TFs as a function of the cultivation parameters, but
also describe the combinatorial interplay between different TFs on gene promoters to
regulate a gene’s rate of transcription.





SAMENVATTING

De precieze wijze, waarop een organisme zijn programma van gentranscriptie aanpast
aan intra- en extracellulaire signalen is in het geheel nog niet duidelijk. Bioinformati-
caonderzoek heeft de belangrijke rol om computertechnieken te ontwikkelen, die de grote
en diverse hoeveelheden beschikbare data van metingen in de cel kunnen gebruiken om
het transcriptieprogramma van een cel te ontravelen. Dit proefschrift vormt een bij-
drage aan dit vakgebied door onderzoek te doen naar de transcriptionele reactie van
bakkersgist op verschillende fysische en chemische signalen van buitenaf. De genex-
pressiemetingen, die worden gebruikt in dit proefschrift zijn afkomstig van gist groeiend
in ‘steady-state’ chemostaat culturen. In tegenstelling tot de vaakgebruikte schudkolfen
faciliteren de chemostaten de nauwkeurige controle, meting en manipulatie van individu-
ele cultivatieparameters, zoals de groeisnelheid, temperatuur en voedingsconcentraties.
Een groeiconditie kan dus worden gekenmerkt door de gecombineerde instellingen van
verschillende cultivatieparameters. Computertechnieken zijn ontwikkeld om vanuit deze
‘multifactoriële’ groeicondities het effect van individuele cultivatieparameters, maar ook
combinaties van verschillende cultivatieparameters op genexpressie af te leiden. De
genexpressiemetingen zijn gëıntegreerd met informatie over de binding van transcrip-
tiefactoren (TF’s); de eiwitten, die vlak bij een gen kunnen binden op het DNA om
daar het proces van gentranscriptie te bëıvloeden. Deze integratie stelt ons in staat om
het effect van de cultivatieparameters op de activiteit van de TF’s te onderzoeken. Wij
introduceren computertechnieken, die niet alleen de activiteit van de TF’s behandelen
als functie van de cultivatieparameters, maar ook de interactie tussen verschillende TF’s,
die bepalend is voor de transcriptiesnelheid van een gen, beschrijven.
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